IIIIIII

TABLE OF CONTENTS

Chapter 1. INtrodUCHION....ciiiiiitiiiiiientttieiieneeeeeresnneseceesennsssccsssnnssssesassnnsssecsssnnnnes 1

(0 -1 o1 =T oy Z Y=ot {o] o 1-J0 PPN 2
200 Y=ot o o TN (3 N 2
0 Y =Tot (o] a D LT 1] o) o PSP P 5
200C T 1= o @ o] [1 3P 5
B 1 g Y Y =Tt (o] 1T PPN 5
PR T D T 1=t B T o [of T 6

Chapter 3. RUlE SystemM..ciiiiiiiieiiiiiiieeieieeirneeeeeeeesnneeceeeessnnssecessssassscesessnnsssecsssnnnnes 8
T O o T B T U= T PP 8
K 141 =T~ - L [R PO PP 8
3.3. Rule System ArChiteCtUre. . .ciie i i e e et e e e e enneeeanaeeanas 9
3.4, NVRULES APL. .ttt ettt ettt e e et e et e s eaatereneeeannerenneesannesennnasannes 10
3.5, RULE FIle APt e it e e e ettt et ettt e e e e eaa ettt eanaeaaeaaenns 10
3.6, RULE EXAMPLES. t et ittt iiiiii et tetiieteeteeennneeeeeeesnnnneseessnnneessessnnnnsessessnnnneess 11

Chapter 4. Python Report Interface......cccieeeiiiiiiiiieiiiiniiiieiiiieeieienecenenseecnsscncnssonnnses 12
O I - T 1 ol Y- Ve PPt 12
4.2, High-Level INTerfaCe. coiiiiiiiiiiiiiiiii it et ettt e eiie et aeaieaeeeaaanns 14
4.3, Metric attribDULES. ..ot e e ettt 14
0 T N AV I Q1 o] 0o] o PP 15
R Y- 10T o] ST ol o] PP 16

Chapter 5. SOUICE COUNTOIS...iiiiiieetteeeieneeeteceesnnestecesssnnsssecsessnsssesesssnnsssccsssnnsssecnns 17

Chapter 6. Report File FOrmat.....ccceiieiiiiiiiiiiiiiiiiiiiiiieiiieeiieeeeaneecenneesancsenncasnnnens 19
oI I /=) 3 o o AR o 4 0 3= 19
www.nvidia.com

Nsight Compute v2022.4.1 | ii

LIST OF TABLES

Table 1 Top-level report file formateeiiiiiiiiii it it e ee i eeeireeeeeaennnneaees 19
Table 2 Per-Block report file format ..oooueeiiiiiiiiiii it ittt ettt eeeeiaeeeeaannnnes 19

Table 3 Block payload report file format

www.nvidia.com
Nsight Compute v2022.4.1 | iii

www.nvidia.com
Nsight Compute v2022.4.1 | iv

Chapter 1.
INTRODUCTION

The goal of NVIDIA Nsight Compute is to design a profiling tool that can be easily
extended and customized by expert users. While we provide useful defaults, this allows
adapting the reports to a specific use case or to design new ways to investigate collected
data. All the following is data driven and does not require the tools to be recompiled.

While working with section files or rules files it is recommended to open the Sections/
Rules tool window from the Profile menu item. This tool window lists all sections and
rules that were loaded. Rules are grouped as children of their associated section or
grouped in the [Independent Rules] entry. For files that failed to load, the table shows the
error message. Use the Reload button to reload rule files from disk.

www.nvidia.com
Nsight Compute v2022.4.1 | 1

Chapter 2.
SECTIONS

The Details page consists of sections that focus on a specific part of the kernel analysis
each. Every section is defined by a corresponding section file that specifies the data to be
collected as well as the visualization used in the UI to present this data. Simply modify a
section file to add or modify what is collected.

2.1. Section Files

By default, the section files are stored in the sections sub-folder of the NVIDIA Nsight
Compute install directory. Each section is defined in a separate file with the .section file
extension. Section files are loaded automatically at the time the UI connects to a target
application or the command line profiler is launched. That way, any changes to section
files become immediately available in the next profile run.

A section file is a text representation of a Google Protocol Buffer message. The full
definition of all available fields of a section message is given in Section Definition. In
short, each section consists of a unique Identifier (no spaces allowed), a Display Name, an
optional Order value (for sorting the sections in the Details page), an optional Description
providing guidance to the user, an optional header table, and an optional body with
additional UI elements. A small example of a very simple section is:

Identifier: "SampleSection"
DisplayName: "Sample Section"
Description: "This sample section shows information on active warps and cycles."
Header {
Metrics {
Label: "Active Warps"
Name: "smsp active warps_ avg"
}
Metrics {
Label: "Active Cycles"
Name: "smsp active cycles avg"
}
}

On data collection, this section will cause the two PerfWorks metrics
smsp__active warps_avgand smsp__active_cycles_avg to be collected.

www.nvidia.com
Nsight Compute v2022.4.1 | 2

Sections

¥ Sample Section
Acotive Warps 15,590,8?0_75|Bctive Cycles 1,18%,536.17

More advanced elements can be used in the body of a section. Currently, NVIDIA Nsight
Compute supports tables and various bar charts. The following example shows how

to use these in a slightly more complex example. The usage of regexes is allowed in
tables and charts in the section Body only and follows the format regex: followed by the
actual regex to match PerfWorks metric names.

The supported list of metrics that can be used in sections can be queried using NVIDIA
Nsight Compute CLI with option --query-metrics. Each of these metrics can be
used in any section and will be automatically be collected if they appear in any enabled
section. Look at all the shipping sections to see how they are implemented.

www.nvidia.com
Nsight Compute v2022.4.1 | 3

Sections

Identifier: "SampleSection"

DisplayName: "Sample Section"

Description: "This sample section shows various metrics."
Header {

Metrics {

Label: "Active Warps"

Name: "smsp active warps avg"
}
Metrics {

Label: "Active Cycles"

Name: "smsp active cycles avg"
}
}
Body {
Items {
Table {
Label: "Example Table"
Rows: 2

Columns: 1

Metrics {
Label: "Avg. Issued Instructions Per Scheduler"
Name: "smsp inst issued avg"

}

Metrics {
Label: "Avg. Executed Instructions Per Scheduler"
Name: "smsp inst executed avg"

}
}
Items {
Table {
Label: "Metrics Table"
Columns: 2
Order: ColumnMajor
Metrics {
Name: "regex:.* elapsed cycles sum"
}
}
}
Items {
BarChart {
Label: "Metrics Chart"
CategoryAxis {
Label: "Units"
}
ValueAxis {
Label: "Cycles"
}
Metrics {
Name: "regex:.* elapsed cycles sum"

}

www.nvidia.com
Nsight Compute v2022.4.1 | 4

Sections

~ Sample Section
Active warps [warps] 321121.73 | Active Cycles [cycle] 2378176
Example Table
Avg. Issued Instructions Per Scheduler [inst] 1587.81
Avg, Executed Instructions Per Scheduler [inst] 1562.63
Metrics Table

dram_elapsed_cycles_sum [cycle] 1,083,392 | te_elapsed_cycles_sum [cycle] 364,980
fbp_elapsed_cycles_sum [cycle] 182490 | fts_elapsed_cycles_sum [cycle] 1,458,920
fbpa_elapsed_cycles_sum [cycle] 364,980 | sm_elapsed_cycles_sum [cycle] 2,559,780
gpc_elapsed_cycles_sum [cycle] 191,985 | | smsp_elapsed_cycles_sum [cycle] 10,239,120
gr_elapsed_cycles_sum [cycle] 29,605 | tex_elapsed_cycles_sum [cycle] 2,559,780
host_elapsed_cycles_sum [cycle] 11,05 | tpc_elapsed_cycles_sum [cycle] 1,279,890

Metrics Chart

dram_elapsed_cycles_sum I
fop_elapsed_cycles_sum [l
fbpa__elapsed_cydes_sum [
gpc_elapsed_cycles_sum M
or__elapsed_cyces_sum

host_ elapsed_cycles_sum

ltc_elapsed_cyces_sum I
Its_elapsed_cyces_sum [
sm_elapsed_cycles_sum [E——
smsp_elapsed_cyces_sum
tex_elapsed_cyces_sum [
tpe_elapsed_cycles_sum

0.0 5000000.0 10000000.0 15000000.0
Cycles

2.2. Section Definition

Protocol buffer definitions are in the NVIDIA Nsight Compute installation directory
under extras/FileFormat.

To see the list of available PerfWorks metrics for any device or chip, use the --query-
metrics option of the NVIDIA Nsight Compute CLI.

2.3. Metric Options

Sections allow the user to specify alternative options for metrics that have a different
metric name on different GPU architectures. Metric options use a min-arch/max-arch
range filter, replacing the base metric with the first metric option for which the current
GPU architecture matches the filter. While not strictly enforced, options for a base metric
are expected to share the same meaning and subsequently unit, etc., with the base
metric. In addition to its alternatives, the base metric can be filtered by the same criteria
(currently min/max architecture). This is useful for metrics that are only available for
certain architectures.

2.4. Missing Sections

If new or updated section files are not used by NVIDIA Nsight Compute, it is most
commonly one of two reasons:

The file is not found: Section files must have the . section extension. They must

also be on the section search path. The default search path is the sections directory
within the installation directory. In NVIDIA Nsight Compute CLI, the search paths can
be overwritten using the --section-folder and --section-folder-recursive

www.nvidia.com
Nsight Compute v2022.4.1 | 5

Sections

options. In NVIDIA Nsight Compute, the search path can be configured in the Profile
options.

Syntax errors: If the file is found but has syntax errors, it will not be available for metric
collection. However, error messages are reported for easier debugging. In NVIDIA
Nsight Compute CLI, use the --1ist-sections option to get a list of error messages, if
any. In NVIDIA Nsight Compute, error messages are reported in the Sections/Rules Info
tool window.

2.5. Derived Metrics

Derived Metrics allows you to define new metrics composed of constants or existing
metrics directly in a section file. The new metrics are computed at collection time and
added permanently to the profile result in the report. They can then subsequently be
used for any tables, charts, rules, etc.

NVIDIA Nsight Compute currently supports the following syntax for defining derived
metrics in section file:

MetricDefinitions {
MetricDefinitions {
Name: "derived metric name"
Expression: "derived metric expr"
1

MetricDefinitions {

}

The actual metric expression is defined as follows:

derived metric expr ::= operand operator operand

operator =4+ | = | * |/

operand = metric | constant

metric = (an existing metric name)

constant ::= double | uinto4

double ::= (double-precision number of the form "N. (M)?", e.g. "5."
or "0.3109"M)

uint64 = (64-bit unsigned integer number of the form "N", e.g.

"2029")

Operators are defined as follows:

For op in (+ | - | *): For each element in a metric it is applied to, the
expression left-hand side op-combined with expression right-hand side.
For op in (/): For each element in a metric it is applied to, the expression

left-hand side op-combined with expression right-hand side. If the right-hand
side operand is of integer-type, and 0, the result is the left-hand side value.

Since metrics can contain regular values and/or instanced values, elements are combined
as below. Constants are treated as metrics with only a regular value.

www.nvidia.com
Nsight Compute v2022.4.1 | 6

Sections

1. Regular values are operator-combined.
a + b

2. If both metrics have no correlation ids, the first N values are operator-
combined, where N is the minimum of the number of elements in both metrics.
al + bl

a2 + b2

a3

a4

3. Else if both metrics have correlation ids, the sets of correlation ids from
both metrics are joined and then operator-combined as applicable.

al + bl

az

b3

ad + b4

b5

4. Else if only the left-hand side metric has correlation ids, the right-hand
side regular metric value is operator-combined with every element of the left-

hand side metric.

al + b

a2 + b

a3 + b

5. Else if only the right-hand side metric has correlation ids, the right-hand
side element values are operator-combined with the regular metric value of the
left-hand side metric.

a + bl + b2 + b3

In all operations, the value kind of the left-hand side operand is used. If the right-hand
side operand has a different value kind, it is converted. If the left-hand side operand is a
string-kind, it is returned unchanged.

Examples for derived metrics are derived _avg_thread_executed, which
provides a hint on the number of threads executed on average at each instruction, and
derived uncoalesced 12 transactions_global, which indicates the ratio of
actual L2 transactions vs. ideal L2 transactions at each applicable instruction.

MetricDefinitions {
MetricDefinitions {
Name: "derived avg thread executed"
Expression: "thread inst executed true / inst executed"
1
MetricDefinitions {
Name: "derived uncoalesced 12 transactions global"
Expression: "memory 12 transactions global /
memory ideal 12 transactions global"
1
MetricDefinitions {
Name: "sm sass thread inst executed op ffma pred on x2"
Expression:
"sm sass_thread inst executed op ffma pred on.sum.peak sustained * 2"

}

www.nvidia.com
Nsight Compute v2022.4.1 | 7

Chapter 3.
RULE SYSTEM

NVIDIA Nsight Compute features a new Python-based rule system. It is designed as the
successor to the Expert System (un)guided analysis in NVIDIA Visual Profiler, but meant
to be more flexible and more easily extensible to different use cases and APIs.

3.1. Writing Rules

To create a new rule, you need to create a new text file with the extension .py and place
it at some location that is detectable by the tool (see Nsight Compute Integration on
how to specify the search path for rules). At a minimum, the rule file must implement
two functions, get_identifier and apply. See Rule File API for a description of all
functions supported in rule files. See NvRules for details on the interface available in the
rule's apply function.

3.2. Integration

The rule system is integrated into NVIDIA Nsight Compute as part of the profile report
view. When you profile a kernel, available rules will be shown in the report's Details
page. You can either select to apply all available rules at once by clicking Apply Rules at
the top of the page, or apply rules individually. Once applied, the rule results will be
added to the current report. By default, all rules are applied automatically.

~ GPU Speed Of Light
% SOL SM 15.04 [Duration (Manoseconds) 10,240.00
% SOL TEX 0.80 (Elapsed Cycles 28,674.00
% S0L L2 108.96 | SM Frequency (Hz) 700,048,828.13
% SOL FB 34.37 [Memory Frequency (Hz) 2,668,750,000.00
Recommendations

Bottleneck Simple GPU bottleneck detection. Apply |

GPU Utilization

% sm eusy [N
% Memary Busy = Current
0.0 10.0 20.0 300 40.0 50.0 60.0 70,0 80.0 90.0 100.0
wild 17:28:24 Mar 21 2017 % Utilization

www.nvidia.com
Nsight Compute v2022.4.1 | 8

~ GPU Speed Of Light

Rule System

% SOL SM 15.04 | Duration (Nanoseconds) 18,240.00
% SOL TEX 0.00 | Elapsed Cycles 28,674.00
% S0L L2 10.96|SM Frequency (Hz) 700,048,828.13
% SOL FB 34.37 |Memory Frequency (Hz) 2,668,750,000.00

Recommendations

@ Bottleneck their time doing.
Also, consider whether any computation is redundant and could be reduced.

Compute is more heavily utilized than Memory: Look at Compute Workload Analysis’ report section to see what the compute pipelines are spending

GPU Utilization

% s susy [N
% Memory Busy * Current
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
% Utilization
~ Rule
Grid Size 196.00 | Block Size 256.00
Instructions Executed 28,169.080
Recommendations
@ Basic Template Rule Kernel vectoradd launch config: 196x256
/L. Basic Template Rule [Warning] This is what a warning of the analysis might look like
Template Rule Bar Chart
IMAD
S2R I
LD —
MOV I
“
§ ISETP I
2 EXT I = Current
=]
BRA I
ST I
MOv32l I
FADD I
0.0 5000.0 10000.0 15000.0
Instructions Executed
Kernel Information
Grid Size 196.00
Block Size 256.00
Advanced Template Rule Another rule template, demonstrating more advanced NvRules functionality Apply

= Independent Rules

Recommendations

@ Kernel Information Kernel vectoradd launch config: 196x256

@ collect Rule metric value = 11037.0

3.3. Rule System Architecture

The rule system consists of the Python interpreter, the NvRules C++ interface, the NuRules
Python interface (NvRules.py) and a set of rule files. Each rule file is valid Python code
that imports the NvRules.py module, adheres to certain standards defined by the Rule

File API and is called to from the tool.

When applying a rule, a handle to the rule Context is provided to its apply function. This
context captures most of the functionality that is available to rules as part of the NvRules

www.nvidia.com
Nsight Compute

v2022.4.1 |1 9

Rule System

API. In addition, some functionality is provided directly by the NvRules module, e.g.
for global error reporting. Finally, since rules are valid Python code, they can use regular
libraries and language functionality that ship with Python as well.

From the rule Context, multiple further objects can be accessed, e.g. the Frontend,
Ranges and Actions. It should be noted that those are only interfaces, i.e. the actual
implementation can vary from tool to tool that decides to implement this functionality.

Naming of these interfaces is chosen to be as API-independent as possible, i.e. not to
imply CUDA-specific semantics. However, since many compute and graphics APIs

map to similar concepts, it can easily be mapped to CUDA terminology, too. A Range
refers to a CUDA stream, an Action refers to a single CUDA kernel instance. Each action
references several Metrics that have been collected during profiling (e.g. instructions
executed) or are statically available (e.g. the launch configuration). Metrics are accessed
via their names from the Action.

Each CUDA stream can contain any number of kernel (or other device activity) instances
and so each Range can reference one or more Actions. However, currently only a single
Action per Range will be available, as only a single CUDA kernel can be profiled at once.

The Frontend provides an interface to manipulate the tool UI by adding messages or
graphical elements such as line and bar charts or tables. The most common use case

is for a rule to show at least one message, stating the result to the user. This could be

as simple as "No issues have been detected," or contain direct hints as to how the user
could improve the code, e.g. "Memory is more heavily utilized than Compute. Consider
whether it is possible for the kernel to do more compute work."

3.4. NvRules API

The NvRules API is defined as a C/C++ style interface, which is converted to the
NvRules.py Python module to be consumable by the rules. As such, C++ class
interfaces are directly converted to Python classes und functions. See the NvRules API
documentation for the classes and functions available in this interface.

3.5. Rule File API

The Rule File API is the implicit contract between the rule Python file and the tool. It
defines which functions (syntactically and semantically) the Python file must provide to
properly work as a rule.

Mandatory Functions

» get_identifier ():Return the unique rule identifier string.

» apply (handle): Apply this rule to the rule context provided by handle. Use
NvRules.get context (handle) to obtain the Context interface from handle.

» get_name (): Return the user-consumable display name of this rule.
» get description (): Return the user-consumable description of this rule.

Optional Functions

www.nvidia.com
Nsight Compute v2022.4.1 | 10

Rule System

> get_section_identifier ():Return the unique section identifier that maps this
rule to a section. Section-mapped rules will only be available if the corresponding
section was collected. They implicitly assume that the metrics requested by the
section are collected when the rule is applied.

» evaluate (handle):

Declare required metrics and rules that are necessary for this rule to be applied. Use
NvRules.require metrics(handle, [...]) todeclare the list of metrics that
must be collected prior to applying this rule.

Use e.g. NvRules.require rules (handle, [...]) todeclare the list of other
rules that must be available before applying this rule. Those are the only rules that
can be safely proposed by the Controller interface.

3.6. Rule Examples

The following example rule determines on which major GPU architecture a kernel was
running.

import NvRules

def get identifier():
return "GpuArch"

def apply (handle) :
ctx = NvRules.get context (handle)
action = ctx.range by idx(0).action by idx(0)
ccMajor =
action.metric by name ("device attribute compute capability major").as uint64()
ctx.frontend () .message ("Running on major compute capability " + str(ccMajor))

www.nvidia.com
Nsight Compute v2022.4.1 | 11

Chapter 4.
PYTHON REPORT INTERFACE

NVIDIA Nsight Compute features a Python-based interface to interact with exported
report files.

The module is called ncu_report and works on any Python version from 3.4 1.1t can be
found in the extras/python directory of your NVIDIA Nsight Compute package.

In order to use the Python module, you need a report file generated by NVIDIA Nsight
Compute. You can obtain such a file by saving it from the graphical interface or by using
the --export flag of the command line tool.

The types and functions in the ncu_report module are a subset of the ones available
in the NvRules API. The documentation in this section serves as a tutorial. For a
more formal description of the exposed API, please refer to the the NvRules API
documentation.

4.1. Basic Usage

In order to be able to import ncu_report you will either have to navigate to the
extras/python directory, or add its absolute path to the PYTHONPATH environment
variable. Then, the module can be imported like any Python module:

>>> import ncu report

Importing a report

Once the module is imported, you can load a report file by calling the 1oad _report
function with the path to the file. This function returns an object of type IContext
which holds all the information concerning that report.

>>> my context = ncu report.load report ("my report.ncu-rep")

Querying ranges

! On Linux machines you will also need a GNU-compatible libc and 1ibgce_s. so.

www.nvidia.com
Nsight Compute v2022.4.1 | 12

Python Report Interface

When working with the Python module, kernel profiling results are grouped into
ranges which are represented by IRange objects. You can inspect the number of ranges
contained in the loaded report by calling the num_ranges () member function of an
IContext object and retrieve a range by its index using range_by_idx (index).

>>> my context.num ranges ()
1
>>> my range = my context.range by idx(0)

Querying actions

Inside a range, kernel profiling results are called actions. You can query the number of
actions contained in a given range by using the num_actions method of an IRange
object.

>>> my range.num actions()
2

In the same way ranges can be obtained from an IContext object by using the
range by _idx (index) method, individual actions can be obtained from IRange objects
by using the action_by_idx (index) method. The resulting actions are represented by
the IAction class.

>>> my action = my range.action by idx(0)

As mentioned previously, an action represents a single kernel profiling result. To query
the kernel's name you can use the name () member function of the IAction class.

>>> my action.name ()
MyKernel

Querying metrics

To get a tuple of all metric names contained within an action you can use the
metric_names () method. It is meant to be combined with the metric_by name ()
method which returns an IMetric object. However, for the same task you may also use
the [1 operator, as explained in the High-Level Interface section below.

The metric names displayed here are the same as the ones you can use with the --
metrics flag of NVIDIA Nsight Compute. Once you have extracted a metric from an
action, you can obtain its value by using one of the following three methods:

» as_string() to obtain its value as a Python str
» as_uint64 () to obtain its value as a Python int
» as_double () to obtain its value as a Python float

For example, to print the display name of the GPU on which the kernel was profiled you
can query the device__attribute_display name metric.

www.nvidia.com
Nsight Compute v2022.4.1 | 13

Python Report Interface

>>> display name metric =

my action.metric by name ('device attribute display name')
>>> display name metric.as_string()

'NVIDIA GeForce RTX 3060 Ti'

Note that accessing a metric with the wrong type can lead to unexpected (conversion)
results.

>>> display name metric.as_double ()
0.0

Therefore, it is advisable to directly use the High-Level function value (), as explained
below.

4.2. High-Level Interface

On top of the low-level NvRules API the Python Report Interface also implements
part of the Python object model. By implementing special methods, the Python Report
Interface's exposed classes can be used with built-in Python mechanisms such as
iteration, string formatting and length querying.

This allows you to access metrics objects via the self [key] instance method of the
IAction class:

>>> display name metric = my action["device attribute display name"]

There is also a convenience method IMetric.value () which allows you to query the
value of a metric object without knowledge of its type:

>>> display name metric.value ()
'NVIDIA GeForce RTX 3060 Ti'

All the available methods of a class, as well as their associated Python docstrings, can be
looked up interactively via

>>> help (ncu report.IMetric)

or similarly for other classes and methods. In your code, you can access the docstrings
viathe __doc__ attribute, i.e. ncu_report.IMetric.value.__doc

4.3. Metric attributes

Apart from the possibility to query the name () and value () of an IMetric object, you
can also query the following additional metric attributes:

» metric_type()

www.nvidia.com
Nsight Compute v2022.4.1 | 14

https://docs.python.org/3/reference/datamodel.html

Python Report Interface

metric_subtype ()
rollup operation()
unit()

vV v v VY

description ()

The first method metric_type () returns one out of three enum values
(IMetric.MetricType COUNTER, IMetric.MetricType RATIO,
IMetric.MetricType THROUGHPUT) if the metric is a hardware metric, or
IMetric.MetricType OTHER otherwise (e.g. for launch or device attributes).

The method metric_subtype () returns an enum value representing the

subtype of a metric (e.g. IMetric.MetricSubtype PEAK SUSTAINED,
IMetric.MetricSubtype PER CYCLE ACTIVE). In case a metric does not

have a subtype, None is returned. All available values (without the necessary
IMetric.MetricSubtype prefix) may be found in the NvRules API documentation,
or may be looked up interactively by executing help (ncu_report.IMetric).

IMetric.rollup_operation () returns the operation which is used to accumulate
different values of the same metric and can be one of IMetric.RollupOperation_AVG,
IMetric.RollupOperation MAX, IMetric.RollupOperation_MIN or
IMetric.RollupOperation_SUM for averaging, maximum, minimum or summation,
respectively. If the metric in question does not specify a rollup operation None will be
returned.

Lastly, unit () and description () return a (possibly empty) string of the metric's unit
and a short textual description for hardware metrics, respectively.

The above methods can be combined to filter through all metrics of a report, given
certain criteria:

for metric in metrics:

if metric.metric type() == IMetric.MetricType COUNTER and \
metric.metric subtype() == IMetric.MetricSubtype PER SECOND and \
metric.rollup operation() == IMetric.RollupOperation AVG:
print (f"{metric.name () }: {metric.value ()} {metric.unit()}")

4.4, NVTX Support

The ncu_report has support for the NVIDIA Tools Extension (NVTX). This comes
through the INvtxState object which represents the NVTX state of a profiled kernel.

An INvtxState object can be obtained from an action by using its nvtx_state ()
method. It exposes the domains () method which returns a tuple of integers
representing the domains this kernel has state in. These integers can be used with the
domain by_id(id) method to get an INvtxDomainInfo object which represents the
state of a domain.

The INvtxDomainInfo can be used to obtain a tuple of Push-Pop, or Start-End ranges
using the push_pop_ranges () and start_end ranges () methods.

www.nvidia.com
Nsight Compute v2022.4.1 | 15

Python Report Interface

There is also a actions_by_ nvtx member function in the IRange class which allows
you to get a tuple of actions matching the NVTX state described in its parameter.

The parameters for the actions_by nvtx function are two lists of strings representing
the state for which we want to query the actions. The first parameter describes the NVTX
states to include while the second one describes the NVTX states to exclude. These
strings are in the same format as the ones used with the --nvtx-include and --nvtx-
exclude options.

4.5. Sample Script

NVTX Push-Pop range filtering

This is a sample script which loads a report and prints the names of all the profiled
kernels which were wrapped inside BottomRange and TopRange Push-Pop ranges of the
default NVTX domain.

#!/usr/bin/env python3
import sys
import ncu report

if len(sys.argv) != 2:
print ("usage: {} report file".format (sys.argv([0]), file=sys.stderr)
sys.exit (1)

report = ncu report.load report(sys.argv[1l])

for range idx in range (report.num ranges()) :
current range = report.range by idx(range idx)
for action idx in current range.actions by nvtx(["BottomRange/*/TopRange"],
[1):
action = current range.action by idx(action idx)
print (action.name ())

www.nvidia.com
Nsight Compute v2022.4.1 | 16

Chapter 5.
SOURCE COUNTERS

The Source page provides correlation of various metrics with CUDA-C, PTX and SASS
source of the application, depending on availability.

Which Source Counter metrics are collected and the order in which they are displayed
in this page is controlled using section files, specifically using the ProfilerSectionMetrics
message type. Each ProfilerSectionMetrics defines one ordered group of metrics, and
can be assigned an optional Order value. This value defines the ordering among those
groups in the Source page. This allows, for example, you to define a group of memory-
related source counters in one and a group of instruction-related counters in another
section file.

Identifier: "SourceMetrics"
DisplayName: "Custom Source Metrics"
Metrics {
Order: 2
Metrics {
Label: "Instructions Executed"
Name: "inst executed"
}
Metrics {
Label: ""
Name: "collected but not shown"

}

If a Source Counter metric is given an empty label attribute in the section file, it will be
collected but not shown on the page.

www.nvidia.com
Nsight Compute v2022.4.1 | 17

Source Counters

= #l Addessl
» 1| 16ff2dse @!FT SHFL.IDX FT, RI, RI, RZI, RI
o] 16¢F2dee IMAD.MOV.U32 R1, RZ, RZ, c[exa][ex28]
: 3| 16ff2dag S2R R2, SR_CTAID.Y
4 16ff2dbe S2R R3, SR_CTAID.X
| 5| 16ff2dce S2R RS, SR_TID.Y
: & 16ffadde S2R Re, SR_TID.X
7| 16ff2dee IMAD R2Z, R2, c[e@xe][exc], R3 {e}
E: BT IMAD R2, R2, c[exe][exs], RS {1}
: o 16ffzese IMAD R2, R2, c[exe][exe], Rre {2}
18| 16ff2e18 ISETP.GE.U32Z.AND P8, FT, RZ, c[2x@][exlEs], FT,
| 11| 16ff2e28 BSSY B8, exbieffaf2e
12| 16fF2e3e PRMT R3, RZI, @x7618, R3
| 13] 16‘f‘f2mePﬂ BRA exbisffafie
: 14| 16ff2e58 LOP3.LUT R4, R2.reuse, @x7f, RI, exce, !PT
15| 16ff2e68 LOP3.LUT R3, R2, exffffffee, RI, 8xca@, !PT
| 16| 16ff2e78 IMAD.SHL.U32 R4, R4, @x4, RZ
: 17| 16ff2es8 IMAD R, R3, @x33@, R4
18| 16ff2e08 IADD3 RE, P8, R, c[8x3][ex43g], RI
19| 16F2ea0 IMAD.X R7, RZ, RZ, c[ex3][exs33], P
: 28| 16ff2ebe LDG.E.US.STRONG.CTA R&, [Re+@xle@e3]
21| 16ff2ece IMAD.MOV.U32 R3, RZ, RZ, @xl
23] 16¢F2ede SHF.L.U32 R3, R3, R6, RZ {8}
: 23| 16ff2eee LOP3.LUT R3, R3, c[exe][exlsc], RZ, exce,
www.nvidia.com

Nsight Compute

IFT

Salﬂi)gDalz(NoIsﬁ)e)‘ Instructions Executed | Predicated-On Thread Instructions Executed
1 essw 897,18

v2022.4.1 | 18

Chapter 6.
REPORT FILE FORMAT

This section documents the internals of the profiler report files (reports in the following)
as created by NVIDIA Nsight Compute. The file format is subject to change in future
releases without prior notice.

6.1. Version 7 Format

Reports of version 7 are a combination of raw binary data and serialized Google Protocol
Buffer version 2 messages (proto). All binary entries are stored as little endian. Protocol
buffer definitions are in the NVIDIA Nsight Compute installation directory under
extras/FileFormat.

Table 1 Top-level report file format

Offset [bytes] Entry Type Value

0 Magic Number Binary NVP\O

4 Integer Binary sizeof (File Header)

8 File Header Proto Report version

8 + sizeof(File Header) Block 0 Mixed CUDA CUBIN source,
profile results, session
information

8 + sizeof(File Header) + | Block 1 Mixed CUDA CUBIN source,

sizeof(Block 0) profile results, session
information

Table 2 Per-Block report file format

Offset [bytes] Entry Type Value

0 Integer Binary sizeof (Block Header)

www.nvidia.com
Nsight Compute v2022.4.1 | 19

Report File Format

Offset [bytes] Entry Type Value

4 Block Header Proto Number of entries per
payload type, payload
size

4 + sizeof (Block Header) | Block Payload Mixed Payload (CUDA CUBIN

sources, profile results,
session information,
string table)

Table 3 Block payload report file format

Offset [bytes] Entry Type Value
0 Integer Binary sizeof (Payload type 1,
entry 1)
4 Payload type 1, entry 1 | Proto
4 + sizeof (Payload type | Integer Binary sizeof(Payload type 1,
1, entry 1) entry 2)
8 + sizeof(Payload type | Payload type 1, entry 2 | Proto
1, entry 1)
Integer Binary sizeof(Payload type 2,
entry 1)
Payload type 2, entry 1 | Proto

www.nvidia.com
Nsight Compute

v2022.4.1 | 20

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2018-2023 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
WWWw.sync.ro/).

www.nvidia.com ﬁVIbiA®

	Table of Contents
	List of Tables
	Introduction
	Sections
	2.1. Section Files
	2.2. Section Definition
	2.3. Metric Options
	2.4. Missing Sections
	2.5. Derived Metrics

	Rule System
	3.1. Writing Rules
	3.2. Integration
	3.3. Rule System Architecture
	3.4. NvRules API
	3.5. Rule File API
	3.6. Rule Examples

	Python Report Interface
	4.1. Basic Usage
	4.2. High-Level Interface
	4.3. Metric attributes
	4.4. NVTX Support
	4.5. Sample Script

	Source Counters
	Report File Format
	6.1. Version 7 Format

