Support Matrix for NeMo Retriever Text Embedding NIM#
This documentation describes the software and hardware that NeMo Retriever Text Embedding NIM supports.
Models#
NeMo Retriever Text Embedding NIM supports the following models:
Model Name |
Model ID |
Max Tokens |
Publisher |
Parameters |
Embedding |
Dynamic Embeddings |
Model Card |
---|---|---|---|---|---|---|---|
Llama-3.2-NV-EmbedQA-1B-v2 |
nvidia/llama-3.2-nv-embedqa-1b-v2 |
8192 |
NVIDIA |
1236 |
2048 |
yes |
|
NV-EmbedQA-E5-v5 |
nvidia/nv-embedqa-e5-v5 |
512 |
NVIDIA |
335 |
1024 |
no |
|
NV-EmbedQA-Mistral7B-v2 |
nvidia/nv-embedqa-mistral-7b-v2 |
512 |
NVIDIA |
7110 |
4096 |
no |
|
Snowflake’s Arctic-embed-l |
snowflake/arctic-embed-l |
512 |
Snowflake |
335 |
1024 |
no |
Supported Hardware#
Llama-3.2-NV-EmbedQA-1B-v2#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 PCIe |
40 & 80 |
FP16 |
A100 SXM4 |
40 & 80 |
FP16 |
H100 PCIe |
80 |
FP16 & FP8 |
H100 HBM3 |
80 |
FP16 & FP8 |
H100 NVL |
80 |
FP16 & FP8 |
L40s |
48 |
FP16 & FP8 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 & FP8 |
GeForce RTX 4090 (Beta) |
24 |
FP16 |
NVIDIA RTX 6000 Ada Generation (Beta) |
48 |
FP16 |
GeForce RTX 5080 (Beta) |
16 |
FP16 |
GeForce RTX 5090 (Beta) |
32 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any single NVIDIA GPU that has sufficient memory, or multiple homogenous NVIDIA GPUs that have sufficient memory in total. |
3.6 |
FP16 |
9 |
NV-EmbedQA-E5-v5#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 PCIe |
40 & 80 |
FP16 |
A100 SXM4 |
40 & 80 |
FP16 |
H100 PCIe |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
H100 NVL |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
17 |
NV-EmbedQA-Mistral7B-v2#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 PCIe |
80 |
FP16 |
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP8 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP8 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
16 |
FP16 |
30 |
Snowflake’s Arctic-embed-l#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 PCIe |
80 |
FP16 |
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
17 |
Software#
NVIDIA Driver#
Releases prior to 1.4.0-rtx use Triton Inference Server 24.08. Please refer to the Release Notes for Triton on NVIDIA driver support.
Release 1.4.0-rtx uses Triton Inference Server 25.01. Please refer to the Release Notes for Triton on NVIDIA driver support.
If issues arise when you start the NIM containers, run the following code to ensure that the latest NVIDIA drivers are installed.
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
NVIDIA Container Toolkit#
Your Docker environment must support NVIDIA GPUs. Please refer to the NVIDIA Container Toolkit for more information.