IIIIIII

Chapter 1. Profiling from the CLI.....cciiiiiiiiiiiiiiiiiiiiinititeeieneeeeteesennncetecessnnssscccsonnas 1

1.1. Installing the CLI on YOUr Target.....coeeitiiiiitiiiiiiiiiiiiii i iee e eaaenns 1
1.2, ComMaANd LiNe OPtioNS. . .uuuetteieeiieeetteerineeeeresrnneeeesessnnnneeesessnnnsessessnnnnessessnnnns 1
1.2.1. CLI GLODaAl OPtiONS. c e uetiittteitteeettertetereeeeneereaaeeraneerenneesennessennesesnnssennens 2
1.3. CLI Command SWItCRES. ...t e ettt et e e e e e eneeeeaees 2
1.3.1. CLI Profile Command SWitCh Options.......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiii i eeeaaaas 4
1.3.2. CLI Start Command SWiItCh OptioNS.......ceiiiiiiittiiiiiiiiiirriiiieeeeenriareereaannnnes 18
1.3.3. CLI Stop Command SWitCh Options.......ceiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeaannnaes 23
1.3.4. CLI Cancel Command Switch OptionS.......cciuiiiiiiiiiiiiiiii i eiie e eeieeaeneees 23
1.3.5. CLI Launch Command Switch OptioNns.....ccouuiiiiiiiiiiiiiiiiiiiiiiii it eeeeeiaeaens 24
1.3.6. CLI Shutdown Command Switch OptionS......cccuviiiiiiiiiiiiiiiiiiiiiiiiiii i eeeieeeans 34
1.3.7. CLI Export Command SWitCh Options.ciiiiiiieiiiiiiiiiiiiiiiieeeeeeiiieeeeeaennnnes 34
1.3.8. CLI Stats SWItCh OPLiONS.euueiitiitiiiiiiiii i er et e e et eeeeenes 35
1.3.9. CLI Status Command SWiItCh Options.......cciieiiieeiiiiiiiiiiereiiiieereeiiieneeeeannnnes 40
1.3.10. CLI Sessions Command Switch Subcommands........ccoeviiiieiiiiiiiiieiriiieereneeennnen. 41
1.4. Example Single Command LineS....coeeiuueiiiieiiitetreeniieeeeeeernereeeessnnnneesesonnnnneeens 41
1.5. Example Interactive CLI Command SEQUENCES.uuitiiiiiiiiitiiiiiiiieereiiieeeeeeeannnes 44
1.6. Example Stats Command SEQUENCES.ovieetttiiieiiiettreerreeeeeeeenaneeeesennneesssannnns 49
1.7. Example Output from --stats Option....ciiiiiiiiiiiiiiiiii ittt ie i eeeiieeeeaaannaes 50
1.8. Importing and Viewing Command Line Results Files.......ccovuiiiiiiiiiiiiiiiiiiiiiiiiiieenns 52
1.9. Using the CLI to Analyze MPI Codes.ciiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeaiieeeeeeeenssaeeeeanns 54
1.9.1. TraCing MPI API CallS....uiinneiiiietiiii i e e e ei e eereeeeeneeeenneeaanaeeanns 54
1.9.2. Using the CLI to Profile Applications Launched with mpirun.............cocoiiiiiinn... 54
Chapter 2. Profiling from the GUL.........ciiiiiiiiiiiiii i iiiec i eeieneeeeeeeceanascnnnnns 57
2.1. Profiling Linux Targets from the GUI......ccciiiiiiiiiiiiiiiiiiiiiiiii it ieeeiieeeeeaanas 57
2.1.1. Connecting to the Target DeviCe........viiiiiiiiiiiiiiiiiiiiii e 57
2.1.2. System-Wide Profiling OptioNnS. ...ce.uueeiiiiiiiiiieiiiiieieeiineeeeeernneeeeressnnnneess 59
2.1.2.1. LINUX X860 _ B4 neiiniiitiiitieitieit et eet et eeeeateeaseesseeneeanseesesneesnaeaneeenens 59
2 B3 B B 11 10D G o g [T - PP 61
2.1.3. Target Sampling Options. ...ouiiiiiiiiiiiiiiiiii it et iii e eeeiaeeeeeaenseeeeeanns 61
Target Sampling Options for Workstation........cceeiiiiiiiiiiiiieiiiiiiiieiiiiereennneeeenns 61
Target Sampling Options for Embedded LinUX......cooviiiiiiiiiiiiiiiiiiiiiiiiiii i e, 62
2.1.4. HOtkeY Trace Start/ StOP. . cceuutiiettieiittieitteiiteeeteeeinteeeiaeeeaeeeenneeesneeeenneeenn 63
2.1.5. Launching and Attaching t0 ProCeSSES.uiiiiiieitiiiiiiiieeeieiiiieeeeeeiiieeeeeeennnnes 63
2.2. Profiling Windows Targets from the GUI.......cceiiiiiiiiiiiiiiiiiiiiiiiieiiiiieiieeeieeeeeaens 64
Remoting to a Windows Based Machineg........ccoiiuiiiiiiiiiiiiiiiiiiiieeieeiiieeeeeesnineeeeeanns 64
Hotkey TraCe Start/STOP. ..cuue ittt ittt et et eit et e et eeaeeaaeanas 64
Target Sampling Options 0N WiNAOWS. . .uiiiiiuetiiiiiiiietereiieeeereeenneeeeeeesrnnesessesannnnes 65
)V 00] 0T 1B e T 1 o] o - T PP 66
2.3. Profiling Android Targets from the GUI.......c.coiiiiiiiiiiiiiiiiiiiieiiiiireeiieeerennnnenes 67
www.nvidia.com

Nsight Systems User Guide v2021.1.1 | ii

Configuring Your Android DeViCe....cuuiiiiiiiiiiii it ettt eeiiee et eeeeiaeaeeeaannns 67

1Y o] 0] 1 at= Y 4 o] o A P PP PP 68
2.4. Profiling QNX Targets from the GUILcoiiiiiiiiiiiiiiiii ittt eciii e eaenaaes 69
(O =107 7<) I T 2 (=T o Yo ol Y of o [o] £ S PP 70
Report Scripts Shipped With NSight Systems.ciiiiiiiiiiiiiiiiiiii it e eeneeeees 70
apigpusum[:base] -- CUDA APl & GPU Summary (CUDA API + kernels + memory ops)........... 70
cudaapisum -- CUDA APl SUMMAIY . ..uuetttieiiieteeteeeiineeeeeeernseeeesesssnasessessnnnseseessnnnes 71
cudaapitrace - CUDA APl TraCe....ccuiiuiiiniiiiiiiiiii ittt et eeteeneeaaeenaenneens 71
gpukernsum[:base] -- CUDA GPU Kernel SUMMaAry.....ccoeeeiiiiiiieeeeieeriieeeeeeesnnnneeeeeannnes 71
gpumemsizesum -- GPU Memory Operations Summary (by Siz€)....cccevviiiiiiiiiiiiiinnnnnnnn. 72
gpumemtimesum -- GPU Memory Operations Summary (by Time).....ccvvvviiiiiiiiiiinnennnn. 72
gpusum[:base] -- GPU Summary (kernels + memory operations).......ccceevveiieeeerieeinnneennn. 73
gPULIACe -- CUDA GPU TraC. . i iiinntttiieeiietetreanraeeeeeeennnneeessesonnnnesssessnnneessesonnnnes 73
nvtxppsum -- NVTX Push/Pop Range SUMMaAIY.......ciiiiiiiiiiiiiiiiiiieiiiiiiieeeeeeiiinaeeeanns 74
openmpevtsum -- OpenMP Event SUMMaAry....c.c.vviiiiiiiiiiiiiiiiiiiiireiiiieereeenneeeeeannns 74
OSrtsUM -- OS RUNTIME SUMMAIY. . .uttiiiiiiiii it teiiieeeetaeanneeeeeeennnseeeesennnnanes 74
Report Formatters Shipped With Nsight Systems.......ccciiiiiiiiiiiiiiiiiiiii e 75
001U 1 1] 75
= o] (T PP PP 76
00 P 76
L) 2 PP PPPRPPt 76
1] PP 77
1D T o Pt 77
I 1o 1 (= PPN 77
Chapter 4. Migrating from NVIDIA NVProf.....cccceiiiiiiiiiieiiiiieiiiineeeienscosesscssassosenssosensns 78
Using the Nsight Systems CLI nvprof Command........cccviiiiiiiiiiiiiiiiiiiiiiiiieiiieieeaaneen 78
CLI nvprof Command SWitCh Options.......ceiiiiiiiiiiiiiiiiiiiieiiiieeieiiiieeeeeeeanneeeeeeennnnes 78
L 1= 01 N 81
Chapter 5. Profiling in a Docker on LiNUX DeVICeS....cccetiiiiuiiiieienineierinseosnasessnssosnsaones 82
Chapter 6. DireCt3D TraCe...cccueiiieieiineieienteeenereneneeesnneeeenesennnssesnssssnnssesnnssssnnsennnsans 84
LT TR0 X 10 B Y o I o U < 84
Y D K10 X A\ o B 1 - Tl P PPN 84
Chapter 7. WDDM QUEUES.cetitiiiieneetecereenneeteesesensssesssssnssssscssssnsssccssssnnssssssssnnnses 88
Chapter 8. VUIKAN APl TraC@...c.uueeieieiianeteeeeierneeeeeceeraneeeecessssassccccsssnsssccessssassscessnnas 90
8.1, VULKAN OVEIVIBW. . ettt ittt ettt ettt ettt et e et e eeneesaaeesenaeeaannens 90
8.2. Pipeline Creation FEedbaCK.cuiiiiiiiiiiiiiiiiiiii ittt et e eeii e eaiaaaeeen 91
8.3. VULKaN GPU Trace NOTES.....uutiiitiiiiit ittt ettt e et eeeeeeenaeens 92
Chapter 9. StULter ANAlYSiS...ccceeeieiiireneeieeerrnneeeeeeresaneereceessnasececsessnsssecesssnssssccesssnnes 93
0.1, FPS OVOIVIBW. .« ittt e ettt sttt ettt ettt et et ena e 93
L - 12 1 I o <= 11 o 95
9.3. GPU Memory ULiliZation. ...ooueeieieiiiiiiii i ieii e et e i e et e et e eenneeeeneeeanneaann 96
9.4. Vertical SyNChronizZation. ...cc..ueiiiiiiiiiii ittt ittt retireeeeeaennaeeeseennnneseesanns 96
Chapter 10. MPI APl TraCe...ciiieeiiiineiennneeeaneteeenetesnsessnesessnssessnsessnssossnssasnnsesnnssannnes 97
www.nvidia.com

Nsight Systems User Guide v2021.1.1 | iii

Chapter 11. OPeNMP TracCe...cccuiiiiuiiiiieiiiieeiiiienienensiosessossnstosnssosessossnssosesssssassssensss 99

Chapter 12. OS Runtime Libraries TracCe...ccccieeieieiiieeiereianereneeeenncreasneccsnnsecnnnsennnes 101
12.1. LOCKING @ RESOUICE. . utiiiiiiiittt ittt ettt eeeeaieeeeeeeeninaeeseesennnsesseessnnneaeenn 102
122, LIMItatiONS. c ettt ettt 102
12.3. OS Runtime Libraries Trace Fillers.....ccoueeiitiriiiiiii e eeeiereeneeeneeaaneenns 103
12.4. OS Runtime Default FUNCEION List....coeuiirieiiiiiiiiiiiiiiiiiieeieeeieeeeneeaenneenns 104

Chapter 13, NVTX TraCe...uueeiieiiieneeeteeeeenneeeceeeonnnsssecesnnsssecesssnnsssccssssnsssessssnnnsseens 107

Chapter 14. CUDA TraCe....iiiiueiiiintiennnteeanerensneeeannsessnssessnssassssessnssossnssssnnssasnssannnes 110
14.1. CUDA GPU Memory ALLOCation Graph.....ccevveeeiiiiiiiiteeieriiieeeereenineeeeesennneneesanns 112
14.2. Unified Memory Transfer TraCe. .iueeiiii ittt ittt eiiie et teeaieeeeeeeanaaaeennn 113
14.3. CUDA Default Function List for CLl...cceeiiureiiiiiiiiiiiiiiiiiieeeiieeeeeeennnneeeenanns 115
14.4. cuDNN Function List for X86 CLI.......uuiiiiiiiiiiiiiiiiiiiiii ittt eeeiiee et eeeenaeaaens 117

Chapter 15. OPENACC TraCE...cieiieteeieeteeaneeeraeeeesneeesnnceesnnsessnssesnnseesnssesnnssesnnssannnenn 119

Chapter 16. OPENGL TraCe..ciieueeeieeiereeeeteceesnneeeecessnaseeeesessnsssecssssnsssccesssnnsscccsnnnns 121
16.1. OpenGL Trace Using Command LiNE.....civvuiiiiiiiiiiiiiiiiiitieieeeeieeeeneerenaeeannens 123

Chapter 17. CUStOM ETW TraCe....ceiiieiinneeteeenenneeeteceennsetecesssnasseccsssnasssccsssnnsssccanns 125

Chapter 18. Debug Versions of ELF Files.....ccceeiiieiiiiiiiiiiiiieeeiieeeieneecnenecenncacannens 127

Chapter 19. Reading Your Report in GUL.......ccciiiieeiiiiiiinneeieeiennnereeeeecnnncsccccsnnnescccns 128
19.1. Generating @ New RepOrt.....ccuiiiiiiiiiiiiiiiiiiii e e 128
19.2. Opening an EXiStiNg REPOIT.....cuiiiiiiiitiiiiiiiiiriiiieeeeeeenineeeeeeennnneeeesesnnneeeens 128
19.3. Sharing @ RepOrt File......ciiuiiiuiiii i et eees 128
(2 T £ (=T o o] o A -1 o T PPN 128
19.5. ANAlYSiS SUMMAIY ViEW. ittt ittt ittt ettt et teeeiieeeeeeeeaaneeseeeennnasaeenn 129
19.6. TIMEUINE VIBW. teitiiitiiiit ittt et e ettt et et e e et e eenaeeeannesananens 129

L 2 T O B 1111 [T T PP 129
19.6.2. EVENES ViBW. ittt e ettt ettt et et e e aaeees 130
19.6.3. Function Table MOdes........evenuiiiiiiiiii e eereeeeeeeteeeneeeaannenns 130
(T T o 1T ol) - 1o T~ S T 133
19.7. DiagnostiCsS SUMMAIY ViEW. . uuiiiiiiiittttiiiiiteeteeiiieteeeeeenneeeeeesennaseeesssnnnaseseenns 134
19.8. Symbol ReSOLULION LOZS ViEW. . uuutiiiittiiiiiiitieiitieieeteieeeeaeeeenaeeeenaeeenneeeannees 134

Chapter 20. Broken Backtraces 0N Tegra.....ccceeieeieieneereeeeeenaeeeeceesenasseccsssnnsssccsannnes 135

Chapter 21. Launch Processes in Stopped State.......cccccciiiiiiiiiiiiiiiiiiiiniiieeeienencnennnns 137
21,1, LD_PRELOAD. ttttitterteiteenteeeeeeeeteenteanesanesanssanssanesnssnnesnnesnnssnnsenssennenn 137
I R I 14] 3 Vel 1= oS PPt 138

Chapter 22, IMPOrt NV T XT . iiiiiiiieettieeeeenneeteeesennessccesonnassscssssnnsssccssssnssssccssnnnssscsnns 140
L0010 39T 13 Lo L3 PPt 141

Chapter 23. Visual Studio Integration.......ccceiiiiiiiiiiiiiiiiiii i ieieeeieeeeenaeeennnens 143

Chapter 24. TroubleshOOting.....cciereeetiiiiiineeieeeiisnneeeeceernneeteceessnasesecsessnssscccssnnnnees 145
GUI TroubleShOOting. ... v v eiteieitt e ei ettt e et ee it eeeieeeaaneeeanaeeaanaeeesnasesnneens 145
P\ aTe [o] [« B F- U= =] T P PPN 146
SYMDBOL RESOIULION. ..ttt e e e e et ettt ee et eeeneeeenneeeanaeeanneeeanns 146
Verbose Logging 0N LiNUX Targets. ...uuueeiiiiiitttteriiieteeeeeeiineeeeeeenrneeeeeessnnnseeeesennnseees 148
Verbose Logging on WiNAOWS Tar@ets.ueeeeueiieietienetieitereneteeaneerenneereneeeesneerennaeennes 148
www.nvidia.com

Nsight Systems User Guide v2021.1.1 | iv

0]\ Qi 1o 18] a1 =3 ToTo] 0 [1T F P PP PPN 149

Chapter 25. Other RESOUICES. . ..ccieiiiieiiieitiieeieieeeteeeteeeneteennseesncsesnnssesnnsecnnnsennnens 150

T LU o [0 PPN 150

2] (oo o] S PP PP PPP 150

TrATINING SOMIINAIS. .t .t ttttieiitttetteeiieeeeeeeeaieeeeeeeesnseseseesensseeeesennnseesssssnnnesessesnnneneens 150

ConferenCe Presentations. . .u .t ieet i eeitieittterteeeeeeeeneerenneeeaneeeesneeeenneeenneeranns 151

o Yo T (I] oo] o PP 151
www.nvidia.com

Nsight Systems User Guide v2021.1.1 | v

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | vi

Chapter 1.
PROFILING FROM THE CLI

1.1. Installing the CLI on Your Target

The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUL The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be
auto-converted (to .qdrep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

1.2. Command Line Options

The Nsight Systems command lines can have one of two forms:
nsys [global option]

or

nsys [command switch] [optional command switch options][application] [optional
application options]

All command line options are case sensitive. For command switch options, when short

options are used, the parameters should follow the switch after a space; e.g. -s cpu.

When long options are used, the switch should be followed by an equal sign and then

the parameter(s); e.g. --sample=cpu.

For this version of Nsight Systems, you must launch a process from the command line
to begin analysis. If an instance of the requested process is already running when the
CLI command is issued, the collection will fail. The launched process will be terminated
when collection is complete unless the user specifies the --kill none option (details
below).

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 1

Profiling from the CLI

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

A couple of notes about the use of paths in your command line.

» The Nsight Systems command line interface does not handle paths with spaces
properly. Please use paths without spaces

» If you run a command (like python X Y Z)from a directory where the command is
not located (like /home/mystuff), and the directory includes a sub-directory with
the same name as the command (like /home/mystuff/python), the command line
parser will interpret that as "/home/mystuff/python X Y 2z". This will not work
because python, in this context, would reference the directory, not an executable.
Please either run from the command's home directory or use the full path to the

command.

1.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

1.3. CLI Command Switches

The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

profile A fully formed profiling description
requiring and accepting no further input.
The command switch options used

(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 2

Profiling from the CLI

Command

Description

start

Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stop

Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process
terminates but the application continues
running.

cancel

Cancels an existing collection started
in interactive mode. All data already
collected in the current collection is
discarded.

launch

In interactive mode, launches an
application in an environment that
supports the requested options. The
launch command can be executed before
or after a start command.

shutdown

Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

export

Generates an export file from an

existing .qdrep file. For more information
about the exported formats see the /
documentation/nsys-exporter directory in
your Nsight Systems installation directory.

stats

Post process existing Nsight Systems
result, either in .qdrep or SQLite format,

to generate statistical information. This
option is not available in the Windows CLI
in this release.

status

Reports on the status of a CLI-based
collection or the suitability of the profiing
environment.

sessions

Gives information about all sessions
running on the system.

nvprof

www.nvidia.com
Nsight Systems User Guide

Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional

v2021.1.1 | 3

Profiling from the CLI

Command Description

functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

1.3.1. CLI Profile Command Switch Options

After choosing the profile command switch, the following options are available.
Usage:

nsys [global-options] profile [options] <application> [application-arguments]

Short Long Possible Default Switch
Parameters Description
-t --trace cublas, cuda, cuda, opengl, Select the
cudnn, nvtx, nvtx, osrt API(s) to be
opengl, traced. The osrt
openacc, switch controls
openmp, the OS runtime
osrt, mpi, libraries tracing.
vulkan, vulkan- Multiple APIs
annotations, can be selected,
opengl- separated
annotations, by commas
dx11- only (no
annotations, spaces). Since
dx12- OpenACC,
annotations, cuDNN and
none cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. See
information
on --mpi-
impl option
below if mpi
is selected. If
the none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 4

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

cudnn, opengl,
and vulkan are
not available
on IBM Power
target.

-—-mpi-impl

openmpi,mpich

openmpi

When using
--trace=mpi

to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --
trace=mpi is not
supported.

--sample

cpu, none

cpu

Select whether
or not to collect
CPU samples. If
none is selected,
sampling

is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

www.nvidia.com

--cpuctxsw

Nsight Systems User Guide

process-tree,
none

process-tree

Trace OS thread
scheduling
activity. Select
none' to
disable tracing

v2021.1.1 | 5

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

CPU context
switches.

--sampling-
period

integers
between
4000000 and
125000

1000000

The number

of CPU
Instructions
Retired events
counted

before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller

the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s).

www.nvidia.com

--backtrace

Nsight Systems User Guide

fp,Ibr,dwarf,nong

Ibr

Select the
backtrace
method to use
while sampling.
The option lbr
uses Intel(c)
Corporation's
Last Branch
Records,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is

v2021.1.1 1 6

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWARF's CFI
(Call Frame
Information).

--command-file

< filename >

none

Open a file

that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--delay

< seconds >

Collection
start delay in
seconds.

--duration

< seconds >

NA

Collection
duration

in seconds,
duration must
be greater

than zero.

Note that the
profiler does
not detach from
the application,
it lives until
application
termination.

www.nvidia.com

--env-var

Nsight Systems User Guide

NA

Set
environment
variable(s) for
the application

v2021.1.1 | 7

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--etw-provider

"<name>,<guid>"
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

www.nvidia.com

--osrt-threshold

Nsight Systems User Guide

<nanoseconds >

1000 ns

Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead
and seriously

v2021.1.1 | 8

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integrer

24

Set the

depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

www.nvidia.com

--cudabacktrace

Nsight Systems User Guide

all, none,
kernel, memory,
sync, other

none

When tracing
CUDA APIs,
enable the
collection of

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead

may occur.
Values may

be combined
using ','. Each
value except
‘none' may be
appended with
a threshold
after "".
Threshold is
duration, in
nanoseconds,
that CUDA

v2021.1.1 1 9

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

www.nvidia.com

--cuda-flush-
interval

Nsight Systems User Guide

milliseconds

Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data

is saved to
storage, a
cudaDeviceSync]
call is inserted
into the
workflow
which

will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds

honize

v2021.1.1 | 10

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

an interval of
10 seconds is
recommended.

--cuda- true, false false Track the
memory-usage GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

-0 --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the

value of the
environment
variable.

Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 11

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

be substituted
with %. Default
is report#.
{qdstrm,qdrep,sq
in the working
directory.

--export

sqlite, none

none

Create
additional
output file(s)
based on the
data collected.
Current
options are
sqlite or none.
WARNING: If
the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

--stats

true, false

false

Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

www.nvidia.com

--force-
overwrite

Nsight Systems User Guide

true, false

false

If true,
overwrite all
existing result

files with same

v2021.1.1 | 12

lite}

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

output filename
(.qdstrm,.qdrep,

--show-output

true, false

true

If true, send
target process’
stdout and
stderr streams
to the console.

-n

--inherit-
environment

true, false

true

When true,

the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

www.nvidia.com

--stop-on-exit

Nsight Systems User Guide

true, false

true

If true, stop
collecting
automatically
when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially

support runs

v2021.1.1 | 13

sqlite)

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

longer than 5
minutes.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--trace-fork-
before-exec

true, false

false

If true, trace
any child
process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might
cause your
application

to crash or
deadlock.

www.nvidia.com

--capture-range

Nsight Systems User Guide

none,
cudaProfilerApi,
nvtx

none

When -c
cudaProfilerApi
(or nvtx) is
used, profiling
will start

only when
cudaProfilerStart
APl is invoked
or the specified
NVTX range
(specified
using -p/--nvtx-
capture) is

v2021.1.1 | 14

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

started in the
application.

--stop-on-range- | true,false true Stop profiling
end when the
capture

range ends.
Applicable only
when used
along with --
capture-range
option.

P --nvtx-capture |range@domain,rgnge range@ Specify NVTX
capture range.
See below

for details.
This option

is applicable
only when
used along
with --capture-
range=nvtx.

--hotkey-control | true, false false If true, hotkey
{F12} can be
used to to

start or stop
collection. Note
that hotkey
won't take
effect in console

apps.

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
eventl,subsystem?2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 15

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--vsync

true, false

false

Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline
ftrace events
will also be
captured.

--dx-force-
declare-
adapter-
removal-
support

true, false

false

The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding

it. Enabling

this flag

makes a call to
DXGIDeclareAd4
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

ipterRemovalS

www.nvidia.com

--gpuctxsw

Nsight Systems User Guide

true,false

false

Trace GPU
context
switches.

Note that this
requires driver
r435.17 or

later and root
permission.
Not available

v2021.1.1 | 16

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

on IBM Power
targets.

--kill

none, sigkill,
sigterm, signal
number

sigterm

Send signal

to the target
application's
process group.

--session-new

[a-Z][0-9,a-
Z,spaces]

profile-<id>-
<application>

Name the
session
created by the
command.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--retain-etw-
files

true, false

true

If true, retains
ETW files
generated

by the trace,
merges and
moves the files

to the output
directory.
www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 17

1.3.2. CLI Start Command Switch Options

Profiling from the CLI

After choosing the start command switch, the following options are available. Usage:

nsys

[global-options]

start [options]

Short

Long

Possible
Parameters

Default

Switch
Description

--capture-range

none,
cudaProfilerApi,
nvtx

none

If set to
cudaProfilerApi,
profiling will
start on the

first call to
cudaProfilerStart].
Valid only with
CUDA tracing
enabled. If set
to nvtx the
profiling will
start when the
first NVTX
capture range
is started

(see below

for NVTX
capture range
definition).

--output

www.nvidia.com
Nsight Systems User Guide

< filename >

report#

Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the

value of the
environment
variable.

Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID

v2021.1.1 | 18

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,qdrep,sq
in the working
directory.

--export

sqlite, none

none

Create
additional
output file(s)
based on the
data collected.
Current
options are
sqlite or none.
WARNING: If
the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

www.nvidia.com

--stats

Nsight Systems User Guide

true, false

false

Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of

data, creating

v2021.1.1 | 19

lite}

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

the database
file may take
several minutes
to complete.

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(.qdstrm,.qdrep,

-X

--stop-on-exit

true, false

true

If true, stop
collecting
automatically
when all
tracked
processes have
exited or when
stop command
is issued -
whichever
occurs first.

If false, stop
only on stop
command.
Note: When this
is true, stop
command is
optional. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--stop-on-range-
end

true, false

true

If true, stop
collecting when
the specified
capture range
ends. Valid only
when --capture-
range is set.

www.nvidia.com

--ftrace

Nsight Systems User Guide

Collect ftrace
events.

Argument
should list

v2021.1.1 | 20

sqlite)

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

events to collect
as: subsystem1/
eventl,subsystem?2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep- Skip initial
user-config ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpuctxsw true false false Trace GPU
context
switches.

Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--session session none Start the
identifier application in
the indicated
session.

The option
argument must
represent a
valid session
name or ID

as reported
by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will
be substituted

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 21

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com

--vsync

Nsight Systems User Guide

true, false

false

Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline

v2021.1.1 | 22

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

ftrace events
will also be
captured.

1.3.3. CLI Stop Command Switch Options

After choosing the stop command switch, the following options are available. Usage:

nsys [global-options] stop [options]
Short Long Possible Default Switch
Parameters Description
--session session none Stop the
identifier indicated
session.
The option

argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.4. CLI Cancel Command Switch Options

After choosing the cancel command switch, the following options are available. Usage:

nsys

[global-options]

www.nvidia.com
Nsight Systems User Guide

cancel

[options]

v2021.1.1 | 23

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
--session session none Cancel the
identifier indicated
session.
The option

argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.5. CLI Launch Command Switch Options

After choosing the 1aunch command switch, the following options are available. Usage:

nsys [global-options] launch [options] <application> [application-arguments]

Short Long Possible Default Switch
Parameters Description

-t --trace cublas, cuda, cuda, openg], Select the
cudnn, nvtx, nvtx, osrt API(s) to be
opengl, traced. The osrt
openacc, switch controls
openmp, the OS runtime
osrt, mpi, libraries tracing.
vulkan, vulkan- Multiple APIs
annotations, can be selected,
opengl- separated
annotations, by commas
dx11- only (no
annotations, spaces). Since

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 24

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

dx12-
annotations,
none

OpenACC,
cuDNN and
cuBLAS

APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. See
information

on --mpi-

impl option
below if mpi

is selected. If
the none option
is selected,

no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, opengl,
and vulkan are
not available
on IBM Power
target.

www.nvidia.com

-—-mpi-impl

Nsight Systems User Guide

openmpi,mpich

openmpi

When using
--trace=mpi

to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --

v2021.1.1 | 25

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

trace=mpi is not
supported.

--sample

cpu, none

cpu

Select whether
or not to collect
CPU samples. If
none is selected,
sampling

is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

--cpuctxsw

process-tree,
none

process-tree

Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.

www.nvidia.com

--sampling-
period

Nsight Systems User Guide

integers
between
4000000 and
125000

1000000

The number

of CPU
Instructions
Retired events
counted

before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller

the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase

v2021.1.1 | 26

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

overhead and
significantly
increase the size
of the result
file(s).

--backtrace

fp,Ibr,dwarf,nong

Ibr

Select the
backtrace
method to use
while sampling.
The option Ibr
uses Intel(c)
Corporation's
Last Branch
Records,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWAREF's CFI
(Call Frame
Information).

--command-file

< filename >

none

Open a file

that contains
launch switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

www.nvidia.com

Nsight Systems User Guide

v2021.1.1 | 27

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--env-var

A=B

NA

Set
environment
variable(s) for
the application
process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--etw-provider

"<name>,<guid>"|
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

www.nvidia.com

--osrt-threshold

Nsight Systems User Guide

< nanoseconds >

1000 ns

Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low

v2021.1.1 | 28

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

can cause high
application
overhead

and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integrer

24

Set the

depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

www.nvidia.com

--cudabacktrace

Nsight Systems User Guide

all, none,
kernel, memory,
sync, other

none

When tracing
CUDA APIs,
enable the
collection of

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead

may occur.
Values may

be combined
using ','. Each
value except
‘none' may be
appended with
a threshold
after "

v2021.1.1 | 29

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

www.nvidia.com

--cuda-flush-
interval

Nsight Systems User Guide

milliseconds

Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data

is saved to
storage, a
cudaDeviceSync]
call is inserted
into the
workflow
which

will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store

honize

v2021.1.1 | 30

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

data during
collection. For
collections over
30 seconds

an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false

false

Track the

GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--show-output

true, false

true

If true, send
target process’
stdout and
stderr streams
to the console

--inherit-
environment

true, false

true

When true,

the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

www.nvidia.com

--nvtx-capture

Nsight Systems User Guide

message@idomailmone

Specify NVTX
capture range.

v2021.1.1 | 31

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

See below for
details.

--trace-fork-
before-exec

true, false

false

If true, trace
any child
process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might
cause your
application

to crash or
deadlock.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

www.nvidia.com

--session

Nsight Systems User Guide

session
identifier

none

Launch the
application in
the indicated
session.

The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
$q{ENV_VAR}

v2021.1.1 | 32

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Launch the
application in
anew session.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com

Nsight Systems User Guide

v2021.1.1 | 33

Profiling from the CLI

1.3.6. CLI Shutdown Command Switch Options

After choosing the shutdown command switch, the following options are available.
Usage:
nsys [global-options] shutdown [options]

Short Long Possible Default Switch
Parameters Description
--kill none, sigkill, sigterm Send signal
sigterm, signal to the target
number application's

process group.

--session session none Shutdown
identifier the indicated
session.
The option

argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
$h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.7. CLI Export Command Switch Options

After choosing the export command switch, the following options are available. Usage:
nsys [global-options] export [options] [gdrep-file]

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 34

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--output

<filename>

<inputfile.ext>

Set the .output
filename.

The default

is the .qdrep
filename with
the extension
for the chosen
format.

~type

sqlite, hdr, text,
json, info

sqlite

Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

--force-
overwrite

true, false

false

If true,
overwrite
existing result
file

--quiet

true, false

false

If true, do
not display
progress bar

--separate-
strings

true,false

false

Output stored
strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

1.3.8. CLI Stats Switch Options

The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV. This
command is not available in the Windows CLI in this release.

Reports are generated from an SQLite export of a .qdrep file. If a .qdrep file is specified,
Nsight Systems will look for an accompanying SQLite file and use it. If no SQLite file
exists, one will be exported and created.

Individual reports are generated by calling out to scripts that read data from the SQLite
tile and return their report data in CSV format. Nsight Systems ingests this data and

www.nvidia.com

Nsight Systems User Guide

v2021.1.1 | 35

Profiling from the CLI

formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the
second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

nsys [global-options] stats [options] [input-file]

Short Long Possible Default Switch
Parameters Description
--help-reports <report_name>, |none With no
ALL, [none] argument, give

a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALL s given, a
more detailed
explanation of
all available

reports is
displayed.
--help-formats |<format_name>, [none With no
ALL, [none] argument, give

a summary of
the available
output formats.
If a format
name is given,
a more detailed

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 36

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

explanation of
that format is
displayed. If
ALLis given, a
more detailed
explanation of
all available
formats is
displayed.

--sqlite

<file.sqlite>

Specity the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .qdrep
tile before
report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

www.nvidia.com

--report

Nsight Systems User Guide

See link

Specity the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports

may also be
specified using
a comma-
separated list
(<name[:args...]
[name[:args...]...]

If no reports

v2021.1.1 | 37

>).

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

are specified,

the following
will be used

as the default
report set:
cudaapisum,
gpukernsum,
gpumemtimesun
gpumemsizesum
osrtsum,
nvtxppsum,
openmpevtsum.
See Report
Scripts for
details about
existing built-in
scripts and how
to make your
own.

4

www.nvidia.com

--format

Nsight Systems User Guide

column, table,
csv, tsy, json,
hdoc, htable, .

Specity

the output
format of the
corresponding
report(s). The
special name
"." indicates the
default format
for the given
output. The
default format
for console

is column,
while files

and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats

may also be
specified using
a comma-
separated list
(<name[:args...]

[name[:args...]...]

v2021.1.1 | 38

>).

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

See Report
Scripts for
options
available with
each format.

--output

-, @<command>,
<basename>, .

Specity

the output
mechanism

for the
corresponding
reports(s).
There are

three output
mechanisms:
print to console
(-), output

to command
(@<command>),
or output to file
(<basename>).
The option "."
can be used to
specify using
the default
basefile, which
is the basename
of the input file.
The filename
used will be
<basename>_<re}

port&args>.<ou

www.nvidia.com

--report-dir

Nsight Systems User Guide

Add a directory
to the path
used to find
report scripts.
This is usually
only needed

if you have

one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds

a new directory

v2021.1.1 | 39

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

to the end of the
path. The last
two entries in
the path will
always be the
current working
directory,
followed by

the directory
containing the
shipped nsys
reports.

--force-export

true, false

false

Force a re-
export of

the SQLite

file from the
specified .qdrep
file, even if

an SQLite file
already exists.

--force-
overwrite

true, false

false

Overwrite any
existing report
file(s).

q

--quiet

Only display

errors.

1.3.9. CLI Status Command Switch Options

After choosing the status command switch, the following options are available. Usage:

nsys [global-options] status [options]

Short

Long

Possible
Parameters

Default

Switch
Description

<none>

Returns current
state of the CLI.

--environment

Returns
information
about the
system
regarding
suitability of
the profiling

environment.

www.nvidia.com

Nsight Systems User Guide

v2021.1.1 | 40

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
--session session none Print the status
identifier of the indicated
session.
The option

argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.10. CLI Sessions Command Switch Subcommands

After choosing the sessions command switch, the following subcommands are
available. Usage:

nsys [global-options] sessions [subcommand]

Subcommand Description

list List all active sessions including ID, name,
and state information

1.4. Example Single Command Lines

Version Information

nsys -v

Effect: Prints tool version information to the screen.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | #1

Profiling from the CLI

Default analysis run

nsys profile <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and

OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. Profile any child processes. Generate the report#.qdrep file in the default
location, incrementing the report number if needed to avoid overwriting any existing
output files.

Limited trace only run

nsys profile --trace=cuda,nvtx -d 20
--sample=none --cpuctxsw=none -o my test <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.qdrep in the current
working directory.

Delayed start run
nsys profile -e TEST ONLY=0 -y 20

<application> [application-arguments]
Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.qdrep file
in the default location, incrementing if needed to avoid overwriting any existing output
files.

Collect ftrace events
nsys profile --ftrace=drm/drm vblank event
-d 20

Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.qdrep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:

sudo cat /sys/kernel/debug/tracing/available events

Collect custom ETW trace using configuration file
nsys profile --etw-provider=file.JSON

Effect: Configure custom ETW collectors using the contents of file.JSON. Collect data for
20 seconds. Generate the report#.qdrep file in the current working directory.

A template JSON configuration file is located at in the Nsight Systems installation
directory as \target-windows-x64\ etw_providers_template.json. This path will show up
automatically if you call

nsys profile --help

The level attribute can only be set to one of the following:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 42

Profiling from the CLI

TRACE_LEVEL_CRITICAL
TRACE_LEVEL_ERROR
TRACE_LEVEL_WARNING
TRACE_LEVEL_INFORMATION
TRACE_LEVEL_VERBOSE

vV vV v v VY

The flags attribute can only be set to one or more of the following:

EVENT_TRACE_FLAG_ALPC
EVENT_TRACE_FLAG_CSWITCH
EVENT_TRACE_FLAG_DBGPRINT
EVENT_TRACE_FLAG_DISK_FILE_IO
EVENT_TRACE_FLAG_DISK_IO
EVENT_TRACE_FLAG_DISK_IO_INIT
EVENT_TRACE_FLAG_DISPATCHER
EVENT_TRACE_FLAG_DPC
EVENT_TRACE_FLAG_DRIVER
EVENT_TRACE_FLAG_FILE_IO
EVENT_TRACE_FLAG_FILE_IO_INIT
EVENT_TRACE_FLAG_IMAGE_LOAD
EVENT_TRACE_FLAG_INTERRUPT
EVENT_TRACE_FLAG_JOB
EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS
EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS
EVENT_TRACE_FLAG_NETWORK_TCPIP
EVENT_TRACE_FLAG_NO_SYSCONFIG
EVENT_TRACE_FLAG_PROCESS
EVENT_TRACE_FLAG_PROCESS_COUNTERS
EVENT_TRACE_FLAG_PROFILE
EVENT_TRACE_FLAG_REGISTRY
EVENT_TRACE_FLAG_SPLIT_IO
EVENT_TRACE_FLAG_SYSTEMCALL
EVENT_TRACE_FLAG_THREAD
EVENT_TRACE_FLAG_VAMAP
EVENT_TRACE_FLAG_VIRTUAL_ALLOC

vV vV vV v VvV vV v VvV vV vV VvV vV vV v v vV v v vV v v vV V. Y v vV Y

Typical case: profile a Python script that uses CUDA

nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
--delay=60 python my dnn script.py

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan

nsys profile --trace=vulkan,osrt,nvtx
--delay=60 ./myapp

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 43

Profiling from the CLI

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule

information.

1.5. Example Interactive CLI Command Sequences

Collect from beginning of application, end manually

nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-
arguments]

nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and
NVTX as well as collection of thread schedule information. Stop only when explicitly

requested. Generate the report#.qdrep in the default location.

www.nvidia.com

Nsight Systems User Guide

Note:

If

you
start

a
collection
and

fail

to

stop

the
collection
(or

if

you

are
allowing
it

to

stop

on

exit,

and

the
application
runs

for

too

long)
your
system’s
storage
space
may

be

filled
with
collected

data

v2021.1.1 | 44

Profiling from the CLI

causing
significant
issues

for

the
system.
Nsight
Systems
will
collect

a
different
amount

of

data/

sec
depending
on
options,
but

in

general
Nsight
Systems
does

not
support
runs

of

more

than

5
minutes
duration.

Run application, begin collection manually, run until process ends

nsys launch -w true <application> [application-arguments]
nsys start

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the
report#.qdrep in the default location.

If

you

launch

an
application
Note: and

that
application
and

any
descendants
exit

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 45

Profiling from the CLI

before
start

is

called
Nsight
Systems
will
create

a

fully
formed .qdrep
file
containing
no

data.

Run application, start/stop collection using cudaProfilerStart/Stop

nsys start -c cudaProfileApi
nsys launch -w true <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as

a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,
when the user calls nsys stop, or when the root process terminates. Generate the
report#.qdrep in the default location.

If

you

call
nsys
launch
before
nsys
start
(o]
cudaProfilerApi
and

the
code
Note: contains
a

large
number
of

short
duration
cudaProfilerStart/
Stop
pairs,
Nsight
Systems
may

be
unable
to

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 46

Profiling from the CLI

process
them
correctly,
causing

a

fault.
This

will

be
corrected
in

a

future
version.

The
Nsight
Systems
CLI

does

not
support
multiple
calls

to

the
cudaProfilerStart/
Stop

API

at

this
time.

Note:

Run application, start/stop collection using NVTX

nsys start -c nvtx
nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.qdrep in the default location.

The
Nsight
Systems
CLI

only
triggers
the
profiling
session
for

Note:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 47

Profiling from the CLI

the
first
capture
range.

NVTX capture range can be specified:

» Message@Domain: All ranges with given message in given domain are capture
ranges. For example:

nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

> Message@*: All ranges with given message in all domains are capture ranges. For
example:

nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

» Message: All ranges with given message in default domain are capture ranges. For
example:

nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

» By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX PROFILER REGISTER_ ONLY=0 environment:

nsys launch -w true -p profiler@service -e
NSYS NVTX PROFILER REGISTER ONLY=0 . /app

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.

nsys launch <application> [application-arguments]
nsys start

nsys stop

nsys start

nsys stop

nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in

the current working directory. Collect data from second start until the secont stop
request, generate report#.qdrep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

Calling
nsys
Note: cancel
after
nsys

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 48

Profiling from the CLI

start
will
cancel

the
collection
without
generating
a

report.

1.6. Example Stats Command Sequences

Display default statistics
nsys stats reportl.qdrep

Effect: Export an SQLite file named reportl.sqlite from reportl.qdrep (assuming it does
not already exist). Print the default reports in column format to the console.

Note: The following two command sequences should present very similar information:
nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats reportl.qdrep

Display specific data from a report

nsys stats --report gputrace reportl.qgdrep

Effect: Export an SQLite file named reportl.sqlite from reportl.qdrep (assuming it does
not already exist). Print the report generated by the gputrace script to the console in
column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report gputrace --report gpukernsum --report cudaapisum
--format csv,column --output .,- reportl.gdrep

Effect: Export an SQLite file named reportl.sqlite from reportl.qdrep (assuming it does
not already exist). Generate three reports. The first, the gputrace report, will be output
to the file reportl_gputrace.csv in CSV format. The other two reports, gpukernsum

and cudaapisum, will be output to the console as columns of data. Although three
reports were given, only two formats and outputs are given. To reconcile this, both the
list of formats and outputs is expanded to match the list of reports by repeating the last
element.

Submit report data to a command

nsys stats --report cudaapisum --format table \ --output @"grep -E
(- IName | cudaFree) " test.sqlite

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 49

Profiling from the CLI

Effect: Open test.sqlite and run the cudaapisum script on that file. Generate table data
and feed that into the command grep -E (-|Name|cudaFree). The grep command
will filter out everything but the header, formatting, and the cudaFree data, and display
the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped

to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

1.7. Example Output from --stats Option

The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 50

Profiling from the CLI

Generating cuda API Statistics...
cuda API Statistics

Calls Min (ns)

1858829425 4601062.9 131864 18785795 [ILER)

287212369 287212369.0 287212369 287212369 cudaMalloc3DArray
108862768 49148.0 3478 15493937 cudaGraphicsMapResources
84097966 416326.6 258148 2046180 cudaMalloc

75687195 376553.2 167486 1559709 cudaFree

54669996 24681.7 3261 17194720 cudaGraphicsUnmapResources
37697367 8930.9 5532 71517 cudalLaunch

36258561 179497.8 5441 737046 cudaMemcpyToSymbol

1961207 392241.4 350245 490291 cudaGraphicsGLRegisterBuffer
661494 156.7 94 4855 cudaConfigurecCall

469750 469750.0 469750 469750 cudaMemcpy3D

6513 6513.0 6513 6513 cudaBindTextureToArray

@, AUNKFEOWW:-

Generating cuda Kernel and Memory Operation Statistics...
cuda Kernel Statistics

Time (ns) Instances Avg (ns) Min (ns) Max (ns)

28957543 17377.7 DeviceRadixSortDownsweepKernel
19951318 16543.4 RadixSortScanBinsKernel
7381869 6121.0 DeviceRadixSortUpsweepKernel
6605490 10954.4 _kernel_agent

Operation Statistics (time)

Time (ns) Operations Awvg (ns) Min (ns) Max (ns)

1680910 [CUDA memcpy HtoD]

421799 421799.0 421799 421799 [CUDA memcpy HtoA]

cuda Memory Operation Statistics (bytes)

Total Bytes (KB) Operations Avg (KB) Min (bytes) Max (KB)

[CUDA memcpy HtoD]
4194304 o [CUDA memcpy HtoA]

If your run traces OS runtime events or NVTX push-pop ranges:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 51

Profiling from the CLI

Generating Operating System Runtime API Statistics...
Operating System Runtime API Statistics

Time (ns) Calls Avg (ns) Min (ns) Max (ns)

7780422146 20052634.4 101325794

7486252249 801226050.6 18165 100621271 sem_timedwait
7001017913 500072708.1 500054528 500094119 pthread_cond_timedwait
691921867 240334.1 1600 16503430 ioctl
20746589 9622.7 4763 43645 fgets
15236506 55405.5 1821 14452991 recvmsg
5341120 11713.8 1122 258129 fopen

3961960 13950.6 1000 91521 mmap

3660301 8414.5 1457 27680 fclose
1959897 7963.8 2252 69097 munmap
1020789 5261.8 2068 19845 open64

841520 1720.9 1000 16808 sched_yield
623388 15584.7 1807 50469 read

582336 3685.7 1289 78529 recv

279456 1111 18551 writev

149645 . 1214 18598 open

144462 o 22780 39774 pthread_create
139762 o 1118 77744 fread

52949 . 1341 9112 mprotect
38777 2443 10141 write

22994 4763 6798 socket

216060 4674 5925 sendmsg

18287 2795 T277 socketpair
16881 2390 7615 connect

12617 1157 3926 mmap64

11368 2270 5849 pipe2

11014 4484 6530 pthread_cond_signal
5121 5121 5121 fopen64

5118 1086 2945 fentl

4102 4182 4102 shutdown

3587 3587 3587 lockf

1744 1744 1744 bind

1007 1807 1007 fflush

@M W
£ @

Q0000000000000 Q00O MFEO-

3

=

£]

3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

R RERWHRNWU WA SRS
D000 WhEO~NDWNO

Generating NVTX Push-Pop Range Statistics...
NVTX Push-Pop Range Statistics

Time (ns) Instances Avg (ns) Min (ns) Max (ns)

6856491504 34111898.0 6935189 285693359 frame
499693190 2486035.8 1874225 31362835 render

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

1.8. Importing and Viewing Command Line Results
Files

The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .qdrep file.
Use this .qdrep file when re-opening the result on the same machine, opening the result
on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .qdrep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 52

Profiling from the CLI

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .qdrep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

File View Help

Mew Project Ctrl+M
Open... Ctrl+0
Import... Ctrl+|
Exit

T i L

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Importing Windows ETL files

For Windows targets, ETL files captured with Xperf or the 1og.emd command supplied
with GPUView in the Windows Performance Toolkit can be imported to create reports
as if they were captured with Nsight Systems's "WDDM trace" and "Custom ETW trace"
features. Simply choose the .etl file from the Import dialog to convert it to a .qdrep file.

Create .qdrep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .qdrep
file. This .qdrep file can then be opened in the same version or more recent versions of
the GUL

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or MacOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information

about available
options and their
parameters.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 53

Profiling from the CLI

Short Long Parameter Description
-v --version Output
QdstrmImporter

version information

-i --input-file filename or path Import .qdstrm file
from this location.

-0 --output-file filename or path Provide a different
file name or path for
the resulting .qdrep
file. Default is the
same name and path
as the .qdstrm file

1.9. Using the CLI to Analyze MPI Codes

1.9.1. Tracing MPI API calls

The Nsight Systems CLI has built-in API trace support via --trace=mpi option

only for the OpenMPI and MPICH implementations of MPL. It traces a default list of
synchronous MPI APIs. If you require more control over the list of traced APIs or if you
are using a different MPI implementation, see github nvtx pmpi wrappers.

You can use this documentation to generate a shared object to wrap a list of synchronous
MPI APIs with NVTX using the MPI profiling interface (PMPI). If you set your
LD_PRELOAD environment variable to the path of that object, nsys will capture and
report the MPI API trace information when --trace=nvtx is used. There is no need to
use --trace=MPI.

NVTX tracing is automatically enabled when MPI trace is turned on.

1.9.2. Using the CLI to Profile Applications Launched
with mpirun

This version of the Nsight Systems CLI supports concurrent use of the nsys profile
command. Each instance will create a separate report file.

You cannot use multiple instances of the interactive CLI concurrently, or use the
interactive CLI concurrently with nsys profile in this version.

Nsight Systems can be used to profile applications launched with mpirun command.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLL

To profile everything, putting the data in one file:

nsys [nsys options] mpirun [mpi options]

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 54

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

To profile everything putting the data from each rank into a separate file:
mpirun [mpi options] nsys profile [nsys options]

To profile a single MPI process use a wrapper script. The following script(called
"wrap.sh") runs nsys on rank 0 only:

#!/bin/bash

if [[$OMPI_ COMM WORLD RANK == 0]]; then
~/nsys/nsys profile ./myapp "$Q@" --mydummyargument
else

'/myapp ns@"

fi

and then execute mpirun ./wrap.sh.

Currently
you

will

need

a

dummy
argument
to

the
process,
NeJ

that
Nsight
Systems
can
decide
which
process
to
profile.
This
Note: means
that
your
process
must
accept
dummy
arguments
to

take
advantage
of

this
workaround.
This
script

as
written

is

for

Open
MPI,

but

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 55

Profiling from the CLI

should

be

easily

adaptable

to

other

MPI
implementations.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 56

Chapter 2.
PROFILING FROM THE GUI

2.1. Profiling Linux Targets from the GUI

2.1.1. Connecting to the Target Device

Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

File Wiew Help

| Path to ADB is not set +

Configure ADB location...

Localhost connection
=Y workstation

USB connections

S5H connections (1)

1% workstation@127.0.0.1
55H connection groups

Configure devices...

| samole.adreo

On Tegra:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 57

Profiling from the GUI

USE connections -

USE connections
S5H connections

Configure devices...

The dialog has simple controls that allow adding, removing, and modifying connections:

® Manage network connections

N EErEETGE @® Network connection

Recent connection! Hostname or IP address: Port:
Device Username 102.168.1.71 v 22
Username:
|ubuntyl -

Authentication type

No authentication

® Password-based authentication

-

g Create a new c P
! Cancel oK |

| Close

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:

PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:

sudo firewall-cmd --list-ports —--permanent

sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:

sudo firewall-cmd --permanent —--add-port 45555/tcp
sudo firewall-cmd --reload

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 58

Profiling from the GUI

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:

cat /proc/quadd/version
Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

2.1.2. System-Wide Profiling Options

2.1.2.1. Linux x86_64

System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

- Collect FTrace events

Choose FTrace events...
No events selected

Choose which events you would like to collect.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 59

Profiling from the GUI

Choose functions

Search criteria: Check all Uncheck all
[search.. J
Events
» alarmtimer a
» block
» cgroup
» clk
~ @ cma
cma_alloc

V| cma_release
» compaction
» cpuhp
4 dma_fence
- @& drm

drm_vblank_event

V| drm_vblank_event_delivered
drm_vblank_event_gqueued

exceptions

extd

v/ fib

V| fib_table_lookup

v| fib_table_lookup_nh

v fib_validate_source

fib6

filelock

filemap

fies

fs

gpio

hda

hda_controller

hda_intel

huoe memaory

ivw

Xcorc

GPU Context Switch Trace
Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

» Collect OS runtime libraries trace
» Collect OpenGL trace

» v Collect CUDA trace

» Collect MPI trace

» v Collect NVTX trace

» Collect Vulkan trace

~ v Collect GPU context switch trace - BETA feature

Use this option to see how the GPU scheduler switches contexts.

Here is a screenshot showing three CUDA kernels running simultaneously in three
different CUDA contexts on a single GPU.

21 +90ms +95ms +100ms
~ [16338] CudaPreemptionExample
~ Threads (12)

~ v/ [16338] CudaPreemptionE ~

CUDA APl

profiler overhead

11 threads hidden —
~ CUDA (Quadro GV100, 0000:04:00.0)
~ 29.0% Context 3
~ 32.5% Context 2
~ 38.5% Context 1
» 100.0% Kernels

dGPU (Quadro GV100) An 6877(8-

[Run 6845[2... | Run 6861(2...|Run 6877(2.

[Run 684512...)|Run 686112, Run 6677(2...| [Run 6877-

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 60

2.1.2.2. Linux for Tegra

Profiling from the GUI

System profiling options

=[] Trace all processes

Select to collect trace for all processes on the target device.

=] Collect PMU counters

PMU counters: 1 counter selected

CPU cydes
Licache msses: [|Read [write [Instruction
L2 cache misses: [JRead [Write [] Instruction

Trace all processes — On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events
from all tasks will be recorded.

Collect PMU counters — This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

2.1.3. Target Sampling Options

Target sampling behavior is somewhat different for Nsight Systems Workstation Edition
and Nsight Systems Embedded Platforms Edition.

Target Sampling Options for Workstation

= v Sample target process

Sampling rate: every 1 000 000 instructions per CPU
» v Collect call stacks of executing threads
Choose mades... | Current settings: use best backtracing algerithm.

Symbol locations... | No directories with symbol files.

When stripped libraries (e.g. *.so files) are used on the target, specify here directories with original

non-stripped libraries to get symbols resolved.

For best backtraces, specify the following compiler flags:
son x86_64: - fno-omit-frame-pointer -funwind-tables -g

Note that stripped binaries typically do not contain the debug information. Consider deploying
unstripped binaries.

* Target application
Mode: | Attach or launch ~ | Specify process launch options below

Command line with arguments: Edit arguments
-

Waorking directory:

Process name should be specified

» Environment variables
V| Include child processes

V| Trace fork before exec

ing in this interval relies on undefined behavior and might cause your applicatien to

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 61

Profiling from the GUI

limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled
with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

@ & cConfigure backktracing algorithm

Use Intel © Last Branch Record (LBR)
Use DWARF debug information

Use frame pointers

At least one of the options must be selected.

& & Cancel

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
tixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread

context switches and infers thread state as either Running or Blocked. Note that

Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux
Target sampling options
Sampling rate: | 10kHz -

=l Collect call stacks

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 62

Profiling from the GUI

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

2.1.4. Hotkey Trace Start/Stop

Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

| Start |

| Start profiling manually
Start profiling after | 10.0 |3 | seconds
Lirnit profiling to 10.0 |3/ seconds

Hotkey {F12} Start/Stop
(not available in consecle apps)

The default hotkey is F12.

2.1.5. Launching and Attaching to Processes

Nsight Systems Embedded Platforms Edition can work with Linux-based devices in
three modes:

1. Attaching to a process by name
2. Attaching to a process by name, or launching a new process
3. Attaching to a process by its PID

The purpose of the configuration here is to define which process the profiler will attach
to for sampling and tracing. Additionally, the profiler can launch a process prior to
attaching to it, ensuring that all environment variables are set correctly to successfully
collect trace information.

In Attach only mode, the process is selected by its name and command line arguments,
as visible using the ps tool.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 63

Profiling from the GUI

Mode: | Attach only ~ | Launch your app before starting the profiler

Search criteria: Edit arguments

In Attach or launch mode, the process is to first search as if in the Attach only mode,
but if it is not found, the process is launched using the same path and command line
arguments. If NVTX, CUDA, or other trace settings are selected, the process will be
automatically launched with appropriate environment variables.

Note that in some cases, the capabilities of Nsight Systems are not sufficient to correctly
launch the application; for example, if certain environment variables have to be
corrected. In this case, the application has to be started manually and Nsight Systems
should be used in Attach only mode.

The Edit arguments... link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces
or quotes.

To properly populate the Search criteria field based on a currently running process on
the target system, use the Select a process button on the right, which has ellipsis as the
caption. The list of processes is automatically refreshed upon opening.

Process

Mode: |Attach or launch ~ | Specify process launch options below

Command line with arguments: Edit arquments

Working directory:

Attach by PID mode should be used to connect to a specific process.

To choose one of the currently running processes on the target system, use the Select a
process button on the right.

2.2. Profiling Windows Targets from the GUI

Profiling on Windows devices is similar to the profiling on Linux devices. Please refer
to the Profiling Linux Targets from the GUI section for the detailed documentation and
connection information. The major differences on the platforms are listed below:

Remoting to a Windows Based Machine

To perform remote profiling to a target Windows based machines, install and configure
an OpenSSH Server on the target machine.

Hotkey Trace Start/Stop

Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 64

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Profiling from the GUI

window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

| Start |

| Start profiling manually
Start profiling after | 10.0 |5 | seconds
Limnit profiling to 100 || seconds

Hotkey {F12} Start/Stop
(not available in console apps)

The default hotkey is F12.

Changing the Default Hotkey Binding - A different hotkey binding can be configured
by setting the HotKeyIntValue configuration field in the config.ini file.

Set the decimal numeric identifier of the hotkey you would like to use for triggering
start/stop from the target app graphics window. The default value is 123 which
corresponds to 0x7B, or the F12 key.

Virtual key identifiers are detailed in MSDN's Virtual-Key Codes.

Note that you must convert the hexadecimal values detailed in this page to their decimal
counterpart before using them in the file. For example, to use the F1 key as a start/stop
trace hotkey, use the following settings in the config.ini file:

HotKeyIntValue=112

Target Sampling Options on Windows

* |/ Sample target process
Sampling rate: - 1kHz

¥ V Collect call stacks

Symbol locations (1)...| 1 directory with symbol files.
Specify here directories with debug info (*.pdb files) to get symbaols resolved.

For best backtraces, specify the compiler flag "do not omit frame-pointer™:

® on Visual C++: /Oy-

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor periodically. The sampling rate is defined in the project settings and is either
100Hz, 1KHz (default value), 2Khz, 4KHz, or 8KHz.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 65

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Profiling from the GUI

=) [Collect thread activity
=[] Collect call stacks

Symbol locations... Mo directories with symbol files.
Specify here directories with debug info (*.pdb files) to get symbols resolved.

For best backtraces, specify the compiler flag "do not omit frame-pointer":

e on Visual C++: /0y-

On Windows, Nsight Systems can collect thread activity of one process tree. Collecting
thread activity means that each thread context switch event is logged and (optionally) a
backtrace is collected at the point that the thread is scheduled back for execution. Thread
states are displayed on the timeline.

If it was collected, the thread backtrace is displayed when hovering over a region where
the thread execution is blocked.

Symbol Locations

Symbol resolution happens on host, and therefore does not affect performance of
profiling on the target.

Press the Symbol locations... button to open the Configure debug symbols location
dialog.

| @ Configure debug symbols locations

Specify symbeol locations te search for debug symbol files and unstripped libraries:

| | B |httpsizmsdl microsoft.com/download/symbols
CA\DebugSymbols

+ add path Faddserer | | A Remove [ox Cancel

Local symbols cache: | CAsymCache Change

Use this dialog to specify:

» Paths of PDB files
» Symbols servers
» The location of the local symbol cache

To use a symbol server:

1. Install Debugging Tools for Windows, a part of the Windows 10 SDK.
2. Add the symbol server URL using the Add Server button.

Information about Microsoft's public symbol server, which enables getting Windows
operating system related debug symbols can be found here.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 66

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols

Profiling from the GUI

2.3. Profiling Android Targets from the GUI

Profiling on Android devices is similar to the profiling on Linux devices. Please refer to
the Profiling Linux Targets from the GUI section for the detailed documentation. The
major differences on the platforms are listed below:

Configuring Your Android Device

To work with Nsight Systems, the target Android device should be configured for
USB debugging in the Developer options settings menu. Please refer to Android
development documentation to learn how to configure the device for USB debugging.

On the host, a compatible USB driver should be installed. Please refer to device
manufacturer's documentation to learn how to obtain and install the driver.

Connect your target device via a USB cable and power it on (or wake it up). Make sure
that you have the adb command available (it is part of Android SDK Platform Tools
package). Nsight Systems can only connect to devices that are marked as device in the
output of the adb devices command. Make sure you can enter the ADB shell of the
target device by running adb shell on the host.

Launch the Nsight Systems application. On the first launch, a new project called
Project 1 is created automatically.

File View Help

|2 NVIDIA SHIELD Android TV (408405150 | | +3 | |, | &/ Device is ready More info... -]
=
¥ = Projectl
b = Project2
~ Project3 Start J
Project 3

Start profiling after | 10.0 |3 seconds

x| System profiling options Limit profiling to 10.0 3| seconds
=] # Sample target process

Sampling rate: =S 10 kHz

¢ Collect call stacks

=l Target application

Choose application to profile: Install application from package file +#

Market Feedback Agent {com.google.android feedback) =
Media Storage (com.android.providers.media)
NVIDIA Audio Service {com.nvidia.nvaudiosvc)

£ NVIDIA Customizations (com.nvidia.shield.nvcustomize)
L NVIDIA Factory Helper {(com.nvidia.factary)

<« NVIDIA Games (com.nvidia.tegrazone3)

ﬂ NVIDIA HDMI Services (com.nvidia.hdmimonitorservice)

n NVIDIA Package Manager (com.nvidia.packagemanagerservice)

@ NVIDIA RPX service (com.nvidia.shieldtech.rpx)

n NVIDIA Shield Services (com.nvidia.shieldservice)

NVIDIA ShieldTech (com.nvidia.shieldtech.hooks)

= NVIDIA Tegra Service Updater {com.nvidia. NvCPLUpdater)
Package name: |com.nvidia.tegrazone3
Default activity name: com.nvidia.tegrazone3.LaunchActivity

a v | Allow sending intent to launch the default activity

Restart application if running

When connecting to the target device, Nsight Systems will validate it and install its
daemon into the following location on the device:
/data/local/tmp/com.nvidia.nsightsystems.tools/

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 67

Profiling from the GUI

Once the daemon and all required files are installed correctly, a green check mark will
appear and Device is ready text will be displayed:

o Device is ready

Application

This section allows you to choose which application to profile. All information will be
collected about the main process of the selected application, except when the Trace all
processes checkbox is enabled.

For non-rooted Android devices, the list of applications only shows information about
debuggable applications. By default, applications that are being developed using the
Android SDK already contain the debuggable option in their manifests.

On rooted Android devices, profiling of all applications is allowed.

For convenience, the application list also shows the process identifiers (PID) of processes
correlated to the listed packages. To refresh this information, use the button in the upper
right corner of the list.

The two checkboxes below the application list are important to ensure that the correct
launch or attach behavior is configured.

Allow sending intent to launch the default activity, when unselected, forces the
profiler to attach to a running process. If no processes are found to correlate to the
specified application name, the profiling session fails to start with an error message.
When selected, Nsight Systems may launch the default intent of the selected application
to make sure it is running and appears on top of the screen on the target device.

In some applications, especially in early stages of development, common bugs related to
handling the lifecycle of activities can be found. In such cases, sending the default intent
may lead to undesired behavior or even crashes of the profilee. Leaving the checkbox
unselected ensures that the profiler does not affect the application.

Restart application if running is a convenient option in two cases:

1. When profiling from the very beginning of the application is desired.

2. When using some of the trace features described below. They require that a
special library is injected into the application in runtime, which happens when
the application is paused by the Android runtime's virtual machine just after
starting. In this case, enabling this option helps ensure that the application is always
restarted and the injection always happens, as opposed to potentially attaching to
the application's process without injection.

Collect NVTX trace. See NVTX Trace for more information.

Collect OpenGL trace. See OpenGL Trace for more information.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 68

Profiling from the GUI

2.4. Profiling QNX Targets from the GUI

Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

» Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

» CUDA support is limited to CUDA 9.0+

» Filesystem on QNX device might be mounted read-only. In that case Nsight Systems
is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && 1ls -1 /xx

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 69

Chapter 3.
REPORT SCRIPTS

Report Scripts Shipped With Nsight Systems

The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested reports. These scripts will be updated to adapt to any
changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

apigpusum|[:base] -- CUDA APl & GPU Summary (CUDA
APl + kernels + memory ops)
Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this kernel
Instances: The number of executions of this object

Average : The average execution time of this kernel

Minimum : The smallest execution time of this kernel
Maximum : The largest execution time of this kernel

Category : The category of the operation

Operation : The name of the kernel

vV vV vV VvV VvV VvV Vv Vv

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time(%) column is calculated using a
summation of the Total Time column, and represents that API call's, kernel's, or memory
operation's percent of the execution time of the APIs, kernels and memory operations
listed, and not a percentage of the application wall or CPU execution time.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 1 70

Report Scripts

This report combines data from the cudaapisum, gpukernsum, and gpumemsizesum
reports. It is very similar to profile section of nvprof --dependency-analysis.

cudaapisum -- CUDA APl Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this function
Num Calls : The number of calls to this function

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

Name : The name of the function

vV Vv v v v v

This report provides a summary of CUDA API functions and their execution times. Note
that the Time(%) column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cudaapitrace -- CUDA API Trace

Arguments - None
Output: All time values given in nanoseconds

Start : Timestamp when API call was made

Duration : Length of API calls

Name : API function name

Result : return value of API call

CorrlD : Correlation used to map to other CUDA calls
Pid : Process ID that made the call

Tid : Thread ID that made the call

T-Pri : Run priority of call thread

Thread Name : Name of thread that called API function

vV V. vV vV v v v v v

This report provides a trace record of CUDA API function calls and their execution
times.

gpukernsum[:base] -- CUDA GPU Kernel Summary

Arguments

» Dbase - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

» Time(%) : Percentage of Total Time

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 71

Report Scripts

Total Time : The total time used by all executions of this kernel
Instances : The number of calls to this kernal

Average : The average execution time of this kernal

Minimum : The smallest execution time of this kernal
Maximum : The largest execution time of this kernal

Name : The name of the kernal

vV vV v v v VY

This report provides a summary of CUDA kernels and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

gpumemsizesum -- GPU Memory Operations Summary
(by Size)

Arguments - None
Output: All memory values given in KiB

Total : Total number of KiB utilized by this operation
Operations : Number of executions of this operation
Average : The average memory size of this operation
Minimum : The smallest memory size of this operation
Maximum : The largest memory size of this operation
Name : The name of the operation

vV vV v v v VY

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

gpumemtimesum -- GPU Memory Operations Summary
(by Time)

Arguments - None
Output: All memory values given in KiB

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this operation
Operations: The number of operations of this type

Average : The average execution time of this operation

Minimum : The smallest execution time of this operation
Maximum : The largest execution time of this operation
Operation : The name of the memory operation

vV vV vV v v v VY

This report provides a summary of GPU memory operations and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that operation's percent of the execution time of the operations
listed, and not a percentage of the application wall or CPU execution time.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 72

Report Scripts

gpusum|[:base] -- GPU Summary (kernels + memory
operations)

Arguments

>

base - Optional argument, if given, will cause summary to be over the base name of

the kernel, rather than the templated name.

Output: All time values given in nanoseconds

v

vV vV v v v VY

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this kernel
Instances : The number of executions of this object

Average : The average execution time of this kernal

Minimum : The smallest execution time of this kernal
Maximum : The largest execution time of this kernal

Category : The category of the operation

Name : The name of the kernal

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the gpukernsum and gpumemtimesum reports. This
report is very similar to output of the command nvprof --print-gpu-summary.

gputrace -- CUDA GPU Trace

Arguments - None

Output:

vV V. v v v VvV vV v v vV vV v v Y

Start : Start time of trace event in seconds
Duration : Length of event in nanoseconds
Corrld : Correlation ID

GrdX, GrdY, GrdZ : Grid values

BIkX, BIKY, BIkZ : Block values

Reg/Trd : Registers per thread

StcSMem : Size of Static Shared Memory
DymSMem : Size of Dynamic Shared Memory
Bytes : Size of memory operation

Thru : Throughput in MB per Second
SrcMemKd : Memcpy source memory kind or memset memory kind
DstMemKd : Memcpy destination memory kind
Device : GPU device name and ID

Ctx : Context ID

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 73

Report Scripts

» Strm : Stream ID
» Name : Trace event name

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

nvtxppsum -- NVTX Push/Pop Range Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all instances of this range
Instances : The number of instances of this range

Average : The average execution time of this range
Minimum : The smallest execution time of this range
Maximum : The largest execution time of this range

Range : The name of the range

vV Vv v v v v

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

openmpevtsum -- OpenMP Event Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of event type
Count : The number of event type

Average : The average execution time of event type

Minimum : The smallest execution time of event type
Maximum : The largest execution time of event type

Name : The name of the event

vV vV v v v v VY

This report provides a summary of OpenMP events and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrtsum -- OS Runtime Summary
Arguments - None
Output: All time values given in nanoseconds

» Time(%) : Percentage of Total Time

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 74

Report Scripts

Total Time : The total time used by all executions of this function
Num Calls : The number of calls to this function

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

Name : The name of the function

vV vV v v v VY

This report provides a summary of operating system functions and their execution
times. Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

Report Formatters Shipped With Nsight Systems

The following formats are available in Nsight Systems

Column

Usage:

column|[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit : Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt : Do not reformat numbers.

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "..." character, to indicate
the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.

This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 75

Report Scripts

width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table

Usage:
table[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit : Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt : Do not reformat numbers.

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

Ccsv

Usage:

csv|[:nohdr]

Arguments

» nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV

Usage:
tsv[:nohdr] [:esc]
Arguments

» nohdr : Do not display the header
> esc:escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 76

Report Scripts

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON

Usage:
json
Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and
converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc

Usage:
hdoc[:title=<title>] [:css=<URL>]
Arguments:

> title : string for HTML document title
» ¢ss: URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

HTable

Usage:
htable
Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 77

Chapter 4.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command

The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options

After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.

nsys nvprof [options]

Switch Parameters (Default [nsys switch Switch Description

in Bold)
--annotate-mpi off, openmpi, mpich |--tracesmpi AND -- | Automatically
mpi-impl annotate MPI

calls with
NVTX markers.
Specity the MP1

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 78

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

implementation
installed on

your machine.

Only OpenMPI

and MPICH
implementations are
supported.

driver,all

--cpu-thread-tracing |on, off --trace=osrt Collect information
about CPU thread
APT activity.

--profile-api-trace none, runtime, --trace=cuda Turn on/off CUDA

runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime

and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start

on, off

if off use --capture-
range=cudaProfilerA]

Enable/disable
pprofiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Stan
to turn on/off
profiling.

t,Stop}

-t,--timeout

<nanoseconds>
default=0

--duration=seconds

If greater than

0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting

immediately.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 79

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

--cpu-profiling

on, off

--sampling=cpu

Turn on/off CPU
profiling

--openacc-profiling

on, off

--trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-0, --export-profile

<filename>

--output={filename}
and/or --
export=sqlite

Export named file
to be imported

or opened in the
Nsight Systems
GUL %q{ENV_VAR}
in string will be
replaced with

the set value of

the environment
variable. If not set
this is an error.

%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string

is not supported
currently. Any other
character following
% is illegal. The
default is reportl,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 80

Migrating from NVIDIA nvprof

Switch Parameters (Default | nsys switch Switch Description
in Bold)
-f, --force-overwrite --force- Force overwriting
overwrite=true all output files with

same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps

NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 81

Chapter 5.
PROFILING IN A DOCKER ON LINUX

DEVICES

Collecting data within a Docker

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:

$ grep CONFIG SECCOMP= /boot/config-$ (uname -r)

The official Docker documentation says:

"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
must download the latest static Linux binaries (rather than packages) ."

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default _with perf.json.

{

"name": "perf event open",
"action": "SCMP_ACT_ALLOW",
"argS " B []

by

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 82

https://docs.docker.com
https://docs.docker.com

Profiling in a Docker on Linux Devices

Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.

--security-opt seccomp=default with perf.json
Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:

sudo nvidia-docker run --network=host --security-opt

seccomp=default with perf.json --rm -ti caffe-demo2 bash

There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 83

Chapter 6.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

6.1. D3D11 API trace

Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

» CPUN2)

~ Threads (5)

PvEa ;

~ v [21384] - —_
—————————————————————————
Blocked State [|
DXGI API |
DX11 API _ JI J. bisgsmd lu.u.unix..xuw.u bl

DX11 Markers

Call to:
SIS 1D3D11DeviceContextdzDraw
3 threads hidden... - ;Dxlw;;;&ss
egins: 0. -
~ Frame duration (60 FPS) | Ends: 0.94106s (+ 100 ng)

¥ CPU frame duration

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

6.2. D3D12 API Trace

Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 84

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

~ Dx12

Commans Uists reation .~ il (0 | (CEEHED0 @B (Grapnis command i [Grap.r) [Te) D (Gmehien) | D [k L)
> GPU - ald & wa! N v |
- commend cuee 1 0vect || QI e | e 11L0 -]

APl 0 0 0 0
GPU Command List Markers ::: I :::::m:' 1 'N I '“‘]::: | .:: EI:::::: ::::]
~ Command Queue 2 (Copy) III I l_ I] I 1 .I ' '
[

apl)
GPU Synchronization | | | | | | ||| | ‘

The Command List Creation row displays time periods when command lists

were being created. This enables developers to improve their application’s
multithreaded command list creation. Command list creation time period is
measured between the call to ID3D12GraphicsCommandList: :Reset and the call to
ID3D12GraphicsCommandList: :Close.

* Command Lists Creation

The GPU row shows an aggregated view of D3D12 API calls and GPU workloads. Note
that not all D3D12 API calls are logged.

v GhU [P P TETIOTE Y E R TTIE TR TR TR T TTRTIR TR PHTTRIR TRt TTTE

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

P Command Queue 0 (Compute)

P Command Queue 1 (Direct)

The API row displays time periods where

ID3D12CommandQueue: : ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 85

Direct3D Trace

API ID3D1...
CPU Markers (Thread O:...|

GPU Queue Markers [Thread O: Iterate on the particle ...

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

CPU Markers [Render |

GPU Queue Markers |Render |

GPU CommandList Markers

Clicking on a GPU workload highlights the corresponding

ID3D12CommandQueue: :ExecuteCommandLists,

ID3D12GraphicsCommandList: :Reset and ID3D12GraphicsCommandList: :Close
API calls, and vice versa.

* GPU

» Command Queue 0 (Compute)

AP

CPU Markers Thread ...
GPU Queue Markers [Thread O: Iterate on the particle simulation |
Workload Compute workload

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

» The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

» The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

» The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 86

Direct3D Trace

* Threads (8]

~ [V [9504] ~

Blocked State

05 runtime libraries Win3...| [Win32 Wait AP|

- DX12 APl [] (. @

Synchronization |
Profiler overhead D E]
7 threads hidden... =
~ Frame duration (60 FPS)
v CPUframe duration #33 [16.725 ms]] #34 [16

GPU frame duration #32 [18.493 ms]
~ DX12

Command Lists Creation

* Command Queue 1 (Direct)
APl
AP 0
GPU Synchronization

VSYNC - Intel(R (D) Fence Signal
VEYNC - Intel(R (1) Time: 0.557074s

|
=
- GRU —
(Gre)

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 87

Chapter 7.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated

with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

Enabling the "Collect additional range of ETW events" option will also capture extended
DxgKrnl events such as context status, allocations, sync wait, signal events, etc.

¥ WDDM (GeForce RTX 2080 Ti 1)

3D CPU Queue ffffdaB52163ac

Wait

3D GPU Queue ffffdag852163ade0 L

Copy CPU Queue ffffda8519202de

Copy GPU Queue ffffda8519202de

A command buffer in a WDDM queues may have one the following types:

Render
Deferred
System
MMIOFlip
Wait
Signal
Device
Software

vV V. vV vV vV VvV Vv v

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 88

WDDM Queues

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .qdrep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 89

Chapter 8.
VULKAN API TRACE

8.1. Vulkan Overview

Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan APl is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

+770ms 775ms +780ms. +TB5ms +730ms. +795ms

Lo bt el . ddble

~ Threads (26)
i | im— 1 —
S NS e IR
Bockad Sate] [e teuen10z0m] | [userhequestiozsam] a
WVulkan API vkQueuePresentKHR vkQueuePresentKHR J

Frame #105 [16,670 ms| Frame #106 [16.685 ms] | Frame,

Fram.. Frame #105 [17.055 ms] | Frame #106 [16.600 ms] I i
~+ Command Buffers Cration
g [o—rr— —— —
- Queseo
Pl 0] 0

[T —
— | \

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

~ Vukan
- Command Buffers Creation

(Command bufer [Beginnd] (omman..|) Command bufter ieginndl ([J(CT) ()LL)

The Swap chains row displays the available swap chains and the time periods where
vkQueuePresentKHR was executed on each swap chain.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 90

https://www.khronos.org/vulkan/

Vulkan API Trace

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmi t was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

vkQueueSubmit

In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Vulkan APl

Point Markers l

Markers ic

Clicking on a GPU workload highlights the corresponding vkQueueSubmi t call, and
vice versa.

~ Queue 0

AP

8.2. Pipeline Creation Feedback

When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 91

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

Vulkan API Trace

35 +80ms +100ms +120ms +140ms +160ms +180ms +200ms +220/~

v CPU(12)

~ Threads (19)

- ¥ [20512] -

Blocked State

Vulkan API vkQueueWaitldle JI[vkCreateRayTracingPipelinesNy)i (.0

Markers

Profiler overhead

~ V| [26272] - -

Events View v

2 of 13 matches ‘pipaline]

£ Mame = Duration TD GPU Context Start = Call to:
150 vkCreatelmage 13.400 ps 20512 - - 2.43605s vkCreateRayTracingFipelinesNV
Vulkan API calls
151 vkAllocateMemory 182,100 ps 20512 - - 2436065 Begins: 3.14915¢
152 vkCreatelmage £.000 s 20512 - . 2437155 Ends: 3.21398s (+64.835 ms)
Flags: NONE
133 vkAllocateMemory 219,700 ps 20512 - - 2437135 Duration: 64.831 ms
. Stage 1 Flags: NONE
154 kBeginC dBuffi 1.100 20512 - - 243738
viSegintommandBuTrer L s Stage 1 Duration: 2379 ms
155 vkEndCommandBuffer 1.400 ps 20512 - - 2437385 Stage 2 Flags: NONE
Stage 2 Duration: 5.032 ms
7 - - vE
156 vkQueueSubmit 70.600 ps 20512 2.43739s Stage 3 Flags: NONE
157 vkQueueWaitldle T10.687 ms 20512 - - 2437475 Stage 3 Duration: 5.245 ms
Stage 4 Flags: NONE
158 vkCreateBuffer 1,100 ps 20512 - - 314818 Stage 4 Duration: 4,001 ms
159 vkAllocateMemory 5,400 ps 20512 - - 3.1482s Stage 3 Flags: NONE
Stage 5 Duration: 3.711 ms
160 vkCreateBuffer 400 ns 20512 - - 3.1482s Stage 6 Flags: NONE
161 viillocatehemory 800 ns 20512 - - 3.14821s Stage 6 Duration: 116.000 ps
. Stage 7 Flags: NONE
162 vkCreateBuffer 300 ns 20512 - - 3.14827s Stage 7 Duration: 102.000 ps
163 viAllocateMemory 433,100 ps 20512 - - 3148285 Stage 8 Flags: NONE
Stage 8 Duration: 180.000 ps
164 vkCreateBuffer 600 ns 20512 - - 3.148765 Stage 9 Flags: NONE
165 vkAllocateMemory 1.300 ps 20512 - - 3.14876s Stage 9 Duration: 363.000 ps
Stage 10 Flags: NONE
166 vkCreateBuffer 300 ns 20512 - - 3.14876s Stage 10 Duration: 277.000 ps
167 viAllocateMemory 500 ns 20512 - . 3.148765 Stage 11 Flags: NONE
Stage 11 Duration: 817,000 ps
169 vkCreateBuffer 1,500 ps 20512 - - 3.21398s | 5t29e 12 Duration: 463.000 s

8.3. Vulkan GPU Trace Notes

» Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.

» The endings of Vulkan Command Buffers execution ranges on Compute and
Transfer queues may appear earlier on the timeline than their actual occurrence.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 92

Chapter 9.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

9.1. FPS Overview

The Frame Duration section displays frame durations on both the CPU and the GPU.

~ Frame duration (Target FPS: 30 Hz)| Showing 108 of 2113 CPU frames | avg 4.08ms | min 2.82ms | max 6.98ms | FPS 245.09 | 99%<6.64ms

b CPU fome durion AT TR

Gorce R 2060 T (LEEVEREEIREREREREEEEREEEEREEEEEEREEAEEER PR

The frame duration row displays live FPS statistics for the current timeline viewport.
Values shown are:

1. Number of CPU frames shown of the total number captured

2. Average, minimal, and maximal CPU frame time of the currently displayed time
range

3. Average FPS value for the currently displayed frames

4. The 99th percentile value of the frame lengths (such that only 1% of the frames in the
range are longer than this value).

The values will update automatically when scrolling, zooming or filtering the timeline
view.

v Frame duration (Target FPS: 30 Hz)| Showing 6 of 2113 CPU frames | avq 5.10ms | min 4.01ms | max 8.55ms | FPS 195.94 | 99%<8.39ms

~ CPU frame duration

Frame health

s
ceermar) (655 (D e e

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 93

Stutter Analysis

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference >20%, absolute difference < 4 ms)

2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference >4 ms)

3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference >4 ms, both conditions met)

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

2. Calculate the delta and ratio between 1st and 3rd quartiles.

3. If the 90th percentile of 3rd — 1st quartile delta array >4 ms AND the 90th percentile
of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

v Frame duration (60 EDSY
Target frame rate 30 FPS ——
» CPU frame du I
v Target frame rate 60 FPS
r GPU frame du

Target frame rate 90 FPS
* DX12

Customize FPS Display...
~ Command Lis i

Undo Zoom (1)

Swap Chain 0

Reset Zoom
v GPU # Pin row
v Command Queue 0 [Direci
AP

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 94

Stutter Analysis

@ Customize FPS display X

Frame Duration (ms)

Frames are colored according to their duration using these 2 thresholds:

Good < | 1667(ms) |< Bordedine < | 2000(ms) |< [}

=59 FPS =50 FPS
Stutter (%)

Reflects how much a frame duration is longer than the median duration of the
surrounding 19 frames.

Only frames with duration of 4ms longer than the median are checked for stutter.

Only Borderline and Bad stutter frames appear on the timeline stutter row.

20% < Borderline < 50% . -
OK Cancel

Frame duration bars are color coded:

» Green, the frame duration is shorter than required by the target FPS ratio.
» Yellow, duration is slightly longer than required by the target FPS rate.
» Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

» The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

» The D3D11 and D3D12 frame boundaries are IDXGISwapChainX: : Present calls.
» The Vulkan frame boundaries are vkQueuePresentKHR calls.

The GPU Frame Duration row displays the time measured between

» The start time of the first GPU workload execution of this frame.
» The start time of the first GPU workload execution of the next frame.

9.2. Frame Health

The Frame Health row displays actions that took significantly a longer time during

the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

- Frame duration (50 FPS)

~ €PU frame duration rame #53 [16.... Frame #54 [29.247 ms)

Frame #55 [20.708 ms]

Frame Action resent [11.709..| Buil, Present [25.612 ms) Build fra..| Present [14.184 ms] | Buil
97.41%]

Frame health

Stutter 24.19% Delta

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 95

Stutter Analysis

9.3. GPU Memory Utilization

The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

* Video Memory
- GPUT

* Memory Utilization - Local

- GPUD

= Memory Utilization - Local

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

9.4. Vertical Synchronization

The VSYNC rows display when the monitor's vertical synchronizations occur.

VSYNC - iGPU (0)
VSYNC - dGPU 1 (0)

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 96

Chapter 10.
MPI APl TRACE

For Linux x86_64 and Power targets, Nsight Systems is capable of capturing information
about the MPI APIs executed in the profiled process. It has built-in API trace support
only for the OpenMPI and MPICH implementations of MPI and only for a default list of
synchronous APIs.

v v/ Collect MPI trace

Select the MPI implementation used by the target application to trace a default set of synchronous MPI calls. If the
application uses a different MPI implementation, see the documentation for additional setup required to trace MPL. Note
that NVTX tracing will also be enabled on selecting MPI tracing.

(@) OpenMPI
[MPICH and its derivatives

¥ Collect NVTX trace

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, see github nvtx pmpi wrappers. You can use this documentation
to generate a shared object to wrap a list of synchronous MPI APIs with NVTX using
the MPI profiling interface (PMPI). If you set your LD_PRELOAD environment variable
to the path of that object, Nsight Systems will capture and report the MPI API trace
information when NVTX tracing is enabled.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 97

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Project 8 X laplace2d_O.qdrep %
= Timeline View -
1s @ +755ms +756ms.
» CPU(12)

= Threads (10}

- |v| [3394] MPI Rank 0 ~

+757ms +758ms

MPI API Trace

2~ 1x 913 messages
+759ms +760ms +761ms +762ms |+

CUDA API cuMemHaostReqister]E] |‘T| | culpcOpenMe l

Profiler overhead
9 threads hidden...
~ CUDA (MPI Rank 0)
~ 88.2% Stream 15
b 96.9% Kernels

—

b 3.1% Memory
= 10.2% Stream 16
~ 100.0% Kernels
~ 100.0% main_123 gpu
100.0% main_123_gpu
~ 1.6% Stream 17
b 100.0% Memory
NVTX (MP1)
~ <0.1% Stream 20
+ 100.0% Memory L]
NVTX (MPI)

4,800

‘EEFRFREEEEREERE I
i.00:0.0.0,0.0:0.0.0.0.0. 001

. -
=1

1 -

. —— —

NVTX tracing is automatically enabled when MPI trace is turned on.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 98

Chapter 11.
OPENMP TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenMP events. This functionality is built on the OpenMP Tools Interface
(OMPT), full support is available only for runtime libraries supporting tools interface
defined in OpenMP 5.0 or greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

* Collect OpenMP trace

OpenMP (Open Multi-Processing) is a set of compiler directives, library routines, and environment variables that can
be used to specify high-level parallelism in Fortran and C/C++ programs. NVIDIA Nsight Systems supports collecting
and visualizing OpenMP events and ranges on the timeline.

[4 FPallack TTenen msmmbe

Only a subset of OpenMP events are traced. These are limited to the following:

ompt callback parallel begin

ompt callback parallel end

ompt callback sync region

ompt callback task create

ompt callback task schedule

ompt callback implicit task

ompt callback master

ompt callback reduction

ompt callback task create

ompt callback cancel

ompt callback mutex acquire, ompt callback mutex acquired
ompt callback mutex acquired, ompt callback mutex released
ompt callback mutex released

ompt callback work

ompt callback dispatch

ompt callback flush

These
raw
Note: OMPT
events
are

www.nvidia.com
Nsight Systems User Guide v2021.1.1 1 99

OpenMP Trace

processed
and
reorganized
by
Nsight
Systems
to

be

more
user-
friendly.
You

may

not

see
exact
same
events
from
the

list.

Example screenshot:

» cPU2)

- Threads (6}

- V| [16500] OpenhP Intia -

D e m CEED [) ® O D D @R 6

G e G)))) s () 0 G 60 G O G 6 (e @) (e 5 G0 60 G0
V. [16508] OpenivP work - —,_ L G hRERAdhE sl BEEBB - : i ::z=::: i ttibPifihbi>

o

i) G)) e (6 e e 6 e 5 G Comed) o 0 st 50 e 5 G0 60 G

mplic Task

o) Eamer [loosRewen) B G (CEmer) () (CEamer) (Cowewer) (Bl (GwRes) Ei) G (CEamer) Do) E) (Chwfaer) B (Gefewen) F) o) E) Gewd

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 100

Chapter 12.
OS RUNTIME LIBRARIES TRACE

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OS runtime tracing complements and enhances sampling information by:

1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling;:

» Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

» In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 101

OS Runtime Libraries Trace

%

recvmsg ioctl | i

m In OS runtime library function
Duration: 63.156 ps

. - . Call stack at 1.608s:
e (o o A R il R e
i ; o ’ libeuda.s0.390.470x7fe0ed4712164
libcuda sa.390.4

cudart:.cudaApiMalloct...)
smokeParticles (1 of 6 threads) 'cudaMalloc

'oid* thrust::cuda_cub::malloe <..> (...}
5) of data is shown due to applied filters -

Jle Name
‘localfeuda-9.1 X I smol
Tlib/x86_64-linux-gnu/libcuda.s0.390.47
lib/x86_64-linux-gnu/libecuda.s0.390.47
Tlib/x86_64-linux-gnu/libcuda.s0.390.47

(..
smokeParticlestvold* thrusti:cuda_cubi:get memory_buffer<...>(...)
[Max depth]|[Max depth]

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

=) Collect OS runtime libraries trace

V| Skip if shorter than | 1.000 +| microseconds

Userspace tracing of Operating System runtime libraries that provide interfaces to communicate with the
hardware or control resources such as threads and processes. This traces the system call wrappers and
thread synchronization interfaces exposed by the C runtime and POSIX Threads (pthread) libraries.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
thetimeline. We strongly encourage you to skip OS runtime libraries call shorter than 1

us.

12.1. Locking a Resource

The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.

pthread mutex lock

pthread rwlock rdlock

pthread rwlock wrlock

pthread spin lock

sem wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

12.2. Limitations

» Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able
to trace syscall invoked through assembly code.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 102

OS Runtime Libraries Trace

» Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

» Itis not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 us will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

» Itis required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

12.3. OS Runtime Libraries Trace Filters

The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 103

OS Runtime Libraries Trace

12.4. OS Runtime Default Function List

Libc system call wrappers

accept
accept4
acct

alarm

arch prctl
bind

bpf

brk

chroot
clock nanosleep
connect
copy file range
creat
creat64
dup

dup?2

dup3

epoll ctl
epoll pwait
epoll wait
fallocate
fallocate64
fentl
fdatasync
flock

fork

fsync
ftruncate
futex
ioctl
ioperm
iopl

kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount

move pages
mprotect
mg_notify
mg_open
mg_receive
mg_ send
mg_timedreceive
mg_ timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
opentc4
openat
openat64
pause

pipe

pipe2
pivot root
poll

POSIX Threads

pthread barrier wait
pthread cancel
pthread cond broadcast
pthread cond signal
pthread cond timedwait
pthread cond wait
pthread create

pthread join

pthread kill

pthread mutex lock
pthread mutex timedlock
pthread mutex trylock
pthread rwlock rdlock
pthread rwlock timedrdlock
pthread rwlock timedwrlock
pthread rwlock tryrdlock
pthread rwlock trywrlock
pthread rwlock wrlock
pthread spin lock
pthread spin trylock
pthread timedjoin np
pthread tryjoin np
pthread yield

sem timedwait

sem trywait

sem wait

www.nvidia.com
Nsight Systems User Guide

OS Runtime Libraries Trace

v2021.1.1 | 105

I/0

aio fsync

aio fsync64

aio suspend

alo suspend64
fclose
fcloseall
fflush

fflush unlocked
fgetc

fgetc unlocked
fgets

fgets unlocked
fgetwc

fgetwc unlocked
fgetws

fgetws unlocked
flockfile

fopen

fopeno64d

fputc

fputc unlocked
fputs

fputs unlocked
fputwc

fputwc unlocked
fputws

fputws unlocked
fread

fread unlocked
freopen
freopené64
ftrylockfile
fwrite

fwrite unlocked
getc

getc unlocked
getdelim
getline

getw

getwc
getwc_unlocked
lockf

lockfe4

mkfifo

mkfifoat

posix fallocate
posix fallocate64
putc

putc unlocked
putwc

putwc _unlocked

Miscellaneous

forkpty
popen

posix spawn
posix spawnp
sigwait
sigwaitinfo
sleep

system
usleep

www.nvidia.com
Nsight Systems User Guide

OS Runtime Libraries Trace

v2021.1.1 | 106

Chapter 13.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.
The following features are supported:
» Domains

nvtxDomainCreate (), nvtxDomainDestroy ()

nvtxDomainRegisterString ()
» Push-pop ranges (nested ranges that start and end in the same thread).

nvtxRangePush (), nvtxRangePushEx ()
nvtxRangePop ()
nvtxDomainRangePushEx ()

nvtxDomainRangePop ()
» Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart (), nvtxRangeStartEx()
nvtxRangeEnd ()

nvtxDomainRangeStartEx ()

nvtxDomainRangeEnd ()

» Marks
nvtxMark (), nvtxMarkEx ()
nvtxDomainMarkEx ()

» Thread names

nvtxNameOsThread ()
» Categories

nvtxNameCategory ()

nvtxDomainNameCategory ()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVITX documentation.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 107

https://nvidia.github.io/NVTX/

NVTX Trace

To use NVTX in your application, follow these steps:

1. Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

2. Add the following compiler flag: -1d1

3. Add calls to the NVTX API functions. For example, try adding
nvtxRangePush ("main") in the beginning of the main () function, and
nvtxRangePop () just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

4. In the project settings, select the Collect NVTX trace checkbox.

5. If you are on Android target, make sure that your application is launched by Nsight
Systems. This is required so that the necessary launch environment is prepared, and
the library responsible for collection of NVTX trace data is properly injected into the
process.

6. If you are on Linux on Tegra, if launching the application manually, the following
environment variables should be specified:

» For ARMv7 processes:

NVTX INJECTION32 PATH=/opt/nvidia/nsight systems/libToolsInjection32.so
» For ARMvS processes:

NVTX INJECTION64 PATH=/opt/nvidia/nsight systems/libToolsInjection64.so

In addition, by enabling the "Insert NVTX Marker hotkey" option it is possible to add
NVTX markers to a running non-console applications by pressing the F11 key. These will
appear in the report under the NVTX Domain named "HotKey markers".

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

Range
annotations
should
be
matched
carefully.
If

many
ranges
are
opened
but

not
closed,

Note:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 108

http://github.com/NVIDIA/NVTX

NVTX Trace

Nsight
Systems
has

no
meaningful
way

to
visualize
it.

A
rule

of
thumb
is

to

not
have
more
than

a
couple
dozen
ranges
open

at

any
point

in

time.
Nsight
Systems
does
not
support
reports
with
many
unclosed
ranges.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 109

Chapter 14.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

» CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

» CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
» CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

» CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

» On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

~ Threads (3)
- [v] [14617] particles -

CUDA API S (o kemelagentl) (G, | (.. (DeuieRedisonl..) fadit.) @i

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 110

CUDA Trace

= Timeline View -

¥ CPU (6)

» Threads (3)
» iGPU (NVIDIA Tegra X2)
 CUDA (NVIDIA Tegra X2, 0000: fa—
w Default stream (7) Jr—
¥ Memory -
DtoA memcpy ™
~ Kernels (CadvectVelocity k| (00 | Cvecto DL [(Dregul.. veckor) [a.)
» regular_fft] 2 [] (regula—]
» vector_fit 7] (vecto..|] (vector ffit |
» advectVelocity_k (CadvectVelocity_k_)
b _ nv_static_45_ 32_spRea
» _nv_static_45_ 32 spRea 7] 7]
» diffuseProject k =
» _ nv_static_45_32_spRea (V] V]
p advectParticles_k .

1 kernel group(s) hidder

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

= / Collect CUDA trace

V| Flush data periodically 10.00 |+ | seconds
v Skfp some API calls

Collect GPU memory ﬁt}sage

Collect cuDNN trace |Track the GPU memory usage.

Enabling this option may increase the overhead.

Collect cuBLAS trace
Collect OpenACC trace

» Collect CUDA backtraces

For Nsight Systems Embedded Platforms Edition this looks like:

B Collect CUDA frace

[+] Flush data periodically | 10,00 2| seconds

Skip some API callz

Additional configuration parameters are available:

» Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

» Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 111

CUDA Trace

cudaDeviceReset (), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

» Skip some API calls — avoids tracing insignificant CUDA Runtime
API calls (namely, cudaConfigureCall (), cudaSetupArgument (),
cudaHostGetDevicePointers ()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

» Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

» For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

» For Nsight Systems Embedded Platforms Edition if desired, the target application
can be manually set up to collect CUDA trace. To capture information about CUDA
execution, the following requirements should be satisfied:

» The profiled process should be started with the specified environment variable,
depending on the architecture of the process:

» For ARMv7 (32-bit) processes: CUDA_INJECTION32_ PATH, which should
point to the injection library:
/opt/nvidia/nsight systems/libToolsInjection32.so

» For ARMv8 (64-bit) processes: CUDA_INJECTION64_PATH, which should
point to the injection library:
/opt/nvidia/nsight systems/libToolsInjection64.so

» If the application is started by Nsight Systems, all required environment
variables will be set automatically.

Please note that if your application crashes before all collected CUDA trace data has
been copied out, some or all data might be lost and not present in the report.

14.1. CUDA GPU Memory Allocation Graph

When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU
memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 112

CUDA Trace

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

Project1 X report36.qdrep X

£ Timeline View v F1x © 11 messages £ Timeline View - F1x © 11 messa

3s 3.55 as 4.55 55 5.55 E . 2.55 3s
- e " et st
cuoA APt T D O R CUDA APL b oo HHTTTTHITRHITRTTECE T

- o garren 26, o , i - ctn caren 0, o

> 0.9% Kerels > 0.9% Kerels

> 99.1% Memory | I lemory usage

S 11111111 A e | e

Here is another example, where allocations are happening on multiple GPUs

2 Timeline View -

4 1Ix
os 1s +50ms +100ms +150ms +200ms +300ms at
~ Threads (1)
~ [30548] MonteCarloMulti
CUDA API c. . adamalociost. [T ¢ e =G D@ O EDED e e Caaa)y e e

~ CUDA (GeForce RTX 2080, 000(
~ 100.0% Context 1

» i streams)] [

> 81.0% Stream 16
» 19.0% Default stream (7)

emeny usege !
» 0.0% Unified memory
~ CUDA (TITAN X (Pascal), 0000:

» [All Streams] &

» 83.4% Stream 27 [FonieCarictn-)

» 16.6% Default stream (18) 2]

temeny usoge !
i

~ CUDA (TITAN X (Pascal), 0000:

» (Al streams] €3 oo,)
» 80.3% Stream 38 (PooteCator)
» 19.7% Default stream (28} @

Memory usage

N .
lemory:
m Usage: 13.50 MiB

14.2. Unified Memory Transfer Trace

For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

w CUDA {Quadro GV100, 0000:04:00.0)
w Context 2

w Default stream

> Kernels - e
~ Managed Mermory]
HtoD transfer

DtoH transfer

9,222 PtoP transfer Transfer 770,048
' bytes fram device 0
]

. Timings: [1.593s 1.593s) =
Bottom-Up View = | Process [5400] UvmMultidevice (1 of 9 threads) 159.776 us

T Filter... | B4.24% (2,485 samples) of data is shown due to applied filters.

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 113

CUDA Trace

traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some UVM transfers are highlighted with red to indicate potential performance issues:

0s = 4ms +254,2ms +254.6ms -

~ CUDA (GeForce GT 710) I
* 74.6%: Unified memory

* 100,0% Memory |

III

I
52.0% HtoD transfer
43,09 DtoH transfer [:] Begins: 0.254344<
. Ends: 0.254526s (+181.901 ps)
25.4% Context 1 HtoD transfer 2,007,152 bytes
b [All Streams] B I@ - Source memory kind: Managed _
b 54.8% Stream 15 Destination memory kind: Managed
e Migration cause: Coherence
b 19.4% Stream 18 Throughput: 11.5291 GiB/s
b 10.79% Sream 17 Stream: Stream 0 <

L] 2

Transfers with the following migration causes are highlighted:

» Coherence
UVM migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

» Eviction
UVM migrated to the CPU because it was evicted to make room for another block
of memory on the GPU. This happens due to memory overcommitment which is
available on Linux with Compute Capability > 6.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 114

14.3. CUDA Default Function

CUDA Runtime API

cudaBindSurfaceToArray
cudaBindTexture

cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy

cudaEventQuery

cudaEventRecord
cudaEventRecord ptsz
cudaEventSynchronize

cudaFree

cudaFreeArray

cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3Dl11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc

cudaHostRegister
cudaHostUnregister

cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice

List for CLI

CUDA Trace

CUDA Primary API

cub64Array3DCreate
cub4ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject

cu64GLMapBufferObjectAsync

cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemtHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetDl6Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
culArray3DCreate v2
cuArrayCreate
cuArrayCreate v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate v2
cuCtxDestroy
cuCtxDestroy v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3Dl1CtxCreate
cuD3D11CtxCreateOnDevice
cuD3Dl1CtxCreate v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer v2
cuD3D9RegisterResource

cuD3D9RegisterVertexBuffer

cuD3D9%UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource

cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
c11FGT.CtreamConsiimerReleacseFrame

CUDA Trace

14.4. cuDNN Function List for X86 CLI

cuDNN API functions

cudnnActivationBackward
cudnnActivationBackward v3
cudnnActivationBackward v4
cudnnActivationForward
cudnnActivationForward v3
cudnnActivationForward v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward

cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute

cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward

cudnnOpTensor

cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm

cudnnScaleTensor

cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward

CUDA Trace

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 118

Chapter 15.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

_ 6.0 ’
| E Timeline view - Sl A waming 15 messages
os +401ms S4010Sms__sa01dms _+401.15ms FIESEEES 401o5ms ___401.3ms +40135ms +4014ms +401d5ms |~

» CPU(12)

~ Threads (7)

Eepeewwenn.]

05 runtime libraries

-
.
g sy 0

CUDA API 0

Profiler overhead

custreamsynchronize

Call to cuMemcpyHtoDAsync]
B Memory copies

6 threads hidden... B ol Begins: 04012095
~ CUDA (Quadro P60D) E’::r::;’l‘ﬂ %‘ GBI
~ 100.0% Kemels Correlation ID: 713
~ 100.0% matrisMulGPU_55_gpu
100.0% matrihuIGPU. 55 g T eSS ooy

< v

If the OpenACC API results in GPU work, that will also be highlighted:

= Timeline View - Pl A\ 1 waming, 15 messoges
0 +d11.2ms +411.4ms +d11.6ms +d113ms +d17me +d172ms +d17.4ms <a1p6ms [+
b CPU(12)
L
~ Threads (7)

- s - N

05 runtime libraries

OpenACC

CUDA API

Profiler overhead

6 threads hidden... —e
~ CUDA (Quadro PE00) -
- 1000% Kernes 2 O e
- 1000% matrauGPU_35 90 B . ewMGRSe
——— e —— T
1 »
www.nvidia.com

Nsight Systems User Guide v2021.1.1 | 119

OpenACC Trace

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

Enter Data : openacc_app.cpp:29

Timings: [0.355s 0.374s) = 1B.626 ms I
Construct Kind: Data Construct
Async: -1

Async Map: 16

Source File: openacc_app.cpp

Func Name: openaccKernel(int, float, float*, float*)
Variable Name: =Unknown=

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

* ¢ Collect CUDA trace

V| Flush data periodically 10.00 |+ | seconds
v Ski‘p some API calls

Collect GPU memory ﬁsage

Collect cuDNN trace |Track the GPU memory usage.

Enabling this option may increase the overhead.

Collect cuBLAS trace

Collect OpenACC trace

» Collect CUDA backtraces

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 120

Chapter 16.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

1. Visualize how long eglSwapBuffers (or similar) is taking.

2. API trace can easily show correlations between thread state and graphics driver's
behavior, uncovering where the CPU may be waiting on the GPU.

3. Spot bubbles of opportunity on the GPU, where more GPU workload could be
created.

4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

» CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

» GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter () function is used to measure how much
time batches of GPU workload take to complete.

=)' [collect Open6L trace
1= [CollectkHR_debug trace

[+ Enable GPU trace

[] Limit trace depth to level

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 121

@ Choose functions X

Check all Uncheck all Reset to default

Search criteria:

| Search...

Functions

[iBuffer

Clear

] Coler

Draw

[m] EGL

] Enable/Disable
] Framebuffer Objects
m] GLX

] Get

1 Program

] Tesxture

[UniformMatrix
] Unsorted

[Vertex

1 glUniform

1 giWindowPos

Cancel

OpenGL Trace

Ranges defined by the KHR _debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 122

16.1. OpenGL Trace Using Command Line

OpenGL Trace

For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,

the functions that are traced are set to the following list:

glWaitSync

glReadPixels

glReadnPixelsKHR

glReadnPixelsEXT

glReadnPixelsARB

glReadnPixels

glFlush

glFinishFenceNV

glFinish

glClientWaitSync
glClearTexSubImage
glClearTexImage

glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex

glClearDepthx

glClearDepthf

glClearDepthdNV

glClearDepth

glClearColorx

glClearColorIuiEXT
glClearColorIiEXT

glClearColor

glClearBufferuiv
glClearBufferSubData
glClearBufferiv

glClearBufferfv

glClearBufferfi

glClearBufferData

glClearAccum

glClear

glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBuf ferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
alDrawTransformFeedbackNV

OpenGL Trace

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 124

Chapter 17.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event

type.

Custom ETW is available on Windows target machines.

€ Add provider >
Please enter the provider information:
MName: |MicrusoFt—Windows—Dwm—Core |
Guid: \9E9BBA3C-2E38-40CB-09F4-OE8281425164 |
Optional:
Buffer Size (KB): | |
Min Buffers: | |
Max Buffers: | |
Keyword: |0x80010000007FO03F |
Level: | TRACE_LEVEL_INFORMATION ~ |
Flags: | Select flags |
| ok || Concel |
* v Custom ETW Trace
N::::\’idus i“duaid me ::TI; Flags Buffer Size (KB) Min Buffers Max Buffers
Microsoft-Windows-Dwm-Core 9E9BBA3C-2E38... OxD 0 0 0 TRAC‘ — |
| oadd |
| Remove |
q] | I X

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 125

* Micresoft-Windows-Dwm-Core

BIND_GDISPRITEBITMAP_FIRST TOKEN
CHANNELBATCHES_PROCESSED
COMMAND_PROCESSED_OMNBEHALF
ENDFRAME DRAWLIST BATCH_STATS
ENDFRAME_HW_DRAWLIST_CACHE_STATS
ENDFRAME_PRIMITIVE_GROUP_STATS
ENDFRAME_TESSELLATED PRIMITIVES_STATS
ENDFRAME_WARP_DRAWLIST_CACHE_STATS
ETWGUID_BITMAPCOPYEVENT

ETWGUID_COPYFRONTIOBACKBUFFERDELTAEVENT

ETWGUID_DIRTYREGIOMEVENT
ETWGUID_DWMUPDATEWINDOW
ETWGUID_OCCLUSIOMEVENT
GDISPRITE_LOGICALSURFACE_ASSOCIATION
MILEVENT_MEDIA_UCE_CHECKDEVICESTATE
MILEVEMNT_MEDIA_UCE_PRECOMPUTEEVENT
MILEVEMNT_MEDIA_UCE_PRESENTEVENT
MILEVENT_MEDIA_UCE_REMDEREVENT
PROCESS_ATTRIBUTION
PROCESS_EXPRESSIONS
RENDERTARGET_COUMNTS

RENDER_CVIPASS
SCHEDULED_COMPOSITION_REASON
SCHEDULE_CLEAR_D2D_CACHES
SCHEDULE_DXGI_PRESENT_SUCCEEDED
SCHEDULE_FRAMEINFO
SCHEDULE_FRAME_WSYNCDEADLINES

0s

Custom ETW Trace

+800ms +200ms +400ms

P —

L e
ETWGUID_DIRTYREGIONEVENT | | |
| | Tirme: 0.991554s | | I
Event ID: 42
Id: 0x0
I I Z:0
left : 1179.000000
| | top: 1040.000000
right : 1227.000000
bottom : 1080.000000
I'TT1

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .qdrep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 126

Chapter 18.
DEBUG VERSIONS OF ELF FILES

Often, after a binary is built, especially if it is built with debug information (-g compiler
flag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/1ib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in Buildib is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

Module summary
Module name Address CPU time

OxEEffffc000080000—

[kernel.kallsyms] 53.46%
OxfEFEEFC001471010

JNlib/aarch64-linux-gnu/libe-2.23.s0
Jusr/ibidebugib/aarchd-inwc-gnullibc-2.23.50

0x7f7ebad000-0x7£7ecdal00 26.04%

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 127

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

Chapter 19.
READING YOUR REPORT IN GUI

19.1. Generating a New Report

Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .qdrep file will be created and put into the same directory as the project file
(.qdproj).

19.2. Opening an Existing Report

An existing . qdrep file can be opened using File > Open....

19.3. Sharing a Report File

Report files (. gdrep) are self-contained and can be shared with other users of Nsight
Systems. The only requirement is that the same or newer version of Nsight Systems is
always used to open report files.

Project files (. gdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

19.4. Report Tab

While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

» View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 128

Reading Your Report in GUI

E Timeline View =

21 Analysis Summary

= Timeline View

. Diagnostics Summary
| Symbol Resolution Logs

» Timeline — This is where all charts are displayed.
» Function table — Located below the timeline, it displays statistical information
about functions in the target application in multiple ways.

Additionally, the following controls are available:

» Zoom slider — Allows you to vertically zoom the charts on the timeline.

19.5. Analysis Summary View

This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

19.6. Timeline View

The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

Bottom-Up View :

19.6.1. Timeline

Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To display trace events in the Events View right-click a timeline row and select the
“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 129

Reading Your Report in GUI

If a timeline row has been selected for display in the Events View then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding Events View item visible and select it.

19.6.2. Events View

The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

» NVTX

» Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
» PIX events and markers

» OpenGL KHR_debug markers

MName ~ Duration TD GPU Context Start * Call to: ID3D12CommandQueue:ExecuteCommandLists
£ ID3012GraphicsCommandList:Reset 13300ps | 2002 | - - 000166615 Elegifjj [fg[');gé';zs

[= || SceneRender 352100ps | 2092 | - - 0.0017093s Ends: 0,002150s (+ 69,800 ps)
/] b [RenderlightShadows 1.900 s 002 - - 0.0017207s Correlation IDs: [30307, 30307)
[IEE b ZPrePass 20.300ps | 2092 | - - 0.0017286s

W42 v] Generate 5540 121700 ps | 2092 | - - 0.0018153s

[+ [l Render Shadow Map 30100ps | 2092 | - - 0.00134455

[ES] + I Raytrace 63.600ps | 2092 | - - 0.0019503s

e Marker End - 2092 | - - 0.0020614s

63 ID3012GraphicsCommandList:Close 12400 ps 2092 | - - 0.0020753s
_ ID3D12CommandQueue:ExecuteCommandLists --

&7 ntdlll.dlIiDx FF9a4TFIbA - 002 | - - D.00216594s

68 ID3012GraphicsCommandList:Reset 10.300 ps 2092 | - - 0.0021988s

[v] PostEffects 61.300ps | 2082 | - - 0.00222585

75 ID3012GraphicsComrmandList:Close 7100 ps 2092 | - - 0.0022964s

76 ID3012CommandQueue:ExecuteCommandLists 33.300 ps 2082 | - - 0.0023048s

77 ntdll.dlll0x FF9adTF3b4 - 2092 | - - 0.00234655 |~

19.6.3. Function Table Modes

Top-Down View -

Bottom-Up View
Flat View

The function table can work in three modes:

» Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 130

Reading Your Report in GUI

» Bottom-Up View — This is a reverse of the Top-Down view. On the top level,
there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

» Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

Each of the views helps understand particular performance issues of the application
being profiled. For example:

» When trying to find specific bottleneck functions that can be optimized, the Bottom-
Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

» To navigate the call tree of the application and while generally searching for
algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

» To quickly assess which parts of the application, or high level parts of an algorithm,
consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

» Top-Down view

» Self column denotes the relative amount of time spent executing instructions of
this particular function.

» Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

» Bottom-Up view

» Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

» Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

» Flat view

» Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

If

low-
impact
Note: functions
have
been
filtered

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 131

Reading Your Report in GUI

out,
values
may

not

add

up
correctly
to

100%,
or

to

the
value

of

the
parent
row.
This
filtering
can

be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in

the symbols table:

» Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are

represented in the symbols table.

» Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

www.nvidia.com
Nsight Systems User Guide

Note:

f
[00

ittle
ampling
lata

s

being
ised

[0

build

Lhe
ymbols
fable

for
bxample,
when
Lhe
ampling
rate

s
configured

v2021.1.1 | 132

[0

Reading Your Report in GUI

be
oW,
hnd
h
hort
beriod
Df
[ime
s
Ised
For
[ime-
based
Filtering),
the
humbers
n
the
ymbols
fable
might
hot
be
representative
br
hccurate
n
ome
Cases.

19.6.4. Filter Dialog

J Filter ot
&

Collapse unresolved lines
Show stack trace in tooltip
Hide functions with CPU usage below

Mumber of digits after the decdmal point 2 =

0.30% -

» Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed

in the Top-Down view, since they provide very little useful information.

» Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

www.nvidia.com
Nsight Systems User Guide

v2021.1.1 | 133

Reading Your Report in GUI

19.7. Diagnostics Summary View

This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

» Informational messages
» Warnings
» Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

,ﬂ, 11 warnings, 8 messages

Information from this view can be selected and copied using the mouse cursor.

19.8. Symbol Resolution Logs View

This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the
timeline view are unresolved.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 134

Chapter 20.
BROKEN BACKTRACES ON TEGRA

In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMvV7 binaries:

» DWAREF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_ hdr. This information is the most precise. . zdebug_£rame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.

» Exception handling information in EHABI format provided in .ARM. exidx and
.ARM.extab ELF sections. . ARM. extab might be absent if all information is
compact enough to be encoded into . ARM. exidx.

Compiler flag: -funwind-tables.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-frame-pointer.
For Aarch64 binaries:

» DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame hdr. See additional comments above.

Compiler flag: -g.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-£frame-pointer.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 135

Broken Backtraces on Tegra

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):

$ gcc -Q —--help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every . cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 136

Chapter 21.
LAUNCH PROCESSES IN STOPPED STATE

In many cases, it is important to profile an application from the very beginning of its

execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec () system call on
Linux, and by using the JDWP protocol on Android.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep () somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices, not
Windows or Android.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

21.1. LD_PRELOAD

The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

» For ARMv7 binaries, preload
/opt/nvidia/nsight systems/libLauncher32.so
» Otherwise if running from host, preload
/opt/nvidia/nsight systems/libLauncheré64.so
» Otherwise if running from CLI, preload

[installation directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:

$ LD PRELOAD=/opt/nvidia/nsight systems/libLauncher64.so ./my-aarch64-binary --
arguments

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 137

Launch Processes in Stopped State

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+z in the terminal. The process is now a background job, and you can use standard
commands like jobs, £g and bg to control them. Use jobs -1 to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

21.2. Launcher

The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:

$ /opt/nvidia/nsight systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:

$ pkill -USR1 launcher

Note

hat
bkill
ill

end

he

ignal

(0]

hny
brocess
ith

he
matching
hame.

f
hat
S
hot
Hesirable,
Ise

kill

(0]

end

t
(0]
i}
pecific
brocess.
[he
tandard
butput

hnd

Prror
treams
hre
edirected

Note:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 138

Launch Processes in Stopped State

(o]

Fmp/
stdout_<PID>. t:

hnd

Fmp/
stderr <PID>. t:

The launcher mechanism is more complex and less automated than the LD_PRELOAD

option, but gives more control to the user.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 139

Chapter 22.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.qdrep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

» Manual — timestamps are set using absolute values.
» Relative — timestamps are set using relative values with regards to report file
which is being merged with nvtxt file.

» ClockMonotonicRaw — timestamps values in nvtxt file are considered to be
gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime (CLOCK_MONOTONIC RAW, ...) call

» CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:
Print help message:

-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:

-—-cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode name
mode args] [--target <Hw:Vm>] [--update report time]

Merge nvtxt file to existing report file:

--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args] [--target <Hw:Vm>] [--update report time]

Modes description:
» lerp - Insert with linear interpolation
--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]

» lin - insert with linear equation

--mode lin --ns _a arg --freq arg [--nvtxt a arg]

Modes' parameters:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 140

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

ns_a - a nanoseconds value

ns_b - a nanoseconds value (greater than ns_a)

nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds

freq - the nvtxt file's timer frequency

--target <Hw:Vm> - specify target id, e.g. --target 0:1

--update_report_time - prolong report's profiling session time while merging if
needed. Without this option all events outside the profiling session time window
will be skipped during merging.

vV Vv v v v Y

Commands

Info

To find out report's start and end time use info command.
Usage:

ImportNvtxt --cmd info -i [--input] arg

Example:

ImportNvtxt info Report.gdrep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create
You can create a report file using existing NVTXT with create command.

Usage:

ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args]

Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — ananoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — annvtxt file's time unit value corresponding to ns_b nanoseconds.

vV vV v Vv

If nvtxt_a and nvtxt_b are not specified, they are repectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]

with:

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 141

Import NVTXT

» ns_a — ananoseconds value.
» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:

ImportNvtxt --cmd create -n Sample.nvtxt -o Report.gdrep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:

ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m

[--mode] mode name mode args]
Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns _a arg --ns_b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — a nanoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

vV v v VY

If nvtxt_a and nvtxt_b are not specified, they are repectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]
with:

> ns_a — ananoseconds value.

» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example
ImportNvtxt --cmd merge -1 Report.gdrep -n Sample.nvtxt -o NewReport.gdrep

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 142

Chapter 23.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

n File Edit View Project Build Debug Test Analyze Tools | Extensions | Window Help Search (Ctrl+Q) el MyApp

. e cr}
fe-olg e Ml -0 -] oy - e L o e vl e
Msight Nsight Systems 2020.1.1 4

Windows »
Start Graphics Debugging

Start CUDA Debugging (Mext-Gen)

Start CUDA Debugging (Legacy)

Start Performance Analysis...

B E&38

Enable CUDA Memory Checker
Clear Baselines

Capture for Live Analysis
Capture Mext Frame
Resume from Capture
Export as C++ Capture
Profile Current Event
Profile Frame

Dynamic Shader Editing 1>

Options...
Help »

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

» Target application path
» Command line parameters
» Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 143

Visual Studio Integration

For more information about using Nsight Systems from within Visual Studio, please
visit

» NVIDIA Nsight Integration Overview

» NVIDIA Nsight Integration User Guide

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 144

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

Chapter 24.
TROUBLESHOOTING

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

» Close the host application.
» Restart the target device.
» Start the host application and connect to the target device.

To enable logging on the host, refer to this config file:

host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in
the Help # About dialog. If possible, attach log files and report (. qdrep) files, as they
already contain necessary version information.

Nsight Systems uses a settings file (NWWIDIA Nsight Systems.ini)on the host to
store information about loaded projects, report files, window layout configuration,

etc. Location of the settings file is described in the Help # About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

GUI Troubleshooting

If opening the Nsight Systems Linux GUI fails with the following error, you may be
missing some required libraries:

This application failed to start because it could not find or load the Ot
platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
the application may fix this problem.

Launch Nsight Systems using the following command line to determine which libraries

are missing and install them.

$ QT DEBUG PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is
empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 145

Troubleshooting

Project 1 report10.qdrep (£

||/ Fles q Jmpjnvidia/system_profiler fstreams/pid_22138_stderr.log I

— |
e Trecton Dreg pe T Cvent, T e ———— EPREITTE™T] failed. Error=Operation not supported
E‘TSPInjection: Branch stack sampling is not supported on this device.

Android Targets

When connecting to an Android-based device, Nsight Systems installs its executable and
library files into the following directory:
/data/local/tmp/com.nvidia.nsightsystems.tools/

Logs on the target device are collected into this file:
/data/local/tmp/com.nvidia.nsightsystems.tools/nsys.log

To enable verbose logging on the target device, follow these steps:

1. Close the host application.

2. Place nvlog.config from host directory to /sdcard/ directory on target.
3. Restart the target device.

4. From ADB shell, launch the following command:

/data/local/tmp/com.nvidia.nsightsystems.tools/nsys --daemon --debug

On rooted Android devices, the command above should be started from superuser
(e.g., adb shell su -c ...).

5. Start the host application and connect to the target device.

Please note that in some cases, debug logging can significantly slow down the profiler

Symbol Resolution

If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. This can be done by right-clicking
the report file in the Project Explorer window and selecting "Resolve Symbols...".

Alternatively, you can find the utility as a separate executable in the
[installation_path]\Host directory. This utility works with ELF format files, with
Windows PDB directories and symbol servers, or with files where each line is in the
format <start><length><name>.

Short Long Argument Description
-h --help Help message
providing

information about
available options.

-1 --process-list Print global process
IDs list
-S --sym-file filename Path to symbol file

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 146

Troubleshooting

Short

Long

Argument

Description

--base-addr

address

If set then <start>
in symbol file is
treated as relative
address starting
from this base
address

--global-pid

pid

Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

--force

This option forces
use of a given
symbol file.

-1

--report

filename

Path to the report
with unresolved
symbols.

--output

filename

Path and name of
the output file. If
it is omitted then
"resolved" suffix

is added to the
original filename.

--directories

directory paths

List of symbol folder
paths, separated

by semi-colon
characters. Available
only on Windows.

--Servers

server URLs

List of symbol
servers that uses

the same format as
_NT_SYMBOL_PATH
environment
variable, i.e.
srv*<LocalStore>}
Available only on
Windows.

www.nvidia.com
Nsight Systems User Guide

--ignore-nt-sym-
path

Ignore the

symbol locations
stored in the
_NT_SYMBOL_PATH

environment

v2021.1.1 | 147

<SymbolServ

Troubleshooting

Short Long Argument Description

variable. Available
only on Windows.

Verbose Logging on Linux Targets

Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:

/opt/nvidia/nsight systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.

2. Restart the target device.

3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems
directory on target.

4. From SSH console, launch the following command:
sudo /opt/nvidia/nsight systems/nsys --daemon --debug

5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose Logging on Windows Targets

Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2020.3

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.
2. Terminate the nsys process.

3. Place nvlog.config from host directory next to Nsight Systems Windows agent on
the target device

» Local Windows target:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2020.3\target-
windows-x64

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 148

Troubleshooting

» Remote Windows target:
C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight systems
4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

QNX Troubleshooting

Common issues with QNX targets:

» Make sure that tracelogger utility is available and can be run on the target.

» Make sure that /tmp directory is accessible and supports sub-directories.

» When switching between Nsight Systems versions, processes related to the previous
version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 149

Chapter 25.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Feature Videos

Short videos, only a minute or two, to introduce new features.

OpenMP Trace Feature Spotlight
Command Line Sessions Video Spotlight
Direct3D11 Feature Spotlight

Vulkan Trace

Statistics Driven Profiling

vV V. v v VY

Blog Posts

NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof

2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof

2019 - NVIDIA Nsight Systems Add Vulkan Support

2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public

2020 - NVIDIA Nsight Systems in Containers and the Cloud

2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems

vV V. v v v VY

Training Seminars
2018 NCSA Blue Waters Webinar - Introduction to NVIDIA Nsight Systems

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 150

https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M
https://www.youtube.com/watch?v=fyhPFTF75tk
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/nvidia-nsight-systems-containers-cloud/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://www.youtube.com/watch?v=WA8C48FJi3c

Other Resources

Conference Presentations

>

GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD
Molecular Dynamics Program for Modern GPUs using Nsight Systems

GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across
Multiple Nodes

GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics
Simulation Program

GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs

GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA
Nsight Systems

GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools
Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU
Performance

For More Support

To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI, go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

www.nvidia.com
Nsight Systems User Guide v2021.1.1 | 151

https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

Feedback for NVIDIA Nsight Systems
Feature Suggestion
Comments:

Please enter your feedback here.

» ¥ Include System Info
» || Include Screenshots

» Attach Additional Files:
Contact Information:

Name: Email:

> NVIDIA Nsight Systems

Xcorce

www.nvidia.com
Nsight Systems User Guide

Other Resources

v2021.1.1 | 152

	Table of Contents
	Profiling from the CLI
	1.1. Installing the CLI on Your Target
	1.2. Command Line Options
	1.2.1. CLI Global Options

	1.3. CLI Command Switches
	1.3.1. CLI Profile Command Switch Options
	1.3.2. CLI Start Command Switch Options
	1.3.3. CLI Stop Command Switch Options
	1.3.4. CLI Cancel Command Switch Options
	1.3.5. CLI Launch Command Switch Options
	1.3.6. CLI Shutdown Command Switch Options
	1.3.7. CLI Export Command Switch Options
	1.3.8. CLI Stats Switch Options
	1.3.9. CLI Status Command Switch Options
	1.3.10. CLI Sessions Command Switch Subcommands

	1.4. Example Single Command Lines
	1.5. Example Interactive CLI Command Sequences
	1.6. Example Stats Command Sequences
	1.7. Example Output from --stats Option
	1.8. Importing and Viewing Command Line Results Files
	1.9. Using the CLI to Analyze MPI Codes
	1.9.1. Tracing MPI API calls
	1.9.2. Using the CLI to Profile Applications Launched with mpirun

	Profiling from the GUI
	2.1. Profiling Linux Targets from the GUI
	2.1.1. Connecting to the Target Device
	2.1.2. System-Wide Profiling Options
	2.1.2.1. Linux x86_64
	2.1.2.2. Linux for Tegra

	2.1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	2.1.4. Hotkey Trace Start/Stop
	2.1.5. Launching and Attaching to Processes

	2.2. Profiling Windows Targets from the GUI
	Remoting to a Windows Based Machine
	Hotkey Trace Start/Stop
	Target Sampling Options on Windows
	Symbol Locations

	2.3. Profiling Android Targets from the GUI
	Configuring Your Android Device
	Application

	2.4. Profiling QNX Targets from the GUI

	Report Scripts
	Report Scripts Shipped With Nsight Systems
	apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)
	cudaapisum -- CUDA API Summary
	cudaapitrace -- CUDA API Trace
	gpukernsum[:base] -- CUDA GPU Kernel Summary
	gpumemsizesum -- GPU Memory Operations Summary (by Size)
	gpumemtimesum -- GPU Memory Operations Summary (by Time)
	gpusum[:base] -- GPU Summary (kernels + memory operations)
	gputrace -- CUDA GPU Trace
	nvtxppsum -- NVTX Push/Pop Range Summary
	openmpevtsum -- OpenMP Event Summary
	osrtsum -- OS Runtime Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Profiling in a Docker on Linux Devices
	Direct3D Trace
	6.1. D3D11 API trace
	6.2. D3D12 API Trace

	WDDM Queues
	Vulkan API Trace
	8.1. Vulkan Overview
	8.2. Pipeline Creation Feedback
	8.3. Vulkan GPU Trace Notes

	Stutter Analysis
	9.1. FPS Overview
	9.2. Frame Health
	9.3. GPU Memory Utilization
	9.4. Vertical Synchronization

	MPI API Trace
	OpenMP Trace
	OS Runtime Libraries Trace
	12.1. Locking a Resource
	12.2. Limitations
	12.3. OS Runtime Libraries Trace Filters
	12.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	14.1. CUDA GPU Memory Allocation Graph
	14.2. Unified Memory Transfer Trace
	14.3. CUDA Default Function List for CLI
	14.4. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	16.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	Debug Versions of ELF Files
	Reading Your Report in GUI
	19.1. Generating a New Report
	19.2. Opening an Existing Report
	19.3. Sharing a Report File
	19.4. Report Tab
	19.5. Analysis Summary View
	19.6. Timeline View
	19.6.1. Timeline
	19.6.2. Events View
	19.6.3. Function Table Modes
	19.6.4. Filter Dialog

	19.7. Diagnostics Summary View
	19.8. Symbol Resolution Logs View

	Broken Backtraces on Tegra
	Launch Processes in Stopped State
	21.1. LD_PRELOAD
	21.2. Launcher

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	GUI Troubleshooting
	Android Targets
	Symbol Resolution
	Verbose Logging on Linux Targets
	Verbose Logging on Windows Targets
	QNX Troubleshooting

	Other Resources
	Feature Videos
	Blog Posts
	Training Seminars
	Conference Presentations
	For More Support

