IIIIIII

Chapter 1. Profiling from the CLI.....cciiiiiiiiiiiiiiiiiiiiinititeeieneeeeteesennncetecessnnssscccsonnas 1

1.1. Installing the CLI on YOUr Target.....coeeitiiiiitiiiiiiiiiiiiii i iee e eaaenns 1
1.2, ComMaANd LiNe OPtioNS. . .uuuetteieeiieeetteerineeeeresrnneeeesessnnnneeesessnnnsessessnnnnessessnnnns 1
1.2.1. CLI GLODaAl OPtiONS. c e uetiittteitteeettertetereeeeneereaaeeraneerenneesennessennesesnnssennens 2
1.3. CLI Command SWItCRES. ...t e ettt et e e e e e eneeeeaees 2
1.3.1. CLI Analyze Command SwitCh Options......cciiiiiiiiiiiiiii it eeiieeeeas 4
1.3.2. CLI Cancel Command SWitCh Options......coviiiiiiiiiiiiiiiiiieiiiiiereeeineeeereeannanes 10
1.3.3. CLI Export Command SWitCh Options......cciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiiieeeeaaanans 12
1.3.4. CLI Launch Command Switch Options......cceiiiiiiiiiiiiiiiiiiiii e eei e e aees 15
1.3.5. CLI Profile Command SWitCh Options......cciiiiiieiiiiiiiiiiiiiiiiiiiieeiiiieeeeannnnanas 38
1.3.6. CLI Sessions Command Switch Subcommands..........ccevieiiiiiiiiiiiiiiiiiiniiinenennnnns, 78
1.3.6.1. CLI Sessions List Command Switch Options......cccvveiiiiiiiiiiiiiiiiiiiiiiiieeinnnes 79
1.3.7. CLI Shutdown Command Switch Options........ceviiiiiiiiiiiiiiiiiiiiiieiieiieeenens 79
1.3.8. CLI Start Command SWiItCh OptioNS.......eeiiiiiiieeiiiiiiiiiiiieiiieeeeeeirineeeeeaannnnes 80
1.3.9. CLI Stats Command SWitch Options.......cccoviiiiiiiiiiiiiiiiiiiii e 99
1.3.10. CLI Status Command SWitCh OptioNnS.....cceiuueiiiiiiiiiiieiiiiiieeeiieeeeraeannnees 108
1.3.11. CLI Stop Command SWitch OptionS.....ccciueiiiiiiiiiiii ittt eeeiiaaeeas 109
1.4. Example Single Command LineS....oeeuueiiiiiiiittrreiiieeereeanneeeereesnnneessesnnnneesees 110
1.5. Example Interactive CLI Command SEQUENCES.uuiiiiiiiiitetiiiiiieeeeeeiieeeeeenannnns 114
1.6. Example Stats Command SEQUENCES.uiiiietiiiitiiiieieiteeeieeeeaeerenneeeaneeeennseranns 119
1.7. Example Output from --stats OptioN....ccviiiiiiiiiiiiiiiii ittt ieiiiie e eeeieeeeeaanas 120
1.8. Importing and Viewing Command Line Results FileS.......ccoviiiiiiiiiiiiiiiiiiiiiiiienannnn. 123
1.9. Using the CLI to Analyze MPI Codes.....cuiiiiiiiitiiiiiiiiiettieeiiieeeeeeeiineeeeeeennnneeeens 125
1.9.1. Tracing MPI API CallS...ueiineiiiiiiiiiiiii i e i et e et eenaeeeanaeeanneeeanneennn 125
1.9.2. Using the CLI to Profile Applications Launched with mpirun............ccceevviiinn..n. 125
Chapter 2. Profiling from the GUIL.cciiieiiiiiiiieeeieiinneeeeeecesnnneeeceessssssccccsssssccccennes 128
2.1. Profiling Linux Targets from the GUI.......cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiieeennneeeens 128
2.1.1. Connecting to the Target DeVICE.....uuiiiiiiiiii it it et i eeenaas 128
2.1.2. System-Wide Profiling OptioNnS. ...cceuueeiiiiiiiitieiiiiiteeieeeineeeeeeennnnneeesesnnnnnes 130
2 O A R B 1310 ¢ 1 T PN 130
2 B3 B B 11 10D G o g [T - T PP 132
2.1.3. Target Sampling Options. . .uciiiiiii ittt ittt ee it e eeeeiaeeeeeeannneaaeeas 132
Target Sampling Options for Workstation.........cccvvviiiiiiiiiiiiiiiiiiiiiiii i eieeaaeen 133
Target Sampling Options for Embedded LinUX......coviuiiiiiiiiiiiiiiiiiiiiiieiieiiiieeeeeanns 134
2.1.4. HOtkey Trace STart/ StOP. . cceueiieittieiitieiteeiteeeieeeeeieeeeineeeanaeeaaneeeenneeesnnens 134
2.1.5. LaUNCRING PrOCESSES. vt ttiiiiietetteeeiieteeeeeeineeeeeessnnseeeessnnneeseessnsnseseesannnnes 135
Specify additional environment variables.........ccooiiiiiiiiiiiiiiiiiii i 135
2.3. Profiling QNX Targets from the GUI.....ccuiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeinneeeeresnnnnnes 136
2.2, USEI GUIE. .t iinteietieeitt ettt eeeateeeeeeeaneeeenneeeanneeesnsesennnessnsesesnsessnnssesnneenns 136
Chapter 3. Container SUpport 0N LiNUX SerVers.....cccceiiiiiiieeetieieienneereeenennncsscccsnnnanses 137
www.nvidia.com

User Guide v2023.3.1 | ii

(€10 I N (Ol oo 1] =11 1 <] S 138

GUI WEDRTC CONtAINET ..\t tiitttiitt ettt eeiteteitteeeieeeeaeeeenneeeaeeeeaneeeenneeesnneessneeeennens 140
Chapter 4. Migrating from NVIDIA NVPIroOf.....ccceeiiiiiiieeetieeeienneeeeeerennncerecessnnsseccesannnses 144
Using the Nsight Systems CLI nvprof Command........cooeiiiiiiiiiiiiiiiiiiiiieeeiieeeieeeeneeenns 144
CLI nvprof Command SWitCh OptioNnS.......eeeiiiiiiiettiiiiiiiietieriiieeeeeeiieeeeeessinnseseeeanns 144
L 1= 01 N 147
Chapter 5. DireCt3D TraC.ciciieieeeeieeerennerteeenenneceeecsonnnsssesessnnsssecssnnsssscssssnnsssccsnnns 148
T P DK | X BN o I - U O PRSP 148
5.2, D3DT2 APl TraCE. .t euutenteenteanereneeeneraneranesanesseennesnnesnsssnsssnssenssenssonsssnssonssns 148
Chapter 6. WDDM QUEUES.cetiiiirnneteeeeeeneneeeeceessnsseecessssasssecsessnsssesesssnsssscessnnnnes 153
Chapter 7. WDDM HW Scheduler........ciiiieiiiiiiiiiiiiiiaiiieeteraeteesaecesnccesnnsennnscennneens 155
Chapter 8. VUIKAN APl TraCe.....cueeiiiiirneeeeeeeeeraneeeecessnneseecceessnsssecesssnssssccsessnssscccnns 156
8.1, VULKAN OVIVIBW. . uuttiiiiiiiittttieeiitteteeearaeeesseeananeeessessnnesessessnnnnesssessnnneessenns 156
8.2. Pipeline Creation FEedbDaCK.cuiiiiiiiiiiiiiiiiiii it it e e it e eenaaaeeaas 158
8.3. VULKAN GPU Trace NOTES. . .iuutiiiittiiiit ittt eei e i eeieeeeieeeaeeeeanaeeeanaeenanees 158
Chapter 9. StUtter ANAlYSiS...cceiiiiiiiieiieiiiennereeeersnneeteeesnnesececsosnnssscccssnnnssccasnnns 159
B I o R 0= Y 1 159
9.2, Frame Health.....couuiiiiiiii ittt ettt e et e e e e eeeerenneenannerannes 163
9.3. GPU Memory UtIlIZation.coveiieiiiiiiii ittt et e eeeeaeaaas 163
9.4. Vertical SyNChroNiZation. ...c...ueiiiiiiiiiiiiiiiiii i eeiieeeeeeeineeeeeeannneneeesennnneseenns 163
Chapter 10. OPENMP TraCe...ciiiiieetiereernereeeeeesnaneceeeesnnsssceesessssssescssssssssccessssnnsescns 164
Chapter 11. OS Runtime Libraries Trace......cciieeeiiieiiinneeeeeierennereceescnncsscccsonnssssccsnnns 166
11.1. LOCKING @ RESOUICE. . uiiiiiiiiiit ittt ettt et ettt eeeeiaaeeeeeeninaaseeeeennnsaeenn 167
I T A I 13131 - Y T 1 PP 167
11.3. OS Runtime Libraries TraCce Filters......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eeaeeiraeeeanns 168
11.4. OS Runtime Default FUNCEiON List.....coiuiiiiiiiiiiiiiiiiiiiii e e e eei e eiaeeaas 169
Chapter 12, NVTX TraCE...uueetieeierneeteeeeeenneeeceeessnnsesecessnnsssecesssnssscecssssnsssecesssnnsseens 172
Chapter 13. CUDA TraCe...ciiiiueiiiietieneteeaneteaaneeennnseeanesesnnseesnssessnssesnnssssnnsssnnssannnes 176
13.1. CUDA GPU Memory ALLocation Graph......cciieeiiiiiiiiitiiieiiiiieeieeiiieeeeeeennnaeeeeanns 179
13.2. Unified Memory Transfer TraCe. . ceeuuieeietieiitieiieeieeeeieeeeaeeeanaeeeaneeeeaneeesnneens 180
Unified Memory CPU Page Faults......civiiueiiiiiiiiiitiiiiiiieeteeiiineeeeeesnnneseesessnnnneens 181
Unified Memory GPU Page Faulls........coiviuiiiiiiiiiiiiiiiiiiiieii e eeeeeaaee 182
13.3. CUDA Graph Trat. i ceeeiiiiiiiiiiiiiiitteteeenrneeeeeeenrneeeeessssnnsseessennnnesessssnnnnnes 183
13.4. CUDA Python BacKtraCe.ouviuiiiniiiiiiiiiiiiiiii ittt eeaes 184
13.5. CUDA Default Function List for CLl...cceiiireiiiiiiiiiiiriiiiitieeeiieeeeeeennnneeeenanns 186
13.6. CuUDNN Function List for X86 CLI.......uuiiiiiiiiiiiiiiiiiiiiiii ittt teeiiee et eeeenneaaenn 188
Chapter 14. OPENACC TraCE...cicieeteieeeeeeaneeeraeeeesneeesnceesnnsessnssesnnssesnsssssnssesnnssannnann 190
Chapter 15. OPENGL TraCe..ciieueetteeiereeeeteeeesnneeeecesssaaseceessssnsssecssssnsssccesssnnssccasnnnns 192
15.1. OpenGL Trace Using Command LiNE......icvuiiiiiiiiitiiiiiiiieiiieeeeieeeaneeranaeeaanens 194
Chapter 16. CUStOM ETW TraC....ueiiiiiineteeeeiennneereceannneetecesssnassecesssnssssccsasnnsssccannns 196
Chapter 17. GPU MetriCS. ceeueiiiiiiiieeeeiieeeieeeeaneeeesneeessncessnnsessnsssannsssannsasnnsssannnans 198
O OV W . et ettt ettt et ettt ettt e et e et e et e sanateeennesaannesannneeannesannnesannneeanneraannaenns 198
Launching GPU Metric from the CLI......oiuviiiiiiiiiiiiii i eeeeas 201
www.nvidia.com

User Guide v2023.3.1 | iii

Launching GPU Metrics from the GUI....coiiiiiiiiiiiiiiii i it eeiie e eeaaaes 202

SAMPLING frOQUENCY . ettt ittt et ettt ettt teaateeeaeeeaneesanneeeenaesesnseeenneeann 202
F N Y1 =0T L 3 T o o o 203
Exporting and QUErYiNg Data......ccueieeueeiiiutiiiittieitereieteeeeereaneereneeeesneeeenneeesnneeennes 206
IR0 01t L o] = 207
Chapter 18. CPU Profiling Using Linux OS Perf Subsystem.......c.ccccceiiiiiiiiiiiiiiiiiiinennnn 209
Chapter 19. NVIDIA Video Codec SDK TraCe...ccieeeeetieeerennereeeeeenneseececsnnnssscccsnnsssccanes 217
19.1. NV Encoder API Functions Traced by Default........ccovieiiiiiiiiiiiiiiiiiiiiiiniieennneens 218
19.2. NV Decoder API Functions Traced by Default.......cceviieiiiiiiiiiiiiiiiiiiiiiirnennnneeeenns 219
19.3. NV JPEG API Functions Traced by Default.......cccoiiiiiiiiiiiiiiiiiiiiiiiiiiii i ceeeenns 220
Chapter 20. Network Communication Profiling.......ccceeeeiiiieiiiieiiiiiiiieeeereeeeeneecnnnenns 221
0 B B o Y o B 1 Tl PPN 222
20.2. OpeNSHMEM LibDrary TraCl....ueeeeeeuueeeeeeenrnueeeeeensnneeeesessnaeeesseesnnnsesssessnnsesssenns 225
PIO R V(O G o) -1 VA | - Vol PP PP 226
20.4. NVIDIA NVSHMEM and NCCL TraCe...uuteutrentrrntrenernnerinereeeneesneesneesneosnnoenseensenns 227
20.5. NIC Metric SamIPling...ccuueiiiiiiiiiitiiiiiiietteeiiieteeeeeeiiseeeeeeessnsseseessnnnsssseennns 227
20.6. InfiniBand Switch Metric Sampling.....c.eiieeiiiiiiiiiiii e e e ereeneeeaaas 229
Chapter 21. Python Profiling......cccceiireieiiiiiiiiniiieeiirneeieceesneeeeecsesnnssseccssnnnsscccnnnns 230
21.1. Python Backtrace Sampling.......coueeiueiiiiiiiiiiiiiiiiitiieiieeineeeieeenteeneeeneeenees 230
21.2. Python NVTX ANNOtatioNnS. .ccceuueeetiriiieeettreiieeeeereerneeeeressrnsneeesssrnnesessesannnnes 231
Chapter 22. Reading Your Report in GUL.......cceiiiineeiiiiiiineeeeeeiereneeeeeessneneecccesnnnncecces 233
22.1. Generating @ NeW RePOItciiiiiiii ittt ettt teeeiraeeeeeeennaeeeesssnnnneeessanns 233
22.2. Opening an EXisting REPOIt.....coinnniiiiiiiii i e e e eeee e 233
22.3. Sharing @ REPOIt File.....uueiiiiiiiiittiiiiiiittteeiiieeeeeeeannneeeesesnnaseesssennneeessonns 233
A T = o To] o A - o TP PP PP 233
22.5. ANalySis SUMMANY ViEW. .. uuiiiitiiiitiiitt et et eeietteeteeeaneeaeaeeaanaeeannseesnaeennn 234
22.6. TIMEUNE VIBW. e uutiiittiieit it eeeteeeteeeaateeeneeeaneerannneeanneeeannesennnesennesesnnesnns 234
7 T T B 111 1=1 U = N 234
TiMeEliNE NaVigation. ...uuiiiiiiiittt it eeeiieeeeeeirnaeeeeeesnnaneeeesennnseseessnnnaneeens 234
ROW HEIGht . .. etiiii it et et ettt ettt e et e enaeeaenaeeaanaeeanneeeanneens 237
ROW PN A, ettt ittt ittt ettt eeeeieeeeeseernnaeeesesnnnsnesessnnnnnneenns 238
A O A Y - = R R 238
22.6.3. Function Table MOAES.conuiiiiiiiiii i et er e re et e renneeeaneenanas 240
22.6.4. FUNCLION Table NOTES. . .uuiiiiiiiiii i et ettt e e et eeeaaeaaeen 243
P T T o (LT 0) -1 Uo - S 245
22.6.6. Example of Using Timeline with Function Table........cccoiiiiiiiiiiiiiiiiiiiiiiiiiinne 245
22.7. DiagnostiCs SUMMAIY VIEW. . iiiitttiiieiiiteereeeieteeeeeennnneeseeesnnnresssssnnnnesssssnnnns 251
22.8. Symbol ResOlULiON LOGS ViEW. ..uiiiiiiiiiiiiiiiiiiii ittt ettt eeeiiaeeeeeeeanaaaeens 251
Chapter 23. Adding Report to the Timeline......cciiiiiiiiiiiiiiiiiiiiiiiiiieeieeeieeeeeneaennnens 252
P25 % PR B 01 TSI/ Ut] o101 - L (o] o A P PP 252
23.2. TiMeling HierarChy...o.ueeiiit ittt e et e et ee et e eenaeeeaeeeanneeaanaens 254
T TR ¢ 1111 o] L= | o] P PPt 255
2K T SO T 11011 L[] 0 O 256
www.nvidia.com

User Guide v2023.3.1 | iv

Chapter 24. Post-Collection ANalYSiS....cceeeeieeiereereeeeesneeeeeeeesanseeecesssnaseccessssasssccennes 257

24.1. Available EXpOrt FOrmMats. ..oueeeeietiiitiiiiii it et eeeeetenaeeeereeeanneeeanaeeaaneens 257
24.1.1. SQLite SChema RefErENCE...ccviiiiiiii i ettt ieee e eerrnnaaaaees 257
24.1.2. SQLite Schema EVent ValUes.ccuueiiiiiiiniiiiiiiiiiiiieineeiiteineeeneeeneeanaeens 260
24.1.3. Common SQLItE EXaMPLES. . uueeiiiiiitetiiiiiiteeteeaieeeeeeennnneseeeessnneseeesennnnes 266
24.1.4. Arrow Format DesCriplion. . .o....eeiiiiiiiiiiiiiiiii i eeiiii e reeeneeeereeanannaenses 280
24.1.5. JSON and Text Format DesCription.....ccviueiiiiiiiiiiiiiiiiiieeieeiiinreeeeeennnaeeeens 281

24.2. Statistical ANalySiS. ...cieiiieiiiiiit ittt 281
Statistical Reports Shipped With Nsight Systems......ccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeanns 282

cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (API/Kernels/MemOps)............. 282
cuda_api_sum -- CUDA APl SUMMAIY....uueiiiiiiiettirreiiieeeereeennnneeeeeessneeeessessnneeeens 283
cuda_api_trace -- CUDA APl TraCe...civiiitittiiiiiitetieiiiieteeteeaiiaeeeeeeessseseseesennnnes 283
cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/Block Summary...... 283
cuda_gpu_kern_sum|[:base|:mangled] -- CUDA GPU Kernel Summary..........ccceeevveennnn. 284
cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Siz€).....ccevvevivvnnennnn... 284
cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)........ccccevuveennnn. 285
cuda_gpu_sum[:base|:mangled] -- CUDA GPU Summary (Kernels/MemOps)................. 285
cuda_gpu_trace[:base|:mangled] -- CUDA GPU TraCe......cvevvueeiiiiiiineeeeeeennnneeeennns 286
cuda_kern_exec_sum|[:base|:mangled] -- CUDA Kernel Launch & Exec Time Summary.... 286
cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch & Exec Time Trace....... 287
dx11_pix_sum -- DX11 PIX RaNge SUMMAIY.....cccetiutiintiiniiiiiitiitiitiineineeaneenneens 288
dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges Summary.................... 289
dx12_pix_sum -- DX12 PIX RaNGe SUMMAIY....ccutereietirietreiaeerareeranneerenaeeeeneeeennens 289
nvtx_gpu_proj_trace -- NVTX GPU Projection Trace.....ccceviiiiiiiieieiiiiiiinneereeennnness 290
nvtx_gpu_proj_sum -- NVTX GPU Projection Summary......c.ccovveiiiiiiiiiiiiiieiiiinneeennn. 290
nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary........c..ccovvviiiiinnennnns 291
nvtx_pushpop_sum -- NVTX Push/Pop Range Summary.......cccovviiiiiiiiiiiiineeieninnnnnn. 292
nvtx_pushpop_trace -- NVTX Push/Pop Range TraCe......cceveiiiiuiiiiiniieneerenneeeanneeanns 292
nvtx_startend_sum -- NVTX Start/End Range Summary.......cccceviiiiiiiiiiiiiieneeenennnnns 293
NVEX_SUM == NVTX RANGE SUMMAIY .. .uuutitiiiiiitttteiiiieeereeennteereeennnneesssansnnnessns 293
nvvideo_api_sum -- NvVideo APl SUMMaArY....cciiiiiiiiiiiiiiiiiieieiiiieeeeieninneneeeeennnnes 294
openacc_sum -- OPeNACC SUMMAIY...c.utiiintiiiiitiiittiiittiiiteiiieteiiterinatereiaeeennns 294
opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range Summary.................... 294
opengl_khr_range_sum -- OpenGL KHR_debug Range Summary.........cccovvvveiniinnnnnnnnns 295
openMPpP_SUM -- OPENMP SUMMAIYuuueettiieeiittereeereeeeeeeannaneeeeesnnnneesssennnneasens 295
osrt_sum -- OS RUNTIME SUMMAIY. ..ottt it e et eeeiieeeeeeeenaaeaeen 296
um_cpu_page_faults_sum -- Unified Memory CPU Page Faults Summary..................... 296
um_sum|[:rows=<limit>] -- Unified Memory Analysis Summary........cccccceeeeviiiiiinnnnnnn. 296
um_total_sum -- Unified Memory Totals SUmMmMary......c.ccceeiiieiiiiiiiiiiiniiinnieenennenn 297
vulkan_api_sum -- Vulkan APl SUMMaAY....coiiiiiiiiiiiiiiiiiiiiiiieeeeeiieeeeeeennnaneeens 297
vulkan_api_trace -- VULKan APl TraCe.....uiieiutiieietieitereiteeeneeeeaneeeenneeeenneeesneeenns 297
vulkan_gpu_marker_sum -- Vulkan GPU Range Summary........cccevieiiiineeeeeeeinnneecenns 298
vulkan_marker_sum -- Vulkan Range SUMMaArYy.........cccvtiiiiiiiiniiiiiiiiiiiinnenneenneens 298
www.nvidia.com

User Guide v2023.3.1 | v

Report Formatters Shipped With Nsight Systems.......ccciiiiiiiiiiiiiiiiiiiiiiiiiieii e, 299
00U 1 1] 299
o L= PP 300
01 PP 300
15 PP 301
] PP 301
1o o O 301
= 0 U 302
24.3. EXpert SYstems ANalysSis...ocueereeiiiitiiiitiriietieiterereeeeaneerenaeeeeneeeesaeesonneennnees 302
Using Expert System from the CLIueeiiiiiiiiiiiii it i e eereeeeeeeennneeeans 302
Using Expert System from the GUI....ooiiiiiiiiiiiiiii it et rci e e eiaeeeen 302
EXPErt SYStemM RULES. ...ciiiittiiiiiiii i eteiii e eeeeraeteeeeeananeeesaesnneeessessnnnsesssonnns 303
CUDA Synchronous Operation RULES.......cciiiiiiiiiiiiiiiiiii ittt ieeiiieeeeeenieaaeeas 303
GPU Low ULIlIZAtion RULES.vineiieiiiiiitiiit i i ittt eene et eeneseneenneaeaesnens 304
L0 T g B U 305
24.4. MULLI-REPOIT ANALYSTS. .. etiinttieittteeiteeeieeeiteeeieeeeieeeeaneeeenneeeaaeessnneesnneeeennees 306
F N T Lol (o T ot 1o = PP 307
Opening in Jupyter NOtEDOOK.ciieiiii i i e e e e neeeenes 312
CONTIGUIING DaSK. .. uuuetttitiiiietttteiiieteeeeeeieeeeeeeennneeeeeessnnnneessessnnnsessessnnnsessesanes 313
Tutorial: Create a User-Defined ReCIPE.......ivuiiieiiiiiiiiiiiiiiiii e 314
Chapter 25. IMPOrt NV T XT .. iiiiiiieeeetieiienneeeteresenneseecesennsssccssssnsssscssssnnssscssssnnsssccsnes 319
(60 1910 0 =1 o 3 PP 320
Chapter 26. Visual Studio Integration........cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeieeeenaeecnnnens 322
Chapter 27. TroubleshOOting.....cciireeeeiiiiiineeieeeiisneeeeeeeesneeteceessnasececsessnssscccasnnnnses 324
27.1. General TroubleshOoting.ueiiiuiiiii i i e re e it eeiaeeaaeeaanees 324
27.2. CLI TroubleShOOting.uueiiiiiiii ittt et it e e et eeeeeaeseeeeeaennneseesesannnes 325
27.3. Launch Processes in Stopped State.....ccuiiiiiiiiiiiiiiiiiiiiiriieiieeeieeeieeeaaneeenns 325
LD _PRELOAD. ..t eutietteittetenteeneeeneeeneeeneeaneeaneeaneeanssasessssssssssesnnssnsssnsssnsssnnenns 326

L 1F g Tl =T o N 326

27.4. GUI TroubleshOOting. . .oveueeettieiiiitetieiiieteeeeennneeeeeeeesnneseesesennanesessssnnsaeesenns 327

Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root privileges..........coceevveeiieeinenns 327

Ubuntu 18.04/20.04/22.04 and CentQS 7/8/9 without root privileges........ccceevvvveennnn.. 328

Other platforms, or if the previous steps did not help......ccovvieiiiiiiiiiiiiiiiiiiiiiinnne., 328

27.5. SYMDbBOL RESOIULION. .« e etetttiiiiieieiitereeiieeeeeeeennaneeeesennnneeessesnnnneesssonnnnes 328
Broken BacKiraCes ON TEGIa....ueeiiiiieietieriiieeetieeaiieeeeeeeeiiaseeeeeeennsseeeesennnssseeeenns 330
Debug Versions Of ELF Files....ciireririiiiiiiiiiiiiiiiiiitreeiieeeerenineeesresonnnneesscnnnnes 331

P T oY1] o T« S PPN 332

Verbose Remote Logging on LinUX Targets.....ceeiuiiiiieiiiiiiiiiiieiieiieeeeieeeaneeeanneens 332

Verbose CLI Logging on LiNUX Targets. ...cieeeiuittiiiiiiteteeeeiieeeeeeeeiiaeeeeessnsnssesesennnes 332

Verbose Logging on WindOWSs Targets.eeeuiieiiiiiitieiitieiiteeieeeaieeeeaeeeenneeesneeenns 333

Chapter 28. Other RESOUICES. .. .uueiiiiiireeeteeeereneeteeeeesnasseeceessnsssecesssnnssssessssnnssscecnes 334

TrainiNg SEMINAIS. . ettt ittt ettt ettt ettt eeieeetasesanases 334

www.nvidia.com

User Guide v2023.3.1 | vi

51 o] B oo 1) S PPN 334

ST 00 [I A [(<o L 334

CoNfEreNCE PresentationsS. .covuitiiiiii ittt ittt ettt it i eeeeeesssnnteeeeesssssnnnnnnees 335
(o Tl Vo T =B] o] o o N 335
www.nvidia.com

User Guide v2023.3.1 | vii

www.nvidia.com
User Guide v2023.3.1 | viii

Chapter 1.
PROFILING FROM THE CLI

1.1. Installing the CLI on Your Target

The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUL The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be auto-
converted (to .nsys-rep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

Note that you must run the CLI on Windows as administrator.

1.2. Command Line Options

The Nsight Systems command lines can have one of two forms:
nsys [global option]

or

nsys [command switch] [optional command switch options] [application] [optional
application options]

All command line options are case sensitive. For command switch options, when

short options are used, the parameters should follow the switch after a space; e.g. -s

process-tree. When long options are used, the switch should be followed by an equal

sign and then the parameter(s); e.g. --sample=process-tree.

For this version of Nsight Systemes, if you launch a process from the command line to
begin analysis, the launched process will be terminated when collection is complete,
including runs with --duration set, unless the user specifies the --kill none option (details

www.nvidia.com
User Guide v2023.3.1 | 1

Profiling from the CLI

below). The exception is that if the user uses NVTX, cudaProfilerStart/Stop, or hotkeys to
control the duration, the application will continue unless --kill is set.

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

1.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

1.3. CLI Command Switches

The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

analyze Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate expert systems report.

cancel Cancels an existing collection started
in interactive mode. All data already
collected in the current collection is
discarded.

export Generates an export file from an
existing .nsys-rep file. For more
information about the exported formats
see the /documentation/nsys-exporter
directory in your Nsight Systems
installation directory.

launch In interactive mode, launches an
application in an environment that
supports the requested options. The

www.nvidia.com
User Guide v2023.3.1 | 2

Profiling from the CLI

Command

Description

launch command can be executed before
or after a start command.

nvprof

Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional
functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

profile

A fully formed profiling description
requiring and accepting no further input.
The command switch options used

(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

recipe

PREVIEW FEATURE Post process
multiple existing Nsight Systems results,
in .nsys-rep or SQLite to generate
statistical information and create various
plots. See Multi-Node Analysis topic for
details.

sessions

Gives information about all sessions
running on the system.

shutdown

Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

start

Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stats

Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate statistical information.

status

Reports on the status of a CLI-based
collection or the suitability of the profiling
environment.

stop

www.nvidia.com
User Guide

Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process

v2023.3.1 | 3

Profiling from the CLI

Command Description

terminates but the application continues
running.

1.3.1. CLI Analyze Command Switch Options

The nsys analyze command generates and outputs to the terminal a report using
expert system rules on existing results. Reports are generated from an SQLite export
of a .nsys-rep file. If a .nsys-rep file is specified, Nsight Systems will look for an
accompanying SQLite file and use it. If no SQLite export file exists, one will be created.

After choosing the analyze command switch, the following options are available.
Usage:

nsys [global-options] analyze [options] [input-file]

Short Long Possible Default Switch
Parameters Description
--help <tag> none Print the help

message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-f --format column, table, Specity the

csy, tsv, json, output format.
hdoc, htable, . The special
name "."
indicates the
default format
for the given
output. The
default format
for console

is column,
while files

and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats

www.nvidia.com
User Guide v2023.3.1 | 4

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

may also be
specified using
a comma-
separated list
(<name[:args...]
[namel[:args...]...]
See Report
Scripts for
options
available with
each format.

--force-export

true, false

false

Force a re-
export of

the SQLite

file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--force-
overwrite

true, false

false

Overwrite any
existing output
files.

--help-formats

<format_name>,
ALL, [none]

none

With no
argument, list
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
the the format
is displayed. If
ALL s given, a
more detailed
explanation of
all available
formats is
displayed.

www.nvidia.com
User Guide

--help-rules

<rule_name>,
ALL, [none]

none

With no
argument, list
available rules
with a short

description.

v2023.3.1 | 5

>).

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

If a rule name
is given, a
more detailed
explanation
of the rule is
displayed. If
ALLis given, a
more detailed
explanation of
all available
rules is
displayed.

-0

www.nvidia.com
User Guide

--output

-, @<command>,
<basename>, .

Specity

the output
mechanism.
There are

three output
mechanisms:
print to console,
output to file,
or output to
command. This
option may be
used multiple
times. Multiple
outputs

may also be
specified using
a comma-
separated list.
If the given
output name
is"-", the
output will be
displayed on
the console.

If the output
name starts
with "@",

the output
designates a
command to
run. The nsys
command will
be executed
and the analysis

v2023.3.1 | 6

Profiling from the CLI

www.nvidia.com
User Guide

Short Long Possible Default Switch
Parameters Description
output will be
piped into the

command. Any
other output

is assumed

to be the base
path and name
for a file. If a

file basename

is given, the
filename

used will be:
<basename>_<an
The default
base (including
path) is the
name of the
SQLite file

(as derived
from the input
file or --sqlite
option), minus
the extension.
The output "."
can be used

to indicate the
analysis should
be output to

a file, and

the default
basename
should be used.
To write one or
more analysis
outputs to

files using

the default
basename, use
the option: "--
output .". If the
output starts
with "@", the
nsys command
output is piped
to the given

plysis&args>.<

command.

v2023.3.1 | 7

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

The command
is run, and

the output is
piped to the
command's
stdin (standard-
input). The
command's
stdout and
stderr remain
attached to the
console, so any
output will

be displayed
directly to the
console. Be
aware there

are some
limitations

in how the
command
string is parsed.
No shell
expansions
(including *, ?,
[], and ~) are
supported.

The command
cannot be piped
to another
command, nor
redirected to

a file using
shell syntax.
The command
and command
arguments

are split on
whitespace,
and no quotes
(within the
command
syntax) are
supported. For
commands that
require complex

v2023.3.1 | 8

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

command line
syntax, it is
suggested that
the command
be put into a
shell script file,
and the script
designated

as the output
command.

--quiet

Do not display
verbose

messages, only
display errors.

--rule

cuda_memcpy_a
cuda_memcpy_s
cuda_memset_sy
cuda_api_sync,
gpu_gaps,
gpu_time_util,
dx12_mem_ops

sythc,
ync,
nc,

Specity the
rules(s) to
execute,
including any
arguments. This
option may be
used multiple
times. Multiple
rules may also
be specified
using a comma-
separated list.
See Expert
Systems section
and --help-
rules switch for
details on all
rules.

www.nvidia.com
User Guide

--sqlite

<file.sqlite>

Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file before

v2023.3.1 | 9

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.
--timeunit nsec, nanoseconds Set basic unit
nanoseconds, of time. The
usec, argument of
microseconds, the switch
msec, is matched
milliseconds, by using the
seconds longest prefix
matching.
Meaning that it
is not necessary
to write a

whole word

as the switch
argument.

It is similar

to passing a
":time=<unit>"
argument to
every formatter,
although the
formatter

uses more

strict naming
conventions.
See "nsys
analyze --
help-formats
column" for
more detailed
information on
unit conversion.

1.3.2. CLI Cancel Command Switch Options

After choosing the cancel command switch, the following options are available. Usage:

nsys [global-options]

www.nvidia.com
User Guide

cancel

[options]

v2023.3.1 | 10

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--help

<tag>

none

Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--session

<session
identifier>

none

Cancel the
collection in the
given session.
The option
argument must
represent a
valid session
name or ID

as reported
by nsys
sessions
list. Any
$q{ENV_VAR}
pattern in

the option
argument will
be substituted
with the
value of the
environment
variable. Any
%h pattern

in the option
argument will
be substituted
with the
hostname of
the system.
Any %% pattern
in the option
argument will
be substituted
with %.

www.nvidia.com
User Guide

v2023.3.1 | 11

1.3.3. CLI Export Command Switch Options

Profiling from the CLI

After choosing the export command switch, the following options are available. Usage:

nsys

[global-options]

export

[options]

[nsys-rep-file]

Short

Long

Possible
Parameters

Default

Switch
Description

-f

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(QDSTRM,
nsys-rep,
SQLITE, HDF,
TEXT, ARROW,
JSON).

--help

<tag>

none

Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--lazy

true, false

true

Controls if table
creation is lazy
or not. When
true, a table
will only be
created when it
contains data.
This option will
be deprecated
in the future,
and all exports
will be non-
lazy. This
affects SQLite,
HDEF5, and
Arrow exports
only.

www.nvidia.com
User Guide

v2023.3.1 | 12

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--output

<filename>

<inputfile.ext>

Set the .output
filename.

The default

is the input
filename with
the extension
for the chosen
format.

--quiet

true, false

false

If true, do
not display
progress bar

--separate-
strings

true,false

false

Output stored
strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

~type

arrow, hdf, info,
json, sqlite, text

sqlite

Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

www.nvidia.com
User Guide

--ts-normalize

true, false

false

If true, all
timestamp
values in the
report will

be shifted to
UTC wall-
clock time, as
defined by the
UNIX epoch.
This option
can be used in
conjunction
with the --ts-
shift option, in
which case both
adjustments
will be applied.
If this option is

v2023.3.1 | 13

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

used to align a
series of reports
from a cluster
or distributed
system, the
accuracy of the
alignment is
limited by the
synchronization
precision of the
system clocks.
For detailed
analysis, the
use of PTP

or another
high-precision
synchronization
methodology is
recommended.
NTP is unlikely
to produce
desirable
results. This
option only
applies to
Arrow, HDF5,
and SQLite
exports.

www.nvidia.com
User Guide

--ts-shift

signed integer,
in nanoseconds

If given, all
timestamp
values in the
report will be
shifted by the
given amount.
This option
can be used in
conjunction
with the --
ts-normalize
option, in
which case both
adjustments
will be applied.
This option
can be used to
"hand-align"

v2023.3.1 | 14

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

report files
captured at
different times,
or reports
captured on
distributed
systems

with poorly
synchronized
system clocks.
This option
only applies to
Arrow, HDF5,
and SQLite
exports.

1.3.4. CLI Launch Command Switch Options

After choosing the 1launch command switch, the following options are available. Usage:

nsys [global-options] launch

[options] <application>

[application-arguments]

Short

Long

Possible
Parameters

Default

Switch
Description

-b

--backtrace

WARNING:
This switch

is no longer
supported.
Please set the
--backtrace
switch when
using the start
command
instead.

--clock-
frequency-
changes

true, false

false

Collect clock
frequency
changes.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--cpu-cluster-
events

none

0x16, 0x17, ...

none

Collect per-
cluster Uncore
PMU counters.
Multiple values

v2023.3.1 | 15

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--command-file

< filename >

none

Open a file

that contains
launch switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--Cpu-core- 0x11,0x13,...,nong none Collect per-core
events (Nsight PMU counters.
Systems Multiple values
Embedded can be selected,
Platforms separated by
Edition) commas only
(no spaces).
Use the --
cpu-core-
events=help
switch to see
the full list of
values.
--cpu-socket- 0x2a, 0x2c, ..., none Collect per-
events none socket Uncore
PMU counters.
Multiple values
www.nvidia.com
User Guide v2023.3.1 | 16

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-socket-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpuctxsw

WARNING:
This switch

is no longer
supported.
Please set the
--cpuctxsw
switch when
using the start
command
instead.

www.nvidia.com
User Guide

--cuda-flush-
interval

milliseconds

See description

Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage. CUDA
data buffer
saves may
cause profiler
overhead.
Buffer save
behavior can be
controlled with
this switch. If
the CUDA flush
interval is set
to 0 on systems
running CUDA
11.0 or newer,

v2023.3.1 | 17

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

buffers are
saved when
they fill. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved only
when the

flush interval
expires. If a
flush interval
is set and the
profiler runs
out of available
buffers before
the flush
interval expires,
additional
buffers will

be allocated

as needed.

In this case,
setting a flush
interval can
reduce buffer
save overhead
but increase
memory use
by the profiler.
If the flush
interval is set
to 0 on systems
running older
versions of
CUDA, buffers
are saved at
the end of the
collection. If the
profiler runs
out of available
buffers,
additional
buffers are
allocated as

v2023.3.1 | 18

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

needed. If a
flush interval

is set to a non-
zero value on
such systems,
buffers are
saved when the
flush interval
expires. A
cuCtxSynchroniz
call may be
inserted into
the workflow
before the
buffers are
saved which
will cause
application
overhead. In
this case, setting
a flush interval
can reduce
memory use by
the profiler but
may increase
save overhead.
For collections
over 30 seconds
an interval of
10 seconds is
recommended.
Default is
10000 for
Nsight Systems
Embedded
Platforms
Edition and 0
otherwise.

[¢})

www.nvidia.com
User Guide

--cuda-
memory-usage

true, false

false

Track the

GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:

v2023.3.1 | 19

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--cuda-um-gpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

www.nvidia.com
User Guide

--cudabacktrace

all, none,
kernel, memory,
sync, other

none

When tracing
CUDA APIs,
enable the
collection of

v2023.3.1 | 20

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

a backtrace
when a CUDA
APl is invoked.
Significant
runtime
overhead

may occur.
Values may

be combined
using ',". Each
value except
none' may be
appended with
a threshold
after ":".
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

www.nvidia.com
User Guide

--cuda-graph-
trace

graph, node

graph

If 'graph’ is
selected, CUDA
graphs will

be traced as a
whole and node
activities will
not be collected.
This will reduce
overhead to

a minimum,
but requires

v2023.3.1 | 21

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

CUDA driver
version 515.43
or higher.

If node' is
selected, node
activities will
be collected,
but CUDA
graphs will
not be traced
as a whole.
This may cause
significant
runtime
overhead.
Default is
‘graph’ if
available,
otherwise
default is
'node’.

--dx-force-
declare-
adapter-
removal-
support

true, false

false

The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding

it. Enabling
this flag
makes a call to
DXGIDeclareAd:
before device
creation.

ipterRemovalS

www.nvidia.com
User Guide

--dx12-gpu-
workload

true, false,
individual,
batch, none

individual

If individual

or true, trace
each DX12
workload's
GPU activity
individually.

If batch,

trace DX12
workloads'
GPU activity in
ExecuteComman

dLists

v2023.3.1 | 22

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

call batches.
If none or
false, do not
trace DX12
workloads'
GPU activity.
Note that
this switch

is applicable
only when --
trace=dx12

is specified.
This option is
only supported
on Windows
targets.

--dx12-wait-
calls

true, false

false

If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12

is specified.
This option is
only supported
on Windows
targets.

--env-var

A=B

NA

Set
environment
variable(s) for
the application
process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

www.nvidia.com
User Guide

v2023.3.1 | 23

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--help

<tag>

none

Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--hotkey-
capture

'F1' to 'F12'

'F12'

Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey
is specified at
the start of the
profiled session.

--inherit-
environment

true, false

true

When true,

the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

www.nvidia.com
User Guide

--injection-use-
detours

true,false

true

Use detours

for injection. If
false, process
injection will be

v2023.3.1 | 24

Profiling from the CLI

www.nvidia.com
User Guide

Short Long Possible Default Switch
Parameters Description
performed by
windows hooks
which allows
to bypass anti-
cheat software.
Equivalent to
setting the --
system-wide
option to the
inverse value,
e.g. setting -
injection-use-
detours=false
has the same
effect as setting
--system-
wide=true.
--isr true false Trace Interrupt |false

Service

Routines (ISRs)

and Deferred

Procedure

Calls (DPCs).

Requires

administrative

privileges.

Available only

on Windows

devices.

--mpi-impl openmpi,mpich |openmpi When using

--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using.
If no MPI
implementation

is specified,
nsys tries to
automatically
detect it based
on the dynamic

v2023.3.1 | 25

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

linker's search
path. If this
fails, 'openmpi’
is used. Calling
-—-mpi-impl
without --
trace=mpi is not
supported.

--nvtx-capture

range@domain,
range, range@*

none

Specity NVTX
range and
domain to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=nvtx is
specified at

the start of the
profiled session.

www.nvidia.com
User Guide

--nvtx-domain-
exclude

default,
<domain_names]

Choose to
exclude NVTX
events from

a comma
separated list
of domains.
'default’ filters
the NVTX
default domain.
A domain

with this name
or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable

v2023.3.1 | 26

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

when --
trace=nvtx is
specified.

--nvtx-domain- |default, Choose to

include <domain_names} only include
NVTX events

from a comma
separated list
of domains.
'default’ filters
the NVTX
default domain.
A domain

with this name
or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--python-nvtx-
annotations

<json_file>

Specity the path
to the JSON

file containing
the requested
NVTX
annotations.

www.nvidia.com
User Guide

--opengl-gpu-
workload

true, false

true

If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch

is applicable
only when --
trace=opengl
is specified.

v2023.3.1 | 27

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

This option is
not supported
on IBM Power
targets.

--osrt-backtrace-
depth

integer

24

Set the

depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
stack-size

integer

6144

Set the stack
dump size,

in bytes, to
generate
backtraces for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

www.nvidia.com
User Guide

--osrt-threshold

< nanoseconds >

1000 ns

Set the
duration, in
nanoseconds,
that Operating
System
Runtime (osrt)
APIs must
execute before
they are traced.
Values much
less than 1000
may cause
significant
overhead

and result

in extremely
large result

v2023.3.1 | 28

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

files. Default
is 1000 (1
microsecond).
Note: Not
available for
IBM Power
targets.

--python-
backtrace

cuda, none,
false

none

Collect Python
backtrace event
when tracing
the selected
APT's trigger.
This option

is supported
on Arm

server (SBSA)
platforms and
x86 Linux
targets. Note:
the selected API
tracing must
be enabled.

For example, --
cudabacktrace
must be set
when using
--python-
backtrace=cuda.

www.nvidia.com
User Guide

--python-
sampling

true, false

false

Collect Python
backtrace
sampling
events. This
option is
supported

on Arm

server (SBSA)
platforms,

x86 Linux

and Windows
targets. Note:
When profiling
Python-only
workflows,
consider
disabling the

v2023.3.1 | 29

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

CPU sampling
option to
reduce
overhead.

--python-
sampling-
frequency

1 <integers <
2000

1000

Specity

the Python
sampling
frequency.
The minimum
supported
frequency

is 1Hz. The
maximum
supported
frequency is
2KHz. This
option is
ignored if

the --python-
sampling
option is set to
false.

--qnx-kernel-
events

class/
event,event,class
event:mode,class

none

mode,help,none

Multiple values
can be selected,
separated by
commas only
(no spaces).

See the --qnx-
kernel-events-
mode switch
description

for mode'
format. Use the
'--qnx-kernel-
events=help'
switch to see
the full list

of values.
Example: '--
qnx-kernel-
events=8/1:syster
__ KER_BAD, N
Collect QNX
kernel events.

n:wide, NTO '
[O_TRACE_((

www.nvidia.com
User Guide

v2023.3.1 | 30

Profiling f

rom the CLI

Short

Long

Possible
Parameters

Default

Switch

Description

--qnx-kernel-
events-mode

system, process, {3

) stystide:fast

be spe

‘wide'
be spe

check

'wide'
defaul

kernel

Values are
separated by a
colon (:') only
(no spaces).
'system' and
‘process' cannot

cified

at the same
time. 'fast' and

cannot
cified

at the same
time. Please

the QNX

documentation
to determine
when to select
the 'fast' or

mode.

Specify the

t mode

for QNX

events

collection.

--resolve-
symbols

true,false

true

backtr

Resolve
symbols of
captured
samples and

aces.

--run-as

<username >

none

applic

Linux
only.

Run the target
application as
the specified
username. If
not specified,
the target

ation will

be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for

targets

www.nvidia.com
User Guide

v2023.3.1 | 31

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--sample

WARNING:
This switch

is no longer
supported.
Please set the --
sample switch
when using the
start command
instead.

--samples-per-
backtrace

WARNING:
This switch
is no longer
supported.
Please set the
--samples-
per-backtrace
switch when
using the start
command
instead.

--sampling-
frequency

WARNING:
This switch
is no longer
supported.
Please set the
--sampling-
frequency
switch when
using the start
command
instead.

--sampling-
period

WARNING:
This switch

is no longer
supported.
Please set the
--sampling-
period switch
when using the
start command
instead.

www.nvidia.com
User Guide

--sampling-
trigger

WARNING:
This switch
is no longer

v2023.3.1 | 32

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

supported.
Please set the
--sampling-
trigger switch
when using the
start command
instead.

--session

session
identifier

none

Launch the
application in
the indicated
session.

The option
argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com
User Guide

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Launch the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable

or space

v2023.3.1 | 33

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

characters. Any
%$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--show-output

true, false

true

If true, send
target process's
stdout and
stderr streams
to both the
console and
stdout/stderr
files which
are added to
the report file.
If false, only
send target
process stdout
and stderr
streams to the
stdout/stderr
files which are
added to the
report file.

www.nvidia.com
User Guide

--system-wide

true,false

false

Perform
system-wide
injection using
Windows
hooks.
Equivalent

to setting the
--injection-
use-detours
option to the

v2023.3.1 | 34

Profiling from the CLI

www.nvidia.com
User Guide

Short Long Possible Default Switch
Parameters Description
inverse value,
e.g. setting
--system-
wide=true has
the same effect
as setting --
injection-use-
detours=false.
-t --trace cuda, nvtx, cuda, opengl, Select the
cublas, cublas- |nvtx, osrt API(s) to be
verbose, traced. The osrt
cusparse, switch controls
cusparse- the OS runtime
verbose, cudnn, libraries tracing.
opengl, opengl- Multiple APIs
annotations, can be selected,
openacc, separated
openmp, osrt, by commas
mpi, nvvideo, only (no
vulkan, vulkan- spaces). Since
annotations, OpenACC,
dx11, dx11- cuDNN and
annotations, cuBLAS
dx12, dx12- APIs are
annotations, tightly linked
oshmem, with CUDA,
ucx, wddm, selecting one of
nvmedia, none those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information

on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding

v2023.3.1 | 35

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

API will also
be traced. If the
none option

is selected,

no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

--trace-fork-
before-exec

true, false

false

If true, trace
any child
process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might
cause your
application

to crash or
deadlock. Note:
This option is
only available
on Linux target
platforms.

www.nvidia.com
User Guide

--vulkan-gpu-
workload

true, false,
individual,
batch, none

individual

If individual
or true, trace
each Vulkan
workload's
GPU activity
individually.
If batch,
trace Vulkan
workloads'

v2023.3.1 | 36

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

GPU activity in
vkQueueSubmit
call batches.

If none or

false, do not
trace Vulkan
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
ONX.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

www.nvidia.com
User Guide

--wddm-
additional-
events

true, false

true

If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch

is applicable
only when --
trace=wddm
is specified.
This option is

v2023.3.1 | 37

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

only supported
on Windows
targets.

--wddm- true, false false If true, collect
backtraces backtraces of
WDDM events.
Disabling this
data collection
can reduce
overhead for
certain target
applications.
Note that

this switch

is applicable
only when --
trace=swddm

is specified.
This option is
only supported
on Windows
targets.

1.3.5. CLI Profile Command Switch Options

After choosing the profile command switch, the following options are available.
Usage:

nsys [global-options] profile [options] <application> [application-arguments]

Short Long Possible Default Switch
Parameters Description
--accelerator- none,tegra- none Collect other
trace accelerators accelerators
workload
trace from

the hardware
engine units.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--auto-report- true, false false Derive report
name file name from
collected data

www.nvidia.com
User Guide v2023.3.1 | 38

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

uses details

of profiled
graphics
application.
Format:
[Process Name]
[GPU Name]
[Window
Resolution]
[Graphics API]
Timestamp .nsyst
rep If true,
automatically
generate report
file names.

www.nvidia.com
User Guide

--backtrace

auto,fp,lbr,dwarf

none

Select the
backtrace
method to use
while sampling.
The option 'Tbr’
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp'is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWARF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce

v2023.3.1 | 39

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

collection
overhead.

--capture-range

none,
cudaProfilerApi,
hotkey, nvtx

none

When --
capture-range is
used, profiling
will start

only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
Hotkey works
for graphic
applications
only.

www.nvidia.com
User Guide

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown

Specity the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any
subsequent
capture ranges
will be ignored.
Target app

will continue
running.

If stop-

v2023.3.1 | 40

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
shutdown,

collection will
stop at capture
range end and
session will be
shutdown. If
repeat|[:N],
collection will
stop at capture
range end and
subsequent
capture

ranges will
trigger more
collections. Use
the optional

:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.

If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown

and repeat-
shutdown:N,
as always, use
--kill option

to specify
whether target
app should

be terminated
when shutting
down session.

www.nvidia.com
User Guide

v2023.3.1 | 41

Profiling from the CLI

Short

Long

Possible
Parameters

Default Switch
Description

--clock-
frequency-
changes

true, false

false Collect clock
frequency
changes.
Available
only in Nsight
Systems
Embedded
Platforms
Edition

and Arm
server (SBSA)
platforms

--command-file

< filename >

none Open a file

that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

v2023.3.1 | 42

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--cpu-core-
events (Nsight
Systems
Embedded
Platforms
Edition)

0x11,0x13,...,nong

none

Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-core-
events=help
switch to see
the full list of
values.

--cpu-core-
events (not
Nsight Systems
Embedded
Platforms
Edition)

'help' or the end
users selected
events in the
format 'x,y'

2'i.e.
Instructions
Retired

Select the CPU
Core events to
sample. Use the
——Ccpu—-core-
events=help
switch to see
the full list of
events and

the number of
events that can
be collected
simultaneously.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable.

www.nvidia.com
User Guide

--cpu-socket-
events

0x2a, 0x2g, ...,
none

none

Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-socket-
events=help
switch to see

v2023.3.1 | 43

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--cpuctxsw

process-tree,
system-wide,
none

process-tree

Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none’, the
--cpuctxsw
setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application

is launched,
the default is
‘process-tree’,
otherwise the
default is 'none'.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded

v2023.3.1 | 44

Profiling from the CLI

www.nvidia.com
User Guide

Short Long Possible Default Switch
Parameters Description
Platforms
Edition
--cuda-flush- milliseconds See Description |Set the interval,
interval in milliseconds,

when buffered
CUDA data is
automatically
saved to
storage. CUDA
data buffer
saves may
cause profiler
overhead.
Buffer save
behavior can be
controlled with
this switch. If
the CUDA flush
interval is set
to 0 on systems
running CUDA
11.0 or newer,
buffers are
saved when
they fill. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved only
when the

flush interval
expires. If a
flush interval
is set and the
profiler runs
out of available
buffers before
the flush
interval expires,
additional
buffers will

be allocated

as needed.

In this case,

v2023.3.1 | 45

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

setting a flush
interval can
reduce buffer
save overhead
but increase
memory use
by the profiler.
If the flush
interval is set
to 0 on systems
running older
versions of
CUDA, buffers
are saved at
the end of the
collection. If the
profiler runs
out of available
buffers,
additional
buffers are
allocated as
needed. If a
flush interval

is set to a non-
zero value on
such systems,
buffers are
saved when the
flush interval
expires. A
cuCtxSynchroniz
call may be
inserted into
the workflow
before the
buffers are
saved which
will cause
application
overhead. In
this case, setting
a flush interval
can reduce
memory use by

the profiler but

v2023.3.1 | 46

[¢})

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

may increase
save overhead.
For collections
over 30 seconds
an interval of
10 seconds is
recommended.
Default is
10000 for
Nsight Systems
Embedded
Platforms
Edition and 0
otherwise.

www.nvidia.com
User Guide

--cuda-graph-
trace

graph, node

graph

If 'graph’ is
selected, CUDA
graphs will

be traced as a
whole and node
activities will
not be collected.
This will reduce
overhead to

a minimum,
but requires
CUDA driver
version 515.43
or higher.

If 'node' is
selected, node
activities will
be collected,
but CUDA
graphs will

not be traced

as a whole.

This may cause
significant
runtime
overhead.
Default is
‘graph’ if
available,
otherwise

v2023.3.1 | 47

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

default is
'node’.

--cuda-
memory-usage

true, false

false

Track the

GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

www.nvidia.com
User Guide

--cuda-um-gpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime

v2023.3.1 | 48

Profiling from the CLI

Short Long Possible Default Switch

Parameters Description
overhead. Not
availalbe on
Nsight Systems
Embedded
Platforms
Edition.

--cudabacktrace | all, none, none When tracing
kernel, memory, CUDA APIs,
sync, other enable the

collection of

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead

may occur.
Values may

be combined
using ',". Each
value except
‘none' may be
appended with
a threshold
after ":".
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

www.nvidia.com
User Guide

v2023.3.1 | 49

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--delay

< seconds >

Collection
start delay in
seconds.

--duration

< seconds >

NA

Collection
duration

in seconds,
duration must
be greater

than zero.

The launched
process will

be terminated
when the
specified
profiling
duration
expires unless
the user
specifies the --
kill none option
(details below).

--duration-
frames

60 <= integer

Stop the
recording
session after
this many
frames have
been captured.
Note when

it is selected
cannot include
any other stop
options. If

not specified,
the default is
disabled.

www.nvidia.com
User Guide

--dx-force-
declare-
adapter-
removal-
support

true, false

false

The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding

it. Enabling
this flag

v2023.3.1 | 50

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

makes a call to
DXGIDeclareAd:
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

ipterRemovalS

--dx12-gpu-
workload

true, false,
individual,
batch, none

individual

If individual

or true, trace
each DX12
workload's
GPU activity
individually.

If batch,

trace DX12
workloads'
GPU activity in
ExecuteComman
call batches.

If none or

false, do not
trace DX12
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=dx12

is specified.
This option is
only supported
on Windows
targets.

dLists

www.nvidia.com
User Guide

--dx12-wait-
calls

true, false

true

If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12

is specified.
This option is

only supported

v2023.3.1 | 51

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

on Windows
targets.

--ell-sampling

true, false

false

Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--e]1-sampling-
config

<filepath
config.json >

none

EL1 sampling
config.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.

--env-var

NA

Set
environment
variable(s) for
the application
process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

www.nvidia.com
User Guide

--etw-provider

"<name>,<guid>"|
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch

v2023.3.1 | 52

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--event-sample

system-wide,
none

none

Use the --
cpu-core-
events=help
and the --os-
events=help
switches to see
the full list of
events. If event
sampling is
enabled and
no events are
selected, the
CPU Core event
'Instructions
Retired' is
selected by
default. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

www.nvidia.com
User Guide

--event-
sampling-
frequency

Integers from 1
to 20 Hz

The sampling
frequency
used to collect
event counts.
Minimum
event sampling
frequency is 1
Hz. Maximum
event sampling
frequency is

20 Hz. Not
available in
Nsight Systems
Embedded

v2023.3.1 | 53

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Platforms
Edition.

--export

arrow, hdf, json,
sqlite, text, none

none

Create
additional
output file(s)
based on the
data collected.
This option

can be given
more than once.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--flush-on-
cudaprofilerstop

true, false

true

If set to true,
any call to
cudaProfilerStop
will cause the
CUDA trace
buffers to be
flushed. Note
that the CUDA
trace buffers
will be flushed
when the
collection ends,
irrespective of
the value of this
switch.

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-
rep, .arrows, .h5,

www.nvidia.com
User Guide

--ftrace

Collect ftrace
events.

Argument

v2023.3.1 | 54

~

json, .sqlite, .t

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
should list

events to collect
as: subsystem1/
eventl,subsystem?2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available
on IBM Power
targets.

--ftrace-keep- Skip initial
user-config ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpu-metrics- |[GPU ID, help, [none Collect GPU
device all, none Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics- |integer 10000 Specify GPU
frequency Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000 (Hz).

--gpu-metrics- |index, alias Specify metric
set set for GPU
Metrics. The
argument
must be one

www.nvidia.com
User Guide v2023.3.1 | 55

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

of indices or
aliases reported
by--gpu-
metrics-
set=help
switch. If not
specified, the
default is the
first metric set
that supports
all selected
GPUs.

--gpuctxsw true false false Trace GPU
context
switches.

Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--hotkey- 'F1' to 'F12' 'F12' Hotkey to
capture trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

www.nvidia.com
User Guide v2023.3.1 | 56

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--ib-switch-
metrics

<IB switch
GUIDs>

none

Trigger the
collection

of IB switch
performance
metrics. Takes
a comma
separated list
of Infiniband
switch GUIDs.
To get a list
Infiniband
switches
connected to
the machine,
use sudo
ibnetdiscover
-S

--inherit-
environment

true, false

true

When true,

the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

www.nvidia.com
User Guide

--injection-use-
detours

true,false

true

Use detours

for injection. If
false, process
injection will be
performed by
windows hooks
which allows

to bypass anti-
cheat software.
Equivalent to
setting the --

v2023.3.1 | 57

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

system-wide
option to the
inverse value,
e.g. setting -
injection-use-
detours=false
has the same
effect as setting
--system-
wide=true.

--isr true, false false Trace Interrupt
Service
Routines (ISRs)
and Deferred
Procedure
Calls (DPCs).
Requires
administrative
privileges.
Available only
on Windows
devices.

--kill none, sigkill, sigterm Send signal
sigterm, signal to the target
number application's
process group.
Can be used
with --duration
or range
markers.

--mpi-impl openmpi,mpich |openmpi When using
--trace=mpi

to trace MP1
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using.

If no MPI
implementation
is specified,
nsys tries to
automatically
detect it based

www.nvidia.com
User Guide v2023.3.1 | 58

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

on the dynamic
linker's search
path. If this
fails, 'openmpi’
is used. Calling
-—-mpi-impl
without --
trace=mpi is not
supported.

--nic-metrics

true, false

false

Collect metrics
from supported
NIC/HCA
devices. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--nvtx-capture

range@domain,
range, range@*

none

Specify NVTX
range and
domain to
trigger the
profiling
session. This
option is
applicable
only when
used along
with --capture-
range=nvtx.

www.nvidia.com
User Guide

--nvtx-domain-
exclude

default,
<domain_names¥

Choose to
exclude NVTX
events from

a comma
separated list
of domains.
'default’
excludes NVTX
events without
a domain. A
domain with
this name

or commas

in a domain
name must be

v2023.3.1 | 59

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--nvtx-domain-
include

default,
<domain_names}

Choose to

only include
NVTX events
from a comma
separated list
of domains.
'default’ filters
the NVTX
default domain.
A domain

with this name
or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--python-nvtx-
annotations

<json_file>

Specity the path
to the JSON

file containing
the requested
NVTX
annotations.

www.nvidia.com
User Guide

v2023.3.1 | 60

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--opengl-gpu-
workload

true, false

true

If true, trace
the OpenGL
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=opengl
is specified.
This option is
not supported
on IBM Power
targets.

--0s-events

'help' or the end
users selected
events in the
format 'x,y'

none

Select the

OS events

to sample.

Use the --o0s-
events=help
switch to see
the full list of
events. Multiple
values can

be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--osrt-backtrace-
depth

integer

24

Set the

depth for the
backtraces
collected for
OS runtime
libraries calls.

www.nvidia.com
User Guide

--osrt-backtrace-
stack-size

integer

6144

Set the stack
dump size,
in bytes, to

v2023.3.1 | 61

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

generate
backtraces for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

--osrt-threshold

<nanoseconds >

1000 ns

Set the
duration, in
nanoseconds,
that Operating
System
Runtime

(osrt) APIs
must execute
before they are
traced. Values
significantly
less than 1000
may cause
significant
overhead

and result

in extremely
large result
files. Note: Not
available for
IBM Power
targets.

www.nvidia.com
User Guide

--output

< filename >

report#

Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the

value of the
environment

v2023.3.1 | 62

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

variable.

Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID

of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,nsys-
rep,sqlite,h5,txt,3
in the working
directory.

rrows,json}

--process-scope

main, process-
tree, system-
wide

main

Select which
process(es)

to trace.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

www.nvidia.com
User Guide

--python-
backtrace

cuda, none,
false

none

Collect Python
backtrace event

when tracing

v2023.3.1 | 63

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

the selected
API's trigger.
This option

is supported

on Arm

server (SBSA)
platforms and
x86 Linux
targets. Note:
the selected API
tracing must

be enabled.

For example, --
cudabacktrace
must be set
when using
--python-
backtrace=cuda.

--python-
sampling

true, false

false

Collect Python
backtrace
sampling
events. This
option is
supported

on Arm

server (SBSA)
platforms,

x86 Linux

and Windows
targets. Note:
When profiling
Python-only
workflows,
consider
disabling the
CPU sampling
option to
reduce
overhead.

www.nvidia.com
User Guide

--python-
sampling-
frequency

1 <integers <
2000

1000

Specity

the Python
sampling
frequency.
The minimum
supported

v2023.3.1 | 64

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

frequency

is 1Hz. The
maximum
supported
frequency is
2KHz. This
option is
ignored if
the --python-
sampling
option is set to
false.

--qnx-kernel-
events

class/
event,event,class
event:mode,class

none

mode,help,none

Multiple values
can be selected,
separated by
commas only
(no spaces).

See the --qnx-
kernel-events-
mode switch
description

for :mode'
format. Use the
'--qnx-kernel-
events=help'
switch to see

the full list

of values.
Example: '--
qnx-kernel-
events=8/1:syster
_NTO_TRACE_HK
__KER BAD, N1
Collect QNX
kernel events.

n:wide, NTO
(ERCALLENTI
[O_TRACE_C(

www.nvidia.com
User Guide

--qnx-kernel-
events-mode

system, process,fa

stywtadhe:fast

Values are
separated by a
colon (:') only
(no spaces).
'system' and
‘process’ cannot
be specified

at the same
time. 'fast' and

'wide' cannot

v2023.3.1 | 65

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

be specified

at the same
time. Please
check the QNX
documentation
to determine
when to select
the 'fast' or
'wide' mode.
Specify the
default mode
for QNX
kernel events
collection.

--resolve-
symbols

true,false

true

Resolve
symbols of
captured
samples and
backtraces.

--retain-etw-
files

true, false

false

Retain ETW
files generated
by the trace,
merge and
move the files
to the output
directory.

--run-as

<username >

none

Run the target
application as
the specified
username. If
not specified,
the target
application will
be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for
Linux targets
only.

www.nvidia.com
User Guide

--sample

process-tree,
system-wide,
none

process-tree

Select how to
collect CPU
IP/backtrace

v2023.3.1 | 66

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

samples.

If none'is
selected, CPU
sampling

is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.

If a target
application

is launched,

the default is
‘process-tree’,
otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on

all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none’.

www.nvidia.com
User Guide

--samples-per-
backtrace

integer <= 32

The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU

IP sample
collected, a
backtrace

will also be
collected.
Lower values

v2023.3.1 | 67

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

increase the
amount of

data collected.
Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.

If DWARF
backtraces are
collected, the
default is 4,
otherwise the
defaultis 1.
This option is
not available on
Nsight Systems
Embedded
Platforms
Edition or on
non-Linux
targets.

--sampling-
frequency

100 < integers <
8000

1000

Specity the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency

is 8000 Hz.
This option

is supported
only on QNX,
Linux for Tegra,
and Windows
targets.

www.nvidia.com
User Guide

--sampling-
period (Nsight

integer

determined
dynamically

The number
of CPU Cycle

v2023.3.1 | 68

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Systems
Embedded
Platforms
Edition)

events counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces

may also be
collected.

The smaller

the sampling
period, the
higher the
sampling

rate. Note

that smaller
sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s). Requires
--sampling-
trigger=perf
switch.

www.nvidia.com
User Guide

--sampling-
period (not
Nsight Systems
Embedded
Platforms
Edition)

integer

determined
dynamically

The number of
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. The
event used

to trigger the
collection of

a sample is
determined
dynamically.
For example,
on Intel based
platforms, it
will probably
be "Reference

v2023.3.1 | 69

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

Cycles" and
on AMD
platforms,
"CPU Cycles".
If configured,
backtraces
may also be
collected.

The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option

is available
only on Linux
targets.

--sampling- timer, sched, timer,sched Specity

trigger perf, cuda backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Auvailable on
Nsight Systems
Embedded
Platforms
Edition targets
only.

--session-new [a-Z][0-9,a- profile-<id>- Name the
Z,spaces] <application> [session
created by the

www.nvidia.com
User Guide v2023.3.1 | 70

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

command.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

-W

--show-output

true, false

true

If true, send
target process's
stdout and
stderr streams
to both the
console and
stdout/stderr
files which
are added to
the report file.
If false, only
send target
process stdout
and stderr
streams to the
stdout/stderr
files which are
added to the
report file.

www.nvidia.com
User Guide

--soc-metrics

true,false

false

Collect SOC
Metrics.

v2023.3.1 | 71

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-
frequency

integer

10000

Specify SOC
Metrics
sampling
frequency.
Minimum
supported
frequency

is '100" (Hz).
Maximum
supported
frequency is
1000000" (Hz).
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-set

see description

see description

Specify metric
set for SOC
Metrics
sampling.

The option
argument
must be one

of indices or
aliases reported
by --soc-
metrics-
set=help
switch. Default
is the first
supported set.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--start-frame-
index

1 <=integer

Start the
recording
session when

v2023.3.1 | 72

Profiling from the CLI

Short

Long

Possible Default Switch
Parameters Description

the frame index
reaches the
frame number
preceding the
start frame
index. Note
when it is
selected cannot
include any
other start
options. If

not specified,
the default is
disabled.

--start-later

true, false false [BETA] Delays
collection
indefinitely
until the nsys
start command
is executed for
this session.
Enabling

this option
overrides the --
delay option.

--stats

true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

www.nvidia.com
User Guide

--stop-on-exit

true, false true If true, stop
collecting

v2023.3.1 | 73

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

automatically
when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--system-wide

true,false

false

Perform
system-wide
injection using
Windows
hooks.
Equivalent

to setting the
--injection-
use-detours
option to the
inverse value,
e.g. setting
--system-
wide=true has
the same effect
as setting --
injection-use-
detours=false.

www.nvidia.com
User Guide

--trace

cuda, nvtx,
cublas, cublas-
verbose,
cusparse,
cusparse-
verbose, cudnn,

cuda, openg],
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.

v2023.3.1 | 74

Profiling from the CLI

www.nvidia.com
User Guide

Short Long Possible Default Switch
Parameters Description
opengl, opengl- Multiple APIs
annotations, can be selected,
openacc, separated
openmp, osrt, by commas
mpi, nvvideo, only (no
vulkan, vulkan- spaces). Since
annotations, OpenACC,
dx11, dx11- cuDNN and
annotations, cuBLAS
dx12, dx12- APIs are
annotations, tightly linked
oshmem, ucx, with CUDA,
wddm, tegra- selecting one of
accelerators, those APIs will
none automatically

enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information

on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option

is selected,

no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on

v2023.3.1 | 75

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

IBM Power
target.

--trace-fork-
before-exec

true, false

false

If true, trace
any child
process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might
cause your
application

to crash or
deadlock. Note:
This option is
only available
on Linux target
platforms.

--vsync

true, false

false

Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline
ftrace events
will also be
captured.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--vulkan-gpu-
workload

true, false,
individual,
batch, none

individual

If individual
or true, trace
each Vulkan
workload's
GPU activity
individually.
If batch,

v2023.3.1 | 76

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

trace Vulkan
workloads'
GPU activity in
vkQueueSubmit
call batches.

If none or

false, do not
trace Vulkan
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

www.nvidia.com
User Guide

--wddm-
additional-
events

true, false

true

If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch

is applicable
only when --
trace=swddm

v2023.3.1 | 77

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

is specified.
This option is
only supported
on Windows
targets.

--wddm- true, false false If true, collect
backtraces backtraces of
WDDM events.
Disabling this
data collection
can reduce
overhead for
certain target
applications.
Note that

this switch

is applicable
only when --
trace=swddm

is specified.
This option is
only supported
on Windows
targets.

--xhv-trace <filepath none Collect

pct.json > hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--xhv-trace- all, none, core, |all Available in
events sched, irq, trap Nsight Systems
Embedded
Platforms
Edition only.

1.3.6. CLI Sessions Command Switch Subcommands

After choosing the sessions command switch, the following subcommands are
available. Usage:

nsys [global-options] sessions [subcommand]

www.nvidia.com
User Guide v2023.3.1 | 78

Profiling from the CLI

Subcommand Description

list List all active sessions including ID, name,
and state information

1.3.6.1. CLI Sessions List Command Switch Options

After choosing the sessions list command switch, the following options are
available. Usage:

nsys [global-options] sessions list [options]

Short Long Possible Default Switch
Parameters Description
--help <tag> none Print the help

message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-p --show-header |true, false true Controls
whether a
header should
appear in the
output.

1.3.7. CLI Shutdown Command Switch Options

After choosing the shutdown command switch, the following options are available.
Usage:

nsys [global-options] shutdown [options]

Short Long Possible Default Switch
Parameters Description
--help <tag> none Print the help

message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant

www.nvidia.com
User Guide v2023.3.1 | 79

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
to the tag will
be printed.
--kill On Linux: one, |[On Linux: Send signal
sigkill, sigterm, |sigterm to tf;e ta'rge't
signal number . application's
& On Windows: process group
On Windows: |true when shutting
true, false down session.
--session session none Shutdown
identifier the indicated
session.
The option

argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.8. CLI Start Command Switch Options

After choosing the start command switch, the following options are available. Usage:

nsys [global-options]

www.nvidia.com
User Guide

start [options]

v2023.3.1 | 80

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--accelerator-
trace

none,tegra-
accelerators

none

Collect other
accelerators
workload
trace from
the hardware
engine units.
Only available
on Nsight
Systems
Embedded
Platforms
Edition.

--backtrace

auto,fp,lbr,dwarf

none

Select the
backtrace
method to use
while sampling.
The option 'lbr’
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp' is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWAREF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce
collection
overhead.

www.nvidia.com
User Guide

v2023.3.1 | 81

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--capture-range

none,
cudaProfilerApi,
hotkey, nvtx

none

When --
capture-range is
used, profiling
will start

only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
hotkey works
for graphic
applications
only. CUDA

or NVTX
tracing must
be enabled

on the target
application

for '-c
cudaProfilerApi'
or -cnvtx' to
work.

www.nvidia.com
User Guide

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown

Specify the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any

v2023.3.1 | 82

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
subsequent

capture ranges
will be ignored.
Target app

will continue
running.

If stop-
shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat|[:N],
collection will
stop at capture
range end and
subsequent
capture

ranges will
trigger more
collections. Use
the optional

:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.

If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown

and repeat-
shutdown:N,
as always use
--kill option

www.nvidia.com
User Guide v2023.3.1 | 83

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

to specify
whether target
app should

be terminated
when shutting
down session.

--cpu-core-
events (not
Nsight Systems
Embedded
Platforms
Edition)

'help’ or the end
users selected
events in the
format 'x,y'

2'1.e.
Instructions
Retired

Select the CPU
Core events to
sample. Use the
--cpu-core-
events=help
switch to see
the full list of
events and

the number of
events that can
be collected
simultaneously.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable.

www.nvidia.com
User Guide

--cpuctxsw

process-tree,
system-wide,
none

process-tree

Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none’, the
--cpuctxsw

v2023.3.1 | 84

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application

is launched,
the default is
‘process-tree’,
otherwise the
default is 'none'.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded
Platforms
Edition.

--ell-sampling

true, false

false

Enable EL1
sampling.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.

--e]1-sampling-
config

<filepath
config.json >

none

EL1 sampling
config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--etw-provider

"<name>,<guid>"|
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name

and GUID,
provide a JSON
configuration

v2023.3.1 | 85

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--event-sample

system-wide,
none

none

Use the --
cpu-core-
events=help
and the --os-
events=help
switches to see
the full list of
events. If event
sampling is
enabled and
no events are
selected, the
CPU Core event
'Instructions
Retired' is
selected by
default. Not
available in
Nsight Systems
Embedded
Platforms
Edition.

www.nvidia.com
User Guide

--event-
sampling-
frequency

Integers from 1
to 20 Hz

The sampling
frequency
used to collect
event counts.
Minimum
event sampling
frequency is 1
Hz. Maximum
event sampling
frequency is

20 Hz. Not
available in

v2023.3.1 | 86

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Nsight Systems
Embedded
Platforms
Edition.

--export

arrow, hdf, json,
sqlite, text, none

none

Create
additional
output file(s)
based on the
data collected.
This option

can be given
more than once.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--flush-on-
cudaprofilerstop

true, false

true

If set to true,
any call to
cudaProfilerStop
will cause the
CUDA trace
buffers to be
flushed. Note
that the CUDA
trace buffers
will be flushed
when the
collection ends,
irrespective of
the value of this
switch.

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-

rep, .arrows, .hdf

www.nvidia.com
User Guide

v2023.3.1 | 87

~

json, .sqlite, .

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--ftrace

Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/

eventl,subsystem2/

event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep-
user-config

true, false

false

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpu-metrics-
device

GPU ID, help,
all, none

none

Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer

10000

Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

www.nvidia.com
User Guide

--gpu-metrics-
set

index

first

Specify metric
set for GPU

v2023.3.1 | 88

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
Metrics
sampling.

The argument
must be one of
indices reported
by --gpu-
metrics-
set=help
switch. Default
is the first
metric set

that supports
selected GPU.

--gpuctxsw true false false Trace GPU
context
switches.

Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--isr true, false false Trace Interrupt
Service
Routines (ISRs)
and Deferred
Procedure
Calls (DPCs).
Requires
administrative
privileges.
Available only

www.nvidia.com
User Guide v2023.3.1 | 89

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

on Windows
devices.

--nic-metrics

true, false

false

Collect metrics
from supported
NIC/HCA
devices

--0s-events

'help’ or the end
users selected
events in the
format 'x,y’

none

Select the

OS events

to sample.

Use the --os-
events=help
switch to see
the full list of
events. Multiple
values can

be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable. Not
available in
Nsight Systems
Embedded
Platforms
Edition.

www.nvidia.com
User Guide

--output

< filename >

report#

Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the

value of the
environment
variable.

Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the

v2023.3.1 | 90

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

filename will
be substituted
with the PID

of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.{nsys-
rep,sqlite,h5,txt,3
in the working
directory.

--process-scope

main, process-
tree, system-
wide

main

Select which
process(es)

to trace.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--retain-etw-
files

true, false

false

Retain ETW
files generated
by the trace,
merge and
move the files
to the output
directory.

www.nvidia.com
User Guide

--sample

process-tree,
system-wide,
none

process-tree

Select how to
collect CPU
IP/backtrace
samples.

If none' is

selected, CPU

v2023.3.1 | 91

rrows,json}

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

sampling

is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.

If a target
application

is launched,

the default is
‘process-tree’,
otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on

all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none’.

www.nvidia.com
User Guide

--samples-per-
backtrace

integer <= 32

The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU

IP sample
collected, a
backtrace

will also be
collected.
Lower values
increase the
amount of
data collected.

v2023.3.1 | 92

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.

If DWARF
backtraces are
collected, the
default is 4,
otherwise the
defaultis 1.
This option is
not available on
Nsight Systems
Embedded
Platforms
Edition or on
non-Linux
targets.

www.nvidia.com
User Guide

--sampling-
frequency

integers
between 100
and 8000

1000

Specity the
sampling/
backtracing
frequency.

The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency

is 8000 Hz.
This option

is supported
only on QNX,
Linux for Tegra,
and Windows
targets.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded

v2023.3.1 | 93

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Platforms
Edition

--sampling-
period (Nsight
Systems
Embedded
Platforms
Edition)

integer

determined
dynamically

The number

of CPU Cycle
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces
may also be
collected.

The smaller
the sampling
period, the
higher the
sampling

rate. Note

that smaller
sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s). Requires
--sampling-
trigger=perf
switch.

www.nvidia.com
User Guide

--sampling-
period (not
Nsight Systems
Embedded
Platforms
Edition)

integer

determined
dynamically

The number of
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. The
event used

to trigger the
collection of

a sample is
determined
dynamically.

v2023.3.1 | 94

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

For example,
on Intel based
platforms, it
will probably
be "Reference
Cycles" and
on AMD
platforms,
"CPU Cycles".
If configured,
backtraces
may also be
collected.

The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option

is available
only on Linux
targets.

www.nvidia.com
User Guide

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched

Specity
backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Auvailable on
Nsight Systems
Embedded
Platforms

v2023.3.1 | 95

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Edition targets
only.

--session

session
identifier

none

Start the
application in
the indicated
session.

The option
argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com
User Guide

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will
be substituted
with the

v2023.3.1 | 96

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--soc-metrics true,false false Collect SOC
Metrics.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics- | integer 10000 Specify SOC
frequency Metrics
sampling
frequency.
Minimum
supported
frequency

is 100" (Hz).
Maximum
supported
frequency is
1000000" (Hz).
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-set | see description | see description |Specify metric
set for SOC
Metrics
sampling.

The option
argument

must be one

of indices or
aliases reported
by --soc-

www.nvidia.com
User Guide v2023.3.1 | 97

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

metrics-
set=help
switch. Default
is the first
supported set.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--stats

true, false

false

Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-X

www.nvidia.com
User Guide

--stop-on-exit

true, false

true

If true, stop
collecting
automatically
when all
tracked
processes have
exited or when
stop command
is issued -
whichever
occurs first.

If false, stop
only on stop
command.
Note: When this
is true, stop
command is

v2023.3.1 | 98

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

optional. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--vsync true, false false Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline
ftrace events
will also be
captured.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace <filepath none Collect

pct.json > hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--xhv-trace- all, none, core, |all Available in
events sched, irq, trap Nsight Systems
Embedded
Platforms
Edition only.

1.3.9. CLI Stats Command Switch Options

The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV.

Reports are generated from an SQLite export of a .nsys-rep file. If a .nsys-rep file is
specified, Nsight Systems will look for an accompanying SQLite file and use it. If no
SQLite file exists, one will be exported and created.

www.nvidia.com
User Guide v2023.3.1 | 99

Profiling from the CLI

Individual reports are generated by calling out to scripts that read data from the SQLite
file and return their report data in CSV format. Nsight Systems ingests this data and
formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the
second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

nsys [global-options] stats [options] [input-file]

Short Long Possible Default Switch
Parameters Description
--help <tag> none Print the help

message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-f --format column, table, Specity the
csv, tsv, json, output format.
hdoc, htable, . The special
name "."
indicates the
default format
for the given
output. The
default format
for console

is column,
while files
and process

www.nvidia.com
User Guide v2023.3.1 | 100

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

outputs default
to csv. This
option may be
used multiple
times. Multiple
formats

may also be
specified using
a comma-
separated list
(<name[:args...]
[namel[:args...]...]
See Report
Scripts for
options
available with
each format.

--force-export

true, false

false

Force a re-
export of

the SQLite

file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--force-
overwrite

true, false

false

Overwrite any
existing report
file(s).

www.nvidia.com
User Guide

--help-formats

<format_name>,
ALL, [none]

none

With no
argument, give
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
that format is
displayed. If
ALLis given, a
more detailed
explanation of
all available

v2023.3.1 | 101

>).

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

formats is
displayed.

--help-reports

<report_name>,
ALL, [none]

none

With no
argument, list
a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALLIis given, a
more detailed
explanation of
all available
reports is
displayed.

www.nvidia.com
User Guide

--output

-, @<command>,
<basename>, .

Specity

the output
mechanism.
There are

three output
mechanisms:
print to console,
output to file,
or output to
command. This
option may be
used multiple
times. Multiple
outputs

may also be
specified using
a comma-
separated list.
If the given
output name

is "-", the
output will be
displayed on
the console.

If the output

v2023.3.1 | 102

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

name starts
with "@",

the output
designates a
command to
run. The nsys
command will
be executed
and the analysis
output will be
piped into the
command. Any
other output

is assumed

to be the base
path and name
for afile. If a
file basename

is given, the
filename

used will be:
<basename>_<an
The default
base (including
path) is the
name of the
SQLite file

(as derived
from the input
file or --sqlite
option), minus
the extension.
The output "."
can be used

to indicate the
analysis should
be output to

a file, and

the default
basename
should be used.
To write one or
more analysis
outputs to
files using

plysis&args>.<

the default

v2023.3.1 | 103

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

basename, use
the option: "--
output .". If the
output starts
with "@", the
nsys command
output is piped
to the given
command.

The command
is run, and

the output is
piped to the
command's
stdin (standard-
input). The
command's
stdout and
stderr remain
attached to the
console, so any
output will

be displayed
directly to the
console. Be
aware there
are some
limitations

in how the
command
string is parsed.
No shell
expansions
(including *, ?,
[], and ~) are
supported.
The command
cannot be piped
to another
command, nor
redirected to

a file using
shell syntax.
The command
and command
arguments

v2023.3.1 | 104

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

are split on
whitespace,
and no quotes
(within the
command
syntax) are
supported. For
commands that
require complex
command line
syntax, it is
suggested that
the command
be put into a
shell script file,
and the script
designated

as the output
command.

--quiet

Do not display
verbose

messages, only
display errors.

www.nvidia.com
User Guide

--report

See Report
Scripts

Specity the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports

may also be
specified using
a comma-
separated list
(<name[:args...]
[name[:args...]...]
If no reports are
specified, the
following will
be used as the
default report
set: nvtx_sum,

osrt_sum,

v2023.3.1 | 105

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

cuda_api_sum,
cuda_gpu_kern_
cuda_gpu_mem |
cuda_gpu_mem |
openmp_sum,
opengl_khr_rang
opengl_khr_gpu|
vulkan_marker_{
vulkan_gpu_ma
dx11_pix_sum,
dx12_gpu_markg
dx12_pix_sum,
wddm_queue_sy
um_sum,
um_total_sum,
um_cpu_page_{3
openacc_sum.
See Report
Scripts section
for details

about existing
built-in scripts
and how to
make your own.

Eum,
time_sum,
size_sum,

e_sum,
 range_sum,
um,
ker_sum,

r_sum,

m,

ults_sum,

www.nvidia.com
User Guide

--report-dir

<path>

Add a directory
to the path
used to find
report scripts.
This is usually
only needed

if you have

one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds
a new directory
to the end of
the path. A
search path can
also be defined
using the
environment

variable

v2023.3.1 | 106

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

"NSYS_STATS R
Directories
added this

way will be
added after

the application
flags. The last
two entries in
the path will
always be the
current working
directory,
followed by

the directory
containing the
shipped nsys
reports.

EPORT_PATH

--sqlite

<file.sqlite>

Specity the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file before
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

www.nvidia.com
User Guide

--timeunit

nsec,
nanoseconds,
usec,
microseconds,
msec,
milliseconds,
seconds

nanoseconds

Set basic unit
of time. The
argument of
the switch

is matched
by using the
longest prefix
matching.

Meaning that it

v2023.3.1 | 107

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

is not necessary
to write a
whole word

as the switch
argument.

It is similar

to passing a
":time=<unit>"
argument to
every formatter,
although the
formatter

uses more

strict naming
conventions.
See "nsys stats
--help-formats
column" for
more detailed
information on
unit conversion.

1.3.10. CLI Status Command Switch Options

The nsys status command returns the current state of the CLI. After choosing the
status command switch, the following options are available. Usage:

nsys [global-options] status [options]

Short Long Possible Default Switch
Parameters Description

-e --environment Returns
information
about the
system
regarding
suitability of
the profiling
environment.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is

www.nvidia.com
User Guide v2023.3.1 | 108

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

provided, only
options relevant
to the tag will
be printed.

--session session none Print the status
identifier of the indicated
session.

The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.11. CLI Stop Command Switch Options

After choosing the stop command switch, the following options are available. Usage:
nsys [global-options] stop [options]

Short Long Possible Default Switch
Parameters Description
--help <tag> none Print the help

message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is

www.nvidia.com
User Guide v2023.3.1 | 109

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

provided, only
options relevant
to the tag will
be printed.

--session

session
identifier

none

Stop the
indicated
session.

The option
argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
%$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.4. Example Single Command Lines

Version Information

nsys -v

Effect: Prints tool version information to the screen.

Run with elevated privilege

sudo nsys profile <app>

Effect: Nsight Systems CLI (and target application) will run with elevated privilege.
This is necessary for some features, such as FTrace or system-wide CPU sampling. If you

don't want the target application to be elevated, use "--run-as’ option.

www.nvidia.com
User Guide

v2023.3.1 | 110

Profiling from the CLI

Default analysis run

nsys profile <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and

OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. With Nsight Systems Embedded Platforms Edition this will only analysis
the single process. With Nsight Systems Workstation Edition this will trace the process
tree. Generate the report#.nsys-rep file in the default location, incrementing the report
number if needed to avoid overwriting any existing output files.

Limited trace only run

nsys profile --trace=cuda,nvtx -d 20
--sample=none --cpuctxsw=none -o my test <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.nsys-rep in the current
working directory.

Delayed start run
nsys profile -e TEST ONLY=0 -y 20

<application> [application-arguments]
Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.nsys-rep
file in the default location, incrementing if needed to avoid overwriting any existing
output files.

Collect ftrace events
nsys profile --ftrace=drm/drm vblank event

-d 20
Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.nsys-rep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:

sudo cat /sys/kernel/debug/tracing/available events

Run GPU metric sampling on one TU10x
nsys profile --gpu-metrics-device=0

--gpu-metrics-set=tulOx-gfxt <application>
Effect: Launch application. Collect default options and GPU metrics for the first GPU
(a TU10x), using the tulOx-gfxt metric set at the default frequency (10 kHz). Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

www.nvidia.com
User Guide v2023.3.1 | 111

Profiling from the CLI

Run GPU metric sampling on all GPUs at a set frequency
nsys profile --gpu-metrics-device=all
-—-gpu-metrics-frequency=20000 <application>

Effect: Launch application. Collect default options and GPU metrics for all available
GPUs using the first suitable metric set for each and sampling at 20 kHz. Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Collect CPU IP/backtrace and CPU context switch

nsys profile --sample=system-wide --duration=5

Effect: Collects both CPU IP/backtrace samples using the default backtrace mechanism
and traces CPU context switch activity for the whole system for 5 seconds. Note that it
requires root permission to run. No hardware or OS events are sampled. Post processing
of this collection will take longer due to the large number of symbols to be resolved
caused by system-wide sampling.

Get list of available CPU core events
nsys profile --cpu-core-events=help

Effect: Lists the CPU events that can be sampled and the maximum number of CPU
events that can be sampled concurrently.

Collect system-wide CPU events and trace application
nsys profile --event-sample=system-wide
--cpu-core-events='1,2' --event-sampling-frequency=5 <app> [app args]

Effect:Collects CPU IP/backtrace samples using the default backtrace mechanism, traces
CPU context switch activity, and samples each CPU's “CPU Cycles” and “Instructions
Retired” event every 200 ms for the whole system. Note that it requires root permission
to run. Note that CUDA, NVTX, OpenGL, and OSRT within the app launched by
Nsight Systems are traced by default while using this command. Post processing of this
collection will take longer due to the large number of symbols to be resolved caused by
system-wide sampling.

Collect custom ETW trace using configuration file

nsys profile --etw-provider=file.JSON

Effect: Configure custom ETW collectors using the contents of file. JSON. Collect data for
20 seconds. Generate the report#.nsys-rep file in the current working directory.

A template JSON configuration file is located at in the Nsight Systems installation
directory as \target-windows-x64\etw_providers_template.json. This path will show up
automatically if you call

nsys profile --help
The level attribute can only be set to one of the following:

TRACE_LEVEL_CRITICAL
TRACE_LEVEL_ERROR
TRACE_LEVEL_WARNING
TRACE_LEVEL_INFORMATION
TRACE_LEVEL_VERBOSE

vV vV v v VY

www.nvidia.com
User Guide v2023.3.1 | 112

Profiling from the CLI

The flags attribute can only be set to one or more of the following;:

EVENT_TRACE_FLAG_ALPC
EVENT_TRACE_FLAG_CSWITCH
EVENT_TRACE_FLAG_DBGPRINT
EVENT_TRACE_FLAG_DISK_FILE_IO
EVENT_TRACE_FLAG_DISK_IO
EVENT_TRACE_FLAG_DISK_IO_INIT
EVENT_TRACE_FLAG_DISPATCHER
EVENT_TRACE_FLAG_DPC
EVENT_TRACE_FLAG_DRIVER
EVENT_TRACE_FLAG_FILE_IO
EVENT_TRACE_FLAG_FILE_IO_INIT
EVENT_TRACE_FLAG_IMAGE_LOAD
EVENT_TRACE_FLAG_INTERRUPT
EVENT_TRACE_FLAG_JOB
EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS
EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS
EVENT_TRACE_FLAG_NETWORK_TCPIP
EVENT_TRACE_FLAG_NO_SYSCONFIG
EVENT_TRACE_FLAG_PROCESS
EVENT_TRACE_FLAG_PROCESS_COUNTERS
EVENT_TRACE_FLAG_PROFILE
EVENT_TRACE_FLAG_REGISTRY
EVENT_TRACE_FLAG_SPLIT_IO
EVENT_TRACE_FLAG_SYSTEMCALL
EVENT_TRACE_FLAG_THREAD
EVENT_TRACE_FLAG_VAMAP
EVENT_TRACE_FLAG_VIRTUAL_ALLOC

vV V. vV v VvV vV v vV VvV vV Vv VvV vV Vv VvV vV v v VvV VvV Y YV VY v V%Y

Typical case: profile a Python script that uses CUDA
nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
--delay=60 python my dnn script.py

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan
nsys profile --trace=vulkan,osrt,nvtx
--delay=60 ./myapp

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule
information.

www.nvidia.com
User Guide v2023.3.1 | 113

Profiling from the CLI

1.5. Example Interactive CLI Command Sequences

Collect from beginning of application, end manually

nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-

arguments]
nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and
NVTX as well as collection of thread schedule information. Stop only when explicitly

requested. Generate the report#.nsys-rep in the default location.

www.nvidia.com
User Guide

Note:

If

you
start

a
collection
and

fail

to

stop

the
collection
(or

if

you

are
allowing
it

to

stop

on

exit,

and

the
application
runs

for

too

long)
your
system’s
storage
space
may

be

filled
with
collected
data
causing
significant
issues
for

v2023.3.1 | 114

Profiling from the CLI

the
system.
Nsight
Systems
will
collect

a
different
amount

of

data/

sec
depending
on
options,
but

in

general
Nsight
Systems
does

not
support
runs

of

more

than

5
minutes
duration.

Run application, begin collection manually, run until process ends

nsys launch -w true <application> [application-arguments]
nsys start

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the
report#.nsys-rep in the default location.

If

you

launch

an
application
and

that

Note: application
and

any
descendants
exit

before
start

is

called

www.nvidia.com
User Guide v2023.3.1 | 115

Profiling from the CLI

Nsight
Systems
will
create

a

fully
formed .nsys-
rep

file
containing
no

data.

Run application, start/stop collection using cudaProfilerStart/Stop

nsys start -c cudaProfilerApi
nsys launch -w true <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as

a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,
when the user calls nsys stop, or when the root process terminates. Generate the
report#.nsys-rep in the default location.

If

you

call
nsys
launch
before
nsys
start
(o]
cudaProfilerApi
and

the
code
contains
a

Note: large
number
of

short
duration
cudaProfilerStart/
Stop
pairs,
Nsight
Systems
may

be
unable
to
process
them
correctly,

www.nvidia.com
User Guide v2023.3.1 | 116

Profiling from the CLI

causing
a

fault.
This
will

be
corrected
in

a
future
version.

The
Nsight
Systems
CLI

does

not
support
multiple
calls

to

the
cudaProfilerStart/
Stop

API

at

this
time.

Note:

Run application, start/stop collection using NVTX

nsys start -c nvtx
nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.nsys-rep in the default location.

The
Nsight
Systems
CLI

only
triggers
the
profiling
session
for

the

first

Note:

www.nvidia.com
User Guide v2023.3.1 | 117

Profiling from the CLI

capture
range.

NVTX capture range can be specified:

>

Message@Domain: All ranges with given message in given domain are capture
ranges. For example:

nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

Message@*: All ranges with given message in all domains are capture ranges. For
example:

nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

Message: All ranges with given message in default domain are capture ranges. For
example:

nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX PROFILER REGISTER_ONLY=0 environment:

nsys launch -w true -p profiler@service -e
NSYS NVTX PROFILER REGISTER ONLY=0 . /app

The
separator
‘@

can

be
escaped
with
backslash
\'
If
multiple
separators
Note: without
escape
character
are
specified,
only

the

last

one

is

applied,
all

others

www.nvidia.com
User Guide

v2023.3.1 | 118

Profiling from the CLI

are
discarded.

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.

nsys launch <application> [application-arguments]
nsys start

nsys stop

nsys start

nsys stop

nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in the
current working directory. Collect data from second start until the second stop request,
generate report#.nsys-rep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

Calling
nsys
cancel
after
nsys
start
will
cancel
the
collection
without
generating
a

report.

Note:

1.6. Example Stats Command Sequences

Display default statistics
nsys stats reportl.nsys-rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming it
does not already exist). Print the default reports in column format to the console.

Note: The following two command sequences should present very similar information:
nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats reportl.nsys-rep

www.nvidia.com
User Guide v2023.3.1 | 119

Profiling from the CLI

Display specific data from a report
nsys stats --report cuda_gpu trace reportl.nsys-rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming it
does not already exist). Print the report generated by the cuda_gpu_trace script to the
console in column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report cuda_gpu trace --report cuda gpu kern sum --
report cuda api_sum --format csv,column --output .,- reportl.nsys-
rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming it
does not already exist). Generate three reports. The first, the cuda_gpu_trace report,
will be output to the file reportl_cuda_gpu_trace.csv in CSV format. The other two
reports, cuda_gpu_kern_sumand cuda_api_sum, will be output to the console as
columns of data. Although three reports were given, only two formats and outputs are
given. To reconcile this, both the list of formats and outputs is expanded to match the list
of reports by repeating the last element.

Submit report data to a command

nsys stats --report cuda_api_sum --format table \ --output @“grep -E
(- IName | cudaFree” test.sqlite

Effect: Open test.sqlite and run the cuda_api_sum script on that file. Generate table
data and feed that into the command grep -E (-|Name |cudaFree). The grep
command will filter out everything but the header, formatting, and the cudaFree data,
and display the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped

to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

1.7. Example Output from --stats Option

The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

www.nvidia.com
User Guide v2023.3.1 | 120

Profiling from the CLI

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

Generating cuda API Statistics...
cuda API Statistics

Time (ns) Avg (ns) Min (ns) Max (ns)

1858829425 4601062.9 131864 18705795 cudaMemcpy

287212369 287212369.0 287212369 287212369 cudaMalloc3DArray
108862768 49148.0 3478 15493937 cudaGraphicsMapResources
84097966 416326.6 258148 2046180 cudaMalloc

75687195 376553.2 167486 1559709 cudaFree

54669996 24681.7 3261 17194720 cudaGraphicsUnmapResources
37697367 8930.9 S 71517 cudalaunch

36258561 179497.8 5441 737046 cudaMemcpyToSymbol

1961207 392241.4 358245 490291 cudaGraphicsGLRegisterBuffer
661494 156.7 94 4855 cudaConfigurecCall

469750 469750. 469750 469750 [ILER L) ED]

6513 6513.0 6513 6513 cudaBindTextureToArray

oW
we

0000 = kEMNWWLRA =~

QOO F,r BAUNEODWW:

Generating cuda Kernel and Memory Operation Statistics...
cuda Kernel Statistics

Time (ns) Instances Avg (ns) Min (ns)

20957543 17377.7 DeviceRadixSortDownsweepKernel
19951318 16543.4 RadixSortScanBinsKernel
7381869 6121.0 DeviceRadixSortUpsweepKernel
6605490 10954.4 _kernel_agent

Operation Statistics (time)

Time (ns) Operations Avg (ns) Min (ns)

10809160 [CUDA memcpy HtoD]
[CUDA memcpy HtoA]

cuda Memory Operation Statistics (bytes)

Total Bytes (KB) Operations Avg (KB) Min (bytes)

[CUDA memcpy HtoD]
4096.0 4194304 4096.0 [CUDA memcpy HtoA]

If your run traces OS runtime events or NVTX push-pop ranges:

www.nvidia.com
User Guide v2023.3.1 | 121

Profiling from the CLI

Generating Operating System Runtime API Statistics...
Operating System Runtime API Statistics

Time (ns) Calls Avg (ns) Min (ns) Max (ns)

7780422146 20052634.4 101325794

7486252249 801226050.6 18165 100621271 sem_timedwait
7001017913 500072708.1 500054528 500094119 pthread_cond_timedwait
691921867 240334.1 1600 16503430 ioctl
20746589 9622.7 4763 43645 fgets
15236506 55405.5 1821 14452991 recvmsg
5341120 11713.8 1122 258129 fopen

3961960 13950.6 1000 91521 mmap

3660301 8414.5 1457 27680 fclose
1959897 7963.8 2252 69097 munmap
1020789 5261.8 2068 19845 open64

841520 1720.9 1000 16808 sched_yield
623388 15584.7 1807 50469 read

582336 3685.7 1289 78529 recv

279456 3493.2 1111 18551 writev

149645 2338.2 1214 18598 open

144462 28892.4 22780 39774 pthread_create
139762 9317.5 1118 77744 fread

52949 4873.0 1341 9112 mprotect
38777 4308.6 2443 10141 write

22994 5748.5 4763 6798 socket

21660 5265.0 4674 5925 sendmsg

18287 4571.7 2795 T277 socketpair
16881 5627.0 2390 7615 connect

12617 2523.4 1157 3926 mmap64

11368 3789.3 2270 5849 pipe2

11014 5507.0 4484 6530 pthread_cond_signal
5121 5121.0 5121 5121 fopen64

5118 1706.0 1086 2945 fentl

4102 4102.0 4182 4102 shutdown

3587 3587.0 3587 3587 lockf

1744 1744.0 1744 1744 bind

1007 1087.0 1807 1007 fflush

@M W

Q0000000000000 Q00O MFEO-

D00 0000000000000 0000000000000 WWWW

R RERWHRNWU WA SRS

Generating NVTX Push-Pop Range Statistics...
NVTX Push-Pop Range Statistics

Time (ns) Instances Avg (ns) Min (ns) Max (ns)

6856491504 34111898.0 6935189 285693359 frame
499693190 2486035.8 1874225 31362835 render

If your run traces graphics debug markers these include DX11 debug markers, DX12
debug markers, Vulkan debug markers or KHR debug markers:

www.nvidia.com
User Guide v2023.3.1 | 122

Profiling from the CLI

x64\reports\vulkanmarkerssun.py D:\src\output_host\Built\Bin\QuadD-Release\target-windows-x64\marker_test\ued_infiltrator_vulkan_markers.sqlite]...
Range
1716925

489111
20¢

ngGBuffer
eringTranslucency

Simulation
dowProjection

UpdateGPU:
ComputeLightGrid

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

1.8. Importing and Viewing Command Line Results
Files

The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .nsys-rep

tile. Use this .nsys-rep file when re-opening the result on the same machine, opening the
result on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .nsys-rep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .nsys-rep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

www.nvidia.com
User Guide v2023.3.1 | 123

Profiling from the CLI

File View Help

Mew Project Ctrl+M
Open... Ctrl+0
Import... Ctrl+|
Exit

T i L

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Importing Windows ETL files

For Windows targets, ETL files captured with Xperf or the 1og.emd command supplied
with GPUView in the Windows Performance Toolkit can be imported to create reports
as if they were captured with Nsight Systems's "WDDM trace" and "Custom ETW trace"
features. Simply choose the .etl file from the Import dialog to convert it to a .nsys-rep
file.

Create .nsys-rep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .nsys-
rep file. This .nsys-rep file can then be opened in the same version or more recent
versions of the GUI

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or macOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information

about available
options and their
parameters.

-v --version Output
QdstrmImporter
version information

-i --input-file filename or path Import .qdstrm file
from this location.

-0 --output-file filename or path Provide a different
file name or path for
the resulting .nsys-

www.nvidia.com
User Guide v2023.3.1 | 124

Profiling from the CLI

Short Long Parameter Description

rep file. Default is
the same name and
path as the .qdstrm
file

1.9. Using the CLI to Analyze MPI Codes

1.9.1. Tracing MPI API calls

The Nsight Systems CLI has built-in API trace support for Open MPI and MPICH based
MPI implementations via --trace=mpi. It traces a subset of the MPI AP], including
blocking and non-blocking point-to-point and collective communication as well as MPI
one-sided communication, file I/O and pack operations (see MPI functions traced).

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, you can use the NVTX wrappers for MPI on GitHub. Choose an
NVTX domain name other than "MPI", since it is filtered out by Nsight Systems when
MPI tracing is not enabled. Use the NVTX-instrumented MPI wrapper library as follows:

nsys profile -e LD_PRELOAD=${PATH TO YOUR NVTX MPI LIB} --trace=nvtx

1.9.2. Using the CLI to Profile Applications Launched
with mpirun

The Nsight Systems CLI supports concurrent use of the nsys profile command.

Each instance will create a separate report file. You cannot use multiple instances of the
interactive CLI concurrently, or use the interactive CLI concurrently with nsys profile
in this version.

Nsight Systems can be used to profile applications launched with mpirun or mpiexec.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLL

Profile all MPI ranks on a single node: nsys can be prefixed before mpirun/mpiexec.
Only a single report file will be created.

nsys [nsys options] mpirun [mpirun options]

Profile multi-node runs: nsys profile has to be prefixed before the program to be
profiled. One report file will be created for each MPI rank. This works also for single-
node runs.

mpirun [mpirun options] nsys profile [nsys options]

You can use $q{OMPI_COMM WORLD_ RANK} (Open MPI), $q{PMI_RANK} (MPICH) or
%$q{SLURM_PROCID} (Slurm) with the -o option to appropriately name the report files.

www.nvidia.com
User Guide v2023.3.1 | 125

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

Profile a single MPI process or a subset of MPI processes: Use a wrapper script similar
to the following script (called "profile_rank0.sh").
#!/bin/bash

Use S$PMI RANK for MPICH and $SLURM PROCID with srun.

if [$OMPI COMM WORLD RANK -eq 0]; then

nsys profile -e NSYS MPI STORE TEAMS PER RANK=1 -t mpi "$@"
else

"s@"
fi

The script runs nsys on rank 0 only. Add appropriate profiling options to the script and
execute it withmpirun [mpirun options] ./profile rankO.sh ./myapp [app
options].

If
only

a

subset

of

MPI

ranks

is

profiled,

set

the
environment
variable
NSYS_MPI_STORE_TEAMS PER RANK=1
to

store

all

members

of

custom

MPI
communicators
per

MPI

rank.
Otherwise,
the
execution
might

hang

or

fail

with

an

MPI

error.

Note:

Avoid redundant GPU and NIC metrics collection: If multiple instances of nsys
profile are executed concurrently on the same node and GPU and/or NIC metrics
collection is enabled, each process will collect metrics for all available NICs and tries to

www.nvidia.com
User Guide v2023.3.1 | 126

Profiling from the CLI

collect GPU metrics for the specified devices. This can be avoided with a simple bash
script similar to the following;:
#!/bin/bash

Use S$SLURM LOCALID with srun.

if [$OMPI_COMM WORLD LOCAL RANK -eq 0O]; then

nsys profile --nic-metrics=true --gpu-metrics-device=all "$@"
else

nsys profile "$@"
fi

This above script will collect NIC and GPU metrics only for one rank, the node-local
rank 0. Alternatively, if one rank per GPU is used, the GPU metrics devices can be
specified based on the node-local rank in a wrapper script as follows:

#!/bin/bash

Use $SLURM LOCALID with srun.

nsys profile -e CUDA VISIBLE DEVICES=${OMPI COMM WORLD LOCAL RANK} \
--gpu-metrics-device=${OMPI COMM WORLD LOCAL RANK} "$@"

www.nvidia.com
User Guide v2023.3.1 | 127

Chapter 2.
PROFILING FROM THE GUI

2.1. Profiling Linux Targets from the GUI

2.1.1. Connecting to the Target Device

Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

File Wiew Help

| Path to ADB is not set +

Configure ADB location...

Localhost connection
=Y workstation

USB connections

S5H connections (1)

1% workstation@127.0.0.1
55H connection groups

Configure devices...

| samole.adreo

On Tegra:

www.nvidia.com
User Guide v2023.3.1 | 128

Profiling from the GUI

USE connections -

USE connections
S5H connections

Configure devices...

The dialog has simple controls that allow adding, removing, and modifying connections:

® Manage network connections

N EErEETGE @® Network connection

Recent connection! Hostname or IP address: Port:
Device Username 102.168.1.71 v 22
Username:
|ubuntyl -

Authentication type

No authentication

® Password-based authentication

-

g Create a new c P
! Cancel oK |

| Close

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:

PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:

sudo firewall-cmd --list-ports —--permanent

sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:

sudo firewall-cmd --permanent —--add-port 45555/tcp
sudo firewall-cmd --reload

www.nvidia.com
User Guide v2023.3.1 | 129

Profiling from the GUI

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:

cat /proc/quadd/version
Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

2.1.2. System-Wide Profiling Options

2.1.2.1. Linux x86_64

System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

- Collect FTrace events

Choose FTrace events...
No events selected

Choose which events you would like to collect.

www.nvidia.com
User Guide v2023.3.1 | 130

Profiling from the GUI

Search criteria:

Check all

Uncheck all

X Choose functions

» alarmtimer
» block
» cgroup
3 clk
~ @ cma
cma_alloc
V| cma_release
compaction
cpuhp
dma_fence
& drm
drm_vblank_event
V| drm_vblank_event_delivered
drm_vblank_event_gqueued
» exceptions
» extd
- v fib
V| fib_table_lookup
v| fib_table_lookup_nh
v fib_validate_source
fib6
filelock
filemap
fies
fs
gpio
hda
hda_controller
hda_intel
huoe memaory

ivvw

oK

X Cancel

Note:

Ftrace
brofiling
bption
ill
hot
he
Hisplayed
n

he
GUI
inless

ou
hre
unning
ith

udo.
Also
he
hware
hat
Pnabling
00
mnany
bptions
Can
Cause
ignificant
etup/
eardown
bverhead.

www.nvidia.com
User Guide

v2023.3.1 | 131

GPU Context Switch Trace

Profiling from the GUI

Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

» Collect OS runtime libraries trace
» Collect OpenGL trace

» v Collect CUDA trace

» Collect MPI trace

» v Collect NVTX trace

» Collect vulkan trace

~ v Collect GPU context switch trace - BETA feature

Use this option to see how the GPU scheduler switches contexts.

Here is a screenshot showing three CUDA kernels running simultaneously in three

different CUDA contexts on a single GPU.

CuDA APl

) +o0ms osms
~ [16338] CudaPreemptionExample .
~ Threads (12)
~ [/ [16338] CudaPreemptionE ~ ! !!!
00

11th hiddes -
~ CUDA (Quadro GV100, 0000:04:00.0)
~ 29.0% Context 3

i

+100ms

» 100.0% Kernels

Waitkernel
HEEemel

~ 32.5% Context 2

» 100.0% Kernels Waitkernel

~ 38.5% Context 1

» 100.0% Kernels. Wiaitkernel
dGPU (Quadro GV100)

Aln 6877[8...|Run 6845[2.__ | Run 6861[2....|Run 6877[2.._(Run 6845[2.._| Run 686112 | Run 6877[2... (Run 6877

2.1.2.2. Linux for Tegra

System profiling options
=] []Trace all processes

Select to collect trace for all processes on the target device,

= Collect PMU counters

PMU counters: 1 counter selected

CPU cydes
Licachemisses: [JRead [Jwrite [Instruction
L2cache misses: [|Read [write [] Instruction

Trace all processes — On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events

from all tasks will be recorded.

Collect PMU counters — This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

2.1.3. Target Sampling Options

Target sampling behavior is somewhat different for Nsight Systems Workstation Edition

and Nsight Systems Embedded Platforms Edition.

www.nvidia.com
User Guide

v2023.3.1 | 132

Profiling from the GUI

Target Sampling Options for Workstation

* v Sample target process [T
Sampling rate: every 1 000 000 instructions per CPU

* v Collect call stacks of executing threads

Choose modes... | Current settings: use best backtracing algerithm.

Symbol locations... | No directories with symboal files.

When stripped libraries (e.g. *.s0 files) are used on the target, specify here directories with original
non-stripped libraries to get symbols resolved.

For best backtraces, specify the following compiler flags:
son x86_64: - fno-omit-frame-pointer -funwind-tables -g

Note that stripped binaries typically do not contain the debug informatien. Consider deploying
unstripped binaries.

~ Target application (1]
Mode: | Attach or launch ~ | Specify process launch options below

Command line with arguments: Edit arguments

Working directory:
Process name should be specified.

» Environment variables

v| Include child processes

V| Trace fork before exec

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have
limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled

with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

0 ConfFigure backktracing algorithm

Use Intel © Last Branch Record (LBR)
Use DWARF debug information

Use frame pointers

At least one of the options must be selected.

& X Cancel

www.nvidia.com
User Guide v2023.3.1 | 133

Profiling from the GUI

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
fixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread

context switches and infers thread state as either Running or Blocked. Note that

Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux
Target sampling options
Sampling rate: | 10kHz -

= Collect call stacks

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

2.1.4. Hotkey Trace Start/Stop

Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

www.nvidia.com
User Guide v2023.3.1 | 134

Profiling from the GUI

Start

Start profiling after

Lirnit profiling to

| Start profiling manually

Hotkey {F12} Start/Stop
(not available in consecle apps)

-

seconds

ceconds

The default hotkey is F12.

2.1.5. Launching Processes

Nsight Systems can launch new processes for profiling on target devices. Profiler
ensures that all environment variables are set correctly to successfully collect trace

information

Specify process launch options below

Command line with arguments:

‘Working directory:

Edit arguments

The Edit arguments link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces

or quotes.

Specify additional environment variables

Nsight Systems can add extra environment variables to existing variables for the profiled

process.

w Environment variables

If a process is started by Nsight Systems, the following environment variables will be specified on top
of the base environment (see details). You can use {WVAR_NAME} placeholder to refer to the variables

from the base environment.
Name =
XAUTHORITY {r

LD_PRELOAD {LD_PRELOAD}:{}

DISPLAY {}

v Inherit base environment
DISPLAY 1.0,:1

www.nvidia.com
User Guide

Value

DISPLAY

Edit
Add

Unset

Reset All

v2023.3.1 | 135

Profiling from the GUI

2.3. Profiling QNX Targets from the GUI

Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

» Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

» CUDA support is limited to CUDA 9.0+

» Filesystem on QNX device might be mounted read-only. In that case Nsight Systems
is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && 1ls -1 /xx

2.2. User Guide

NVIDIA Nsight Systems user guide.

www.nvidia.com
User Guide v2023.3.1 | 136

Chapter 3.
CONTAINER SUPPORT ON LINUX SERVERS

Collecting data within a Docker container

While examples in this section use Docker container semantics, other containers work
much the same.

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

We strongly recommend using the CLI to profile in a container. Best container practice
is to split services across containers when they do not require colocation. The Nsight
Systems GUI is not needed to profile and brings in many dependencies, so the CLI is
recommended. If you wish the GUI can be in a separate side-car container you use after
to view your report. All you need is a shared folder between the containers. See section
on GUI VNC Container below for more information.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:

$ grep CONFIG SECCOMP= /boot/config-$ (uname -r)

The official Docker documentation says:

"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
must download the latest static Linux binaries (rather than packages) ."

www.nvidia.com
User Guide v2023.3.1 | 137

https://docs.docker.com
https://docs.docker.com

Container Support on Linux Servers

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event_open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default_with_perf.json.

{

"name": "perf event open",
"action": "SCMP ACT ALLOW",
"args": []

by
Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.

--security-opt seccomp=default with perf.json
Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:
sudo nvidia-docker run --network=host --security-opt

seccomp=default with perf.json --rm -ti caffe-demo2 bash
There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

GUI VNC container

Nsight Systems provides a build script to build a self isolated Docker container with the
Nsight Systems GUI and VNC server.

You can find the build.py script in the host-1inux-x64/Scripts/VncContainer
directory (or similar on other architectures) under your Nsight Systems installation
directory. You will need to have Docker, and Python 3.5 or later.

Available Parameters

Short Name Full Name Description

--vnc-password (optional) Default
password for VNC access
(at least 6 characters). If it
is specified and empty -
will be asked during the
build. Can be changed
when running a container.

-aba --additional-build- (optional) Additional
arguments arguments, which will be

www.nvidia.com
User Guide v2023.3.1 | 138

https://www.docker.com

Container Support on Linux Servers

Short Name Full Name Description
passed to the "docker build"
command.

-hd --nsys-host-directory (optional) The directory

with Nsight Systems host
binaries (with GUI).

-td --nsys-target-directory (optional, repeatable) The
directory with Nsight
Systems target binaries
(can be specified multiple
times).

--tigervnc (optional) Use TigerVNC
instead of x11vnc.

--http (optional) Install noVINC
in the Docker container for
HTTP access.

-rdp (optional) Install xXRDP in
the Docker for RDP access.

--geometry (optional) Default VNC
server resolution in the
format WidthxHeight
(default 1920x1080).

--build-directory (optional) The directory to
save temporary files (with
the write access for the
current user). By default,
script or tmp directory will
be used.

Ports

These ports can be published from the container to provide access to the Docker
container:

Port Purpose Condition
TCP 5900 Port for VNC access
TCP 80 (optional) Port for HTTP access to Container is build with "--
noVNC server http" parameter
TCP 3389 (optional) Port for RDP access Container is build with "--
rdp" parameter

Volumes

www.nvidia.com
User Guide v2023.3.1 | 139

Container Support on Linux Servers

Docker folder Purpose Description

/mnt/host Root path for shared folders | Folder owned by the
Docker user (inner content
can be accessed from
Nsight Systems GUI)

/mnt/host/Projects Folder with projects and
reports, created by Nsight
Systems Ul in container

/mnt/host/logs Folder with inner services | May be useful to send
logs reports to developers

Environment variables

Variable Name Purpose
VNC_PASSWORD Password for VNC access (at least 6
characters)
NSYS_WINDOW_WIDTH Width of VNC server display (in pixels)
NSYS_WINDOW_HEIGHT Height of VNC server display (in pixels)
Examples

With VNC access on port 5916:
sudo docker run -p 5916:5900/tcp -ti nsys-ui-vnc:1.0

With VNC access on port 5916 and HTTP access on port 8080:
sudo docker run -p 5916:5900/tcp -p 8080:80/tcp -ti nsys-ui-vnc:1.0

With VNC access on port 5916, HTTP access on port 8080 and RDP access on port 33890:

sudo docker run -p 5916:5900/tcp -p 8080:80/tcp -p 33890:3389/tcp -ti nsys-ui-
vnc:1.0

With VNC access on port 5916, shared "HOME" folder from the host, VNC server
resolution 3840x2160, and custom VNC password

sudo docker run -p 5916:5900/tcp -v S$HOME:/mnt/host/home -e
NSYS WINDOW WIDTH=3840 -e NSYS WINDOW HEIGHT=2160 -e VNC PASSWORD=7654321 -ti
nsys-ui-vnc:1.0

With VNC access on port 5916, shared "HOME" folder from the host, and the projects
folder to access reports created by Nsight Systems GUI in container

sudo docker run -p 5916:5900/tcp -v SHOME:/mnt/host/home -v /opt/NsysProjects:/
mnt/host/Projects —-ti nsys-ui-vnc:1.0

GUI WebRTC container

Instructions for creating a self-isolated Docker container for accessing Nsight Systems
through browser using WebRTC.

Prerequisites

www.nvidia.com
User Guide v2023.3.1 | 140

Container Support on Linux Servers

» x86_64 Linux
» Docker
» Internet access for downloading Ubuntu packages inside the container.

Build

To build the docker container use the follwing command:
$ sudo ./setup/build-docker.sh

The above command will create a docker image, which can be run using ./start-nsys.sh
Build environment variables

Following environment variables can be used to configure build parameters.

Variable Description Default Value
USERNAME User name for NVIDIA nvidia
Nsight Systems GUI.

Password can be set on
container start

Additional docker build arguments

Additional Docker Build arguments may be passed to the build-docker.sh. For example:
$ sudo ./setup/build-docker.sh --network=host

Run
To run the docker container:
$ sudo ./start-nsys.sh

At the end of start-nsys. sh it will provide you with a URL to connect to the WebRTC
client. It will look something like http://$HOST IP:8080/. You can use this address in
your browser to access Nsight Systems GUI interface.

Additional docker run arguments

Additional Docker Run arguments may be passed to the start-nsys.sh. These
argument can be used to mount host directories with Nsight Systems reports to the
docker container. For example:

$ sudo ./start-nsys.sh -v $HOME:/mnt/host/home -v /myawesomereports:/mnt/host/
myawesomereports

Runtime environment variables

Runtime environment variables can be used to configure runtime parameters.

Variable Description Default Value

PASSWORD Password for WebUI. nvidia
Username can be set only
on the build step

HOST_IP IP of the server that will The IP address of the first
be sent to client. This IP available network interface.
should be accessible from

www.nvidia.com
User Guide v2023.3.1 | 141

https://docs.docker.com/engine/install
https://docs.docker.com/engine/reference/commandline/build
https://docs.docker.com/engine/reference/commandline/run

Container Support on Linux Servers

Variable Description Default Value

the client side to establish
client/server connection.

HTTP_PORT Port for HTTP access 8080

to Nsight System user
interface.

CONNECTION_UDP_PORT UDP port which will be 8081

used for handling the
incoming connection.

FALLBACK_CONNECTION TIPpB@dRihich will be 8081

used for handling the
incoming connection in
case of connection failure
over TCP (can be the
same port number as
CONNECTION_UDP_PORT).

SCREEN Resolution and refresh 1920x1080@30
rate of the screen used for
rendering.
USE_OPENH264_BUILD_CA&dtthg this option to true

false disables caching
of openh264 binaries. It
should be reenabled on
each container start.

OPENH264_BUILD_CACHH Di@ktoMIHOMNANEr volume | nvidia-devtools-streamer-

name for openh264 binaries | openh264-volume
cache.

Video encoding

By default, the container uses the VP8 codec for video streaming. For an improved
experience, the H.264 codec can be enabled.

>

If internet is available to download the required libraries:

$ sudo docker exec nvidia-devtools-streamer /setup/enable-h264-streaming.sh

If USE_OPENH264_BUILD_CACHE was not set to false, openh264 binaries will be
cached in OPENH264_BUILD_CACHE_VOLUME_NAME and H.264 codec will be
used during future launches of the container.

Currently, only software encoding is supported.
If internet is not available:

$ sudo -- sh -c 'MY IMAGE NAME=my-openh264-nsys-streamer:1.0
USE_OPENH264 BUILD CACHE=false ./start-nsys.sh && docker exec nvidia-
devtools-streamer /setup/enable-h264-streaming.sh && docker commit nvidia-
devtools-streamer SMY IMAGE NAME && docker save -o my-openh264-nsys-
streamer.tar $MY IMAGE NAME'

www.nvidia.com
User Guide v2023.3.1 | 142

Container Support on Linux Servers

As a result, my-openh264-nsys-streamer. tar will contain the image with
enabled H.264 codec. This file should be transferred to the target machine without
internet access. Then, on a machine without internet access, the container can be
started using the following command:

$ sudo -- sh -c 'CONTAINER IMAGE=my-openh264-nsys-streamer:1.0
USE_OPENH264 BUILD CACHE=false docker load -i my-openh264-nsys-streamer.tar
&& ./start-nsys.sh'

Volumes
Docker folder Purpose Description
/mnt/host/logs Folder with inner services | May be useful to send
logs reports to NVIDIA
developer
Example

To run the container on 10.10.10.10 network interface, using 8000 HTTP port, 8888
connection port, without caching openh264 binaries:

$ sudo HOST IP=10.10.10.10 HTTP PORT=8000 CONNECTION UDP PORT=8888
USE_OPENH264 BUILD CACHE=false ./start-nsys.sh

www.nvidia.com
User Guide v2023.3.1 | 143

Chapter 4.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command

The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options

After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.

nsys nvprof [options]

Switch Parameters (Default [nsys switch Switch Description

in Bold)
--annotate-mpi off, openmpi, mpich |--tracesmpi AND -- | Automatically
mpi-impl annotate MPI

calls with
NVTX markers.
Specity the MP1

www.nvidia.com
User Guide v2023.3.1 | 144

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

implementation
installed on

your machine.

Only OpenMPI

and MPICH
implementations are
supported.

driver,all

--cpu-thread-tracing |on, off --trace=osrt Collect information
about CPU thread
APT activity.

--profile-api-trace none, runtime, --trace=cuda Turn on/off CUDA

runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime

and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start

on, off

if off use --capture-
range=cudaProfilerA]

Enable/disable
pprofiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Stan
to turn on/off
profiling.

t,Stop}

-t,--timeout

<nanoseconds>
default=0

--duration=seconds

If greater than

0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting

immediately.

www.nvidia.com
User Guide

v2023.3.1 | 145

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

--cpu-profiling

on, off

--sampling=cpu

Turn on/off CPU
profiling

--openacc-profiling

on, off

--trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-0, --export-profile

<filename>

--output={filename}
and/or --
export=sqlite

Export named file
to be imported

or opened in the
Nsight Systems
GUL %q{ENV_VAR}
in string will be
replaced with

the set value of

the environment
variable. If not set
this is an error.

%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string

is not supported
currently. Any other
character following
% is illegal. The
default is reportl,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

www.nvidia.com
User Guide

v2023.3.1 | 146

Migrating from NVIDIA nvprof

Switch Parameters (Default | nsys switch Switch Description
in Bold)
-f, --force-overwrite --force- Force overwriting
overwrite=true all output files with

same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps

NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
User Guide v2023.3.1 | 147

Chapter 5.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

5.1. D3D11 API trace

Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

» CPUN2)

~ Threads (5)

PvEa ;

~ v [21384] - —_
—————————————————————————
Blocked State [|
DXGI API |
DX11 API _ JI J. bisgsmd lu.u.unix..xuw.u bl

DX11 Markers

Call to:
SIS 1D3D11DeviceContextdzDraw
3 threads hidden... - ;Dxlw;;;&ss
egins: 0. -

~ Frame duration (60 FPS) |Ends: 0.949106s (100 ns)

¥ CPU frame duration

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

5.2. D3D12 API Trace

Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

www.nvidia.com
User Guide v2023.3.1 | 148

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

~ Dx12

CommandListsCreation .~ [l (01, (D0 @D e K (.7 A P R
- GPU — L T T Ny oy a1
* Commend queve 1 Oy I S ERERAN R i S S e ==
APl 0 0 0 0
GPU Command List Markers i . | [ambie...| | Lights RlalRef) i - A0 I]
= Command Cueue 2 (Copy) III I l_ I] I 1 .I ' '

APl ()
GPU Synchronization | | | | | | ||| | ‘

The Command List Creation row displays time periods when command lists
were being created. This enables developers to improve their application’s multi-
threaded command list creation. Command list creation time period is measured
between the call to ID3D12GraphicsCommandList: :Reset and the call to
ID3D12GraphicsCommandList: :Close.

* Command Lists Creation

The GPU row shows a compressed view of the D3D12 queue activity, color-coded by the
queue type. Expanding it will show the individual queues and their corresponding API
calls.

v GRU [P TR TTOTE) R TT TR TETET Y T TR TR TN TP TT S PUT FOTT P PR P TTRPTTTRPTT TR TIR,

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

P Command Queue 0 (Compute)

P Command Queue 1 (Direct)

The DX12 API Memory Ops row displays all API memory operations and non-persistent
resource mappings. Event ranges in the row are color-coded by the heap type they
belong to (Default, Readback, Upload, Custom, or CPU-Visible VRAM), with usage
warnings highlighted in yellow. A breakdown of the operations can be found by
expanding the row to show rows for each individual heap type.

www.nvidia.com
User Guide v2023.3.1 | 149

Direct3D Trace

The following operations and warnings are shown:

» Calls to ID3D12Device: :CreateCommittedResource,
ID3D12Deviced: :CreateCommittedResourcel, and
ID3D12Device8: :CreateCommittedResource2

» A warning will be reported if D3D12_HEAP_FLAG_CREATE NOT_ZEROED is not
set in the method's HeapFlags parameter
» Calls to ID3D12Device: :CreateHeap and ID3D12Deviced: :CreateHeapl

» A warning will be reported if D3D12_HEAP FLAG_CREATE NOT_ZEROED is not
set in the Flags field of the method's pDesc parameter
» Calls to ID3D12Resource: : ReadFromSubResource

» A warning will be reported if the read is to a
D3D12_CPU_PAGE_PROPERTY WRITE_COMBINE CPU page or from a
D3D12_HEAP TYPE_UPLOAD resource

» C(Calls to ID3D12Resource: :WriteToSubResource

» A warning will be reported if the write is from a
D3D12_CPU_PAGE PROPERTY WRITE BACK CPU page or to a
D3D12_ HEAP TYPE READBACK resource
» Calls to ID3D12Resource: :Map and ID3D12Resource: : Unmap will be matched
into [Map, Unmap] ranges for non-persistent mappings. If a mapping range is
nested, only the most external range (reference count = 1) will be shown.

> DX12 HW

¥ HW NVIDIA GeForce RTX 2080 > _________________"_¥ |

(m

D3D1 2Devic...] [1D3D12Device:CreateCommittedReso...

v DX12 APl Memory Ops ~ E]

Default Heap D3D1 2Devic...] [ID3D12DevicexCreateCommittedReso...

ID3D12Device:CreateCommittedResource

Begins: 19.1669s
Upload Heap ~ E] Ends: 19.1678s (+986.549 ps) @
Correlation ID: 364232
Thread [1864]
Heap type: Default
B Readback Heap WARNING: Committed ID3D12Resource object created with zeroing.

Add D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to HeapFlags
» HW Command Queue 1 (Direct) to avoid overhead of zeroing.

The API row displays time periods where

ID3D12CommandQueue: : ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

www.nvidia.com
User Guide v2023.3.1 | 150

Direct3D Trace

API ID3D1...
CPU Markers (Thread O:...|

GPU Queue Markers [Thread O: Iterate on the particle ...

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

CPU Markers [Render |

GPU Queue Markers |Render |

GPU CommandList Markers

Clicking on a GPU workload highlights the corresponding

ID3D12CommandQueue: :ExecuteCommandLists,

ID3D12GraphicsCommandList: :Reset and ID3D12GraphicsCommandList: :Close
API calls, and vice versa.

* GPU

» Command Queue 0 (Compute)

AP

CPU Markers Thread ...
GPU Queue Markers [Thread O: Iterate on the particle simulation |
Workload Compute workload

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

» The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

» The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

» The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

www.nvidia.com
User Guide v2023.3.1 | 151

* Threads (8]
> |V [9504] -

Blocked State
05 runtime libraries
= DX12 API
Synchronization
Profiler overhead
7 threads hidden...
~ Frame duration (60 FPS)
¥ CPUframe duration
GPU frame duration
~ DX12

Command Lists Creation

~ GPU

* Command Queue 1 (Direct)

API

API

GPU Synchronization
VSYNC - Intel(R ()
VSYNC - Intel(R (1)

Direct3D Trace

wWin3... (Win32 Wait AP|

—

#33 [16,725 ms]] #34[16

#32 18,493 ms]

Fence Signal

Time: 0.557074s

www.nvidia.com

User Guide

v2023.3.1 | 152

Chapter 6.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated

with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

Enabling the "Collect additional range of ETW events" option will also capture extended
DxgKrnl events from the Microsoft-Windows-DxgKrnl provider, such as context
status, allocations, sync wait, signal events, etc.

¥ WDDM (GeForce RTX 2080 Ti 1)

3D CPU Queue ffffdaB52163ac

Wait

3D GPU Queue ffffdag852163ade0 L

Copy CPU Queue ffffda8519202de -

Copy GPU Queue ffffda8519202de

A command buffer in a WDDM queues may have one the following types:

Render
Deferred
System
MMIOFlip
Wait
Signal
Device
Software

vV V. vV vV vV VvV Vv v

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

www.nvidia.com
User Guide v2023.3.1 | 153

WDDM Queues

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2023.3.1 | 154

Chapter 7.
WDDM HW SCHEDULER

When GPU Hardware Scheduling is enabled in Windows 10 or newer version, the
Windows Display Driver Model (WDDM) uses the DxgKrnl ETW provider to expose
report of NVIDIA GPUs' hardware scheduling context switches.

Nsight Systems can capture these context switch events, and display under the GPUs in
the timeline rows titted WDDM HW Scheduler - [HW Queue type]. The ranges under
each queue will show the process name and PID assoicated with the GPU work during
the time period.

The events will be captured if GPU Hardware Scheduling is enabled in the Windows
System Display settings, and "Collect WDDM Trace" is enabled in the Nsight Systems
Project Settings.

WDDM HW Scheduler - 30 A . ez o

www.nvidia.com
User Guide v2023.3.1 | 155

Chapter 8.
VULKAN API TRACE

8.1. Vulkan Overview

Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan APl is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

+770ms 775ms +780ms. +TB5ms +730ms. +795ms

Lo bt el . ddble

- Threads 26)

e e I [uerhcaesinonng]] [v eaeainrsing]] a

Wulkan AP1 kQueucPresentkHR ViQueucPresentkHR] —
- s - | i ' |

7 3 3 T

Bockad e P foavest L UserRequost 883 ol User Request D886 msl_____UserReques 3463 msl___Uscr ic]

s T e C M i llid - ok b,
= Frame duration (50 FP51
+ CPU frame duration Frame #105 [16,670 ms| Frame #106 [16.685 ms] | Frame,
+ GPU frame durstion fram.. Frame #105 (17055 Frame 106 (16,600 ms] i
- Volkan
-+ Command Bufers Creation

. T
- Quesen

0l 0] 0

Wodond T — —r — |

[T —
— | \

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

~ Vukan
- Command Buffers Creation

(Command bufer [Beginnd] (omman..|) Command bufter ieginndl ([J(CT) ()LL)

www.nvidia.com
User Guide v2023.3.1 | 156

https://www.khronos.org/vulkan/

Vulkan API Trace

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmit was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

vkQueueSubmit

o Y — = —
In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Vulkan API

Point Markers I

Markers i

Clicking on a GPU workload highlights the corresponding vkQueueSubmit call, and
vice versa.

~ Queue0
API

The Vulkan Memory Operations row contains an aggregation of all the Vulkan host-
side memory operations, such as host-blocking writes and reads or non-persistent map-
unmap ranges.

The row is separated into sub-rows by heap index and memory type - the tooltip for
each row and the ranges inside show the heap flags and the memory property flags.

¥ Vulkan APl Memory Ops [Non-persistent [Map,Unmap]] a

1: CPU:COHERENT|VISIBLE (L TR A LT)

Non-persistent [Map,Unmap] a
Begins: 4.35793s

Ends: 4.35871s (+774.959 ps)

0: GPU:LOCAL Correlation ID: 115062

Thread [41672]

CPU Upload Heap 1

Flags: HOST_VISIBLE | HOST_COHERENT

| KT CPU:CACHED|COHERENTIVISIBLE

1: CPU:COHERENT|VISIBLE

Vulkan Memory Type
Heap Index: 1 =
Heap Flags:

0: GPU:LOCA (None)

Memory Property Flags:

VK_MEMORY PROPERTY HOST_VISIBLE_BIT
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

B 1 cpucACH

www.nvidia.com
User Guide v2023.3.1 | 157

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt

Vulkan API Trace

8.2. Pipeline Creation Feedback

When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

35 +80ms +100ms +120ms +140ms +160ms +180ms +200ms +220/~

v CPU(12)

~ Threads (19)

v W1 [20312] - S — i
- s
Blocked State
Vulkan API vkQueueWaitldle JI[vkCreateRayTracingPipelinesNy)i (.0
Markers
Profiler overhead
~ V| [26272] - -
[»
Events View v
2 of 13 matches ‘pipaline]
£ Mame = Duration TD GPU Context Start = Call to:
150 vkCreatelmage 13.400 ps 20512 - - 2.43605s vkCreateRayTracingFipelinesNV
Vulkan API calls
151 vkAllocateMemory 182,100 ps 20512 - - 2436065 Begins: 3.14915¢
152 vkCreatelmage £.000 s 20512 - . 2437155 Ends: 3.21398s (+64.835 ms)
Flags: NONE
133 vkAllocateMemory 219,700 ps 20512 - - 2437135 Duration: 64.831 ms
. Stage 1 Flags: NONE
154 kBeginC dBuffi 1.100 20512 - - 243738
viSegintommandBuTrer L s Stage 1 Duration: 2379 ms
155 vkEndCommandBuffer 1.400 ps 20512 - - 2437385 Stage 2 Flags: NONE
Stage 2 Duration: 5.032 ms
7 - - vE
156 vkQueueSubmit 70.600 ps 20512 2.43739s Stage 3 Flags: NONE
157 vkQueueWaitldle T10.687 ms 20512 - - 2437475 Stage 3 Duration: 5.245 ms
Stage 4 Flags: NONE
158 vkCreateBuffer 1,100 ps 20512 - - 314818 Stage 4 Duration: 4,001 ms
159 vkAllocateMemory 5,400 ps 20512 - - 3.1482s Stage 3 Flags: NONE
Stage 5 Duration: 3.711 ms
160 vkCreateBuffer 400 ns 20512 - - 3.1482s Stage 6 Flags: NONE
161 vikAllocateMemory 800 ns 20512 - - 3148215 Stage & Duration: 116.000 ps
. Stage 7 Flags: NONE
162 vkCreateBuffer 300 ns 20512 - - 3.14827s Stage 7 Duration: 102.000 ps
163 viAllocateMemory 433,100 ps 20512 - - 3148285 Stage 8 Flags: NONE
Stage 8 Duration: 180.000 ps
164 vkCreateBuffer 600 ns 20512 - - 3.148765 Stage 9 Flags: NONE
165 vkAllocateMemory 1.300 ps 20512 - - 3.14876s Stage 9 Duration: 363.000 ps
Stage 10 Flags: NONE
166 vkCreateBuffer 300 ns 20512 - - 3.14876s Stage 10 Duration: 277.000 ps
VIcAIIo:atEMemory 500 ns 20512 3.148765 Stage 11 Flags: NONE

Stage 11 Duration: 817,000 ps

vkCreateBuffer 1.500 ps 20512 3.21399s | Stage 12 Duration: 463.000 ps

8.3. Vulkan GPU Trace Notes

» Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.

» The endings of Vulkan Command Buffers execution ranges on Compute and
Transfer queues may appear earlier on the timeline than their actual occurrence.

www.nvidia.com
User Guide v2023.3.1 | 158

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

Chapter 9.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

9.1. FPS Overview

The Frame Duration section displays frame durations on both the CPU and the GPU.

~ Frame duration (Target FPS: 30 Hz)| Showing 108 of 2113 CPU frames | avg 4.08ms | min 2.82ms | max 6.98ms | FPS 245.09 | 99%<6.64ms

b CPU fome durion AT TR

Gorce R 2060 T (LEEVEREEIREREREREEEEREEEEREEEEEEREEAEEER PR

The frame duration row displays live FPS statistics for the current timeline viewport.
Values shown are:

1. Number of CPU frames shown of the total number captured

2. Average, minimal, and maximal CPU frame time of the currently displayed time
range

3. Average FPS value for the currently displayed frames

4. The 99th percentile value of the frame lengths (such that only 1% of the frames in the
range are longer than this value).

The values will update automatically when scrolling, zooming or filtering the timeline
view.

v Frame duration (Target FPS: 30 Hz)| Showing 6 of 2113 CPU frames | avq 5.10ms | min 4.01ms | max 8.55ms | FPS 195.94 | 99%<8.39ms

~ CPU frame duration

Frame health

s
ceermar) (655 (D e e

www.nvidia.com
User Guide v2023.3.1 | 159

Stutter Analysis

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference >20%, absolute difference < 4 ms)

2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference >4 ms)

3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference >4 ms, both conditions met)

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

2. Calculate the delta and ratio between 1st and 3rd quartiles.

3. If the 90th percentile of 3rd — 1st quartile delta array >4 ms AND the 90th percentile
of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

v Frame duration (60 EDSY
Target frame rate 30 FPS ——
» CPU frame du I
v Target frame rate 60 FPS
r GPU frame du

Target frame rate 90 FPS
* DX12

Customize FPS Display...
~ Command Lis i

Undo Zoom (1)

Swap Chain 0

Reset Zoom
v GPU # Pin row
v Command Queue 0 [Direci
AP

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

www.nvidia.com
User Guide v2023.3.1 | 160

Stutter Analysis

@ Customize FPS display X

Frame Duration (ms)

Frames are colored according to their duration using these 2 thresholds:
Good < 16.67 (ms) < Borderline < 20.00 (ms) | < -

=59 FPS =50 FPS
Stutter (%)

Reflects how much a frame duration is longer than the median duration of the
surrounding 19 frames.

Only frames with duration of 4ms longer than the median are checked for stutter.

Only Borderline and Bad stutter frames appear on the timeline stutter row.

20% < Borderline < 50% < -
OK Cancel

Frame duration bars are color coded:

» Green, the frame duration is shorter than required by the target FPS ratio.
» Yellow, duration is slightly longer than required by the target FPS rate.
» Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

» The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

» The D3D11 and D3D12 frame boundaries are IDXGISwapChainX: : Present calls.
» The Vulkan frame boundaries are vkQueuePresentKHR calls.

The timing of the actual calls to the frame boundary calls can be seen in the blue bar at
the bottom of the CPU frame duration row

The GPU Frame Duration row displays the time measured between

» The start time of the first GPU workload execution of this frame.
» The start time of the first GPU workload execution of the next frame.

Reflex SDK

NVIDIA Reflex SDK is a series of NVAPI calls that allow applications to integrate the
Ultra Low Latency driver feature more directly into their game to further optimize
synchronization between simulation and rendering stages and lower the latency

between user input and final image rendering. For more details about Reflex SDK, see
Reflex SDK Site.

Nsight Systems will automatically capture NVAPI functions when either Direct3D 11,
Direct3D 12, or Vulkan API trace are enabled.

The Reflex SDK row displays timeline ranges for the following types of latency markers:

» RenderSubmit.
» Simulation.
» Present.

www.nvidia.com
User Guide v2023.3.1 | 161

https://developer.nvidia.com/reflex/

Stutter Analysis

» Driver.
» OS Render Queue.
» GPU Render.
Rende..| Render Submit-2210[16.653ms] | RenderSubmit-2211[16.653ms] | Render Submit- 2212
simulation - 22.., Simulation - 2211 [16.486 ms] Simulation - 2212 [16.837 ms] Simulatio
3 ez
Reflex SDK mark, -
opkmes < rRens) G
o Grene)
1 1 [|
* Frame duration (Target FPS: 60 Showj==F-ficzoniLs : 16.98ms | min 14.2dms | max 19.47ms | FPS53.88 | 9
Present - 2210
» CPU frame duration | #163 [14.239 ms] Begins: 2.70516s] | =185 [16.066 ms]
Ends: 2.70525s (+87.713 ps)
* WDDM (GeForce RTX 2080 SUP Rangeld: 6788
Thread: 20820
]
Events View >
Mame
& ~ Mame Start Duration TID
|:| 1 4 |:| Render Submit - 2047 -0.0054113s 10,839 ms 20820
02 [] Simulation - 2042 -0,005350965 10.815 ms 1604
0: [Driver - 2047 -0.001943145 8,090 ms 1604
I v] GpuRender - 2047 0.001501855 5340 ms 1604
07 » [] Rendler Submit - 2048 0.005432285 8.841 ms 20820
[e v [] Simulation - 2049 0.00549007s 9,952 ms 1604
0w v [] OsRender Queue - 2042 0.01064985 5483 ms 1604
|:| 13 4 |:| Render Submit - 2049 0.014279% 13.731 ms 20820

Performance Warnings row

This row shows performance warnings and common pitfalls that are automatically
detected based on the enabled capture types. Warnings are reported for:

» ETW performance warnings

» Vulkan calls to vkQueueSubmit and D3D12 calls to
ID3D12CommandQueue: : ExecuteCommandList that take a longer time to execute
than the total time of the GPU workloads they generated

» D3D12 Memory Operation warnings

» Usage of Vulkan API functions that may adversely affect performance

» Creation of a Vulkan device with memory zeroing, whether by physical device
default or manually

» Vulkan command buffer barrier which can be combined or removed, such as
subsequent barriers or read-to-read barriers

Warnings
www.nvidia.com
User Guide v2023.3.1 | 162

Stutter Analysis

9.2. Frame Health

The Frame Health row displays actions that took significantly a longer time during

the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

- Frame

0FPS)
rame #53 [16.... Frame #54 (20247 ms]
resent [11.709...| Buil.

9.3. GPU Memory Utilization

The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

* Video Memory
- GPUT

= Memory Utilization - Local

- GPUD

* Memory Utilization - Local

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

9.4. Vertical Synchronization

The VSYNC rows display when the monitor's vertical synchronizations occur.

VSYNC - iGPU (0)
VSYNC - dGPU 1 (0)

www.nvidia.com
User Guide v2023.3.1 | 163

Chapter 10.
OPENMP TRACE

Nsight Systems for Linux is capable of capturing information about OpenMP events.
This functionality is built on the OpenMP Tools Interface (OMPT), full support is
available only for runtime libraries supporting tools interface defined in OpenMP 5.0 or
greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

* Collect OpenMP trace

OpenMP (Open Multi-Processing) is a set of compiler directives, library routines, and environment variables that can
be used to specify high-level parallelism in Fortran and C/C++ programs. NVIDIA Nsight Systems supports collecting
and visualizing OpenMP events and ranges on the timeline.

[4 FPallack TTenen msmmbe

Only a subset of the OMPT callbacks are processed:

ompt callback parallel begin

ompt callback parallel end

ompt callback sync region

ompt callback task create

ompt callback task schedule

ompt callback implicit task

ompt callback master

ompt callback reduction

ompt callback task create

ompt callback cancel

ompt callback mutex acquire, ompt callback mutex acquired
ompt callback mutex acquired, ompt callback mutex released
ompt callback mutex released

ompt callback work

ompt callback dispatch

ompt callback flush

The
raw
Note: OMPT
events
are

www.nvidia.com
User Guide v2023.3.1 | 164

OpenMP Trace

used

to
generate
ranges
indicating
the
runtime

of
OpenMP
operations
and
constructs.

Example screenshot:

» cPU2)

05 runtime lbraries
Paralll Region

implct Task.

e Gn CErD B o mw) © D e e mE O DO @ O e

) 6 Cammw @ @D) G

v 507 apentoe o | N

05 runtime libraries

v G) Ge e ([(e G e (e B G 0) () G 6l (D) (e 5D G 50 G

0) e e D CEe) 6) () G E) G CEED G O e D e 6 ED G G
V. 165051 operiep viorc - EERSEEEEEE———————————————————————.

05 runtime libraries
mplic Task

orenk? ‘o) Eamer [looRewen) B G T Ewmer) (@) (CEamer) (Copesen) (B (ke B Gwo) (CRame) o) B (ko B (GopReon) @) (o) EJ G

www.nvidia.com
User Guide v2023.3.1 | 165

Chapter 11.
OS RUNTIME LIBRARIES TRACE

On Linux, OS runtime libraries can be traced to gather information about low-level
userspace APIs. This traces the system call wrappers and thread synchronization
interfaces exposed by the C runtime and POSIX Threads (pthread) libraries. This

does not perform a complete runtime library API trace, but instead focuses on the
functions that can take a long time to execute, or could potentially cause your thread be
unscheduled from the CPU while waiting for an event to complete. OS runtime trace is
not available for Windows targets.

OS runtime tracing complements and enhances sampling information by:

1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling;:

» Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

» In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

www.nvidia.com
User Guide v2023.3.1 | 166

OS Runtime Libraries Trace

%

recvmsg ioctl | i

m In OS runtime library function
Duration: 63.156 ps

. - . Call stack at 1.608s:
e (o o A R il R e
i ; o ’ libeuda.s0.390.470x7fe0ed4712164
libcuda sa.390.4

cudart:.cudaApiMalloct...)
smokeParticles (1 of 6 threads) 'cudaMalloc

'oid* thrust::cuda_cub::malloe <..> (...}
5) of data is shown due to applied filters -

Jle Name
‘localfeuda-9.1 X I smol
Tlib/x86_64-linux-gnu/libcuda.s0.390.47
lib/x86_64-linux-gnu/libecuda.s0.390.47
Tlib/x86_64-linux-gnu/libcuda.s0.390.47

(..
smokeParticlestvold* thrusti:cuda_cubi:get memory_buffer<...>(...)
[Max depth]|[Max depth]

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

=) Collect OS runtime libraries trace

V| Skip if shorter than | 1.000 +| microseconds

Userspace tracing of Operating System runtime libraries that provide interfaces to communicate with the
hardware or control resources such as threads and processes. This traces the system call wrappers and
thread synchronization interfaces exposed by the C runtime and POSIX Threads (pthread) libraries.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
the timeline. We strongly encourage you to skip OS runtime libraries call shorter than 1

us.

11.1. Locking a Resource

The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.

pthread mutex lock

pthread rwlock rdlock

pthread rwlock wrlock

pthread spin lock

sem wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

11.2. Limitations

» Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able
to trace syscall invoked through assembly code.

www.nvidia.com
User Guide v2023.3.1 | 167

OS Runtime Libraries Trace

» Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

» Itis not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 us will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

» Itis required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

11.3. OS Runtime Libraries Trace Filters

The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

www.nvidia.com
User Guide v2023.3.1 | 168

OS Runtime Libraries Trace

11.4. OS Runtime Default Function List

Libc system call wrappers

accept
accept4
acct

alarm

arch prctl
bind

bpf

brk

chroot
clock nanosleep
connect
copy file range
creat
creat64
dup

dup?2

dup3

epoll ctl
epoll pwait
epoll wait
fallocate
fallocate64
fentl
fdatasync
flock

fork

fsync
ftruncate
futex
ioctl
ioperm
iopl

kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount

move pages
mprotect
mg_notify
mg_open
mg_receive
mg_ send
mg_timedreceive
mg_ timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
opentc4
openat
openat64
pause

pipe

pipe2
pivot root
poll

POSIX Threads

pthread barrier wait
pthread cancel
pthread cond broadcast
pthread cond signal
pthread cond timedwait
pthread cond wait
pthread create

pthread join

pthread kill

pthread mutex lock
pthread mutex timedlock
pthread mutex trylock
pthread rwlock rdlock
pthread rwlock timedrdlock
pthread rwlock timedwrlock
pthread rwlock tryrdlock
pthread rwlock trywrlock
pthread rwlock wrlock
pthread spin lock
pthread spin trylock
pthread timedjoin np
pthread tryjoin np
pthread yield

sem timedwait

sem trywait

sem wait

www.nvidia.com
User Guide

OS Runtime Libraries Trace

v2023.3.1 | 170

I/0

aio fsync

aio fsync64

aio suspend

alo suspend64
fclose
fcloseall
fflush

fflush unlocked
fgetc

fgetc unlocked
fgets

fgets unlocked
fgetwc

fgetwc unlocked
fgetws

fgetws unlocked
flockfile

fopen

fopeno64d

fputc

fputc unlocked
fputs

fputs unlocked
fputwc

fputwc unlocked
fputws

fputws unlocked
fread

fread unlocked
freopen
freopené64
ftrylockfile
fwrite

fwrite unlocked
getc

getc unlocked
getdelim
getline

getw

getwc
getwc_unlocked
lockf

lockfe4

mkfifo

mkfifoat

posix fallocate
posix fallocate64
putc

putc unlocked
putwc

putwc _unlocked

Miscellaneous

forkpty
popen

posix spawn
posix spawnp
sigwait
sigwaitinfo
sleep

system
usleep

www.nvidia.com
User Guide

OS Runtime Libraries Trace

v2023.3.1 | 171

Chapter 12.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.
The following features are supported:
» Domains

nvtxDomainCreate (), nvtxDomainDestroy ()

nvtxDomainRegisterString ()
» Push-pop ranges (nested ranges that start and end in the same thread).

nvtxRangePush (), nvtxRangePushEx ()
nvtxRangePop ()
nvtxDomainRangePushEx ()

nvtxDomainRangePop ()
» Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart (), nvtxRangeStartEx()
nvtxRangeEnd ()

nvtxDomainRangeStartEx ()

nvtxDomainRangeEnd ()

» Marks
nvtxMark (), nvtxMarkEx ()
nvtxDomainMarkEx ()

» Thread names

nvtxNameOsThread ()
» Categories

nvtxNameCategory ()

nvtxDomainNameCategory ()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVITX documentation.

www.nvidia.com
User Guide v2023.3.1 | 172

https://nvidia.github.io/NVTX/

NVTX Trace

To use NVTX in your application, follow these steps:

1. Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

2. Add the following compiler flag: -1d1

3. Add calls to the NVTX API functions. For example, try adding
nvtxRangePush ("main") in the beginning of the main () function, and
nvtxRangePop () just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

4. In the project settings, select the Collect NVTX trace checkbox.

In addition, by enabling the "Insert NVTX Marker hotkey" option it is possible to add
NVTX markers to a running non-console applications by pressing the F11 key. These will
appear in the report under the NVTX Domain named "HotKey markers".

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

Range
annotations
should
be
matched
carefully.
If

many
ranges
are
opened
but

not
Note: closed,
Nsight
Systems
has

no
meaningful
way

to
visualize
it.

A

rule

of

thumb

www.nvidia.com
User Guide v2023.3.1 | 173

http://github.com/NVIDIA/NVTX

NVTX Trace

is

to

not
have
more
than

a
couple
dozen
ranges
open
at

any
point

in

time.
Nsight
Systems
does
not
support
reports
with
many
unclosed
ranges.

NVTX Domains and Categories

NVTX domains enable scoping of annotations. Unless specified differently, all events
and annotations are in the default domain. Additionally, categories can be used to group
events.

Nsight Systems gives the user the ability to include or exclude NVTX events from a
particular domain. This can be especially useful if you are profiling across multiple
libraries and are only interested in nvtx events from some of them.

- Collect NVTX trace

The NVIDIA Tools Extension SDK (MVTX] is a C-based API for marking events and ranges in your applications. NVIDIA Nsight Systems supports
collecting and visualizing of these events and ranges on the timeline,

Insert NVTX Marker using hotkey | F11 v
(not available in console apps)

- MNVTX domain filter

Select the filtering mode to (only) include or exclude the specified domains. Select the default domain and/or specify a comma-
separated list of NVTX domains, Commas in a domain name have to be escaped with '\

Include ®) Exclude Default domain

This functionality is also available from the CLI. See the CLI documentation for --nvtx-
domain-include and --nvtx-domain-exclude for more details.

Categories that are set in by the user will be recognized and displayed in the GUIL

www.nvidia.com
User Guide v2023.3.1 | 174

NVTX Trace

www.nvidia.com
User Guide

report198.nsys-rep X
Timeline View - m Qi /A 1 waming, 7 messages
s~ os +100ms +200ms +300ms +400ms +500ms +600ms +700ms +80oms |~
~ Threads (1)
~ [31484] NvtxSimplev3
~ Nvexsimplev3 Domain 0 T e
Start & End
~ Categories
~ Start-End Ranges [2]
Start & End
pusherop Ranges (3] T =
Normal Marks [11 |
Special Attribute Marks [4] (N
» NvixSimpleV3 Domain 1
» NvtxsimpleV3 Domain 2
2,613 -
] 0
| Events view
[Name <[|
~ Name Start Duration TID Category | Description:
I [l simple_nvtxMarker:nvtxDomainMarkEx 001514575 - 31484 Normal Marks [1] simple_nvtxRangePushPop:nvtxDomainRang
ePushEx
12 1l simple_s Domair 0.0252634s 100107 ms 31484 Start-End Ranges [2] Begins: 0.2550555
13 [l simple_nvtxRangeStartEnd:Range 1 0.125424s 110253 ms 31484 Start-End Ranges [2]
[K 1l simple_nvtxRangeStartend:Range 2 0.135585 110216ms 31484 start-End Ranges [2] Categoryld: 3
Category: Push-Pop Ranges.
lis | simple_nvtxRangePushPopinvtxDomainRangePushEx 02559555 | 100.121ms | 31484 Push-Pop Ranges [3]
(K3 + [] simple_nvtxRangePushPop:Level 0 0.366275s 120.351ms | 31484 Push-Pop Ranges [3]
g [l attributes unversioned 0.486667s - 31484 Special Attribute Marks [4]
0o [attributes_category:EX 0.4967955 - 31484 Special Attribute Marks [4]
110 [attributes_color:valid color 0.506931s - 31484 Special Attribute Marks [4]
01 [l attributes_color:default color 0517065 - 31484 Special Attribute Marks [4]
12 [l attributes_color:colorType undefined 0.527205s - 31484 Special Attribute Marks [4]

v2023.3.1 | 175

Chapter 13.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

» CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

» CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
» CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

» CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

» On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

~ Threads (3)
- [v] [14617] particles -

CUDA API S (o kemelagentl) (G, | (.. (DeuieRedisonl..) fadit.) @i

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

www.nvidia.com
User Guide v2023.3.1 | 176

CUDA Trace

= Timeline View -

¥ CPU (6)

» Threads (3)
» iGPU (NVIDIA Tegra X2)
 CUDA (NVIDIA Tegra X2, 0000: fa—
w Default stream (7) Jr—
¥ Memory -
DtoA memcpy ™
~ Kernels (CadvectVelocity k| (00 | Cvecto DL [(Dregul.. veckor) [a.)
» regular_fft] 2 [] (regula—]
» vector_fit 7] (vecto..|] (vector ffit |
» advectVelocity_k (CadvectVelocity_k_)
b _ nv_static_45_ 32_spRea
» _nv_static_45_ 32 spRea 7] 7]
» diffuseProject k =
» _ nv_static_45_32_spRea (V] V]
p advectParticles_k .

1 kernel group(s) hidder

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

= v Collect CUDA trace

| Flush data periodically 10.00 3| seconds
v| Skip some API calls
v | Collect GPU memary usage

| Collect UM CPU page faulth
| Collect UM GPU page fau\!iTraCk the CPU page faults that occur with Unified Memory.

Enabling this option may increase the overhead.

Collect cuDNN trace
Collect cuBLAS trace
Collect OpenACC trace

» Collect CUDA backtraces

For Nsight Systems Embedded Platforms Edition this looks like:

B Collect CUDA frace

[+] Flush data periodically | 10,00 2| seconds

Skip some API callz

Additional configuration parameters are available:

» Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

» Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

www.nvidia.com
User Guide v2023.3.1 | 177

CUDA Trace

cudaDeviceReset (), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

» Skip some API calls — avoids tracing insignificant CUDA Runtime
API calls (namely, cudaConfigureCall (), cudaSetupArgument (),
cudaHostGetDevicePointers ()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

» Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

» Collect Unified Memory CPU page faults - collects information on page faults that
occur when CPU code tries to access a memory page that resides on the device. See
section on Unified Memory CPU Page Faults in the Unified Memory Transfer
Trace documentation below.

» Collect Unified Memory GPU page faults - collects information on page faults that
occur when GPU code tries to access a memory page that resides on the CPU. See
section on Unified Memory GPU Page Faults in the Unified Memory Transfer
Trace documentation below.

» Collect CUDA Graph trace - by default, CUDA tracing will collect and expose
information on a whole graph basis. The user can opt to collect on a node per node
basis. See section on CUDA Graph Trace below.

» For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

If

your
application
crashes
before
all
collected
CUDA
Note: trace
data

has
been
copied
out,
some

or

all

www.nvidia.com
User Guide v2023.3.1 | 178

Note:

CUDA Trace

data
might
be

lost
and

not
present
in

the
report.

Nsight
Systems
will

not

have
information
about
CUDA
events

that

were

still

in

device
buffers
when
analysis
terminated.
It
is

a

good

idea,

if

using
cudaProfilerAPI
to

control

analysis

to

call
cudaDeviceReset
before

ending

analysis.

13.1. CUDA GPU Memory Allocation Graph

When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU

www.nvidia.com
User Guide

v2023.3.1 | 179

CUDA Trace

memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

S o

£ Timeline View - Fix © 11 messages £ Timeline View - Fix © 11 messa

3 358 as 45 5s sss_ |- . 255 3 ass
~ Threads (1) ~ Threads (1)
~ [31604] vectorAdd ~ [28554] vectorAdd_nofre
amwt focavaioc W ENTTRTIITTL R TTUIR N TV TTINTH TR NRNRRNRNRTTT TR AR ot b oo MR A i
- ’C\:?: :5;:: RTX 2080, 000(- - - ’a:): %(G:,::: RTX 2080, 000(
> 99.1% Memory ! I Memory usage
R 111471111 A A | e

Here is another example, where allocations are happening on multiple GPUs

report37.qdrep X_[SRMEEREIS

£ Timeline View v Fix

Os s 1s +50ms +100ms +150ms . +200ms . +300ms 43¢
~ Threads (1)
~ [30548] MonteCarloMulti
CUDA APT cwdatiostalioc_ (LG cudatiostalo I cidatiostalo DEEDED o) e anale) a2
Profiler overhead
~ CUDA (GeForce RTX 2080, 000¢ s
~ 100.0% Context 1
» [All Streams]] [onecy)
» 81.0% Stream 16
» 19.0% Default stream (7)

(Fomec)
[]
2
{FonteCorian)
IS
‘

» 0.0% Unified memory

v CUDA (TITAN X (Pascal), 0000:
» [All Streams]
» 83.4% Stream 27
» 16.6% Default stream (18)

Memory usage

~ CUDA (TITAN X (Pascal), 0000;

b e DEED
» 80.3% Stream 38 [}
» 19.7% Default stream (20) @

Memory usage

M
lemory:
= Usage: 13.50 MiB

13.2. Unified Memory Transfer Trace

For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

w CUDA (Quadro GV100, 0000:04:00.0)

= Context 2

w Default stream

« Managed Memory I
HtoD transfer

DtoH transfer

9,222 PtoP transfer Transfer 770,048
. bytes from device 0
[]
o Timings: [1.593s 1.593s) =
Bottom-Up View ~ | Process [5400] UvmMultidevice (1 of 9 threads) 158,776 ps

7 Filter... | 84.24% (2,485 samples) of data is shown due to applied filters.

www.nvidia.com
User Guide v2023.3.1 | 180

CUDA Trace

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy
traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some Unified Memory transfers are highlighted with red to indicate potential
performance issues:

0s = j4ms +254.2ms +254.6ms -
* CUDA (GeForce GT 710) I
* 74.6% Unified memory
* 100.0% Memory |
52.0% HtoD transfer
43,0% DtoH transfer B
* 25.4% Context 1

[All Streams] B

b
F 54.8% Stream 15
3
»

III

Begins: 0.254344<

Ends: 0.254526s (+181.901 ps)
HtoD transfer 2,097,152 bytes
-Source memory kind: Managed _
Destination memory kind: Managed
Migration cause: Coherence

19,4% Stream 18 Throughput: 11.5291 GiB/s

10,2% Stream 17 Stream: Stream 0 =

L] 3

B8l

Transfers with the following migration causes are highlighted:

» Coherence
Unified Memory migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

» Eviction
Unified Memory migrated to the CPU because it was evicted to make room

for another block of memory on the GPU. This happens due to memory
overcommitment which is available on Linux with Compute Capability > 6.

Unified Memory CPU Page Faults

The Unified Memory CPU page faults feature in Nsight Systems tracks the page faults
that occur when CPU code tries to access a memory page that resides on the device.

Collecting
Note: Unified
Memory
CPU

www.nvidia.com
User Guide v2023.3.1 | 181

CUDA Trace

page
faults

can

cause
overhead

of

up

to

70%

in

testing.
Please

use

this
functionality
only

when
needed.

Project 7 X reportl.qdrep % reporthdrep

= Timeline View -
0Os | +343ms 343.153ms EOIS +343.4ms +343.6ms +343.8ms +344ms +344.2ms +344.4m

+ CPU(12)

I | | e | .

~ Threads (8)

~ |¥] [7142] UvmVectorAdd -

0S runtime libraries

CUDA API 11} =

~ CUDA HW (0000:02:00.0 - Gef . - m I P
+ B4.2% Context 1
~ 15.8% Unified memory
GPU Page Faults [Read @ 0x7f952a002000 l Read @ 0x7f952a010000 IWrIte @ (!x'l...]

CUDA UM CPU Page Faults N

UM CPU page fault
Virtual page's address: 0x7f952a040000
CPU instruction: UvmVectorAdd!

RunTest(...}
[
Events View -
* Name Start Description:
3k UM CPU page fault @ 0x7f952a000000 0.342992s UM CPU page fault
2 UM CPU fault @ 0x7f9523010000 0.343048: Virtual page's address: 0x7f952a000000
pagefeul @0K & il CPU instruction: UvmVectorAdd!RunTest(...)
3 UM CPU page fault @ 0x7f952a020000 0.343093s
4 UM CPU page fault @ 0x7f952a040000 0.343154s
5 UM CPU page fault @ 0x7f952a3080000 0.344261s
6 UM CPU page fault @ 0x7f952a090000 0.344409s
P UM CPU page fault @ 0x7f952a0a0000 0.344498s

Unified Memory GPU Page Faults

The Unified Memory GPU page faults feature in Nsight Systems tracks the page faults
that occur when GPU code tries to access a memory page that resides on the host.

Collecting

Note: e
Unified

www.nvidia.com
User Guide v2023.3.1 | 182

Project 7 X reportl.qgdrep X repom.qdrep

= Timeline View -

0s » +343ms

» CPU(12)
~ Threads (8)

~ V! [7142] UvmVectorAdd ~

0S runtime libraries

~ CUDA HW (0000:02:00.0 - Gel
» 84.2% Context 1
- 15.8% Unified memory
GPU Page Faults
+ 100.0% Memory

CUDA UM CPU Page Faults

Events View >

~ Name

N

w

CUDA Trace

Memory
GPU
page
faults
can
cause
overhead
of

up

to

70%

in
testing.
Please
use

this
functionality
only
when
needed.

+343.4ms +343.6ms +343.8ms +344ms [322.173ms B +344.4ms

I | R | B

daDeviceSynchronize J

Read @ 0x7f952a002000

Read @ 0x7952a010000 Write @ 0x7...

Read @ 0x7f952a002000
Read @ 0x7f952a010000

_ Wirite @ 0x7f952a080000 0.344129s 123551 ps GPU O Virtual address: 0x7f952a080000

Start Duration GPU
0.343313s 457.661 ps
0.34377s 358.109 ps

13.3. CUDA Graph Trace

Nsight Systems is capable of capturing information about CUDA graphs in your

application at either the graph or node granularity. This can be set in the CLI using the

GPU O
GPU O

_ UM GPU page fault

Begins: 0.344129s

Ends: 0.344252s (+123.551 ps)
Virtual address: 0x7f952a080000
Number of page faults: 7
Memory access type: Write

Description:

UM GPU page fault
Begins: 0.344129s
Ends: 0.344252s (+123.551 ps)

Number of page faults: 7
Memory access type: Write

--cuda-graph-trace option, or in the GUI by setting the appropriate drop down.

www.nvidia.com
User Guide

v2023.3.1 | 183

CUDA Trace

* « Collect CUDA trace
| Flush data pericdically 10.00 |% seconds
| Skip some API calls
CUDA graph trace granularity H
Collect GPU memory usage

Collect UM CPU page faults

When CUDA graph trace is set to graph, the users sees each graph as one item on the
timeline:

G Giapn 7 (61 G 7 G
7 (G G 7 G136 G397 (G35

7 G A G738 G 7 (G361 G

When CUDA graph trace is set to node, the users sees each graph as a set of nodes on
the timeline:

| e e v s e o R e) |))

| | | [} | | | L [} |

oo i Ny . ey . oy . (ST Moy . ()
emeoy .. Memepy .. | FEmER)

Tracing CUDA graphs at the graph level rather than the tracing the underlying nodes
results in significantly less overhead. This option is only available with CUDA driver
515.43 or higher.

13.4. CUDA Python Backtrace

Nsight Systems for Arm server (SBSA) platforms and x86 Linux targets, is capable of
capturing Python backtrace information when CUDA backtrace is being captured.

To enable CUDA Python backtrace from Nsight Systems:
CLI — Set --python-backtrace=cuda.
GUI — Select the Collect Python backtrace for selected API calls checkbox.

www.nvidia.com

User Guide v2023.3.1 | 184

CUDA Trace

¥ v Collect CUDA trace
V| Flush data periodically 10.00 %/ seconds
V| Flush CUDA trace buffers on cudaProfilerStop()
V| Skip some API calls
CUDA graph trace granularity Graph ~
Collect GPU memory usage
Collect UM CPU page faults
Collect UM GPU page faults
Collect cuDNN trace
Collect cuBLAS trace
Collect OpenACC trace
w Collect CUDA backtraces
v Collect backtraces for kemel launches longer than 80.000 |%| microseconds
V' Collect backtraces for memory operations longer than | 80.000 |+ microseconds
V| Collect backtraces for synchronizations longer than 80.000 |4 microseconds
Collect backtraces for other API calls longer than 80.000 |3 | microseconds
Collect Python backtrace for selected API calls
~ |9.6ms +20ms +202ms +20.4ms +20.8ms +21ms 3
» CPU(12) |
» CUDA HW (0000:06:00.0 - NVIDIA GeForce RT
~ Threads (21)
v [v] [1362462] python3.9 v __ é N —
—
]
263 -
M Call to cuMemAlloc =
= Memory allocation
) Begins: 1.01982s
Events View v ‘ Ends: 1.01998s (+165.230 pis)
e Return value: 0
Correlation ID: 12 ‘ I
v 3
Call stack at 1.01982s: -
TID Nsight Systems frames Description:
libcuda.50.520 61 050x7flefé1d183f
U s e [t i r0m1
_ctypes cpython-39-x86_6-inuxgnu sol2 Frames] | T ead: 1362462
02 [0 tozos2s 1362462 e e oy 2.1 Categoryld: 1
[Python) driver.py!_attempt_allocation, 840 Category: Python Thread
[Python] ditver pylmemalloc, 1058 PythonBacktrace
[Python driver pymemalloc, 1361 Thread state: Running
on] devicearray py._init_ 103 .
[Python] deviceartay.py!from_array ke, 796 Source: Event based
[Python] devicearray. py'auto_device, 875 Frames count: 11~
[Python api pytto_device, 120 Frames (Function, File, Line)
[oyvon] gy equre cdconen. 32 0 afe_cuda.opicall, Py, 319
on] numba_example py'<module>, .
o 1: allocator, /quy py, 1,051
python oL_start 2: _attempt_allocation, quy py, 840
3:me Y P Py, 1,053
4:memalloc, -py, 1,361
5:_init_, py, 103
6: from_array_like, i 796
7: auto_device, 875
8:10_device, quysz/. pi.py, 120
9: _require_cuda_context, py, 232
10: <module>, q _example.py, 4
www.nvidia.com

User Guide

v2023.3.1 | 185

13.5. CUDA Default Function

CUDA Runtime API

cudaBindSurfaceToArray
cudaBindTexture

cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy

cudaEventQuery

cudaEventRecord
cudaEventRecord ptsz
cudaEventSynchronize

cudaFree

cudaFreeArray

cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3Dl11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc

cudaHostRegister
cudaHostUnregister

cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice

List for CLI

CUDA Trace

CUDA Primary API

cub64Array3DCreate
cub4ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject

cu64GLMapBufferObjectAsync

cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemtHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetDl6Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
culArray3DCreate v2
cuArrayCreate
cuArrayCreate v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate v2
cuCtxDestroy
cuCtxDestroy v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3Dl1CtxCreate
cuD3D11CtxCreateOnDevice
cuD3Dl1CtxCreate v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer v2
cuD3D9RegisterResource

cuD3D9RegisterVertexBuffer

cuD3D9%UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource

cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
c11FGT.CtreamConsiimerReleacseFrame

CUDA Trace

13.6. cuDNN Function List for X86 CLI

cuDNN API functions

cudnnActivationBackward
cudnnActivationBackward v3
cudnnActivationBackward v4
cudnnActivationForward
cudnnActivationForward v3
cudnnActivationForward v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward

cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute

cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward

cudnnOpTensor

cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm

cudnnScaleTensor

cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward

CUDA Trace

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 189

Chapter 14.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

_ 6.0 ’
| E Timeline view - Sl A waming 15 messages
os +401ms S4010Sms__sa01dms _+401.15ms FIESEEES 401o5ms ___401.3ms +40135ms +4014ms +401d5ms |~

» CPU(12)

~ Threads (7)

Eepeewwenn.]

05 runtime libraries

e
e
&) 0 Wait : matrichd B Wait: matrchul.c55
CUDA API 0 custreamsynchronize
Profiler overhead Call to cuMemcpyHtoDAsync
B Memory copies
6 threads hidden... = Begins: 0.40120s
~ CUDA (Quadro P60D) Ends: 0.401213s (+4.010 ps)
Retun value: 0
= 100.0% Kemels Correlation ID: 719
~ 100.0% matrisMulGPU_55_gpu

< v

If the OpenACC API results in GPU work, that will also be highlighted:

= Timeline View - Pl A\ 1 waming, 15 messoges
0 +d11.2ms +411.4ms +d11.6ms +d113ms +d17me +d172ms +d17.4ms <a1p6ms [+
b CPU(12)
L
~ Threads (7)

- s - N

05 runtime libraries

OpenACC

CUDA API

Profiler overhead

6 threads hidden... —e
~ CUDA (Quadro PE00) -
- 1000% Kernes 2 O e
- 1000% matrauGPU_35 90 B . ewMGRSe
——— e —— T
1 »
www.nvidia.com

User Guide v2023.3.1 | 190

OpenACC Trace

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

Enter Data : openacc_app.cpp:29

Timings: [0.355s 0.374s) = 1B.626 ms I
Construct Kind: Data Construct
Async: -1

Async Map: 16

Source File: openacc_app.cpp

Func Name: openaccKernel(int, float, float*, float*)
Variable Name: =Unknown=

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

= v Collect CUDA trace
/| Flush data periodically 10.00 || seconds
v Skip some API calls
v| Collect GPU memory usage

| Collect UM CPU page faulth

v/ Collect UM GPU page faul Track the CPU page faults that occur with Unified Memory.
Enabling this option may increase the overhead.

Collect cuDNN trace
Collect cuBLAS trace
Collect OpenACC trace

» Collect CUDA backtraces

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
User Guide v2023.3.1 | 191

Chapter 15.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

1. Visualize how long eglSwapBuffers (or similar) is taking.

2. API trace can easily show correlations between thread state and graphics driver's
behavior, uncovering where the CPU may be waiting on the GPU.

3. Spot bubbles of opportunity on the GPU, where more GPU workload could be
created.

4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

» CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

» GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter () function is used to measure how much
time batches of GPU workload take to complete.

=)' [collect Open6L trace
1= [CollectkHR_debug trace

[+ Enable GPU trace

[] Limit trace depth to level

www.nvidia.com
User Guide v2023.3.1 | 192

@ Choose functions X

Uncheck all Reset to default

Search criteria: Check all

| Search...

Functions

[Buffer

Clear

] Coler

Draw

[m] EGL

] Enable/Disable
] Framebuffer Objects
m] GLX

[Get

1 Program

] Tesxture

[UniformMatrix
] Unsorted

[Vertex

1 glUniform

1 giWindowPos

o

OpenGL Trace

Ranges defined by the KHR _debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

www.nvidia.com
User Guide

v2023.3.1 | 193

15.1. OpenGL Trace Using Command Line

OpenGL Trace

For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,

the functions that are traced are set to the following list:

glWaitSync

glReadPixels

glReadnPixelsKHR

glReadnPixelsEXT

glReadnPixelsARB

glReadnPixels

glFlush

glFinishFenceNV

glFinish

glClientWaitSync
glClearTexSubImage
glClearTexImage

glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex

glClearDepthx

glClearDepthf

glClearDepthdNV

glClearDepth

glClearColorx

glClearColorIuiEXT
glClearColorIiEXT

glClearColor

glClearBufferuiv
glClearBufferSubData
glClearBufferiv

glClearBufferfv

glClearBufferfi

glClearBufferData

glClearAccum

glClear

glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBuf ferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
alDrawTransformFeedbackNV

OpenGL Trace

www.nvidia.com
User Guide v2023.3.1 | 195

Chapter 16.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event

type.

Custom ETW is available on Windows target machines.

€ Add provider >
Please enter the provider information:
MName: |MicrusoFt—Windows—Dwm—Core |
Guid: \9E9BBA3C-2E38-40CB-09F4-OE8281425164 |
Optional:
Buffer Size (KB): | |
Min Buffers: | |
Max Buffers: | |
Keyword: |0x80010000007FO03F |
Level: | TRACE_LEVEL_INFORMATION ~ |
Flags: | Select flags |
| ok || Concel |
* v Custom ETW Trace
N::::\’idus i“duaid me ::TI; Flags Buffer Size (KB) Min Buffers Max Buffers
Microsoft-Windows-Dwm-Core 9E9BBA3C-2E38... OxD 0 0 0 TRAC‘ — |
| oadd |
| Remove |
q] | I X

www.nvidia.com
User Guide v2023.3.1 | 196

Custom ETW Trace

os +800ms +200ms +400ms

* Microsoft-Windows-Dwm-Core
BIND_GDISPRITEBITMAP_FIRST TOKEN
CHANNELBATCHES_PROCESSED |l
COMMAND_PROCESSED_ONBEHALF |l
ENDFRAME DRAWLIST BATCH STATS ||
ENDFRAME_HW_DRAWLIST_CACHE_STATS ||
ENDFRAME_PRIMITIVE_GROUP_STATS ||
ENDFRAME TESSELLATED PRIMITIVES STATS |
ENDFRAME_WARP_DRAWLIST CACHE STATS |
ETWGUID_BITMAPCOPYEVENT
ETWGUID_COPYFRONTTOBACKBUFFERDELTAEVENT
ETWGUID_DIRTYREGIONEVENT

P —

| |
| I I I O O
ETWGUID_DWIMUPDATEWINDOW | ||| || EIWGUID_DIR:I'YRIIEGIIONI::VEI'IIT | | |
ETWGUID_OCCLUSIONEVENT | [l || | |mmeo0ssssis | |1
Event1D: 42
GDISPRITE_LOGICALSURFACE_ASSOCIATION I 0x0
MILEVENT_MEDIA_UCE_CHECKDEVICESTATE | 2230
MILEVENT_MEDIA_UCE PRECOMPUTEEVENT |
MILEVENT_MEDIA_UCE_PRESENTEVENT |
MILEVENT_MEDIA_UCE_RENDEREVENT |
PROCESS_ATTRIBUTION |
PROCESS_EXPRESSIONS |
RENDERTARGET_COUNTS |
RENDER_CVIPASS |
SCHEDULED COMPOSITION_REASON |
|
|
|
|

I I left : 1179.000000

| | top: 1040.000000
right : 1227.000000
bottom : 1080.000000

SCHEDULE_CLEAR_D2D_CACHES
SCHEDULE_DXGI_PRESENT_SUCCEEDED
SCHEDULE_FRAMEINFO
SCHEDULE_FRAME_WSYNCDEADLINES

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2023.3.1 | 197

Chapter 17.
GPU METRICS

Overview

GPU Metrics feature is intended to identify performance limiters in applications using
GPU for computations and graphics. It uses periodic sampling to gather performance
metrics and detailed timing statistics associated with different GPU hardware units
taking advantage of specialized hardware to capture this data in a single pass with
minimal overhead.

Note: GPU Metrics will give you precise device level information, but it does not know
which process or context is involved. GPU context switch trace provides less precise
information, but will give you process and context information.

20m + ol] +20mms 480 m #E0ms 4+ 10ms
P P i P SR e A WS i - I P ey wir

= G (Al Craghics Device - SG00-57 0000}

T EE M _ l—
GPC Cloc i Fregpuency

575 Lok Hequesty

GR Aathem

S Active
PoAM bt h -n-*-&m&&--ﬂu o R
P SH Wamp Derupaney] ..'.I res:

] 4 B Vertex sy
Geomabry Warps In Flight: 0.0%
Vo OIRAM Ransdwidth i L kbl W Pingl Warps in Flight: 0,0%
o N Compute Warps In Flgiht: 17.7%

b PCle Batdmbanm [P |! AcTin SM LN ised 'l'i.i.l'r' Sils: 64.9%

-

P {ALIE Graphics Devics - 000500001
PGP ATDD Geaphics Device - CODDGET 0000

G ALDD Craphics Device - 00008000 0)
= Fofesses (6]
= [4ZEG] pythan

= CLIDA B 1AL DS Graprics Device - B200:E7-00 05

These metrics provide an overview of GPU efficiency over time within compute,
graphics, and input/output (IO) activities such as:

www.nvidia.com
User Guide v2023.3.1 | 198

GPU Metrics

» IO throughputs: PCle, NVLink, and GPU memory bandwidth
» SM utilization: SMs activity, tensor core activity, instructions issued, warp
occupancy, and unassigned warp slots

It is designed to help users answer the common questions:

» Ismy GPU idle?

» Ismy GPU full? Enough kernel grids size and streams? Are my SMs and warp slots
full?

» Am I using TensorCores?
» Is my instruction rate high?
» Am I possibly blocked on IO, or number of warps, etc

Nsight Systems GPU Metrics is only available for Linux targets on x86-64 and aarch64,
and for Windows targets. It requires NVIDIA Turing architecture or newer.

Minimum required driver versions:

NVIDIA Turing architecture TU10x, TU11x - r440
NVIDIA Ampere architecture GA100 - r450

NVIDIA Ampere architecture GA100 MIG - r470 TRD1
NVIDIA Ampere architecture GA10x - r455

vV v v VY

Permissions:
Flevated
bermissions
hre
equired.
Dn

L inux

Ise

udo

o

blevate
brivileges.
Dn
Windows
he

Iser

Note: must

un

rom

hn

hdmin
fommand
brompt

DI

hccept

he

JAC
pscalation
lialog.

bee
Permissions
ssues

hnd

www.nvidia.com
User Guide v2023.3.1 | 199

https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM

GPU Metrics

Performance
Counters

or

more
nformation.

fensor
Core:

metrics-
Hevice
hll,
he
[ensor
Core
itilization
Can
be

ound
n

he
GUI
inder

he
bM
nstructions/
fensor
A\ctive
OW.

Note:

Please
hote
hat

t
S

hot
bractical
o
Pxpect

i}
CUDA
ernel

o

each

00%
[ensor
Core
itilization
ince

here

hre

bther
bverheads.

www.nvidia.com
User Guide v2023.3.1 | 200

https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM

GPU Metrics

n
peneral,
he
more
fomputation-
ntensive
AN
bperation
S,
he
nigher
[ensor
Core
itilization
ate

he
CUDA
ernel
Can
hchieve.

Launching GPU Metric from the CLI

GPU Metrics feature is controlled with 3 CLI switches:

» --gpu-metrics-device=[all, none, <index>] selects GPUs to sample (default is none)
> --gpu-metrics-set=[<index>, <alias>] selects metric set to use (default is the 1st
suitable from the list)

» --gpu-metrics-frequency=[10..200000] selects sampling frequency in Hz (default is
10000)

To profile with default options and sample GPU Metrics on GPU 0:

Must have elevated permissions (see https://developer.nvidia.com/
ERR NVGPUCTRPERM) or be root (Linux) or Administrator (Windows)
$ nsys profile --gpu-metrics-device=0 ./my-app

To list available GPUs, use:

$ nsys profile --gpu-metrics-device=help
Possible --gpu-metrics-device values are:
0: Quadro GV100 PCI[0000:17:00.0]
1: GeForce RTX 2070 SUPER PCI[0000:65:00.0]
all: Select all supported GPUs
none: Disable GPU Metrics [Default]

By default, the first metric set which supports all selected GPUs is used. But you can
manually select another metric set from the list. To see available metric sets, use:

$ nsys profile --gpu-metrics-set=help

Possible --gpu-metrics-set values are:
[0] [tulOx] General Metrics for NVIDIA TU1l0x (any frequency)
[1] [tullx] General Metrics for NVIDIA TUllx (any frequency)
[2] [gal0O0] General Metrics for NVIDIA GA100 (any frequency)
[3] [gallx] General Metrics for NVIDIA GAlOx (any frequency)

[4] [tulOx-gfxt] Graphics Throughput Metrics for NVIDIA TUl0x (frequency
>= 10kHz)

[5] [galOx-gfxt] Graphics Throughput Metrics for NVIDIA GAlOx (frequency
>= 10kHz)

[6] [galOx-gfxact] Graphics Async Compute Triage Metrics for NVIDIA GA1l0x
(frequency >= 10kHz)

www.nvidia.com
User Guide v2023.3.1 | 201

GPU Metrics

By default, sampling frequency is set to 10 kHz. But you can manually set it from 10 Hz
to 200 kHz using

--gpu-metrics-frequency=<value>

Launching GPU Metrics from the GUI

For commands to launch GPU Metrics from the CLI with examples, see the CLI
documentation.

When launching analysis in Nsight Systems, select Collect GPU Metrics.

= v Collect GPU metrics

Sampling rate: - 10 kHz
GPUs: All supported -
Metric set: [gallx] Msight Systems Metrics for NVIDIA Ampere GA10x >

Select the GPUs dropdown to pick which GPUs you wish to sample.

Select the Metric set: dropdown to choose which available metric set you would like to
sample.

» ' Collect CUD*

* v Collect GPU
Sampling rate:
GPUs:

Metric set: [gallx] Msight Systems Metrics for NVIDIA Ampere GA10x
[gallx-nvlink] Msight Systems Metrics for NVIDIA Ampere GA10x with NVLink

] Collect NVT]

Note that metric sets for GPUs that are not being sampled will be greyed out.

Sampling frequency

Sampling frequency can be selected from the range of 10 Hz - 200 kHz. The default value
is 10 kHz.

The maximum sampling frequency without buffer overflow events depends on GPU
(SM count), GPU load intensity, and overall system load. The bigger the chip and the
higher the load, the lower the maximum frequency. If you need higher frequency, you
can increase it until you get "Buffer overflow" message in the Diagnostics Summary
report page.

Each metric set has a recommended sampling frequency range in its description. These
ranges are approximate. If you observe Inconsistent Data or Missing Data ranges
on timeline, please try closer to the recommended frequency.

www.nvidia.com
User Guide v2023.3.1 | 202

GPU Metrics

Available metrics

» GPC Clock Frequency - gpc__cycles_elapsed.avg.per_second

The average GPC clock frequency in hertz. In public documentation the GPC clock
may be called the "Application" clock, "Graphic" clock, "Base" clock, or "Boost" clock.

Note: The collection mechanism for GPC can result in a small fluctuation between
samples.

» SYS Clock Frequency - sys__cycles_elapsed.avg.per_second

The average SYS clock frequency in hertz. The GPU front end (command processor),
copy engines, and the performance monitor run at the SYS clock. On Turing and
NVIDIA GA100 GPUs the sampling frequency is based upon a period of SYS clocks
(not time) so samples per second will vary with SYS clock. On NVIDIA GA10x
GPUs the sampling frequency is based upon a fixed frequency clock. The maximum
frequency scales linearly with the SYS clock.

» GRActive-gr__cycles_active.sum.pct of peak_sustained elapsed

The percentage of cycles the graphics/compute engine is active. The graphics/
compute engine is active if there is any work in the graphics pipe or if the compute
pipe is processing work.
GA100 MIG - MIG is not yet supported. This counter will report the activity of the
primary GR engine.
» Sync Compute In Flight -
gr__dispatch_cycles_active queue_sync.avg.pct of peak sustained elapsed

The percentage of cycles with synchronous compute in flight.

CUDA: CUDA will only report synchronous queue in the case of MPS configured
with 64 sub-context. Synchronous refers to work submitted in VEID=0.

Graphics: This will be true if any compute work submitted from the direct queue is
in flight.
» Async Compute in Flight -
gr__dispatch_cycles_active queue_async.avg.pct of peak sustained elapsed

The percentage of cycles with asynchronous compute in flight.

CUDA: CUDA will only report all compute work as asynchronous. The one
exception is if MPS is configured and all 64 sub-context are in use. 1 sub-context
(VEID=0) will report as synchronous.

Graphics: This will be true if any compute work submitted from a compute queue is
in flight.
» Draw Started - fe__draw_count.avg.pct_of peak sustained elapsed

The ratio of draw calls issued to the graphics pipe to the maximum sustained rate of
the graphics pipe.

www.nvidia.com
User Guide v2023.3.1 | 203

GPU Metrics

Note:The percentage will always be very low as the front end can issue draw calls
significantly faster than the pipe can execute the draw call. The rendering of this row
will be changed to help indicate when draw calls are being issued.

» Dispatch Started -
gr__dispatch count.avg.pct of peak sustained elapsed

The ratio of compute grid launches (dispatches) to the compute pipe to the
maximum sustained rate of the compute pipe.

Note: The percentage will always be very low as the front end can issue grid
launches significantly faster than the pipe can execute the draw call. The rendering
of this row will be changed to help indicate when grid launches are being issued.
» Vertex/Tess/Geometry Warps in Flight -
tpc___warps_active_shader vtg realtime.avg.pct of peak sustained elapsed

The ratio of active vertex, geometry, tessellation, and meshlet shader warps resident
on the SMs to the maximum number of warps per SM as a percentage.
» Pixel Warps in Flight -
tpc__warps_active_shader ps realtime.avg.pct of peak sustained elapsed

The ratio of active pixel/fragment shader warps resident on the SMs to the
maximum number of warps per SM as a percentage.
» Compute Warps in Flight -

tpc__warps_active_shader cs realtime.avg.pct of peak sustained elapsed

The ratio of active compute shader warps resident on the SMs to the maximum
number of warps per SM as a percentage.
» Active SM Unused Warp Slots -

tpc___warps_inactive sm_active realtime.avg.pct of peak sustained elapsed

The ratio of inactive warp slots on the SMs to the maximum number of warps per
SM as a percentage. This is an indication of how many more warps may fit on the
SMs if occupancy is not limited by a resource such as max warps of a shader type,
shared memory, registers per thread, or thread blocks per SM.

» Idle SM Unused Warp Slots -

tpc__warps_inactive sm_idle realtime.avg.pct of peak sustained elapsed

The ratio of inactive warps slots due to idle SMs to the the maximum number of
warps per SM as a percentage.

This is an indicator that the current workload on the SM is not sufficient to put work
on all SMs. This can be due to:

» CPU starving the GPU
» current work is too small to saturate the GPU
» current work is trailing off but blocking next work
» SM Active-sm__cycles_active.avg.pct_of peak sustained elapsed

The ratio of cycles SMs had at least 1 warp in flight (allocated on SM) to the number
of cycles as a percentage. A value of 0 indicates all SMs were idle (no warps in
flight). A value of 50% can indicate some gradient between all SMs active 50% of the
sample period or 50% of SMs active 100% of the sample period.

www.nvidia.com
User Guide v2023.3.1 | 204

GPU Metrics

» SM Issue -
sm__inst_executed realtime.avg.pct of peak sustained elapsed

The ratio of cycles that SM sub-partitions (warp schedulers) issued an instruction to
the number of cycles in the sample period as a percentage.
» Tensor Active -
sm__pipe_ tensor_cycles_active realtime.avg.pct of peak sustained elapsed

The ratio of cycles the SM tensor pipes were active issuing tensor instructions to the
number of cycles in the sample period as a percentage.

TU102/4/6: This metric is not available on TU10x for periodic sampling. Please see
Tensor Active/FP16 Active.
» Tensor Active / FP16 Active -
sm_ pipe shared cycles active_ realtime.avg.pct of peak sustained elapsed

TU102/4/6 only

The ratio of cycles the SM tensor pipes or FP16x2 pipes were active issuing tensor
instructions to the number of cycles in the sample period as a percentage.

» DRAM Read Bandwidth -
dramc__read_throughput.avg.pct_of peak sustained elapsed,
dram read throughput.avg.pct_of peak_sustained elapsed

» VRAM Read Bandwidth -
FBPA.TriageA.dramc__read throughput.avg.pct of peak sustained elapsed,
FBSP.TriageSCG.dramc__read throughput.avg.pct of peak sustained elapsed,
FBSP.TriageAC.dramc__read throughput.avg.pct_of peak sustained elapsed

The ratio of cycles the DRAM interface was active reading data to the elapsed cycles
in the same period as a percentage.
» DRAM Write Bandwidth -
dramc__write_ throughput.avg.pct of peak sustained elapsed,
dram write_ throughput.avg.pct of peak sustained elapsed
» VRAM Write Bandwidth -
FBPA.TriageA.dramc__write_throughput.avg.pct_of peak_sustained_elapsed,
FBSP.TriageSCG.dramc__write_throughput.avg.pct of peak_ sustained_elapsed,
FBSP.TriageAC.dramc__ write throughput.avg.pct of peak sustained elapsed

The ratio of cycles the DRAM interface was active writing data to the elapsed cycles
in the same period as a percentage.

» NVLink bytes received -
nvlrx bytes.avg.pct of peak sustained elapsed

The ratio of bytes received on the NVLink interface to the maximum number of
bytes receivable in the sample period as a percentage. This value includes protocol
overhead.

» NVLink bytes transmitted -
nvltx bytes.avg.pct of peak sustained elapsed

The ratio of bytes transmitted on the NVLink interface to the maximum number
of bytes transmittable in the sample period as a percentage. This value includes
protocol overhead.

www.nvidia.com
User Guide v2023.3.1 | 205

GPU Metrics

» PCle Read Throughput -
pcie_read bytes.avg.pct of peak sustained elapsed

The ratio of bytes received on the PCle interface to the maximum number of bytes
receivable in the sample period as a percentage. The theoretical value is calculated
based upon the PCle generation and number of lanes. This value includes protocol
overhead.

» PCIe Write Throughput -
pcie_write bytes.avg.pct of peak sustained elapsed

The ratio of bytes transmitted on the PCle interface to the maximum number of
bytes receivable in the sample period as a percentage. The theoretical value is
calculated based upon the PCle generation and number of lanes. This value includes
protocol overhead.

» PClIe Read Requests to BAR1 -
pcie_ rx requests_aperture barl op read.sum

» PCle Write Requests to BAR1 -
pcie_ rx requests_aperture barl op write.sum

BART1 is a PCI Express (PCle) interface used to allow the CPU or other devices to
directly access GPU memory. The GPU normally transfers memory with its copy
engines, which would not show up as BAR1 activity. The GPU drivers on the CPU
do a small amount of BAR1 accesses, but heavier traffic is typically coming from
other technologies.

On Linux, technologies like GPU Direct, GPU Direct RDMA, and GPU Direct
Storage transfer data across PCle BARI. In the case of GPU Direct RDMA, that
would be an Ethernet or InfiniBand adapter directly writing to GPU memory.

On Windows, Direct3D12 resources can also be made accessible directly to the
CPU via NVAPI functions to support small writes or reads from GPU buffers, in
this case too many BAR1 accesses can indicate a performance issue, like it has been
demonstrated in the Optimizing DX12 Resource Uploads to the GPU Using CPU-
Visible VRAM technical blog post.

Exporting and Querying Data

It is possible to access metric values for automated processing using the Nsight Systems
CLI export capabilities.

www.nvidia.com
User Guide v2023.3.1 | 206

GPU Metrics

An example that extracts values of "SM Active":

$ nsys export -t sglite report.nsys-rep
$ sglite3 report.sqglite "SELECT rawTimestamp, CAST (JSON_EXTRACT (data, 'S.
\"SM Active\"') as INTEGER) as value FROM GENERIC EVENTS WHERE value != 0 LIMIT
lo"

30927703980
309301295199
309325583199
309349776199
30937387260
309397872119
3094218401100
3094460001100
309470096100
309494161199

An overview of data stored in each event (JSON):

$ sglite3 report.sqglite "SELECT data FROM GENERIC EVENTS LIMIT 1"
{

"Unallocated Warps in Active SM": "0",
"Compute Warps In Flight": "52",

"Pixel Warps In Flight": "O",
"Vertex\/Tess\/Geometry Warps In Flight": "0",
"Total SM Occupancy": "52",

"GR Active (GE\/CE)": "100",

"Sync Compute In Flight": "O",

"Async Compute In Flight": "98",

"NVLink bytes received": "O0",

"NVLink bytes transmitted": "0",

"PCIe Rx Throughput": "0",

"PCIe Tx Throughput": "1",

"DRAM Read Throughput": "0",

"DRAM Write Throughput": "0",

"Tensor Active \/ FP16 Active": "0O",

"SM Issue": "10",

"SM Active": "52"

}

Values are integer percentages (0..100)

Limitations

» If metric sets with NVLink are used but the links are not active, they may appear as
fully utilized.

» Only one tool that subscribes to these counters can be used at a time, therefore,
Nsight Systems GPU Metrics feature cannot be used at the same time as the
following tools:

» Nsight Graphics
» Nsight Compute
» DCGM (Data Center GPU Manager)

Use the following command:

» dcgmi profile --pause

www.nvidia.com
User Guide v2023.3.1 | 207

GPU Metrics

» dcgmi profile --resume
Or APL

» dcgmProfPause
» dcgmProfResume
» Non-NVIDIA products which use:

» CUPTI sampling used directly in the application. CUPTI trace is okay
(although it will block Nsight Systems CUDA trace)
» DCGM library
Nsight Systems limits the amount of memory that can be used to store GPU Metrics
samples. Analysis with higher sampling rates or on GPUs with more SMs has a risk
of exceeding this limit. This will lead to gaps on timeline filled with Missing Data
ranges. Future releases will reduce the frequency of this happening.

www.nvidia.com

User Guide v2023.3.1 | 208

Chapter 18.
CPU PROFILING USING LINUX OS PERF

SUBSYSTEM

Nsight Systems on Linux targets, utilizes the Linux OS' perf subsystem to sample CPU
Instruction Pointers (IPs) and backtraces, trace CPU context switches, and sample CPU
and OS event counts. The Linux perf tool utilizes the same perf subsystem.

Nsight Systems, on L4T and potentially other ARM targets, may use a custom kernel
module to collect the same data. The Nsight Systems CLI command nsysstatus --
environment indicates when the kernel module is used instead of the Linux OS' perf
subsystem.

Features
» CPU Instruction Pointer / Backtrace Sampling

Nsight Systems can sample CPU Instruction Pointers / backtraces periodically. The
collection of a sample is triggered by a hardware event overflow - e.g. a sample is
collected after every 1 million CPU reference cycles on a per thread basis. In the
GUI, samples are shown on the individual thread timelines, in the Event Viewer,
and in the Top Down, Bottom Up, or Flat views which provide histogram-like
summaries of the data. IP / backtrace collections can be configured in process-tree or
system-wide mode. In process-tree mode, Nsight Systems will sample the process,
and any of its descendants, launched by the tool. In system-wide mode, Nsight
Systems will sample all processes running on the system, including any processes
launched by the tool.

» CPU Context Switch Tracing

Nsight Systems can trace every time the OS schedules a thread on a logical CPU
and every time the OS thread gets unscheduled from a logical CPU. The data is
used to show CPU utilization and OS thread utilization within the Nsight Systems
GUI. Context switch collections can be configured in process-tree or system-wide
mode. In process-tree mode, Nsight Systems will trace the process, and any of its
descendants, launched by Nsight Systems. In system-wide mode, Nsight Systems
will trace all processes running on the system, including any processes launched by
the Nsight Systems.

» CPU Event Sampling

www.nvidia.com
User Guide v2023.3.1 | 209

CPU Profiling Using Linux OS Perf Subsystem

Nsight Systems can periodically sample CPU hardware event counts and OS event
counts and show the event's rate over time in the Nsight Systems GUI. Event sample
collections can be configured in system-wide mode only. In system-wide mode,
Nsight Systems will sample event counts of all CPUs and the OS event counts
running on the system. Event counts are not directly associated with processes or

threads.

System Requirements

» Paranoid Level

The system's paranoid level must be 2 or lower.

Paranoid CPU IP/ CPU IP/ CPU CPU Event
Level backtrace backtrace Context Context Sampling
Sampling Sampling Switch Switch system-
process- system- Tracing Tracing wide
tree wide process- system- mode
mode mode tree wide
mode mode
3or not not not not not
greater available available available available available
2 User not available not not
mode available available available
1P/
backtrace
samples
only
1 Kernel not available not not
and available available available
user
mode
1P/
backtrace
samples
0,-1 Kernel Kernel available available hardwarg
and and and OS
user user events
mode mode
1P/ 1P/
backtrace backtrace
samples samples

» Kernel Version

To support the CPU profiling features utilized by Nsight Systems, the kernel version
must be greater than or equal to v4.3. RedHat has backported the required features
to the v3.10.0-693 kernel. RedHat distros and their derivatives (e.g. CentOS) require

www.nvidia.com
User Guide

v2023.3.1 | 210

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

CPU Profiling Using Linux OS Perf Subsystem

a 3.10.0-693 or later kernel. Use the uname -r command to check the kernel's
version.

» perf_event_open syscall

The perf_event_open syscall needs to be available. When running within a Docker
container, the default seccomp settings will normally block the perf_event_open
syscall. To workaround this issue, use the Docker run --privileged switch when
launching the docker or modify the docker's seccomp settings. Some VMs (virtual
machines), e.g. AWS, may also block the perf_event_open syscall.

» Sampling Trigger

In some rare case, a sampling trigger is not available. The sampling trigger is either
a hardware or software event that causes a sample to be collected. Some VMs block
hardware events from being accessed and therefore, prevent hardware events from
being used as sampling triggers. In those cases, Nsight Systems will fall back to
using a software trigger if possible.

» Checking Your Target System

Use the nsys status --environment command to check if a system meets the
Nsight Systems CPU profiling requirements. Example output from this command is
shown below. Note that this command does not check for Linux capability overrides
- i.e. if the user or executable files have CAP_SYS ADMIN or CAP_PERFMON
capability. Also, note that this command does not indicate if system-wide mode can
be used.

(base) rknight@RKNIGHT-U18:~/quadd2/quadd/Built/Bin/QuadD-Debug/target-linux-x64% ./nsys status -e
Timestamp counter supported: Yes

CPU Profiling Environment Check

Root privilege: disabled

Linux Kernel Paranoid Level = 2

Linux Distribution = Ubuntu

Linux Kernel Version = 5.4.0-122-generic: 0K
Linux perf_event_open syscall available: 0K
Sampling trigger event available: OK

Intel(c) Last Branch Record support: Available
CPU Profiling Environment (process-tree): 0K
CPU Profiling Environment (system-wide): Fail

See the product documentation at https://docs.nvidia.com/nsight-systems for more information,
including information on how to set the Linux Kernel Paranoid Level.

Configuring a CPU Profiling Collection

When configuring Nsight Systems for CPU Profiling from the CLI, use some or all of the
following options: --sample, --cpuctxsw, --event-sample, --backtrace, --cpu-
core-events, --event-sampling-frequency, --os-events, --samples-per-
backtrace, and --sampling-period.

Details about these options, including examples can be found in the Profiling from the
CLI section of the User Guide

When configuring from the GUI, the following options are available:

www.nvidia.com
User Guide v2023.3.1 | 211

CPU Profiling Using Linux OS Perf Subsystem

File View Tools Help
Project 2 X
& RKNIGHT-U18 ~||&||#| + Targetis ready More info...
— .
= [V Collect CPU IFjbacktrace samples | Enable IP / backtrace sampling @ | Start
sampling period: { s 1,000,000 events Set sampling period Start profiling manually
Scope: system-wide Set sampling mode e Start profiling after 10.0 | seconds
The sampling period is the number of 'CPU Instructions Retired' events counted before a CPU instruction pointer (IP) sample is) <
collected. If configured, call stacks may also be collected. The smaller the sample period, the higher the sampling rate. Lower Start profiling after 100 < | frames
sampling periods will increase overhead and significantly increase the size of result file(s).
Limit profiling to 10.0 +| seconds
w v Collect call stacks of executing threads I Enable backtrace collection ® .
Limit profiling to 600 +| frames
Backtracing algerithm... rrent settings: use Intel © Last Branch Record (LBR) Hotkey Start/Stop |F12 ~
-down and flat call stacks view will be unavailable. .
(not available in console apps)
Symbol locations (1)...| 1 directory with symbol files.
When stripped libraries (e.g. *.so files) are used on the target, specify here direc h original non-stripped libraries to
get symbols resolved.
Select backtrace collection mechanism
7 EgEipriEieT Configure backtracing algorithm o
Mode: Specify process launch options below
Command line with arguments: Edit arguments O U2 (ili=) & (e CarEh s (IR
Use DWARF debug information
sleep 3 -
- - Use frame pointers
Working directory:
¥ Environment variables
Trace fork before exec
* v Collect CPU context switch trace
Use this option to trace OS threads as they get assigned to execute on CPUs Enable context switch tracing
» v Collect OS runtime libraries trace
» Collect CUDA trace
» Collect OpenMP trace
» Collect GPU context switch trace
» Collect GPU metrics
» Collect NV Video trace
» Collect NVTX trace
» Collect OpenGL trace
» Collect Vulkan trace
» Communication profiling eptions (MPI, SHMEM, UCX)

The configuration used during CPU profiling is documented in the Analysis Summary:

Analysis options

f" Collect cPU IP samples on

Sampling period

CPU IP Sampling Trigger Event
CPU IP samples [backtrace

CPU profiling scope

Collect CPU context switch trace
Collect backtraces

Backtracing algorithm

2,000,000 events/sample
Reference Cycles

3

process-tree

on

on

Use Intel © Last Branch Record (LBR) y

Include child processes

on

As well as in the Diagnosics Summary:

www.nvidia.com
User Guide

v2023.3.1 | 212

CPU Profiling Using Linux OS Perf Subsystem

File View Tools Help
Project 2 X reportl X report2 X report3 X

B, Diagnostics Summary ~

Messages
Source Process ID Time Description
@ Daemon -00:00.493 Intel(c) Last Branch Record (LBR) backtraces collected.
@ Daemon -00:00.493 Hardware event 'Reference Cycles', with sampling period 2000000, used to trigger system-wide CPU IP sample collection.
o Daemon -00:00.140 1 CPU IP samples collected for every CPU IP backtrace collected.
Daemon -00:00.000 Vulkan runtime version 1.1.0 on target machine.
@ Analysis 00:00.000 Profiling has started.
@ Daemon 21128 00:00.000 Process was launched by the profiler, see /tmp/n: nsight. 1add_session_1021114/streams/pid_21128_stdout.log and stderr.log for program output
@ njection 21128 00:00.218 Common injection library initialized successfully.
@ njection 21128 00:00.253 OS runtime libraries injection initialized successfully.
@ njection 21128 00:00.287 OpenGL injection initialized successfully.
@ njection 21128 00:00.459 Buffers holding CUDA trace data will be flushed on CudaProfilerStop() call.
@ injection 21128 00:00.800 CUDA injection initialized successfully.
@ njection 21128 00:01.121 NVTX injection initialized successfully.
@ njection 21128 00:05.504 Number of CUPTI events produced: 17,126, CUPTI buffers: 50.
@ Analysis 00:05.923 Profiling has stopped.
| & Daemon 00:07.184 _ Number of IP samples collected: 16,600. |
A Analysis 21128 02:00.149 OpenGL function MakeCurrent was called with wrong (duplicate) context argument 757 times.
o Analysis 21128 02:00.150 Number of NVTX events collected: 753.
@ Analysis 21128 02:00.150 Number of OpenGL events collected: 201,455,
@ Analysis 21128 02:00.150 Number of CUDA events collected: 16,088.
o Analysis 21128 02:00.150 Number of OS runtime libraries events collected: 4,547.

Visualizing CPU Profiling Results

Here are example screenshots visualizing CPU profiling results. For details about
navigating the Timeline View and the backtraces, see the section on Timeline View in the
Reading Your Report in the GUI section of the User Guide.

Example of CPU IP/Backtrace Data

File View Tools Help

Project Explorer R | Project13 X [reportlgdrep X |[EUNCR IR report3.adrep X | spdwarfqdrep X |splbrgdrep % | spfp.adrep X
|| report15.qdrep | *

] report16.qdrep = Timeline view - Hix @ 15 messages
] report17.qdrep 1s +828ms +830ms +834ms +836ms +838ms +840ms +842ms +844ms E
|1 report23.qdrep Mk

L] report22.qdrep - Threads (8)

i e
- report.qdrep * VI [21612] Smokel - _—_—————— — ————

reportS.qdrep

) profile.qdrep) — N R

7 profile qdrep 05 runtime libraries Spec ific Sam ples Sampling point

" 2:2:2 :::2 Call stack at 1.832s:

O X —|libpthread-2.18 so!_ pthread_mutex_trylock E

L] report5.qdrep NVTX frame [16.765 ms] | ngignt Systems frames [12.050 ms]

uda.50.418.67/0x7fa7dbb256bd
cuda.s0.418.67!

_ reportl.qdrep

|| report18.qdrep CUDA API cudaliemcpy &

|1 report19.qdrep

Profiler overhead cudart::cudaApiOccupancyMaxActiveBlocksPerMultiprocessorWithFlags...)

1 fEPMlq:fEP smokeParticles!
|| reportz.qdrep . .. g
Bl reportr.adren v [21622] smokeFarticles massrarciea .
LI report16.qdrep 05 runtime libraries Emokaastician:
| report20.qdrep cudaError thrust::cuda_cub::cub::Di irs<..>(..)
report21. qdrep »] [21621] smokeParticles - l smokeParticlesivoid Trust cuda_Cubisort by, Key<..>(..)
b} smokeParticles H [Max depth]![Max depth]
|7 report12.qdrep =
|| dhig.qdrep
&l ;z:,:ig;,%dﬁ;m Bottom-Up View ~ | Process [21612] smokeParticles (8 of 8 threads)
L reportl.qdrep T Filter... | 65,022 samples are used. [searcn.. 4]
| report1.qdrep
| profile_0_3545.... Symbol Name Self, % Module Name
| profile 0_a4al... fibonacci(int) 63.04 /home/rknight/testy190920/NsightSystems-linux-public-2019.6.0.106-dbae87d/target-linux-x64/smo.
7 report12.qdrep » Ox7fa7dbd2esfs 5.76 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
nmsv3.qdrep » Ox7fa7dbd2aoff 1.06 fust/lib/x86_64-linux-gnu/libcuda.s0.418.67 .
™ profile_0_3232... » 0x7fa7dbd78e69 0.90 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67 Sa m p||ng
= reporta.qirep » Oxfffffffa10362d9 0.70 [kernel kallsyms]
7 2d.ns5.qdrep » Oxffffiffa1806e50 0.67 [kernel kallsyms] 3
[reporth.acren } Ox7faTdbd2e0f0 0.66 fust/lib/x86_64-linux-gnu/libcuda so.418.67 ummary
- - » Ox7fa7dbbde7fa 0.61 fust/lib/x86_64-linux-gnu/libcuda so.418.67
LI report2.qdrep » Ox7fa7dbdzesfs 0.59 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
L| report3.qdrep + Ox7fa7dbbda7f0 0.59 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
__| reportd.qdrep » Ox7fa7dbd2eofa 0.55 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
|| report5.qdrep » 0x7fa7dbbde7f7 0.51 fusr/lib/x86_64-linux-gnu/libcuda so.418.67

reporté.qdrep |~

In the timeline, yellow-orange marks can be found under each thread's timeline that
indicate the moment an IP / backtrace sample was collected on that thread (e.g. see the
yellow-orange marks in the Specific Samples box above). Hovering the cursor over a
mark will cause a tooltip to display the backtrace for that sample.

www.nvidia.com
User Guide v2023.3.1 | 213

CPU Profiling Using Linux OS Perf Subsystem

Below the Timeline is a drop-down list with multiple options including Events View,
Top-Down View, Bottom-Up View, and Flat View. All four of these views can be used to
view CPU IP / back trace sampling data.

Example of Event Sampling

i - L e |

mmmmmmmmmmmm

SN

Output essages

Event sampling samples hardware or software event counts during a collection and then
graphs those events as rates on the Timeline. The above screenshot shows 4 hardware
events. Core and cache events are graphed under the associated CPU row (see the red
box in the screenshot) while uncore and OS events are graphed in their own row (see
the green box in the screenshot). Hovering the cursor over an event sampling row in the
timeline shows the event's rate at that moment.

Common Issues
» Reducing Overhead Caused By Sampling
There are several ways to reduce overhead caused by sampling.

» disable sampling (i.e. use the --sampling=none switch)

» increase the sampling period (i.e. reduce the sampling rate) using the --
sampling-period switch

» stop collecting backtraces (i.e. use the --backtrace=none switch) or collect
more efficient backtraces - if available, use the --backtrace=1br switch.

» reduce the number of backtraces collected per sample. See documentation for
the --samples-per-backtrace switch.

» Throttling

The Linux operating system enforces a maximum time to handle sampling
interrupts. This means that if collecting samples takes more than a specified amount
of time, the OS will throttle (i.e slow down) the sampling rate to prevent the perf

www.nvidia.com
User Guide v2023.3.1 | 214

CPU Profiling Using Linux OS Perf Subsystem

subsystem from causing too much overhead. When this occurs, sampling data may
become irregular even though the thread is very busy.

= " "
= Timeline View -

os +260ms +262ms +264ms +266ms +268ms +270ms +272ms

» CPU(12)

~ Threads (1)

v nasseree - RN
1

7.044

Bottom-Up View ~ | Process [14596] btt (1 of 1 thread)

T Filter... | 3,091 samples are used.

Symbol Name Self, % = Module Name
[Max depthl] 87.25 [Max depth]
~ main 12.68 /home/rknight/my_examples/backtrace-test/btt
~ _ libc_start m... 12.68 (lib/x86_64-linux-gnu/libc-2.19.50
_start 12.68 /home/rknight/my_examples/backtrace-test/btt

The above screenshot shows a case where CPU IP / backtrace sampling was throttled
during a collection. Note the irregular intervals of sampling tickmarks on the thread
timeline. The number of times a collection throttled is provided in the Nsight
Systems GUI's Diagnostics messages. If a collection throttles frequently (e.g. 1000s of
times), increasing the sampling period should help reduce throttling.

When
throttling
occurs,
the

0S

(lower)
maximum
sampling
rate

in

the
Note: procfs.
This
value
must

be

reset
before
the
sampling
rate

can

be
increased
again.
Use

www.nvidia.com
User Guide v2023.3.1 | 215

CPU Profiling Using Linux OS Perf Subsystem

the
following
command
to

reset

the

0oS'

max
sampling
rate

echo
'100000"
I
sudo

tee /

proc/

sys/

kernel/

perf event max sample rate

» Sample intervals are irregular

My samples are not periodic - why? My samples are clumped up - why? There are
gaps in between the samples - why? Likely reasons:

» Throttling, as described above

» The paranoid level is set to 2. If the paranoid level is set to 2, anytime the
workload makes a system call and spends time executing kernel mode code,
samples will not be collected and there will be gaps in the sampling data.

» The sampling trigger itself is not periodic. If the trigger event is not periodic, for
example, the Instructions Retired. event, sample collection will primarily occur
when cache misses are occurring.

» No CPU profiling data is collected

There are a few common issues that cause CPU profiling data to not be collected

» System requirements are not met. Check your system settings with the nsys
status --environment command and see the System Requirements section
above.

» I profiled my workload in a Docker container but no sampling data was
collected. By default, Docker containers prevent the perf_event_open syscall
from being utilized. To override this behavior, launch the Docker with the —-
privileged switch or modify the Docker's seccompsettings.

» I profiled my workload in a Docker container running Ubuntu 20+ running on
top of a host system running CentOS with a kernel version < 3.10.0-693. The
nsys status --environment command indicated that CPU profiling was
supported. The host OS kernel version determines if CPU profiling is allowed
and a CentOS host with a version < 3.10.0-693 is too old. In this case, the nsys
status --environment command is incorrect.

www.nvidia.com
User Guide v2023.3.1 | 216

https://docs.nvidia.com/nsight-systems/index.html#nsight_systems/2018.3.0-x86/07-docker-profiling.htm

Chapter 19.
NVIDIA VIDEO CODEC SDK TRACE

Nsight Systems for x86 Linux and Windows targets can trace calls from the NV Video
Codec SDK. This software trace can be launched from the GUI or using the --trace
nvvideo from the CLI

» Collect GPU metrics

= Collect NV Video trace

Trace NVIDIA Video Encoder APls.

» Collect NVTX trace

On the timeline, calls on the CPU to the NV Encoder API and NV Decoder API will be
shown.

= Threads (9)

~ [172685] AppTransPerf I SRR R R T . | | | i 1 |
0 runtime libraries 0 N VARG A0 110 R Co-JNEA| [Coon oo Y "pon T ot QX =T S

TransProc [1.619 5]

NVT IZB IDE... [D...|p...| DEC_Decode 3.938 ms] UDEC_Decude[Z.TB...I_I DEC_Decode 3.850ms]_| |
cuDA API P |) o Nastean. |]| Jesste]
weeovusterst D T £ 8 W TN T T
Profiler overhead

www.nvidia.com

User Guide v2023.3.1 | 217

NVIDIA Video Codec SDK Trace

19.1. NV Encoder API Functions Traced by Default

NvEncodeAPICreatelInstance
nvEncOpenEncodeSession
nvEncGetEncodeGUIDCount
nvEncGetEncodeGUIDs

nvEncGetEncodeProfileGUIDCount

nvEncGetEncodeProfileGUIDs
nvEncGetInputFormatCount
nvEncGetInputFormats
nvEncGetEncodeCaps
nvEncGetEncodePresetCount
nvEncGetEncodePresetGUIDs
nvEncGetEncodePresetConfig
nvEncGetEncodePresetConfigEx
nvEncInitializeEncoder
nvEncCreateInputBuffer
nvEncDestroyInputBuffer
nvEncCreateBitstreamBuffer
nvEncDestroyBitstreamBuffer
nvEncEncodePicture
nvEncLockBitstream
nvEncUnlockBitstream
nvEncLockInputBuffer
nvEncUnlockInputBuffer
nvEncGetEncodeStats
nvEndGetSequenceParams
nvEncRegisterAsyncEvent
nvEncUnregisterAsyncEvent
nvEncMapInputResource
nvEncUnmapInputResource
nvEncDestroyEncoder
nvEncInvalidateRefFrames
nvEncOpenEncodeSessionEx
nvEncRegisterResource
nvEncUnregisterResource
nvEncReconfigureEncoder
nvEncCreateMVBuffer
nvEncDestroyMVBuffer
nvEncRunMotionEstimationOnly
nvEncGetLastErrorString
nvEncSetIOCudaStreams
nvEncGetSequenceParamEx

www.nvidia.com
User Guide

v2023.3.1 | 218

NVIDIA Video Codec SDK Trace

19.2. NV Decoder API Functions Traced by Default

cuvidCreateVideoSource
cuvidCreateVideoSourceW
cuvidDestroyVideoSource
cuvidSetVideoSourceState
cudaVideoState

cuvidGetSourceVideoFormat
cuvidGetSourceAudioFormat

cuvidCreateVideoParser
cuvidParseVideoData
cuvidDestroyVideoParser
cuvidCreateDecoder
cuvidDestroyDecoder
cuvidDecodePicture
cuvidGetDecodeStatus
cuvidReconfigureDecoder
cuvidMapVideoFrame
cuvidUnmapVideoFrame
cuvidMapVideoFrame64
cuvidUnmapVideoFrame64
cuvidCtxLockCreate
cuvidCtxLockDestroy
cuvidCtxLock
cuvidCtxUnlock

www.nvidia.com
User Guide

v2023.3.1 | 219

NVIDIA Video Codec SDK Trace

19.3. NV JPEG API Functions Traced by Default

nvjpegBufferDeviceCreate
nvjpegBufferDeviceDestroy
nvjpegBufferDeviceRetrieve
nvijpegBufferPinnedCreate
nvjpegBufferPinnedDestroy
nvjpegBufferPinnedRetrieve
nvijpegCreate

nvijpegCreateEx

nvjpegCreateSimple

nvjpegDecode

nvjpegDecodeBatched
nvijpegDecodeBatchedEx
nvjpegDecodeBatchedInitialize
nvjpegDecodeBatchedPreAllocate
nvijpegDecodeBatchedSupported
nvijpegDecodeBatchedSupportedEx
nvjpegDecodedpeg
nvjpegDecodedpegbDevice
nvjpegDecodeJpegHost
nvijpegDecodedpegTransferToDevice
nvjpegDecodeParamsCreate
nvjpegDecodeParamsDestroy
nvjpegDecodeParamsSetAllowCMYK
nvijpegDecodeParamsSetOutputFormat
nvjpegDecodeParamsSetROI
nvjpegDecodeParamsSetScaleFactor
nvjpegDecoderCreate
nvijpegDecoderDestroy
nvjpegDecoderdpegSupported
nvjpegDecoderStateCreate
nvijpegDestroy
nvijpegEncodeGetBufferSize
nvjpegEncodeImage
nvjpegEncodeRetrieveBitstream
nvjpegEncodeRetrieveBitstreamDevice
nvijpegEncoderParamsCopyHuffmanTables
nvjpegEncoderParamsCopyMetadata
nvjpegEncoderParamsCopyQuantizationTables
nvjpegEncoderParamsCreate
nvijpegEncoderParamsDestroy
nvjpegEncoderParamsSetEncoding
nvjpegEncoderParamsSetOptimizedHuffman
nvjpegEncoderParamsSetQuality
nvijpegEncoderParamsSetSamplingFactors
nvjpegEncoderStateCreate
nvjpegEncoderStateDestroy
nvjpegEncodeYUV, (nvjpegHandle t handle
nvijpegGetCudartProperty
nvjpegGetDeviceMemoryPadding
nvjpegGetImageInfo
nvjpegGetPinnedMemoryPadding
nvijpegGetProperty
nvjpegJdpegStateCreate
nvjpegdpegStateDestroy
nvijpegdpegStreamCreate
nvijpegdpegStreambDestroy
nvjpegdpegStreamGetChromaSubsampling
nvjpegdpegStreamGetComponentDimensions
nvjpegdpegStreamGetComponentsNum
nvijpegdpegStreamGetFrameDimensions
nvjpegdpegStreamGetJpegEncoding
nvijpegdpegStreamParse
nvjpegdpegStreamParseHeader
nvijpegSetDeviceMemoryPadding
nvjpegSetPinnedMemoryPadding
nvjpegStateAttachDeviceBuffer
nvjpegStateAttachPinnedBuffer

Chapter 20.
NETWORK COMMUNICATION PROFILING

Nsight Systems can be used to profiles several popular network communication
protocols. To enable this, please select the Communication profiling options dropdown.

< =

<

Then select the libraries you would like to trace:

User Guide v2023.3.1 | 221

Network Communication Profiling

v Communication profiling options (MPI, SHMEM, UCX)
Trace API calls into communication libraries.
- MPI

Select the MPI implementation used by the target application to trace a default set of MPI calls. If no MPI implementation is
selected, NVIDIA Nsight Systems tries to automatically detect it based on the dynamic linker's search path. If this fails, Open
MPI is used. If the application uses another MPI implementation, see the documentation for additional setup required to trace
MPIL. Note that NVTX tracing will also be enabled on selecting MPI tracing.

v| Open MPI

MPICH and its derivatives

v OpenSHMEM

OpenSHMEM is a library interface specification for parallel programming in the Partitioned Global Address Space (PGAS).
NVIDIA Msight Systems supports collecting and visualizing a default set of OpenSHMEM API calls. Note that selecting
OpenSHMEM also enables NVTX tracing.

- UCX

UCX is an open-source communication framework which acts as a common library and API for several higher level
communication libraries, e.g. for Open MPI, MPICH and NCCL. Note that selecting UCX also enables NVTX tracing.

Skip stage tracking of UCP non-blocking communication

20.1. MPI API Trace

For Linux x86_64, ARM and Power targets, Nsight Systems is capable of capturing
information about the MPI APIs executed in the profiled process. It has built-in API
trace support for Open MPI and MPICH based MPI implementations.

* Collect MPI trace

Select the MPI implementation used by the target application to trace a default set of synchronous MPI calls. If the
application uses a different MPI implementation, see the documentation for additional setup required to trace MPI. Note
that NVTX tracing will also be enabled on selecting MPI tracing.

e, OpenMPI
MPICH and its derivatives

¥ Collect NVTX trace

Only a subset of the MPI AP], including blocking and non-blocking point-to-point and
collective communication, and file I/O operations, is traced. If you require more control
over the list of traced APIs or if you are using a different MPI implementation, you can
use the NVTX wrappers for MPL If you set the environment variable LD_PRELOAD to the
path of generated wrapper library, Nsight Systems will capture and report the MPI API
trace information when NVTX tracing is enabled. Choose an NVTX domain name other
than "MPI", since it is filtered out by Nsight Systems when MPI tracing is not enabled.

www.nvidia.com
User Guide v2023.3.1 | 222

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Project 8 X laplace2d_O.qdrep %

= Timeline View -
e +755ms +756ms
» CPU(12)
= Threads (10}
~ ¥/ [3394] MPIRank 0 ~ ! ! ! — —
I L I | I

Network Communication Profiling

+757ms +758ms +759ms

2~ 1x

+760ms +761ms

[BE] messages

+762ms |[*

MPI MPI_Sendrecv [52.485 ms] |MP[Sendrecv [1.341 ...
||_| (... [culpcopenme - :

CUDA APl cuMemHaostRegister

9 threads hidden... ==cit
~ CUDA (MPI Rank 0)
~ 88.2% Stream 15
b 96.9% Kernels
b 3.1% Memory
= 10.2% Stream 16
~ 100.0% Kernels
~ 100.0% main_123 gpu
100.0% main_123_gpu
~ 1.6% Stream 17
b 100.0% Memory
NVTX (MPI)
~ <0.1% Stream 20
+ 100.0% Memory LY
NVTX (MPI)

4,800

MPI Communication Parameters

ALLLAOLLGLLLI

. -
| —— —
1 I . -
. —— —

Nsight Systems can get additional information about MPI communication parameters.
Currently, the parameters are only visible in the mouseover tooltips or in the eventlog.
This means that the data is only available via the GUI. Future versions of the tool will

export this information into the SQLite data files for postrun analysis.

In order to fully interpret MPI communications, data for all ranks associated with a
communication operation must be loaded into Nsight Systems.

Here is an example of MPI_COMM_WORLD data. This does not require any additional
team data, since local rank is the same as global rank.

(Screenshot shows communication parameters for an MPI_Bcast call on rank 3)

www.nvidia.com
User Guide

v2023.3.1 | 223

Network Communication Profiling

| Events View =
' Name -
Name Description:
(] mPLnit MPI_Bcast
I:I MPI_Recv Begins: 0,164935s

Ends: 0,165045s (+109,210 ps)

| MPI_Bcast Thread: 1342434

Bytes sent: 0
I:I MPI_Bcast Bytes received: 4

[] MP1_Recv Root: 0
MPI_COMM_WORLD
|:| MPI_Finalize

When not all processes that are involved in an MPI communication are loaded into
Nsight Systems the following information is available.

» Right-hand screenshot shows a reused communicator handle (last number
increased).

» Encoding: MPI_COMM][*team size*]*global-group-root-rank*.*group-ID*

Events View ~| | Events View ~|
Name = A Name =1 A
~ Name Start “ | Description: # ~* Name Start ! Description:
IE [] MPL Beast 0,06235 | MPI_send s [] MPL_Bcast 0,06235 | MPLSend
Begins: 0,0626275 Begins: 0,06272675
4 MPLSend 0,0626 4 MPLSend 0,06262 :
i weL Ends: 0,06262885 (+1,771 is) 0 (] mPsen Ends: 0,0627285 (+1,314 ps)
s [] MPLBeast 0,06262 | Thread: 978418 s [] MPL Beast 0,06262 | Thread: 978418
Tag: 42 Tag: 42
Os [mPLsend 0.06272 | Bics sent: 4 _ § MPLsend QLIZZE | Bytes sent: 4
07 [mP1 Beast 0,06272 | Destination: 1 0 [] MPL_Bcast 0,06272 || Destination: 1
MPL_COMM[2]1.0 MPI_COMM[2]1.1
Os [MPLFinalize 0,06272 s [MPLFinalize 006272

. 0 . »

When all reports are loaded into Nsight Systems:

» World rank is shown in addition to group-local rank "(world rank X)"
» Encoding: MPI_COMM][*team size*]{rank0, rankl, ...}

» At most 8 ranks are shown (the numbers represent world ranks, the position in the
list is the group-local rank)

| Events View -| Events View -
Name >} oS | Name =3 x
Name * Description: # ~ Name = Description:
[] MPL1nit MPI_Recv 1K [MPLnit MPL_send
Begins: 0,16549s Begins: 0,165609s
MPI_Recv
[mer Ends: 0,165492s (+1,837 pis) 02 (I mPr_Recy Ends: 0,1656125 (+2,577 s)
[MPL_Beast Thread: 1047429 1E [] mPL_Bcast Thread: 1047429
Tag: 42 Tag: 48
(] mpLBcast Bytes received: 4 04+ (] mPr_Beast Bytes sent: 4

| MP1L_Recy Source: 0 (world rank 2) Os [MP1_Recv Destination: 7 (world rank 2)

MPI_COMM[2]{2, 3} MPI_COMM[10}9, 8,7, 6,5, 4, 3, 2, ...}
| e . = | o o . =
www.nvidia.com

User Guide v2023.3.1 | 224

Network Communication Profiling

MPI functions traced:

MPI Init[thread], MPI Finalize
MPI Send, MPI {B,S,R}send, MPI Recv, MPI Mrecv
MPI Sendrecv[replace]

MPI Barrier, MPI Bcast

MPI Scatter(v], MPI Gather[v]

MPI Allgather([v], MPI Alltoall[{v,w}]

MPI Allreduce, MPI Reduce| {scatter,scatter block,local}]
MPI Scan, MPI Exscan

MPI Isend, MPI I{b,s,r}send, MPI I[m]recv

MPI {Send,Bsend, Ssend,Rsend,Recv} init

MPI Startlall]

MPI Ibarrier, MPI Ibcast

MPI Iscatter([v], MPI Igather[v]

MPI TIallgather([v], MPI Ialltoall[{v,w}]

MPI Tallreduce, MPI Ireduce([{scatter,scatter block}]
MPI TI[ex]scan

MPI Wait([{all,any,some}]

MPI Put, MPI Rput, MPI Get, MPI Rget
MPI Accumulate, MPI Raccumulate

MPI Get accumulate, MPI Rget accumulate
MPI Fetch and op, MPI Compare and swap

MPI Win allocate[shared]

MPI Win create[dynamic]

MPI Win {attach, detach}

MPI Win free

MPI Win fence

MPI Win {start, complete, post, wait}
MPI Win [un]lock[all]

MPI Win flush[local][all]
MPI Win sync

MPI File {open,close,delete,sync}

MPI File {read,write}[{all,all begin,all end}]
MPI File {read,write} at[{all,all begin,all end}]
MPI File {read,write} shared

MPI File {read,write} ordered[{begin,end}]

MPI File i{read,write}[{all,at,at all,shared}]
MPI File set {size,view,info}

MPI File get {size,view,info, group,amode}

MPI File preallocate

MPI Pack[externall]
MPI Unpack[external]

20.2. OpenSHMEM Library Trace

If OpenSHMEM library trace is selected Nsight Systems will trace the subset of
OpenSHMEM API functions that are most likely be involved in performance
bottlenecks. To keep overhead low Nsight Systems does not trace all functions.

www.nvidia.com
User Guide v2023.3.1 | 225

OpenSHMEM 1.5 Functions Not Traced

shmem my pe

shmem n pes

shmem global exit

shmem pe accessible

shmem addr accessible

shmem ctx {create,destroy,get team}
shmem global exit

shmem info get {version,name}

shmem {my pe,n pes,pe accessible,ptr}
shmem query thread

shmem team {create ctx,destroy}

shmem team get config

shmem team {my pe,n pes,translate pe}
shmem team split {2d,strided}

shmem test*

20.3. UCX Library Trace

Network Communication Profiling

If UCX library trace is selected Nsight Systems will trace the subset of functions of the
UCX protocol layer UCP that are most likely be involved in performance bottlenecks. To
keep overhead low Nsight Systems does not trace all functions.

UCX functions traced:

ucp_am send nb[x]
ucp_am recv_data nbx
ucp am data release

ucp atomic {add{32,64},cswap{32,64},fadd{32,64},swap{32,64}}

ucp_atomic_ {post, fetch nb,op nbx}
ucp_cleanup

ucp config {modify, read,release}
ucp disconnect nb

ucp_dt {create generic,destroy}

ucp_ep {create,destroy,modify nb,close nbx}

ucp ep flush[{ nb, nbx}]

ucp listener {create,destroy,query,reject}

ucpimemi{advfse,map,unmap,query}
ucp_ {put,get}[nbi]
ucp_ {put,get} nb([x]

ucp request {alloc,cancel,is completed}
ucp rkey {buffer release,destroy,pack,ptr}

ucp_ stream data release

ucp stream recv data nb

ucp stream {send,recv} nb([x]
ucp stream worker poll

ucp tag msg recv_nb[x]

ucp tag {send,recv} nbr

ucp tag {send,recv} nb[x]
ucp_tag send sync_ nb[x]

ucp_worker {create,destroy,get address,get efd,arm, fence,wait,signal,wait mem}

ucp worker flush[{ nb, nbx}]

ucp_worker_set_am_?handler,recv_handler}

www.nvidia.com
User Guide

v2023.3.1 | 226

Network Communication Profiling

UCX Functions Not Traced:

ucp_config print

ucp conn_ request query

ucp context {query,print info}

ucp _get version[string]

ucp_ep {close nb,print info,query,rkey unpack}

ucp mem print info

ucp request {check status, free,query,release, test}
ucp stream recv request test

ucp tag probe nb

ucp tag recv request test

ucp worker {address query,print info,progress,query,release address}

Additional API functions from other UCX layers may be added in a future version of the
product.

20.4. NVIDIA NVSHMEM and NCCL Trace

The NVIDIA network communication libraries NVSHMEM and NCCL have been
instrumented using NVTX annotations. To enable tracing these libraries in Nsight
Systems, turn on NVTX tracing in the GUI or CLI. To enable the NVTX instrumentation
of the NVSHMEM library, make sure that the environment variable NVSHMEM NVTX is set
properly, e.g. NVSHMEM NVTX=common.

20.5. NIC Metric Sampling

Overview

NVIDIA ConnectX smart network interface cards (smart NICs) offer advanced hardware
offloads and accelerations for network operations. Viewing smart NICs metrics, on
Nsight Systems timeline, enables developers to better understand their application’s
network usage. Developers can use this information to optimize the application’s
performance.

Limitations/Requirements

» NIC metric sampling supports NVIDIA ConnectX boards starting with ConnectX 5

» NIC metric sampling is supported on Linux x86_64 and ARM Server (SBSA)
machines only, having minimum Linux kernel 4.12 and minimum MLNX_OFED 4.1.
You can download the latest and archived versions of the MLX_OFED driver from
the MLNX_OFED Download Center. If collecting NIC metrics within a container,
make sure that the container has access to the driver on the host machine. To check
manually if OFED is installed and get its version you can run:

» /usr/bin/ofed_info
» cat /sys/module/"$(cat /proc/modules | grep -o -E
"“mlx. core")"/version

Collecting NIC Metrics Using the Command Line

www.nvidia.com
User Guide v2023.3.1 | 227

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

Network Communication Profiling

To collect NIC performance metric, using Nsight Systems CLI, add the --nic-metrics
command line switch:

nsys profile --nic-metrics=true my app
= Timeline View hd
- 7.2s 7.4s 7.506s 7.6s 7.8s
» NIC-0
¥ NIC-1 Metrics:
— = === =| 17 IB Bytes received: 5.926 GiB/s
IB Bytes received IB Bytes sent: 498.047 KiB/s

IB Bytes sent

IB Send waits u
» NIC-2

» NIC-3

Available Metrics

Bytes sent - Number of bytes sent through all NIC ports.

Bytes received - Number of bytes received by all NIC ports.

CNPs sent - Number of congestion notification packets sent by the NIC.

CNPs received - Number of congestion notification packets received and handled
by the NIC.

» Send waits - The number of ticks during which ports had data to transmit but no
data was sent during the entire tick (either because of insufficient credits or because
of lack of arbitration)

vV v v Vv

Note: Each one of the mentioned metrics is shown only if it has non-zero value during
profiling.

Usage Examples

» The Bytes sent/sec and the Bytes received/sec metrics enables identifying
idle and busy NIC times.

» Developers may shift network operations from busy to idle times to reduce
network congestion and latency.
» Developers can use idle NIC times to send additional data without reducing
application performance.
» CNPs (congestion notification packets) received/sent and Send waits metrics may
explain network latencies. A developer seeing the time periods when the network
was congested may rewrite his algorithm to avoid the observed congestions.

RDMA
bver
Converged
Fthernet
RoCE)
Note: raffic

S

hot
ogged
nto

he

www.nvidia.com
User Guide v2023.3.1 | 228

Network Communication Profiling

sight

ystems
IC
etrics.

20.6. InfiniBand Switch Metric Sampling

NVIDIA Quantum InfiniBand switches offer high-bandwidth, low-latency
communication. Viewing switch metrics, on Nsight Systems timeline, enables
developers to better understand their application’s network usage. Developers can use
this information to optimize the application’s performance.

Limitations/Requirements

IB switch metric sampling supports all NVIDIA Quantum switches. The user needs to
have permission to query the InfiniBand switch metrics.

To check if the current user has permissions to query the InfiniBand switch metrics,
check that the user have permission to access /dev/umad

To give user permissions to query InfiniBand switch metrics on RedHat systems, follow
the directions at RedHat Solutions.

To collect InfiniBand switch performance metric, using Nsight Systems CLI, add the
--ib-switch-metrics command line switch, followed by a comma separated list of
InfiniBand switch GUIDs. For example:

nsys profile --ib-switch-metrics=<IB switch GUID> my app

To get a list of InfiniBand switches connected to the machine, use:

sudo ibnetdiscover -3
Available Metrics

» Bytes sent - Number of bytes sent through all switch ports
» Bytes received - Number of bytes received by all switch ports

www.nvidia.com
User Guide v2023.3.1 | 229

https://access.redhat.com/solutions/5929621

Chapter 21.
PYTHON PROFILING

21.1. Python Backtrace Sampling

Nsight Systems for Arm server (SBSA) platforms, x86 Linux and Windows targets, is
capable of periodically capturing Python backtrace information. This functionality is
available when tracing Python interpreters of version 3.9 or later. Capturing python
backtrace is done in periodic samples, in a selected frequency ranging from 1Hz - 2KHz
with a default value of 1IKHz. Note that this feature provides meaningful backtraces for
Python processes, when profiling Python-only workflows, consider disabling the CPU
sampling option to reduce overhead.

To enable Python backtrace sampling from Nsight Systems:

CLI — Set --python-sampling=true and use the --python-sampling-frequency
option to set the sampling rate.

GUI — Select the Collect Python backtrace samples checkbox.

- Collect Python backtrace samples

ing rate: TkHz

Example screenshot:

www.nvidia.com
User Guide v2023.3.1 | 230

Python Profiling

v |0s 4s 8s 12s 16s 20s 24s 28s 32s 36s =
» cPUGI) | " 1 a
~ Processes (2)
~ @ [75]python 1 1 -

» CUDA HW (0000:01:00.0 - NVIDIA GeFor: T
~ Threads (44)
~ vl [78] python ~
0S runtime libraries

DataFrame.from_pandas [5;... .

cudf_python <

Time: 10.073s -
Categoryld: 1

Category: Python Thread ! | h
cuml_python PythonBackirace

Thread state: Running

Frames count: 6

rom aow 531051 | Frames (Function, File, Line)

0: from_arrow, /op! pids/lib/p:

libcudf make_fixed width_column ¢.jymn/column.py, 302

(
(
(mafie_numeri_column .| 1: as_column, /op pids/lib/python3.o/site-p
(

Py, 1,792
|cudaMemsetAsync | 2: as_column, /opf
column/column.py, 2,010
profiler overhead 3: from_pandas, /op pids/lib/p:
core/dataframe.py, 5,089

4:inner, /op ipids/lib/python3. ib.py, 79
43 threads hidden. -+ 5:, /rapids/notebooks/host/random_forest_demo.py, 40

> Python Backtrace AR TS T I L[l

» O [100] python 5|

CUDA API

21.2. Python NVTX Annotations

Nsight Systems for Arm server (SBSA) platforms, x86 Linux and Windows targets, is
capable of using NVTX to annotate Python functions.

The Python source code does not require any changes. This feature requires CPython
interpreter, release 3.8 or later.

The annotations are configured in a JSON file. An example file is located in
Nsight Systems root folder/<target-platform-folder>/PythonNvtx/
annotations. json.

Notes:

» Annotating function from module __main__is not supported.
To enable Python NVTX annotations from Nsight Systems:

CLI — Set --python-nvtx-annotations=<json_file>.

GUI — Select the Python NVTX annotations checkbox and specify the JSON file.

» v Collect NVTX trace

The NVIDIA Tools Extension SDK (NVTX) is a C-based APl for marking events and ranges in your applications. NVIDIA Nsight
Systems supports collecting and visualizing of these events and ranges on the timeline,

Insert NVTX Marker using nﬂ[k&‘{ F11 ~
{not available in consale apps)

> NVTX domain filter
- NVTX annotate Python functions

Function names defined in: |

See User Guide for details,

Example screenshot:

www.nvidia.com
User Guide v2023.3.1 | 231

Python Profiling

\ = Timeline View - Q L 1x () 7 messages

12s » 'Ms +969.65ms +969.7ms +969.75ms +969.8ms +969.85ms B8 125 969.9168ms EREElE

~ Threads (3)
~ [317076] python

__v

[»
torch.nn.functional.log_softmax
| Events View - Begins: 12.9699s
—_— Ends: 12.97s (+44.722 ps)
Thread: 317076 A
v Name Start Duration TID Category ~ | Description:
I [torch.nn.functional.relu 10.8176s 315.333 ps 317076 torch.nn.functional.relu
- Begins: 12.9696s
12 [torch.nn.functional.relu 10.8265s 1.250 ms 317076 Ends: 12.9608s (+137.308 ps)
B 1l torch.nn.functional.relu 10.8344s 54.694 ps 317076 Thread: 317076
Ia [l torch.nn.functional.log_softmax = 10.8346s 126.246 ps 317076
5 [torch.nn.functional.relu 11.0791s 9.847 ms 317076
6 [torch.nn.functional.relu 11.2004s 18.371 ms 317076
17 [l torch.nn.functional.relu 11.2942s 167.389 us 317076
] [l torch.nn.functional.log_softmax = 11.2945s 106.247 ps 317076
[E] [torch.nn.functional.relu 11.5075s 11.093 ms 317076
10 [torch.nn.functional.relu 11.651s 18.415 ms 317076
www.nvidia.com

User Guide v2023.3.1 | 232

Chapter 22.
READING YOUR REPORT IN GUI

22.1. Generating a New Report

Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .nsys-rep file will be created and put into the same directory as the project file
(.qdproj).

22.2. Opening an Existing Report

An existing .nsys-rep file can be opened using File > Open....

22.3. Sharing a Report File

Report files (. nsys-rep) are self-contained and can be shared with other users of
Nsight Systems. The only requirement is that the same or newer version of Nsight
Systems is always used to open report files.

Project files (. gdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

22.4. Report Tab

While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

» View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

www.nvidia.com
User Guide v2023.3.1 | 233

Reading Your Report in GUI

E Timeline View =

21 Analysis Summary

= Timeline View

. Diagnostics Summary
| Symbol Resolution Logs

» Timeline — This is where all charts are displayed.
» Function table — Located below the timeline, it displays statistical information
about functions in the target application in multiple ways.

Additionally, the following controls are available:

» Zoom slider — Allows you to vertically zoom the charts on the timeline.

22.5. Analysis Summary View

This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

22.6. Timeline View

The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

Bottom-Up View :

22.6.1. Timeline

Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To generate a timeline screenshot without opening the full GUI, use the command

nsys-ui.exe --screenshot filename.nsys-rep

Timeline Navigation

Zoom and Scroll

www.nvidia.com
User Guide v2023.3.1 | 234

Reading Your Report in GUI

At the upper right portion of your Nsight Systems GUI you will see this section:

Q 1x
1.55 1.65

The slider sets the vertical size of screen rows, and the magnifying glass resets it to the
original settings.

There are many ways to zoom and scroll horizontally through the timeline. Clicking on
the keyboard icon seen above, opens the below dialog that explains them.

www.nvidia.com
User Guide v2023.3.1 | 235

Reading Your Report in GUI

r = NVIDIA Nsight Systems

Timeline Actions and Gestures

When navigating the Timeline you can use keyboard shortcuts and mouse gestures, If your machine is equipped with a touchpad, you can also use touchpad gestures to

pan, zoom and scroll vertically.
The tables below show a description of common actions with their gesture bindings.
| Show This Dialog

i Press the ' key when Timeline is in focus.

Navigation with Keyboard and Mouse

Here are combinations to use keyboard and mouse to scroll through the Timeline and the tree.

Action Key or Mouse Gesture
Pan Left LeftArrow
Pan Right RightArrow
Zoom in X-axis Keyboard +, or
Keyboard =, or
CTRL + MouseWheel up
Zoom out X-axis Keyboard -, or
CTRL + MouseWheel down
Mext Row ArrowDown
Previous Row ArrowlUp

Undo a Navigation Step Backspace

Navigation with Touchpad
Mavigating through the Timeline and the tree with touchpad.

Action Key or Mouse Gesture
Pan Left Swipe right with two fingers
Pan Right Swipe left with two fingers

Zoom in X-axis Pinch inwith touchpad
Zoom out X-axis Pinch out with touchpad
Scroll Tree Up Swipe down with two fingers
Scroll Tree Down Swipe up with two fingers

Selection of ltems
You can select an item on the Timeline. Selecting items with double-click synchronizes the Timeline and the Events View

Action Key or Mouse Gesture
Select an ltem in the Timeline MouseleftClick on an item
| Select an Itemn in the current Events View MouseleftDoubleClick on an itern
Open the corresponding Events View and select an Item there Shift + MouseleftDoubleClick on an item

Select and Fit an ltem to Screen CTRL + MouselLeftDoubleClick on an item

Selection of a Time Range

You can select an time range on the Timeline, The selected area and its borders can be dragged with left mouse button. Also it has several shortcuts modifying zoom

level and time filter.

Action
Select a Time Range
Drag Selection or Its Border

Key or Mouse Gesture
Press and drag left mouse button
Press and drag left mouse button on a selection

Deselect a Time Range Escape, or
Click outside a selection
Zoom into a Selection z

Zoom into a Selection and Deselect Shift + Z, or

MouseleftDoubleClick on a selection
Apply Time Filter F
Apply Time Filter and Deselect Shift + F

Additional information on several items is available as mouse-over tooltips. This
information can be copied out of the GUI by right clicking on the event and choosing

Copy ToolTip.

www.nvidia.com
User Guide

v2023.3.1 | 236

Reading Your Report in GUI

|

Copy ToolTip F

Copy Current Time

Fit to screen —

Undo foom (6) Backspace Irl_
)

Reset Zoom

I 1| X Pinrow Ctrl+P 1
(N Trrrrrll—rll—rr-—.—ll—l [|

Timeline/Events correlation

To display trace events in the Events View right-click a timeline row and select the
“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View. Note that the events displayed will correspond to
the current zoom in the timeline, zooming in or out will reset the event pane filter.

If a timeline row has been selected for display in the Events View, then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding events view item visible and select it. If that event has tool tip
information, it will be displayed in the right hand pane.

Likewise, double-clicking on a particular instance in the Events View will highlight the
corresponding event in the timeline.
Row Height

Several of the rows in the timeline use height as a way to model the percent utilization
of resources. This gives the user insight into what is going on even when the timeline is
zoomed all the way out.

= Timeline View - & 1x
265 27s 28s 295 30s
* CUDAHW (Tesla V100-5XM2-16GE - 7 7 | y 1 7 1 T i
~ [Alstreans] yy |- | | b AHHL Baod . k. ool L
~ 59.9% Kernes i BN TEE DN | N W T T T I
b 9.4% nchwToNhweKernel - - Eomputfgﬂjﬁ?sl(ernel
om0 la e) S - . egins: 28,4455
b 9.1% dgrad_engine it L Llne 1111 Endls: 28,4445 (+1.472 ps)
b 8.1%EigenMetaKernel 1 , grid: <<<7, 1, 132>
| N1} | block: <<<128, 1, 155> -
P RT% bn_blN_lC 1 l_kErnel_nE'J’ -l g ¥ | B B .|I||| i — ik Statlc SharEd Memor}f: D b)‘tes
¥ 5.5%bn_fin_tr_1C11_kernel_r .] " g;’;?t‘;'r‘s ;2:’%{::;"'} g"y’ Lhvis
85 kernel groups hidder — Local Mermory Per Thread: 0 bytes
Local Memory Total: 207,093,760 bytes
0.1% Memary Shared Memory Bank Size: 4 B
b A1 AR Sk 108 1 .l | wi Ll T Launched from thread: 168
1 Latency: —39.657 ps
Correlation ID: 1791043
Events View T Stream: Stream 126

In this picture you see that for kernel occupation there is a colored bar of variable height.

www.nvidia.com
User Guide v2023.3.1 | 237

Reading Your Report in GUI

Nsight Systems calculates the average occupancy for the period of time represented by
particular pixel width of screen. It then uses that average to set the top of the colored
section. So, for instance, if 25% of that timeslice the kernel is active, the bar goes 25% of
the distance to the top of the row.

In order to make the difference clear, if the percentage of the row height is non-zero, but
would be represented by less than one vertical pixel, Nsight Systems displays it as one
pixel high. The gray height represents the maximum usage in that time range.

This row height coding is used in the CPU utilization, thread and process occupancy,
kernel occupancy, and memory transfer activity rows.

Row Percentage

In the image below you see that there are percentages prefixing the stream rows in the
GPU.

= Timeline View A

~ CUDA HW (Tesla V100-5XM2-16GE -

| I
* [All Streams) P — M I I 3 il I
W M A] e [i]
¥ 99.9% Kernels P e 110111111 Al I
b 9.4% nchwToMhweKernel computeOffsetsKernel
. ~| Begins: 28.44455
> 9.1%dgrad_engine I L Lln [RIH Ends: 28.44455 (+1.472 ps)
» 8.1%FEigenMetaKernel] ; | grid: <<<7,1, 1>>>
- - - . I block: <<<128, 1, 155>
b 7.7%bn_bw_1C11 kernel nev WL] = Static Shared Memory: 0 bytes
) Dynamic Shared Memory: 0 bytes
¥ 5.5% bn_fw_tr_1C11 kernel_r | || L | Registers Per Thread: 16
85 kernel groups hidder — Local Memory Per Thread: 0 bytes
Local Mernory Total: 207,093,760 bytes
0.1% Memary Shared Memory Bank Size: 4 B
A A1 400 Cheame 17E 1 | Al] wi Lol u Launched from thread: 168
bl Latency: —39.657 ps
Correlation 1D: 1791043
Events View - Stream: Stream 126

The percentage shown in front of the stream indicates the proportion of context running
time this particular stream takes.

)

% stream = 100.0 X streamUsage / contextUsage
streamUsage = total amount of time this stream is active on GPU
contextUsage = total amount of time all streams for this context are
active on GPU

So "26% Stream 1" means that Stream 1 takes 26% of its context's total running time.

Total running time = sum of durations of all kernels and memory ops
that run in this context

22.6.2. Events View

The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

www.nvidia.com
User Guide v2023.3.1 | 238

Reading Your Report in GUI

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

» NVTX
» Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
» PIX events and markers
» OpenGL KHR_debug markers

MName ™ Duration TD GPU Context Start = Call to: 1ID3D12C Qu -ExecuteC ists
3 ID3012GraphicsCommandList:Reset 13300ps | 2002 | - - D.0016661s ;Egﬂ:l ‘ﬂ; ;gggsz;

[= || SceneRender 352100 ps | 2092 | - - 0.0017093s Ends: 0.002159s (+69.800 s)
[b [RenderlightShadows 1,900 ps 2002 | - . 0.0017207s Correlation IDs: [30507, 30507)
W+ v I ZPrePass 80.300ps | 2092 - - 0.0017286s

[b | Generate 5540 121700 ps | 2092 | - - 0.0018155s

| + [l Render Shadow Map 30100ps | 2092 | - - 0.00194455

[E] v I Raytrace 63.600pus | 2092 | - - 0.0019903s

I 64 Marker End - 2002 | - - 0.0020614s

65 ID3D12GraphicsCommandList:Close 12400 ps 2092 | - - 0.0020753s

ID3D12CommandQueue:ExecuteCommandLists 609.800 ps -- 0.

&7 ntelll.dlllOx 7934 TfF3b4 - 2092 | - -

68 ID3012GraphicsCommandList:Reset 10.300 ps 2092 | - - 0.0021983s

[v] PostEffects 61.300ps | 2092 | - - 0.00222585

75 ID3012GraphicsCommandList:Close T.100 ps 2002 | - - 0.0022964s

76 ID3D12CommandQueus:ExecuteCommandLists 33.300 ps 2082 | - - 0.0023048s

77 ntdlll.dlIiOxTF9a4TF3b4 - 2092 | - - 0.0023465s |+

You can copy and paste from the events view by highlighting rows, using Shift or Ctrl
to enable multi-select. Right clicking on the selection will give you a copy option.

| Events View b |
Mame 1
“ Name Start Duration TID -
4 fopen 0.347611s 5.921 ps 178685
5 felose 0.347628s 1.724 ps 178685
6 openfd 0.347636s 11.501 ps 178685
ioctl 0.3476525 3176 ps 178685

| open o7 |esees 178565
Highlight Selected on Timeline

8
Show Current on Timeline
13

Copy Selected 5 7.541 ps 178685

ioctl 0.347707s 6.141 ps 178685
14 ioctl 0.347713s 16.040 ps 178685

Pasting into text gives you a tab separated view:

www.nvidia.com
User Guide v2023.3.1 | 239

| *Untitled - Notepad — O *
File Edit Format View Help

Name Start Duration TID

fentl @.347649s 1.882 ps 178685

open B.347656s 8.b686 ps 178685

read B.347666s 3.647 ps 178685

ioctl B8.347675s 1.122 ps 178685

ioctl @.347678s 27.541 ps 178685

Reading Your Report in GUI

Ln &, Col 33 100% Windows (CRLF) UTF-28

Pasting into spreadsheet properly copies into rows and columns:

A E C D
1 |Name Start Duration TID
2 |fentl 0.347649s 1.002 ps 178685
3 |open 0.3476565 8.686 ps 178685
4 |read 0.3476665 3.647 s 178685
5 |ioctl 0.347675s 1.122 ps 178685
& |ioctl 0.347678s 27.541 ps 1?'8685.
T

22.6.3. Function Table Modes

Top-Down View -

Bottom-Up View
Flat View

The function table can work in three modes:

>

Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

Bottom-Up View — This is a reverse of the Top-Down view. On the top level,

there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

www.nvidia.com
User Guide v2023.3.1 | 240

Reading Your Report in GUI

Each of the views helps understand particular performance issues of the application
being profiled. For example:

» When trying to find specific bottleneck functions that can be optimized, the Bottom-
Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

» To navigate the call tree of the application and while generally searching for
algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

» To quickly assess which parts of the application, or high level parts of an algorithm,
consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

» Top-Down view

» Self column denotes the relative amount of time spent executing instructions of
this particular function.

» Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

» Bottom-Up view

» Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

» Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

» Flat view

» Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

If

low-
impact
functions
have
been
filtered
out,
Note: values
may

not

add

up
correctly
to

100%,

or

www.nvidia.com
User Guide v2023.3.1 | 241

Reading Your Report in GUI

to

the
value

of

the
parent
row.
This
filtering
can

be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in

the symbols table:

» Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are

represented in the symbols table.

» Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

www.nvidia.com
User Guide

Note:

f

[00

ittle
ampling

Hata

s

being

Ised

[0

build

the

ymbols

fable

for

bxample,

when

the

ampling

Fate

s

ronfigured

[0

be

ow,

hnd

i}
hort

beriod

Df

[ime
s

Ised

v2023.3.1 | 242

Reading Your Report in GUI

for

[ime-
based
Filtering),
Lhe
humbers
n

Lhe
ymbols
fable
might

hot

be
representative
Dr
hccurate
n

ome
Cases.

22.6.4. Function Table Notes

Last Branch Records vs Frame Pointers

Two of the mechanisms available for collecting backtraces are Intel Last Branch Records
(LBRs) and frame pointers. LBRs are used to trace every branch instruction via a limited
set of hardware registers. They can be configured to generate backtraces but have finite
depth based on the CPU’s microarchitecture. LBRs are effectively free to collect but may
not be as deep as you need in order to fully understand how the workload arrived a
specific Instruction Pointer (IP).

Frame pointers only work when a binary is compiled with the -fno-omit-frame-
pointer compiler switch. To determine if frame pointers are enabled on an x86_64
binary running on Linux, dump a binary’s assembly code using the objdump -d
[binary file] command and look for this pattern at the beginning of all functions;

push $rbp

mov %rsp, $rbp
When frame pointers are available in a binary, full stack traces will be captured. Note
that libraries that are frequently used by apps and ship with the operating system, such
as libc, are generated in release mode and therefore do not include frame pointers.
Frequently, when a backtrace includes an address from a system library, the backtrace
will fail to resolve further as the frame pointer trail goes cold due to a missing frame
pointer.

A simple application was developed to show the difference. The application calls
function a(), which calls b(), which calls c(), etc. Function z() calls a heavy compute
function called matrix_multiply(). Almost all of the IP samples are collected while
matrix_multiple is executing. The next two screen shots show one of the main
differences between frame pointers and LBRs.

www.nvidia.com
User Guide v2023.3.1 | 243

Reading Your Report in GUI

£ Timeline View

» CPU(12)

Threads (1)

! [14571] btt f

1,039

Bottom-Up View ~

T Filter... | 11,119

Symbol Name
~ matrix_multiply(int)
~ 2fint)
~ ylint)
~ x(int)
- w(int)
- viint)
~ u(int)
« t(int)
~ sfint)
- rlint)

- pl

0.2s

0.8s

p -

Process [14571] btt_fp (1 of 1 thread)

samples are used.

~ qlint)

(int)
ofint)
~ n(int)
~ miint)
~ I(int)
~ k(int)
= jlint)
~ ifint)
~ hiint)
~ glint)
~ flint)
- elint)
~ dlint)
~ clint)
~ bfint)
~ alint)
- main
_libc_start_main

1

Self. % ~ Module Name

99198 /home/rknight/my_examples/backtrace-test/btt_fp
99,98| fnomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,08| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98 fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| /home/rknight/my_examples/backtrace-test/btt_fp
89.98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98 fhome/rknight/my_examples/backtrace-test/btt_fp
99.98| fhome/rknight/my_examples/backtrace-test/btt_fp
99.98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| fnomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,08| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98 fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| /home/rknight/my_examples/backtrace-test/btt_fp
89.98| fhome/rknight/my_examples/backtrace-test/btt_fp
89.98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98 fhome/rknight/my_examples/backtrace-test/btt_fp
99.98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| fhome/rknight/my_examples/backtrace-test/btt_fp
99,98| fnomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98| fhomeyrknight/my_examples/backtrace-test/btt_fp
99,98] /lib/x86_64-linux-gnu/libc-2.19.50

» o CPU(12)

Threads (1)

| [14548]

Bottom-Up View
T Filter... | 11

Symbol Name

= Timeline View

btt fp -

222 samples are used.

Self, % =« Module Name

matrix_multiply(int) 99.98 /home/rknight/my_examples/backtrace-test/btt fp

0.2s 0.4s 0.6s
4

Process [14548] btt_fp (1 of 1 thread)

[Max depth] 97.07 [Max depth]
- z(int) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
= ylint) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
= x(int) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
+ wlint) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
= vlint) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
- ulint) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
- tlint) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
= s(int) 2.91 /home/rknight/my_examples/backtrace-test/btt_fp
[Max depth] 2.91 [Max depth]

Note that the frame pointer example, shows the full stack trace while the LBR example,
only shows part of the stack due to the limited number of LBR registers in the CPU.

Kernel Samples

When an IP sample is captured while a kernel mode (i.e. operating system) function is
executing, the sample will be shown with an address that starts with Oxffffffff and map
to the [kernel.kallsyms] module.

[vdso]

www.nvidia.com

User Guide v2023.3.1 | 244

Reading Your Report in GUI

Samples may be collected while a CPU is executing functions in the Virtual Dynamic
Shared Object. In this case, the sample will be resolved (i.e. mapped) to the [vdso]
module. The vdso man page provides the following description of the vdso:

The “vDSO“ (virtual dynamic shared object) is a small shared library
that the kernel automatically maps into the address space of all
user-space applications. Applications usually do not need to concern
themselves with these details as the vDSO is most commonly called by
the C library. This way you can code in the normal way using
standard functions and the C library will take care of using any
functionality that is available via the vDSO.

Why does the vDSO exist at all? There are some system calls the
kernel provides that user-space code ends up using frequently, to the
point that such calls can dominate overall performance. This is due
both to the frequency of the call as well as the context-switch
overhead that results from exiting user space and entering the
kernel.

[Unknown]

When an address can not be resolved (i.e. mapped to a module), its address within the
process’ address space will be shown and its module will be marked as [Unknown].

22.6.5. Filter Dialog

@ Filter x
Collapse unresolved lines

Show stack trace in tooltip

Hide functions with CPU usage below |0,50%% >

4k

Mumber of digits after the decmal paint 2

Corcel

» Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed
in the Top-Down view, since they provide very little useful information.

» Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

22.6.6. Example of Using Timeline with Function Table

Here is an example walkthrough of using the timeline and function table with
Instruction Pointer (IP)/backtrace Sampling Data

Timeline

www.nvidia.com
User Guide v2023.3.1 | 245

http://man7.org/linux/man-pages/man7/vdso.7.html

Reading Your Report in GUI

When a collection result is opened in the Nsight Systems GUI, there are multiple ways to
view the CPU profiling data - especially the CPU IP / backtrace data.

) NVIDIA Nsight Systems 2019.6.0

File View Tools Help

Project Explorer ® [Project13 % |reportlgdrep X [TNCR IS report3.qdep X | sp-dwarf.qdrep X | splbrgdrep X | spfp.qdrep %

| report15.qdrep — -
| report16.qdrep £ Timeline View e P @ 15 messages
] report17.qdrep 1s +828ms +830ms +834ms +836ms +838ms +840ms +842ms +844ms E
| report23.qdrep kil

L] report22.qdrep - Threads (8)

i e
- report.qdrep * VI [21612] Smokel - _—_————————

_ report5.qdrep

[profile.qdrep) e I
= profile qdrep 05 runtime libraries Spec ific Sam ples Sampling point
= p"’;‘:e q:“p Call stack at 1.832s:
| prefile.qdrep ~{libpthread-2.19.s0!_pthread mutex_trylock =
. reports.qdrep NVTX frame [16.765 ms] | nsiont Systems frames [18.050 ms]
libcuda.s0.418.67!'0x7fa7dbb256bd
L] reportl.qdrep libcuda.s0.418.67!
_| report18.qdrep CUDA API =0 g
rt19.qds R "
L reportis.qcrep Profiler overhead cudart::cudaApiOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(...)
] reportl.qdrep smokeParticles!
L report2.qdrep + ¥ [21622] smokeParticles - e upaney! o
L1 report7.qdrep cudaError ane>{ane)
. report16.qdrep . —| smokeParticles! |-
report20.qdrep 08 runtime libraries | cudaError thrust::cuda_cub::cub::DeviceRadixSort::SorPairs<... ...) —
= rt21.ad l smokeParticles!void thrust::cuda_cub:rsort_by_key<...>(...)
| report21.qdrep » |V [21621] smokeParticles -] [Max depth]!Max depth]
| report12.qdrep =
| dhi.qdrep
- report20.adrep Bottom-Up Vi P 1216121 smokeParticles (8 of 8 threads)
7 profile_140819... ottom-Up View = | Process smokeParticles (8 of 8 threads|
L] reportl.qdrep T Filter... | 65,022 samples are used. Search
| report1.qdrep
[profile_0_3545.... Symbol Name Self, % + Module Name
[profile_0_4441... fibonaccilint) 63.04 fhome/rknight/test/190920/NsightSystems-linux-public-2019.6.0.106-dbae87d/target-linux-x64/smo...

| reportl2.qdrep » Ox7fa7dbd2esf6 5.76 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67

nmsv3.qdrep » Ox7fa7dbd2esff 1.06 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67 .
T profile_0_3232... » Ox7fa7dbd78e69 0.90 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67 Sa m p||ng
T report9.qdrep » Oxfff810362d9 0.70 [kernel.kallsyms]
T 2d.ns5 qdrep » Oxfffffffa1806e50 0.67 [kernel.kallsyms] SU mmar
report1.qdrep » 0x7fa7dbd2egf0 0.66 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67 y
= + 0x7fa7dbbde7fa 0.61 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
L report2.qdrep » Ox7fa7dbd2esfs 0.59 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
|| report3.qdrep » Ox7fa7dbbde7f0 0.58 fusr/lib/x86_64-linux-gnu/libcuda 50.418.67
_| reportd.qdrep + Ox7fa7dbd2eafs 0.55 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
| report5.qdrep » Ox7fa7dbbde7f7 0.51 fusr/lib/x86_64-linux-gnu/libcuda 50.418.67

|1 report6.qdrep |~

In the timeline, yellow-orange marks can be found under each thread's timeline that
indicate the moment an IP / backtrace sample was collected on that thread (e.g. see the
yellow-orange marks in the Specific Samples box above). Hovering the cursor over a
mark will cause a tooltip to display the backtrace for that sample.

Below the Timeline is a drop-down list with multiple options including Events View,
Top-Down View, Bottom-Up View, and Flat View. All four of these views can be used to
view CPU IP / backtrace sampling data.

If the Bottom-Up View is selected, here is the sampling summary shown in the bottom
half of the Timeline View screen. Notice that the summary includes the phrase “65,022
samples are used” indicating how many samples are summarized. By default, functions
that were found in less less than 0.5% of the samples are not show. Use the filter
button to modify that setting.

www.nvidia.com
User Guide v2023.3.1 | 246

Reading Your Report in GUI

o NVIDIA Nsight Systems 2019.6.0

Eile View Tools Help

Project Explorer
| reportis.qdrep
| report16.qdrep
| reportl7.qdrep
|| report23.qdrep
_ report22.qdrep
| report21.qdrep
|| reports.qdrep
reports.qdrep
profile.qdrep
L1 profile.qdrep
_ profile.qdrep
] profile.qdrep
|| reports.qdrep
|1 report1.qdrep
| reportl8.qdrep
|| reportl9.qdrep
_ reportl.qdrep
report2.qdrep
report7.qdrep
report16.qdrep
| report20.qdrep
| report2L.qdrep
_| reportl2.qdrep
dhig.qdrep
report20.qdrep

|1 profile_140819...

|| reportl.qdrep
|| reportl.qdrep

profile_
report12.qdrep
nmsv3.qdrep

| report9.qdrep
2d.ns5.qdrep
reportl.qdrep
report2.qdrep
report3.qdrep
|1 reportd.qdrep
|| report5.qdrep
report6.qdrep
report7.qdrep
reports.qdrep
nsys_profile.qd
Report 165
file.qdrep
Report 1023

report1.qdstrm
first.qdrep
second.qdrep
| second.qdrep.

profile_0_3545....
) 4441....

profile 0_3232...

pennant_sedov...
pennant_sedov...

» CPU(12)

- ads (8)

<

21612] Smokel ~

runtime libraries

NfTX

CRDA API
Prpfiler overhead

~ | | [§1622] smokeParticles -

0f runtime libraries

[J16161 INsys] ~

i [§1618] CUPTI worker t ~

1621] smokeParticles -

16171 [NSys Comms] »

21619] smokeParticles ~

[21620] smokeParticles ~

+820ms

+825ms

+830ms

Project 13 % |reportLadrep % [ETNCR Il repori3.adrep % | spdwarf.qdrep % | splbrgdrep % | spfp.adrep %

+835ms +840ms +845ms

Sax @ 15 messages
+850ms +855ms +860ms E

frame [16.765 ms]

frame [18.050 ms]

frame [15.166 ms]

Filter by Selection

Filter and Zoom in

pthread_cond_timedwait

Zoom in
Undo Zeom (23)
Reset Zoom

1

Bottom-Up View ~ | Process [21612] smokeParticles (1 of 8 threads)

T Filter... Iss.w% (64,827 samples) of data is shown due to applied filters. I

Symbol Name
» fibonaccifint)

» 0x7fa7dbd2e9f6
» 0x7fa7dbd2esit

» Ox7fa7dbd78e69
» Oxffffffff810362d9
» Oxffffffff8 180650
» 0x7fa7dbd2esf0
+ 0x7fa7dbbde7fa

» 0x7fa7dbd2edfs
» 0x7fa7dbbde7f0

o v TEnT AR AYABER
[

Self, % =+ Module Name
63.23 fhomer]

Search... 4

5.77 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
1.07 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
0.91 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
0.70 [kernel.kallsyms]

0.67 [kernel.kallsyms]

0.66 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
0.61 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
0.60 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
0.59 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
S trseellin @& BA linne mrs i oo 410 &7

blic-2019.6.0.106-dbae87d/target-linux-x64/smok

When sampling data is filtered, the Sampling Summary will summarize the selected
samples. Samples can be filtered on an OS thread basis, on a time basis, or both.
Above, deselecting a checkbox next to a thread removes its samples from the sampling
summary. Dragging the cursor over the timeline and selecting “Filter and Zoom In”
chooses the samples during the time selected, as seen below. The sample summary
includes the phrase “0.35% (225 samples) of data is shown due to applied filters”
indicating that only 225 samples are included in the summary results.

www.nvidia.com

User Guide

v2023.3.1 | 247

Reading Your Report in GUI

x NVIDIA Nsight Systems 2019.6.0

Eile View Tools Help

Project Explorer
report15.qdrep
report16.qdrep
report17.qdrep
report23.qdrep
report22.qdrep
report21.qdrep
reports.qdrep
reports.qdrep
profile.qdrep
profile.qdrep
profile.qdrep
profile.qdrep
reports.qdrep
report1.qdrep
report18.qdrep
report19.qdrep
reportl.qdrep
report2.qdrep
report7.qdrep
report16.qdrep
report20.qdrep
report21.qdrep
report12.qdrep
dhig.qdrep
report20.qdrep
profile_140819...
reportl.qdrep
reportl.qdrep
profile_0_3545....
profile_0_4441....
report12.qdrep
nmsv3.qdrep
profile_0_3232...
report9.qdrep
2d.ns5.qdrep
reportl.qdrep
report2.qdrep
report3.qdrep
reportd.qdrep
reports.qdrep
report6.qdrep
report7.qdrep
reports.qdrep
nsys_profile.qd
Report 165
file.qdrep
Report 1023
pennant_sedov...
pennant_sedov...
reportl.qdstrm
first.qdrep
second.qdrep
second.qdrep

| e e

C

SO

@O0

L

i

EE0

IEEL

C

HEOEEO

C

C

SO

@O0

L

i

EE0

L

C

JEEL

Project 13 % |reportLadrep % [ETNCR Il repori3.adrep % | spdwarf.qdrep % | splbrgdrep % | spfp.adrep %

Timeline View -
1s

» CPU(12)

~ Threads (8)

~ v/ [21612] Smokel -

0S runtime libraries

NVTX

CUDA API
profiler overhead

v | | [21622] smokeParticles -
0S runtime libraries
[21616] [NSys] ~

» [] [21618] CUPTI worker t +

» [[21621] smokeParticles -
[21617] [NSys Comms] »
[21619] smokeParticles ~

[21620] smokeParticles ~

Bottom-Up View =

+820ms +825ms +830ms

P ix

+835ms +840ms +845ms +850ms

+855ms

© 15 messages
+860ms =

1

frame [16.765 ms]

frame [18.050 ms]

pthread_cond_timedwait

Process [21612] smokeParticles (1 of 8 threads)

T Filter...]0.35% (225 samples) of data is shown due to applied filters. [ime filter: 1.82 to 1.85 (0.03 seconds or 0.4%).

Symbol Name
» 0x7fa7dbd2edf6

» 0x7fa7dbd2esit

» 0x7fa7dbbdesf7

» Ox7fa7dbd78e20
» Oxffffffff813e9247
» 0x7fa7dbd2esfo

» 0x7fa7dbd2eof4

» 0x7fa7dbd78f20

» 0x7fa7dbd78f5a

» Ox7fa7dbd2ea24

» Ox7fa7dbd2ea02

Self, % =+ Module Name

19.11 fust/lib/x86_64-linux-gnu/libcuda.s0.418.67
4.00 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
2.67 fust/lib/x86_64-linux-gnu/libcuda.s0.418.67
2.67 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
2.22 [kernel.kallsyms]

2.22 fusr/lib/x86_64-linux-gnu/libcuda s0.418.67
1.78 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
1.78 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
1.78 fusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
1.78 jusr/lib/x86_64-linux-gnu/libcuda.s0.418.67
1.78 fust/lib/x86_64-linux-gnu/libcuda.s0.418.67

Search... L

Deselecting threads one at a time by deselecting their checkbox can be tedious. Click
on the down arrow next to a thread and choose Show Only This Thread to deselect all

threads except that thread.

www.nvidia.com

User Guide

v2023.3.1 | 248

Reading Your Report in GUI

File View Tools Help

Project 2 X reportl X report2 X report3 X reportd X

= Timeline View -
1s - s) +970ms) +980ms) +990ms) 2s
+ CPU frame duration #3.. #34[16.874 ms] | #35 [16.850 ms] | #36 [16.56
C - -
» CUDA HW (0000:17:00.0 - Quadro GV100) 1 Coo o 1
OpenGL HW
~ Threads (11)

* [v] [14485] smokePa'tidD

0S runtime libraries

frame [16.837 ms) I frame [16.816 ms) I frame [16.5:
[rend'er [4,..,] [rend'er [4,..,]

rén...
OpenGL API (4.6.0 NVIDIA 520.36) | . i |
CUDA AP (Ceadattemepy] (]I (Ceudattemepy] (0] (-]

Profiler overhead

v [¥] [14533] [NSys] =
(NN RN NN NN NN NN NN ENNEEEEENEN NN

Profiler overhead

¥| [14541] cuda-EvtHandlr =

0S runtime libraries pall

profiler overhead

¥| [14534] [NSys Comms] =

profiler overhead

B L e L e S TR

If Events View is selected in the Timeline View's drop-down list, right click on a specific
thread and choose Show in Events View. The samples collected while that thread
executed will be shown in the Events View. Double clicking on a specific sample in the
Events view causes the timeline to show when that sample was collected - see the green
boxes below. The backtrace for that sample is also shown in the Events View.

Fie Yow Took H9p

Poject2 X_repar X_repor2 X rapor X

| = Timeline view = —
=

A 1 waming, 19 messages
4

» CPU frame duration

+ CUDA HW (0000:17:00.0 - Quadro GV100)

OpencLw
- T (1) "ight click here

05 runtime libraries.
WX

Ll UL

OpenL AL (4.6 00VDIA 52036 A LI L L il
cupaan [Q 1T TR STRTHTNTRATA A IHTATHINTATATH TN 2

(T TATATATTITY

start Description:
0,00747534

aampting i

Cal stack at 0.0159045s:

nitscaimpl(..)
nt

0.01807855
0.01868775
0.01928985
0.01989625
0.02048955
0.02108025 ~

Backtraces

To understand the code path used to get to a specific function shown in the sampling
summary, right click on a function and select Expand.

www.nvidia.com
User Guide v2023.3.1 | 249

Reading Your Report in GUI

fle View Help
Select device for profiling <4 X Moeinf. e

Project1 X | fiveGPU-cno-100us-fp-nve.qdrep X | fiveGPt drep X | eightGPt fpveqdrep X [RGB R T Bl 0neGPU-cuda-nvtx-osrt-100us-fp-enabled.qdrep X

Project Explorer
£ Project1

x

onebpu-cudanvbeost.. || | E Tmeline View - £1x © 15 messages

reportl-devel.qdrep 5 105 155 205 255 30s 355 a0s ass s0s sss 60s ess 705 75s s0s_ [~

reportl.qdrep

ta.qdrep r e PEENESS——— e
L ts.qdrep ~ Threads (57)

e ok inak (. ' " |
t2.qdrep ~ vl [2147)namd2 -

report2.qdrep —_— —_————————————— e e
oneGPU-cuda-nvtx-osrt. ‘ D
0neGPU~cno-100us.qdr.
threeGPU-cno-100us.q
fourGPU-cro-100us.d. Fiter... | 11.84% (339,630 samples) of data is shown due to applied filters unknown
fiveGPU~cno-100us.qdr.

Bottom-Up View ~ | Process [2108] namd2 (5 of 57 threads)

- Symbol Name Self, % ~ Module Name
sixGPU-cno-Lodus.qdrep | || Mol 9.45 [vdsol
L eightGPU-cno-100usg-.. | |, cmiwallTimer 8.17 justflocaljnamd/bin/namd2
€ightGPU-cno-100us-fp... || EEZaeTT
SiXGPU-cno-100us-fp.q - PCQueuePop Collapse Al
fiveGPU-cno-100us-fp. - CmiGetNonLocal 6.61 Just/local/namdbininamd2
0neGPU-co-100us fp-.. ~ CsdNextMessage 6.11 Jusr/local/nam/bin/namd2
threeGPU-no-100Us- - cadschedueborever Collapse 571 nsocalnamationamdz
fourGPU-cno-100us-fp-.. Max dept 567 [Max deptt
» Ox7ffdadedefba 4.11 [vdsol
1 fiveGPU-cno-100us ... || || ccycaiigacks 3.67 Jusrilocal/namd/bin/namd2
fiveGPU-cno-100us-... || |, offffa1802837 3.21 [kemel kallsyms]
L eightGPU-cno-100us... | |, CcqRaiseCondition 2.56 Jusr/local/namdjbin/namd2
@ightGPU-cno-100us... |, Oxffifiia1 fecsd 2.24 [kemel kallsyms]
} Sequencer:submittialfsteplint) 222 justfiocalinamd/bininamd2
\ oxififital0cs82e 2,02 [kemel kallsyms]
» Sequencer::submitReductions(int) 2,01 Justflocal/namd/bin/namd2
» CsdScheduleForever 1.98 /usrflocalnamd/bin/namd2
» 0x71c0447dd890 1.86 /usrfib/x@6_64-inux-gnu/libcuda.s0.410.79
» PmeAtomFiler:fileAtoms(int, CudaAtom const*, Lattice, PmeGrid const&. int. 154 usrfiocaljnamd/bin/namd2
\ Oxiffif81802990 153 [kemel kallsyms]
 Oxifiii8103680f 141 (kemel kallsyms]
» CsdNextMessage 141 fusrflocalinamd/bin/namd2
» Ox7ffda0ededd0 101 [visol
» 0x71c0447dd896 0.84 Just/lb/xB6_64-linux-gnufibcuda.so.410.79
» ComputePmeCUDA: sendAtoms() 0.81 Jusrflocal/namd/bin/namd2
» 0x7fidadedee00 0.78 [vdsol
» Tensor:outerAdd(double, Vector consts. Vector const&) 0.71 Justilocal/namd/bin/namd2
 Oxffifif81009b7F 0.70 [kernel kallsyms]
\ oxififiie1802826 0.62 [kernel kallsyms]
» void settlel_SIMD<2>(Vector constr, Vector*, double, double, double, double. 055 Just/local/namd/bin/namd2
 void finishForceLoop<true, true>int, int. long long const-, long long const*, | 0.54 Jusr/local/namd/bin/namd2
» _sched_yield 0.54 /lib/x86_64-linux-gnufibc-2.23.50
» Ox7fidadededdc 0.54 [vdsol
» Ox7ffdadedeelb 054 [vdsol
Oxifffia1802¢d0 051 [kernel kallsyms]
CudaComputeNonbonded:finishPatch(int) 051 Justflocal/namd/bin/namd2
Ox7ffdadededea 0551 [vdsol
HomePatch::addRattieForcel(double, Tensor) 051 Just/local/namd/bin/namd2

The above shows what happens when a function’s backtraces are expanded. In this case,
the PCQueuePop function was called from the CmiGetNonLocal function which was
called by the CsdNextMessage function which was called by the CsdScheduleForever
function. The [Max depth] string marks the end of the collected backtrace.

Note that, by default, backtraces with less than 0.5% of the total backtraces are hidden.
This behavior can make the percentage results hard to understand. If all backtraces are
shown (i.e. the filter is disabled), the results look very different and the numbers add
up as expected. To disable the filter, click on the Filter... button and uncheck the Hide
functions with CPU usage below X% checkbox.

When the filter is disabled, the backtraces are recalculated. Note that you may need
to right click on the function and select Expand again to get all of the backtraces to be
shown.

When backtraces are collected, the whole sample (IP and backtrace) is handled as a
single sample. If two samples have the exact same IP and backtrace, they are summed in
the final results. If two samples have the same IP but a different backtrace, they will be
shown as having the same leaf (i.e. IP) but a different backtrace. As mentioned earlier,
when backtraces end, they are marked with the [Max depth] string (unless the backtrace
can be traced back to its origin - e.g. __libc_start_main) or the backtrace breaks because
an IP cannot be resolved.

www.nvidia.com
User Guide v2023.3.1 | 250

Reading Your Report in GUI

Above, the leaf function is PCQueuePop. In this case, there are 11 different backtraces
that lead to PCQueuPop - all of them end with [Max depth]. For example, the dominant
path is PCQueuPop<-CmiGetNonLocal<-CsdNextmessage<-CsdScheduleForever<-
[Max depth]. This path accounts for 5.67% of all samples as shown in line 5 (red
numbers). The second most dominant path is PCQueuPop<-CmiGetNonLocal<-[Max
depth] which accounts for 0.44% of all samples as shown in line 24 (red numbers).
The path PCQueuPop<-CmiGetNonLocal<-CsdNextmessage<-CsdScheduleForever<-
Sequencer::integrate(int)<-[Max depth] accounts for 0.03% of the samples as shown in
line 7 (red numbers). Adding up percentages shown in the [Max depth] lines (lines 5,
7,9,13,15,16, 17,19, 21, 23, and 24) generates 7.04% which equals the percentage of
samples associated with the PCQueuePop function shown in line 0 (red numbers).

22.7. Diagnostics Summary View

This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

» Informational messages
» Warnings
» Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

,ﬂ, 11 warnings, 8 messages

Information from this view can be selected and copied using the mouse cursor.

22.8. Symbol Resolution Logs View

This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the
timeline view are unresolved.

www.nvidia.com
User Guide v2023.3.1 | 251

Chapter 23.
ADDING REPORT TO THE TIMELINE

Starting with 2021.3, Nsight Systems can load multiple report files into a single timeline.
This is a BETA feature and will be improved in the future releases. Please let us know
about your experience on the forums or through Help > Send Feedback... in the main
menu.

To load multiple report files into a single timeline, first start by opening a report as usual
— using File > Open... from the main menu, or double clicking on a report in the Project
Explorer window. Then additional report files can be loaded into the same timeline
using one of the methods:

» File > Add Report (beta)... in the main menu, and select another report file that you
want to open

» Right click on the report in the project explorer window, and click Add Report
(beta)

B mpi-barriers-0.qdrep [2 reports]

B mpi-barriers-2.qdrep Open Report

Export...

Show in Folder...
Resolve Symbols...
&K Remove Report -

23.1. Time Synchronization

When multiple reports are loaded into a single timeline, timestamps between them need
to be adjusted, such that events that happened at the same time appear to be aligned.

www.nvidia.com
User Guide v2023.3.1 | 252

Adding Report to the Timeline

Nsight Systems can automatically adjust timestamps based on UTC time recorded
around the collection start time. This method is used by default when other more
precise methods are not available. This time can be seen as UTC time at t=0 in the
Analysis Summary page of the report file. Refer to your OS documentation to learn how
to sync the software clock using the Network Time Protocol (NTP). NTP-based time
synchronization is not very precise, with the typical errors on the scale of one to tens of
milliseconds.

Reports collected on the same physical machine can use synchronization based on
Timestamp Counter (TSC) values. These are platform-specific counters, typically
accessed in user space applications using the RDTSC instruction on x86_64 architecture,
or by reading the CNTVCT register on Arm64. Their values converted to nanoseconds
can be seen as TSC value at t=0 in the Analysis Summary page of the report file.
Reports synchronized using TSC values can be aligned with nanoseconds-level
precision.

TSC-based time synchronization is activated automatically, when Nsight Systems
detects that reports come from same target and that the same TSC value corresponds
to very close UTC times. Targets are considered to be the same when either explicitly
set environment variables NSYS_HW_1ID are the same for both reports or when target
hostnames are the same and NSYS_HW_1ID is not set for either target. The difference
between UTC and TSC time offsets must be below 1 second to choose TSC-based time
synchronization.

To find out which synchronization method was used, navigate to the Analysis Summary
tab of an added report and check the Report alignment source property of a target.
Note, that the first report won't have this parameter.

Target

Target name 9al630ecdd6a

Local time at t=0 2021-07-02T12:01:57.3107
UTC time at t=0 2021-07-02T12:01:57.310Z
TSC value at t=0 1041856117291223

Report alignment source T5C

Target

Target name 9e2247e584el

Local time at t=0 2021-07-02T12:01:57.3112
UTC time at t=0 2021-07-02T12:01:57.3112
TSC value at t=0 1041856118165144

Report alignment source UTC

www.nvidia.com
User Guide v2023.3.1 | 253

Adding Report to the Timeline

When loading multiple reports into a single timeline, it is always advisable to first
check that time synchronization looks correct, by zooming into synchronization or
communication events that are expected to be aligned.

23.2. Timeline Hierarchy

When reports are added to the same timeline Nsight Systems will automatically

line them up by timestamps as described above. If you want Nsight Systems to also
recognize matching process or hardware information, you will need to set environment
variables NSYS SYSTEM ID and NSYS_HW_ID as shown below at the time of report
collection (such as when using "nsys profile ..." command).

When loading a pair of given report files into the same timeline, they will be merged in
one of the following configurations:

» Different hardware — is used when reports are coming from different physical
machines, and no hardware resources are shared in these reports. This mode is
used when neither NSYS_HW_ID or NSYS_SYSTEM 1ID is set and target hostnames
are different or absent, and can be additionally signalled by specifying different
NSYS_HW_ID values.

» Different systems, same hardware — is used when reports are collected on different
virtual machines (VMs) or containers on the same physical machine. To activate this
mode, specify the same value of NSYS_HW_ID when collecting the reports.

» Same system — is used when reports are collected within the same operating
system (or container) environment. In this mode a process identifier (PID) 100
will refer to the same process in both reports. To manually activate this mode,
specify the same value of NSYS_SYSTEM ID when collecting the reports. This
mode is automatically selected when target hostnames are the same and neither
NSYS_HW_ID or NSYS_SYSTEM ID is provided.

The following diagrams demonstrate typical cases:

www.nvidia.com
User Guide v2023.3.1 | 254

Adding Report to the Timeline

Hardware Hardware Hardware
0s 0s 0S (Windows) 0S (Linux)
(&Y s,
nsys — nsys —
NSYS-Tep NSys-rep
Nsys-rep NSYS-Tep
NSYS_HW_ID=A NSYS_HW_ID=A

Fig 1. Different hardware (default mode)

Hardware

0S (Linux)

Fig 2. Same hardware, different systems (VMs)

- [

Nsys-rep

NSYS_HW_ID=A

Container

L,
nsys —

Nsys-rep

NSYS_HW_ID=A

Hardware

0S

nsys —

NSysTep

NSYS_SYSTEM_ID=A

nsys —

nNSys-rep

NSYS_SYSTEM_ID=A

Fig 3. Same hardware, different systems

(host and container)

23.3. Example: MPI

A typical scenario is when a computing job is run using one of the MPI
implementations. Each instance of the app can be profiled separately, resulting in
multiple report files. For example:

Run MPI job without the profiler:
mpirun <mpirun-options> ./myApp

Run MPI job and profile each instance of the application:
mpirun <mpirun-options> nsys profile -o report-%$p <nsys-options>./myApp

Fig 4. Same system

When each MPI rank runs on a different node, the command above works fine, since the
default pairing mode (different hardware) will be used.

When all MPI ranks run the localhost only, use this command (value "A" was chosen

arbitrarily, it can be any non-empty string):

NSYS_SYSTEM ID=A mpirun <mpirun-options> nsys profile -o report-3%p
<nsys-options> ./myApp

For convenience, the MPI rank can be encoded into the report filename. For Open MP],
use the following command to create report files based on the global rank value:

www.nvidia.com
User Guide

v2023.3.1 | 255

Adding Report to the Timeline

mpirun <mpirun-options> nsys profile -o report-
$q{OMPI_COMM WORLD_ RANK} <nsys-options> ./myApp

MPICH-based implementations set the environment variable PMI_RANK and Slurm
(srun) provides the global MPI rank in SLURM_PROCID.

23.4. Limitations

» Only report files collected with Nsight Systems version 2021.3 and newer are fully
supported.

Sequential reports collected in a single CLI profiling session cannot be loaded into a
single timeline yet.

>

www.nvidia.com

User Guide v2023.3.1 | 256

Chapter 24.
POST-COLLECTION ANALYSIS

Once you have profiled using Nsight Systems there are many options for analyzing the
collected data as well as to output it in various formats. These options are available from
the CLI or the GUI

24.1. Available Export Formats

24.1.1. SQLite Schema Reference

Nsight Systems has the ability to export SQLite database files from the .nsys-rep results
file. From the CLI, use nsys export. From the GUI, call File->Export. . ..

Note: The .nsys-rep report format is the only data format for Nsight Systems that should
be considered forward compatible. The SQLite schema can and will change in the future.

The schema for a concrete database can be obtained with the sqlite3 tool built-in
command . schema. The sqlite3 tool can be located in the Target or Host directory of
your Nsight Systems installation.

Note: Currently tables are created lazily, and therefore not every table described in the
documentation will be present in a particular database. This will change in a future
version of the product. If you want a full schema of all possible tables, use nsys export
--lazy=false during export phase.

Currently, a table is created for each data type in the exported database. Since usage
patterns for exported data may vary greatly and no default use cases have been
established, no indexes or extra constraints are created. Instead, refer to the SQLite
Examples section for a list of common recipes. This may change in a future version of the
product.

To check the version of your exported SQLite file, check the value of

EXPORT SCHEMA VERSION in the EXPORT META DATA table. The schema version is a
common three-value major/minor/micro version number. The first value, or major value,
indicates the overall format of the database, and is only changed if there is a major re-
write or re-factor of the entire database format. It is assumed that if the major version

www.nvidia.com
User Guide v2023.3.1 | 257

Post-Collection Analysis

changes, all scripts or queries will break. The middle, or minor, version is changed
anytime there is a more localized, but potentially breaking change, such as renaming an
existing column, or changing the type of an existing column. The last, or micro version
is changed any time there are additions, such as a new table or column, that should not
introduce any breaking change when used with well-written, best-practices queries.

www.nvidia.com
User Guide v2023.3.1 | 258

Post-Collection Analysis

This is the schema as of the 2023.2 release, schema version 3.1.7.

CREATE TABLE StringIds (
—-— Consolidation of repetitive string values.

id INTEGER NOT NULL PRIMARY KEY, -- ID
reference value.

value TEXT NOT NULL -- String
value.

)
CREATE TABLE ThreadNames (

nameId INTEGER NOT NULL, ==
REFERENCES StringIds(id) -- Thread name

priority INTEGER, -
Priority of the thread.

globalTid INTEGER ==

Serialized GlobalId.
)
CREATE TABLE ProcessStreams (

globalPid INTEGER NOT NULL, ==
Serialized GlobalId.

filenameId INTEGER NOT NULL, ==
REFERENCES StringIds(id) -- File name

contentId INTEGER NOT NULL -
REFERENCES StringIds(id) -- Stream content

)
CREATE TABLE TARGET INFO SYSTEM ENV (

globalvid INTEGER, ==
Serialized GlobalId.

devStateName TEXT NOT NULL, -— Device
state name.

name TEXT NOT NULL, -=
Property name.

nameEnum INTEGER NOT NULL, ==
Property enum value.

value TEXT NOT NULL ==

Property value.
)i
CREATE TABLE TARGET INFO NIC INFO (

globalId INTEGER, -- Device
state globalId

stateName TEXT NOT NULL, -— Device
state name

nicId INTEGER NOT NULL, ==
Network interface Id.

name TEXT NOT NULL, ==
Network interface name

devicelId INTEGER NOT NULL, ==
REFERENCES ENUMﬁNETiDEVICEilD(id)

vendorId INTEGER NOT NULL, ==
REFERENCES ENUM NET VENDOR ID (id)

linkLayer INTEGER NOT NULL -=

REFERENCES ENUM NET LINK TYPE (id)
)
CREATE TABLE TARGET INFO SESSION START TIME (

utcEpochNs INTEGER, -- UTC
Epoch timestamp at start of the capture (ns).

utcTime TEXT, -- Start
of the capture in UTC.

localTime TEXT -- Start

of the capture in local time of target.
)i
CREATE TABLE ANALYSIS DETAILS (

—-— Details about the analysis session.

globalvid INTEGER NOT NULL, ==
Serialized GloballId.

duration INTEGER NOT NULL, -— The
total time span of the entire trace (ns).

startTime INTEGER NOT NULL, == Trace
start timestamp in nanoseconds.

stopTime INTEGER NOT NULL -- Trace

stop timestamp in nanoseconds.
)i
CREATE TART,F TARCET TINFO GPU (

Post-Collection Analysis

24.1.2. SQLite Schema Event Values

Here are the set values stored in enums in the Nsight Systems SQLite schema

CUDA Event Class Values

0 - TRACE PROCESS_EVENT CUDA RUNTIME

1 - TRACE PROCESS_EVENT CUDA DRIVER

13 - TRACE PROCESS EVENT CUDA EGL DRIVER
28 - TRACE PROCESS EVENT CUDNN

29 - TRACE PROCESS_ EVENT CUBLAS

33 - TRACE_PROCESS_EVENT CUDNN_START

34 - TRACE PROCESS EVENT CUDNN FINISH

35 - TRACE PROCESS EVENT CUBLAS START

36 - TRACE PROCESS_EVENT CUBLAS FINISH
67 - TRACE_PROCESS_EVENT CUDABACKTRACE
77 - TRACE PROCESS EVENT CUDA GRAPH NODE CREATION

See CUPTI documentation for detailed information on collected event and data types.

NVTX Event Type Values

33 - NvtxCategory

34 - NvtxMark

39 - NvtxThread

59 - NvtxPushPopRange

60 - NvtxStartEndRange
75 - NvtxDomainCreate

76 - NvtxDomainDestroy

The difference between text and textld columns is that if an NVTX event message was
passed via call to nvtxDomainRegisterString function, then the message will be available
through textld field, otherwise the text field will contain the message if it was provided.

OpenGL Events

KHR event class values

62 - KhrDebugPushPopRange
63 - KhrDebugGpuPushPopRange

KHR source kind values

0x8249 - GL_DEBUG_SOURCE THIRD PARTY
0x824A - GL_DEBUG_SOURCE APPLICATION

www.nvidia.com
User Guide v2023.3.1 | 260

https://docs.nvidia.com/cupti/Cupti/index.html

KHR type values

0x824C - GL_DEBUG_TYPE ERROR

0x824D - GL_DEBUG_TYPE DEPRECATED BEHAVIOR
0x824E - GL_DEBUG_TYPE UNDEFINED BEHAVIOR
0x824F - GL_DEBUG_TYPE PORTABILITY

0x8250 - GL_DEBUG_TYPE PERFORMANCE

0x8251 - GL_DEBUG_TYPE OTHER

0x8268 - GL_DEBUG_TYPE MARKER

0x8269 - GL_DEBUG_TYPE PUSH_GROUP

0x826A - GL_DEBUG_TYPE POP_GROUP

KHR severity values

0x826B - GL DEBUG SEVERITY NOTIFICATION

0x9146 - GL_DEBUG_SEVERITY HIGH
0x9147 - GL_DEBUG_SEVERITY MEDIUM
0x9148 - GL_DEBUG_SEVERITY LOW
OSRT Event Class Values

Post-Collection Analysis

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OSRT events may have callchains attached to them, depending on selected profiling
settings. In such cases, one can use callchainld column to select relevant callchains from
OSRT_CALLCHAINS table

OSRT event class values

27

- TRACE PROCESS EVENT OS RUNTIME

31 - TRACE PROCESS EVENT OS RUNTIME START
32 - TRACE PROCESS EVENT OS RUNTIME FINISH

DX12 Event Class Values

41 - TRACE PROCESS EVENT DX12 API

42 - TRACE PROCESS EVENT DX12 WORKLOAD

43 - TRACE PROCESS EVENT DX12 START

44 - TRACE PROCESS EVENT DX12 FINISH

52 - TRACE PROCESS EVENT DX12 DISPLAY

59 - TRACE PROCESS EVENT DX12 CREATE_OBJECT
PIX Event Class Values

65 - TRACE PROCESS EVENT DX12 DEBUG API

75 - TRACE PROCESS EVENT DX11 DEBUG API

www.nvidia.com
User Guide

v2023.3.1 | 261

Vulkan Event Class Values

53 - TRACE PROCESS_ EVENT VULKAN API

54 - TRACE PROCESS EVENT VULKAN WORKLOAD

55 - TRACE PROCESS_EVENT VULKAN_ START

56 - TRACE PROCESS_ EVENT VULKAN FINISH

60 - TRACE PROCESS EVENT VULKAN CREATE OBJECT
66 - TRACE PROCESS EVENT VULKAN DEBUG API

Vulkan Flags

VALID BIT = 0x00000001
CACHE_HIT BIT = 0x00000002
BASE_PIPELINE ACCELERATION BIT = 0x00000004

SLI Event Class Values

62 - TRACE PROCESS EVENT SLI
63 - TRACE PROCESS EVENT SLI START
64 - TRACE_PROCESS EVENT SLI_FINISH

SLI Transfer Info Values

- P2P_SKIPPED

- P2P_EARLY PUSH

- P2P_PUSH_FAILED
P2P_2WAY OR PULL

- P2P_PRESENT

- P2P_DX12 INIT PUSH ON WRITE

g W NP O
|

WDDM Event Values

www.nvidia.com
User Guide

Post-Collection Analysis

v2023.3.1 | 262

VIDMM operation type values

O =
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
200
202
203
204
205
206
207
208
209
210
211
212

None

- RestoreSegments

- PurgeSegments

- CleanupPrimary

- AllocatePagingBufferResources
- FreePagingBufferResources

- ReportVidMmState

- RunApertureCoherencyTest

- RunUnmapToDummyPageTest

- DeferredCommand

- SuspendMemorySegmentAccess
- ResumeMemorySegmentAccess

- EvictAndFlush

- CommitVirtualAddressRange

- UncommitVirtualAddressRange

- DestroyVirtualAddressAllocator

- PagelInDevice

- MapContextAllocation
- InitPagingProcessVaSpace
- CloseAllocation

- ComplexLock

- PinAllocation

- FlushPendingGpuAccess
- UnpinAllocation

- MakeResident

- Evict

- LockInAperture

- InitContextAllocation
- ReclaimAllocation

- DiscardAllocation

- SetAllocationPriority

1000 - EvictSystemMemoryOfferList

Paging queue type values

w N = O
|

VIDMM PAGING QUEUE TYPE UMD

VIDMM PAGING QUEUE_TYPE Default
VIDMM PAGING QUEUE TYPE Evict
VIDMM PAGING QUEUE TYPE Reclaim

Packet type values

~No Ul WP O
|

DXGKETW_RENDER COMMAND BUFFER
DXGKETW DEFERRED COMMAND BUFFER
DXGKETW SYSTEM COMMAND BUFFER
DXGKETW_ MMIOFLIP COMMAND BUFFER
DXGKETW WAIT COMMAND BUFFER
DXGKETW SIGNAL COMMAND BUFFER
DXGKETW DEVICE COMMAND BUFFER
DXGKETW_SOFTWARE COMMAND BUFFER

www.nvidia.com
User Guide

Post-Collection Analysis

v2023.3.1 | 263

Engine type values

O Jo Ul WP O
|

DXGK_ENGINE TYPE OTHER
DXGK_ENGINE TYPE 3D
DXGK_ENGINE TYPE VIDEO DECODE
DXGK_ENGINE_TYPE VIDEO ENCODE
DXGK_ENGINE TYPE VIDEO PROCESSING
DXGK_ENGINE TYPE SCENE ASSEMBLY
DXGK_ENGINE TYPE COPY
DXGK_ENGINE_TYPE OVERLAY
DXGK_ENGINE_TYPE CRYPTO

DMA interrupt type values

oSN
Il

DXGK_INTERRUPT DMA COMPLETED
DXGK_INTERRUPT DMA PREEMPTED
DXGK_INTERRUPT DMA FAULTED
DXGK_INTERRUPT DMA PAGE FAULTED

Queue type values

N
[

= Queue Packet

Dma Packet

= Paging Queue Packet

Driver Events

Load balance event type values

1 -
8 —
21

LoadBalanceEvent GPU
LoadBalanceEvent CPU

- LoadBalanceMasterEvent GPU

22 - LoadBalanceMasterEvent CPU

OpenMP Events

OpenMP event class values

78 - TRACE PROCESS EVENT OPENMP

79

- TRACE PROCESS EVENT OPENMP START
80 - TRACE PROCESS EVENT OPENMP FINISH

www.nvidia.com
User Guide

Post-Collection Analysis

v2023.3.1 | 264

OpenMP event kind values

OPENMP_EVENT KIND TASK CREATE
OPENMP_EVENT KIND TASK SCHEDULE
OPENMP_EVENT KIND CANCEL
OPENMP_EVENT KIND MUTEX RELEASED
OPENMP_EVENT KIND LOCK_INIT
OPENMP_EVENT KIND LOCK DESTROY
OPENMP_EVENT KIND DISPATCH
OPENMP_EVENT KIND FLUSH
OPENMP_EVENT KIND THREAD
OPENMP_EVENT KIND PARALLEL
OPENMP_EVENT KIND SYNC REGION WAIT
OPENMP_EVENT KIND SYNC REGION
OPENMP_EVENT KIND TASK
OPENMP_EVENT KIND MASTER
OPENMP_EVENT KIND REDUCTION
OPENMP_EVENT KIND MUTEX WAIT
OPENMP_EVENT KIND CRITICAL SECTION
OPENMP_EVENT KIND WORKSHARE

OpenMP thread type values

SwWw N

OpenMP Initial Thread
OpenMP Worker Thread
OpenMP Internal Thread
Unknown

OpenMP sync region kind values

o Ul WN

Barrier

Implicit barrier

Explicit barrier
Implementation-dependent barrier
Taskwait

Taskgroup

OpenMP task kind values

1
2
3

Initial task
Implicit task
Explicit task

OpenMP prior task status values

~Nw N

Task completed

Task yielded to another task

Task was cancelled

Task was switched out for other reasons

www.nvidia.com
User Guide

Post-Collection Analysis

v2023.3.1 | 265

Post-Collection Analysis

OpenMP mutex kind values

- Waiting for lock

- Testing lock

- Waiting for nested lock

Tesing nested lock

- Waitng for entering critical section region
- Waiting for entering atomic region

- Waiting for entering ordered region

~N oUW
|

OpenMP critical section kind values

5 - Critical section region
6 - Atomic region
7 - Ordered region

OpenMP workshare kind values

- Loop region

- Sections region

- Single region (executor)
Single region (waiting)
- Workshare region

- Distrubute region

- Taskloop region

oUW
|

OpenMP dispatch kind values

1 - Iteration
2 - Section

24.1.3. Common SQLite Examples

Common Helper Commands

When utilizing sqlite3 command line tool, it’s helpful to have data printed as named
columns, this can be done with:

.mode column
.headers on

Default column width is determined by the data in the first row of results. If this doesn’t
work out well, you can specify widths manually.
.width 10 20 50

Obtaining Sample Report

CLI interface of Nsight Systems was used to profile radixSortThrust CUDA sample, then
the resulting .nsys-rep file was exported using the nsys export.

nsys profile --trace=cuda,osrt radixSortThrust
nsys export --type sglite reportl.nsys-rep

Serialized Process and Thread Identifiers

www.nvidia.com
User Guide v2023.3.1 | 266

Post-Collection Analysis

Nsight Systems stores identifiers where events originated in serialized form. For events
that have globalTid or globalPid fields exported, use the following code to extract

numeric TID and PID.

SELECT globalTid / 0x1000000 %

FROM TABLE NAME;

0x1000000 AS PID, globalTid

0x1000000 AS TID

Note: globalTid field includes both TID and PID values, while globalPid only containes

the PID value.

Correlate CUDA Kernel Launches With CUDA API Kernel Launches

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN name TEXT;

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN kernelName TEXT;

UPDATE CUPTI ACTIVITY KIND RUNTIME SET kernelName

(SELECT value FROM StringIds

JOIN CUPTI ACTIVITY KIND KERNEL AS cuda_ gpu
ON cuda gpu.shortName =
AND CUPTI ACTIVITY KIND RUNTIME.correlationId =

StringIds.id

UPDATE CUPTI ACTIVITY KIND RUNTIME SET name =

(SELECT value FROM Stringlds WHERE namelId

cuda gpu.correlationId);

StringIds.id) ;

Select 10 longest CUDA API ranges that resulted in kernel execution.

SELECT name,

kernelName,

start,

end FROM CUPTI ACTIVITY KIND RUNTIME

WHERE kernelName IS NOT NULL ORDER BY end - start LIMIT IO;

Results:

cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000

kernelName

RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel

Remove Ranges Overlapping With Overhead

658863435
609755015
632683286
606495356
603114486
802729785
593381170
658759955
681549917
717812527

658868490
609760075
632688349
606500439
603119586
802734906
593386294
658765090
681555059
717817671

Use the this query to count CUDA API ranges overlapping with the overhead ones.

www.nvidia.com
User Guide

v2023.3.1 | 267

Post-Collection Analysis

Replace "SELECT COUNT(*)" with "DELETE" to remove such ranges.

SELECT COUNT (*) FROM CUPTI ACTIVITY KIND RUNTIME WHERE rowid IN
(

SELECT cuda.rowid

FROM PROFILER OVERHEAD as overhead

INNER JOIN CUPTI ACTIVITY KIND RUNTIME as cuda ON

(cuda.start BETWEEN overhead.start and overhead.end)

OR (cuda.end BETWEEN overhead.start and overhead.end)

OR (cuda.start < overhead.start AND cuda.end > overhead.end)
)7

Results:

COUNT (*)

Find CUDA API Calls That Resulted in Original Graph Node Creation.

SELECT graph.graphNodeId, api.start, graph.start as graphStart, api.end,
api.globalTid, api.correlationId, api.globalTid,
(SELECT value FROM StringIds where api.nameld == id) as name
FROM CUPTI ACTIVITY KIND RUNTIME as api
JOIN
(
SELECT start, graphNodeId, globalTid from CUDA GRAPH EVENTS
GROUP BY graphNodeId
HAVING COUNT (originalGraphNodeId) = 0
) as graph
ON api.globalTid == graph.globalTid AND api.start < graph.start AND api.end >
graph.start
ORDER BY graphNodeId;

www.nvidia.com
User Guide v2023.3.1 | 268

Results:

graphNodeId end

globalTid

graphStart

1 584366518 584378040 584379102
281560221750233 cudaGraphAddMemcpyNode v10000

2 584379402 584382428 584383139
281560221750233 cudaGraphAddMemsetNode v10000
3 584390663 584395352 584396053
281560221750233 cudaGraphAddKernelNode v10000
4 584396314 584397857 584398438
281560221750233 cudaGraphAddMemsetNode v10000
5 584398759 584400311 584400812
281560221750233 cudaGraphAddKernelNode v10000
6 584401083 584403047 584403527
281560221750233 cudaGraphAddMemcpyNode v10000
7 584403928 584404920 584405491
281560221750233 cudaGraphAddHostNode v10000

29 632107852 632117921 632121407
281560221750233 cudaMemcpyAsync v3020

30 632122168 632125545 632127989
281560221750233 cudaMemsetAsync v3020

31 632131546 632133339 632135584
281560221750233 cudaMemsetAsync v3020

34 632162514 632167393 632169297
281560221750233 cudaMemcpyAsync v3020

35 632170068 632173334 632175388
281560221750233 cudaLaunchHostFunc v10000

Backtraces for OSRT Ranges

Post-Collection Analysis

globalTid correlationId
281560221750233 109
281560221750233 110
281560221750233 111
281560221750233 112
281560221750233 113
281560221750233 114
281560221750233 115
281560221750233 144
281560221750233 145
281560221750233 147
281560221750233 151
281560221750233 152

Adding text columns makes results of the query below more human-readable.

ALTER TABLE OSRT API ADD COLUMN name TEXT;
UPDATE OSRT API SET name =
StringIds.id);

(SELECT value FROM StringIds WHERE OSRT API.nameld =

ALTER TABLE OSRT CALLCHAINS ADD COLUMN symbolName TEXT;

UPDATE OSRT CALLCHAINS SET symbolName =
symbol = StringIds.id);

(SELECT value FROM

StringIds WHERE

ALTER TABLE OSRT CALLCHAINS ADD COLUMN moduleName TEXT;

UPDATE OSRT CALLCHAINS SET moduleName =
module = Stringlds.id);

Print backtrace of the longest OSRT range

SELECT globalTid / 0x1000000 %

start, end, name, callchainId, stackDepth,

(SELECT value FROM

0x1000000 AS PID, globalTid %
symbolName,

StringIds WHERE

0x1000000 AS TID,
moduleName

FROM OSRT API LEFT JOIN OSRT CALLCHAINS ON callchainId == OSRT CALLCHAINS.id

WHERE OSRT API.rowid IN
LIMIT 1)
ORDER BY stackDepth LIMIT 10;

www.nvidia.com
User Guide

(SELECT rowid FROM OSRT API ORDER BY end - start DESC

v2023.3.1 | 269

Post-Collection Analysis

Results:
PID TID start end name
callchainId stackDepth symbolName moduleName
19163 19176 360897690 860966851 pthread cond timedwait 88
0 pthread cond timedwait@GLIBC 2 /lib/x86 64-linux-gnu/
libpthread-2.27.s0
19163 19176 360897690 860966851 pthread cond timedwait 88
1 0x7fbc983b7227 /usr/1lib/x86 64-linux-gnu/
libcuda.so.418
19163 19176 360897690 860966851 pthread cond timedwait 88
2 0x7fbc9835d5c7 /usr/lib/x86 64-linux-gnu/
libcuda.so0.418
19163 19176 360897690 860966851 pthread cond timedwait 88
3 0x7fbc983b64a8 /usr/lib/x86_ 64-linux-gnu/
libcuda.so0.418
19163 19176 360897690 860966851 pthread cond timedwait 88
4 start thread /1ib/x86 64-linux-gnu/
libpthread-2.27.s0
19163 19176 360897690 860966851 pthread cond timedwait 88
5 __clone /1lib/x86 64-linux-gnu/

libc-2.27.s0

Profiled processes output streams

ALTER TABLE ProcessStreams ADD COLUMN filename TEXT;
UPDATE ProcessStreams SET filename = (SELECT value FROM Stringlds WHERE
ProcessStreams.filenameId = StringIds.id) ;

ALTER TABLE ProcessStreams ADD COLUMN content TEXT;

UPDATE ProcessStreams SET content = (SELECT value FROM StringIds WHERE
ProcessStreams.contentId = StringIlds.id);

Select all collected stdout and stderr streams.

select globalPid / 0x1000000 % 0x1000000 AS PID, filename, content from
ProcessStreams;

www.nvidia.com
User Guide v2023.3.1 | 270

Post-Collection Analysis

Results:
PID filename content
19163 /tmp/nvidia/nsight systems/streams/pid 19163 stdout.log /home/

user name/NVIDIA CUDA-10.1 Samples/6 Advanced/radixSortThrust/radixSortThrust
Starting...

GPU Device 0: "Quadro P2000" with compute capability 6.1

Sorting 1048576 32-bit unsigned int keys and values

radixSortThrust, Throughput = 401.0872 MElements/s, Time = 0.00261 s, Size =
1048576 elements
Test passed

19163 /tmp/nvidia/nsight systems/streams/pid 19163 stderr.log

Thread Summary

Please note, that Nsight Systems applies additional logic during sampling events
processing to work around lost events. This means that the results of the below query
might differ slightly from the ones shown in “Analysis summary” tab.

Thread summary calculated using CPU cycles (when available).

SELECT
globalTid / 0x1000000 % 0x1000000 AS PID,
globalTid % 0x1000000 AS TID,
ROUND (100.0 * SUM(cpuCycles) /
(
SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS
GROUP BY globalTid / 0x1000000000000 % 0x100
)y
2
) as CPU utilization,
(SELECT value FROM StringIds WHERE id =
(
SELECT nameId FROM ThreadNames
WHERE ThreadNames.globalTid = COMPOSITE EVENTS.globalTid
)
) as thread name
FROM COMPOSITE EVENTS
GROUP BY globalTid
ORDER BY CPU utilization DESC
LIMIT 10;

www.nvidia.com
User Guide v2023.3.1 | 271

Post-Collection Analysis

Results:

PID TID CPU utilization thread name
19163 19163 98.4 radixSortThrust
19163 19168 1.35 CUPTI worker th
19163 19166 0.25 [NS]

Thread running time may be calculated using scheduling data, when PMU counter data
was not collected.

CREATE INDEX sched start ON SCHED EVENTS (start);

CREATE TABLE CPU_USAGE AS
SELECT
first.globalTid as globalTid,
(SELECT namelId FROM ThreadNames WHERE ThreadNames.globalTid =
first.globalTid) as nameld,
sum (second.start - first.start) as total duration,
count () as ranges count
FROM SCHED_ EVENTS as first
LEFT JOIN SCHED EVENTS as second
ON second.rowid =
(
SELECT rowid
FROM SCHED_EVENTS
WHERE start > first.start AND globalTid = first.globalTid
ORDER BY start ASC
LIMIT 1
)
WHERE first.isSchedIn != 0
GROUP BY first.globalTid
ORDER BY total_duration DESC;

SELECT
globalTid / 0x1000000 % 0x1000000 AS PID,
globalTid % 0x1000000 AS TID,
(SELECT value FROM StringIds where namelId == id) as thread name,
ROUND (100.0 * total duration / (SELECT SUM(total duration) FROM CPU USAGE),
2) as CPU utilization
FROM CPU_USAGE
ORDER BY CPU utilization DESC;

Results:

PID TID thread name CPU utilization
19163 19163 radixSortThrust 93.74

19163 19169 radixSortThrust 3.22

19163 19168 CUPTI worker th 2.46

19163 19166 [NS] 0.44

19163 19172 radixSortThrust 0.07

19163 19167 [NS Comms] 0.05

19163 19176 radixSortThrust 0.02

19163 19170 radixSortThrust 0.0

Function Table

These examples demonstrate how to calculate Flat and BottomUp (for top level only)
views statistics.

www.nvidia.com
User Guide v2023.3.1 | 272

Post-Collection Analysis

To set up:

ALTER TABLE SAMPLING CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE SAMPLING CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
symbol = StringIds.id);

ALTER TABLE SAMPLING CALLCHAINS ADD COLUMN moduleName TEXT;
UPDATE SAMPLING CALLCHAINS SET moduleName = (SELECT value FROM StringIds WHERE
module = StringlIds.id);

To get flat view:

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /

(SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS), 2) AS flatTimePercentage
FROM SAMPLING CALLCHAINS
LEFT JOIN COMPOSITE EVENTS ON SAMPLING CALLCHAINS.id == COMPOSITE EVENTS.id
GROUP BY symbol, module
ORDER BY flatTimePercentage DESC
LIMIT 5;

To get BottomUp view (top level only):

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /
(SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS), 2) AS selfTimePercentage
FROM SAMPLING CALLCHAINS
LEFT JOIN COMPOSITE EVENTS ON SAMPLING_CALLCHAINS.id == COMPOSITE_EVENTS.id
WHERE stackDepth == 0
GROUP BY symbol, module
ORDER BY selfTimePercentage DESC
LIMIT 5;

Results:

symbolName moduleName flatTimePercentage
[Max depth] [Max depth] 99.92

thrust::zip /home/user 24.17

thrust::zip /home/user 24.17

thrust::det /home/user 24.17

thrust::det /home/user 24.17

symbolName moduleName selfTimePercentage
0x7fbc984982b6 /usr/lib/x86 64-linux-gnu/libcuda.so0.418.39 5
0x7fbc982d0010 /usr/lib/x86 64-linux-gnu/libcuda.so.418.39 2
thrust::iterat /home/user name/NVIDIA CUDA-10.1 Samples/6_ 2.23
thrust::iterat /home/user name/NVIDIA CUDA-10.1 Samples/6_ 1
void thrust::i /home/user name/NVIDIA CUDA-10.1 Samples/6 1

DX12 API Frame Duration Histogram

www.nvidia.com
User Guide v2023.3.1 | 273

Post-Collection Analysis

The example demonstrates how to calculate DX12 CPU frames durartion and construct a
histogram out of it.

CREATE INDEX DX12 API ENDTS ON DX12 API (end);

CREATE TEMP VIEW DX127AP17FPS AS SELECT end AS start,
(SELECT end FROM DX12 API
WHERE end > outer.end AND namelId == (SELECT id FROM StringIds
WHERE value == "IDXGISwapChain::Present")
ORDER BY end ASC LIMIT 1) AS end
FROM DX12 API AS outer
WHERE nameId == (SELECT id FROM StringIds WHERE value ==
"IDXGISwapChain: :Present")
ORDER BY end;

Number of frames with a duration of [X, X + 1) milliseconds.

SELECT
CAST ((end - start) / 1000000.0 AS INT) AS duration ms,
count (*)

FROM DX12 API FPS
WHERE end IS NOT NULL
GROUP BY duration ms
ORDER BY duration ms;

Results:

duration ms count (*)

3 1

4 2

5 7

6 153
7 19
8 116
9 16
10 8
11 2
12 2
13 1
14 4
16 3
17 2
18 1

GPU Context Switch Events Enumeration

GPU context duration is between first BEGIN and a matching END event.

SELECT (CASE tag WHEN 8 THEN "BEGIN" WHEN 7 THEN "END" END) AS tag,
globalPid / 0x1000000 % 0x1000000 AS PID,
vmId, seqgNo, contextId, timestamp, gpuld FROM GPU CONTEXT SWITCH EVENTS
WHERE tag in (7, 8) ORDER BY segNo LIMIT 10;

www.nvidia.com
User Guide v2023.3.1 | 274

Post-Collection Analysis

Results:

tag PID vmId segNo contextId timestamp gpuld
Béégﬁ ______ 23371 0 0 1048578 56759171 0
BEGIN 23371 0 1 1048578 56927765 0
BEGIN 23371 0 3 1048578 63799379 0
END 23371 0 4 1048578 63918806 0
BEGIN 19397 0 5 1048577 64014692 0
BEGIN 19397 0 6 1048577 64250369 0
BEGIN 19397 0 8 1048577 1918310004 O
END 19397 0 9 1048577 1918521098 O
BEGIN 19397 0 10 1048577 2024164744 O
BEGIN 19397 0 11 1048577 2024358650 O

Resolve NVTX Category Name

The example demonstrates how to resolve NVTX category name for NVTX marks and
ranges.

WITH
event AS (
SELECT *
FROM NVTX EVENTS
WHERE eventType IN (34, 59, 60) -- mark, push/pop, start/end
)
category AS (
SELECT
category,
domainId,
text AS categoryName
FROM NVTX EVENTS
WHERE eventType == 33 -- new category
)
SELECT
start,
end,
globalTid,
eventType,
domainId,
category,
categoryName,
text
FROM event JOIN category USING (category, domainId)
ORDER BY start;

www.nvidia.com
User Guide v2023.3.1 | 275

Post-Collection Analysis

Results:

start end globalTid eventType domainId category
categoryName text

18281150 18311960 281534938484214 59 0 1
FirstCategoryUnderDefault Push Pop Range A

18288187 18306674 281534938484214 59 0 2
SecondCategoryUnderDefaul Push Pop Range B

18294247 281534938484214 34 0 1
FirstCategoryUnderDefault Mark A

18300034 281534938484214 34 0 2
SecondCategoryUnderDefaul Mark B

18345546 18372595 281534938484214 60 1 1
FirstCategoryUnderMyDomai Start End Range

18352924 18378342 281534938484214 60 1 2
SecondCategoryUnderMyDoma Start End Range

18359634 281534938484214 34 1 1
FirstCategoryUnderMyDomai Mark A

18365448 281534938484214 34 1 2

SecondCategoryUnderMyDoma Mark B

Rename CUDA Kernels with NVTX

The example demonstrates how to map innermost NVTX push-pop range to a matching
CUDA kernel run.

ALTER TABLE CUPTI ACTIVITY KIND KERNEL ADD COLUMN nvtxRange TEXT;
CREATE INDEX nvtx start ON NVTX EVENTS (start);

UPDATE CUPTI ACTIVITY KIND KERNEL SET nvtxRange = (
SELECT NVTX EVENTS.text
FROM NVTX EVENTS JOIN CUPTI ACTIVITY KIND RUNTIME ON
NVTX EVENTS.eventType == 59 AND
NVTX EVENTS.globalTid == CUPTI ACTIVITY KIND RUNTIME.globalTid AND
NVTX EVENTS.start <= CUPTI ACTIVITY KIND RUNTIME.start AND
NVTX_EVENTS.end >= CUPTI_ACTIVITY_KIND_RUNTIME.end
WHERE
CUPTI ACTIVITY KIND KERNEL.correlationId ==
CUPTI ACTIVITY KIND RUNTIME.correlationId
ORDER BY NVTX EVENTS.start DESC LIMIT 1
)i

SELECT start, end, globalPid, StringIds.value as shortName, nvtxRange
FROM CUPTI_ACTIVITY_KIND_KERNEL JOIN StringIds ON shortName == id
ORDER BY start LIMIT 6;

Results:

start end globalPid shortName nvtxRange
526545376 526676256 72057700439031808 MatrixMulCUDA

526899648 527030368 72057700439031808 MatrixMulCUDA Add
527031648 527162272 72057700439031808 MatrixMulCUDA Add
527163584 527294176 72057700439031808 MatrixMulCUDA My Kernel
527296160 527426592 72057700439031808 MatrixMulCUDA My Range
527428096 527558656 72057700439031808 MatrixMulCUDA

www.nvidia.com
User Guide v2023.3.1 | 276

Post-Collection Analysis

Select CUDA Calls With Backtraces

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN name TEXT;
UPDATE CUPTI ACTIVITY KIND RUNTIME SET name = (SELECT value FROM StringIds WHERE
CUPTI ACTIVITY KIND RUNTIME.nameId = StringIds.id);

ALTER TABLE CUDA CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE CUDA CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
symbol = StringIds.id);

SELECT globalTid % 0x1000000 AS TID,
start, end, name, callchainId, stackDepth, symbolName
FROM CUDA_CALLCHAINS JOIN CUPTI_ACTIVITY_KIND_RUNTIME ON callchainId ==
CUDAﬁCALLCHAINS.id
ORDER BY callchainId, stackDepth LIMIT 11;

Results:

TID start end name callchainId stackDepth
symbolName

11928 168976467 169077826 cuMemAlloc v2 1 0
0x7f13c44f02ab

11928 168976467 169077826 cuMemAlloc v2 1 1
0x7f13c44f0b8f

11928 168976467 169077826 cuMemAlloc v2 1 2
0x7f13c44£3719

11928 168976467 169077826 cuMemAlloc v2 1 3
cuMemAlloc v2

11928 168976467 169077826 cuMemAlloc v2 1 4
cudart: :driver

11928 168976467 169077826 cuMemAlloc v2 1 5
cudart: :cudaAp

11928 168976467 169077826 cuMemAlloc v2 1 6
cudaMalloc

11928 168976467 169077826 cuMemAlloc v2 1 7
cudaError cuda

11928 168976467 169077826 cuMemAlloc v2 1 8 main
11928 168976467 169077826 cuMemAlloc v2 1 9
_ libc start m

11928 168976467 169077826 cuMemAlloc v2 1 10
_start

SLI Peer-to-Peer Query

The example demonstrates how to query SLI Peer-to-Peer events with resource size
greater than value and within a time range sorted by resource size descending.

SELECT *

FROM SLI_PZP

WHERE resourceSize < 98304 AND start > 1568063100 AND end < 1579468901
ORDER BY resourceSize DESC;

www.nvidia.com
User Guide v2023.3.1 | 277

Results:
start end eventClass globalTid gpu frameId
transferSkipped srcGpu dstGpu numSubResources resourceSize
subResourcelIdx smplWidth smplHeight smplDepth bytesPerElement
dxgiFormat logSurfaceNames transferInfo isEarlyPushManagedByNvApi
useAsyncP2pForResolve transferFuncName regimeName debugName bindType
1570351100 1570351101 62 72057698056667136 0 771
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1570379300 1570379301 62 72057698056667136 O 771
256 512 1 1048576 0
64 64 64 4 31
3 0 0
1572316400 1572316401 62 72057698056667136 O 773
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1572345400 1572345401 62 72057698056667136 0 773
256 512 1 1048576 0
64 64 64 4 31
3 0 0
1574734300 1574734301 62 72057698056667136 0 775
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1574767200 1574767201 62 72057698056667136 O 775
256 512 1 1048576 0
64 64 64 4 31
3 0 0

Generic Events

Syscall usage histogram by PID:

SELECT json_extract (data,
FROM GENERIC EVENTS WHERE PID IS NOT NULL AND typeld
SELECT typeId FROM GENERIC_EVENT_TYPES
WHERE Jjson extract(data, '$.Name') = "raw syscalls:sys enter")

GROUP BY PID

ORDER BY total DESC

LIMIT 10;

www.nvidia.com

User Guide

Post-Collection Analysis

(

'$.common_pid') AS PID, count(*) AS total

v2023.3.1 | 278

Post-Collection Analysis

Results:

PID total
5551 32811
9680 3988
4328 1477
9564 1246
4376 1204
4377 1167
4357 656
4355 655
4356 640
4354 633

Fetching Generic Events in JSON Format

Text and JSON export modes don’t include generic events. Use the below queries
(without LIMIT clause) to extract JSON lines representation of generic events, types and
sources.

SELECT json insert('{}"',
'S.sourceld', sourceld,
'$S.data', json (data)

)

FROM GENERIC EVENT SOURCES LIMIT 2.8

SELECT json insert('{}',
'S.typeld', typeld,
'S.sourceld', sourceld,
'S.data', json (data)

)

FROM GENERICiEVENTiTYPES LIMIT 2;

SELECT json insert('{}',
'$S.rawTimestamp', rawTimestamp,
'S.timestamp', timestamp,
'S.typeld', typeld,

'S.data', json (data)
)
FROM GENERIC EVENTS LIMIT 28

www.nvidia.com
User Guide v2023.3.1 | 279

Post-Collection Analysis

Results:

json_insert ('{}',
'S.sourceld', sourceld,
'$.data', json (data)

{"sourceId":72057602627862528, "data":
{"Name" :"FTrace", "TimeSource":"ClockMonotonicRaw", "SourceGroup" :"FTrace"}}
json_insert ('{}"',

'S.typeld', typeld,

'S.sourceld', sourceld,

'$S.data', json (data)

{"typeId":72057602627862547,"sourcelId":72057602627862528, "data":
{"Name":"raw syscalls:sys enter","Format":"\"NR $1d (%1x,

$1lx, %1lx, %$1x, %1x, %1x)\", REC->id, REC->args[0], REC-

>args[l], REC->args[2], REC->args[3], REC->args[4], REC-
>args[5]","Fields": [{"Name":"common pid","Prefix":"int",6 "Suffix":""},
{"Name":"id", "Prefix":"long","S
{"typeId":72057602627862670,"sourceId":72057602627862528, "data":

{"Name":"irqg:irg handler entry","Format":"\"irg=%d name=%s\", REC->irq,

__get str(name)","Fields":[{"Name":"common pid","Prefix":"int",6 "Suffix":""},
{"Name":"irg", "Prefix":"int","Suffix":""}, {"Name":"name", "Prefix":" data loc
char[]","Suffix":""}, {"Name":"common type",

json _insert ('{}"',
'S.rawTimestamp', rawTimestamp,
'S.timestamp', timestamp,
'S.typeld', typeld,
'$.data', json (data)

{"rawTimestamp":1183694330725221,"timestamp":6236683, "typeId":72057602627862670, "data":

{"common pid":"0","irqg":"66","name":"327696","common type":"142","common flags":"9","common p:
{"rawTimestamp":1183694333695687, "timestamp":9207149, "typeId":72057602627862670,"data":
{"common pid":"O0","irqg":"66", "name":"327696", "common type":"142","common flags":"9", "common p:

24.1.4. Arrow Format Description

The Arrow type exported file uses the IPC stream format to store the data in a file. The
tables can be read by opening the file as an arrow stream. For example one can use the
open_stream function from the arrow python package. For more information on the
interfaces that can be used to read an IPC stream file, please refer to the Apache Arrow
documentation [1, 2].

The name of each table is included in the schema metadata. Thus, while reading each
table, the user can extract the table title from the metadata. The table name metadata
field has the key table_name. The titles of all the available tables can be found in
section SQLite Schema Reference.

www.nvidia.com
User Guide v2023.3.1 | 280

https://arrow.apache.org/docs/python/api/ipc.html
https://arrow.apache.org/docs/python/ipc.html

Post-Collection Analysis

24.1.5. JSON and Text Format Description

JSON and TXT export formats are generated by serializing buffered messages, each on
a new line. First, all collected events are processed. Then strings are serialized, followed
by stdout, stderr streams if any, followed by thread names.

Output layout:

{Event #1}
{Event #2}
ié&ent #N}
{Strings}

{Streams}
{Threads}

For easier grepping of JSON output, the --separate-strings switch may be used to
force manual splitting of strings, streams and thread names data.

Example line split: nsys export --export-json --separate-strings
sample.nsys-rep -- -

{"type":"String","id":"3720", "value":"Process 14944 was launched by the

profiler"}

{"type":"String","id":"3721","value" :"Profiling has started."}
{"type":"String","id":"3722","value" :"Profiler attached to the process."}
{"type":"String","id":"3723","value":"Profiling has stopped."}
{"type":"ThreadName", "globalTid":"72057844756653436", "nameId":"14", "priority":"10"}
{"type" :"ThreadName", "globalTid":"72057844756657940", "nameId":"15", "priority":"10"}
{"type":"ThreadName", "globalTid":"72057844756654400", "nameId":"24", "priority":"10"}

Compare with: nsys export --export-json sample.nsys-rep -- -

{"data":[" [Unknown]", " [Unknown kernel module]"," [Max depth]", " [Broken
backtraces]",
"[Called from
Javal]","OnxKernelTrace", "mm ", "task submit","class id","syncpt id",
"syncpt thresh","pid","tid","FTrace","[NSys]"," [NSys Comms]", "..." ,"Process
14944 was launched by the profiler","Profiling has started.","Profiler
attached
to the process.","Profiling has stopped."]}
{"data":[{"nameIdx":"14", "priority":"10","globalTid":"72057844756653436"},
{"nameIdx":"15", "priority":"10","globalTid":"72057844756657940"},
{"nameIdx":"24",
"priority":"10","globalTid":"72057844756654400"}]}

Note, that only last few lines are shown here for clarity and that carriage returns and
indents were added to avoid wrapping documentation.

24.2. Statistical Analysis

www.nvidia.com
User Guide v2023.3.1 | 281

Post-Collection Analysis

Statistical Reports Shipped With Nsight Systems

The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested statistical reports. These scripts will be updated to
adapt to any changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

Note: The ability to display mangled names is a recent addition to the report file

format, and requires that the profile data be captured with a recent version of Nsys. Re-
exporting an existing report file is not sufficient. If the raw, mangled kernel name data is
not available, the default demangled names will be used.

Note: All time values given in nanoseconds by default. If you wish to output the results
using a different time unit, use the --timeunit option when running the recipe.

cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (APIl/Kernels/
MemOps)

Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output:

Time : Percentage of Total Time

Total Time : Total time used by all executions of this kernel
Instances: Number of executions of this object

Avg : Average execution time of this kernel

Med : Median execution time of this kernel

Min : Smallest execution time of this kernel

Max : Largest execution time of this kernel

StdDev : Standard deviation of execution time of this kernel
Category : Category of the operation

Operation : Name of the kernel

vV V. vV vV v v vV v v Y

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time column is calculated using a summation
of the Total Time column, and represents that API call's, kernel's, or memory operation's
percent of the execution time of the APIs, kernels and memory operations listed, and not
a percentage of the application wall or CPU execution time.

This report combines data from the cuda_api_sum, cuda_gpu_kern_sum, and
cuda_gpu_mem_size_sumreports. It is very similar to profile section of nvprof --
dependency-analysis.

www.nvidia.com
User Guide v2023.3.1 | 282

Post-Collection Analysis

cuda_api_sum -- CUDA API Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all executions of this function
Num Calls : Number of calls to this function

Avg : Average execution time of this function

Med : Median execution time of this function

Min : Smallest execution time of this function

Max : Largest execution time of this function

StdDev : Standard deviation of the time of this function
Name : Name of the function

vV VvV v v vV v v Y

This report provides a summary of CUDA API functions and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cuda_api_trace -- CUDA API Trace

Arguments - None
Output: All time values given in nanoseconds

Start : Timestamp when API call was made

Duration : Length of API calls

Name : API function name

Result : return value of API call

CorrID : Correlation used to map to other CUDA calls
Pid : Process ID that made the call

Tid : Thread ID that made the call

T-Pri : Run priority of call thread

Thread Name : Name of thread that called API function

vV V. v v vV vV v v Y

This report provides a trace record of CUDA API function calls and their execution
times.

cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/
Block Summary

Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

www.nvidia.com
User Guide v2023.3.1 | 283

Post-Collection Analysis

Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all executions of this kernel
Instances : Number of calls to this kernel

Avg : Average execution time of this kernel

Med : Median execution time of this kernel

Min : Smallest execution time of this kernel

Max : Largest execution time of this kernel

StdDev : Standard deviation of the time of this kernel
GridXYZ : Grid dimensions for kernel launch call
BlockXYZ : Block dimensions for kernel launch call
Name : Name of the kernel

vV V. v v v vV v v v v v

This report provides a summary of CUDA kernels and their execution times. Kernels
are sorted by grid dimensions, block dimensions, and kernel name. Note that the Time
column is calculated using a\ summation of the Total Time column, and represents that
kernel's percent of the execution time of the kernels listed, and not a percentage of the
application wall or CPU execution time.

cuda_gpu_kern_sum[:base|:mangled] -- CUDA GPU Kernel Summary
Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all executions of this kernel
Instances : Number of calls to this kernel

Avg : Average execution time of this kernel

Min : Smallest execution time of this kernel

Max : Largest execution time of this kernel

StdDev : Standard deviation of the time of this kernel
Name : Name of the kernel

vV V. vV v v v v v

This report provides a summary of CUDA kernels and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
Arguments - None

Output: All memory values given in KiB

www.nvidia.com
User Guide v2023.3.1 | 284

Post-Collection Analysis

Total : Total number of KiB utilized by this operation
Operations : Number of executions of this operation

Avg : Average memory size of this operation

Min : Smallest memory size of this operation

Max : Largest memory size of this operation

StdDev : Standard deviation of execution time of this operation
Name : Name of the operation

vV Vv v v v Vv

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
Arguments - None
Output: All memory values given in KiB

Time : Percentage of Total Time

Total Time : Total time used by all executions of this operation
Operations: Number of operations of this type

Avg : Average execution time of this operation

Min : Smallest execution time of this operation

Max : Largest execution time of this operation

StdDev : Standard deviation of execution time of this operation
Operation : Name of the memory operation

vV V. v v v v v v

This report provides a summary of GPU memory operations and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that operation's percent of the execution time of the operations listed,
and not a percentage of the application wall or CPU execution time.

cuda_gpu_sum|[:base|:mangled] -- CUDA GPU Summary (Kernels/
MemOps)

Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all executions of this kernel
Instances : Number of executions of this object

Avg : Average execution time of this kernel

Min : Smallest execution time of this kernel

Max : Largest execution time of this kernel

StdDev : Standard deviation of execution time of this kernel

vV V.V v v v VY

www.nvidia.com
User Guide v2023.3.1 | 285

Post-Collection Analysis

» Category : Category of the operation
» Name : Name of the kernel

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the cuda_gpu_kern_sum and
cuda_gpu mem_ time sum reports. This report is very similar to output of the command
nvprof --print-gpu-summary.

cuda_gpu_trace[:base|:mangled] -- CUDA GPU Trace
Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output:

Start : Start time of trace event in seconds
Duration : Length of event in nanoseconds
Corrld : Correlation ID

GrdX, GrdY, GrdZ : Grid values

BIlkX, BIKY, BIkZ : Block values

Reg/Trd : Registers per thread

StcSMem : Size of Static Shared Memory
DymSMem : Size of Dynamic Shared Memory
Bytes : Size of memory operation

Thru : Throughput in MB per Second
SrcMemKd : Memcpy source memory kind or memset memory kind
DstMemKd : Memcpy destination memory kind
Device : GPU device name and ID

Ctx : Context ID

Strm : Stream ID

Name : Trace event name

vV V. Y v VvV vV vV v vV vV V.. v v v v Y

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

cuda_kern_exec_sum[:base|:mangled] -- CUDA Kernel Launch &
Exec Time Summary

Arguments

www.nvidia.com
User Guide v2023.3.1 | 286

Post-Collection Analysis

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

PID : Process ID that made kernel launch call

TID : Tread ID that made kernel launch call

Devld : CUDA Device ID that executed kernel (which GPU)

Count : Number of kernel records

QCount : Number of kernel records with positive queue time

Average, Median, Minimum, Maximum, and Standard Deviation for:

TAvg, TMed, TMin, TMax, TStdDev : Total time

AAvg, AMed, AMin, AMax, AStdDev : API time
QAvg, QMed, QMin, QMax, QStdDev : Queue time
KAvg, KMed, KMin, KMax, KStdDev : Kernel time

» API Name : Name of CUDA API call used to launch kernel
» Kernel Name : Name of CUDA Kernel

vV vV v v v VY

>
>
>
>

This report provides a summary of the launch and execution times of CUDA kernels.
The launch and execution is broken down into three phases: API time, the execution
time of the CUDA API call on the CPU used to launch the kernel; Queue time, the time
between the launch call and the kernel execution; and Kernel time, the kernel execution
time on the GPU. The Total Time is not a just sum of the other times, as the phases
sometimes overlap. Rather, the total time runs from the start of the API call to end of the
API call or the end of the kernel execution, whichever is later.

The reported queue time is measured from the end of the API call to the start of the
kernel execution. The actual queue time is slightly longer, as the kernel is enqueued
somewhere in the middle of the API call, and not in the final nanosecond of function
execution. Due to this delay; it is possible for kernel execution to start before the CUDA
launch call returns. In these cases, no queue time will be reported. Only kernel launches
with positive queue times are included in the queue average, minimum, maximum, and
standard deviation calculations. The QCount column indicates how many launches had
positive queue times (and how many launches were involved in calculating the queue
time statistics). Subtracting QCount from Count will indicate how many kernels had no
queue time.

Be aware that having a queue time is not inherently bad. Queue times indicate that the
GPU was busy running other tasks when the new kernel was scheduled for launch.

If every kernel launch is immediate, without any queue time, that may indicate an
idle GPU with poor utilization. In terms of performance optimization, it should not
necessarily be a goal to eliminate queue time.

cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch &
Exec Time Trace

Arguments

www.nvidia.com
User Guide v2023.3.1 | 287

Post-Collection Analysis

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

API Start : Start timestamp of CUDA API launch call

API Dur : Duration of CUDA API launch call

Queue Start : Start timestamp of queue wait time, if it exists
Queue Dur : Duration of queue wait time, if it exists

Kernel Start : Start timestamp of CUDA kernel

Kernel Dur : Duration of CUDA kernel

Total Dur : Duration from API start to kernel end

PID : Process ID that made kernel launch call

TID : Thread ID that made kernel launch call

Devld : CUDA Device ID that executed kernel (which GPU)
API Function : Name of CUDA API call used to launch kernel
GridXYZ : Grid dimensions for kernel launch call
BlockXYZ : Block dimensions for kernel launch call

Kernel Name : Name of CUDA Kernel

vV V. Y v v vV vV v vV vV vV v v Y

This report provides a trace of the launch and execution times of CUDA kernels. The
launch and execution is broken down into three phases: API time, the execution time of
the CUDA API call on the CPU used to launch the kernel; Queue time, the time between
the launch call and the kernel execution; and Kernel time, the kernel execution time on
the GPU. The Total Time is not a just sum of the other times, as the phases sometimes
overlap. Rather, the total time runs from the start of the API call to end of the API call or
the end of the kernel execution, whichever is later.

The reported queue time is measured from the end of the API call to the start of the
kernel execution. The actual queue time is slightly longer, as the kernel is enqueued
somewhere in the middle of the API call, and not in the final nanosecond of function
execution. Due to this delay, it is possible for kernel execution to start before the CUDA
launch call returns. In these cases, no queue time will be reported.

Be aware that having a queue time is not inherently bad. Queue times indicate that the
GPU was busy running other tasks when the new kernel was scheduled for launch.

If every kernel launch is immediate, without any queue time, that may indicate an
idle GPU with poor utilization. In terms of performance optimization, it should not
necessarily be a goal to eliminate queue time.

dx11_pix_sum -- DX11 PIX Range Summary
Arguments - None

Output: All time values default to nanoseconds

» Time : Percentage of Total Time
» Total Time : Total time used by all instances of this range

www.nvidia.com
User Guide v2023.3.1 | 288

Post-Collection Analysis

Instances : Number of instances of this range

Avg : Average execution time of this range

Med : Median execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV Vv v v v Vv

This report provides a summary of D3D11 PIX CPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that range's percent of the execution time of the ranges listed,
and not a percentage of the application wall or CPU execution time.

dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges
Summary

Arguments - None
Output: All time values default to nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Med : Median execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV V. vV v v vV v v Y

This report provides a summary of DX12 PIX GPU command list debug markers, and
their execution times. Note that the Time column is calculated using a summation of
the Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

dx12_pix_sum -- DX12 PIX Range Summary
Arguments - None
Output: All time values default to nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Med : Median execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range

vV VvV v v v v Y

www.nvidia.com
User Guide v2023.3.1 | 289

Post-Collection Analysis

» Range : Name of the range

This report provides a summary of D3D12 PIX CPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that range's percent of the execution time of the ranges listed,
and not a percentage of the application wall or CPU execution time.

nvtx_gpu_proj_trace -- NVTX GPU Projection Trace
Arguments - None
Output: All time values default to nanoseconds

Name : Name of the NVTX range

Projected Start : Projected range start timestamp
Projected Duration : Projected range duration

Orig Start : Original NVTX range start timestamp
Orig Duration : Original NVTX range duration
Style : Range style; Start/End or Push/Pop

PID : Process ID

TID : Thread ID

NumGPUOps : Number of enclosed GPU operations
Lvl : Stack level, starts at 0

NumChild : Number of children ranges

Rangeld : Arbitrary ID for range

Parentld : Range ID of the enclosing range
RangeStack : Range IDs that make up the push/pop stack

vV V. v v v vV vV v v vV vV v v Y

This report provides a trace of NVTX time ranges projected from the CPU onto the GPU.
Each NVTX range contains one or more GPU operations. A GPU peration is considered
to be contained by an NVTX range if the CUDA API call used to launch the operation

is within the NVTX range. Only ranges that start and end on the same thread are taken
into account.

The projected range will have the start timestamp of the first enclosed GPU operation
and the end timestamp of the last enclosed GPU operation, as well as the stack state and
relationship to other NVTX ranges.

nvtx_gpu_proj_sum -- NVTX GPU Projection Summary
Arguments - None
Output: All time values default to nanoseconds

» Range : Name of the NVTX range
» Total Proj Time : Total projected time used by all instances of this range name

» Total Range Time : Total original NVTX range time used by all instances of this
range name

» Style : Range style; Start/End or Push/Pop
» Range Instances : Number of instances of this range

www.nvidia.com
User Guide v2023.3.1 | 290

Post-Collection Analysis

Proj Avg : Average projected time for this range

Proj Med : Median projected time for this range

Proj Min : Minimum projected time for this range

Proj Max : Maximum projected time for this range

Proj StdDev : Standard deviation of projected times for this range
Total GPU Ops : Total number of GPU ops

Avg GPU Ops : Average number of GPU ops

Avg Range Lvl : Average range stack depth

Avg Num Child : Average number of children ranges

vV V. v v v vV v vY

This report provides a summary of NVTX time ranges projected from the CPU to the
GPU. Each NVTX range contains one or more GPU operations. A GPU operation is
considered to be contained by the NVTX range if the CUDA API call used to launch the
operation is within the NVTX range. Only ranges that start and end on the same thread
are taken into account.

The projected range will have the start timestamp of the start of the first enclosed GPU
operation and the end timestamp of the end of the last enclosed GPU operation. This
report then summarizes all the range instances by name and style. Note that in cases
when one NVTX range might enclose another, the time of the child(ren) range(s) is not
subtracted from the parent range. This is because the projected times may not strictly
overlap like the original NVTX range times do. As such, the total projected time of all
ranges might exceed the total sampling duration.

nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary
Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

» mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

NVTX Range : Name of the range

Style : Range style; Start/End or Push/Pop

PID : Process ID for this set of ranges and kernels

TID : Thread ID for this set of ranges and kernels

NVTX Inst : Number of NVTX range instances

Kern Inst : Number of CUDA kernel instances

Total Time : Total time used by all kernel instances of this range
Avg : Average execution time of the kernel

Med : Median execution time of the kernel

Min : Smallest execution time of the kernel

Max : Largest execution time of the kernel

StdDev : Standard deviation of the execution time of the kernel
Kernel Name : Name of the kernel

vV V. v v v VvV vV v v vV v v Y

www.nvidia.com
User Guide v2023.3.1 | 291

Post-Collection Analysis

This report provides a summary of CUDA kernels, grouped by NVTX ranges. To
compute this summary, each kernel is matched to one or more containing NVTX range
in the same process and thread ID. A kernel is considered to be contained by an NVTX
range if the CUDA API call used to launch the kernel is within the NVTX range. The
actual execution of the kernel may last longer than the NVTX range. A specific kernel
instance may be associated with more than one NVTX range if the ranges overlap.

For example, if a kernel is launched inside a stack of push/pop ranges, the kernel is
considered to be contained by all of the ranges on the stack, not just the deepest range.
This becomes very confusing if NVTX ranges appear inside other NVTX ranges of the
same name.

Once each kernel is associated to one or more NVTX range(s), the list of ranges and
kernels grouped by range name, kernel name, and PID/TID. A summary of the kernel
instances and their execution times is then computed. The NVTX Inst column indicates
how many NVTX range instances contained this kernel, while the Kern Inst column
indicates the number of kernel instances in the summary line.

nvtx_pushpop_sum -- NVTX Push/Pop Range Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV V. vV v v v v v

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time column is calculated using a summation of the Total
Time column, and represents that range's percent of the execution time of the ranges
listed, and not a percentage of the application wall or CPU execution time.

nvtx_pushpop_trace -- NVTX Push/Pop Range Trace
Arguments - None
Output: All time values given in nanoseconds

Start : Range start timestamp

End : Range end timestamp

Duration : Range duration

DurChild : Duration of all child ranges

DurNonChild : Duration of this range minus child ranges
Name : Name of the NVTX range

PID : Process ID

vV Vv v v v v

www.nvidia.com
User Guide v2023.3.1 | 292

Post-Collection Analysis

TID : Thread ID

Lvl : Stack level, starts at 0

NumChild : Number of children ranges

Rangeld : Arbitrary ID for range

Parentld : Range ID of the enclosing range

RangeStack : Range IDs that make up the push/pop stack
NameTree : Range name prefixed with level indicator

vV Vv v v v Vv

This report provides a trace of NV Tools Extensions Push/Pop Ranges, their execution
time, stack state, and relationship to other push/pop ranges.

nvtx_startend_sum -- NVTX Start/End Range Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV V. v v v v v v

This report provides a summary of NV Tools Extensions Start/End Ranges and their
execution times. Note that the Time column is calculated using a summation of the Total
Time column, and represents that range's percent of the execution time of the ranges
listed, and not a percentage of the application wall or CPU execution time.

nvtx_sum -- NVTX Range Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Style : Range style; Start/End or Push/Pop

Range : Name of the range

vV VvV v v vV v v Y

This report provides a summary of NV Tools Extensions Start/End and Push/Pop
Ranges, and their execution times. Note that the Time column is calculated using
a summation of the Total Time column, and represents that range's percent of the

www.nvidia.com
User Guide v2023.3.1 | 293

Post-Collection Analysis

execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

nvvideo_api_sum -- NvVideo APl Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Num Calls : Number of calls to this function

Avg : Average execution time of this range

Min : Smallest execution time of this function

Max : Largest execution time of this function

StdDev : Standard deviation of execution time of this function
Event Type : Which API this function belongs to

Name : Name of the function

vV V. vV v v VvV v v Y

This report provides a summary of NvVideo API functions and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that function's percent of the execution time of the functions listed, and
not a percentage of the application wall or CPU execution time.

openacc_sum -- OpenACC Summary
Arguments - None
Output: All time values given in nanoseconds

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Count : Number of event type

Avg : Average execution time of event type

Min : Smallest execution time of event type

Max : Largest execution time of event type

StdDev : Standard deviation of execution time of event type
Name : Name of the event

vV V. vV v v v v v

This report provides a summary of OpenACC events and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range
Summary

Arguments - None

Output: All time values given in nanoseconds

www.nvidia.com
User Guide v2023.3.1 | 294

Post-Collection Analysis

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Med : Median execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

This report provides a summary of OpenGL KHR_debug GPU PUSH/POP debug
Ranges, and their execution times. Note that the Time column is calculated using

a summation of the Total Time column, and represents that range's percent of the
execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

vV V. v v v vV v vY

opengl_khr_range_sum -- OpenGL KHR_debug Range Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Med : Median execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

This report provides a summary of OpenGL KHR_debug CPU PUSH/POP debug
Ranges, and their execution times. Note that the Time column is calculated using

a summation of the Total Time column, and represents that range's percent of the
execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

vV V. v v vV vV v v Y

openmp_sum -- OpenMP Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all executions of event type
Count : Number of event type

Avg : Average execution time of event type

Min : Smallest execution time of event type

Max : Largest execution time of event type

vV vV v v v Y

www.nvidia.com
User Guide v2023.3.1 | 295

Post-Collection Analysis

» StdDev : Standard deviation of execution time of event type
» Name : Name of the event

This report provides a summary of OpenMP events and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrt_sum -- OS Runtime Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all executions of this function
Num Calls : Number of calls to this function

Avg : Average execution time of this function

Min : Smallest execution time of this function

Max : Largest execution time of this function

StdDev : Standard deviation of execution time of this function
Name : Name of the function

vV V. vV v v v v v

This report provides a summary of operating system functions and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

um_cpu_page_faults_sum -- Unified Memory CPU Page Faults
Summary

Arguments - None
Output:

» CPU Page Faults : Number of CPU page faults that occurred
» CPU Instruction Address : Address of the CPU instruction that caused the CPU
page faults

This report provides a summary of CPU page faults for unified memory.

um_sum[:rows=<limit>] -- Unified Memory Analysis Summary
Arguments

» rows=<limit> - Maximum number of rows returned by the query. Default is 10.
Output:

» Virtual Address : Virtual base address of the page(s) being transferred
» HtoD Migration Size : Bytes transferred from Host to Device
» DtoH Migration Size : Bytes transferred from Device to Host

www.nvidia.com
User Guide v2023.3.1 | 296

Post-Collection Analysis

» CPU Page Faults : Number of CPU page faults that occurred for the virtual base
address

» GPU Page Faults : Number of GPU page faults that occurred for the virtual base
address

» Migration Throughput : Bytes transferred per second

This report provides a summary of data migrations for unified memory.

um_total_sum -- Unified Memory Totals Summary
Arguments - None
Output:

Total HtoD Migration Size : Total bytes transferred from Host to Device

Total DtoH Migration Size : Bytes transferred from Device to Host

Total CPU Page Faults : Total number of CPU page faults that occurred

Total GPU Page Faults : Total number of GPU page faults that occurred
Minimum Virtual Address : Minimum value of the virtual address range for the
pages transferred

» Maximum Virtual Address : Maximum value of the virtual address range for the
pages transferred

vV vV v v VY

This report provides a summary of all the page faults for unified memory.

vulkan_api_sum -- Vulkan APl Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all executions of this function
Num Calls : Number of calls to this function

Avg : Average execution time of this function

Med : Median execution time of this function

Min : Smallest execution time of this function

Max : Largest execution time of this function

StdDev : Standard deviation of execution time of this function
Name : Name of the function

vV V. vV v v vV v v Y

This report provides a summary of Vulkan API functions and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that function's percent of the execution time of the functions listed, and
not a percentage of the application wall or CPU execution time.

vulkan_api_trace -- Vulkan API Trace
Arguments - None

Output:

www.nvidia.com
User Guide v2023.3.1 | 297

Post-Collection Analysis

Start : Timestamp when API call was made

Duration : Length of API calls

Name : API function name

Event Class : Vulkan trace event type

Context : Trace context ID

CorrlD : Correlation used to map to other Vulkan calls
Pid : Process ID that made the call

Tid : Thread ID that made the call

T-Pri : Run priority of call thread

Thread Name : Name of thread that called API function

vV V. vV vV v v vV v v Y

This report provides a trace record of Vulkan API function calls and their execution
times.

vulkan_gpu_marker_sum -- Vulkan GPU Range Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Med : Median execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV V. vV vV v v v v v

This report provides a summary of Vulkan GPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

vulkan_marker_sum -- Vulkan Range Summary
Arguments - None
Output:

Time : Percentage of Total Time

Total Time : Total time used by all instances of this range
Instances : Number of instances of this range

Avg : Average execution time of this range

Min : Smallest execution time of this range

Max : Largest execution time of this range

StdDev : Standard deviation of execution time of this range
Range : Name of the range

vV vV v v v v Vv

v

www.nvidia.com
User Guide v2023.3.1 | 298

Post-Collection Analysis

This report provides a summary of Vulkan debug markers on the CPU, and their
execution times. Note that the Time column is calculated using a summation of the
Total Time column, and represents that function's percent of the execution time of the
functions listed, and not a percentage of the application wall or CPU execution time.

wddm_queue_sum -- WDDM Queue Utilization Summary
Arguments - None
Output:

Instances : Number of events

Avg : Average event duration

Med : Median event duration

Min : Smallest event duration

Max : Largest event duration

StdDev : Standard deviation of event durations
Name : Event name

Q Type : Queue type ID

Q Name : Queue type name

PID : Process ID associated with event
GPU ID : GPU index

Context : WDDM context of queue
Engine : Engine type ID

Node Ord : WDDM node ordinal ID

vV V. v v v VvV vV v v vV vV v Vv Y

This report provides a summary of the WDDM queue utilization. The utilization is
calculated by comparing the amount of time when the queue had one or more active
events to total duration, as defined by the minimum and maximum event time for a
given Process ID (regardless of the queue context).

Report Formatters Shipped With Nsight Systems

The following formats are available in Nsight Systems

Column

Usage:

column|[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit : Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt : Do not reformat numbers.

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

www.nvidia.com
User Guide v2023.3.1 | 299

Post-Collection Analysis

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "..." character, to indicate
the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.

This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum
width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table

Usage:

table[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit: Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt: Do not reformat numbers.
m"noan

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

Ccsv
Usage:

csv [:nohdr]
Arguments
» nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

www.nvidia.com
User Guide v2023.3.1 | 300

Post-Collection Analysis

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV
Usage:

tsv|[:nohdr] [:esc]
Arguments

» nohdr : Do not display the header
> esc:escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON
Usage:

json
Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and

converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc

Usage:

hdoc[:title=<title>] [:css=<URL>]
Arguments:

> title : string for HTML document title
» ¢ss: URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

www.nvidia.com
User Guide v2023.3.1 | 301

Post-Collection Analysis

HTable

Usage:

htable

Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

24.3. Expert Systems Analysis

The Nsight Systems expert system is a feature aimed at automatic detection of
performance optimization opportunities in an application's profile. It uses a set of
predefined rules to determine if the application has known bad patterns.

Using Expert System from the CLI

usage:
nsys [global-options] analyze [options]
[nsys-rep-or-sqglite-file]

If a .nsys-rep file is given as the input file and there is no .sqlite file with the same name
in the same directory, it will be generated.

Note: The Expert System view in the GUI will give you the equivalent command line.

Using Expert System from the GUI

The Expert System View can be found in the same drop-down as the Events View. If
there is no .sqlite file with the same name as the .nsys-rep file in the same directory, it
will be generated.

The Expert System View has the following components:

Drop-down to select the rule to be run

Rule description and advice summary

CLI command that will give the same result

Table containing results of running the rule

Settings button that allows users to specify the rule’s arguments

SUE IR .

www.nvidia.com
User Guide v2023.3.1 | 302

Post-Collection Analysis

Expert System View ~

@ settings
AsyncMemepy with Pageable Memory ~ | Duration ~ Start Src Kind Dst Kind Bytes PID Device ID Context ID Stream ID API Name
The following APIs Use PAGEABLE memory which 3.841 ms 6.60844s Device Pageable 16.00 MiB 48558 1 2 35 cudaMemcpyAsync_v3020
causes asynchronous CUDA memcpy operations 3.303ms 9063235 Device Pageable 16.00 MiB 48558 2 3 50 cudaMemcpyAsync v3020
\fﬂ?is fg‘: gs,fﬁﬁ;ﬁﬂ;y"‘hm”"“'y This 3.202 ms 1152125 Device Pageable 16.00 MiB 48558 3 a 65 cudaMemcpyAsync_v3020
3.250 ms 4.15083s Device Pageable 16.00 MiB 48558 0 1 20 cudaMemcpyAsync_v3020
Suggestion: f applicable. use PINNED memory 2417 ms 16.42695 Device Pageable 16.00 MiB 48558 5 6 95 cudaMemcpyAsync v3020
2.403ms 13.9794s Device Pageable 16.00 MiB 48558 4 5 80 cudaMemcpyAsync_v3020
2.390 ms 2132255 Device Pageable 16.00 MiB 48558 7 [125 cudaMemcpyAsync v3020
2.200 ms 18.8738s Device Pageable 16.00 MiB 48558 6 7 110 | cudaMemcpyAsync_v3020
1883 ms 6.60654s Pageable Device 16.00 MiB 48558 1 2 35 cudaMemcpyAsync_v3020
1823 ms 9.0614s Pageable Device 16.00 MiB 48558 2 3 50 cudaMemcpyAsync_v3020
1822 ms 13.9776s Pageable Device 16.00 MiB 48558 4 5 80 cudaMemcpyAsync_v3020
1.804 ms 1151045 Pageable Device 16.00 MiB 48558 3 4 65 cudaMemcpyAsync v3020
1796 ms 4149025 Pageable Device 16.00 MiB 48558 0 1 20 cudaMemcpyAsync_v3020
1776 ms 16.4251s Pageable Device 16.00 MiB 48558 5 6 95 cudaMemcpyAsync_v3020
1.768 ms 2132075 Pageable Device 16.00 MiB 48558 7 8 125 cudaMemcpyAsync_v3020
1737 ms 18.8725 Pageable Device 16.00 MiB 48558 6 7 110 | cudaMemcpyAsync_v3020

CLI command:
nsys analyze - async-memcpy-pageable fhome/
ItiRule.sqlit

A context menu is available to correlate the table entry with the timeline. The options are
the same as the Events View:

» Zoom to Selected on Timeline (ctrl+double-click)

The highlighting is not supported for rules that do not return an event but rather an
arbitrary time range (e.g. GPU utilization rules).

The CLI and GUI share the same rule scripts and messages. There might be some
formatting differences between the output table in GUI and CLI.

Expert System Rules

Rules are scripts that run on the SQLite DB output from Nsight Systems to find common
improvable usage patterns.

Each rule has an advice summary with explanation of the problem found and
suggestions to address it. Only the top 50 results are displayed by default.

There are currently six rules in the expert system. They are described below. Additional
rules will be made available in a future version of Nsight Systems.

CUDA Synchronous Operation Rules

Asynchronous memcpy with pageable memory

This rule identifies asynchronous memory transfers that end up becoming synchronous
if the memory is pageable. This rule is not applicable for Nsight Systems Embedded
Platforms Edition

Suggestion: If applicable, use pinned memory instead

www.nvidia.com
User Guide v2023.3.1 | 303

Post-Collection Analysis

B Timeline iea = Hix s) warning 151

255

€5 runtime libraries lhvess g e
*ONVTX
Cuba AP sudnbiemtppiand J [E=]

= CUDA (Quadm GVI0C — — = ————— w
= Steam 26
F Kemels
B Mgmorny
b Steeam 25

= Sueam 23 - — —

b Kemels
= Moy = — —
Memsst 5 o o=

HiaD memepy
DioH memepsy

b Speam 15 Begine 25.08865
Stream 19 Ends: 2598864 {+ 1184 ps)

: Do memcpy Memepy B
Stream 2T Source memorny kind: (3
Stream 17 Destination memary kil Pageable)
. Throughput: 675676 Mi
St 21
hehinind ‘_ Coarelation ID: 237265

Synchronous Memcpy

N

This rule identifies synchronous memory transfers that block the host.
Suggestion: Use cudaMemcpy*Async APIs instead.

Synchronous Memset

This rule identifies synchronous memset operations that block the host.
Suggestion: Use cudaMemset*Async APIs instead.

Synchronization APIs

This rule identifies synchronization APIs that block the host until all issued CUDA calls
are complete.

Suggestions: Avoid excessive use of synchronization. Use asynchronous CUDA event
calls, such as cudaStreamWaitEvent and cudaEventSynchronize, to prevent host
synchronization.

GPU Low Utilization Rules

Nsight Systems determines GPU utilization based on API trace data in the collection.
Current rules consider CUDA, Vulkan, DX12, and OpenGL API use of the GPU.

GPU Starvation

This rule identifies time ranges where a GPU is idle for longer than 500ms. The
threshold is adjustable.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

www.nvidia.com
User Guide v2023.3.1 | 304

Post-Collection Analysis

For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device.

GPU gaps that cannot be addressed by the user are excluded. This includes:

» Profiling overhead in the middle of a GPU gap.
» The initial gap in the report that is seen before the first GPU operation.
» The final gap that is seen after the last GPU operation.

GPU Low Utilization

This rule identifies time regions with low utilization.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

>

For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device. This time range is then
divided into equal chunks, and the GPU utilization is calculated for each chunk. The
utilization includes all GPU operations as well as profiling overheads that the user
cannot address.

The utilization refers to the "time" utilization and not the "resource" utilization.

This rule attempts to find time gaps when the GPU is or isn't being used, but does
not take into account how many GPU resources are being used. Therefore, a single
running memcpy is considered the same amount of "utilization" as a huge kernel
that takes over all the cores. If multiple operations run concurrently in the same
chunk, their utilization will be added up and may exceed 100%.

Chunks with an in-use percentage less than the threshold value are displayed.

If consecutive chunks have a low in-use percentage, the individual chunks are
coalesced into a single display record, keeping the weighted average of percentages.
This is why returned chunks may have different durations.

Other Rules
DX12 Memory Operations

This rule identifies memory operations with the following warnings:

>

HEAP_CREATED_WITH_ZEROING: ID3D12Heap object created with zeroing. Add
D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to pDesc->Flags to avoid overhead
of zeroing.

COMMITTED_RESOURCE_CREATED_WITH_ZEROING:

Committed ID3D12Resource object created with zeroing. Add
D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to HeapFlags to avoid overhead of
zeroing.

www.nvidia.com
User Guide v2023.3.1 | 305

Post-Collection Analysis

NONEMPTY_MAP_FROM_UPLOAD_HEAP: Non-empty ID3D12Resource::Map
from upload heap. Upload heaps are not optimized for reading data back to the
CPU.

NONEMPTY_MAP_TO_WRITE_COMBINE_PAGE: Non-empty
ID3D12Resource::Map to write-combine CPU page. Write-combine pages are not
optimized for reading data back from the GPU.
NONEMPTY_UNMAP_TO_READBACK_HEAP: Non-empty
ID3D12Resource::Unmap to readback heap. Readback heaps are not optimized for
uploading data from the CPU.
NONEMPTY_UNMAP_FROM_WRITE_BACK_PAGE: Non-empty
ID3D12Resource::Unmap from write-back CPU page. Write-back pages are not
optimized for uploading data to the GPU.
READ_FROM_UPLOAD_HEAP_SUBRESOURCE:
ID3D12Resource::ReadFromSubresource from upload heap. Upload heaps are not
optimized for reading data back to the CPU.
READ_FROM_SUBRESOURCE_TO_WRITE_COMBINE_PAGE:
ID3D12Resource::ReadFromSubresource to write-combine CPU page. Write-
combine pages are not optimized for reading data back from the GPU.
WRITE_TO_READBACK_HEAP_SUBRESOURCE:
ID3D12Resource::WriteToSubresource to readback heap. Readback heaps are not
optimized for uploading data from the CPU.
WRITE_TO_SUBRESOURCE_FROM_WRITE_BACK_PAGE:
ID3D12Resource::WriteToSubresource from write-back CPU page. Write-back pages
are not optimized for uploading data to the GPU.

24.4. Multi-Report Analysis

PREVIEW FEATURE

Nsight Systems Multi-Report Analysis is new functionality that is being added to the
Nsight Systems tool to better support complex statistical analysis across multiple result
files. Possible use cases for this functionality include:

>

Multi-Node Analysis - When you run Nsight Systems across a cluster, it typically
generates one result file per rank on the cluster. While you can load multiple result
tiles into the GUI for visualization, this analysis system allows you to run statistical
analysis across all of the result files.

Multi-Pass Analysis - Some features in Nsight Systems cannot be run together due to
overhead or hardware considerations. For example, there are frequently more CPU
performance counters available than your CPU has registers. Using this analysis,
you could run multiple runs with different sets of counters and then analyze the
results together.

Multi-Run Analysis - Sometimes you want to compare two runs that were not taken
at the same time together. Perhaps you ran the tool on two different hardware
configurations and want to see what changed. Perhaps you are doing regression
testing or performance improvement analysis and want to check your status.
Comparing those result files statistically can show patterns.

www.nvidia.com
User Guide v2023.3.1 | 306

Post-Collection Analysis

Analysis Steps

Prior

to

using

multi-
report
analysis,
please
make

sure

that

you

have
installed

all

Note: required
dependencies.
See
Installing
Multi-
Report
Analysis
System

in

the
Installation
Guide

for

more
information.

1. Generate the reports - Generate the reports as you always have, in fact, you can use
reports that you have generated previously.

2. Setup - Choose the recipe (See Available Recipes, below), give it any required
parameters, and run.

3. Launch Analysis - Nsight Systems will run the analysis, using your local system or
Dask, as you have selected.

4. Output - the output is an .nsys-analysis file, which can then be opened within the
Nsight Systems GUI.

5. View the data - depending on your recipe, you can have any number of
visualizations, from simple tabular information to Jupyter notebooks which can be
opened inside the GUI.

Available Recipes

All recipes are run using the new "recipe" CLI command switch.
usage:
nsys recipe [args] <recipe-name> [recipe args]

Nsight Systems provides several initial analysis recipes, mostly based around making
our existing statistics and expert systems rules run multi-report.

www.nvidia.com
User Guide v2023.3.1 | 307

Post-Collection Analysis

These recipes can be found at <target-linux-x64>/python/packages/
nsys_recipe. They are written in Python, and you can edit them if you would like.
However, be advised that as this is a preview release, it is likely that the APIs will
change between now and the final release. Additional recipes will be added before the
product release and on an ongoing basis.

Statistics and Expert Systems Recipes

The following stats and expert systems options from Nsight Systems are available as
recipes. For more information about them please use nsys recipe [recipe name]
--help or see Nsight Systems Report Scripts in this documentation

» cuda_api_sum -- CUDA API Summary

» cuda_api_sync -- CUDA Synchronization APIs

cuda_gpu_kern_sum -- CUDA GPU Kernel Summary
cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
cuda_memcpy_async -- CUDA Async Memcpy with Pageable Memory
cuda_memcpy_sync -- CUDA Synchronous Memcpy
cuda_memset_sync -- CUDA Synchronous Memset

dx12_mem_ops -- DX12 Memory Operations

gpu_gaps -- GPU Gaps

gpu_time_util -- GPU Time Utilization

nvtx_gpu_proj_trace -- NVTX GPU Trace

nvtx_sum -- NVTX Range Summary

vV Vv vV vV v v v

v v VY

» osrt_sum -- OS Runtime Summary

Please note that all recipes are in the form of python scripts. You may alter the given
recipes or write your own to meet your needs. Refer to Tutorial: Create a User-Defined
Recipe for an example of how to do this

Heatmap Recipes

» cuda_gpu_time_util_map -- CUDA GPU Kernel Time Utilization Heatmap
» gpu_metric_util_map -- GPU Metric Utilization Heatmap

www.nvidia.com
User Guide v2023.3.1 | 308

Post-Collection Analysis

Both recipes generate a Jupyter notebook with code cells ready to plot the heatmap
chart:

cuda gpu time util map -- CUDA GPU Kernel Time Utilization Heatmap

$ nsys recipe cuda gpu time util map --help

usage: cuda gpu time util map.py [-h] [--output OUTPUT] [--force-overwrite]
[--start time] [--end time]
[--nvtx range[@domain]] [--rows limit]
[--bins BINS] --dir DIR
[

--mode {none,concurrent,dask-futures}]

This recipe calculates the percentage of GPU utilization based on the presence
of CUDA kernels. Note that the utilization refers to the "time" utilization
and not the "resource" utilization. If multiple kernels run concurrently,
their utilization will be added up and may exceed 100%.

options:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
—--output OUTPUT Output directory name
--force-overwrite Overwrite existing directory
--start time Start time used for filtering in nanoseconds
--end time End time used for filtering in nanoseconds

--nvtx range[@domain]
NVTX range and domain used for filtering

—--rows limit Maximum number of rows per input file
--bins BINS Number of bins
--dir DIR Directory of nsys-rep files

gpu metric util map -- GPU Metric Utilization Heatmap

$ nsys recipe gpu metric util map --help

usage: gpu metric util map.py [-h] [--output OUTPUT] [--force-overwrite]
[--start time] [--end time]
[--nvtx range[@domain]] [--rows limit]
[--bins BINS] --dir DIR

[--mode {none,concurrent,dask-futures}]

This recipe calculates the percentage of SM Active, SM Issue, and Tensor
Active metrics.

options:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
--output OUTPUT Output directory name
-—-force-overwrite Overwrite existing directory
--start time Start time used for filtering in nanoseconds
--end time End time used for filtering in nanoseconds

--nvtx range[@domain]
NVTX range and domain used for filtering

--rows limit Maximum number of rows per input file
--bins BINS Number of bins
--dir DIR Directory of nsys-rep files

www.nvidia.com
User Guide v2023.3.1 | 309

Post-Collection Analysis

Pacing Recipes

» cuda_gpu_kern_pace -- CUDA GPU Kernel Pacing
» nvtx_pace -- NVTX Pacing

Both recipes generate a Jupyter notebook with code cells ready to plot various graphs
showing the progress of the target operation/range for each rank:

cuda gpu kern pace -- CUDA GPU Kernel Pacing

$ nsys recipe cuda gpu kern pace --help

usage: cuda gpu kern pace.py [-h] [--output OUTPUT] [--force-overwrite] --name
NAME --dir DIR
[--mode {none,concurrent,dask-futures}]

This recipe investigates the progress and consistency of an iteration based
application.

optional arguments:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
—--output OUTPUT Output directory name
--force-overwrite Overwrite existing directory
—--name NAME Name of the kernel used as delineator between
iterations
--dir DIR Directory of nsys-rep files
nvtx pace -- NVTX Pacing

$ nsys recipe nvtx pace --help
usage: nvtx pace.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu] --name
NAME --dir DIR [--mode {none,concurrent,dask-futures}]

This recipe investigates the progress and consistency of an iteration based
application.

optional arguments:
=h, ==help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
—--output OUTPUT Output directory name
--force-overwrite Overwrite existing directory
==gfjoul GPU projection
—--name NAME Name of the NVTX range used as delineator between
iterations
--dir DIR Directory of nsys-rep files

Additional Statistics Recipes

> mpi_sum -- MPI Summary
» nccl_sum -- NCCL Summary
» nvitx_gpu_proj_sum -- NVTX GPU Projection Summary

www.nvidia.com
User Guide v2023.3.1 | 310

Post-Collection Analysis

All recipes generate a Jupyter notebook with code cells ready to plot various statistical

graphs:

mpi sum -- MPI Summary

$ nsys recipe mpi sum --help

usage: mpi sum.py [-h] [--output OUTPUT] [--force-overwrite] --dir DIR
[--mode {none,concurrent,dask-futures}]

This recipe provides a summary of MPI functions and their execution times.

optional arguments:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
--output OUTPUT Output directory name
-—-force-overwrite Overwrite existing directory
--dir DIR Directory of nsys-rep files
nccl sum -- NCCL Summary

$ nsys recipe nccl sum --help
usage: nccl sum.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu] --dir
DIR [--mode {none,concurrent,dask-futures}]

This recipe provides a summary of NCCL functions and their execution times.

optional arguments:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
--output OUTPUT Output directory name
-—-force-overwrite Overwrite existing directory
--gpu GPU projection
--dir DIR Directory of nsys-rep files
nvtx gpu proj sum -- NVTX GPU Projection Summary

$ nsys recipe nvtx gpu proj sum --help
usage: nvtx gpu proj sum.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu]
--dir DIR [--mode {none,concurrent,dask-futures}]

This recipe provides a summary of NVTX time ranges projected from the CPU onto
the GPU, and their execution times.

optional arguments:
-h, --help show this help message and exit

Context:
--mode {none,concurrent,dask-futures}
Mode to run tasks

Recipe:
—--output OUTPUT Output directory name
--force-overwrite Overwrite existing directory
--gpu GPU projection
--dir DIR Directory of nsys-rep files

www.nvidia.com
User Guide v2023.3.1 | 311

Post-Collection Analysis

Opening in Jupyter Notebook

Running the recipe command creates a new analysis file (.nsys-analysis). Open the
Nsight Systems GUI and select File->Open, and pick your file.

Bw
fle Jiew ook Help

Prapect Exploner * | | Project 13 X
= Project 10 {undoaded)
1 Project 11 Select target for profiling... - | |2

= Project 13 E] open Document(s)

tf_resnet30 0T,
gromacs-2020
gromacs=-2019
linl_Fhqdrep | Organize = Hew folder

;:pm;:gd“ﬁ 3 Documents - C HMame Date modifeed Type iz
eport

i n o jacobi_gpu_retic_util- 20021203 TIENGET-001 + jecobi_gpu_retric_util » : Seal

amgu-ga100-r
Inode_BGPUS

™ 0 PR A bl —— rr—
report] gdrep M ProfieBsckup L] gpubdetnclfilipymb 2732022 1:06 PM FYE Fille 3,E55 KB
rivipeg trace

s P Pictures apynb_checkpaints 12/372022 1216 PM File fodder

™ ~ T T NEWE- ANALYES F 3 RE
3 Recordings || jacobe_gpu_metnc_utilngsys-snabsis 2I3F022 1216 PM 4575 LYSE5 Fale ZKB
~ [l This PC

Open the folder icon and click on the notebook icon to open the Jupyter notebook.

MNVIDIA Msight Systems 2022.6.1

File View Tools Help

Project Explorer Project

Project 10 (unlcaded)

’ Project 11 Selec
Project 12 Last u
Project 13
UVM-Test Select

tf_resnet30_072418.qdrep
gromacs-2020-1536-3000
gromacs-2019.4-1536-3000
lInl_25.qdrep

report3.qdrep

Report 19
amgx-galll-nsys.qdrep

Tnode 8GPUs_3606714_0.qdrep
reportl.qgdrep
nvjpeg_trace_64bit_linux.nsys-rep
examples-cnn-resnet30-MNYTA-8...

Irrrrrrrrrerreefiiinn

jacebi_gpu_metric_util (read-on...
B gpuMetricUtil

e=p>=i| gpuMetricltil

www.nvidia.com
User Guide v2023.3.1 | 312

Post-Collection Analysis

Run the Jupyter notebook:

¢ hitpe/TocalhostBEER notebocks worktermpupytenjacobi_gpu_metric_util-20221203T1629562-001/jacobi_gpu_metric_util %50 gpubetnclitilipynb

& jacoba_gpu_metne_utihgpubetncl®il - Jupyter Notebook X

j jupyter jacobi_gpu_metric_utifgpuMetricUtil (autosaves)

And the output appears on-screen. In this case a heat map of activity running a Jacobi
solver.

B wiip e BN scrlebooi ' ork, I iy o gy _seses ol I SSTT AT 00 Jas obe e, rirks_WSINE gpobbriss LB gy
s g, ks A g bt L0 gt e

Jupyter jacobi gpu_metnc_utifgpublotniclitil jiucewea '

Configuring Dask

The multi-report analysis system does not offer options to configure the Dask
environment. However, you could achieve this by modifying the recipe script directly or
using one of the following from Dask’s configuration system:

» YAML files: Dask by default searches for all YAML files in ~/ .config/dask/ or
/etc/dask/. This search path can be changed using the environment variable
DASK_ROOT_CONFIG or DASK_CONFIG. See Dask documentation for the complete list
of locations and the lookup order. Example:

$ cat example.yaml
'Distributed’:
'scheduler':
'allowed-failures': 5

www.nvidia.com
User Guide v2023.3.1 | 313

Post-Collection Analysis

» Environment variables: Dask searches for all environment variables that start with
DASK _, then transforms keys by converting to lower-case and changing double-
underscores to nested structures. See Dask documentation for the complete list of
variables. Example:

DASK DISTRIBUTED SCHEDULER ALLOWED FAILURES=5
Dask Client

With no configuration set, the dask-futures mode option initializes the Dask Client with
the default arguments, which results in creating a LocalCluster in the background. The
following are the YAML/environment variables that could be set to change the default
behavior:

» distributed.comm.timeouts.connect /
DASK_DISTRIBUTED__ COMM__ TIMEOUTS__ CONNECT

client-name / DASK_CLIENT_NAME
scheduler-address / DASK_SCHEDULER_ADDRESS
distributed.client.heartbeat / DASK_DISTRIBUTED__ CLIENT _HEARTBEAT

distributed.client.scheduler-info-interval /
DASK_DISTRIBUTED__ CLIENT__ SCHEDULER_INFO _INTERVAL

distributed.client.preload / DASK_DISTRIBUTED__CLIENT__PRELOAD

» distributed.client.preload-argv /
DASK_DISTRIBUTED__CLIENT__PRELOAD_ARGV

vV v v VY

v

Recipe’s environment variables

Recipe has its own list of environment variables to make the configuration more
complete and flexible. These environment variables are either missing from Dask’s
configuration system or specific to the recipe system:

» NSYS DASK_SCHEDULER_FILE: Path to a file with scheduler information. It will
be used to initialize the Dask Client.

» NSYS_DIR: Path to the directory of Nsight Systems containing the target and host
directories. The nsys executable and the recipe dependencies will be searched in this
directory instead of the one deduced from the currently running recipe file path.

Tutorial: Create a User-Defined Recipe

The Nsight Systems recipe system is designed to be extensible and we hope that many
users will use it to create their own recipes. This short tutorial will highlight the steps
needed to create a recipe that is a customized version of one of the recipes that is
included in the Nsight Systems recipe package.

Step 1: Create the recipe directory and script

Make a new directory in the <install-dir>/target-linux-x64/python/
packages/nsys_recipe folder based on the name of your new recipe. For this
example, we will call our new recipe new_metrics_util_map. We will copy the existing
gpu_metric_util_map.py script and create a new script called new_metrics_util_map.py

www.nvidia.com
User Guide v2023.3.1 | 314

Post-Collection Analysis

in the new_metrics_util_map directory. We will also copy the heatmap.ipynb file into the
new_metrics_util_map directory. Type these steps in a Linux terminal window:

> cd <install-dir>/target-linux-x64/python/packages/nsys recipe

> mkdir new metrics util map

> cp gpu metric util map/gpu metric util map.py new metrics util map/

new metrics util map.py

> cp gpu metric util map/heatmap.ipynb new metrics util map/

Then open new_metrics_util_map.py in your editor and search and replace GpuMetric
with NewMetrics. There will be three lines that need this change:

class GpuMetricUtilReport (nsysstats.Report) :
class GpuMetricUtilMap (recipe.Recipe) :
return helpers.stats cls to df (sqglite file, parsed args, GpuMetricUtilReport)

Go ahead and do this search and replace to rename the classes now. We will discuss the
detailed functionality of the new recipe code in the subsequent steps.

Step 2: Modify the mapper function

Many recipes are structured as a map-reduce algorithm. The mapper function is called
for every .nsys-rep file in the report directory. The mapper function performs a series of
calculations on the events in each Nsight Systems report and produces an intermediate
data set. The intermediate results are then combined by the reduce function to produce
the final results.The mapper function can be called in parallel, either on multiple cores of
a single node (using the concurrent python module), or multiple ranks of a multi-node
recipe analysis (using the Dask distributed module).

Most of the Recipe operations are defined in the Recipe class in the lib/recipe.py file.
When we create a new recipe, we need to create a class that derives from recipe.Recipe.
For our example, that class will be called NewMetricsUtilMap (which we had renamed
in step 1).

The mapper function is called mapper_func() and is shown here:

@staticmethod
def mapper func(nsysrep, parsed args):
sglite file = helpers.nsysrep to sglite(nsysrep)
if sqglite file is None:
return None

return helpers.stats cls to df(
sqlite file, parsed args, NewMetricsUtilReport)
The call to nsysrep_to_sqlite() converts the .nsys-rep file into an SQLite database, if the
SQLite file does not already exist.

The stats_cls_to_df() helper method takes the report class object and reads its SQL query
into a Pandas DataFrame. All Stats report class are derived from the nsysstats.Report
base class, that could be found in the <install-dir>/target-linux-x64/python/
lib/nsysstats.py file. This allows recipes to leverage the library of report analysis
classes that were developed for the Nsight Systems Stats and Expert Systems analysis
commands. In our example, the stats report class is called NewMetricsUtilReport and is
defined at the top of our new_metrics_util_map.py file. (It is one of the other classes that
we renamed in Step 1). We will modify the query in NewMetricsUtilReport in the next
step.

www.nvidia.com
User Guide v2023.3.1 | 315

Post-Collection Analysis

Step 3: Modify the SQL Query

The mapper function for our recipe created a helper class called NewMetricsUtilReport
to do the heavy lifting of extracting the GPU metrics events from the Nsight Systems
report data (in the SQLite file). GPU Metric data is stored using a database schema table
called GenericEvents. For extra flexibility, GenericEvents represents their data as a JSON
object, which is stored as a string in the GenericEvent table. The NewMetricsUtilReport
class contains an SQL query that extracts fields from the JSON object and accumulates
them over the histogram bins of the heat map.

The original script retrieved three GPU metrics: SM Active, SM Issue, and Tensor Active.
In our new version of the script, we will extract a fourth metric, Unallocated Warps in
Active SMs.

1. Find this line (approximately line 49):

CAST (JSON_EXTRACT (data, 'S$.SM Active') as INT) AS smActive,

Copy and paste it so it is in the file two times. Then change the first line so it extracts
the Unallocated Warps in Active SMs field from the JSON event data:

CAST (JSON_EXTRACT (data, 'S.Unallocated Warps in Active SMs') as
INT) AS unallocatedWarp,

2. Find this line (approximately line 86):

sum (CAST (min (metrics.end, bin.cend) - max (metrics.start,
bin.cstart)

AS FLOAT) * smActive) / (bin.cend - bin.cstart) AS
smActiveAverage,

Copy and paste it so it is in the file two times. Then change the first line to reference

UnallocatedWarp. This line averages the metric value across the histogram bin of the
heatmap. The new line will be:

sum (CAST (min (metrics.end, bin.cend) - max(metrics.start,
bin.cstart)

AS FLOAT) * unallocatedWarp) / (bin.cend - bin.cstart) AS
unallocatedWarpAverage,

3. Find this line (approximately line 103):
round (smActiveAverage, 1) AS "SmActive",
Copy and paste it so that it is in the file two times. Then change the first line to
reference UnallocatedWarp. The new line will be:
round (unallocatedWarpAverage, 1) AS "UnallocatedWarp",

This completes the changes to the data extraction query in the helper class for the
mapper function.

Please note that all copy and paste operations in this step requested that the new
unallocatedWarp field be added on the first line (of the two duplicate lines). This
means it will be the first of the four metrics returned by the query. This is important
when we update the reduce function in the next step.

Step 4: Modify the reduce function

www.nvidia.com
User Guide v2023.3.1 | 316

Post-Collection Analysis

Our new mapper function will extract four GPU metrics and return them as a Pandas
DataFrame. The reduce function receives a list of DataFrames, one for each .nsys-rep
in the analysis, and combines them into a single dataframe using the Pandas concat
function. We need to make one change to the reduce function to label our new data
column. Because we added UnallocatedWarp as the first metric of the four that were
returned by the mapper query, we need to add it as the first of the four metric columns
in the DataFrame, right after Duration and before SmActive. The new reducer function
should look like this:

def reducer func(self, dfs):
dfs = helpers.filter none (dfs)
df = pd.concat (dfs)
df = df[['Duration', 'UnallocatedWarp', 'SmActive', 'SmIssue',
'TensorActive', 'GPU', 'Report']]
df.to parquet (self.add output file('analysis.parquet'))

Step 5: Add a plot to the Jupyter notebook

Our new recipe class will create a Parquet output file with all the data produced by the
reducer function, using the to_parquet() function. It will also create a Jupyter notebook
file using the create_notebook() function.

In this step, we will change the create_notebook() function to produce a plot for our
fourth metric. To do this, we need to change these two lines (located in the second cell of
new_metrics_util_map/heatmap.ipynb):

metrics = ('SmActive', 'SmIssue', 'TensorActive')
fig = make subplots (3, 1, subplot titles=metrics)
To this:
metrics = (‘UnallocatedWarp’, 'SmActive', 'SmIssue', 'TensorActive')

fig = make subplots (4, 1, subplot titles=metrics)
That completes all the modifications for our NewRecipeUtilMap class.
Step 6: Add the new recipe to the nsys_recipe module

The final step is to add this new recipe to the nsys_recipe module. This will allow Nsight
Systems to find the recipe when you run the nsys recipe new_recipe util map
command.

Open the __init__.py file for the nsys_recipe module, which is located in the nsys_recipe
directory (the parent to our NewMetricsUtilMap directory.

Copy and paste the last line of the __init__.py file so there are two copies of the line:

from nsys recipe.gpu metric util map.gpu metric util map import
GpuMetricUtilMap

Edit one of the copies so that it refers to our new recipe class. The new line should look
like this:

from nsys recipe.new metrics util map.new metrics util map import
NewMetricsUtilMap

That's it! We are done with the code for our new recipe.

www.nvidia.com
User Guide v2023.3.1 | 317

Post-Collection Analysis

Step 7: Run the new recipe

We can run our new recipe using the nsys recipe command, like this:

> nsys recipe new metrics util map --dir <directory of reports>

When successful, the recipe should produce a new recipe result directory called
new_metrics_util_map-1.

If we open the Jupyter notebook in that recipe and execute the code, we should see our
new heatmap along with the three plots produced by the original version of the recipe.

Here is an example:
www.nvidia.com

User Guide v2023.3.1 | 318

GPU Utihization (bins=30)

Chapter 25.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.nsys-rep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

» Manual — timestamps are set using absolute values.
» Relative — timestamps are set using relative values with regards to report file
which is being merged with nvtxt file.

» ClockMonotonicRaw — timestamps values in nvtxt file are considered to be
gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime (CLOCK_MONOTONIC RAW, ...) call

» CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:
Print help message:

-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:

-—-cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode name
mode args] [--target <Hw:Vm>] [--update report time]

Merge nvtxt file to existing report file:

--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args] [--target <Hw:Vm>] [--update report time]

Modes description:
» lerp - Insert with linear interpolation
--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]

» lin - insert with linear equation

--mode lin --ns _a arg --freq arg [--nvtxt a arg]

Modes' parameters:

www.nvidia.com
User Guide v2023.3.1 | 319

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

ns_a - a nanoseconds value

ns_b - a nanoseconds value (greater than ns_a)

nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds

freq - the nvtxt file's timer frequency

--target <Hw:Vm> - specify target id, e.g. --target 0:1

--update_report_time - prolong report's profiling session time while merging if
needed. Without this option all events outside the profiling session time window
will be skipped during merging.

vV Vv v v v Y

Commands

Info

To find out report's start and end time use info command.
Usage:

ImportNvtxt --cmd info -i [--input] arg

Example:

ImportNvtxt info Report.nsys-rep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create
You can create a report file using existing NVTXT with create command.

Usage:

ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args]

Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — ananoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — annvtxt file's time unit value corresponding to ns_b nanoseconds.

vV vV v Vv

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]

with:

www.nvidia.com
User Guide v2023.3.1 | 320

Import NVTXT

» ns_a — ananoseconds value.
» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:

ImportNvtxt --cmd create -n Sample.nvtxt -o Report.nsys-rep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:

ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m

[--mode] mode name mode args]
Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns _a arg --ns_b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — a nanoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

vV v v VY

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]
with:

> ns_a — ananoseconds value.

» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example

ImportNvtxt --cmd merge -i Report.nsys-rep -n Sample.nvtxt -o NewReport.nsys-rep

www.nvidia.com
User Guide v2023.3.1 | 321

Chapter 26.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

n File Edit View Project Build Debug Test Analyze Tools | Extensions | Window Help Search (Ctrl+Q) el MyApp

. e cr}
fe-olg e Ml -0 -] oy - e L o e vl e
Msight Nsight Systems 2020.1.1 4

Windows »
Start Graphics Debugging

Start CUDA Debugging (Mext-Gen)

Start CUDA Debugging (Legacy)

Start Performance Analysis...

B E&38

Enable CUDA Memory Checker
Clear Baselines

Capture for Live Analysis
Capture Mext Frame
Resume from Capture
Export as C++ Capture
Profile Current Event
Profile Frame

Dynamic Shader Editing 1>

Options...
Help »

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

» Target application path
» Command line parameters
» Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

www.nvidia.com
User Guide v2023.3.1 | 322

Visual Studio Integration

For more information about using Nsight Systems from within Visual Studio, please
visit

» NVIDIA Nsight Integration Overview

» NVIDIA Nsight Integration User Guide

www.nvidia.com
User Guide v2023.3.1 | 323

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

Chapter 27.
TROUBLESHOOTING

27.1. General Troubleshooting

Profiling

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

» Close the host application.
» Restart the target device.
» Start the host application and connect to the target device.

Nsight Systems uses a settings file (NWWIDIA Nsight Systems.ini)on the hostto
store information about loaded projects, report files, window layout configuration,

etc. Location of the settings file is described in the Help # About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

Environment Variables

By default, Nsight Systems writes temporary files to /tmp directory. If you are using

a system that does not allow writing to /tmp or where the /tmp directory has limited
storage you can use the TMPDIR environment variable to set a different location. An
example:

TMPDIR=/testdata ./bin/nsys profile -t cuda matrixMul

Environment variable control support for Windows target trace is not available, but
there is a quick workaround:

» Create a batch file that sets the env vars and launches your application.

» Set Nsight Systems to launch the batch file as its target, i.e. set the project settings
target path to the path of batch file.

» Start the trace. Nsight Systems will launch the batch file in a new cmd instance and
trace any child process it launches. In fact, it will trace the whole process tree whose
root is the cmd running your batch file.

www.nvidia.com
User Guide v2023.3.1 | 324

Troubleshooting

WebGL Testing

Nsight Systems cannot profile using the default Chrome launch command. To profile
WebGL please follow the following command structure:

“C:\Program Files (x86)\Google\Chrome\Application\chrome.exe”
--inprocess—-gpu --no-sandbox --disable-gpu-watchdog --use-angle=gl
https://webglsamples.org/aquarium/aquarium.html

Common Issues with QNX Targets

» Make sure that tracelogger utility is available and can be run on the target.

» Make sure that /tmp directory is accessible and supports sub-directories.

» When switching between Nsight Systems versions, processes related to the previous
version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

27.2. CLI Troubleshooting

If you have collected a report file using the CLI and the report will not open in the GUI,
check to see that your GUI version is the same or greater than the CLI version you used.
If it is not, download a new version of the Nsight Systems GUI and you will be able to
load and visualize your report.

This situation occurs most frequently when you update Nsight Systems using a CLI only
package, such as the package available from the NVIDIA HPC SDK.

27.3. Launch Processes in Stopped State

In many cases, it is important to profile an application from the very beginning of its

execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec () system call on
Linux.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep () somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

www.nvidia.com
User Guide v2023.3.1 | 325

Troubleshooting

LD_PRELOAD

The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

» For ARMv7 binaries, preload
/opt/nvidia/nsight systems/libLauncher32.so
» Otherwise if running from host, preload
/opt/nvidia/nsight systems/libLauncheré64.so
» Otherwise if running from CLI, preload

[installation_directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:

$ LD PRELOAD=/opt/nvidia/nsight systems/libLauncher64.so ./my-aarch64-binary --
arguments

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+z in the terminal. The process is now a background job, and you can use standard
commands like jobs, £g and bg to control them. Use jobs -1 to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

Launcher

The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:

$ /opt/nvidia/nsight systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:

$ pkill -USR1 launcher

Note

hat
bkill
ill

end

he

ignal

o

ANy
brocess
ith

he
matching
hame.

f
hat

Note:

www.nvidia.com
User Guide v2023.3.1 | 326

Troubleshooting

S

hot
Hesirable,
Ise

kill

o

end

t
o
h
pecific
brocess.
[he
tandard
butput
hnd

Prror
treams
hre
edirected
o

fop /
stdout <PID>. t:
hnd

Fmp/
stderr <PID>. t:

The launcher mechanism is more complex and less automated than the LD_PRELOAD
option, but gives more control to the user.

27.4. GUI Troubleshooting

If opening the Nsight Systems Linux GUI fails with one of the following errors, you may
be missing some required libraries:

This application failed to start because it could not find or load the Qt
platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
the application may fix this problem.

or

error while loading shared libraries: [library name]: cannot open shared object
file: No such file or directory

Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root
privileges

» Launch the following command, which will install all the required libraries in
system directories:

[installation path]/host-linux-[arch]/Scripts/DependenciesInstaller/install-
dependencies.sh

» Launch the Linux GUI as usual.

www.nvidia.com
User Guide v2023.3.1 | 327

Troubleshooting

Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 without
root privileges

» Choose the directory where dependencies will be installed (dependencies_path).
This directory should be writeable for the current user.

» Launch the following command (if it has already been run, move to the next step),
which will install all the required libraries in [dependencies_path]:

[installation path]/host-linux-[arch]/Scripts/DependenciesInstaller/install-
dependencies-without-root.sh [dependencies path]

» Further, use the following command to launch the Linux GUI:

source [installation path]/host-linux-[arch]/Scripts/DependenciesInstaller/
setup-dependencies-environment.sh [dependencies path] &&
[installation path]/host-linux-x64/nsys-ui

Other platforms, or if the previous steps did not help

Launch Nsight Systems using the following command line to determine which libraries
are missing and install them.

$ QT DEBUG PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is

empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

Project 1 report10.qdrep [

q Jmpjnvidia/system_profiler fstreams/pid_22138_stderr.log I

—_—
e T Lo cuent TS e PO fziled. Error—Operation not supported
E:TSPInjection: Branch stack sampling is not supported on this device.

27.5. Symbol Resolution

If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. This can be done by right-clicking
the report file in the Project Explorer window and selecting "Resolve Symbols...".

Alternatively, you can find the utility as a separate executable in the
[installation_path]\Host directory. This utility works with ELF format files, with
Windows PDB directories and symbol servers, or with files where each line is in the
format <start><length><name>.

Short Long Argument Description
-h --help Help message
providing

information about
available options.

www.nvidia.com
User Guide v2023.3.1 | 328

Troubleshooting

Long

Argument

Description

--process-list

Print global process
IDs list

--sym-file

filename

Path to symbol file

--base-addr

address

If set then <start>
in symbol file is
treated as relative
address starting
from this base
address

--global-pid

Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

--force

This option forces
use of a given
symbol file.

--report

filename

Path to the report
with unresolved
symbols.

-0

--output

filename

Path and name of
the output file. If
it is omitted then
"resolved" suffix
is added to the
original filename.

--directories

directory paths

List of symbol folder
paths, separated

by semi-colon
characters. Available
only on Windows.

--Servers

server URLs

List of symbol
servers that uses

the same format as
_NT_SYMBOL_PATH
environment
variable, i.e.
srv*<LocalStore>}
Available only on
Windows.

www.nvidia.com
User Guide

v2023.3.1 | 329

<SymbolServ

Troubleshooting

Short Long Argument Description
-n --ignore-nt-sym- Ignore the
path symbol locations

stored in the
_NT_SYMBOL_PATH
environment
variable. Available
only on Windows.

Broken Backtraces on Tegra

In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMvV7 binaries:

» DWAREF information in ELF sections: .debug_frame, . zdebug_frame, .eh_frame,
.eh_frame_ hdr. This information is the most precise. . zdebug_£rame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.

» Exception handling information in EHABI format provided in .ARM. exidx and
.ARM. extab ELF sections. . ARM. extab might be absent if all information is
compact enough to be encoded into .ARM. exidx.

Compiler flag: -funwind-tables.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-frame-pointer.
For Aarch64 binaries:

» DWAREF information in ELF sections: .debug_frame, . zdebug frame, .eh frame,
.eh_frame hdr. See additional comments above.

Compiler flag: -g.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-frame-pointer.

www.nvidia.com
User Guide v2023.3.1 | 330

Troubleshooting

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):

$ gcc -Q —--help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every . cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

Debug Versions of ELF Files

Often, after a binary is built, especially if it is built with debug information (-g compiler
tlag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/1ib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in Buildib is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

Module summary

Module name Address CPU time

[kernel_kallsyms] 53.46%

Mibfaarch64-linux-gnu/libc-2.23.50
Jusr/libidebug/lib/aarchBd-inwx-gnu/libe-2.23.s0

0x7£7ebad000-0xTETecda000 26.04%

www.nvidia.com
User Guide v2023.3.1 | 331

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

Troubleshooting

27.6. Logging

To enable logging on the host, refer to this config file:
host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in the
Help # About dialog. If possible, attach log files and report (.nsys-rep) files, as they
already contain necessary version information.

Verbose Remote Logging on Linux Targets

Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:
/opt/nvidia/nsight systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.

2. Restart the target device.

3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems
directory on target.

4. From SSH console, launch the following command:
sudo /opt/nvidia/nsight systems/nsys --daemon --debug

5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose CLI Logging on Linux Targets

To enable verbose logging of the Nsight Systems CLI and the target application's
injection behavior:

1. In the target-linux-x64 directory, rename the nvlog.config.template file
to nvlog.config.

2. Inside that file, change the line
$ 11 {{{}nsys-ui.log

to

S }}{{{}nsys-agent.log
3. Run a collection and the target-1linux.x64 directory should include a file
named nsys-agent. log.

Please note that in some cases, debug logging can significantly slow down the profiler.

www.nvidia.com
User Guide v2023.3.1 | 332

Troubleshooting

Verbose Logging on Windows Targets

Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2023.3

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.
2. Terminate the nsys process.
3. Place nvlog.config from host directory next to Nsight Systems Windows agent on

the target device

» Local Windows target:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2023.3\target-
windows-x64

» Remote Windows target:

C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight systems
4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

www.nvidia.com
User Guide v2023.3.1 | 333

Chapter 28.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Training Seminars

NVIDIA Deep Learning Institute Training - Self-Paced Online Course Optimizing CUDA
Machine Learning Codes With Nsight Profiling Tools

2018 NCSA Blue Waters Webinar - Video Only Introduction to NVIDIA Nsight Systems

Blog Posts

NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM
2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof

2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof

2019 - NVIDIA Nsight Systems Add Vulkan Support

2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public

2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems
2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM

vV vV vV vV VvV v Vv

Feature Videos

Short videos, only a minute or two, to introduce new features.

OpenMP Trace Feature Spotlight
Command Line Sessions Video Spotlight
Direct3D11 Feature Spotlight

Vulkan Trace

vV v v v

www.nvidia.com
User Guide v2023.3.1 | 334

https://courses.nvidia.com/courses/course-v1:DLI+S-AC-03+V1/
https://courses.nvidia.com/courses/course-v1:DLI+S-AC-03+V1/
https://www.youtube.com/watch?v=WA8C48FJi3c
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M

Other Resources

» Statistics Driven Profiling
» Analyzing NCCL Usage with NVDIA Nsight Systems

Conference Presentations

» GTC 2023 Optimize Multi-Node System Workloads With NVIDIA Nsight Systems

» GTC 2023 Ray-Tracing Development using NVIDIA Nsight Graphics and NVIDIA
Nsight Systems

» GTC 2022 - Killing Cloud Monsters Has Never Been Smoother

» GTC 2022 - Optimizing Communication with Nsight Systems Network Profiling

» GTC 2022 - Optimizing Vulkan 1.3 Applications with Nsight Graphics & Nsight
Systems

» GTC 2021 - Tuning GPU Network and Memory Usage in Apache Spark

» GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD
Molecular Dynamics Program for Modern GPUs using Nsight Systems

» GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across
Multiple Nodes

» GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics
Simulation Program

» GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs

» GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA
Nsight Systems

» GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools

» Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU
Performance

For More Support

To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

www.nvidia.com
User Guide v2023.3.1 | 335

https://www.youtube.com/watch?v=fyhPFTF75tk
https://www.youtube.com/embed/bda5Er27jqo
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-d52660/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-dlit51580/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-dlit51580/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41518/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41500/
https://www.nvidia.com/en-us/on-demand/session/other2021-vlk2201/
https://www.nvidia.com/en-us/on-demand/session/other2021-vlk2201/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566/
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

www.nvidia.com
User Guide

> NVIDIA Nsight Systems

Feedback for NVIDIA Nsight Systems
Feature Suggestion
Comments:

Please enter your feedback here.

» ¥ Include System Info
» || Include Screenshots

» Attach Additional Files:
Contact Information:

Name: Email:

Xcorce

Other Resources

v2023.3.1 | 336

	Table of Contents
	Profiling from the CLI
	1.1. Installing the CLI on Your Target
	1.2. Command Line Options
	1.2.1. CLI Global Options

	1.3. CLI Command Switches
	1.3.1. CLI Analyze Command Switch Options
	1.3.2. CLI Cancel Command Switch Options
	1.3.3. CLI Export Command Switch Options
	1.3.4. CLI Launch Command Switch Options
	1.3.5. CLI Profile Command Switch Options
	1.3.6. CLI Sessions Command Switch Subcommands
	1.3.6.1. CLI Sessions List Command Switch Options

	1.3.7. CLI Shutdown Command Switch Options
	1.3.8. CLI Start Command Switch Options
	1.3.9. CLI Stats Command Switch Options
	1.3.10. CLI Status Command Switch Options
	1.3.11. CLI Stop Command Switch Options

	1.4. Example Single Command Lines
	1.5. Example Interactive CLI Command Sequences
	1.6. Example Stats Command Sequences
	1.7. Example Output from --stats Option
	1.8. Importing and Viewing Command Line Results Files
	1.9. Using the CLI to Analyze MPI Codes
	1.9.1. Tracing MPI API calls
	1.9.2. Using the CLI to Profile Applications Launched with mpirun

	Profiling from the GUI
	2.1. Profiling Linux Targets from the GUI
	2.1.1. Connecting to the Target Device
	2.1.2. System-Wide Profiling Options
	2.1.2.1. Linux x86_64
	2.1.2.2. Linux for Tegra

	2.1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	2.1.4. Hotkey Trace Start/Stop
	2.1.5. Launching Processes
	Specify additional environment variables

	2.3. Profiling QNX Targets from the GUI
	2.2. User Guide

	Container Support on Linux Servers
	GUI VNC container
	GUI WebRTC container

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Direct3D Trace
	5.1. D3D11 API trace
	5.2. D3D12 API Trace

	WDDM Queues
	WDDM HW Scheduler
	Vulkan API Trace
	8.1. Vulkan Overview
	8.2. Pipeline Creation Feedback
	8.3. Vulkan GPU Trace Notes

	Stutter Analysis
	9.1. FPS Overview
	9.2. Frame Health
	9.3. GPU Memory Utilization
	9.4. Vertical Synchronization

	OpenMP Trace
	OS Runtime Libraries Trace
	11.1. Locking a Resource
	11.2. Limitations
	11.3. OS Runtime Libraries Trace Filters
	11.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	13.1. CUDA GPU Memory Allocation Graph
	13.2. Unified Memory Transfer Trace
	Unified Memory CPU Page Faults
	Unified Memory GPU Page Faults

	13.3. CUDA Graph Trace
	13.4. CUDA Python Backtrace
	13.5. CUDA Default Function List for CLI
	13.6. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	15.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	GPU Metrics
	Overview
	Launching GPU Metric from the CLI
	Launching GPU Metrics from the GUI
	Sampling frequency
	Available metrics
	Exporting and Querying Data
	Limitations

	CPU Profiling Using Linux OS Perf Subsystem
	NVIDIA Video Codec SDK Trace
	19.1. NV Encoder API Functions Traced by Default
	19.2. NV Decoder API Functions Traced by Default
	19.3. NV JPEG API Functions Traced by Default

	Network Communication Profiling
	20.1. MPI API Trace
	20.2. OpenSHMEM Library Trace
	20.3. UCX Library Trace
	20.4. NVIDIA NVSHMEM and NCCL Trace
	20.5. NIC Metric Sampling
	20.6. InfiniBand Switch Metric Sampling

	Python Profiling
	21.1. Python Backtrace Sampling
	21.2. Python NVTX Annotations

	Reading Your Report in GUI
	22.1. Generating a New Report
	22.2. Opening an Existing Report
	22.3. Sharing a Report File
	22.4. Report Tab
	22.5. Analysis Summary View
	22.6. Timeline View
	22.6.1. Timeline
	Timeline Navigation
	Row Height
	Row Percentage

	22.6.2. Events View
	22.6.3. Function Table Modes
	22.6.4. Function Table Notes
	22.6.5. Filter Dialog
	22.6.6. Example of Using Timeline with Function Table

	22.7. Diagnostics Summary View
	22.8. Symbol Resolution Logs View

	Adding Report to the Timeline
	23.1. Time Synchronization
	23.2. Timeline Hierarchy
	23.3. Example: MPI
	23.4. Limitations

	Post-Collection Analysis
	24.1. Available Export Formats
	24.1.1. SQLite Schema Reference
	24.1.2. SQLite Schema Event Values
	24.1.3. Common SQLite Examples
	24.1.4. Arrow Format Description
	24.1.5. JSON and Text Format Description

	24.2. Statistical Analysis
	Statistical Reports Shipped With Nsight Systems
	cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (API/Kernels/MemOps)
	cuda_api_sum -- CUDA API Summary
	cuda_api_trace -- CUDA API Trace
	cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/Block Summary
	cuda_gpu_kern_sum[:base|:mangled] -- CUDA GPU Kernel Summary
	cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
	cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
	cuda_gpu_sum[:base|:mangled] -- CUDA GPU Summary (Kernels/MemOps)
	cuda_gpu_trace[:base|:mangled] -- CUDA GPU Trace
	cuda_kern_exec_sum[:base|:mangled] -- CUDA Kernel Launch & Exec Time Summary
	cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch & Exec Time Trace
	dx11_pix_sum -- DX11 PIX Range Summary
	dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges Summary
	dx12_pix_sum -- DX12 PIX Range Summary
	nvtx_gpu_proj_trace -- NVTX GPU Projection Trace
	nvtx_gpu_proj_sum -- NVTX GPU Projection Summary
	nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary
	nvtx_pushpop_sum -- NVTX Push/Pop Range Summary
	nvtx_pushpop_trace -- NVTX Push/Pop Range Trace
	nvtx_startend_sum -- NVTX Start/End Range Summary
	nvtx_sum -- NVTX Range Summary
	nvvideo_api_sum -- NvVideo API Summary
	openacc_sum -- OpenACC Summary
	opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range Summary
	opengl_khr_range_sum -- OpenGL KHR_debug Range Summary
	openmp_sum -- OpenMP Summary
	osrt_sum -- OS Runtime Summary
	um_cpu_page_faults_sum -- Unified Memory CPU Page Faults Summary
	um_sum[:rows=<limit>] -- Unified Memory Analysis Summary
	um_total_sum -- Unified Memory Totals Summary
	vulkan_api_sum -- Vulkan API Summary
	vulkan_api_trace -- Vulkan API Trace
	vulkan_gpu_marker_sum -- Vulkan GPU Range Summary
	vulkan_marker_sum -- Vulkan Range Summary
	wddm_queue_sum -- WDDM Queue Utilization Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	24.3. Expert Systems Analysis
	Using Expert System from the CLI
	Using Expert System from the GUI
	Expert System Rules
	CUDA Synchronous Operation Rules
	GPU Low Utilization Rules
	Other Rules

	24.4. Multi-Report Analysis
	Available Recipes
	Opening in Jupyter Notebook
	Configuring Dask
	Tutorial: Create a User-Defined Recipe

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	27.1. General Troubleshooting
	27.2. CLI Troubleshooting
	27.3. Launch Processes in Stopped State
	LD_PRELOAD
	Launcher

	27.4. GUI Troubleshooting
	Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root privileges
	Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 without root privileges
	Other platforms, or if the previous steps did not help

	27.5. Symbol Resolution
	Broken Backtraces on Tegra
	Debug Versions of ELF Files

	27.6. Logging
	Verbose Remote Logging on Linux Targets
	Verbose CLI Logging on Linux Targets
	Verbose Logging on Windows Targets

	Other Resources
	Training Seminars
	Blog Posts
	Feature Videos
	Conference Presentations
	For More Support

