
USER GUIDE

v2023.3.1 | August 2023

User Manual

www.nvidia.com
User Guide v2023.3.1 | ii

TABLE OF CONTENTS

Chapter 1. Profiling from the CLI.. 1
1.1. Installing the CLI on Your Target...1
1.2. Command Line Options.. 1

1.2.1. CLI Global Options.. 2
1.3. CLI Command Switches.. 2

1.3.1. CLI Analyze Command Switch Options...4
1.3.2. CLI Cancel Command Switch Options...10
1.3.3. CLI Export Command Switch Options...12
1.3.4. CLI Launch Command Switch Options.. 15
1.3.5. CLI Profile Command Switch Options...38
1.3.6. CLI Sessions Command Switch Subcommands... 78

1.3.6.1. CLI Sessions List Command Switch Options.. 79
1.3.7. CLI Shutdown Command Switch Options... 79
1.3.8. CLI Start Command Switch Options...80
1.3.9. CLI Stats Command Switch Options...99
1.3.10. CLI Status Command Switch Options.. 108
1.3.11. CLI Stop Command Switch Options...109

1.4. Example Single Command Lines... 110
1.5. Example Interactive CLI Command Sequences..114
1.6. Example Stats Command Sequences..119
1.7. Example Output from --stats Option... 120
1.8. Importing and Viewing Command Line Results Files... 123
1.9. Using the CLI to Analyze MPI Codes.. 125

1.9.1. Tracing MPI API calls... 125
1.9.2. Using the CLI to Profile Applications Launched with mpirun.............................. 125

Chapter 2. Profiling from the GUI...128
2.1. Profiling Linux Targets from the GUI... 128

2.1.1. Connecting to the Target Device.. 128
2.1.2. System-Wide Profiling Options... 130

2.1.2.1. Linux x86_64... 130
2.1.2.2. Linux for Tegra.. 132

2.1.3. Target Sampling Options...132
Target Sampling Options for Workstation.. 133
Target Sampling Options for Embedded Linux.. 134

2.1.4. Hotkey Trace Start/Stop...134
2.1.5. Launching Processes..135

Specify additional environment variables... 135
2.3. Profiling QNX Targets from the GUI...136
2.2. User Guide.. 136

Chapter 3. Container Support on Linux Servers... 137

www.nvidia.com
User Guide v2023.3.1 | iii

GUI VNC container...138
GUI WebRTC container..140

Chapter 4. Migrating from NVIDIA nvprof.. 144
Using the Nsight Systems CLI nvprof Command.. 144
CLI nvprof Command Switch Options...144
Next Steps...147

Chapter 5. Direct3D Trace.. 148
5.1. D3D11 API trace..148
5.2. D3D12 API Trace... 148

Chapter 6. WDDM Queues... 153
Chapter 7. WDDM HW Scheduler.. 155
Chapter 8. Vulkan API Trace..156

8.1. Vulkan Overview... 156
8.2. Pipeline Creation Feedback.. 158
8.3. Vulkan GPU Trace Notes.. 158

Chapter 9. Stutter Analysis... 159
9.1. FPS Overview... 159
9.2. Frame Health... 163
9.3. GPU Memory Utilization.. 163
9.4. Vertical Synchronization.. 163

Chapter 10. OpenMP Trace..164
Chapter 11. OS Runtime Libraries Trace...166

11.1. Locking a Resource...167
11.2. Limitations...167
11.3. OS Runtime Libraries Trace Filters.. 168
11.4. OS Runtime Default Function List... 169

Chapter 12. NVTX Trace... 172
Chapter 13. CUDA Trace...176

13.1. CUDA GPU Memory Allocation Graph... 179
13.2. Unified Memory Transfer Trace.. 180

Unified Memory CPU Page Faults.. 181
Unified Memory GPU Page Faults.. 182

13.3. CUDA Graph Trace..183
13.4. CUDA Python Backtrace... 184
13.5. CUDA Default Function List for CLI... 186
13.6. cuDNN Function List for X86 CLI...188

Chapter 14. OpenACC Trace.. 190
Chapter 15. OpenGL Trace..192

15.1. OpenGL Trace Using Command Line...194
Chapter 16. Custom ETW Trace..196
Chapter 17. GPU Metrics.. 198

Overview...198
Launching GPU Metric from the CLI..201

www.nvidia.com
User Guide v2023.3.1 | iv

Launching GPU Metrics from the GUI.. 202
Sampling frequency..202
Available metrics...203
Exporting and Querying Data.. 206
Limitations.. 207

Chapter 18. CPU Profiling Using Linux OS Perf Subsystem...209
Chapter 19. NVIDIA Video Codec SDK Trace...217

19.1. NV Encoder API Functions Traced by Default.. 218
19.2. NV Decoder API Functions Traced by Default..219
19.3. NV JPEG API Functions Traced by Default..220

Chapter 20. Network Communication Profiling...221
20.1. MPI API Trace... 222
20.2. OpenSHMEM Library Trace.. 225
20.3. UCX Library Trace.. 226
20.4. NVIDIA NVSHMEM and NCCL Trace... 227
20.5. NIC Metric Sampling... 227
20.6. InfiniBand Switch Metric Sampling.. 229

Chapter 21. Python Profiling... 230
21.1. Python Backtrace Sampling... 230
21.2. Python NVTX Annotations... 231

Chapter 22. Reading Your Report in GUI...233
22.1. Generating a New Report... 233
22.2. Opening an Existing Report... 233
22.3. Sharing a Report File.. 233
22.4. Report Tab... 233
22.5. Analysis Summary View..234
22.6. Timeline View... 234

22.6.1. Timeline...234
Timeline Navigation... 234
Row Height.. 237
Row Percentage.. 238

22.6.2. Events View.. 238
22.6.3. Function Table Modes.. 240
22.6.4. Function Table Notes... 243
22.6.5. Filter Dialog..245
22.6.6. Example of Using Timeline with Function Table... 245

22.7. Diagnostics Summary View..251
22.8. Symbol Resolution Logs View...251

Chapter 23. Adding Report to the Timeline...252
23.1. Time Synchronization.. 252
23.2. Timeline Hierarchy... 254
23.3. Example: MPI..255
23.4. Limitations...256

www.nvidia.com
User Guide v2023.3.1 | v

Chapter 24. Post-Collection Analysis..257
24.1. Available Export Formats..257

24.1.1. SQLite Schema Reference... 257
24.1.2. SQLite Schema Event Values.. 260
24.1.3. Common SQLite Examples... 266
24.1.4. Arrow Format Description... 280
24.1.5. JSON and Text Format Description...281

24.2. Statistical Analysis..281
Statistical Reports Shipped With Nsight Systems.. 282

cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (API/Kernels/MemOps).............282
cuda_api_sum -- CUDA API Summary...283
cuda_api_trace -- CUDA API Trace..283
cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/Block Summary...... 283
cuda_gpu_kern_sum[:base|:mangled] -- CUDA GPU Kernel Summary.........................284
cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)......................... 284
cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)....................... 285
cuda_gpu_sum[:base|:mangled] -- CUDA GPU Summary (Kernels/MemOps)................. 285
cuda_gpu_trace[:base|:mangled] -- CUDA GPU Trace... 286
cuda_kern_exec_sum[:base|:mangled] -- CUDA Kernel Launch & Exec Time Summary.... 286
cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch & Exec Time Trace....... 287
dx11_pix_sum -- DX11 PIX Range Summary... 288
dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges Summary.................... 289
dx12_pix_sum -- DX12 PIX Range Summary... 289
nvtx_gpu_proj_trace -- NVTX GPU Projection Trace... 290
nvtx_gpu_proj_sum -- NVTX GPU Projection Summary.. 290
nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary............................. 291
nvtx_pushpop_sum -- NVTX Push/Pop Range Summary..292
nvtx_pushpop_trace -- NVTX Push/Pop Range Trace...292
nvtx_startend_sum -- NVTX Start/End Range Summary... 293
nvtx_sum -- NVTX Range Summary... 293
nvvideo_api_sum -- NvVideo API Summary.. 294
openacc_sum -- OpenACC Summary.. 294
opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range Summary.................... 294
opengl_khr_range_sum -- OpenGL KHR_debug Range Summary................................295
openmp_sum -- OpenMP Summary..295
osrt_sum -- OS Runtime Summary.. 296
um_cpu_page_faults_sum -- Unified Memory CPU Page Faults Summary..................... 296
um_sum[:rows=<limit>] -- Unified Memory Analysis Summary................................. 296
um_total_sum -- Unified Memory Totals Summary... 297
vulkan_api_sum -- Vulkan API Summary... 297
vulkan_api_trace -- Vulkan API Trace.. 297
vulkan_gpu_marker_sum -- Vulkan GPU Range Summary....................................... 298
vulkan_marker_sum -- Vulkan Range Summary... 298

www.nvidia.com
User Guide v2023.3.1 | vi

wddm_queue_sum -- WDDM Queue Utilization Summary....................................... 299
Report Formatters Shipped With Nsight Systems.. 299

Column... 299
Table..300
CSV... 300
TSV..301
JSON..301
HDoc..301
HTable..302

24.3. Expert Systems Analysis... 302
Using Expert System from the CLI... 302
Using Expert System from the GUI.. 302
Expert System Rules..303

CUDA Synchronous Operation Rules...303
GPU Low Utilization Rules..304
Other Rules..305

24.4. Multi-Report Analysis...306
Available Recipes..307
Opening in Jupyter Notebook...312
Configuring Dask.. 313
Tutorial: Create a User-Defined Recipe... 314

Chapter 25. Import NVTXT..319
Commands...320

Chapter 26. Visual Studio Integration.. 322
Chapter 27. Troubleshooting... 324

27.1. General Troubleshooting...324
27.2. CLI Troubleshooting.. 325
27.3. Launch Processes in Stopped State..325

LD_PRELOAD... 326
Launcher..326

27.4. GUI Troubleshooting..327
Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root privileges.............................. 327
Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 without root privileges.......................... 328
Other platforms, or if the previous steps did not help.. 328

27.5. Symbol Resolution.. 328
Broken Backtraces on Tegra.. 330
Debug Versions of ELF Files...331

27.6. Logging... 332
Verbose Remote Logging on Linux Targets..332
Verbose CLI Logging on Linux Targets... 332
Verbose Logging on Windows Targets..333

Chapter 28. Other Resources...334
Training Seminars.. 334

www.nvidia.com
User Guide v2023.3.1 | vii

Blog Posts... 334
Feature Videos... 334
Conference Presentations.. 335
For More Support.. 335

www.nvidia.com
User Guide v2023.3.1 | viii

www.nvidia.com
User Guide v2023.3.1 | 1

Chapter 1.
PROFILING FROM THE CLI

1.1. Installing the CLI on Your Target
The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUI. The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be auto-
converted (to .nsys-rep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

Note that you must run the CLI on Windows as administrator.

1.2. Command Line Options
The Nsight Systems command lines can have one of two forms:
nsys [global_option]

or
nsys [command_switch][optional command_switch_options][application] [optional
 application_options]

All command line options are case sensitive. For command switch options, when
short options are used, the parameters should follow the switch after a space; e.g. -s
process-tree. When long options are used, the switch should be followed by an equal
sign and then the parameter(s); e.g. --sample=process-tree.

For this version of Nsight Systems, if you launch a process from the command line to
begin analysis, the launched process will be terminated when collection is complete,
including runs with --duration set, unless the user specifies the --kill none option (details

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 2

below). The exception is that if the user uses NVTX, cudaProfilerStart/Stop, or hotkeys to
control the duration, the application will continue unless --kill is set.

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

1.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

1.3. CLI Command Switches
The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

analyze Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate expert systems report.

cancel Cancels an existing collection started
in interactive mode. All data already
collected in the current collection is
discarded.

export Generates an export file from an
existing .nsys-rep file. For more
information about the exported formats
see the /documentation/nsys-exporter
directory in your Nsight Systems
installation directory.

launch In interactive mode, launches an
application in an environment that
supports the requested options. The

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 3

Command Description

launch command can be executed before
or after a start command.

nvprof Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional
functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

profile A fully formed profiling description
requiring and accepting no further input.
The command switch options used
(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

recipe PREVIEW FEATURE Post process
multiple existing Nsight Systems results,
in .nsys-rep or SQLite to generate
statistical information and create various
plots. See Multi-Node Analysis topic for
details.

sessions Gives information about all sessions
running on the system.

shutdown Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

start Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stats Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate statistical information.

status Reports on the status of a CLI-based
collection or the suitability of the profiling
environment.

stop Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 4

Command Description

terminates but the application continues
running.

1.3.1. CLI Analyze Command Switch Options
The nsys analyze command generates and outputs to the terminal a report using
expert system rules on existing results. Reports are generated from an SQLite export
of a .nsys-rep file. If a .nsys-rep file is specified, Nsight Systems will look for an
accompanying SQLite file and use it. If no SQLite export file exists, one will be created.

After choosing the analyze command switch, the following options are available.
Usage:

nsys [global-options] analyze [options] [input-file]

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-f --format column, table,
csv, tsv, json,
hdoc, htable, .

Specify the
output format.
The special
name "."
indicates the
default format
for the given
output. The
default format
for console
is column,
while files
and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 5

Short Long Possible
Parameters

Default Switch
Description

may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
See Report
Scripts for
options
available with
each format.

--force-export true, false false Force a re-
export of
the SQLite
file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--force-
overwrite

true, false false Overwrite any
existing output
files.

--help-formats <format_name>,
ALL, [none]

none With no
argument, list
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
the the format
is displayed. If
ALL is given, a
more detailed
explanation of
all available
formats is
displayed.

--help-rules <rule_name>,
ALL, [none]

none With no
argument, list
available rules
with a short
description.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 6

Short Long Possible
Parameters

Default Switch
Description

If a rule name
is given, a
more detailed
explanation
of the rule is
displayed. If
ALL is given, a
more detailed
explanation of
all available
rules is
displayed.

-o --output -, @<command>,
<basename>, .

- Specify
the output
mechanism.
There are
three output
mechanisms:
print to console,
output to file,
or output to
command. This
option may be
used multiple
times. Multiple
outputs
may also be
specified using
a comma-
separated list.
If the given
output name
is "-", the
output will be
displayed on
the console.
If the output
name starts
with "@",
the output
designates a
command to
run. The nsys
command will
be executed
and the analysis

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 7

Short Long Possible
Parameters

Default Switch
Description

output will be
piped into the
command. Any
other output
is assumed
to be the base
path and name
for a file. If a
file basename
is given, the
filename
used will be:
<basename>_<analysis&args>.<output_format>.
The default
base (including
path) is the
name of the
SQLite file
(as derived
from the input
file or --sqlite
option), minus
the extension.
The output "."
can be used
to indicate the
analysis should
be output to
a file, and
the default
basename
should be used.
To write one or
more analysis
outputs to
files using
the default
basename, use
the option: "--
output .". If the
output starts
with "@", the
nsys command
output is piped
to the given
command.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 8

Short Long Possible
Parameters

Default Switch
Description

The command
is run, and
the output is
piped to the
command's
stdin (standard-
input). The
command's
stdout and
stderr remain
attached to the
console, so any
output will
be displayed
directly to the
console. Be
aware there
are some
limitations
in how the
command
string is parsed.
No shell
expansions
(including *, ?,
[], and ~) are
supported.
The command
cannot be piped
to another
command, nor
redirected to
a file using
shell syntax.
The command
and command
arguments
are split on
whitespace,
and no quotes
(within the
command
syntax) are
supported. For
commands that
require complex

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 9

Short Long Possible
Parameters

Default Switch
Description

command line
syntax, it is
suggested that
the command
be put into a
shell script file,
and the script
designated
as the output
command.

-q --quiet Do not display
verbose
messages, only
display errors.

-r --rule cuda_memcpy_async,
cuda_memcpy_sync,
cuda_memset_sync,
cuda_api_sync,
gpu_gaps,
gpu_time_util,
dx12_mem_ops

all Specify the
rules(s) to
execute,
including any
arguments. This
option may be
used multiple
times. Multiple
rules may also
be specified
using a comma-
separated list.
See Expert
Systems section
and --help-
rules switch for
details on all
rules.

--sqlite <file.sqlite> Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file before

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 10

Short Long Possible
Parameters

Default Switch
Description

processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

--timeunit nsec,
nanoseconds,
usec,
microseconds,
msec,
milliseconds,
seconds

nanoseconds Set basic unit
of time. The
argument of
the switch
is matched
by using the
longest prefix
matching.
Meaning that it
is not necessary
to write a
whole word
as the switch
argument.
It is similar
to passing a
":time=<unit>"
argument to
every formatter,
although the
formatter
uses more
strict naming
conventions.
See "nsys
analyze --
help-formats
column" for
more detailed
information on
unit conversion.

1.3.2. CLI Cancel Command Switch Options
After choosing the cancel command switch, the following options are available. Usage:
nsys [global-options] cancel [options]

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 11

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--session <session
identifier>

none Cancel the
collection in the
given session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern in
the option
argument will
be substituted
with the
value of the
environment
variable. Any
%h pattern
in the option
argument will
be substituted
with the
hostname of
the system.
Any %% pattern
in the option
argument will
be substituted
with %.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 12

1.3.3. CLI Export Command Switch Options
After choosing the export command switch, the following options are available. Usage:
nsys [global-options] export [options] [nsys-rep-file]

Short Long Possible
Parameters

Default Switch
Description

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(QDSTRM,
nsys-rep,
SQLITE, HDF,
TEXT, ARROW,
JSON).

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-l --lazy true, false true Controls if table
creation is lazy
or not. When
true, a table
will only be
created when it
contains data.
This option will
be deprecated
in the future,
and all exports
will be non-
lazy. This
affects SQLite,
HDF5, and
Arrow exports
only.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 13

Short Long Possible
Parameters

Default Switch
Description

-o --output <filename> <inputfile.ext> Set the .output
filename.
The default
is the input
filename with
the extension
for the chosen
format.

-q --quiet true, false false If true, do
not display
progress bar

--separate-
strings

true,false false Output stored
strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

-t --type arrow, hdf, info,
json, sqlite, text

sqlite Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

--ts-normalize true, false false If true, all
timestamp
values in the
report will
be shifted to
UTC wall-
clock time, as
defined by the
UNIX epoch.
This option
can be used in
conjunction
with the --ts-
shift option, in
which case both
adjustments
will be applied.
If this option is

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 14

Short Long Possible
Parameters

Default Switch
Description

used to align a
series of reports
from a cluster
or distributed
system, the
accuracy of the
alignment is
limited by the
synchronization
precision of the
system clocks.
For detailed
analysis, the
use of PTP
or another
high-precision
synchronization
methodology is
recommended.
NTP is unlikely
to produce
desirable
results. This
option only
applies to
Arrow, HDF5,
and SQLite
exports.

--ts-shift signed integer,
in nanoseconds

0 If given, all
timestamp
values in the
report will be
shifted by the
given amount.
This option
can be used in
conjunction
with the --
ts-normalize
option, in
which case both
adjustments
will be applied.
This option
can be used to
"hand-align"

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 15

Short Long Possible
Parameters

Default Switch
Description

report files
captured at
different times,
or reports
captured on
distributed
systems
with poorly
synchronized
system clocks.
This option
only applies to
Arrow, HDF5,
and SQLite
exports.

1.3.4. CLI Launch Command Switch Options
After choosing the launch command switch, the following options are available. Usage:
nsys [global-options] launch [options] <application> [application-arguments]

Short Long Possible
Parameters

Default Switch
Description

-b --backtrace WARNING:
This switch
is no longer
supported.
Please set the
--backtrace
switch when
using the start
command
instead.

--clock-
frequency-
changes

true, false false Collect clock
frequency
changes.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none Collect per-
cluster Uncore
PMU counters.
Multiple values

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 16

Short Long Possible
Parameters

Default Switch
Description

can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--command-file < filename > none Open a file
that contains
launch switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--cpu-core-
events (Nsight
Systems
Embedded
Platforms
Edition)

0x11,0x13,...,none none Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-core-
events=help
switch to see
the full list of
values.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none Collect per-
socket Uncore
PMU counters.
Multiple values

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 17

Short Long Possible
Parameters

Default Switch
Description

can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-socket-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpuctxsw WARNING:
This switch
is no longer
supported.
Please set the
--cpuctxsw
switch when
using the start
command
instead.

--cuda-flush-
interval

milliseconds See description Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage. CUDA
data buffer
saves may
cause profiler
overhead.
Buffer save
behavior can be
controlled with
this switch. If
the CUDA flush
interval is set
to 0 on systems
running CUDA
11.0 or newer,

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 18

Short Long Possible
Parameters

Default Switch
Description

buffers are
saved when
they fill. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved only
when the
flush interval
expires. If a
flush interval
is set and the
profiler runs
out of available
buffers before
the flush
interval expires,
additional
buffers will
be allocated
as needed.
In this case,
setting a flush
interval can
reduce buffer
save overhead
but increase
memory use
by the profiler.
If the flush
interval is set
to 0 on systems
running older
versions of
CUDA, buffers
are saved at
the end of the
collection. If the
profiler runs
out of available
buffers,
additional
buffers are
allocated as

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 19

Short Long Possible
Parameters

Default Switch
Description

needed. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved when the
flush interval
expires. A
cuCtxSynchronize
call may be
inserted into
the workflow
before the
buffers are
saved which
will cause
application
overhead. In
this case, setting
a flush interval
can reduce
memory use by
the profiler but
may increase
save overhead.
For collections
over 30 seconds
an interval of
10 seconds is
recommended.
Default is
10000 for
Nsight Systems
Embedded
Platforms
Edition and 0
otherwise.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 20

Short Long Possible
Parameters

Default Switch
Description

This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--cuda-um-gpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 21

Short Long Possible
Parameters

Default Switch
Description

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

--cuda-graph-
trace

graph, node graph If 'graph' is
selected, CUDA
graphs will
be traced as a
whole and node
activities will
not be collected.
This will reduce
overhead to
a minimum,
but requires

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 22

Short Long Possible
Parameters

Default Switch
Description

CUDA driver
version 515.43
or higher.
If 'node' is
selected, node
activities will
be collected,
but CUDA
graphs will
not be traced
as a whole.
This may cause
significant
runtime
overhead.
Default is
'graph' if
available,
otherwise
default is
'node'.

--dx-force-
declare-
adapter-
removal-
support

true, false false The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding
it. Enabling
this flag
makes a call to
DXGIDeclareAdapterRemovalSupport()
before device
creation.

--dx12-gpu-
workload

true, false,
individual,
batch, none

individual If individual
or true, trace
each DX12
workload's
GPU activity
individually.
If batch,
trace DX12
workloads'
GPU activity in
ExecuteCommandLists

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 23

Short Long Possible
Parameters

Default Switch
Description

call batches.
If none or
false, do not
trace DX12
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

--dx12-wait-
calls

true, false false If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

-e --env-var A=B NA Set
environment
variable(s) for
the application
process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 24

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--hotkey-
capture

'F1' to 'F12' 'F12' Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey
is specified at
the start of the
profiled session.

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s
environment
variables will
be specified for
the launched
process.

--injection-use-
detours

true,false true Use detours
for injection. If
false, process
injection will be

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 25

Short Long Possible
Parameters

Default Switch
Description

performed by
windows hooks
which allows
to bypass anti-
cheat software.
Equivalent to
setting the --
system-wide
option to the
inverse value,
e.g. setting --
injection-use-
detours=false
has the same
effect as setting
--system-
wide=true.

--isr true,false Trace Interrupt
Service
Routines (ISRs)
and Deferred
Procedure
Calls (DPCs).
Requires
administrative
privileges.
Available only
on Windows
devices.

false

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using.
If no MPI
implementation
is specified,
nsys tries to
automatically
detect it based
on the dynamic

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 26

Short Long Possible
Parameters

Default Switch
Description

linker's search
path. If this
fails, 'openmpi'
is used. Calling
--mpi-impl
without --
trace=mpi is not
supported.

-p --nvtx-capture range@domain,
range, range@*

none Specify NVTX
range and
domain to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=nvtx is
specified at
the start of the
profiled session.

--nvtx-domain-
exclude

default,
<domain_names>

Choose to
exclude NVTX
events from
a comma
separated list
of domains.
'default' filters
the NVTX
default domain.
A domain
with this name
or commas
in a domain
name must be
escaped with
'\'. Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 27

Short Long Possible
Parameters

Default Switch
Description

when --
trace=nvtx is
specified.

--nvtx-domain-
include

default,
<domain_names>

Choose to
only include
NVTX events
from a comma
separated list
of domains.
'default' filters
the NVTX
default domain.
A domain
with this name
or commas
in a domain
name must be
escaped with
'\'. Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--python-nvtx-
annotations

<json_file> Specify the path
to the JSON
file containing
the requested
NVTX
annotations.

--opengl-gpu-
workload

true, false true If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=opengl
is specified.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 28

Short Long Possible
Parameters

Default Switch
Description

This option is
not supported
on IBM Power
targets.

--osrt-backtrace-
depth

integer 24 Set the
depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
stack-size

integer 6144 Set the stack
dump size,
in bytes, to
generate
backtraces for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS
runtime
libraries
calls must
execute before
backtraces are
collected.

--osrt-threshold < nanoseconds > 1000 ns Set the
duration, in
nanoseconds,
that Operating
System
Runtime (osrt)
APIs must
execute before
they are traced.
Values much
less than 1000
may cause
significant
overhead
and result
in extremely
large result

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 29

Short Long Possible
Parameters

Default Switch
Description

files. Default
is 1000 (1
microsecond).
Note: Not
available for
IBM Power
targets.

--python-
backtrace

cuda, none,
false

none Collect Python
backtrace event
when tracing
the selected
API's trigger.
This option
is supported
on Arm
server (SBSA)
platforms and
x86 Linux
targets. Note:
the selected API
tracing must
be enabled.
For example, --
cudabacktrace
must be set
when using
--python-
backtrace=cuda.

--python-
sampling

true, false false Collect Python
backtrace
sampling
events. This
option is
supported
on Arm
server (SBSA)
platforms,
x86 Linux
and Windows
targets. Note:
When profiling
Python-only
workflows,
consider
disabling the

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 30

Short Long Possible
Parameters

Default Switch
Description

CPU sampling
option to
reduce
overhead.

--python-
sampling-
frequency

1 < integers <
2000

1000 Specify
the Python
sampling
frequency.
The minimum
supported
frequency
is 1Hz. The
maximum
supported
frequency is
2KHz. This
option is
ignored if
the --python-
sampling
option is set to
false.

--qnx-kernel-
events

class/
event,event,class/
event:mode,class:mode,help,none

none Multiple values
can be selected,
separated by
commas only
(no spaces).
See the --qnx-
kernel-events-
mode switch
description
for ':mode'
format. Use the
'--qnx-kernel-
events=help'
switch to see
the full list
of values.
Example: '--
qnx-kernel-
events=8/1:system:wide,_NTO_TRACE_THREAD:process:fast,_NTO_TRACE_KERCALLENTER/
__KER_BAD,_NTO_TRACE_COMM,13'.
Collect QNX
kernel events.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 31

Short Long Possible
Parameters

Default Switch
Description

--qnx-kernel-
events-mode

system,process,fast,widesystem:fast Values are
separated by a
colon (':') only
(no spaces).
'system' and
'process' cannot
be specified
at the same
time. 'fast' and
'wide' cannot
be specified
at the same
time. Please
check the QNX
documentation
to determine
when to select
the 'fast' or
'wide' mode.
Specify the
default mode
for QNX
kernel events
collection.

--resolve-
symbols

true,false true Resolve
symbols of
captured
samples and
backtraces.

--run-as < username > none Run the target
application as
the specified
username. If
not specified,
the target
application will
be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for
Linux targets
only.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 32

Short Long Possible
Parameters

Default Switch
Description

-s --sample WARNING:
This switch
is no longer
supported.
Please set the --
sample switch
when using the
start command
instead.

--samples-per-
backtrace

WARNING:
This switch
is no longer
supported.
Please set the
--samples-
per-backtrace
switch when
using the start
command
instead.

--sampling-
frequency

WARNING:
This switch
is no longer
supported.
Please set the
--sampling-
frequency
switch when
using the start
command
instead.

--sampling-
period

WARNING:
This switch
is no longer
supported.
Please set the
--sampling-
period switch
when using the
start command
instead.

--sampling-
trigger

WARNING:
This switch
is no longer

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 33

Short Long Possible
Parameters

Default Switch
Description

supported.
Please set the
--sampling-
trigger switch
when using the
start command
instead.

--session session
identifier

none Launch the
application in
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Launch the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable
or space

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 34

Short Long Possible
Parameters

Default Switch
Description

characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

-w --show-output true, false true If true, send
target process's
stdout and
stderr streams
to both the
console and
stdout/stderr
files which
are added to
the report file.
If false, only
send target
process stdout
and stderr
streams to the
stdout/stderr
files which are
added to the
report file.

--system-wide true,false false Perform
system-wide
injection using
Windows
hooks.
Equivalent
to setting the
--injection-
use-detours
option to the

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 35

Short Long Possible
Parameters

Default Switch
Description

inverse value,
e.g. setting
--system-
wide=true has
the same effect
as setting --
injection-use-
detours=false.

-t --trace cuda, nvtx,
cublas, cublas-
verbose,
cusparse,
cusparse-
verbose, cudnn,
opengl, opengl-
annotations,
openacc,
openmp, osrt,
mpi, nvvideo,
vulkan, vulkan-
annotations,
dx11, dx11-
annotations,
dx12, dx12-
annotations,
oshmem,
ucx, wddm,
nvmedia, none

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information
on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 36

Short Long Possible
Parameters

Default Switch
Description

API will also
be traced. If the
none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one
of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior
and might
cause your
application
to crash or
deadlock. Note:
This option is
only available
on Linux target
platforms.

--vulkan-gpu-
workload

true, false,
individual,
batch, none

individual If individual
or true, trace
each Vulkan
workload's
GPU activity
individually.
If batch,
trace Vulkan
workloads'

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 37

Short Long Possible
Parameters

Default Switch
Description

GPU activity in
vkQueueSubmit
call batches.
If none or
false, do not
trace Vulkan
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--wddm-
additional-
events

true, false true If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch
is applicable
only when --
trace=wddm
is specified.
This option is

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 38

Short Long Possible
Parameters

Default Switch
Description

only supported
on Windows
targets.

--wddm-
backtraces

true, false false If true, collect
backtraces of
WDDM events.
Disabling this
data collection
can reduce
overhead for
certain target
applications.
Note that
this switch
is applicable
only when --
trace=wddm
is specified.
This option is
only supported
on Windows
targets.

1.3.5. CLI Profile Command Switch Options
After choosing the profile command switch, the following options are available.
Usage:
nsys [global-options] profile [options] <application> [application-arguments]

Short Long Possible
Parameters

Default Switch
Description

--accelerator-
trace

none,tegra-
accelerators

none Collect other
accelerators
workload
trace from
the hardware
engine units.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--auto-report-
name

true, false false Derive report
file name from
collected data

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 39

Short Long Possible
Parameters

Default Switch
Description

uses details
of profiled
graphics
application.
Format:
[Process Name]
[GPU Name]
[Window
Resolution]
[Graphics API]
Timestamp .nsys-
rep If true,
automatically
generate report
file names.

-b --backtrace auto,fp,lbr,dwarf,none Select the
backtrace
method to use
while sampling.
The option 'lbr'
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp' is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWARF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 40

Short Long Possible
Parameters

Default Switch
Description

collection
overhead.

-c --capture-range none,
cudaProfilerApi,
hotkey, nvtx

none When --
capture-range is
used, profiling
will start
only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
Hotkey works
for graphic
applications
only.

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown Specify the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any
subsequent
capture ranges
will be ignored.
Target app
will continue
running.
If stop-

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 41

Short Long Possible
Parameters

Default Switch
Description

shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat[:N],
collection will
stop at capture
range end and
subsequent
capture
ranges will
trigger more
collections. Use
the optional
:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.
If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown
and repeat-
shutdown:N,
as always, use
--kill option
to specify
whether target
app should
be terminated
when shutting
down session.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 42

Short Long Possible
Parameters

Default Switch
Description

--clock-
frequency-
changes

true, false false Collect clock
frequency
changes.
Available
only in Nsight
Systems
Embedded
Platforms
Edition
and Arm
server (SBSA)
platforms

--command-file < filename > none Open a file
that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 43

Short Long Possible
Parameters

Default Switch
Description

--cpu-core-
events (Nsight
Systems
Embedded
Platforms
Edition)

0x11,0x13,...,none none Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-core-
events=help
switch to see
the full list of
values.

--cpu-core-
events (not
Nsight Systems
Embedded
Platforms
Edition)

'help' or the end
users selected
events in the
format 'x,y'

'2' i.e.
Instructions
Retired

Select the CPU
Core events to
sample. Use the
--cpu-core-
events=help
switch to see
the full list of
events and
the number of
events that can
be collected
simultaneously.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-socket-
events=help
switch to see

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 44

Short Long Possible
Parameters

Default Switch
Description

the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpuctxsw process-tree,
system-wide,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none', the
--cpuctxsw
setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application
is launched,
the default is
'process-tree',
otherwise the
default is 'none'.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 45

Short Long Possible
Parameters

Default Switch
Description

Platforms
Edition

--cuda-flush-
interval

milliseconds See Description Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage. CUDA
data buffer
saves may
cause profiler
overhead.
Buffer save
behavior can be
controlled with
this switch. If
the CUDA flush
interval is set
to 0 on systems
running CUDA
11.0 or newer,
buffers are
saved when
they fill. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved only
when the
flush interval
expires. If a
flush interval
is set and the
profiler runs
out of available
buffers before
the flush
interval expires,
additional
buffers will
be allocated
as needed.
In this case,

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 46

Short Long Possible
Parameters

Default Switch
Description

setting a flush
interval can
reduce buffer
save overhead
but increase
memory use
by the profiler.
If the flush
interval is set
to 0 on systems
running older
versions of
CUDA, buffers
are saved at
the end of the
collection. If the
profiler runs
out of available
buffers,
additional
buffers are
allocated as
needed. If a
flush interval
is set to a non-
zero value on
such systems,
buffers are
saved when the
flush interval
expires. A
cuCtxSynchronize
call may be
inserted into
the workflow
before the
buffers are
saved which
will cause
application
overhead. In
this case, setting
a flush interval
can reduce
memory use by
the profiler but

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 47

Short Long Possible
Parameters

Default Switch
Description

may increase
save overhead.
For collections
over 30 seconds
an interval of
10 seconds is
recommended.
Default is
10000 for
Nsight Systems
Embedded
Platforms
Edition and 0
otherwise.

--cuda-graph-
trace

graph, node graph If 'graph' is
selected, CUDA
graphs will
be traced as a
whole and node
activities will
not be collected.
This will reduce
overhead to
a minimum,
but requires
CUDA driver
version 515.43
or higher.
If 'node' is
selected, node
activities will
be collected,
but CUDA
graphs will
not be traced
as a whole.
This may cause
significant
runtime
overhead.
Default is
'graph' if
available,
otherwise

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 48

Short Long Possible
Parameters

Default Switch
Description

default is
'node'.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--cuda-um-gpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 49

Short Long Possible
Parameters

Default Switch
Description

overhead. Not
availalbe on
Nsight Systems
Embedded
Platforms
Edition.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of
a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 50

Short Long Possible
Parameters

Default Switch
Description

-y --delay < seconds > 0 Collection
start delay in
seconds.

-d --duration < seconds > NA Collection
duration
in seconds,
duration must
be greater
than zero.
The launched
process will
be terminated
when the
specified
profiling
duration
expires unless
the user
specifies the --
kill none option
(details below).

--duration-
frames

60 <= integer Stop the
recording
session after
this many
frames have
been captured.
Note when
it is selected
cannot include
any other stop
options. If
not specified,
the default is
disabled.

--dx-force-
declare-
adapter-
removal-
support

true, false false The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding
it. Enabling
this flag

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 51

Short Long Possible
Parameters

Default Switch
Description

makes a call to
DXGIDeclareAdapterRemovalSupport()
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

--dx12-gpu-
workload

true, false,
individual,
batch, none

individual If individual
or true, trace
each DX12
workload's
GPU activity
individually.
If batch,
trace DX12
workloads'
GPU activity in
ExecuteCommandLists
call batches.
If none or
false, do not
trace DX12
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

--dx12-wait-
calls

true, false true If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 52

Short Long Possible
Parameters

Default Switch
Description

on Windows
targets.

--el1-sampling true, false false Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--el1-sampling-
config

< filepath
config.json >

none EL1 sampling
config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

-e --env-var A=B NA Set
environment
variable(s) for
the application
process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--etw-provider "<name>,<guid>",
or path to JSON
file

none Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 53

Short Long Possible
Parameters

Default Switch
Description

can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--event-sample system-wide,
none

none Use the --
cpu-core-
events=help
and the --os-
events=help
switches to see
the full list of
events. If event
sampling is
enabled and
no events are
selected, the
CPU Core event
'Instructions
Retired' is
selected by
default. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--event-
sampling-
frequency

Integers from 1
to 20 Hz

3 The sampling
frequency
used to collect
event counts.
Minimum
event sampling
frequency is 1
Hz. Maximum
event sampling
frequency is
20 Hz. Not
available in
Nsight Systems
Embedded

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 54

Short Long Possible
Parameters

Default Switch
Description

Platforms
Edition.

--export arrow, hdf, json,
sqlite, text, none

none Create
additional
output file(s)
based on the
data collected.
This option
can be given
more than once.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--flush-on-
cudaprofilerstop

true, false true If set to true,
any call to
cudaProfilerStop()
will cause the
CUDA trace
buffers to be
flushed. Note
that the CUDA
trace buffers
will be flushed
when the
collection ends,
irrespective of
the value of this
switch.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-
rep, .arrows, .h5, .json, .sqlite, .txt).

--ftrace Collect ftrace
events.
Argument

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 55

Short Long Possible
Parameters

Default Switch
Description

should list
events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available
on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpu-metrics-
device

GPU ID, help,
all, none

none Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer 10000 Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000 (Hz).

--gpu-metrics-
set

index, alias Specify metric
set for GPU
Metrics. The
argument
must be one

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 56

Short Long Possible
Parameters

Default Switch
Description

of indices or
aliases reported
by--gpu-
metrics-
set=help
switch. If not
specified, the
default is the
first metric set
that supports
all selected
GPUs.

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--hotkey-
capture

'F1' to 'F12' 'F12' Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 57

Short Long Possible
Parameters

Default Switch
Description

--ib-switch-
metrics

<IB switch
GUIDs>

none Trigger the
collection
of IB switch
performance
metrics. Takes
a comma
separated list
of Infiniband
switch GUIDs.
To get a list
Infiniband
switches
connected to
the machine,
use sudo
ibnetdiscover
-S

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s
environment
variables will
be specified for
the launched
process.

--injection-use-
detours

true,false true Use detours
for injection. If
false, process
injection will be
performed by
windows hooks
which allows
to bypass anti-
cheat software.
Equivalent to
setting the --

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 58

Short Long Possible
Parameters

Default Switch
Description

system-wide
option to the
inverse value,
e.g. setting --
injection-use-
detours=false
has the same
effect as setting
--system-
wide=true.

--isr true, false false Trace Interrupt
Service
Routines (ISRs)
and Deferred
Procedure
Calls (DPCs).
Requires
administrative
privileges.
Available only
on Windows
devices.

--kill none, sigkill,
sigterm, signal
number

sigterm Send signal
to the target
application's
process group.
Can be used
with --duration
or range
markers.

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using.
If no MPI
implementation
is specified,
nsys tries to
automatically
detect it based

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 59

Short Long Possible
Parameters

Default Switch
Description

on the dynamic
linker's search
path. If this
fails, 'openmpi'
is used. Calling
--mpi-impl
without --
trace=mpi is not
supported.

--nic-metrics true, false false Collect metrics
from supported
NIC/HCA
devices. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

-p --nvtx-capture range@domain,
range, range@*

none Specify NVTX
range and
domain to
trigger the
profiling
session. This
option is
applicable
only when
used along
with --capture-
range=nvtx.

--nvtx-domain-
exclude

default,
<domain_names>

Choose to
exclude NVTX
events from
a comma
separated list
of domains.
'default'
excludes NVTX
events without
a domain. A
domain with
this name
or commas
in a domain
name must be

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 60

Short Long Possible
Parameters

Default Switch
Description

escaped with
'\'. Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--nvtx-domain-
include

default,
<domain_names>

Choose to
only include
NVTX events
from a comma
separated list
of domains.
'default' filters
the NVTX
default domain.
A domain
with this name
or commas
in a domain
name must be
escaped with
'\'. Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--python-nvtx-
annotations

<json_file> Specify the path
to the JSON
file containing
the requested
NVTX
annotations.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 61

Short Long Possible
Parameters

Default Switch
Description

--opengl-gpu-
workload

true, false true If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=opengl
is specified.
This option is
not supported
on IBM Power
targets.

--os-events 'help' or the end
users selected
events in the
format 'x,y'

none Select the
OS events
to sample.
Use the --os-
events=help
switch to see
the full list of
events. Multiple
values can
be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable. Not
available on
Nsight Systems
Embedded
Platforms
Edition.

--osrt-backtrace-
depth

integer 24 Set the
depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
stack-size

integer 6144 Set the stack
dump size,
in bytes, to

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 62

Short Long Possible
Parameters

Default Switch
Description

generate
backtraces for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS
runtime
libraries
calls must
execute before
backtraces are
collected.

--osrt-threshold < nanoseconds > 1000 ns Set the
duration, in
nanoseconds,
that Operating
System
Runtime
(osrt) APIs
must execute
before they are
traced. Values
significantly
less than 1000
may cause
significant
overhead
and result
in extremely
large result
files. Note: Not
available for
IBM Power
targets.

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 63

Short Long Possible
Parameters

Default Switch
Description

variable.
Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,nsys-
rep,sqlite,h5,txt,arrows,json}
in the working
directory.

--process-scope main, process-
tree, system-
wide

main Select which
process(es)
to trace.
Available in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--python-
backtrace

cuda, none,
false

none Collect Python
backtrace event
when tracing

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 64

Short Long Possible
Parameters

Default Switch
Description

the selected
API's trigger.
This option
is supported
on Arm
server (SBSA)
platforms and
x86 Linux
targets. Note:
the selected API
tracing must
be enabled.
For example, --
cudabacktrace
must be set
when using
--python-
backtrace=cuda.

--python-
sampling

true, false false Collect Python
backtrace
sampling
events. This
option is
supported
on Arm
server (SBSA)
platforms,
x86 Linux
and Windows
targets. Note:
When profiling
Python-only
workflows,
consider
disabling the
CPU sampling
option to
reduce
overhead.

--python-
sampling-
frequency

1 < integers <
2000

1000 Specify
the Python
sampling
frequency.
The minimum
supported

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 65

Short Long Possible
Parameters

Default Switch
Description

frequency
is 1Hz. The
maximum
supported
frequency is
2KHz. This
option is
ignored if
the --python-
sampling
option is set to
false.

--qnx-kernel-
events

class/
event,event,class/
event:mode,class:mode,help,none

none Multiple values
can be selected,
separated by
commas only
(no spaces).
See the --qnx-
kernel-events-
mode switch
description
for ':mode'
format. Use the
'--qnx-kernel-
events=help'
switch to see
the full list
of values.
Example: '--
qnx-kernel-
events=8/1:system:wide,_NTO_TRACE_THREAD:process:fast,
_NTO_TRACE_KERCALLENTER/
__KER_BAD,_NTO_TRACE_COMM,13'.
Collect QNX
kernel events.

--qnx-kernel-
events-mode

system,process,fast,widesystem:fast Values are
separated by a
colon (':') only
(no spaces).
'system' and
'process' cannot
be specified
at the same
time. 'fast' and
'wide' cannot

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 66

Short Long Possible
Parameters

Default Switch
Description

be specified
at the same
time. Please
check the QNX
documentation
to determine
when to select
the 'fast' or
'wide' mode.
Specify the
default mode
for QNX
kernel events
collection.

--resolve-
symbols

true,false true Resolve
symbols of
captured
samples and
backtraces.

--retain-etw-
files

true, false false Retain ETW
files generated
by the trace,
merge and
move the files
to the output
directory.

--run-as < username > none Run the target
application as
the specified
username. If
not specified,
the target
application will
be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for
Linux targets
only.

-s --sample process-tree,
system-wide,
none

process-tree Select how to
collect CPU
IP/backtrace

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 67

Short Long Possible
Parameters

Default Switch
Description

samples.
If 'none' is
selected, CPU
sampling
is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.
If a target
application
is launched,
the default is
'process-tree',
otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on
all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none'.

--samples-per-
backtrace

integer <= 32 1 The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU
IP sample
collected, a
backtrace
will also be
collected.
Lower values

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 68

Short Long Possible
Parameters

Default Switch
Description

increase the
amount of
data collected.
Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.
If DWARF
backtraces are
collected, the
default is 4,
otherwise the
default is 1.
This option is
not available on
Nsight Systems
Embedded
Platforms
Edition or on
non-Linux
targets.

--sampling-
frequency

100 < integers <
8000

1000 Specify the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency
is 8000 Hz.
This option
is supported
only on QNX,
Linux for Tegra,
and Windows
targets.

--sampling-
period (Nsight

integer determined
dynamically

The number
of CPU Cycle

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 69

Short Long Possible
Parameters

Default Switch
Description

Systems
Embedded
Platforms
Edition)

events counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces
may also be
collected.
The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s). Requires
--sampling-
trigger=perf
switch.

--sampling-
period (not
Nsight Systems
Embedded
Platforms
Edition)

integer determined
dynamically

The number of
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. The
event used
to trigger the
collection of
a sample is
determined
dynamically.
For example,
on Intel based
platforms, it
will probably
be "Reference

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 70

Short Long Possible
Parameters

Default Switch
Description

Cycles" and
on AMD
platforms,
"CPU Cycles".
If configured,
backtraces
may also be
collected.
The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option
is available
only on Linux
targets.

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched Specify
backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Available on
Nsight Systems
Embedded
Platforms
Edition targets
only.

--session-new [a-Z][0-9,a-
Z,spaces]

profile-<id>-
<application>

Name the
session
created by the

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 71

Short Long Possible
Parameters

Default Switch
Description

command.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

-w --show-output true, false true If true, send
target process's
stdout and
stderr streams
to both the
console and
stdout/stderr
files which
are added to
the report file.
If false, only
send target
process stdout
and stderr
streams to the
stdout/stderr
files which are
added to the
report file.

--soc-metrics true,false false Collect SOC
Metrics.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 72

Short Long Possible
Parameters

Default Switch
Description

Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-
frequency

integer 10000 Specify SOC
Metrics
sampling
frequency.
Minimum
supported
frequency
is '100' (Hz).
Maximum
supported
frequency is
'1000000' (Hz).
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-set see description see description Specify metric
set for SOC
Metrics
sampling.
The option
argument
must be one
of indices or
aliases reported
by --soc-
metrics-
set=help
switch. Default
is the first
supported set.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--start-frame-
index

1 <= integer Start the
recording
session when

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 73

Short Long Possible
Parameters

Default Switch
Description

the frame index
reaches the
frame number
preceding the
start frame
index. Note
when it is
selected cannot
include any
other start
options. If
not specified,
the default is
disabled.

-Y --start-later true, false false [BETA] Delays
collection
indefinitely
until the nsys
start command
is executed for
this session.
Enabling
this option
overrides the --
delay option.

--stats true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-x --stop-on-exit true, false true If true, stop
collecting

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 74

Short Long Possible
Parameters

Default Switch
Description

automatically
when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--system-wide true,false false Perform
system-wide
injection using
Windows
hooks.
Equivalent
to setting the
--injection-
use-detours
option to the
inverse value,
e.g. setting
--system-
wide=true has
the same effect
as setting --
injection-use-
detours=false.

-t --trace cuda, nvtx,
cublas, cublas-
verbose,
cusparse,
cusparse-
verbose, cudnn,

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 75

Short Long Possible
Parameters

Default Switch
Description

opengl, opengl-
annotations,
openacc,
openmp, osrt,
mpi, nvvideo,
vulkan, vulkan-
annotations,
dx11, dx11-
annotations,
dx12, dx12-
annotations,
oshmem, ucx,
wddm, tegra-
accelerators,
none

Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information
on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 76

Short Long Possible
Parameters

Default Switch
Description

IBM Power
target.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one
of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior
and might
cause your
application
to crash or
deadlock. Note:
This option is
only available
on Linux target
platforms.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline
ftrace events
will also be
captured.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--vulkan-gpu-
workload

true, false,
individual,
batch, none

individual If individual
or true, trace
each Vulkan
workload's
GPU activity
individually.
If batch,

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 77

Short Long Possible
Parameters

Default Switch
Description

trace Vulkan
workloads'
GPU activity in
vkQueueSubmit
call batches.
If none or
false, do not
trace Vulkan
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--wddm-
additional-
events

true, false true If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch
is applicable
only when --
trace=wddm

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 78

Short Long Possible
Parameters

Default Switch
Description

is specified.
This option is
only supported
on Windows
targets.

--wddm-
backtraces

true, false false If true, collect
backtraces of
WDDM events.
Disabling this
data collection
can reduce
overhead for
certain target
applications.
Note that
this switch
is applicable
only when --
trace=wddm
is specified.
This option is
only supported
on Windows
targets.

--xhv-trace < filepath
pct.json >

none Collect
hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--xhv-trace-
events

all, none, core,
sched, irq, trap

all Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.6. CLI Sessions Command Switch Subcommands
After choosing the sessions command switch, the following subcommands are
available. Usage:
nsys [global-options] sessions [subcommand]

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 79

Subcommand Description

list List all active sessions including ID, name,
and state information

1.3.6.1. CLI Sessions List Command Switch Options
After choosing the sessions list command switch, the following options are
available. Usage:
nsys [global-options] sessions list [options]

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-p --show-header true, false true Controls
whether a
header should
appear in the
output.

1.3.7. CLI Shutdown Command Switch Options
After choosing the shutdown command switch, the following options are available.
Usage:
nsys [global-options] shutdown [options]

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 80

Short Long Possible
Parameters

Default Switch
Description

to the tag will
be printed.

--kill On Linux: one,
sigkill, sigterm,
signal number

On Windows:
true, false

On Linux:
sigterm

On Windows:
true

Send signal
to the target
application's
process group
when shutting
down session.

--session session
identifier

none Shutdown
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.8. CLI Start Command Switch Options
After choosing the start command switch, the following options are available. Usage:
nsys [global-options] start [options]

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 81

Short Long Possible
Parameters

Default Switch
Description

--accelerator-
trace

none,tegra-
accelerators

none Collect other
accelerators
workload
trace from
the hardware
engine units.
Only available
on Nsight
Systems
Embedded
Platforms
Edition.

-b --backtrace auto,fp,lbr,dwarf,none Select the
backtrace
method to use
while sampling.
The option 'lbr'
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp' is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWARF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce
collection
overhead.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 82

Short Long Possible
Parameters

Default Switch
Description

-c --capture-range none,
cudaProfilerApi,
hotkey, nvtx

none When --
capture-range is
used, profiling
will start
only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
hotkey works
for graphic
applications
only. CUDA
or NVTX
tracing must
be enabled
on the target
application
for '-c
cudaProfilerApi'
or '-c nvtx' to
work.

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown Specify the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 83

Short Long Possible
Parameters

Default Switch
Description

subsequent
capture ranges
will be ignored.
Target app
will continue
running.
If stop-
shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat[:N],
collection will
stop at capture
range end and
subsequent
capture
ranges will
trigger more
collections. Use
the optional
:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.
If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown
and repeat-
shutdown:N,
as always use
--kill option

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 84

Short Long Possible
Parameters

Default Switch
Description

to specify
whether target
app should
be terminated
when shutting
down session.

--cpu-core-
events (not
Nsight Systems
Embedded
Platforms
Edition)

'help' or the end
users selected
events in the
format 'x,y'

'2' i.e.
Instructions
Retired

Select the CPU
Core events to
sample. Use the
--cpu-core-
events=help
switch to see
the full list of
events and
the number of
events that can
be collected
simultaneously.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable.

--cpuctxsw process-tree,
system-wide,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none', the
--cpuctxsw

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 85

Short Long Possible
Parameters

Default Switch
Description

setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application
is launched,
the default is
'process-tree',
otherwise the
default is 'none'.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded
Platforms
Edition.

--el1-sampling true, false false Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--el1-sampling-
config

< filepath
config.json >

none EL1 sampling
config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--etw-provider "<name>,<guid>",
or path to JSON
file

none Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,
provide a JSON
configuration

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 86

Short Long Possible
Parameters

Default Switch
Description

file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--event-sample system-wide,
none

none Use the --
cpu-core-
events=help
and the --os-
events=help
switches to see
the full list of
events. If event
sampling is
enabled and
no events are
selected, the
CPU Core event
'Instructions
Retired' is
selected by
default. Not
available in
Nsight Systems
Embedded
Platforms
Edition.

--event-
sampling-
frequency

Integers from 1
to 20 Hz

3 The sampling
frequency
used to collect
event counts.
Minimum
event sampling
frequency is 1
Hz. Maximum
event sampling
frequency is
20 Hz. Not
available in

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 87

Short Long Possible
Parameters

Default Switch
Description

Nsight Systems
Embedded
Platforms
Edition.

--export arrow, hdf, json,
sqlite, text, none

none Create
additional
output file(s)
based on the
data collected.
This option
can be given
more than once.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--flush-on-
cudaprofilerstop

true, false true If set to true,
any call to
cudaProfilerStop()
will cause the
CUDA trace
buffers to be
flushed. Note
that the CUDA
trace buffers
will be flushed
when the
collection ends,
irrespective of
the value of this
switch.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-
rep, .arrows, .hdf, .json, .sqlite, .txt).

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 88

Short Long Possible
Parameters

Default Switch
Description

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep-
user-config

true, false false Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpu-metrics-
device

GPU ID, help,
all, none

none Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer 10000 Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

--gpu-metrics-
set

index first Specify metric
set for GPU

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 89

Short Long Possible
Parameters

Default Switch
Description

Metrics
sampling.
The argument
must be one of
indices reported
by --gpu-
metrics-
set=help
switch. Default
is the first
metric set
that supports
selected GPU.

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

--isr true, false false Trace Interrupt
Service
Routines (ISRs)
and Deferred
Procedure
Calls (DPCs).
Requires
administrative
privileges.
Available only

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 90

Short Long Possible
Parameters

Default Switch
Description

on Windows
devices.

--nic-metrics true, false false Collect metrics
from supported
NIC/HCA
devices

--os-events 'help' or the end
users selected
events in the
format 'x,y'

none Select the
OS events
to sample.
Use the --os-
events=help
switch to see
the full list of
events. Multiple
values can
be selected,
separated by
commas only
(no spaces).
Use the --event-
sample switch
to enable. Not
available in
Nsight Systems
Embedded
Platforms
Edition.

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment
variable.
Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 91

Short Long Possible
Parameters

Default Switch
Description

filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.{nsys-
rep,sqlite,h5,txt,arrows,json}
in the working
directory.

--process-scope main, process-
tree, system-
wide

main Select which
process(es)
to trace.
Available in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--retain-etw-
files

true, false false Retain ETW
files generated
by the trace,
merge and
move the files
to the output
directory.

-s --sample process-tree,
system-wide,
none

process-tree Select how to
collect CPU
IP/backtrace
samples.
If 'none' is
selected, CPU

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 92

Short Long Possible
Parameters

Default Switch
Description

sampling
is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.
If a target
application
is launched,
the default is
'process-tree',
otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on
all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none'.

--samples-per-
backtrace

integer <= 32 1 The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU
IP sample
collected, a
backtrace
will also be
collected.
Lower values
increase the
amount of
data collected.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 93

Short Long Possible
Parameters

Default Switch
Description

Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.
If DWARF
backtraces are
collected, the
default is 4,
otherwise the
default is 1.
This option is
not available on
Nsight Systems
Embedded
Platforms
Edition or on
non-Linux
targets.

--sampling-
frequency

integers
between 100
and 8000

1000 Specify the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency
is 8000 Hz.
This option
is supported
only on QNX,
Linux for Tegra,
and Windows
targets.
Requires --
sampling-
trigger=perf
switch in
Nsight Systems
Embedded

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 94

Short Long Possible
Parameters

Default Switch
Description

Platforms
Edition

--sampling-
period (Nsight
Systems
Embedded
Platforms
Edition)

integer determined
dynamically

The number
of CPU Cycle
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces
may also be
collected.
The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s). Requires
--sampling-
trigger=perf
switch.

--sampling-
period (not
Nsight Systems
Embedded
Platforms
Edition)

integer determined
dynamically

The number of
events counted
before a CPU
instruction
pointer (IP)
sample is
collected. The
event used
to trigger the
collection of
a sample is
determined
dynamically.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 95

Short Long Possible
Parameters

Default Switch
Description

For example,
on Intel based
platforms, it
will probably
be "Reference
Cycles" and
on AMD
platforms,
"CPU Cycles".
If configured,
backtraces
may also be
collected.
The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option
is available
only on Linux
targets.

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched Specify
backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Available on
Nsight Systems
Embedded
Platforms

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 96

Short Long Possible
Parameters

Default Switch
Description

Edition targets
only.

--session session
identifier

none Start the
application in
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 97

Short Long Possible
Parameters

Default Switch
Description

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--soc-metrics true,false false Collect SOC
Metrics.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-
frequency

integer 10000 Specify SOC
Metrics
sampling
frequency.
Minimum
supported
frequency
is '100' (Hz).
Maximum
supported
frequency is
'1000000' (Hz).
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--soc-metrics-set see description see description Specify metric
set for SOC
Metrics
sampling.
The option
argument
must be one
of indices or
aliases reported
by --soc-

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 98

Short Long Possible
Parameters

Default Switch
Description

metrics-
set=help
switch. Default
is the first
supported set.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--stats true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-x --stop-on-exit true, false true If true, stop
collecting
automatically
when all
tracked
processes have
exited or when
stop command
is issued -
whichever
occurs first.
If false, stop
only on stop
command.
Note: When this
is true, stop
command is

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 99

Short Long Possible
Parameters

Default Switch
Description

optional. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline
ftrace events
will also be
captured.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace < filepath
pct.json >

none Collect
hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--xhv-trace-
events

all, none, core,
sched, irq, trap

all Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.9. CLI Stats Command Switch Options
The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV.

Reports are generated from an SQLite export of a .nsys-rep file. If a .nsys-rep file is
specified, Nsight Systems will look for an accompanying SQLite file and use it. If no
SQLite file exists, one will be exported and created.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 100

Individual reports are generated by calling out to scripts that read data from the SQLite
file and return their report data in CSV format. Nsight Systems ingests this data and
formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the
second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

nsys [global-options] stats [options] [input-file]

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is
provided, only
options relevant
to the tag will
be printed.

-f --format column, table,
csv, tsv, json,
hdoc, htable, .

Specify the
output format.
The special
name "."
indicates the
default format
for the given
output. The
default format
for console
is column,
while files
and process

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 101

Short Long Possible
Parameters

Default Switch
Description

outputs default
to csv. This
option may be
used multiple
times. Multiple
formats
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
See Report
Scripts for
options
available with
each format.

--force-export true, false false Force a re-
export of
the SQLite
file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--force-
overwrite

true, false false Overwrite any
existing report
file(s).

--help-formats <format_name>,
ALL, [none]

none With no
argument, give
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
that format is
displayed. If
ALL is given, a
more detailed
explanation of
all available

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 102

Short Long Possible
Parameters

Default Switch
Description

formats is
displayed.

--help-reports <report_name>,
ALL, [none]

none With no
argument, list
a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALL is given, a
more detailed
explanation of
all available
reports is
displayed.

-o --output -, @<command>,
<basename>, .

- Specify
the output
mechanism.
There are
three output
mechanisms:
print to console,
output to file,
or output to
command. This
option may be
used multiple
times. Multiple
outputs
may also be
specified using
a comma-
separated list.
If the given
output name
is "-", the
output will be
displayed on
the console.
If the output

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 103

Short Long Possible
Parameters

Default Switch
Description

name starts
with "@",
the output
designates a
command to
run. The nsys
command will
be executed
and the analysis
output will be
piped into the
command. Any
other output
is assumed
to be the base
path and name
for a file. If a
file basename
is given, the
filename
used will be:
<basename>_<analysis&args>.<output_format>.
The default
base (including
path) is the
name of the
SQLite file
(as derived
from the input
file or --sqlite
option), minus
the extension.
The output "."
can be used
to indicate the
analysis should
be output to
a file, and
the default
basename
should be used.
To write one or
more analysis
outputs to
files using
the default

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 104

Short Long Possible
Parameters

Default Switch
Description

basename, use
the option: "--
output .". If the
output starts
with "@", the
nsys command
output is piped
to the given
command.
The command
is run, and
the output is
piped to the
command's
stdin (standard-
input). The
command's
stdout and
stderr remain
attached to the
console, so any
output will
be displayed
directly to the
console. Be
aware there
are some
limitations
in how the
command
string is parsed.
No shell
expansions
(including *, ?,
[], and ~) are
supported.
The command
cannot be piped
to another
command, nor
redirected to
a file using
shell syntax.
The command
and command
arguments

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 105

Short Long Possible
Parameters

Default Switch
Description

are split on
whitespace,
and no quotes
(within the
command
syntax) are
supported. For
commands that
require complex
command line
syntax, it is
suggested that
the command
be put into a
shell script file,
and the script
designated
as the output
command.

-q --quiet Do not display
verbose
messages, only
display errors.

-r --report See Report
Scripts

Specify the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
If no reports are
specified, the
following will
be used as the
default report
set: nvtx_sum,
osrt_sum,

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 106

Short Long Possible
Parameters

Default Switch
Description

cuda_api_sum,
cuda_gpu_kern_sum,
cuda_gpu_mem_time_sum,
cuda_gpu_mem_size_sum,
openmp_sum,
opengl_khr_range_sum,
opengl_khr_gpu_range_sum,
vulkan_marker_sum,
vulkan_gpu_marker_sum,
dx11_pix_sum,
dx12_gpu_marker_sum,
dx12_pix_sum,
wddm_queue_sum,
um_sum,
um_total_sum,
um_cpu_page_faults_sum,
openacc_sum.
See Report
Scripts section
for details
about existing
built-in scripts
and how to
make your own.

--report-dir <path> Add a directory
to the path
used to find
report scripts.
This is usually
only needed
if you have
one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds
a new directory
to the end of
the path. A
search path can
also be defined
using the
environment
variable

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 107

Short Long Possible
Parameters

Default Switch
Description

"NSYS_STATS_REPORT_PATH".
Directories
added this
way will be
added after
the application
flags. The last
two entries in
the path will
always be the
current working
directory,
followed by
the directory
containing the
shipped nsys
reports.

--sqlite <file.sqlite> Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file before
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

--timeunit nsec,
nanoseconds,
usec,
microseconds,
msec,
milliseconds,
seconds

nanoseconds Set basic unit
of time. The
argument of
the switch
is matched
by using the
longest prefix
matching.
Meaning that it

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 108

Short Long Possible
Parameters

Default Switch
Description

is not necessary
to write a
whole word
as the switch
argument.
It is similar
to passing a
":time=<unit>"
argument to
every formatter,
although the
formatter
uses more
strict naming
conventions.
See "nsys stats
--help-formats
column" for
more detailed
information on
unit conversion.

1.3.10. CLI Status Command Switch Options
The nsys status command returns the current state of the CLI. After choosing the
status command switch, the following options are available. Usage:
nsys [global-options] status [options]

Short Long Possible
Parameters

Default Switch
Description

-e --environment Returns
information
about the
system
regarding
suitability of
the profiling
environment.

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 109

Short Long Possible
Parameters

Default Switch
Description

provided, only
options relevant
to the tag will
be printed.

--session session
identifier

none Print the status
of the indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.11. CLI Stop Command Switch Options
After choosing the stop command switch, the following options are available. Usage:
nsys [global-options] stop [options]

Short Long Possible
Parameters

Default Switch
Description

--help <tag> none Print the help
message. The
option can take
one optional
argument that
will be used as
a tag. If a tag is

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 110

Short Long Possible
Parameters

Default Switch
Description

provided, only
options relevant
to the tag will
be printed.

--session session
identifier

none Stop the
indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.4. Example Single Command Lines
Version Information
nsys -v

Effect: Prints tool version information to the screen.

Run with elevated privilege
sudo nsys profile <app>

Effect: Nsight Systems CLI (and target application) will run with elevated privilege.
This is necessary for some features, such as FTrace or system-wide CPU sampling. If you
don't want the target application to be elevated, use `--run-as` option.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 111

Default analysis run
nsys profile <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and
OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. With Nsight Systems Embedded Platforms Edition this will only analysis
the single process. With Nsight Systems Workstation Edition this will trace the process
tree. Generate the report#.nsys-rep file in the default location, incrementing the report
number if needed to avoid overwriting any existing output files.

Limited trace only run
nsys profile --trace=cuda,nvtx -d 20
 --sample=none --cpuctxsw=none -o my_test <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.nsys-rep in the current
working directory.

Delayed start run
nsys profile -e TEST_ONLY=0 -y 20
 <application> [application-arguments]

Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.nsys-rep
file in the default location, incrementing if needed to avoid overwriting any existing
output files.

Collect ftrace events
nsys profile --ftrace=drm/drm_vblank_event
 -d 20

Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.nsys-rep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:
sudo cat /sys/kernel/debug/tracing/available_events

Run GPU metric sampling on one TU10x
nsys profile --gpu-metrics-device=0
 --gpu-metrics-set=tu10x-gfxt <application>

Effect: Launch application. Collect default options and GPU metrics for the first GPU
(a TU10x), using the tu10x-gfxt metric set at the default frequency (10 kHz). Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 112

Run GPU metric sampling on all GPUs at a set frequency
nsys profile --gpu-metrics-device=all
 --gpu-metrics-frequency=20000 <application>

Effect: Launch application. Collect default options and GPU metrics for all available
GPUs using the first suitable metric set for each and sampling at 20 kHz. Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Collect CPU IP/backtrace and CPU context switch
nsys profile --sample=system-wide --duration=5

Effect: Collects both CPU IP/backtrace samples using the default backtrace mechanism
and traces CPU context switch activity for the whole system for 5 seconds. Note that it
requires root permission to run. No hardware or OS events are sampled. Post processing
of this collection will take longer due to the large number of symbols to be resolved
caused by system-wide sampling.

Get list of available CPU core events
nsys profile --cpu-core-events=help

Effect: Lists the CPU events that can be sampled and the maximum number of CPU
events that can be sampled concurrently.

Collect system-wide CPU events and trace application
nsys profile --event-sample=system-wide
 --cpu-core-events='1,2' --event-sampling-frequency=5 <app> [app args]

Effect:Collects CPU IP/backtrace samples using the default backtrace mechanism, traces
CPU context switch activity, and samples each CPU's “CPU Cycles” and “Instructions
Retired” event every 200 ms for the whole system. Note that it requires root permission
to run. Note that CUDA, NVTX, OpenGL, and OSRT within the app launched by
Nsight Systems are traced by default while using this command. Post processing of this
collection will take longer due to the large number of symbols to be resolved caused by
system-wide sampling.

Collect custom ETW trace using configuration file
nsys profile --etw-provider=file.JSON

Effect: Configure custom ETW collectors using the contents of file.JSON. Collect data for
20 seconds. Generate the report#.nsys-rep file in the current working directory.

A template JSON configuration file is located at in the Nsight Systems installation
directory as \target-windows-x64\etw_providers_template.json. This path will show up
automatically if you call
nsys profile --help

The level attribute can only be set to one of the following:

‣ TRACE_LEVEL_CRITICAL
‣ TRACE_LEVEL_ERROR
‣ TRACE_LEVEL_WARNING
‣ TRACE_LEVEL_INFORMATION
‣ TRACE_LEVEL_VERBOSE

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 113

The flags attribute can only be set to one or more of the following:

‣ EVENT_TRACE_FLAG_ALPC
‣ EVENT_TRACE_FLAG_CSWITCH
‣ EVENT_TRACE_FLAG_DBGPRINT
‣ EVENT_TRACE_FLAG_DISK_FILE_IO
‣ EVENT_TRACE_FLAG_DISK_IO
‣ EVENT_TRACE_FLAG_DISK_IO_INIT
‣ EVENT_TRACE_FLAG_DISPATCHER
‣ EVENT_TRACE_FLAG_DPC
‣ EVENT_TRACE_FLAG_DRIVER
‣ EVENT_TRACE_FLAG_FILE_IO
‣ EVENT_TRACE_FLAG_FILE_IO_INIT
‣ EVENT_TRACE_FLAG_IMAGE_LOAD
‣ EVENT_TRACE_FLAG_INTERRUPT
‣ EVENT_TRACE_FLAG_JOB
‣ EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS
‣ EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS
‣ EVENT_TRACE_FLAG_NETWORK_TCPIP
‣ EVENT_TRACE_FLAG_NO_SYSCONFIG
‣ EVENT_TRACE_FLAG_PROCESS
‣ EVENT_TRACE_FLAG_PROCESS_COUNTERS
‣ EVENT_TRACE_FLAG_PROFILE
‣ EVENT_TRACE_FLAG_REGISTRY
‣ EVENT_TRACE_FLAG_SPLIT_IO
‣ EVENT_TRACE_FLAG_SYSTEMCALL
‣ EVENT_TRACE_FLAG_THREAD
‣ EVENT_TRACE_FLAG_VAMAP
‣ EVENT_TRACE_FLAG_VIRTUAL_ALLOC

Typical case: profile a Python script that uses CUDA
nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
 --delay=60 python my_dnn_script.py

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan
nsys profile --trace=vulkan,osrt,nvtx
 --delay=60 ./myapp

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule
information.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 114

1.5. Example Interactive CLI Command Sequences
Collect from beginning of application, end manually
nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-
arguments]
nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and
NVTX as well as collection of thread schedule information. Stop only when explicitly
requested. Generate the report#.nsys-rep in the default location.

 Note:

If
you
start
a
collection
and
fail
to
stop
the
collection
(or
if
you
are
allowing
it
to
stop
on
exit,
and
the
application
runs
for
too
long)
your
system’s
storage
space
may
be
filled
with
collected
data
causing
significant
issues
for

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 115

the
system.
Nsight
Systems
will
collect
a
different
amount
of
data/
sec
depending
on
options,
but
in
general
Nsight
Systems
does
not
support
runs
of
more
than
5
minutes
duration.

Run application, begin collection manually, run until process ends
nsys launch -w true <application> [application-arguments]
nsys start

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the
report#.nsys-rep in the default location.

 Note:

If
you
launch
an
application
and
that
application
and
any
descendants
exit
before
start
is
called

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 116

Nsight
Systems
will
create
a
fully
formed .nsys-
rep
file
containing
no
data.

Run application, start/stop collection using cudaProfilerStart/Stop
nsys start -c cudaProfilerApi
nsys launch -w true <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as
a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,
when the user calls nsys stop, or when the root process terminates. Generate the
report#.nsys-rep in the default location.

 Note:

If
you
call
nsys
launch
before
nsys
start
-
c
cudaProfilerApi
and
the
code
contains
a
large
number
of
short
duration
cudaProfilerStart/
Stop
pairs,
Nsight
Systems
may
be
unable
to
process
them
correctly,

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 117

causing
a
fault.
This
will
be
corrected
in
a
future
version.

 Note:

The
Nsight
Systems
CLI
does
not
support
multiple
calls
to
the
cudaProfilerStart/
Stop
API
at
this
time.

Run application, start/stop collection using NVTX
nsys start -c nvtx
nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.nsys-rep in the default location.

 Note:

The
Nsight
Systems
CLI
only
triggers
the
profiling
session
for
the
first

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 118

capture
range.

NVTX capture range can be specified:

‣ Message@Domain: All ranges with given message in given domain are capture
ranges. For example:
nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

‣ Message@*: All ranges with given message in all domains are capture ranges. For
example:
nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

‣ Message: All ranges with given message in default domain are capture ranges. For
example:
nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

‣ By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX_PROFILER_REGISTER_ONLY=0 environment:
nsys launch -w true -p profiler@service -e
 NSYS_NVTX_PROFILER_REGISTER_ONLY=0 ./app

 Note:

The
separator
'@'
can
be
escaped
with
backslash
'\'.
If
multiple
separators
without
escape
character
are
specified,
only
the
last
one
is
applied,
all
others

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 119

are
discarded.

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.
nsys launch <application> [application-arguments]
nsys start
nsys stop
nsys start
nsys stop
nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in the
current working directory. Collect data from second start until the second stop request,
generate report#.nsys-rep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

 Note:

Calling
nsys
cancel
after
nsys
start
will
cancel
the
collection
without
generating
a
report.

1.6. Example Stats Command Sequences
Display default statistics

nsys stats report1.nsys-rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming it
does not already exist). Print the default reports in column format to the console.

Note: The following two command sequences should present very similar information:

nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats report1.nsys-rep

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 120

Display specific data from a report

nsys stats --report cuda_gpu_trace report1.nsys-rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming it
does not already exist). Print the report generated by the cuda_gpu_trace script to the
console in column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report cuda_gpu_trace --report cuda_gpu_kern_sum --
report cuda_api_sum --format csv,column --output .,- report1.nsys-
rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming it
does not already exist). Generate three reports. The first, the cuda_gpu_trace report,
will be output to the file report1_cuda_gpu_trace.csv in CSV format. The other two
reports, cuda_gpu_kern_sum and cuda_api_sum, will be output to the console as
columns of data. Although three reports were given, only two formats and outputs are
given. To reconcile this, both the list of formats and outputs is expanded to match the list
of reports by repeating the last element.

Submit report data to a command

nsys stats --report cuda_api_sum --format table \ --output @“grep -E
(-|Name|cudaFree” test.sqlite

Effect: Open test.sqlite and run the cuda_api_sum script on that file. Generate table
data and feed that into the command grep -E (-|Name|cudaFree). The grep
command will filter out everything but the header, formatting, and the cudaFree data,
and display the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped
to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

1.7. Example Output from --stats Option
The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 121

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

If your run traces OS runtime events or NVTX push-pop ranges:

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 122

If your run traces graphics debug markers these include DX11 debug markers, DX12
debug markers, Vulkan debug markers or KHR debug markers:

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 123

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

1.8. Importing and Viewing Command Line Results
Files
The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .nsys-rep
file. Use this .nsys-rep file when re-opening the result on the same machine, opening the
result on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .nsys-rep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .nsys-rep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 124

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Importing Windows ETL files

For Windows targets, ETL files captured with Xperf or the log.cmd command supplied
with GPUView in the Windows Performance Toolkit can be imported to create reports
as if they were captured with Nsight Systems's "WDDM trace" and "Custom ETW trace"
features. Simply choose the .etl file from the Import dialog to convert it to a .nsys-rep
file.

Create .nsys-rep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .nsys-
rep file. This .nsys-rep file can then be opened in the same version or more recent
versions of the GUI.

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or macOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information
about available
options and their
parameters.

-v --version Output
QdstrmImporter
version information

-i --input-file filename or path Import .qdstrm file
from this location.

-o --output-file filename or path Provide a different
file name or path for
the resulting .nsys-

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 125

Short Long Parameter Description

rep file. Default is
the same name and
path as the .qdstrm
file

1.9. Using the CLI to Analyze MPI Codes

1.9.1. Tracing MPI API calls
The Nsight Systems CLI has built-in API trace support for Open MPI and MPICH based
MPI implementations via --trace=mpi. It traces a subset of the MPI API, including
blocking and non-blocking point-to-point and collective communication as well as MPI
one-sided communication, file I/O and pack operations (see MPI functions traced).

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, you can use the NVTX wrappers for MPI on GitHub. Choose an
NVTX domain name other than "MPI", since it is filtered out by Nsight Systems when
MPI tracing is not enabled. Use the NVTX-instrumented MPI wrapper library as follows:

nsys profile -e LD_PRELOAD=${PATH_TO_YOUR_NVTX_MPI_LIB} --trace=nvtx

1.9.2. Using the CLI to Profile Applications Launched
with mpirun
The Nsight Systems CLI supports concurrent use of the nsys profile command.
Each instance will create a separate report file. You cannot use multiple instances of the
interactive CLI concurrently, or use the interactive CLI concurrently with nsys profile
in this version.

Nsight Systems can be used to profile applications launched with mpirun or mpiexec.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLI.

Profile all MPI ranks on a single node: nsys can be prefixed before mpirun/mpiexec.
Only a single report file will be created.
nsys [nsys options] mpirun [mpirun options]

Profile multi-node runs: nsys profile has to be prefixed before the program to be
profiled. One report file will be created for each MPI rank. This works also for single-
node runs.
mpirun [mpirun options] nsys profile [nsys options]

You can use %q{OMPI_COMM_WORLD_RANK} (Open MPI), %q{PMI_RANK} (MPICH) or
%q{SLURM_PROCID} (Slurm) with the -o option to appropriately name the report files.

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 126

Profile a single MPI process or a subset of MPI processes: Use a wrapper script similar
to the following script (called "profile_rank0.sh").
#!/bin/bash

Use $PMI_RANK for MPICH and $SLURM_PROCID with srun.
if [$OMPI_COMM_WORLD_RANK -eq 0]; then
 nsys profile -e NSYS_MPI_STORE_TEAMS_PER_RANK=1 -t mpi "$@"
else
 "$@"
fi

The script runs nsys on rank 0 only. Add appropriate profiling options to the script and
execute it with mpirun [mpirun options] ./profile_rank0.sh ./myapp [app
options].

 Note:

If
only
a
subset
of
MPI
ranks
is
profiled,
set
the
environment
variable
NSYS_MPI_STORE_TEAMS_PER_RANK=1
to
store
all
members
of
custom
MPI
communicators
per
MPI
rank.
Otherwise,
the
execution
might
hang
or
fail
with
an
MPI
error.

Avoid redundant GPU and NIC metrics collection: If multiple instances of nsys
profile are executed concurrently on the same node and GPU and/or NIC metrics
collection is enabled, each process will collect metrics for all available NICs and tries to

Profiling from the CLI

www.nvidia.com
User Guide v2023.3.1 | 127

collect GPU metrics for the specified devices. This can be avoided with a simple bash
script similar to the following:
#!/bin/bash

Use $SLURM_LOCALID with srun.
if [$OMPI_COMM_WORLD_LOCAL_RANK -eq 0]; then
 nsys profile --nic-metrics=true --gpu-metrics-device=all "$@"
else
 nsys profile "$@"
fi

This above script will collect NIC and GPU metrics only for one rank, the node-local
rank 0. Alternatively, if one rank per GPU is used, the GPU metrics devices can be
specified based on the node-local rank in a wrapper script as follows:
#!/bin/bash

Use $SLURM_LOCALID with srun.
nsys profile -e CUDA_VISIBLE_DEVICES=${OMPI_COMM_WORLD_LOCAL_RANK} \
 --gpu-metrics-device=${OMPI_COMM_WORLD_LOCAL_RANK} "$@"

www.nvidia.com
User Guide v2023.3.1 | 128

Chapter 2.
PROFILING FROM THE GUI

2.1. Profiling Linux Targets from the GUI

2.1.1. Connecting to the Target Device
Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

On Tegra:

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 129

The dialog has simple controls that allow adding, removing, and modifying connections:

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:
PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:
sudo firewall-cmd --list-ports --permanent
sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:
sudo firewall-cmd --permanent --add-port 45555/tcp
sudo firewall-cmd --reload

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 130

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:
cat /proc/quadd/version

Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

2.1.2. System-Wide Profiling Options

2.1.2.1. Linux x86_64
System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

Choose which events you would like to collect.

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 131

 Note:

Ftrace
profiling
option
will
not
be
displayed
in
the
GUI
unless
you
are
running
with
sudo.
Also
be
aware
that
enabling
too
many
options
can
cause
significant
setup/
teardown
overhead.

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 132

GPU Context Switch Trace

Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

Here is a screenshot showing three CUDA kernels running simultaneously in three
different CUDA contexts on a single GPU.

2.1.2.2. Linux for Tegra

Trace all processes – On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events
from all tasks will be recorded.

Collect PMU counters – This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

2.1.3. Target Sampling Options
Target sampling behavior is somewhat different for Nsight Systems Workstation Edition
and Nsight Systems Embedded Platforms Edition.

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 133

Target Sampling Options for Workstation

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have
limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled
with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 134

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
fixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread
context switches and infers thread state as either Running or Blocked. Note that
Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

2.1.4. Hotkey Trace Start/Stop
Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 135

The default hotkey is F12.

2.1.5. Launching Processes
Nsight Systems can launch new processes for profiling on target devices. Profiler
ensures that all environment variables are set correctly to successfully collect trace
information

The Edit arguments link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces
or quotes.

Specify additional environment variables
Nsight Systems can add extra environment variables to existing variables for the profiled
process.

Profiling from the GUI

www.nvidia.com
User Guide v2023.3.1 | 136

2.3. Profiling QNX Targets from the GUI
Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

‣ Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

‣ CUDA support is limited to CUDA 9.0+
‣ Filesystem on QNX device might be mounted read-only. In that case Nsight Systems

is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && ls -l /xx

2.2. User Guide
NVIDIA Nsight Systems user guide.

www.nvidia.com
User Guide v2023.3.1 | 137

Chapter 3.
CONTAINER SUPPORT ON LINUX SERVERS

Collecting data within a Docker container

While examples in this section use Docker container semantics, other containers work
much the same.

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

We strongly recommend using the CLI to profile in a container. Best container practice
is to split services across containers when they do not require colocation. The Nsight
Systems GUI is not needed to profile and brings in many dependencies, so the CLI is
recommended. If you wish the GUI can be in a separate side-car container you use after
to view your report. All you need is a shared folder between the containers. See section
on GUI VNC Container below for more information.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:
$ grep CONFIG_SECCOMP= /boot/config-$(uname -r)

The official Docker documentation says:
"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
 Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
 must download the latest static Linux binaries (rather than packages)."

https://docs.docker.com
https://docs.docker.com

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 138

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event_open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default_with_perf.json.
{
 "name": "perf_event_open",
 "action": "SCMP_ACT_ALLOW",
 "args": []
},

Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.
--security-opt seccomp=default_with_perf.json

Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:
sudo nvidia-docker run --network=host --security-opt
 seccomp=default_with_perf.json --rm -ti caffe-demo2 bash

There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

GUI VNC container
Nsight Systems provides a build script to build a self isolated Docker container with the
Nsight Systems GUI and VNC server.

You can find the build.py script in the host-linux-x64/Scripts/VncContainer
directory (or similar on other architectures) under your Nsight Systems installation
directory. You will need to have Docker, and Python 3.5 or later.

Available Parameters

Short Name Full Name Description

--vnc-password (optional) Default
password for VNC access
(at least 6 characters). If it
is specified and empty -
will be asked during the
build. Can be changed
when running a container.

-aba --additional-build-
arguments

(optional) Additional
arguments, which will be

https://www.docker.com

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 139

Short Name Full Name Description

passed to the "docker build"
command.

-hd --nsys-host-directory (optional) The directory
with Nsight Systems host
binaries (with GUI).

-td --nsys-target-directory (optional, repeatable) The
directory with Nsight
Systems target binaries
(can be specified multiple
times).

--tigervnc (optional) Use TigerVNC
instead of x11vnc.

--http (optional) Install noVNC
in the Docker container for
HTTP access.

--rdp (optional) Install xRDP in
the Docker for RDP access.

--geometry (optional) Default VNC
server resolution in the
format WidthxHeight
(default 1920x1080).

--build-directory (optional) The directory to
save temporary files (with
the write access for the
current user). By default,
script or tmp directory will
be used.

Ports

These ports can be published from the container to provide access to the Docker
container:

Port Purpose Condition

TCP 5900 Port for VNC access

TCP 80 (optional) Port for HTTP access to
noVNC server

Container is build with "--
http" parameter

TCP 3389 (optional) Port for RDP access Container is build with "--
rdp" parameter

Volumes

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 140

Docker folder Purpose Description

/mnt/host Root path for shared folders Folder owned by the
Docker user (inner content
can be accessed from
Nsight Systems GUI)

/mnt/host/Projects Folder with projects and
reports, created by Nsight
Systems UI in container

/mnt/host/logs Folder with inner services
logs

May be useful to send
reports to developers

Environment variables

Variable Name Purpose

VNC_PASSWORD Password for VNC access (at least 6
characters)

NSYS_WINDOW_WIDTH Width of VNC server display (in pixels)

NSYS_WINDOW_HEIGHT Height of VNC server display (in pixels)

Examples

With VNC access on port 5916:
sudo docker run -p 5916:5900/tcp -ti nsys-ui-vnc:1.0

With VNC access on port 5916 and HTTP access on port 8080:
sudo docker run -p 5916:5900/tcp -p 8080:80/tcp -ti nsys-ui-vnc:1.0

With VNC access on port 5916, HTTP access on port 8080 and RDP access on port 33890:
sudo docker run -p 5916:5900/tcp -p 8080:80/tcp -p 33890:3389/tcp -ti nsys-ui-
vnc:1.0

With VNC access on port 5916, shared "HOME" folder from the host, VNC server
resolution 3840x2160, and custom VNC password
sudo docker run -p 5916:5900/tcp -v $HOME:/mnt/host/home -e
 NSYS_WINDOW_WIDTH=3840 -e NSYS_WINDOW_HEIGHT=2160 -e VNC_PASSWORD=7654321 -ti
 nsys-ui-vnc:1.0

With VNC access on port 5916, shared "HOME" folder from the host, and the projects
folder to access reports created by Nsight Systems GUI in container
sudo docker run -p 5916:5900/tcp -v $HOME:/mnt/host/home -v /opt/NsysProjects:/
mnt/host/Projects -ti nsys-ui-vnc:1.0

GUI WebRTC container
Instructions for creating a self-isolated Docker container for accessing Nsight Systems
through browser using WebRTC.

Prerequisites

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 141

‣ x86_64 Linux
‣ Docker
‣ Internet access for downloading Ubuntu packages inside the container.

Build

To build the docker container use the follwing command:
$ sudo ./setup/build-docker.sh

The above command will create a docker image, which can be run using ./start-nsys.sh

Build environment variables

Following environment variables can be used to configure build parameters.

Variable Description Default Value

USERNAME User name for NVIDIA
Nsight Systems GUI.
Password can be set on
container start

nvidia

Additional docker build arguments

Additional Docker Build arguments may be passed to the build-docker.sh. For example:
$ sudo ./setup/build-docker.sh --network=host

Run

To run the docker container:
$ sudo ./start-nsys.sh

At the end of start-nsys.sh it will provide you with a URL to connect to the WebRTC
client. It will look something like http://$HOST_IP:8080/. You can use this address in
your browser to access Nsight Systems GUI interface.

Additional docker run arguments

Additional Docker Run arguments may be passed to the start-nsys.sh. These
argument can be used to mount host directories with Nsight Systems reports to the
docker container. For example:
$ sudo ./start-nsys.sh -v $HOME:/mnt/host/home -v /myawesomereports:/mnt/host/
myawesomereports

Runtime environment variables

Runtime environment variables can be used to configure runtime parameters.

Variable Description Default Value

PASSWORD Password for WebUI.
Username can be set only
on the build step

nvidia

HOST_IP IP of the server that will
be sent to client. This IP
should be accessible from

The IP address of the first
available network interface.

https://docs.docker.com/engine/install
https://docs.docker.com/engine/reference/commandline/build
https://docs.docker.com/engine/reference/commandline/run

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 142

Variable Description Default Value

the client side to establish
client/server connection.

HTTP_PORT Port for HTTP access
to Nsight System user
interface.

8080

CONNECTION_UDP_PORT UDP port which will be
used for handling the
incoming connection.

8081

FALLBACK_CONNECTION_TCP_PORTTCP port which will be
used for handling the
incoming connection in
case of connection failure
over TCP (can be the
same port number as
CONNECTION_UDP_PORT).

8081

SCREEN Resolution and refresh
rate of the screen used for
rendering.

1920x1080@30

USE_OPENH264_BUILD_CACHESetting this option to
false disables caching
of openh264 binaries. It
should be reenabled on
each container start.

true

OPENH264_BUILD_CACHE_VOLUME_NAMEDirectory or docker volume
name for openh264 binaries
cache.

nvidia-devtools-streamer-
openh264-volume

Video encoding

By default, the container uses the VP8 codec for video streaming. For an improved
experience, the H.264 codec can be enabled.

‣ If internet is available to download the required libraries:
$ sudo docker exec nvidia-devtools-streamer /setup/enable-h264-streaming.sh

If USE_OPENH264_BUILD_CACHE was not set to false, openh264 binaries will be
cached in OPENH264_BUILD_CACHE_VOLUME_NAME and H.264 codec will be
used during future launches of the container.

Currently, only software encoding is supported.
‣ If internet is not available:

$ sudo -- sh -c 'MY_IMAGE_NAME=my-openh264-nsys-streamer:1.0
 USE_OPENH264_BUILD_CACHE=false ./start-nsys.sh && docker exec nvidia-
devtools-streamer /setup/enable-h264-streaming.sh && docker commit nvidia-
devtools-streamer $MY_IMAGE_NAME && docker save -o my-openh264-nsys-
streamer.tar $MY_IMAGE_NAME'

Container Support on Linux Servers

www.nvidia.com
User Guide v2023.3.1 | 143

As a result, my-openh264-nsys-streamer.tar will contain the image with
enabled H.264 codec. This file should be transferred to the target machine without
internet access. Then, on a machine without internet access, the container can be
started using the following command:
$ sudo -- sh -c 'CONTAINER_IMAGE=my-openh264-nsys-streamer:1.0
 USE_OPENH264_BUILD_CACHE=false docker load -i my-openh264-nsys-streamer.tar
 && ./start-nsys.sh'

Volumes

Docker folder Purpose Description

/mnt/host/logs Folder with inner services
logs

May be useful to send
reports to NVIDIA
developer

Example

To run the container on 10.10.10.10 network interface, using 8000 HTTP port, 8888
connection port, without caching openh264 binaries:
$ sudo HOST_IP=10.10.10.10 HTTP_PORT=8000 CONNECTION_UDP_PORT=8888
 USE_OPENH264_BUILD_CACHE=false ./start-nsys.sh

www.nvidia.com
User Guide v2023.3.1 | 144

Chapter 4.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command
The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options
After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.
nsys nvprof [options]

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--annotate-mpi off, openmpi, mpich --trace=mpi AND --
mpi-impl

Automatically
annotate MPI
calls with
NVTX markers.
Specify the MPI

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2023.3.1 | 145

Switch Parameters (Default
in Bold)

nsys switch Switch Description

implementation
installed on
your machine.
Only OpenMPI
and MPICH
implementations are
supported.

--cpu-thread-tracing on, off --trace=osrt Collect information
about CPU thread
API activity.

--profile-api-trace none, runtime,
driver,all

--trace=cuda Turn on/off CUDA
runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime
and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start on, off if off use --capture-
range=cudaProfilerApi

Enable/disable
profiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Start,Stop}
to turn on/off
profiling.

-t,--timeout <nanoseconds>
default=0

--duration=seconds If greater than
0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting
immediately.

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2023.3.1 | 146

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--cpu-profiling on, off --sampling=cpu Turn on/off CPU
profiling

--openacc-profiling on, off --trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-o, --export-profile <filename> --output={filename}
and/or --
export=sqlite

Export named file
to be imported
or opened in the
Nsight Systems
GUI. %q{ENV_VAR}
in string will be
replaced with
the set value of
the environment
variable. If not set
this is an error.
%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string
is not supported
currently. Any other
character following
% is illegal. The
default is report1,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2023.3.1 | 147

Switch Parameters (Default
in Bold)

nsys switch Switch Description

-f, --force-overwrite --force-
overwrite=true

Force overwriting
all output files with
same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps
NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
User Guide v2023.3.1 | 148

Chapter 5.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

5.1. D3D11 API trace
Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

5.2. D3D12 API Trace
Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

www.nvidia.com
User Guide v2023.3.1 | 149

The Command List Creation row displays time periods when command lists
were being created. This enables developers to improve their application’s multi-
threaded command list creation. Command list creation time period is measured
between the call to ID3D12GraphicsCommandList::Reset and the call to
ID3D12GraphicsCommandList::Close.

The GPU row shows a compressed view of the D3D12 queue activity, color-coded by the
queue type. Expanding it will show the individual queues and their corresponding API
calls.

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

The DX12 API Memory Ops row displays all API memory operations and non-persistent
resource mappings. Event ranges in the row are color-coded by the heap type they
belong to (Default, Readback, Upload, Custom, or CPU-Visible VRAM), with usage
warnings highlighted in yellow. A breakdown of the operations can be found by
expanding the row to show rows for each individual heap type.

Direct3D Trace

www.nvidia.com
User Guide v2023.3.1 | 150

The following operations and warnings are shown:

‣ Calls to ID3D12Device::CreateCommittedResource,
ID3D12Device4::CreateCommittedResource1, and
ID3D12Device8::CreateCommittedResource2

‣ A warning will be reported if D3D12_HEAP_FLAG_CREATE_NOT_ZEROED is not
set in the method's HeapFlags parameter

‣ Calls to ID3D12Device::CreateHeap and ID3D12Device4::CreateHeap1

‣ A warning will be reported if D3D12_HEAP_FLAG_CREATE_NOT_ZEROED is not
set in the Flags field of the method's pDesc parameter

‣ Calls to ID3D12Resource::ReadFromSubResource

‣ A warning will be reported if the read is to a
D3D12_CPU_PAGE_PROPERTY_WRITE_COMBINE CPU page or from a
D3D12_HEAP_TYPE_UPLOAD resource

‣ Calls to ID3D12Resource::WriteToSubResource

‣ A warning will be reported if the write is from a
D3D12_CPU_PAGE_PROPERTY_WRITE_BACK CPU page or to a
D3D12_HEAP_TYPE_READBACK resource

‣ Calls to ID3D12Resource::Map and ID3D12Resource::Unmap will be matched
into [Map, Unmap] ranges for non-persistent mappings. If a mapping range is
nested, only the most external range (reference count = 1) will be shown.

The API row displays time periods where
ID3D12CommandQueue::ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

Direct3D Trace

www.nvidia.com
User Guide v2023.3.1 | 151

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

Clicking on a GPU workload highlights the corresponding
ID3D12CommandQueue::ExecuteCommandLists,
ID3D12GraphicsCommandList::Reset and ID3D12GraphicsCommandList::Close
API calls, and vice versa.

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

‣ The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

‣ The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

‣ The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

Direct3D Trace

www.nvidia.com
User Guide v2023.3.1 | 152

www.nvidia.com
User Guide v2023.3.1 | 153

Chapter 6.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated
with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

Enabling the "Collect additional range of ETW events" option will also capture extended
DxgKrnl events from the Microsoft-Windows-DxgKrnl provider, such as context
status, allocations, sync wait, signal events, etc.

A command buffer in a WDDM queues may have one the following types:

‣ Render
‣ Deferred
‣ System
‣ MMIOFlip
‣ Wait
‣ Signal
‣ Device
‣ Software

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

WDDM Queues

www.nvidia.com
User Guide v2023.3.1 | 154

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2023.3.1 | 155

Chapter 7.
WDDM HW SCHEDULER

When GPU Hardware Scheduling is enabled in Windows 10 or newer version, the
Windows Display Driver Model (WDDM) uses the DxgKrnl ETW provider to expose
report of NVIDIA GPUs' hardware scheduling context switches.

Nsight Systems can capture these context switch events, and display under the GPUs in
the timeline rows titled WDDM HW Scheduler - [HW Queue type]. The ranges under
each queue will show the process name and PID assoicated with the GPU work during
the time period.

The events will be captured if GPU Hardware Scheduling is enabled in the Windows
System Display settings, and "Collect WDDM Trace" is enabled in the Nsight Systems
Project Settings.

www.nvidia.com
User Guide v2023.3.1 | 156

Chapter 8.
VULKAN API TRACE

8.1. Vulkan Overview
Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan API is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

https://www.khronos.org/vulkan/

Vulkan API Trace

www.nvidia.com
User Guide v2023.3.1 | 157

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmit was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Clicking on a GPU workload highlights the corresponding vkQueueSubmit call, and
vice versa.

The Vulkan Memory Operations row contains an aggregation of all the Vulkan host-
side memory operations, such as host-blocking writes and reads or non-persistent map-
unmap ranges.

The row is separated into sub-rows by heap index and memory type - the tooltip for
each row and the ranges inside show the heap flags and the memory property flags.

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt

Vulkan API Trace

www.nvidia.com
User Guide v2023.3.1 | 158

8.2. Pipeline Creation Feedback
When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

8.3. Vulkan GPU Trace Notes
‣ Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.
‣ The endings of Vulkan Command Buffers execution ranges on Compute and

Transfer queues may appear earlier on the timeline than their actual occurrence.

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

www.nvidia.com
User Guide v2023.3.1 | 159

Chapter 9.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

9.1. FPS Overview
The Frame Duration section displays frame durations on both the CPU and the GPU.

The frame duration row displays live FPS statistics for the current timeline viewport.
Values shown are:

 1. Number of CPU frames shown of the total number captured
 2. Average, minimal, and maximal CPU frame time of the currently displayed time

range
 3. Average FPS value for the currently displayed frames
 4. The 99th percentile value of the frame lengths (such that only 1% of the frames in the

range are longer than this value).

The values will update automatically when scrolling, zooming or filtering the timeline
view.

Stutter Analysis

www.nvidia.com
User Guide v2023.3.1 | 160

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

 1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference > 20%, absolute difference < 4 ms)

 2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference > 4 ms)

 3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference > 4 ms, both conditions met)

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

 1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

 2. Calculate the delta and ratio between 1st and 3rd quartiles.
 3. If the 90th percentile of 3rd – 1st quartile delta array > 4 ms AND the 90th percentile

of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

Stutter Analysis

www.nvidia.com
User Guide v2023.3.1 | 161

Frame duration bars are color coded:

‣ Green, the frame duration is shorter than required by the target FPS ratio.
‣ Yellow, duration is slightly longer than required by the target FPS rate.
‣ Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

‣ The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

‣ The D3D11 and D3D12 frame boundaries are IDXGISwapChainX::Present calls.
‣ The Vulkan frame boundaries are vkQueuePresentKHR calls.

The timing of the actual calls to the frame boundary calls can be seen in the blue bar at
the bottom of the CPU frame duration row

The GPU Frame Duration row displays the time measured between

‣ The start time of the first GPU workload execution of this frame.
‣ The start time of the first GPU workload execution of the next frame.

Reflex SDK

NVIDIA Reflex SDK is a series of NVAPI calls that allow applications to integrate the
Ultra Low Latency driver feature more directly into their game to further optimize
synchronization between simulation and rendering stages and lower the latency
between user input and final image rendering. For more details about Reflex SDK, see
Reflex SDK Site.

Nsight Systems will automatically capture NVAPI functions when either Direct3D 11,
Direct3D 12, or Vulkan API trace are enabled.

The Reflex SDK row displays timeline ranges for the following types of latency markers:

‣ RenderSubmit.
‣ Simulation.
‣ Present.

https://developer.nvidia.com/reflex/

Stutter Analysis

www.nvidia.com
User Guide v2023.3.1 | 162

‣ Driver.
‣ OS Render Queue.
‣ GPU Render.

Performance Warnings row

This row shows performance warnings and common pitfalls that are automatically
detected based on the enabled capture types. Warnings are reported for:

‣ ETW performance warnings
‣ Vulkan calls to vkQueueSubmit and D3D12 calls to

ID3D12CommandQueue::ExecuteCommandList that take a longer time to execute
than the total time of the GPU workloads they generated

‣ D3D12 Memory Operation warnings
‣ Usage of Vulkan API functions that may adversely affect performance
‣ Creation of a Vulkan device with memory zeroing, whether by physical device

default or manually
‣ Vulkan command buffer barrier which can be combined or removed, such as

subsequent barriers or read-to-read barriers

Stutter Analysis

www.nvidia.com
User Guide v2023.3.1 | 163

9.2. Frame Health
The Frame Health row displays actions that took significantly a longer time during
the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

9.3. GPU Memory Utilization
The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

9.4. Vertical Synchronization
The VSYNC rows display when the monitor's vertical synchronizations occur.

www.nvidia.com
User Guide v2023.3.1 | 164

Chapter 10.
OPENMP TRACE

Nsight Systems for Linux is capable of capturing information about OpenMP events.
This functionality is built on the OpenMP Tools Interface (OMPT), full support is
available only for runtime libraries supporting tools interface defined in OpenMP 5.0 or
greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

Only a subset of the OMPT callbacks are processed:
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback_sync_region
ompt_callback_task_create
ompt_callback_task_schedule
ompt_callback_implicit_task
ompt_callback_master
ompt_callback_reduction
ompt_callback_task_create
ompt_callback_cancel
ompt_callback_mutex_acquire, ompt_callback_mutex_acquired
ompt_callback_mutex_acquired, ompt_callback_mutex_released
ompt_callback_mutex_released
ompt_callback_work
ompt_callback_dispatch
ompt_callback_flush

 Note:

The
raw
OMPT
events
are

OpenMP Trace

www.nvidia.com
User Guide v2023.3.1 | 165

used
to
generate
ranges
indicating
the
runtime
of
OpenMP
operations
and
constructs.

Example screenshot:

www.nvidia.com
User Guide v2023.3.1 | 166

Chapter 11.
OS RUNTIME LIBRARIES TRACE

On Linux, OS runtime libraries can be traced to gather information about low-level
userspace APIs. This traces the system call wrappers and thread synchronization
interfaces exposed by the C runtime and POSIX Threads (pthread) libraries. This
does not perform a complete runtime library API trace, but instead focuses on the
functions that can take a long time to execute, or could potentially cause your thread be
unscheduled from the CPU while waiting for an event to complete. OS runtime trace is
not available for Windows targets.

OS runtime tracing complements and enhances sampling information by:

 1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

 2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling:

‣ Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

‣ In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

 3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2023.3.1 | 167

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
the timeline. We strongly encourage you to skip OS runtime libraries call shorter than 1
μs.

11.1. Locking a Resource
The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.
pthread_mutex_lock
pthread_rwlock_rdlock
pthread_rwlock_wrlock
pthread_spin_lock
sem_wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

11.2. Limitations
‣ Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able

to trace syscall invoked through assembly code.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2023.3.1 | 168

‣ Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

‣ It is not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 μs will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

‣ It is required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

11.3. OS Runtime Libraries Trace Filters
The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2023.3.1 | 169

11.4. OS Runtime Default Function List
Libc system call wrappers
accept
accept4
acct
alarm
arch_prctl
bind
bpf
brk
chroot
clock_nanosleep
connect
copy_file_range
creat
creat64
dup
dup2
dup3
epoll_ctl
epoll_pwait
epoll_wait
fallocate
fallocate64
fcntl
fdatasync
flock
fork
fsync
ftruncate
futex
ioctl
ioperm
iopl
kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount
move_pages
mprotect
mq_notify
mq_open
mq_receive
mq_send
mq_timedreceive
mq_timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
open64
openat
openat64
pause
pipe
pipe2
pivot_root
poll
ppoll
prctl
pread
pread64
preadv
preadv2
preadv64
process_vm_readv
process_vm_writev
pselect6
ptrace
pwrite
pwrite64
pwritev
pwritev2
pwritev64
read
readv
reboot
recv
recvfrom
recvmmsg
recvmsg
rt_sigaction
rt_sigqueueinfo
rt_sigsuspend
rt_sigtimedwait
sched_yield
seccomp
select
semctl
semget
semop
semtimedop
send
sendfile
sendfile64
sendmmsg
sendmsg
sendto
shmat
shmctl
shmdt
shmget
shutdown
sigaction
sigsuspend
sigtimedwait
socket
socketpair
splice
swapoff
swapon
sync
sync_file_range
syncfs
tee
tgkill
tgsigqueueinfo
tkill
truncate
umount2
unshare
uselib
vfork
vhangup
vmsplice
wait
wait3
wait4
waitid
waitpid
write
writev
_sysctl

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2023.3.1 | 170

POSIX Threads
pthread_barrier_wait
pthread_cancel
pthread_cond_broadcast
pthread_cond_signal
pthread_cond_timedwait
pthread_cond_wait
pthread_create
pthread_join
pthread_kill
pthread_mutex_lock
pthread_mutex_timedlock
pthread_mutex_trylock
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_wrlock
pthread_spin_lock
pthread_spin_trylock
pthread_timedjoin_np
pthread_tryjoin_np
pthread_yield
sem_timedwait
sem_trywait
sem_wait

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2023.3.1 | 171

I/O
aio_fsync
aio_fsync64
aio_suspend
aio_suspend64
fclose
fcloseall
fflush
fflush_unlocked
fgetc
fgetc_unlocked
fgets
fgets_unlocked
fgetwc
fgetwc_unlocked
fgetws
fgetws_unlocked
flockfile
fopen
fopen64
fputc
fputc_unlocked
fputs
fputs_unlocked
fputwc
fputwc_unlocked
fputws
fputws_unlocked
fread
fread_unlocked
freopen
freopen64
ftrylockfile
fwrite
fwrite_unlocked
getc
getc_unlocked
getdelim
getline
getw
getwc
getwc_unlocked
lockf
lockf64
mkfifo
mkfifoat
posix_fallocate
posix_fallocate64
putc
putc_unlocked
putwc
putwc_unlocked

Miscellaneous
forkpty
popen
posix_spawn
posix_spawnp
sigwait
sigwaitinfo
sleep
system
usleep

www.nvidia.com
User Guide v2023.3.1 | 172

Chapter 12.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.

The following features are supported:

‣ Domains
nvtxDomainCreate(), nvtxDomainDestroy()

nvtxDomainRegisterString()

‣ Push-pop ranges (nested ranges that start and end in the same thread).
nvtxRangePush(), nvtxRangePushEx()

nvtxRangePop()

nvtxDomainRangePushEx()

nvtxDomainRangePop()

‣ Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart(), nvtxRangeStartEx()

nvtxRangeEnd()

nvtxDomainRangeStartEx()

nvtxDomainRangeEnd()

‣ Marks
nvtxMark(), nvtxMarkEx()

nvtxDomainMarkEx()

‣ Thread names
nvtxNameOsThread()

‣ Categories
nvtxNameCategory()

nvtxDomainNameCategory()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVTX documentation.

https://nvidia.github.io/NVTX/

NVTX Trace

www.nvidia.com
User Guide v2023.3.1 | 173

To use NVTX in your application, follow these steps:

 1. Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

 2. Add the following compiler flag: -ldl
 3. Add calls to the NVTX API functions. For example, try adding

nvtxRangePush("main") in the beginning of the main() function, and
nvtxRangePop() just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

 4. In the project settings, select the Collect NVTX trace checkbox.

In addition, by enabling the "Insert NVTX Marker hotkey" option it is possible to add
NVTX markers to a running non-console applications by pressing the F11 key. These will
appear in the report under the NVTX Domain named "HotKey markers".

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

 Note:

Range
annotations
should
be
matched
carefully.
If
many
ranges
are
opened
but
not
closed,
Nsight
Systems
has
no
meaningful
way
to
visualize
it.
A
rule
of
thumb

http://github.com/NVIDIA/NVTX

NVTX Trace

www.nvidia.com
User Guide v2023.3.1 | 174

is
to
not
have
more
than
a
couple
dozen
ranges
open
at
any
point
in
time.
Nsight
Systems
does
not
support
reports
with
many
unclosed
ranges.

NVTX Domains and Categories

NVTX domains enable scoping of annotations. Unless specified differently, all events
and annotations are in the default domain. Additionally, categories can be used to group
events.

Nsight Systems gives the user the ability to include or exclude NVTX events from a
particular domain. This can be especially useful if you are profiling across multiple
libraries and are only interested in nvtx events from some of them.

This functionality is also available from the CLI. See the CLI documentation for --nvtx-
domain-include and --nvtx-domain-exclude for more details.

Categories that are set in by the user will be recognized and displayed in the GUI.

NVTX Trace

www.nvidia.com
User Guide v2023.3.1 | 175

www.nvidia.com
User Guide v2023.3.1 | 176

Chapter 13.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

‣ CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

‣ CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
‣ CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

‣ CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

‣ On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 177

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

For Nsight Systems Embedded Platforms Edition this looks like:

Additional configuration parameters are available:

‣ Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

‣ Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 178

cudaDeviceReset(), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

‣ Skip some API calls — avoids tracing insignificant CUDA Runtime
API calls (namely, cudaConfigureCall(), cudaSetupArgument(),
cudaHostGetDevicePointers()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

‣ Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

‣ Collect Unified Memory CPU page faults - collects information on page faults that
occur when CPU code tries to access a memory page that resides on the device. See
section on Unified Memory CPU Page Faults in the Unified Memory Transfer
Trace documentation below.

‣ Collect Unified Memory GPU page faults - collects information on page faults that
occur when GPU code tries to access a memory page that resides on the CPU. See
section on Unified Memory GPU Page Faults in the Unified Memory Transfer
Trace documentation below.

‣ Collect CUDA Graph trace - by default, CUDA tracing will collect and expose
information on a whole graph basis. The user can opt to collect on a node per node
basis. See section on CUDA Graph Trace below.

‣ For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

 Note:

If
your
application
crashes
before
all
collected
CUDA
trace
data
has
been
copied
out,
some
or
all

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 179

data
might
be
lost
and
not
present
in
the
report.

 Note:

Nsight
Systems
will
not
have
information
about
CUDA
events
that
were
still
in
device
buffers
when
analysis
terminated.
It
is
a
good
idea,
if
using
cudaProfilerAPI
to
control
analysis
to
call
cudaDeviceReset
before
ending
analysis.

13.1. CUDA GPU Memory Allocation Graph
When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 180

memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

Here is another example, where allocations are happening on multiple GPUs

13.2. Unified Memory Transfer Trace
For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 181

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy
traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some Unified Memory transfers are highlighted with red to indicate potential
performance issues:

Transfers with the following migration causes are highlighted:

‣ Coherence
Unified Memory migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

‣ Eviction
Unified Memory migrated to the CPU because it was evicted to make room
for another block of memory on the GPU. This happens due to memory
overcommitment which is available on Linux with Compute Capability ≥ 6.

Unified Memory CPU Page Faults
The Unified Memory CPU page faults feature in Nsight Systems tracks the page faults
that occur when CPU code tries to access a memory page that resides on the device.

 Note:

Collecting
Unified
Memory
CPU

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 182

page
faults
can
cause
overhead
of
up
to
70%
in
testing.
Please
use
this
functionality
only
when
needed.

Unified Memory GPU Page Faults
The Unified Memory GPU page faults feature in Nsight Systems tracks the page faults
that occur when GPU code tries to access a memory page that resides on the host.

 Note: Collecting
Unified

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 183

Memory
GPU
page
faults
can
cause
overhead
of
up
to
70%
in
testing.
Please
use
this
functionality
only
when
needed.

13.3. CUDA Graph Trace
Nsight Systems is capable of capturing information about CUDA graphs in your
application at either the graph or node granularity. This can be set in the CLI using the
--cuda-graph-trace option, or in the GUI by setting the appropriate drop down.

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 184

When CUDA graph trace is set to graph, the users sees each graph as one item on the
timeline:

When CUDA graph trace is set to node, the users sees each graph as a set of nodes on
the timeline:

Tracing CUDA graphs at the graph level rather than the tracing the underlying nodes
results in significantly less overhead. This option is only available with CUDA driver
515.43 or higher.

13.4. CUDA Python Backtrace
Nsight Systems for Arm server (SBSA) platforms and x86 Linux targets, is capable of
capturing Python backtrace information when CUDA backtrace is being captured.

To enable CUDA Python backtrace from Nsight Systems:

CLI — Set --python-backtrace=cuda.

GUI — Select the Collect Python backtrace for selected API calls checkbox.

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 185

Example screenshot:

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 186

13.5. CUDA Default Function List for CLI
CUDA Runtime API
cudaBindSurfaceToArray
cudaBindTexture
cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy
cudaEventQuery
cudaEventRecord
cudaEventRecord_ptsz
cudaEventSynchronize
cudaFree
cudaFreeArray
cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3D11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc
cudaHostRegister
cudaHostUnregister
cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice
cudaLaunchCooperativeKernel_ptsz
cudaLaunchKernel
cudaLaunchKernel_ptsz
cudaLaunch_ptsz
cudaMalloc
cudaMalloc3D
cudaMalloc3DArray
cudaMallocArray
cudaMallocHost
cudaMallocManaged
cudaMallocMipmappedArray
cudaMallocPitch
cudaMemGetInfo
cudaMemPrefetchAsync
cudaMemPrefetchAsync_ptsz
cudaMemcpy
cudaMemcpy2D
cudaMemcpy2DArrayToArray
cudaMemcpy2DArrayToArray_ptds
cudaMemcpy2DAsync
cudaMemcpy2DAsync_ptsz
cudaMemcpy2DFromArray
cudaMemcpy2DFromArrayAsync
cudaMemcpy2DFromArrayAsync_ptsz
cudaMemcpy2DFromArray_ptds
cudaMemcpy2DToArray
cudaMemcpy2DToArrayAsync
cudaMemcpy2DToArrayAsync_ptsz
cudaMemcpy2DToArray_ptds
cudaMemcpy2D_ptds
cudaMemcpy3D
cudaMemcpy3DAsync
cudaMemcpy3DAsync_ptsz
cudaMemcpy3DPeer
cudaMemcpy3DPeerAsync
cudaMemcpy3DPeerAsync_ptsz
cudaMemcpy3DPeer_ptds
cudaMemcpy3D_ptds
cudaMemcpyArrayToArray
cudaMemcpyArrayToArray_ptds
cudaMemcpyAsync
cudaMemcpyAsync_ptsz
cudaMemcpyFromArray
cudaMemcpyFromArrayAsync
cudaMemcpyFromArrayAsync_ptsz
cudaMemcpyFromArray_ptds
cudaMemcpyFromSymbol
cudaMemcpyFromSymbolAsync
cudaMemcpyFromSymbolAsync_ptsz
cudaMemcpyFromSymbol_ptds
cudaMemcpyPeer
cudaMemcpyPeerAsync
cudaMemcpyToArray
cudaMemcpyToArrayAsync
cudaMemcpyToArrayAsync_ptsz
cudaMemcpyToArray_ptds
cudaMemcpyToSymbol
cudaMemcpyToSymbolAsync
cudaMemcpyToSymbolAsync_ptsz
cudaMemcpyToSymbol_ptds
cudaMemcpy_ptds
cudaMemset
cudaMemset2D
cudaMemset2DAsync
cudaMemset2DAsync_ptsz
cudaMemset2D_ptds
cudaMemset3D
cudaMemset3DAsync
cudaMemset3DAsync_ptsz
cudaMemset3D_ptds
cudaMemsetAsync
cudaMemsetAsync_ptsz
cudaMemset_ptds
cudaPeerRegister
cudaPeerUnregister
cudaStreamAddCallback
cudaStreamAddCallback_ptsz
cudaStreamAttachMemAsync
cudaStreamAttachMemAsync_ptsz
cudaStreamCreate
cudaStreamCreateWithFlags
cudaStreamCreateWithPriority
cudaStreamDestroy
cudaStreamQuery
cudaStreamQuery_ptsz
cudaStreamSynchronize
cudaStreamSynchronize_ptsz
cudaStreamWaitEvent
cudaStreamWaitEvent_ptsz
cudaThreadSynchronize
cudaUnbindTexture

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 187

CUDA Primary API
cu64Array3DCreate
cu64ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject
cu64GLMapBufferObjectAsync
cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetD16Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
cuArray3DCreate_v2
cuArrayCreate
cuArrayCreate_v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate_v2
cuCtxDestroy
cuCtxDestroy_v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate_v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3D11CtxCreate
cuD3D11CtxCreateOnDevice
cuD3D11CtxCreate_v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate_v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer_v2
cuD3D9RegisterResource
cuD3D9RegisterVertexBuffer
cuD3D9UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource
cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
cuEGLStreamConsumerReleaseFrame
cuEGLStreamProducerConnect
cuEGLStreamProducerDisconnect
cuEGLStreamProducerPresentFrame
cuEGLStreamProducerReturnFrame
cuEventCreate
cuEventCreateFromEGLSync
cuEventCreateFromNVNSync
cuEventDestroy
cuEventDestroy_v2
cuEventQuery
cuEventRecord
cuEventRecord_ptsz
cuEventSynchronize
cuGLCtxCreate
cuGLCtxCreate_v2
cuGLInit
cuGLMapBufferObject
cuGLMapBufferObjectAsync
cuGLMapBufferObjectAsync_v2
cuGLMapBufferObjectAsync_v2_ptsz
cuGLMapBufferObject_v2
cuGLMapBufferObject_v2_ptds
cuGLRegisterBufferObject
cuGLUnmapBufferObject
cuGLUnmapBufferObjectAsync
cuGLUnregisterBufferObject
cuGraphicsD3D10RegisterResource
cuGraphicsD3D11RegisterResource
cuGraphicsD3D9RegisterResource
cuGraphicsEGLRegisterImage
cuGraphicsGLRegisterBuffer
cuGraphicsGLRegisterImage
cuGraphicsMapResources
cuGraphicsMapResources_ptsz
cuGraphicsUnmapResources
cuGraphicsUnmapResources_ptsz
cuGraphicsUnregisterResource
cuGraphicsVDPAURegisterOutputSurface
cuGraphicsVDPAURegisterVideoSurface
cuInit
cuLaunch
cuLaunchCooperativeKernel
cuLaunchCooperativeKernelMultiDevice
cuLaunchCooperativeKernel_ptsz
cuLaunchGrid
cuLaunchGridAsync
cuLaunchKernel
cuLaunchKernel_ptsz
cuLinkComplete
cuLinkCreate
cuLinkCreate_v2
cuLinkDestroy
cuMemAlloc
cuMemAllocHost
cuMemAllocHost_v2
cuMemAllocManaged
cuMemAllocPitch
cuMemAllocPitch_v2
cuMemAlloc_v2
cuMemFree
cuMemFreeHost
cuMemFree_v2
cuMemGetInfo
cuMemGetInfo_v2
cuMemHostAlloc
cuMemHostAlloc_v2
cuMemHostRegister
cuMemHostRegister_v2
cuMemHostUnregister
cuMemPeerRegister
cuMemPeerUnregister
cuMemPrefetchAsync
cuMemPrefetchAsync_ptsz
cuMemcpy
cuMemcpy2D
cuMemcpy2DAsync
cuMemcpy2DAsync_v2
cuMemcpy2DAsync_v2_ptsz
cuMemcpy2DUnaligned
cuMemcpy2DUnaligned_v2
cuMemcpy2DUnaligned_v2_ptds
cuMemcpy2D_v2
cuMemcpy2D_v2_ptds
cuMemcpy3D
cuMemcpy3DAsync
cuMemcpy3DAsync_v2
cuMemcpy3DAsync_v2_ptsz
cuMemcpy3DPeer
cuMemcpy3DPeerAsync
cuMemcpy3DPeerAsync_ptsz
cuMemcpy3DPeer_ptds
cuMemcpy3D_v2
cuMemcpy3D_v2_ptds
cuMemcpyAsync
cuMemcpyAsync_ptsz
cuMemcpyAtoA
cuMemcpyAtoA_v2
cuMemcpyAtoA_v2_ptds
cuMemcpyAtoD
cuMemcpyAtoD_v2
cuMemcpyAtoD_v2_ptds
cuMemcpyAtoH
cuMemcpyAtoHAsync
cuMemcpyAtoHAsync_v2
cuMemcpyAtoHAsync_v2_ptsz
cuMemcpyAtoH_v2
cuMemcpyAtoH_v2_ptds
cuMemcpyDtoA
cuMemcpyDtoA_v2
cuMemcpyDtoA_v2_ptds
cuMemcpyDtoD
cuMemcpyDtoDAsync
cuMemcpyDtoDAsync_v2
cuMemcpyDtoDAsync_v2_ptsz
cuMemcpyDtoD_v2
cuMemcpyDtoD_v2_ptds
cuMemcpyDtoH
cuMemcpyDtoHAsync
cuMemcpyDtoHAsync_v2
cuMemcpyDtoHAsync_v2_ptsz
cuMemcpyDtoH_v2
cuMemcpyDtoH_v2_ptds
cuMemcpyHtoA
cuMemcpyHtoAAsync
cuMemcpyHtoAAsync_v2
cuMemcpyHtoAAsync_v2_ptsz
cuMemcpyHtoA_v2
cuMemcpyHtoA_v2_ptds
cuMemcpyHtoD
cuMemcpyHtoDAsync
cuMemcpyHtoDAsync_v2
cuMemcpyHtoDAsync_v2_ptsz
cuMemcpyHtoD_v2
cuMemcpyHtoD_v2_ptds
cuMemcpyPeer
cuMemcpyPeerAsync
cuMemcpyPeerAsync_ptsz
cuMemcpyPeer_ptds
cuMemcpy_ptds
cuMemcpy_v2
cuMemsetD16
cuMemsetD16Async
cuMemsetD16Async_ptsz
cuMemsetD16_v2
cuMemsetD16_v2_ptds
cuMemsetD2D16
cuMemsetD2D16Async
cuMemsetD2D16Async_ptsz
cuMemsetD2D16_v2
cuMemsetD2D16_v2_ptds
cuMemsetD2D32
cuMemsetD2D32Async
cuMemsetD2D32Async_ptsz
cuMemsetD2D32_v2
cuMemsetD2D32_v2_ptds
cuMemsetD2D8
cuMemsetD2D8Async
cuMemsetD2D8Async_ptsz
cuMemsetD2D8_v2
cuMemsetD2D8_v2_ptds
cuMemsetD32
cuMemsetD32Async
cuMemsetD32Async_ptsz
cuMemsetD32_v2
cuMemsetD32_v2_ptds
cuMemsetD8
cuMemsetD8Async
cuMemsetD8Async_ptsz
cuMemsetD8_v2
cuMemsetD8_v2_ptds
cuMipmappedArrayCreate
cuMipmappedArrayDestroy
cuModuleLoad
cuModuleLoadData
cuModuleLoadDataEx
cuModuleLoadFatBinary
cuModuleUnload
cuStreamAddCallback
cuStreamAddCallback_ptsz
cuStreamAttachMemAsync
cuStreamAttachMemAsync_ptsz
cuStreamBatchMemOp
cuStreamBatchMemOp_ptsz
cuStreamCreate
cuStreamCreateWithPriority
cuStreamDestroy
cuStreamDestroy_v2
cuStreamSynchronize
cuStreamSynchronize_ptsz
cuStreamWaitEvent
cuStreamWaitEvent_ptsz
cuStreamWaitValue32
cuStreamWaitValue32_ptsz
cuStreamWaitValue64
cuStreamWaitValue64_ptsz
cuStreamWriteValue32
cuStreamWriteValue32_ptsz
cuStreamWriteValue64
cuStreamWriteValue64_ptsz
cuSurfObjectCreate
cuSurfObjectDestroy
cuSurfRefCreate
cuSurfRefDestroy
cuTexObjectCreate
cuTexObjectDestroy
cuTexRefCreate
cuTexRefDestroy
cuVDPAUCtxCreate
cuVDPAUCtxCreate_v2

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 188

13.6. cuDNN Function List for X86 CLI
cuDNN API functions
cudnnActivationBackward
cudnnActivationBackward_v3
cudnnActivationBackward_v4
cudnnActivationForward
cudnnActivationForward_v3
cudnnActivationForward_v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward
cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute
cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward
cudnnOpTensor
cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm
cudnnScaleTensor
cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward
cudnnSpatialTfSamplerBackward
cudnnSpatialTfSamplerForward
cudnnTransformFilter
cudnnTransformTensor
cudnnTransformTensorEx

CUDA Trace

www.nvidia.com
User Guide v2023.3.1 | 189

www.nvidia.com
User Guide v2023.3.1 | 190

Chapter 14.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

If the OpenACC API results in GPU work, that will also be highlighted:

OpenACC Trace

www.nvidia.com
User Guide v2023.3.1 | 191

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
User Guide v2023.3.1 | 192

Chapter 15.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

 1. Visualize how long eglSwapBuffers (or similar) is taking.
 2. API trace can easily show correlations between thread state and graphics driver's

behavior, uncovering where the CPU may be waiting on the GPU.
 3. Spot bubbles of opportunity on the GPU, where more GPU workload could be

created.
 4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

‣ CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

‣ GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter() function is used to measure how much
time batches of GPU workload take to complete.

OpenGL Trace

www.nvidia.com
User Guide v2023.3.1 | 193

Ranges defined by the KHR_debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

OpenGL Trace

www.nvidia.com
User Guide v2023.3.1 | 194

15.1. OpenGL Trace Using Command Line
For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,
the functions that are traced are set to the following list:
glWaitSync
glReadPixels
glReadnPixelsKHR
glReadnPixelsEXT
glReadnPixelsARB
glReadnPixels
glFlush
glFinishFenceNV
glFinish
glClientWaitSync
glClearTexSubImage
glClearTexImage
glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex
glClearDepthx
glClearDepthf
glClearDepthdNV
glClearDepth
glClearColorx
glClearColorIuiEXT
glClearColorIiEXT
glClearColor
glClearBufferuiv
glClearBufferSubData
glClearBufferiv
glClearBufferfv
glClearBufferfi
glClearBufferData
glClearAccum
glClear
glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBufferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
glDrawTransformFeedbackNV
glDrawTransformFeedbackInstancedEXT
glDrawTransformFeedbackInstanced
glDrawTransformFeedbackEXT
glDrawTransformFeedback
glDrawTexxvOES
glDrawTexxOES
glDrawTextureNV
glDrawTexsvOES
glDrawTexsOES
glDrawTexivOES
glDrawTexiOES
glDrawTexfvOES
glDrawTexfOES
glDrawRangeElementsEXT
glDrawRangeElementsBaseVertexOES
glDrawRangeElementsBaseVertexEXT
glDrawRangeElementsBaseVertex
glDrawRangeElements
glDrawPixels
glDrawElementsInstancedNV
glDrawElementsInstancedEXT
glDrawElementsInstancedBaseVertexOES
glDrawElementsInstancedBaseVertexEXT
glDrawElementsInstancedBaseVertexBaseInstanceEXT
glDrawElementsInstancedBaseVertexBaseInstance
glDrawElementsInstancedBaseVertex
glDrawElementsInstancedBaseInstanceEXT
glDrawElementsInstancedBaseInstance
glDrawElementsInstancedARB
glDrawElementsInstanced
glDrawElementsIndirect
glDrawElementsBaseVertexOES
glDrawElementsBaseVertexEXT
glDrawElementsBaseVertex
glDrawElements
glDrawCommandsStatesNV
glDrawCommandsStatesAddressNV
glDrawCommandsNV
glDrawCommandsAddressNV
glDrawBuffersNV
glDrawBuffersATI
glDrawBuffersARB
glDrawBuffers
glDrawBuffer
glDrawArraysInstancedNV
glDrawArraysInstancedEXT
glDrawArraysInstancedBaseInstanceEXT
glDrawArraysInstancedBaseInstance
glDrawArraysInstancedARB
glDrawArraysInstanced
glDrawArraysIndirect
glDrawArraysEXT
glDrawArrays
eglSwapBuffersWithDamageKHR
eglSwapBuffers
glXSwapBuffers
glXQueryDrawable
glXGetCurrentReadDrawable
glXGetCurrentDrawable
glGetQueryObjectuivEXT
glGetQueryObjectuivARB
glGetQueryObjectuiv
glGetQueryObjectivARB
glGetQueryObjectiv

OpenGL Trace

www.nvidia.com
User Guide v2023.3.1 | 195

www.nvidia.com
User Guide v2023.3.1 | 196

Chapter 16.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event
type.

Custom ETW is available on Windows target machines.

Custom ETW Trace

www.nvidia.com
User Guide v2023.3.1 | 197

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2023.3.1 | 198

Chapter 17.
GPU METRICS

Overview
GPU Metrics feature is intended to identify performance limiters in applications using
GPU for computations and graphics. It uses periodic sampling to gather performance
metrics and detailed timing statistics associated with different GPU hardware units
taking advantage of specialized hardware to capture this data in a single pass with
minimal overhead.

Note: GPU Metrics will give you precise device level information, but it does not know
which process or context is involved. GPU context switch trace provides less precise
information, but will give you process and context information.

These metrics provide an overview of GPU efficiency over time within compute,
graphics, and input/output (IO) activities such as:

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 199

‣ IO throughputs: PCIe, NVLink, and GPU memory bandwidth
‣ SM utilization: SMs activity, tensor core activity, instructions issued, warp

occupancy, and unassigned warp slots

It is designed to help users answer the common questions:

‣ Is my GPU idle?
‣ Is my GPU full? Enough kernel grids size and streams? Are my SMs and warp slots

full?
‣ Am I using TensorCores?
‣ Is my instruction rate high?
‣ Am I possibly blocked on IO, or number of warps, etc

Nsight Systems GPU Metrics is only available for Linux targets on x86-64 and aarch64,
and for Windows targets. It requires NVIDIA Turing architecture or newer.

Minimum required driver versions:

‣ NVIDIA Turing architecture TU10x, TU11x - r440
‣ NVIDIA Ampere architecture GA100 - r450
‣ NVIDIA Ampere architecture GA100 MIG - r470 TRD1
‣ NVIDIA Ampere architecture GA10x - r455

 Note:

Permissions:
Elevated
permissions
are
required.
On
Linux
use
sudo
to
elevate
privileges.
On
Windows
the
user
must
run
from
an
admin
command
prompt
or
accept
the
UAC
escalation
dialog.
See
Permissions
Issues
and

https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 200

Performance
Counters
for
more
information.

 Note:

Tensor
Core:
If
you
run
nsys
profile
--
gpu-
metrics-
device
all,
the
Tensor
Core
utilization
can
be
found
in
the
GUI
under
the
SM
instructions/
Tensor
Active
row.

Please
note
that
it
is
not
practical
to
expect
a
CUDA
kernel
to
reach
100%
Tensor
Core
utilization
since
there
are
other
overheads.

https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 201

In
general,
the
more
computation-
intensive
an
operation
is,
the
higher
Tensor
Core
utilization
rate
the
CUDA
kernel
can
achieve.

Launching GPU Metric from the CLI
GPU Metrics feature is controlled with 3 CLI switches:

‣ --gpu-metrics-device=[all, none, <index>] selects GPUs to sample (default is none)
‣ --gpu-metrics-set=[<index>, <alias>] selects metric set to use (default is the 1st

suitable from the list)
‣ --gpu-metrics-frequency=[10..200000] selects sampling frequency in Hz (default is

10000)

To profile with default options and sample GPU Metrics on GPU 0:
Must have elevated permissions (see https://developer.nvidia.com/
ERR_NVGPUCTRPERM) or be root (Linux) or Administrator (Windows)
$ nsys profile --gpu-metrics-device=0 ./my-app

To list available GPUs, use:
$ nsys profile --gpu-metrics-device=help
Possible --gpu-metrics-device values are:
 0: Quadro GV100 PCI[0000:17:00.0]
 1: GeForce RTX 2070 SUPER PCI[0000:65:00.0]
 all: Select all supported GPUs
 none: Disable GPU Metrics [Default]

By default, the first metric set which supports all selected GPUs is used. But you can
manually select another metric set from the list. To see available metric sets, use:
$ nsys profile --gpu-metrics-set=help
Possible --gpu-metrics-set values are:
 [0] [tu10x] General Metrics for NVIDIA TU10x (any frequency)
 [1] [tu11x] General Metrics for NVIDIA TU11x (any frequency)
 [2] [ga100] General Metrics for NVIDIA GA100 (any frequency)
 [3] [ga10x] General Metrics for NVIDIA GA10x (any frequency)
 [4] [tu10x-gfxt] Graphics Throughput Metrics for NVIDIA TU10x (frequency
 >= 10kHz)
 [5] [ga10x-gfxt] Graphics Throughput Metrics for NVIDIA GA10x (frequency
 >= 10kHz)
 [6] [ga10x-gfxact] Graphics Async Compute Triage Metrics for NVIDIA GA10x
 (frequency >= 10kHz)

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 202

By default, sampling frequency is set to 10 kHz. But you can manually set it from 10 Hz
to 200 kHz using
--gpu-metrics-frequency=<value>

Launching GPU Metrics from the GUI
For commands to launch GPU Metrics from the CLI with examples, see the CLI
documentation.

When launching analysis in Nsight Systems, select Collect GPU Metrics.

Select the GPUs dropdown to pick which GPUs you wish to sample.

Select the Metric set: dropdown to choose which available metric set you would like to
sample.

Note that metric sets for GPUs that are not being sampled will be greyed out.

Sampling frequency
Sampling frequency can be selected from the range of 10 Hz - 200 kHz. The default value
is 10 kHz.

The maximum sampling frequency without buffer overflow events depends on GPU
(SM count), GPU load intensity, and overall system load. The bigger the chip and the
higher the load, the lower the maximum frequency. If you need higher frequency, you
can increase it until you get "Buffer overflow" message in the Diagnostics Summary
report page.

Each metric set has a recommended sampling frequency range in its description. These
ranges are approximate. If you observe Inconsistent Data or Missing Data ranges
on timeline, please try closer to the recommended frequency.

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 203

Available metrics
‣ GPC Clock Frequency - gpc__cycles_elapsed.avg.per_second

The average GPC clock frequency in hertz. In public documentation the GPC clock
may be called the "Application" clock, "Graphic" clock, "Base" clock, or "Boost" clock.

Note: The collection mechanism for GPC can result in a small fluctuation between
samples.

‣ SYS Clock Frequency - sys__cycles_elapsed.avg.per_second

The average SYS clock frequency in hertz. The GPU front end (command processor),
copy engines, and the performance monitor run at the SYS clock. On Turing and
NVIDIA GA100 GPUs the sampling frequency is based upon a period of SYS clocks
(not time) so samples per second will vary with SYS clock. On NVIDIA GA10x
GPUs the sampling frequency is based upon a fixed frequency clock. The maximum
frequency scales linearly with the SYS clock.

‣ GR Active - gr__cycles_active.sum.pct_of_peak_sustained_elapsed

The percentage of cycles the graphics/compute engine is active. The graphics/
compute engine is active if there is any work in the graphics pipe or if the compute
pipe is processing work.

GA100 MIG - MIG is not yet supported. This counter will report the activity of the
primary GR engine.

‣ Sync Compute In Flight -
gr__dispatch_cycles_active_queue_sync.avg.pct_of_peak_sustained_elapsed

The percentage of cycles with synchronous compute in flight.

CUDA: CUDA will only report synchronous queue in the case of MPS configured
with 64 sub-context. Synchronous refers to work submitted in VEID=0.

Graphics: This will be true if any compute work submitted from the direct queue is
in flight.

‣ Async Compute in Flight -
gr__dispatch_cycles_active_queue_async.avg.pct_of_peak_sustained_elapsed

The percentage of cycles with asynchronous compute in flight.

CUDA: CUDA will only report all compute work as asynchronous. The one
exception is if MPS is configured and all 64 sub-context are in use. 1 sub-context
(VEID=0) will report as synchronous.

Graphics: This will be true if any compute work submitted from a compute queue is
in flight.

‣ Draw Started - fe__draw_count.avg.pct_of_peak_sustained_elapsed

The ratio of draw calls issued to the graphics pipe to the maximum sustained rate of
the graphics pipe.

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 204

Note:The percentage will always be very low as the front end can issue draw calls
significantly faster than the pipe can execute the draw call. The rendering of this row
will be changed to help indicate when draw calls are being issued.

‣ Dispatch Started -
gr__dispatch_count.avg.pct_of_peak_sustained_elapsed

The ratio of compute grid launches (dispatches) to the compute pipe to the
maximum sustained rate of the compute pipe.

Note: The percentage will always be very low as the front end can issue grid
launches significantly faster than the pipe can execute the draw call. The rendering
of this row will be changed to help indicate when grid launches are being issued.

‣ Vertex/Tess/Geometry Warps in Flight -
tpc__warps_active_shader_vtg_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active vertex, geometry, tessellation, and meshlet shader warps resident
on the SMs to the maximum number of warps per SM as a percentage.

‣ Pixel Warps in Flight -
tpc__warps_active_shader_ps_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active pixel/fragment shader warps resident on the SMs to the
maximum number of warps per SM as a percentage.

‣ Compute Warps in Flight -
tpc__warps_active_shader_cs_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active compute shader warps resident on the SMs to the maximum
number of warps per SM as a percentage.

‣ Active SM Unused Warp Slots -
tpc__warps_inactive_sm_active_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of inactive warp slots on the SMs to the maximum number of warps per
SM as a percentage. This is an indication of how many more warps may fit on the
SMs if occupancy is not limited by a resource such as max warps of a shader type,
shared memory, registers per thread, or thread blocks per SM.

‣ Idle SM Unused Warp Slots -
tpc__warps_inactive_sm_idle_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of inactive warps slots due to idle SMs to the the maximum number of
warps per SM as a percentage.

This is an indicator that the current workload on the SM is not sufficient to put work
on all SMs. This can be due to:

‣ CPU starving the GPU
‣ current work is too small to saturate the GPU
‣ current work is trailing off but blocking next work

‣ SM Active - sm__cycles_active.avg.pct_of_peak_sustained_elapsed

The ratio of cycles SMs had at least 1 warp in flight (allocated on SM) to the number
of cycles as a percentage. A value of 0 indicates all SMs were idle (no warps in
flight). A value of 50% can indicate some gradient between all SMs active 50% of the
sample period or 50% of SMs active 100% of the sample period.

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 205

‣ SM Issue -
sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of cycles that SM sub-partitions (warp schedulers) issued an instruction to
the number of cycles in the sample period as a percentage.

‣ Tensor Active -
sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of cycles the SM tensor pipes were active issuing tensor instructions to the
number of cycles in the sample period as a percentage.

TU102/4/6: This metric is not available on TU10x for periodic sampling. Please see
Tensor Active/FP16 Active.

‣ Tensor Active / FP16 Active -
sm__pipe_shared_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

TU102/4/6 only

The ratio of cycles the SM tensor pipes or FP16x2 pipes were active issuing tensor
instructions to the number of cycles in the sample period as a percentage.

‣ DRAM Read Bandwidth -
dramc__read_throughput.avg.pct_of_peak_sustained_elapsed,
dram__read_throughput.avg.pct_of_peak_sustained_elapsed

‣ VRAM Read Bandwidth -
FBPA.TriageA.dramc__read_throughput.avg.pct_of_peak_sustained_elapsed,
FBSP.TriageSCG.dramc__read_throughput.avg.pct_of_peak_sustained_elapsed,
FBSP.TriageAC.dramc__read_throughput.avg.pct_of_peak_sustained_elapsed

The ratio of cycles the DRAM interface was active reading data to the elapsed cycles
in the same period as a percentage.

‣ DRAM Write Bandwidth -
dramc__write_throughput.avg.pct_of_peak_sustained_elapsed,
dram__write_throughput.avg.pct_of_peak_sustained_elapsed

‣ VRAM Write Bandwidth -
FBPA.TriageA.dramc__write_throughput.avg.pct_of_peak_sustained_elapsed,
FBSP.TriageSCG.dramc__write_throughput.avg.pct_of_peak_sustained_elapsed,
FBSP.TriageAC.dramc__write_throughput.avg.pct_of_peak_sustained_elapsed

The ratio of cycles the DRAM interface was active writing data to the elapsed cycles
in the same period as a percentage.

‣ NVLink bytes received -
nvlrx__bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes received on the NVLink interface to the maximum number of
bytes receivable in the sample period as a percentage. This value includes protocol
overhead.

‣ NVLink bytes transmitted -
nvltx__bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes transmitted on the NVLink interface to the maximum number
of bytes transmittable in the sample period as a percentage. This value includes
protocol overhead.

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 206

‣ PCIe Read Throughput -
pcie__read_bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes received on the PCIe interface to the maximum number of bytes
receivable in the sample period as a percentage. The theoretical value is calculated
based upon the PCIe generation and number of lanes. This value includes protocol
overhead.

‣ PCIe Write Throughput -
pcie__write_bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes transmitted on the PCIe interface to the maximum number of
bytes receivable in the sample period as a percentage. The theoretical value is
calculated based upon the PCIe generation and number of lanes. This value includes
protocol overhead.

‣ PCIe Read Requests to BAR1 -
pcie__rx_requests_aperture_bar1_op_read.sum

‣ PCIe Write Requests to BAR1 -
pcie__rx_requests_aperture_bar1_op_write.sum

BAR1 is a PCI Express (PCIe) interface used to allow the CPU or other devices to
directly access GPU memory. The GPU normally transfers memory with its copy
engines, which would not show up as BAR1 activity. The GPU drivers on the CPU
do a small amount of BAR1 accesses, but heavier traffic is typically coming from
other technologies.

On Linux, technologies like GPU Direct, GPU Direct RDMA, and GPU Direct
Storage transfer data across PCIe BAR1. In the case of GPU Direct RDMA, that
would be an Ethernet or InfiniBand adapter directly writing to GPU memory.

On Windows, Direct3D12 resources can also be made accessible directly to the
CPU via NVAPI functions to support small writes or reads from GPU buffers, in
this case too many BAR1 accesses can indicate a performance issue, like it has been
demonstrated in the Optimizing DX12 Resource Uploads to the GPU Using CPU-
Visible VRAM technical blog post.

Exporting and Querying Data
It is possible to access metric values for automated processing using the Nsight Systems
CLI export capabilities.

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 207

An example that extracts values of "SM Active":

 $ nsys export -t sqlite report.nsys-rep
 $ sqlite3 report.sqlite "SELECT rawTimestamp, CAST(JSON_EXTRACT(data, '$.
\"SM Active\"') as INTEGER) as value FROM GENERIC_EVENTS WHERE value != 0 LIMIT
 10"

 309277039|80
 309301295|99
 309325583|99
 309349776|99
 309373872|60
 309397872|19
 309421840|100
 309446000|100
 309470096|100
 309494161|99

An overview of data stored in each event (JSON):

 $ sqlite3 report.sqlite "SELECT data FROM GENERIC_EVENTS LIMIT 1"
 {
 "Unallocated Warps in Active SM": "0",
 "Compute Warps In Flight": "52",
 "Pixel Warps In Flight": "0",
 "Vertex\/Tess\/Geometry Warps In Flight": "0",
 "Total SM Occupancy": "52",
 "GR Active (GE\/CE)": "100",
 "Sync Compute In Flight": "0",
 "Async Compute In Flight": "98",
 "NVLink bytes received": "0",
 "NVLink bytes transmitted": "0",
 "PCIe Rx Throughput": "0",
 "PCIe Tx Throughput": "1",
 "DRAM Read Throughput": "0",
 "DRAM Write Throughput": "0",
 "Tensor Active \/ FP16 Active": "0",
 "SM Issue": "10",
 "SM Active": "52"
 }

Values are integer percentages (0..100)

Limitations
‣ If metric sets with NVLink are used but the links are not active, they may appear as

fully utilized.
‣ Only one tool that subscribes to these counters can be used at a time, therefore,

Nsight Systems GPU Metrics feature cannot be used at the same time as the
following tools:

‣ Nsight Graphics
‣ Nsight Compute
‣ DCGM (Data Center GPU Manager)

Use the following command:

‣ dcgmi profile --pause

GPU Metrics

www.nvidia.com
User Guide v2023.3.1 | 208

‣ dcgmi profile --resume

Or API:

‣ dcgmProfPause
‣ dcgmProfResume

‣ Non-NVIDIA products which use:

‣ CUPTI sampling used directly in the application. CUPTI trace is okay
(although it will block Nsight Systems CUDA trace)

‣ DCGM library
‣ Nsight Systems limits the amount of memory that can be used to store GPU Metrics

samples. Analysis with higher sampling rates or on GPUs with more SMs has a risk
of exceeding this limit. This will lead to gaps on timeline filled with Missing Data
ranges. Future releases will reduce the frequency of this happening.

www.nvidia.com
User Guide v2023.3.1 | 209

Chapter 18.
CPU PROFILING USING LINUX OS PERF
SUBSYSTEM

Nsight Systems on Linux targets, utilizes the Linux OS' perf subsystem to sample CPU
Instruction Pointers (IPs) and backtraces, trace CPU context switches, and sample CPU
and OS event counts. The Linux perf tool utilizes the same perf subsystem.

Nsight Systems, on L4T and potentially other ARM targets, may use a custom kernel
module to collect the same data. The Nsight Systems CLI command nsysstatus --
environment indicates when the kernel module is used instead of the Linux OS' perf
subsystem.

Features

‣ CPU Instruction Pointer / Backtrace Sampling

Nsight Systems can sample CPU Instruction Pointers / backtraces periodically. The
collection of a sample is triggered by a hardware event overflow - e.g. a sample is
collected after every 1 million CPU reference cycles on a per thread basis. In the
GUI, samples are shown on the individual thread timelines, in the Event Viewer,
and in the Top Down, Bottom Up, or Flat views which provide histogram-like
summaries of the data. IP / backtrace collections can be configured in process-tree or
system-wide mode. In process-tree mode, Nsight Systems will sample the process,
and any of its descendants, launched by the tool. In system-wide mode, Nsight
Systems will sample all processes running on the system, including any processes
launched by the tool.

‣ CPU Context Switch Tracing

Nsight Systems can trace every time the OS schedules a thread on a logical CPU
and every time the OS thread gets unscheduled from a logical CPU. The data is
used to show CPU utilization and OS thread utilization within the Nsight Systems
GUI. Context switch collections can be configured in process-tree or system-wide
mode. In process-tree mode, Nsight Systems will trace the process, and any of its
descendants, launched by Nsight Systems. In system-wide mode, Nsight Systems
will trace all processes running on the system, including any processes launched by
the Nsight Systems.

‣ CPU Event Sampling

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 210

Nsight Systems can periodically sample CPU hardware event counts and OS event
counts and show the event's rate over time in the Nsight Systems GUI. Event sample
collections can be configured in system-wide mode only. In system-wide mode,
Nsight Systems will sample event counts of all CPUs and the OS event counts
running on the system. Event counts are not directly associated with processes or
threads.

System Requirements

‣ Paranoid Level

The system's paranoid level must be 2 or lower.

Paranoid
Level

CPU IP/
backtrace
Sampling
process-
tree
mode

CPU IP/
backtrace
Sampling
system-
wide
mode

CPU
Context
Switch
Tracing
process-
tree
mode

CPU
Context
Switch
Tracing
system-
wide
mode

Event
Sampling
system-
wide
mode

3 or
greater

not
available

not
available

not
available

not
available

not
available

2 User
mode
IP/
backtrace
samples
only

not
available

available not
available

not
available

1 Kernel
and
user
mode
IP/
backtrace
samples

not
available

available not
available

not
available

0, -1 Kernel
and
user
mode
IP/
backtrace
samples

Kernel
and
user
mode
IP/
backtrace
samples

available available hardware
and OS
events

‣ Kernel Version

To support the CPU profiling features utilized by Nsight Systems, the kernel version
must be greater than or equal to v4.3. RedHat has backported the required features
to the v3.10.0-693 kernel. RedHat distros and their derivatives (e.g. CentOS) require

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 211

a 3.10.0-693 or later kernel. Use the uname -r command to check the kernel's
version.

‣ perf_event_open syscall

The perf_event_open syscall needs to be available. When running within a Docker
container, the default seccomp settings will normally block the perf_event_open
syscall. To workaround this issue, use the Docker run --privileged switch when
launching the docker or modify the docker's seccomp settings. Some VMs (virtual
machines), e.g. AWS, may also block the perf_event_open syscall.

‣ Sampling Trigger

In some rare case, a sampling trigger is not available. The sampling trigger is either
a hardware or software event that causes a sample to be collected. Some VMs block
hardware events from being accessed and therefore, prevent hardware events from
being used as sampling triggers. In those cases, Nsight Systems will fall back to
using a software trigger if possible.

‣ Checking Your Target System

Use the nsys status --environment command to check if a system meets the
Nsight Systems CPU profiling requirements. Example output from this command is
shown below. Note that this command does not check for Linux capability overrides
- i.e. if the user or executable files have CAP_SYS_ADMIN or CAP_PERFMON
capability. Also, note that this command does not indicate if system-wide mode can
be used.

Configuring a CPU Profiling Collection

When configuring Nsight Systems for CPU Profiling from the CLI, use some or all of the
following options: --sample, --cpuctxsw, --event-sample, --backtrace, --cpu-
core-events, --event-sampling-frequency, --os-events, --samples-per-
backtrace, and --sampling-period.

Details about these options, including examples can be found in the Profiling from the
CLI section of the User Guide

When configuring from the GUI, the following options are available:

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 212

The configuration used during CPU profiling is documented in the Analysis Summary:

As well as in the Diagnosics Summary:

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 213

Visualizing CPU Profiling Results

Here are example screenshots visualizing CPU profiling results. For details about
navigating the Timeline View and the backtraces, see the section on Timeline View in the
Reading Your Report in the GUI section of the User Guide.

Example of CPU IP/Backtrace Data

In the timeline, yellow-orange marks can be found under each thread's timeline that
indicate the moment an IP / backtrace sample was collected on that thread (e.g. see the
yellow-orange marks in the Specific Samples box above). Hovering the cursor over a
mark will cause a tooltip to display the backtrace for that sample.

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 214

Below the Timeline is a drop-down list with multiple options including Events View,
Top-Down View, Bottom-Up View, and Flat View. All four of these views can be used to
view CPU IP / back trace sampling data.

Example of Event Sampling

Event sampling samples hardware or software event counts during a collection and then
graphs those events as rates on the Timeline. The above screenshot shows 4 hardware
events. Core and cache events are graphed under the associated CPU row (see the red
box in the screenshot) while uncore and OS events are graphed in their own row (see
the green box in the screenshot). Hovering the cursor over an event sampling row in the
timeline shows the event's rate at that moment.

Common Issues

‣ Reducing Overhead Caused By Sampling

There are several ways to reduce overhead caused by sampling.

‣ disable sampling (i.e. use the --sampling=none switch)
‣ increase the sampling period (i.e. reduce the sampling rate) using the --

sampling-period switch
‣ stop collecting backtraces (i.e. use the --backtrace=none switch) or collect

more efficient backtraces - if available, use the --backtrace=lbr switch.
‣ reduce the number of backtraces collected per sample. See documentation for

the --samples-per-backtrace switch.
‣ Throttling

The Linux operating system enforces a maximum time to handle sampling
interrupts. This means that if collecting samples takes more than a specified amount
of time, the OS will throttle (i.e slow down) the sampling rate to prevent the perf

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 215

subsystem from causing too much overhead. When this occurs, sampling data may
become irregular even though the thread is very busy.

The above screenshot shows a case where CPU IP / backtrace sampling was throttled
during a collection. Note the irregular intervals of sampling tickmarks on the thread
timeline. The number of times a collection throttled is provided in the Nsight
Systems GUI's Diagnostics messages. If a collection throttles frequently (e.g. 1000s of
times), increasing the sampling period should help reduce throttling.

 Note:

When
throttling
occurs,
the
OS
sets
a
new
(lower)
maximum
sampling
rate
in
the
procfs.
This
value
must
be
reset
before
the
sampling
rate
can
be
increased
again.
Use

CPU Profiling Using Linux OS Perf Subsystem

www.nvidia.com
User Guide v2023.3.1 | 216

the
following
command
to
reset
the
OS'
max
sampling
rate
echo
'100000'
|
sudo
tee /
proc/
sys/
kernel/
perf_event_max_sample_rate

‣ Sample intervals are irregular

My samples are not periodic - why? My samples are clumped up - why? There are
gaps in between the samples - why? Likely reasons:

‣ Throttling, as described above
‣ The paranoid level is set to 2. If the paranoid level is set to 2, anytime the

workload makes a system call and spends time executing kernel mode code,
samples will not be collected and there will be gaps in the sampling data.

‣ The sampling trigger itself is not periodic. If the trigger event is not periodic, for
example, the Instructions Retired. event, sample collection will primarily occur
when cache misses are occurring.

‣ No CPU profiling data is collected

There are a few common issues that cause CPU profiling data to not be collected

‣ System requirements are not met. Check your system settings with the nsys
status --environment command and see the System Requirements section
above.

‣ I profiled my workload in a Docker container but no sampling data was
collected. By default, Docker containers prevent the perf_event_open syscall
from being utilized. To override this behavior, launch the Docker with the –-
privileged switch or modify the Docker's seccompsettings.

‣ I profiled my workload in a Docker container running Ubuntu 20+ running on
top of a host system running CentOS with a kernel version < 3.10.0-693. The
nsys status --environment command indicated that CPU profiling was
supported. The host OS kernel version determines if CPU profiling is allowed
and a CentOS host with a version < 3.10.0-693 is too old. In this case, the nsys
status --environment command is incorrect.

https://docs.nvidia.com/nsight-systems/index.html#nsight_systems/2018.3.0-x86/07-docker-profiling.htm

www.nvidia.com
User Guide v2023.3.1 | 217

Chapter 19.
NVIDIA VIDEO CODEC SDK TRACE

Nsight Systems for x86 Linux and Windows targets can trace calls from the NV Video
Codec SDK. This software trace can be launched from the GUI or using the --trace
nvvideo from the CLI

On the timeline, calls on the CPU to the NV Encoder API and NV Decoder API will be
shown.

NVIDIA Video Codec SDK Trace

www.nvidia.com
User Guide v2023.3.1 | 218

19.1. NV Encoder API Functions Traced by Default
NvEncodeAPICreateInstance
nvEncOpenEncodeSession
nvEncGetEncodeGUIDCount
nvEncGetEncodeGUIDs
nvEncGetEncodeProfileGUIDCount
nvEncGetEncodeProfileGUIDs
nvEncGetInputFormatCount
nvEncGetInputFormats
nvEncGetEncodeCaps
nvEncGetEncodePresetCount
nvEncGetEncodePresetGUIDs
nvEncGetEncodePresetConfig
nvEncGetEncodePresetConfigEx
nvEncInitializeEncoder
nvEncCreateInputBuffer
nvEncDestroyInputBuffer
nvEncCreateBitstreamBuffer
nvEncDestroyBitstreamBuffer
nvEncEncodePicture
nvEncLockBitstream
nvEncUnlockBitstream
nvEncLockInputBuffer
nvEncUnlockInputBuffer
nvEncGetEncodeStats
nvEndGetSequenceParams
nvEncRegisterAsyncEvent
nvEncUnregisterAsyncEvent
nvEncMapInputResource
nvEncUnmapInputResource
nvEncDestroyEncoder
nvEncInvalidateRefFrames
nvEncOpenEncodeSessionEx
nvEncRegisterResource
nvEncUnregisterResource
nvEncReconfigureEncoder
nvEncCreateMVBuffer
nvEncDestroyMVBuffer
nvEncRunMotionEstimationOnly
nvEncGetLastErrorString
nvEncSetIOCudaStreams
nvEncGetSequenceParamEx

NVIDIA Video Codec SDK Trace

www.nvidia.com
User Guide v2023.3.1 | 219

19.2. NV Decoder API Functions Traced by Default
cuvidCreateVideoSource
cuvidCreateVideoSourceW
cuvidDestroyVideoSource
cuvidSetVideoSourceState
cudaVideoState
cuvidGetSourceVideoFormat
cuvidGetSourceAudioFormat
cuvidCreateVideoParser
cuvidParseVideoData
cuvidDestroyVideoParser
cuvidCreateDecoder
cuvidDestroyDecoder
cuvidDecodePicture
cuvidGetDecodeStatus
cuvidReconfigureDecoder
cuvidMapVideoFrame
cuvidUnmapVideoFrame
cuvidMapVideoFrame64
cuvidUnmapVideoFrame64
cuvidCtxLockCreate
cuvidCtxLockDestroy
cuvidCtxLock
cuvidCtxUnlock

NVIDIA Video Codec SDK Trace

www.nvidia.com
User Guide v2023.3.1 | 220

19.3. NV JPEG API Functions Traced by Default
nvjpegBufferDeviceCreate
nvjpegBufferDeviceDestroy
nvjpegBufferDeviceRetrieve
nvjpegBufferPinnedCreate
nvjpegBufferPinnedDestroy
nvjpegBufferPinnedRetrieve
nvjpegCreate
nvjpegCreateEx
nvjpegCreateSimple
nvjpegDecode
nvjpegDecodeBatched
nvjpegDecodeBatchedEx
nvjpegDecodeBatchedInitialize
nvjpegDecodeBatchedPreAllocate
nvjpegDecodeBatchedSupported
nvjpegDecodeBatchedSupportedEx
nvjpegDecodeJpeg
nvjpegDecodeJpegDevice
nvjpegDecodeJpegHost
nvjpegDecodeJpegTransferToDevice
nvjpegDecodeParamsCreate
nvjpegDecodeParamsDestroy
nvjpegDecodeParamsSetAllowCMYK
nvjpegDecodeParamsSetOutputFormat
nvjpegDecodeParamsSetROI
nvjpegDecodeParamsSetScaleFactor
nvjpegDecoderCreate
nvjpegDecoderDestroy
nvjpegDecoderJpegSupported
nvjpegDecoderStateCreate
nvjpegDestroy
nvjpegEncodeGetBufferSize
nvjpegEncodeImage
nvjpegEncodeRetrieveBitstream
nvjpegEncodeRetrieveBitstreamDevice
nvjpegEncoderParamsCopyHuffmanTables
nvjpegEncoderParamsCopyMetadata
nvjpegEncoderParamsCopyQuantizationTables
nvjpegEncoderParamsCreate
nvjpegEncoderParamsDestroy
nvjpegEncoderParamsSetEncoding
nvjpegEncoderParamsSetOptimizedHuffman
nvjpegEncoderParamsSetQuality
nvjpegEncoderParamsSetSamplingFactors
nvjpegEncoderStateCreate
nvjpegEncoderStateDestroy
nvjpegEncodeYUV,(nvjpegHandle_t handle
nvjpegGetCudartProperty
nvjpegGetDeviceMemoryPadding
nvjpegGetImageInfo
nvjpegGetPinnedMemoryPadding
nvjpegGetProperty
nvjpegJpegStateCreate
nvjpegJpegStateDestroy
nvjpegJpegStreamCreate
nvjpegJpegStreamDestroy
nvjpegJpegStreamGetChromaSubsampling
nvjpegJpegStreamGetComponentDimensions
nvjpegJpegStreamGetComponentsNum
nvjpegJpegStreamGetFrameDimensions
nvjpegJpegStreamGetJpegEncoding
nvjpegJpegStreamParse
nvjpegJpegStreamParseHeader
nvjpegSetDeviceMemoryPadding
nvjpegSetPinnedMemoryPadding
nvjpegStateAttachDeviceBuffer
nvjpegStateAttachPinnedBuffer

www.nvidia.com
User Guide v2023.3.1 | 221

Chapter 20.
NETWORK COMMUNICATION PROFILING

Nsight Systems can be used to profiles several popular network communication
protocols. To enable this, please select the Communication profiling options dropdown.

Then select the libraries you would like to trace:

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 222

20.1. MPI API Trace
For Linux x86_64, ARM and Power targets, Nsight Systems is capable of capturing
information about the MPI APIs executed in the profiled process. It has built-in API
trace support for Open MPI and MPICH based MPI implementations.

Only a subset of the MPI API, including blocking and non-blocking point-to-point and
collective communication, and file I/O operations, is traced. If you require more control
over the list of traced APIs or if you are using a different MPI implementation, you can
use the NVTX wrappers for MPI. If you set the environment variable LD_PRELOAD to the
path of generated wrapper library, Nsight Systems will capture and report the MPI API
trace information when NVTX tracing is enabled. Choose an NVTX domain name other
than "MPI", since it is filtered out by Nsight Systems when MPI tracing is not enabled.

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 223

MPI Communication Parameters

Nsight Systems can get additional information about MPI communication parameters.
Currently, the parameters are only visible in the mouseover tooltips or in the eventlog.
This means that the data is only available via the GUI. Future versions of the tool will
export this information into the SQLite data files for postrun analysis.

In order to fully interpret MPI communications, data for all ranks associated with a
communication operation must be loaded into Nsight Systems.

Here is an example of MPI_COMM_WORLD data. This does not require any additional
team data, since local rank is the same as global rank.

(Screenshot shows communication parameters for an MPI_Bcast call on rank 3)

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 224

When not all processes that are involved in an MPI communication are loaded into
Nsight Systems the following information is available.

‣ Right-hand screenshot shows a reused communicator handle (last number
increased).

‣ Encoding: MPI_COMM[*team size*]*global-group-root-rank*.*group-ID*

When all reports are loaded into Nsight Systems:

‣ World rank is shown in addition to group-local rank "(world rank X)"
‣ Encoding: MPI_COMM[*team size*]{rank0, rank1, ...}
‣ At most 8 ranks are shown (the numbers represent world ranks, the position in the

list is the group-local rank)

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 225

MPI functions traced:

MPI_Init[_thread], MPI_Finalize
MPI_Send, MPI_{B,S,R}send, MPI_Recv, MPI_Mrecv
MPI_Sendrecv[_replace]

MPI_Barrier, MPI_Bcast
MPI_Scatter[v], MPI_Gather[v]
MPI_Allgather[v], MPI_Alltoall[{v,w}]
MPI_Allreduce, MPI_Reduce[_{scatter,scatter_block,local}]
MPI_Scan, MPI_Exscan

MPI_Isend, MPI_I{b,s,r}send, MPI_I[m]recv
MPI_{Send,Bsend,Ssend,Rsend,Recv}_init
MPI_Start[all]
MPI_Ibarrier, MPI_Ibcast
MPI_Iscatter[v], MPI_Igather[v]
MPI_Iallgather[v], MPI_Ialltoall[{v,w}]
MPI_Iallreduce, MPI_Ireduce[{scatter,scatter_block}]
MPI_I[ex]scan
MPI_Wait[{all,any,some}]

MPI_Put, MPI_Rput, MPI_Get, MPI_Rget
MPI_Accumulate, MPI_Raccumulate
MPI_Get_accumulate, MPI_Rget_accumulate
MPI_Fetch_and_op, MPI_Compare_and_swap

MPI_Win_allocate[_shared]
MPI_Win_create[_dynamic]
MPI_Win_{attach, detach}
MPI_Win_free
MPI_Win_fence
MPI_Win_{start, complete, post, wait}
MPI_Win_[un]lock[_all]
MPI_Win_flush[_local][_all]
MPI_Win_sync

MPI_File_{open,close,delete,sync}
MPI_File_{read,write}[_{all,all_begin,all_end}]
MPI_File_{read,write}_at[_{all,all_begin,all_end}]
MPI_File_{read,write}_shared
MPI_File_{read,write}_ordered[_{begin,end}]
MPI_File_i{read,write}[_{all,at,at_all,shared}]
MPI_File_set_{size,view,info}
MPI_File_get_{size,view,info,group,amode}
MPI_File_preallocate

MPI_Pack[_external]
MPI_Unpack[_external]

20.2. OpenSHMEM Library Trace
If OpenSHMEM library trace is selected Nsight Systems will trace the subset of
OpenSHMEM API functions that are most likely be involved in performance
bottlenecks. To keep overhead low Nsight Systems does not trace all functions.

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 226

OpenSHMEM 1.5 Functions Not Traced

shmem_my_pe
shmem_n_pes
shmem_global_exit
shmem_pe_accessible
shmem_addr_accessible
shmem_ctx_{create,destroy,get_team}
shmem_global_exit
shmem_info_get_{version,name}
shmem_{my_pe,n_pes,pe_accessible,ptr}
shmem_query_thread
shmem_team_{create_ctx,destroy}
shmem_team_get_config
shmem_team_{my_pe,n_pes,translate_pe}
shmem_team_split_{2d,strided}
shmem_test*

20.3. UCX Library Trace
If UCX library trace is selected Nsight Systems will trace the subset of functions of the
UCX protocol layer UCP that are most likely be involved in performance bottlenecks. To
keep overhead low Nsight Systems does not trace all functions.

UCX functions traced:

ucp_am_send_nb[x]
ucp_am_recv_data_nbx
ucp_am_data_release
ucp_atomic_{add{32,64},cswap{32,64},fadd{32,64},swap{32,64}}
ucp_atomic_{post,fetch_nb,op_nbx}
ucp_cleanup
ucp_config_{modify,read,release}
ucp_disconnect_nb
ucp_dt_{create_generic,destroy}
ucp_ep_{create,destroy,modify_nb,close_nbx}
ucp_ep_flush[{_nb,_nbx}]
ucp_listener_{create,destroy,query,reject}
ucp_mem_{advise,map,unmap,query}
ucp_{put,get}[_nbi]
ucp_{put,get}_nb[x]
ucp_request_{alloc,cancel,is_completed}
ucp_rkey_{buffer_release,destroy,pack,ptr}
ucp_stream_data_release
ucp_stream_recv_data_nb
ucp_stream_{send,recv}_nb[x]
ucp_stream_worker_poll
ucp_tag_msg_recv_nb[x]
ucp_tag_{send,recv}_nbr
ucp_tag_{send,recv}_nb[x]
ucp_tag_send_sync_nb[x]
ucp_worker_{create,destroy,get_address,get_efd,arm,fence,wait,signal,wait_mem}
ucp_worker_flush[{_nb,_nbx}]
ucp_worker_set_am_{handler,recv_handler}

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 227

UCX Functions Not Traced:

ucp_config_print
ucp_conn_request_query
ucp_context_{query,print_info}
ucp_get_version[_string]
ucp_ep_{close_nb,print_info,query,rkey_unpack}
ucp_mem_print_info
ucp_request_{check_status,free,query,release,test}
ucp_stream_recv_request_test
ucp_tag_probe_nb
ucp_tag_recv_request_test
ucp_worker_{address_query,print_info,progress,query,release_address}

Additional API functions from other UCX layers may be added in a future version of the
product.

20.4. NVIDIA NVSHMEM and NCCL Trace
The NVIDIA network communication libraries NVSHMEM and NCCL have been
instrumented using NVTX annotations. To enable tracing these libraries in Nsight
Systems, turn on NVTX tracing in the GUI or CLI. To enable the NVTX instrumentation
of the NVSHMEM library, make sure that the environment variable NVSHMEM_NVTX is set
properly, e.g. NVSHMEM_NVTX=common.

20.5. NIC Metric Sampling
Overview

NVIDIA ConnectX smart network interface cards (smart NICs) offer advanced hardware
offloads and accelerations for network operations. Viewing smart NICs metrics, on
Nsight Systems timeline, enables developers to better understand their application’s
network usage. Developers can use this information to optimize the application’s
performance.

Limitations/Requirements

‣ NIC metric sampling supports NVIDIA ConnectX boards starting with ConnectX 5
‣ NIC metric sampling is supported on Linux x86_64 and ARM Server (SBSA)

machines only, having minimum Linux kernel 4.12 and minimum MLNX_OFED 4.1.
You can download the latest and archived versions of the MLX_OFED driver from
the MLNX_OFED Download Center. If collecting NIC metrics within a container,
make sure that the container has access to the driver on the host machine. To check
manually if OFED is installed and get its version you can run:

‣ /usr/bin/ofed_info
‣ cat /sys/module/"$(cat /proc/modules | grep -o -E

"^mlx._core")"/version

Collecting NIC Metrics Using the Command Line

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 228

To collect NIC performance metric, using Nsight Systems CLI, add the --nic-metrics
command line switch:
nsys profile --nic-metrics=true my_app

Available Metrics

‣ Bytes sent - Number of bytes sent through all NIC ports.
‣ Bytes received - Number of bytes received by all NIC ports.
‣ CNPs sent - Number of congestion notification packets sent by the NIC.
‣ CNPs received - Number of congestion notification packets received and handled

by the NIC.
‣ Send waits - The number of ticks during which ports had data to transmit but no

data was sent during the entire tick (either because of insufficient credits or because
of lack of arbitration)

Note: Each one of the mentioned metrics is shown only if it has non-zero value during
profiling.

Usage Examples

‣ The Bytes sent/sec and the Bytes received/sec metrics enables identifying
idle and busy NIC times.

‣ Developers may shift network operations from busy to idle times to reduce
network congestion and latency.

‣ Developers can use idle NIC times to send additional data without reducing
application performance.

‣ CNPs (congestion notification packets) received/sent and Send waits metrics may
explain network latencies. A developer seeing the time periods when the network
was congested may rewrite his algorithm to avoid the observed congestions.

 Note:

RDMA
over
Converged
Ethernet
(RoCE)
traffic
is
not
logged
into
the

Network Communication Profiling

www.nvidia.com
User Guide v2023.3.1 | 229

Nsight
Systems
NIC
metrics.

20.6. InfiniBand Switch Metric Sampling
NVIDIA Quantum InfiniBand switches offer high-bandwidth, low-latency
communication. Viewing switch metrics, on Nsight Systems timeline, enables
developers to better understand their application’s network usage. Developers can use
this information to optimize the application’s performance.

Limitations/Requirements

IB switch metric sampling supports all NVIDIA Quantum switches. The user needs to
have permission to query the InfiniBand switch metrics.

To check if the current user has permissions to query the InfiniBand switch metrics,
check that the user have permission to access /dev/umad

To give user permissions to query InfiniBand switch metrics on RedHat systems, follow
the directions at RedHat Solutions.

To collect InfiniBand switch performance metric, using Nsight Systems CLI, add the
--ib-switch-metrics command line switch, followed by a comma separated list of
InfiniBand switch GUIDs. For example:

 nsys profile --ib-switch-metrics=<IB switch GUID> my_app

To get a list of InfiniBand switches connected to the machine, use:
sudo ibnetdiscover -S

Available Metrics

‣ Bytes sent - Number of bytes sent through all switch ports
‣ Bytes received - Number of bytes received by all switch ports

https://access.redhat.com/solutions/5929621

www.nvidia.com
User Guide v2023.3.1 | 230

Chapter 21.
PYTHON PROFILING

21.1. Python Backtrace Sampling
Nsight Systems for Arm server (SBSA) platforms, x86 Linux and Windows targets, is
capable of periodically capturing Python backtrace information. This functionality is
available when tracing Python interpreters of version 3.9 or later. Capturing python
backtrace is done in periodic samples, in a selected frequency ranging from 1Hz - 2KHz
with a default value of 1KHz. Note that this feature provides meaningful backtraces for
Python processes, when profiling Python-only workflows, consider disabling the CPU
sampling option to reduce overhead.

To enable Python backtrace sampling from Nsight Systems:

CLI — Set --python-sampling=true and use the --python-sampling-frequency
option to set the sampling rate.

GUI — Select the Collect Python backtrace samples checkbox.

Example screenshot:

Python Profiling

www.nvidia.com
User Guide v2023.3.1 | 231

21.2. Python NVTX Annotations
Nsight Systems for Arm server (SBSA) platforms, x86 Linux and Windows targets, is
capable of using NVTX to annotate Python functions.

The Python source code does not require any changes. This feature requires CPython
interpreter, release 3.8 or later.

The annotations are configured in a JSON file. An example file is located in
Nsight Systems root folder/<target-platform-folder>/PythonNvtx/
annotations.json.

Notes:

‣ Annotating function from module __main__ is not supported.

To enable Python NVTX annotations from Nsight Systems:

CLI — Set --python-nvtx-annotations=<json_file>.

GUI — Select the Python NVTX annotations checkbox and specify the JSON file.

Example screenshot:

Python Profiling

www.nvidia.com
User Guide v2023.3.1 | 232

www.nvidia.com
User Guide v2023.3.1 | 233

Chapter 22.
READING YOUR REPORT IN GUI

22.1. Generating a New Report
Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .nsys-rep file will be created and put into the same directory as the project file
(.qdproj).

22.2. Opening an Existing Report
An existing .nsys-rep file can be opened using File > Open....

22.3. Sharing a Report File
Report files (.nsys-rep) are self-contained and can be shared with other users of
Nsight Systems. The only requirement is that the same or newer version of Nsight
Systems is always used to open report files.

Project files (.qdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

22.4. Report Tab
While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

‣ View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 234

‣ Timeline — This is where all charts are displayed.
‣ Function table — Located below the timeline, it displays statistical information

about functions in the target application in multiple ways.

Additionally, the following controls are available:

‣ Zoom slider — Allows you to vertically zoom the charts on the timeline.

22.5. Analysis Summary View
This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

22.6. Timeline View
The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

22.6.1. Timeline
Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To generate a timeline screenshot without opening the full GUI, use the command
nsys-ui.exe --screenshot filename.nsys-rep

Timeline Navigation
Zoom and Scroll

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 235

At the upper right portion of your Nsight Systems GUI you will see this section:

The slider sets the vertical size of screen rows, and the magnifying glass resets it to the
original settings.

There are many ways to zoom and scroll horizontally through the timeline. Clicking on
the keyboard icon seen above, opens the below dialog that explains them.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 236

Additional information on several items is available as mouse-over tooltips. This
information can be copied out of the GUI by right clicking on the event and choosing
Copy ToolTip.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 237

Timeline/Events correlation

To display trace events in the Events View right-click a timeline row and select the
“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View. Note that the events displayed will correspond to
the current zoom in the timeline, zooming in or out will reset the event pane filter.

If a timeline row has been selected for display in the Events View, then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding events view item visible and select it. If that event has tool tip
information, it will be displayed in the right hand pane.

Likewise, double-clicking on a particular instance in the Events View will highlight the
corresponding event in the timeline.

Row Height
Several of the rows in the timeline use height as a way to model the percent utilization
of resources. This gives the user insight into what is going on even when the timeline is
zoomed all the way out.

In this picture you see that for kernel occupation there is a colored bar of variable height.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 238

Nsight Systems calculates the average occupancy for the period of time represented by
particular pixel width of screen. It then uses that average to set the top of the colored
section. So, for instance, if 25% of that timeslice the kernel is active, the bar goes 25% of
the distance to the top of the row.

In order to make the difference clear, if the percentage of the row height is non-zero, but
would be represented by less than one vertical pixel, Nsight Systems displays it as one
pixel high. The gray height represents the maximum usage in that time range.

This row height coding is used in the CPU utilization, thread and process occupancy,
kernel occupancy, and memory transfer activity rows.

Row Percentage
In the image below you see that there are percentages prefixing the stream rows in the
GPU.

The percentage shown in front of the stream indicates the proportion of context running
time this particular stream takes.

 % stream = 100.0 X streamUsage / contextUsage
 streamUsage = total amount of time this stream is active on GPU
 contextUsage = total amount of time all streams for this context are
 active on GPU

So "26% Stream 1" means that Stream 1 takes 26% of its context's total running time.

 Total running time = sum of durations of all kernels and memory ops
 that run in this context

22.6.2. Events View
The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 239

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

‣ NVTX
‣ Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
‣ PIX events and markers
‣ OpenGL KHR_debug markers

You can copy and paste from the events view by highlighting rows, using Shift or Ctrl
to enable multi-select. Right clicking on the selection will give you a copy option.

Pasting into text gives you a tab separated view:

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 240

Pasting into spreadsheet properly copies into rows and columns:

22.6.3. Function Table Modes

The function table can work in three modes:

‣ Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

‣ Bottom-Up View — This is a reverse of the Top-Down view. On the top level,
there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

‣ Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 241

Each of the views helps understand particular performance issues of the application
being profiled. For example:

‣ When trying to find specific bottleneck functions that can be optimized, the Bottom-
Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

‣ To navigate the call tree of the application and while generally searching for
algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

‣ To quickly assess which parts of the application, or high level parts of an algorithm,
consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

‣ Top-Down view

‣ Self column denotes the relative amount of time spent executing instructions of
this particular function.

‣ Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

‣ Bottom-Up view

‣ Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

‣ Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

‣ Flat view

‣ Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

 Note:

If
low-
impact
functions
have
been
filtered
out,
values
may
not
add
up
correctly
to
100%,
or

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 242

to
the
value
of
the
parent
row.
This
filtering
can
be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in
the symbols table:

‣ Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are
represented in the symbols table.

‣ Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

 Note:

If
too
little
sampling
data
is
being
used
to
build
the
symbols
table
(for
example,
when
the
sampling
rate
is
configured
to
be
low,
and
a
short
period
of
time
is
used

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 243

for
time-
based
filtering),
the
numbers
in
the
symbols
table
might
not
be
representative
or
accurate
in
some
cases.

22.6.4. Function Table Notes
Last Branch Records vs Frame Pointers

Two of the mechanisms available for collecting backtraces are Intel Last Branch Records
(LBRs) and frame pointers. LBRs are used to trace every branch instruction via a limited
set of hardware registers. They can be configured to generate backtraces but have finite
depth based on the CPU’s microarchitecture. LBRs are effectively free to collect but may
not be as deep as you need in order to fully understand how the workload arrived a
specific Instruction Pointer (IP).

Frame pointers only work when a binary is compiled with the -fno-omit-frame-
pointer compiler switch. To determine if frame pointers are enabled on an x86_64
binary running on Linux, dump a binary’s assembly code using the objdump -d
[binary_file] command and look for this pattern at the beginning of all functions;

 push %rbp
 mov %rsp,%rbp

When frame pointers are available in a binary, full stack traces will be captured. Note
that libraries that are frequently used by apps and ship with the operating system, such
as libc, are generated in release mode and therefore do not include frame pointers.
Frequently, when a backtrace includes an address from a system library, the backtrace
will fail to resolve further as the frame pointer trail goes cold due to a missing frame
pointer.

A simple application was developed to show the difference. The application calls
function a(), which calls b(), which calls c(), etc. Function z() calls a heavy compute
function called matrix_multiply(). Almost all of the IP samples are collected while
matrix_multiple is executing. The next two screen shots show one of the main
differences between frame pointers and LBRs.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 244

Note that the frame pointer example, shows the full stack trace while the LBR example,
only shows part of the stack due to the limited number of LBR registers in the CPU.

Kernel Samples

When an IP sample is captured while a kernel mode (i.e. operating system) function is
executing, the sample will be shown with an address that starts with 0xffffffff and map
to the [kernel.kallsyms] module.

[vdso]

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 245

Samples may be collected while a CPU is executing functions in the Virtual Dynamic
Shared Object. In this case, the sample will be resolved (i.e. mapped) to the [vdso]
module. The vdso man page provides the following description of the vdso:

 The “vDSO“ (virtual dynamic shared object) is a small shared library
 that the kernel automatically maps into the address space of all
 user-space applications. Applications usually do not need to concern
 themselves with these details as the vDSO is most commonly called by
 the C library. This way you can code in the normal way using
 standard functions and the C library will take care of using any
 functionality that is available via the vDSO.

 Why does the vDSO exist at all? There are some system calls the
 kernel provides that user-space code ends up using frequently, to the
 point that such calls can dominate overall performance. This is due
 both to the frequency of the call as well as the context-switch
 overhead that results from exiting user space and entering the
 kernel.

[Unknown]

When an address can not be resolved (i.e. mapped to a module), its address within the
process’ address space will be shown and its module will be marked as [Unknown].

22.6.5. Filter Dialog

‣ Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed
in the Top-Down view, since they provide very little useful information.

‣ Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

22.6.6. Example of Using Timeline with Function Table
Here is an example walkthrough of using the timeline and function table with
Instruction Pointer (IP)/backtrace Sampling Data

Timeline

http://man7.org/linux/man-pages/man7/vdso.7.html

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 246

When a collection result is opened in the Nsight Systems GUI, there are multiple ways to
view the CPU profiling data - especially the CPU IP / backtrace data.

In the timeline, yellow-orange marks can be found under each thread's timeline that
indicate the moment an IP / backtrace sample was collected on that thread (e.g. see the
yellow-orange marks in the Specific Samples box above). Hovering the cursor over a
mark will cause a tooltip to display the backtrace for that sample.

Below the Timeline is a drop-down list with multiple options including Events View,
Top-Down View, Bottom-Up View, and Flat View. All four of these views can be used to
view CPU IP / backtrace sampling data.

If the Bottom-Up View is selected, here is the sampling summary shown in the bottom
half of the Timeline View screen. Notice that the summary includes the phrase “65,022
samples are used” indicating how many samples are summarized. By default, functions
that were found in less less than 0.5% of the samples are not show. Use the filter
button to modify that setting.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 247

When sampling data is filtered, the Sampling Summary will summarize the selected
samples. Samples can be filtered on an OS thread basis, on a time basis, or both.
Above, deselecting a checkbox next to a thread removes its samples from the sampling
summary. Dragging the cursor over the timeline and selecting “Filter and Zoom In”
chooses the samples during the time selected, as seen below. The sample summary
includes the phrase “0.35% (225 samples) of data is shown due to applied filters”
indicating that only 225 samples are included in the summary results.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 248

Deselecting threads one at a time by deselecting their checkbox can be tedious. Click
on the down arrow next to a thread and choose Show Only This Thread to deselect all
threads except that thread.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 249

If Events View is selected in the Timeline View's drop-down list, right click on a specific
thread and choose Show in Events View. The samples collected while that thread
executed will be shown in the Events View. Double clicking on a specific sample in the
Events view causes the timeline to show when that sample was collected - see the green
boxes below. The backtrace for that sample is also shown in the Events View.

Backtraces

To understand the code path used to get to a specific function shown in the sampling
summary, right click on a function and select Expand.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 250

The above shows what happens when a function’s backtraces are expanded. In this case,
the PCQueuePop function was called from the CmiGetNonLocal function which was
called by the CsdNextMessage function which was called by the CsdScheduleForever
function. The [Max depth] string marks the end of the collected backtrace.

Note that, by default, backtraces with less than 0.5% of the total backtraces are hidden.
This behavior can make the percentage results hard to understand. If all backtraces are
shown (i.e. the filter is disabled), the results look very different and the numbers add
up as expected. To disable the filter, click on the Filter… button and uncheck the Hide
functions with CPU usage below X% checkbox.

When the filter is disabled, the backtraces are recalculated. Note that you may need
to right click on the function and select Expand again to get all of the backtraces to be
shown.

When backtraces are collected, the whole sample (IP and backtrace) is handled as a
single sample. If two samples have the exact same IP and backtrace, they are summed in
the final results. If two samples have the same IP but a different backtrace, they will be
shown as having the same leaf (i.e. IP) but a different backtrace. As mentioned earlier,
when backtraces end, they are marked with the [Max depth] string (unless the backtrace
can be traced back to its origin - e.g. __libc_start_main) or the backtrace breaks because
an IP cannot be resolved.

Reading Your Report in GUI

www.nvidia.com
User Guide v2023.3.1 | 251

Above, the leaf function is PCQueuePop. In this case, there are 11 different backtraces
that lead to PCQueuPop - all of them end with [Max depth]. For example, the dominant
path is PCQueuPop<-CmiGetNonLocal<-CsdNextmessage<-CsdScheduleForever<-
[Max depth]. This path accounts for 5.67% of all samples as shown in line 5 (red
numbers). The second most dominant path is PCQueuPop<-CmiGetNonLocal<-[Max
depth] which accounts for 0.44% of all samples as shown in line 24 (red numbers).
The path PCQueuPop<-CmiGetNonLocal<-CsdNextmessage<-CsdScheduleForever<-
Sequencer::integrate(int)<-[Max depth] accounts for 0.03% of the samples as shown in
line 7 (red numbers). Adding up percentages shown in the [Max depth] lines (lines 5,
7, 9, 13, 15, 16, 17, 19, 21, 23, and 24) generates 7.04% which equals the percentage of
samples associated with the PCQueuePop function shown in line 0 (red numbers).

22.7. Diagnostics Summary View
This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

‣ Informational messages
‣ Warnings
‣ Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

Information from this view can be selected and copied using the mouse cursor.

22.8. Symbol Resolution Logs View
This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the
timeline view are unresolved.

www.nvidia.com
User Guide v2023.3.1 | 252

Chapter 23.
ADDING REPORT TO THE TIMELINE

Starting with 2021.3, Nsight Systems can load multiple report files into a single timeline.
This is a BETA feature and will be improved in the future releases. Please let us know
about your experience on the forums or through Help > Send Feedback... in the main
menu.

To load multiple report files into a single timeline, first start by opening a report as usual
— using File > Open... from the main menu, or double clicking on a report in the Project
Explorer window. Then additional report files can be loaded into the same timeline
using one of the methods:

‣ File > Add Report (beta)... in the main menu, and select another report file that you
want to open

‣ Right click on the report in the project explorer window, and click Add Report
(beta)

23.1. Time Synchronization
When multiple reports are loaded into a single timeline, timestamps between them need
to be adjusted, such that events that happened at the same time appear to be aligned.

Adding Report to the Timeline

www.nvidia.com
User Guide v2023.3.1 | 253

Nsight Systems can automatically adjust timestamps based on UTC time recorded
around the collection start time. This method is used by default when other more
precise methods are not available. This time can be seen as UTC time at t=0 in the
Analysis Summary page of the report file. Refer to your OS documentation to learn how
to sync the software clock using the Network Time Protocol (NTP). NTP-based time
synchronization is not very precise, with the typical errors on the scale of one to tens of
milliseconds.

Reports collected on the same physical machine can use synchronization based on
Timestamp Counter (TSC) values. These are platform-specific counters, typically
accessed in user space applications using the RDTSC instruction on x86_64 architecture,
or by reading the CNTVCT register on Arm64. Their values converted to nanoseconds
can be seen as TSC value at t=0 in the Analysis Summary page of the report file.
Reports synchronized using TSC values can be aligned with nanoseconds-level
precision.

TSC-based time synchronization is activated automatically, when Nsight Systems
detects that reports come from same target and that the same TSC value corresponds
to very close UTC times. Targets are considered to be the same when either explicitly
set environment variables NSYS_HW_ID are the same for both reports or when target
hostnames are the same and NSYS_HW_ID is not set for either target. The difference
between UTC and TSC time offsets must be below 1 second to choose TSC-based time
synchronization.

To find out which synchronization method was used, navigate to the Analysis Summary
tab of an added report and check the Report alignment source property of a target.
Note, that the first report won’t have this parameter.

Adding Report to the Timeline

www.nvidia.com
User Guide v2023.3.1 | 254

When loading multiple reports into a single timeline, it is always advisable to first
check that time synchronization looks correct, by zooming into synchronization or
communication events that are expected to be aligned.

23.2. Timeline Hierarchy
When reports are added to the same timeline Nsight Systems will automatically
line them up by timestamps as described above. If you want Nsight Systems to also
recognize matching process or hardware information, you will need to set environment
variables NSYS_SYSTEM_ID and NSYS_HW_ID as shown below at the time of report
collection (such as when using "nsys profile ..." command).

When loading a pair of given report files into the same timeline, they will be merged in
one of the following configurations:

‣ Different hardware — is used when reports are coming from different physical
machines, and no hardware resources are shared in these reports. This mode is
used when neither NSYS_HW_ID or NSYS_SYSTEM_ID is set and target hostnames
are different or absent, and can be additionally signalled by specifying different
NSYS_HW_ID values.

‣ Different systems, same hardware — is used when reports are collected on different
virtual machines (VMs) or containers on the same physical machine. To activate this
mode, specify the same value of NSYS_HW_ID when collecting the reports.

‣ Same system — is used when reports are collected within the same operating
system (or container) environment. In this mode a process identifier (PID) 100
will refer to the same process in both reports. To manually activate this mode,
specify the same value of NSYS_SYSTEM_ID when collecting the reports. This
mode is automatically selected when target hostnames are the same and neither
NSYS_HW_ID or NSYS_SYSTEM_ID is provided.

The following diagrams demonstrate typical cases:

Adding Report to the Timeline

www.nvidia.com
User Guide v2023.3.1 | 255

23.3. Example: MPI
A typical scenario is when a computing job is run using one of the MPI
implementations. Each instance of the app can be profiled separately, resulting in
multiple report files. For example:

Run MPI job without the profiler:
mpirun <mpirun-options> ./myApp
Run MPI job and profile each instance of the application:
mpirun <mpirun-options> nsys profile -o report-%p <nsys-options>./myApp

When each MPI rank runs on a different node, the command above works fine, since the
default pairing mode (different hardware) will be used.

When all MPI ranks run the localhost only, use this command (value "A" was chosen
arbitrarily, it can be any non-empty string):

NSYS_SYSTEM_ID=A mpirun <mpirun-options> nsys profile -o report-%p
<nsys-options> ./myApp

For convenience, the MPI rank can be encoded into the report filename. For Open MPI,
use the following command to create report files based on the global rank value:

Adding Report to the Timeline

www.nvidia.com
User Guide v2023.3.1 | 256

mpirun <mpirun-options> nsys profile -o report-
%q{OMPI_COMM_WORLD_RANK} <nsys-options> ./myApp

MPICH-based implementations set the environment variable PMI_RANK and Slurm
(srun) provides the global MPI rank in SLURM_PROCID.

23.4. Limitations
‣ Only report files collected with Nsight Systems version 2021.3 and newer are fully

supported.
‣ Sequential reports collected in a single CLI profiling session cannot be loaded into a

single timeline yet.

www.nvidia.com
User Guide v2023.3.1 | 257

Chapter 24.
POST-COLLECTION ANALYSIS

Once you have profiled using Nsight Systems there are many options for analyzing the
collected data as well as to output it in various formats. These options are available from
the CLI or the GUI

24.1. Available Export Formats

24.1.1. SQLite Schema Reference
Nsight Systems has the ability to export SQLite database files from the .nsys-rep results
file. From the CLI, use nsys export. From the GUI, call File->Export....

Note: The .nsys-rep report format is the only data format for Nsight Systems that should
be considered forward compatible. The SQLite schema can and will change in the future.

The schema for a concrete database can be obtained with the sqlite3 tool built-in
command .schema. The sqlite3 tool can be located in the Target or Host directory of
your Nsight Systems installation.

Note: Currently tables are created lazily, and therefore not every table described in the
documentation will be present in a particular database. This will change in a future
version of the product. If you want a full schema of all possible tables, use nsys export
--lazy=false during export phase.

Currently, a table is created for each data type in the exported database. Since usage
patterns for exported data may vary greatly and no default use cases have been
established, no indexes or extra constraints are created. Instead, refer to the SQLite
Examples section for a list of common recipes. This may change in a future version of the
product.

To check the version of your exported SQLite file, check the value of
EXPORT_SCHEMA_VERSION in the EXPORT_META_DATA table. The schema version is a
common three-value major/minor/micro version number. The first value, or major value,
indicates the overall format of the database, and is only changed if there is a major re-
write or re-factor of the entire database format. It is assumed that if the major version

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 258

changes, all scripts or queries will break. The middle, or minor, version is changed
anytime there is a more localized, but potentially breaking change, such as renaming an
existing column, or changing the type of an existing column. The last, or micro version
is changed any time there are additions, such as a new table or column, that should not
introduce any breaking change when used with well-written, best-practices queries.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 259

This is the schema as of the 2023.2 release, schema version 3.1.7.

CREATE TABLE StringIds (
 -- Consolidation of repetitive string values.

 id INTEGER NOT NULL PRIMARY KEY, -- ID
 reference value.
 value TEXT NOT NULL -- String
 value.
);
CREATE TABLE ThreadNames (
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Thread name
 priority INTEGER, --
 Priority of the thread.
 globalTid INTEGER --
 Serialized GlobalId.
);
CREATE TABLE ProcessStreams (
 globalPid INTEGER NOT NULL, --
 Serialized GlobalId.
 filenameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- File name
 contentId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Stream content
);
CREATE TABLE TARGET_INFO_SYSTEM_ENV (
 globalVid INTEGER, --
 Serialized GlobalId.
 devStateName TEXT NOT NULL, -- Device
 state name.
 name TEXT NOT NULL, --
 Property name.
 nameEnum INTEGER NOT NULL, --
 Property enum value.
 value TEXT NOT NULL --
 Property value.
);
CREATE TABLE TARGET_INFO_NIC_INFO (
 globalId INTEGER, -- Device
 state globalId
 stateName TEXT NOT NULL, -- Device
 state name
 nicId INTEGER NOT NULL, --
 Network interface Id.
 name TEXT NOT NULL, --
 Network interface name
 deviceId INTEGER NOT NULL, --
 REFERENCES ENUM_NET_DEVICE_ID(id)
 vendorId INTEGER NOT NULL, --
 REFERENCES ENUM_NET_VENDOR_ID(id)
 linkLayer INTEGER NOT NULL --
 REFERENCES ENUM_NET_LINK_TYPE(id)
);
CREATE TABLE TARGET_INFO_SESSION_START_TIME (
 utcEpochNs INTEGER, -- UTC
 Epoch timestamp at start of the capture (ns).
 utcTime TEXT, -- Start
 of the capture in UTC.
 localTime TEXT -- Start
 of the capture in local time of target.
);
CREATE TABLE ANALYSIS_DETAILS (
 -- Details about the analysis session.

 globalVid INTEGER NOT NULL, --
 Serialized GlobalId.
 duration INTEGER NOT NULL, -- The
 total time span of the entire trace (ns).
 startTime INTEGER NOT NULL, -- Trace
 start timestamp in nanoseconds.
 stopTime INTEGER NOT NULL -- Trace
 stop timestamp in nanoseconds.
);
CREATE TABLE TARGET_INFO_GPU (
 vmId INTEGER NOT NULL, --
 Serialized GlobalId.
 id INTEGER NOT NULL, -- Device
 ID.
 name TEXT, -- Device
 name.
 busLocation TEXT, -- PCI
 bus location.
 isDiscrete INTEGER, -- True
 if discrete, false if integrated.
 l2CacheSize INTEGER, -- Size
 of L2 cache (B).
 totalMemory INTEGER, -- Total
 amount of memory on the device (B).
 memoryBandwidth INTEGER, -- Amount
 of memory transferred (B).
 clockRate INTEGER, -- Clock
 frequency (Hz).
 smCount INTEGER, -- Number
 of multiprocessors on the device.
 pwGpuId INTEGER, --
 PerfWorks GPU ID.
 uuid TEXT, -- Device
 UUID.
 luid INTEGER, -- Device
 LUID.
 chipName TEXT, -- Chip
 name.
 cuDevice INTEGER, -- CUDA
 device ID.
 ctxswDevPath TEXT, -- GPU
 context switch device node path.
 ctrlDevPath TEXT, -- GPU
 control device node path.
 revision INTEGER, --
 Revision number.
 nodeMask INTEGER, -- Device
 node mask.
 constantMemory INTEGER, -- Memory
 available on device for __constant__ variables (B).
 maxIPC INTEGER, --
 Maximum instructions per count.
 maxRegistersPerBlock INTEGER, --
 Maximum number of 32-bit registers available per block.
 maxShmemPerBlock INTEGER, --
 Maximum optin shared memory per block.
 maxShmemPerBlockOptin INTEGER, --
 Maximum optin shared memory per block.
 maxShmemPerSm INTEGER, --
 Maximum shared memory available per multiprocessor (B).
 maxRegistersPerSm INTEGER, --
 Maximum number of 32-bit registers available per multiprocessor.
 threadsPerWarp INTEGER, -- Warp
 size in threads.
 asyncEngines INTEGER, -- Number
 of asynchronous engines.
 maxWarpsPerSm INTEGER, --
 Maximum number of warps per multiprocessor.
 maxBlocksPerSm INTEGER, --
 Maximum number of blocks per multiprocessor.
 maxThreadsPerBlock INTEGER, --
 Maximum number of threads per block.
 maxBlockDimX INTEGER, --
 Maximum X-dimension of a block.
 maxBlockDimY INTEGER, --
 Maximum Y-dimension of a block.
 maxBlockDimZ INTEGER, --
 Maximum Z-dimension of a block.
 maxGridDimX INTEGER, --
 Maximum X-dimension of a grid.
 maxGridDimY INTEGER, --
 Maximum Y-dimension of a grid.
 maxGridDimZ INTEGER, --
 Maximum Z-dimension of a grid.
 computeMajor INTEGER, -- Major
 compute capability version number.
 computeMinor INTEGER, -- Minor
 compute capability version number.
 smMajor INTEGER, -- Major
 multiprocessor version number.
 smMinor INTEGER -- Minor
 multiprocessor version number.
);
CREATE TABLE TARGET_INFO_XMC_SPEC (
 vmId INTEGER NOT NULL, --
 Serialized GlobalId.
 clientId INTEGER NOT NULL, -- Client
 ID.
 type TEXT NOT NULL, -- Client
 type.
 name TEXT NOT NULL, -- Client
 name.
 groupId TEXT NOT NULL -- Client
 group ID.
);
CREATE TABLE TARGET_INFO_PROCESS (
 processId INTEGER NOT NULL, --
 Process ID.
 openGlVersion TEXT NOT NULL, -- OpenGL
 version.
 correlationId INTEGER NOT NULL, --
 Correlation ID of the kernel.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE TARGET_INFO_NVTX_CUDA_DEVICE (
 name TEXT NOT NULL, -- CUDA
 device name assigned using NVTX.
 hwId INTEGER NOT NULL, --
 Hardware ID.
 vmId INTEGER NOT NULL, -- VM ID.
 deviceId INTEGER NOT NULL -- Device
 ID.
);
CREATE TABLE TARGET_INFO_NVTX_CUDA_CONTEXT (
 name TEXT NOT NULL, -- CUDA
 context name assigned using NVTX.
 hwId INTEGER NOT NULL, --
 Hardware ID.
 vmId INTEGER NOT NULL, -- VM ID.
 processId INTEGER NOT NULL, --
 Process ID.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL --
 Context ID.
);
CREATE TABLE TARGET_INFO_NVTX_CUDA_STREAM (
 name TEXT NOT NULL, -- CUDA
 stream name assigned using NVTX.
 hwId INTEGER NOT NULL, --
 Hardware ID.
 vmId INTEGER NOT NULL, -- VM ID.
 processId INTEGER NOT NULL, --
 Process ID.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL -- Stream
 ID.
);
CREATE TABLE TARGET_INFO_CUDA_NULL_STREAM (
 streamId INTEGER NOT NULL, -- Stream
 ID.
 hwId INTEGER NOT NULL, --
 Hardware ID.
 vmId INTEGER NOT NULL, -- VM ID.
 processId INTEGER NOT NULL, --
 Process ID.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL --
 Context ID.
);
CREATE TABLE TARGET_INFO_CUDA_STREAM (
 streamId INTEGER NOT NULL, -- Stream
 ID.
 hwId INTEGER NOT NULL, --
 Hardware ID.
 vmId INTEGER NOT NULL, -- VM ID.
 processId INTEGER NOT NULL, --
 Process ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 priority INTEGER NOT NULL, --
 Priority of the stream.
 flag INTEGER NOT NULL --
 REFERENCES ENUM_CUPTI_STREAM_TYPE(id)
);
CREATE TABLE TARGET_INFO_WDDM_CONTEXTS (
 context INTEGER NOT NULL,
 engineType INTEGER NOT NULL,
 nodeOrdinal INTEGER NOT NULL,
 friendlyName TEXT NOT NULL
);
CREATE TABLE TARGET_INFO_PERF_COUNTER (
 counterId INTEGER NOT NULL, --
 Counter ID value
 name TEXT NOT NULL, --
 Counter name
 description TEXT NOT NULL, --
 Counter description
 unit TEXT NOT NULL --
 Counter measurement unit
);
CREATE TABLE TARGET_INFO_NETWORK_METRICS (
 metricsListId INTEGER NOT NULL, -- Metric
 list ID
 metricsIdx INTEGER NOT NULL, -- List
 index of metric
 name TEXT NOT NULL, -- Name
 of metric
 description TEXT NOT NULL, --
 Description of metric
 unit TEXT NOT NULL --
 Measurement unit of metric
);
CREATE TABLE EXPORT_META_DATA (
 -- information about nsys export process

 name TEXT NOT NULL, -- Name
 of export meta-data record
 value TEXT -- Value
 of export meta-data record
);
CREATE TABLE ENUM_NSYS_EVENT_TYPE (
 -- Nsys event type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_NSYS_EVENT_CLASS (
 -- Nsys event class labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_GPU_CTX_SWITCH (
 -- GPU context switch labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_MEMCPY_OPER (
 -- CUDA memcpy operation labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_MEM_KIND (
 -- CUDA memory kind labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_MEMPOOL_TYPE (
 -- CUDA mempool type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_MEMPOOL_OPER (
 -- CUDA mempool operation labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_DEV_MEM_EVENT_OPER (
 -- CUDA device mem event operation labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_KERNEL_LAUNCH_TYPE (
 -- CUDA kernel launch type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_SHARED_MEM_LIMIT_CONFIG (
 -- CUDA shared memory limit config labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_UNIF_MEM_MIGRATION (
 -- CUDA unified memory migration cause labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_UNIF_MEM_ACCESS_TYPE (
 -- CUDA unified memory access type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUDA_FUNC_CACHE_CONFIG (
 -- CUDA function cache config labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUPTI_STREAM_TYPE (
 -- CUPTI stream type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_CUPTI_SYNC_TYPE (
 -- CUPTI synchronization type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_STACK_UNWIND_METHOD (
 -- Stack unwind method labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_SAMPLING_THREAD_STATE (
 -- Sampling thread state labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENGL_DEBUG_SOURCE (
 -- OpenGL debug source labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENGL_DEBUG_TYPE (
 -- OpenGL debug type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENGL_DEBUG_SEVERITY (
 -- OpenGL debug severity labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_VULKAN_PIPELINE_CREATION_FLAGS (
 -- Vulkan pipeline creation feedback flag labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_D3D12_HEAP_TYPE (
 -- D3D12 heap type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_D3D12_PAGE_PROPERTY (
 -- D3D12 CPU page property labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_D3D12_HEAP_FLAGS (
 -- D3D12 heap flag labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_D3D12_CMD_LIST_TYPE (
 -- D3D12 command list type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENACC_DEVICE (
 -- OpenACC device type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENACC_EVENT_KIND (
 -- OpenACC event type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_EVENT_KIND (
 -- OpenMP event kind labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_THREAD (
 -- OpenMP thread labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_DISPATCH (
 -- OpenMP dispatch labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_SYNC_REGION (
 -- OpenMP sync region labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_WORK (
 -- OpenMP work labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_MUTEX (
 -- OpenMP mutex labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_TASK_FLAG (
 -- OpenMP task flags labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_OPENMP_TASK_STATUS (
 -- OpenMP task status labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_SLI_TRANSER (
 -- OpenMP task status labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_DXGI_FORMAT (
 -- DXGI image format labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_NVDRIVER_EVENT_ID (
 -- NV-Driver event it labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_WDDM_PAGING_QUEUE_TYPE (
 -- WDDM paging queue type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_WDDM_PACKET_TYPE (
 -- WDDM packet type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_WDDM_ENGINE_TYPE (
 -- WDDM engine type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_WDDM_INTERRUPT_TYPE (
 -- WDDM DMA interrupt type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_WDDM_VIDMM_OP_TYPE (
 -- WDDM VidMm operation type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_NET_LINK_TYPE (
 -- NIC link layer labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_NET_DEVICE_ID (
 -- NIC PCIe device id labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_NET_VENDOR_ID (
 -- NIC PCIe vendor id labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE ENUM_ETW_MEMORY_TRANSFER_TYPE (
 -- memory transfer type labels

 id INTEGER NOT NULL PRIMARY KEY, -- Enum
 numerical value
 name TEXT, -- Enum
 symbol name
 label TEXT -- Enum
 human name
);
CREATE TABLE GENERIC_EVENT_SOURCES (
 sourceId INTEGER NOT NULL PRIMARY KEY, --
 Serialized GlobalId.
 data TEXT NOT NULL -- JSON
 encoded generic event source description.
);
CREATE TABLE GENERIC_EVENT_TYPES (
 typeId INTEGER NOT NULL PRIMARY KEY, --
 Serialized GlobalId.
 sourceId INTEGER NOT NULL, --
 REFERENCES GENERIC_EVENT_SOURCES(sourceId)
 data TEXT NOT NULL -- JSON
 encoded generic event type description.
);
CREATE TABLE GENERIC_EVENTS (
 -- Events for which the schema is known only at the run-time.

 rawTimestamp INTEGER NOT NULL, -- Raw
 event timestamp recorded during profiling.
 timestamp INTEGER, -- Event
 timestamp converted to the profiling session timeline.
 typeId INTEGER NOT NULL, --
 REFERENCES GENERIC_EVENT_TYPES(typeId)
 data TEXT NOT NULL -- JSON
 encoded event data.
);
CREATE TABLE ETW_PROVIDERS (
 -- Names and identifiers of ETW providers captured in the report.

 providerId INTEGER NOT NULL PRIMARY KEY, --
 Provider ID.
 providerNameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Provider name
 guid TEXT NOT NULL -- ETW
 Provider GUID.
);
CREATE TABLE ETW_TASKS (
 -- Names and identifiers of ETW tasks captured in the report.

 taskNameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Task name
 taskId INTEGER NOT NULL, -- The
 event task ID.
 providerId INTEGER NOT NULL --
 Provider ID.
);
CREATE TABLE ETW_EVENTS (
 -- Raw ETW events captured in the report.

 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 processId INTEGER, --
 Process ID.
 threadId INTEGER, -- Thread
 ID.
 providerId INTEGER NOT NULL, --
 Provider ID.
 taskId INTEGER NOT NULL, -- The
 event task ID.
 eventId INTEGER NOT NULL, -- Event
 ID.
 version INTEGER NOT NULL, -- The
 event version.
 opcode INTEGER, -- The
 event opcode.
 data TEXT NOT NULL -- JSON
 encoded event data.
);
CREATE TABLE TARGET_INFO_GPU_METRICS (
 -- GPU Metrics, metric names and ids.

 typeId INTEGER NOT NULL, --
 REFERENCES GENERIC_EVENT_TYPES(typeId)
 sourceId INTEGER NOT NULL, --
 REFERENCES GENERIC_EVENT_SOURCES(sourceId)
 typeName TEXT NOT NULL, -- Name
 of event type.
 metricId INTEGER NOT NULL, -- Id of
 metric in event; not assumed to be stable.
 metricName TEXT NOT NULL --
 Definitive name of metric.
);
CREATE TABLE GPU_METRICS (
 -- GPU Metrics, events and values.

 timestamp INTEGER, -- Event
 timestamp (ns).
 typeId INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_GPU_METRICS(typeId) and GENERIC_EVENT_TYPES(typeId)
 metricId INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_GPU_METRICS(metricId)
 value INTEGER NOT NULL --
 Counter data value
);
CREATE TABLE MPI_COMMUNICATORS (
 -- Identification of MPI communication groups.

 rank INTEGER, -- Active
 MPI rank
 timestamp INTEGER, -- Time
 of MPI communicator creation.
 commHandle INTEGER, -- MPI
 communicator handle
 parentHandle INTEGER, -- MPI
 communicator handle
 localRank INTEGER, -- Local
 MPI rank in a communicator.
 size INTEGER, -- MPI
 communicator size.
 groupRoot INTEGER, -- Root
 rank (global) in MPI communicator.
 groupRootUid INTEGER, -- Group
 root's communicator ID.
 members TEXT -- MPI
 communicator members (index is global rank).
);
CREATE TABLE CUPTI_ACTIVITY_KIND_MEMCPY (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL, -- Stream
 ID.
 correlationId INTEGER, --
 REFERENCES CUPTI_ACTIVITY_KIND_RUNTIME(correlationId)
 globalPid INTEGER, --
 Serialized GlobalId.
 bytes INTEGER NOT NULL, -- Number
 of bytes transferred (B).
 copyKind INTEGER NOT NULL, --
 REFERENCES ENUM_CUDA_MEMCPY_OPER(id)
 deprecatedSrcId INTEGER, --
 Deprecated, use srcDeviceId instead.
 srcKind INTEGER, --
 REFERENCES ENUM_CUDA_MEM_KIND(id)
 dstKind INTEGER, --
 REFERENCES ENUM_CUDA_MEM_KIND(id)
 srcDeviceId INTEGER, -- Source
 device ID.
 srcContextId INTEGER, -- Source
 context ID.
 dstDeviceId INTEGER, --
 Destination device ID.
 dstContextId INTEGER, --
 Destination context ID.
 migrationCause INTEGER, --
 REFERENCES ENUM_CUDA_UNIF_MEM_MIGRATION(id)
 graphNodeId INTEGER, --
 REFERENCES CUDA_GRAPH_EVENTS(graphNodeId)
 virtualAddress INTEGER --
 Virtual base address of the page/s being transferred.
);
CREATE TABLE CUPTI_ACTIVITY_KIND_MEMSET (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL, -- Stream
 ID.
 correlationId INTEGER, --
 REFERENCES CUPTI_ACTIVITY_KIND_RUNTIME(correlationId)
 globalPid INTEGER, --
 Serialized GlobalId.
 value INTEGER NOT NULL, -- Value
 assigned to memory.
 bytes INTEGER NOT NULL, -- Number
 of bytes set (B).
 graphNodeId INTEGER, --
 REFERENCES CUDA_GRAPH_EVENTS(graphNodeId)
 memKind INTEGER --
 REFERENCES ENUM_CUDA_MEM_KIND(id)
);
CREATE TABLE CUPTI_ACTIVITY_KIND_KERNEL (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL, -- Stream
 ID.
 correlationId INTEGER, --
 REFERENCES CUPTI_ACTIVITY_KIND_RUNTIME(correlationId)
 globalPid INTEGER, --
 Serialized GlobalId.
 demangledName INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Kernel function name w/ templates
 shortName INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Base kernel function name
 mangledName INTEGER, --
 REFERENCES StringIds(id) -- Raw C++ mangled kernel function name
 launchType INTEGER, --
 REFERENCES ENUM_CUDA_KERNEL_LAUNCH_TYPE(id)
 cacheConfig INTEGER, --
 REFERENCES ENUM_CUDA_FUNC_CACHE_CONFIG(id)
 registersPerThread INTEGER NOT NULL, -- Number
 of registers required for each thread executing the kernel.
 gridX INTEGER NOT NULL, -- X-
dimension grid size.
 gridY INTEGER NOT NULL, -- Y-
dimension grid size.
 gridZ INTEGER NOT NULL, -- Z-
dimension grid size.
 blockX INTEGER NOT NULL, -- X-
dimension block size.
 blockY INTEGER NOT NULL, -- Y-
dimension block size.
 blockZ INTEGER NOT NULL, -- Z-
dimension block size.
 staticSharedMemory INTEGER NOT NULL, -- Static
 shared memory allocated for the kernel (B).
 dynamicSharedMemory INTEGER NOT NULL, --
 Dynamic shared memory reserved for the kernel (B).
 localMemoryPerThread INTEGER NOT NULL, -- Amount
 of local memory reserved for each thread (B).
 localMemoryTotal INTEGER NOT NULL, -- Total
 amount of local memory reserved for the kernel (B).
 gridId INTEGER NOT NULL, -- Unique
 grid ID of the kernel assigned at runtime.
 sharedMemoryExecuted INTEGER, -- Shared
 memory size set by the driver.
 graphNodeId INTEGER, --
 REFERENCES CUDA_GRAPH_EVENTS(graphNodeId)
 sharedMemoryLimitConfig INTEGER --
 REFERENCES ENUM_CUDA_SHARED_MEM_LIMIT_CONFIG(id)
);
CREATE TABLE CUPTI_ACTIVITY_KIND_SYNCHRONIZATION (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL, -- Stream
 ID.
 correlationId INTEGER, --
 Correlation ID of the synchronization API to which this result is associated.
 globalPid INTEGER, --
 Serialized GlobalId.
 syncType INTEGER NOT NULL, --
 REFERENCES ENUM_CUPTI_SYNC_TYPE(id)
 eventId INTEGER NOT NULL -- Event
 ID for which the synchronization API is called.
);
CREATE TABLE CUPTI_ACTIVITY_KIND_CUDA_EVENT (
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 streamId INTEGER NOT NULL, -- Stream
 ID.
 correlationId INTEGER, --
 Correlation ID of the event record API to which this result is associated.
 globalPid INTEGER, --
 Serialized GlobalId.
 eventId INTEGER NOT NULL -- Event
 ID for which the event record API is called.
);
CREATE TABLE CUPTI_ACTIVITY_KIND_RUNTIME (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- ID
 used to identify events that this function call has triggered.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 returnValue INTEGER NOT NULL, -- Return
 value of the function call.
 callchainId INTEGER --
 REFERENCES CUDA_CALLCHAINS(id)
);
CREATE TABLE CUDNN_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE CUBLAS_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE CUDA_GRAPH_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 graphNodeId INTEGER NOT NULL, --
 REFERENCES CUDA_GRAPH_EVENTS(graphNodeId)
 originalGraphNodeId INTEGER --
 Reference to the original graph node ID, if cloned node.
);
CREATE TABLE CUDA_UM_CPU_PAGE_FAULT_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalPid INTEGER NOT NULL, --
 Serialized GlobalId.
 address INTEGER NOT NULL, --
 Virtual address of the page that faulted.
 originalFaultPc INTEGER, --
 Program counter of the CPU instruction that caused the page fault.
 CpuInstruction INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 module INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Module name
 unresolvedFaultPc INTEGER -- True
 if the program counter was not resolved.
);
CREATE TABLE CUDA_UM_GPU_PAGE_FAULT_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalPid INTEGER NOT NULL, --
 Serialized GlobalId.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 address INTEGER NOT NULL, --
 Virtual address of the page that faulted.
 numberOfPageFaults INTEGER NOT NULL, -- Number
 of page faults for the same page.
 faultAccessType INTEGER NOT NULL --
 REFERENCES ENUM_CUDA_UNIF_MEM_ACCESS_TYPE(id)
);
CREATE TABLE CUDA_GPU_MEMORY_USAGE_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalPid INTEGER NOT NULL, --
 Serialized GlobalId.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 contextId INTEGER NOT NULL, --
 Context ID.
 address INTEGER NOT NULL, --
 Virtual address of the allocation/deallocation.
 pc INTEGER NOT NULL, --
 Program counter of the allocation/deallocation.
 bytes INTEGER NOT NULL, -- Number
 of bytes allocated/deallocated (B).
 memKind INTEGER NOT NULL, --
 REFERENCES ENUM_CUDA_MEM_KIND(id)
 memoryOperationType INTEGER NOT NULL, --
 REFERENCES ENUM_CUDA_DEV_MEM_EVENT_OPER(id)
 name TEXT, --
 Variable name, if available.
 correlationId INTEGER, --
 REFERENCES CUPTI_ACTIVITY_KIND_RUNTIME(correlationId)
 localMemoryPoolAddress INTEGER, -- Base
 address of the local memory pool used
 localMemoryPoolReleaseThreshold INTEGER, --
 Release threshold of the local memory pool used
 localMemoryPoolSize INTEGER, -- Size
 of the local memory pool used
 localMemoryPoolUtilizedSize INTEGER, --
 Utilized size of the local memory pool used
 importedMemoryPoolAddress INTEGER, -- Base
 address of the imported memory pool used
 importedMemoryPoolProcessId INTEGER --
 Process ID of the imported memory pool used
);
CREATE TABLE CUDA_GPU_MEMORY_POOL_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalPid INTEGER NOT NULL, --
 Serialized GlobalId.
 deviceId INTEGER NOT NULL, -- Device
 ID.
 address INTEGER NOT NULL, -- The
 base virtual address of the memory pool.
 operationType INTEGER NOT NULL, --
 REFERENCES ENUM_CUDA_MEMPOOL_OPER(id)
 poolType INTEGER NOT NULL, --
 REFERENCES ENUM_CUDA_MEMPOOL_TYPE(id)
 correlationId INTEGER, --
 REFERENCES CUPTI_ACTIVITY_KIND_RUNTIME(correlationId)
 minBytesToKeep INTEGER, --
 Minimum number of bytes to keep of the memory pool.
 localMemoryPoolReleaseThreshold INTEGER, --
 Release threshold of the local memory pool used
 localMemoryPoolSize INTEGER, -- Size
 of the local memory pool used
 localMemoryPoolUtilizedSize INTEGER --
 Utilized size of the local memory pool used
);
CREATE TABLE CUDA_CALLCHAINS (
 id INTEGER NOT NULL, -- Part
 of PRIMARY KEY (id, stackDepth).
 symbol INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 module INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Module name
 unresolved INTEGER, -- True
 if the symbol was not resolved.
 originalIP INTEGER, --
 Instruction pointer value.
 stackDepth INTEGER NOT NULL, -- Zero-
base index of the given function in call stack.

 PRIMARY KEY (id, stackDepth)
);
CREATE TABLE MPI_RANKS (
 -- Mapping of global thread IDs (gtid) to MPI ranks

 globalTid INTEGER NOT NULL, --
 Serialized GlobalId.
 rank INTEGER NOT NULL -- MPI
 rank
);
CREATE TABLE MPI_P2P_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 textId INTEGER, --
 REFERENCES StringIds(id) -- Registered NVTX domain
 commHandle INTEGER, -- MPI
 communicator handle
 tag INTEGER, -- MPI
 message tag
 remoteRank INTEGER, -- MPI
 remote rank (destination or source)
 size INTEGER, -- MPI
 message size in bytes
 requestHandle INTEGER -- MPI
 request handle
);
CREATE TABLE MPI_COLLECTIVES_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 textId INTEGER, --
 REFERENCES StringIds(id) -- Registered NVTX domain
 commHandle INTEGER, -- MPI
 communicator handle
 rootRank INTEGER, -- root
 rank in the collective
 size INTEGER, -- MPI
 message size in bytes (send size for bidirectional ops)
 recvSize INTEGER, -- MPI
 receive size in bytes
 requestHandle INTEGER -- MPI
 request handle
);
CREATE TABLE MPI_START_WAIT_EVENTS (
 -- MPI_Wait* and MPI_Start*

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 textId INTEGER, --
 REFERENCES StringIds(id) -- Registered NVTX domain
 requestHandle INTEGER -- MPI
 request handle
);
CREATE TABLE MPI_OTHER_EVENTS (
 -- MPI events without additional parameters

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 textId INTEGER --
 REFERENCES StringIds(id) -- Registered NVTX domain
);
CREATE TABLE NVTX_EVENTS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 eventType INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_TYPE(id)
 rangeId INTEGER, --
 Correlation ID returned from a nvtxRangeStart call.
 category INTEGER, -- User-
controlled ID that can be used to group events.
 color INTEGER, --
 Encoded ARGB color value.
 text TEXT, --
 Optional text message for non registered strings.
 globalTid INTEGER, --
 Serialized GlobalId.
 endGlobalTid INTEGER, --
 Serialized GlobalId.
 textId INTEGER, --
 REFERENCES StringIds(id) -- Registered NVTX domain
 domainId INTEGER, -- User-
controlled ID that can be used to group events.
 uint64Value INTEGER, -- One of
 possible payload value union members.
 int64Value INTEGER, -- One of
 possible payload value union members.
 doubleValue REAL, -- One of
 possible payload value union members.
 uint32Value INTEGER, -- One of
 possible payload value union members.
 int32Value INTEGER, -- One of
 possible payload value union members.
 floatValue REAL, -- One of
 possible payload value union members.
 jsonTextId INTEGER, -- One of
 possible payload value union members.
 jsonText TEXT -- One of
 possible payload value union members.
);
CREATE TABLE OPENGL_API (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_TYPE(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 endGlobalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- First function name
 endNameId INTEGER, --
 REFERENCES StringIds(id) -- Last function name
 returnValue INTEGER NOT NULL, -- Return
 value of the function call.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 contextId INTEGER, --
 Context ID.
 gpu INTEGER, -- GPU
 index.
 display INTEGER --
 Display ID.
);
CREATE TABLE OPENGL_WORKLOAD (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_TYPE(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 endGlobalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- First function name
 endNameId INTEGER, --
 REFERENCES StringIds(id) -- Last function name
 returnValue INTEGER NOT NULL, -- Return
 value of the function call.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 contextId INTEGER, --
 Context ID.
 gpu INTEGER, -- GPU
 index.
 display INTEGER --
 Display ID.
);
CREATE TABLE KHR_DEBUG_EVENTS (
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_TYPE(id)
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER, -- Event
 end timestamp (ns).
 textId INTEGER, --
 REFERENCES StringIds(id) -- Debug marker/group text
 globalTid INTEGER, --
 Serialized GlobalId.
 source INTEGER, --
 REFERENCES ENUM_OPENGL_DEBUG_SOURCE(id)
 khrdType INTEGER, --
 REFERENCES ENUM_OPENGL_DEBUG_TYPE(id)
 id INTEGER, -- KHR
 event ID.
 severity INTEGER, --
 REFERENCES ENUM_OPENGL_DEBUG_SEVERITY(id)
 correlationId INTEGER, -- ID
 used to correlate KHR CPU trace to GPU trace.
 context INTEGER --
 Context ID.
);
CREATE TABLE OSRT_API (
 -- OS runtime libraries traced to gather information about low-level
 userspace APIs.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 returnValue INTEGER NOT NULL, -- Return
 value of the function call.
 nestingLevel INTEGER, -- Zero-
base index of the nesting level.
 callchainId INTEGER NOT NULL --
 REFERENCES OSRT_CALLCHAINS(id)
);
CREATE TABLE OSRT_CALLCHAINS (
 -- Callchains attached to OSRT events, depending on selected profiling
 settings.

 id INTEGER NOT NULL, -- Part
 of PRIMARY KEY (id, stackDepth).
 symbol INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 module INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Module name
 kernelMode INTEGER, -- True
 if kernel mode.
 thumbCode INTEGER, -- True
 if thumb code.
 unresolved INTEGER, -- True
 if the symbol was not resolved.
 specialEntry INTEGER, -- True
 if artifical entry added during processing callchain.
 originalIP INTEGER, --
 Instruction pointer value.
 unwindMethod INTEGER, --
 REFERENCES ENUM_STACK_UNWIND_METHOD(id)
 stackDepth INTEGER NOT NULL, -- Zero-
base index of the given function in call stack.

 PRIMARY KEY (id, stackDepth)
);
CREATE TABLE UnwindMethodType (
 number INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);
CREATE TABLE PROFILER_OVERHEAD (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 returnValue INTEGER NOT NULL -- Return
 value of the function call.
);
CREATE TABLE SCHED_EVENTS (
 -- Thread scheduling events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 cpu INTEGER NOT NULL, -- ID of
 CPU this thread was scheduled in or out.
 isSchedIn INTEGER NOT NULL, -- 0 if
 thread was scheduled out, non-zero otherwise.
 globalTid INTEGER --
 Serialized GlobalId.
);
CREATE TABLE COMPOSITE_EVENTS (
 -- Thread sampling events.

 id INTEGER NOT NULL PRIMARY KEY, -- ID of
 the composite event.
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 cpu INTEGER, -- ID of
 CPU this thread was running on.
 threadState INTEGER, --
 REFERENCES ENUM_SAMPLING_THREAD_STATE(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 cpuCycles INTEGER NOT NULL -- Value
 of Performance Monitoring Unit (PMU) counter.
);
CREATE TABLE SAMPLING_CALLCHAINS (
 -- Callchain entries obtained from composite events, used to construct
 function table views.

 id INTEGER NOT NULL, --
 REFERENCES COMPOSITE_EVENTS(id)
 symbol INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 module INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Module name
 kernelMode INTEGER, -- True
 if kernel mode.
 thumbCode INTEGER, -- True
 if thumb code.
 unresolved INTEGER, -- True
 if the symbol was not resolved.
 specialEntry INTEGER, -- True
 if artifical entry added during processing callchain.
 originalIP INTEGER, --
 Instruction pointer value.
 unwindMethod INTEGER, --
 REFERENCES ENUM_STACK_UNWIND_METHOD(id)
 stackDepth INTEGER NOT NULL, -- Zero-
base index of the given function in call stack.

 PRIMARY KEY (id, stackDepth)
);
CREATE TABLE PERF_EVENT_CPU_COUNTER (
 -- Sampled CPU Performance Counters.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 vmId INTEGER, -- VM ID.
 componentId INTEGER, -- Perf
 Event Component ID (usually CPU Core ID)
 counterId INTEGER, --
 REFERENCES TARGET_INFO_PERF_COUNTER(counterId)
 value INTEGER --
 Counter data value
);
CREATE TABLE SLI_QUERIES (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 frameId INTEGER NOT NULL, -- Index
 of the graphics frame starting from 1.
 occQueryIssued INTEGER NOT NULL, --
 Occlusion query issued.
 occQueryAsked INTEGER NOT NULL, --
 Occlusion query asked.
 eventQueryIssued INTEGER NOT NULL, -- Event
 query issued.
 eventQueryAsked INTEGER NOT NULL, -- Event
 query asked.
 numberOfTransferEvents INTEGER NOT NULL, -- Number
 of transfer events.
 amountOfTransferredData INTEGER NOT NULL --
 Cumulative size of resource data that was transferred.
);
CREATE TABLE SLI_P2P (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 frameId INTEGER NOT NULL, -- Index
 of the graphics frame starting from 1.
 transferSkipped INTEGER NOT NULL, -- Number
 of transfers that were skipped.
 srcGpu INTEGER NOT NULL, -- Source
 GPU ID.
 dstGpu INTEGER NOT NULL, --
 Destination GPU ID.
 numSubResources INTEGER NOT NULL, -- Number
 of sub-resources to transfer.
 resourceSize INTEGER NOT NULL, -- Size
 of resource.
 subResourceIdx INTEGER NOT NULL, -- Sub-
resource index.
 smplWidth INTEGER, -- Sub-
resource surface width in samples.
 smplHeight INTEGER, -- Sub-
resource surface height in samples.
 smplDepth INTEGER, -- Sub-
resource surface depth in samples.
 bytesPerElement INTEGER, -- Number
 of bytes per element.
 dxgiFormat INTEGER, --
 REFERENCES ENUM_DXGI_FORMAT(id)
 logSurfaceNames TEXT, --
 Surface name.
 transferInfo INTEGER, --
 REFERENCES ENUM_SLI_TRANSER(id)
 isEarlyPushManagedByNvApi INTEGER, -- True
 if early push managed by NVAPI. False otherwise.
 useAsyncP2pForResolve INTEGER, -- True
 if async Peer-to-Peer used for resolve. False otherwise.
 transferFuncName TEXT, -- "A -
 BE" for asynchronous transfer, "S - BE" for synchronous transfer.
 regimeName TEXT, -- Name
 of the regime scope that includes the resource.
 debugName TEXT, -- Debug
 name assigned to the resource by the application code.
 bindType TEXT -- Bind
 type.
);
CREATE TABLE SLI_STATS (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 countComplexFrames INTEGER NOT NULL, --
 Complex frames count.
 countStats INTEGER NOT NULL, -- Number
 of frame statistics collected for the inactive-time histogram.
 totalInactiveTime INTEGER NOT NULL, -- Total
 inactive time (µs).
 minPbSize INTEGER NOT NULL, -- Min
 push buffer size.
 maxPbSize INTEGER NOT NULL, -- Max
 push buffer size.
 totalPbSize INTEGER NOT NULL -- Total
 push buffer size.
);
CREATE TABLE DX12_API (
 id INTEGER NOT NULL PRIMARY KEY,
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 shortContextId INTEGER, -- Short
 form of the COM interface object address.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER, --
 REFERENCES StringIds(id) -- PIX marker text
 commandListType INTEGER, --
 REFERENCES ENUM_D3D12_CMD_LIST_TYPE(id)
 objectNameId INTEGER, --
 REFERENCES StringIds(id) -- D3D12 object name
 longContextId INTEGER -- Long
 form of the COM interface object address.
);
CREATE TABLE DX12_WORKLOAD (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 shortContextId INTEGER, -- Short
 form of the COM interface object address.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 gpu INTEGER, -- GPU
 index.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER, --
 REFERENCES StringIds(id) -- PIX marker text
 commandListType INTEGER, --
 REFERENCES ENUM_D3D12_CMD_LIST_TYPE(id)
 objectNameId INTEGER, --
 REFERENCES StringIds(id) -- D3D12 object name
 longContextId INTEGER -- Long
 form of the COM interface object address.
);
CREATE TABLE DX12_MEMORY_OPERATION (
 gpu INTEGER, -- GPU
 index.
 rangeStart INTEGER, -- Offset
 denoting the beginning of a memory range (B).
 rangeEnd INTEGER, -- Offset
 denoting the end of a memory range (B).
 subresourceId INTEGER, --
 Subresource index.
 heapType INTEGER, --
 REFERENCES ENUM_D3D12_HEAP_TYPE(id)
 heapFlags INTEGER, --
 REFERENCES ENUM_D3D12_HEAP_FLAGS(id)
 cpuPageProperty INTEGER, --
 REFERENCES ENUM_D3D12_PAGE_PROPERTY(id)
 nvApiFlags INTEGER, -- NV
 specific flags. See docs for specifics.
 traceEventId INTEGER NOT NULL --
 REFERENCES DX12_API(id)
);
CREATE TABLE VULKAN_API (
 id INTEGER NOT NULL PRIMARY KEY,
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 contextId INTEGER -- Short
 form of the interface object address.
);
CREATE TABLE VULKAN_WORKLOAD (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 gpu INTEGER, -- GPU
 index.
 contextId INTEGER, -- Short
 form of the interface object address.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER --
 REFERENCES StringIds(id) -- Vulkan CPU debug marker string
);
CREATE TABLE VULKAN_DEBUG_API (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 contextId INTEGER, -- Short
 form of the interface object address.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER --
 REFERENCES StringIds(id) -- Vulkan CPU debug marker string
);
CREATE TABLE VULKAN_PIPELINE_CREATION_EVENTS (
 id INTEGER NOT NULL PRIMARY KEY, -- ID of
 the pipeline creation event.
 duration INTEGER, -- Event
 duration (ns).
 flags INTEGER, --
 REFERENCES ENUM_VULKAN_PIPELINE_CREATION_FLAGS(id)
 traceEventId INTEGER NOT NULL --
 REFERENCES VULKAN_API(id) -- ID of the attached vulkan API.
);
CREATE TABLE VULKAN_PIPELINE_STAGE_EVENTS (
 id INTEGER NOT NULL PRIMARY KEY, -- ID of
 the pipeline stage event.
 duration INTEGER, -- Event
 duration (ns).
 flags INTEGER, --
 REFERENCES ENUM_VULKAN_PIPELINE_CREATION_FLAGS(id)
 creationEventId INTEGER NOT NULL --
 REFERENCES VULKAN_PIPELINE_CREATION_EVENTS(id) -- ID of the attached pipeline
 creation event.
);
CREATE TABLE GPU_CONTEXT_SWITCH_EVENTS (
 tag INTEGER NOT NULL, --
 REFERENCES ENUM_GPU_CTX_SWITCH(id)
 vmId INTEGER NOT NULL, -- VM ID.
 seqNo INTEGER NOT NULL, --
 Sequential event number.
 contextId INTEGER NOT NULL, --
 Context ID.
 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalPid INTEGER, --
 Serialized GlobalId.
 gpuId INTEGER -- GPU
 index.
);
CREATE TABLE ETW_EVENTS_DEPRECATED_TABLE (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 providerName INTEGER, --
 REFERENCES StringIds(id) -- Tracing events provider name
 taskName INTEGER, --
 REFERENCES StringIds(id) -- Event task name
 description INTEGER --
 REFERENCES StringIds(id) -- Decoded event value
);
CREATE TABLE OPENMP_EVENT_KIND_THREAD (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 threadId INTEGER, --
 Internal thread sequence starting from 1.
 threadType INTEGER --
 REFERENCES ENUM_OPENMP_THREAD(id)
);
CREATE TABLE OPENMP_EVENT_KIND_PARALLEL (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, --
 Internal parallel region sequence starting from 1.
 parentTaskId INTEGER -- ID for
 task that creates this parallel region.
);
CREATE TABLE OPENMP_EVENT_KIND_SYNC_REGION_WAIT (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER, -- ID of
 the task that this event belongs to.
 kind INTEGER --
 REFERENCES ENUM_OPENMP_SYNC_REGION(id)
);
CREATE TABLE OPENMP_EVENT_KIND_SYNC_REGION (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER, -- ID of
 the task that this event belongs to.
 kind INTEGER --
 REFERENCES ENUM_OPENMP_SYNC_REGION(id)
);
CREATE TABLE OPENMP_EVENT_KIND_TASK (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER, -- ID of
 the task that this event belongs to.
 kind INTEGER --
 REFERENCES ENUM_OPENMP_TASK_FLAG(id)
);
CREATE TABLE OPENMP_EVENT_KIND_MASTER (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER -- ID of
 the task that this event belongs to.
);
CREATE TABLE OPENMP_EVENT_KIND_REDUCTION (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER -- ID of
 the task that this event belongs to.
);
CREATE TABLE OPENMP_EVENT_KIND_TASK_CREATE (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parentTaskId INTEGER, -- ID of
 the parent task that is creating a new task.
 newTaskId INTEGER -- ID of
 the new task that is being created.
);
CREATE TABLE OPENMP_EVENT_KIND_TASK_SCHEDULE (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 priorTaskId INTEGER, -- ID of
 the task that is being switched out.
 priorTaskStatus INTEGER, --
 REFERENCES ENUM_OPENMP_TASK_STATUS(id)
 nextTaskId INTEGER -- ID of
 the task that is being switched in.
);
CREATE TABLE OPENMP_EVENT_KIND_CANCEL (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 taskId INTEGER -- ID of
 the task that is being cancelled.
);
CREATE TABLE OPENMP_EVENT_KIND_MUTEX_WAIT (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_MUTEX(id)
 waitId INTEGER, -- ID
 indicating the object being waited.
 taskId INTEGER -- ID of
 the task that this event belongs to.
);
CREATE TABLE OPENMP_EVENT_KIND_CRITICAL_SECTION (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_MUTEX(id)
 waitId INTEGER -- ID
 indicating the object being held.
);
CREATE TABLE OPENMP_EVENT_KIND_MUTEX_RELEASED (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_MUTEX(id)
 waitId INTEGER, -- ID
 indicating the object being released.
 taskId INTEGER -- ID of
 the task that this event belongs to.
);
CREATE TABLE OPENMP_EVENT_KIND_LOCK_INIT (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_MUTEX(id)
 waitId INTEGER -- ID
 indicating object being created/destroyed.
);
CREATE TABLE OPENMP_EVENT_KIND_LOCK_DESTROY (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_MUTEX(id)
 waitId INTEGER -- ID
 indicating object being created/destroyed.
);
CREATE TABLE OPENMP_EVENT_KIND_WORKSHARE (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_WORK(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER, -- ID of
 the task that this event belongs to.
 count INTEGER --
 Measure of the quantity of work involved in the region.
);
CREATE TABLE OPENMP_EVENT_KIND_DISPATCH (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 kind INTEGER, --
 REFERENCES ENUM_OPENMP_DISPATCH(id)
 parallelId INTEGER, -- ID of
 the parallel region that this event belongs to.
 taskId INTEGER -- ID of
 the task that this event belongs to.
);
CREATE TABLE OPENMP_EVENT_KIND_FLUSH (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, --
 Currently unused.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 eventKind INTEGER, --
 REFERENCES ENUM_OPENMP_EVENT_KIND(id)
 threadId INTEGER -- ID of
 the thread that this event belongs to.
);
CREATE TABLE D3D11_PIX_DEBUG_API (
 -- D3D11 debug marker events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 shortContextId INTEGER, -- Short
 form of the COM interface object address.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER --
 REFERENCES StringIds(id) -- PIX marker text
);
CREATE TABLE D3D12_PIX_DEBUG_API (
 -- D3D12 debug marker events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 correlationId INTEGER, -- First
 ID matching an API call to GPU workloads.
 endCorrelationId INTEGER, -- Last
 ID matching an API call to GPU workloads.
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Function name
 shortContextId INTEGER, -- Short
 form of the COM interface object address.
 frameId INTEGER, -- Index
 of the graphics frame starting from 1.
 color INTEGER, --
 Encoded ARGB color value.
 textId INTEGER, --
 REFERENCES StringIds(id) -- PIX marker text
 commandListType INTEGER, --
 REFERENCES ENUM_D3D12_CMD_LIST_TYPE(id)
 objectNameId INTEGER, --
 REFERENCES StringIds(id) -- D3D12 object name
 longContextId INTEGER -- Long
 form of the COM interface object address.
);
CREATE TABLE WDDM_EVICT_ALLOCATION_EVENTS (
 -- Raw ETW EvictAllocation events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 allocationHandle INTEGER NOT NULL -- Global
 allocation handle.
);
CREATE TABLE WDDM_PAGING_QUEUE_PACKET_START_EVENTS (
 -- Raw ETW PagingQueuePacketStart events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 dxgDevice INTEGER, --
 Address of an IDXGIDevice.
 dxgAdapter INTEGER, --
 Address of an IDXGIAdapter.
 pagingQueue INTEGER NOT NULL, --
 Address of the paging queue.
 pagingQueuePacket INTEGER NOT NULL, --
 Address of the paging queue packet.
 sequenceId INTEGER NOT NULL, --
 Internal sequence starting from 0.
 alloc INTEGER, --
 Allocation handle.
 vidMmOpType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_VIDMM_OP_TYPE(id)
 pagingQueueType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_PAGING_QUEUE_TYPE(id)
);
CREATE TABLE WDDM_PAGING_QUEUE_PACKET_STOP_EVENTS (
 -- Raw ETW PagingQueuePacketStop events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 pagingQueue INTEGER NOT NULL, --
 Address of the paging queue.
 pagingQueuePacket INTEGER NOT NULL, --
 Address of the paging queue packet.
 sequenceId INTEGER NOT NULL --
 Internal sequence starting from 0.
);
CREATE TABLE WDDM_PAGING_QUEUE_PACKET_INFO_EVENTS (
 -- Raw ETW PagingQueuePacketInfo events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 pagingQueue INTEGER NOT NULL, --
 Address of the paging queue.
 pagingQueuePacket INTEGER NOT NULL, --
 Address of the paging queue packet.
 sequenceId INTEGER NOT NULL --
 Internal sequence starting from 0.
);
CREATE TABLE WDDM_QUEUE_PACKET_START_EVENTS (
 -- Raw ETW QueuePacketStart events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 dmaBufferSize INTEGER NOT NULL, -- The
 dma buffer size.
 dmaBuffer INTEGER NOT NULL, -- The
 reported address of dma buffer.
 queuePacket INTEGER NOT NULL, -- The
 address of queue packet.
 progressFenceValue INTEGER NOT NULL, -- The
 fence value.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 submitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 allocationListSize INTEGER NOT NULL, -- The
 number of allocations referenced.
 patchLocationListSize INTEGER NOT NULL, -- The
 number of patch locations.
 present INTEGER NOT NULL, -- True
 or False if the packet is a present packet.
 engineType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
 syncObject INTEGER -- The
 address of fence object.
);
CREATE TABLE WDDM_QUEUE_PACKET_STOP_EVENTS (
 -- Raw ETW QueuePacketStop events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 queuePacket INTEGER NOT NULL, -- The
 address of queue packet.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 submitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 preempted INTEGER NOT NULL, -- True
 or False if the packet is preempted.
 timeouted INTEGER NOT NULL, -- True
 or False if the packet is timeouted.
 engineType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
);
CREATE TABLE WDDM_QUEUE_PACKET_INFO_EVENTS (
 -- Raw ETW QueuePacketInfo events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 submitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 engineType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
);
CREATE TABLE WDDM_DMA_PACKET_START_EVENTS (
 -- Raw ETW DmaPacketStart events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 queuePacketContext INTEGER NOT NULL, -- The
 queue packet context.
 uliSubmissionId INTEGER NOT NULL, -- The
 queue packet submission ID.
 dmaBuffer INTEGER NOT NULL, -- The
 reported address of dma buffer.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 ulQueueSubmitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 quantumStatus INTEGER NOT NULL, -- The
 quantum Status.
 engineType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
);
CREATE TABLE WDDM_DMA_PACKET_STOP_EVENTS (
 -- Raw ETW DmaPacketStop events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 uliCompletionId INTEGER NOT NULL, -- The
 queue packet completion ID.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 ulQueueSubmitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 preempted INTEGER NOT NULL, -- True
 or False if the packet is preempted.
 engineType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
);
CREATE TABLE WDDM_DMA_PACKET_INFO_EVENTS (
 -- Raw ETW DmaPacketInfo events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 uliCompletionId INTEGER NOT NULL, -- The
 queue packet completion ID.
 faultedVirtualAddress INTEGER NOT NULL, -- The
 virtual address of faulted process.
 faultedProcessHandle INTEGER NOT NULL, -- The
 address of faulted process.
 packetType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_PACKET_TYPE(id)
 ulQueueSubmitSequence INTEGER NOT NULL, --
 Internal sequence starting from 1.
 interruptType INTEGER NOT NULL, --
 REFERENCES ENUM_WDDM_INTERRUPT_TYPE(id)
 quantumStatus INTEGER NOT NULL, -- The
 quantum Status.
 pageFaultFlags INTEGER NOT NULL, -- The
 page fault flag ID.
 engineType INTEGER NOT NULL --
 REFERENCES ENUM_WDDM_ENGINE_TYPE(id)
);
CREATE TABLE WDDM_HW_QUEUE_EVENTS (
 -- Raw ETW HwQueueStart events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 context INTEGER NOT NULL, -- The
 context ID of WDDM queue.
 hwQueue INTEGER NOT NULL, -- The
 address of HW queue.
 parentDxgHwQueue INTEGER NOT NULL -- The
 address of parent Dxg HW queue.
);
CREATE TABLE NVVIDEO_ENCODER_API (
 -- NV Video Encoder API traced to gather information about NVIDIA Video
 Codek SDK Encoder APIs.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE NVVIDEO_DECODER_API (
 -- NV Video Encoder API traced to gather information about NVIDIA Video
 Codek SDK Decoder APIs.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE NVVIDEO_JPEG_API (
 -- NV Video Encoder API traced to gather information about NVIDIA Video
 Codek SDK JPEG APIs.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 eventClass INTEGER NOT NULL, --
 REFERENCES ENUM_NSYS_EVENT_CLASS(id)
 globalTid INTEGER, --
 Serialized GlobalId.
 nameId INTEGER NOT NULL --
 REFERENCES StringIds(id) -- Function name
);
CREATE TABLE GPU_MEMORY_BUDGET_EVENTS (
 -- Raw ETW VidMmProcessBudgetChange events.

 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 newBudget INTEGER, -- The
 new budget size in bytes.
 segmentGroup INTEGER -- The
 segment group ID.
);
CREATE TABLE GPU_MEMORY_USAGE_EVENTS (
 -- Raw ETW VidMmProcessUsageChange events.

 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 newUsage INTEGER, -- The
 new usage size in bytes.
 segmentGroup INTEGER -- The
 segment group ID.
);
CREATE TABLE DEMOTED_BYTES_EVENTS (
 -- Raw ETW VidMmProcessDemotedCommitmentChange events.

 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 commitment INTEGER -- Total
 demoted bytes.
);
CREATE TABLE TOTAL_BYTES_RESIDENT_IN_SEGMENT_EVENTS (
 -- Raw ETW TotalBytesResidentInSegment events.

 timestamp INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 totalBytesResident INTEGER, -- Total
 bytes resident in segment.
 segmentGroup INTEGER, -- The
 segment group ID.
 segmentId INTEGER -- The
 segment ID.
);
CREATE TABLE MEMORY_TRANSFER_EVENTS (
 -- Raw ETW Memory Transfer events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 globalTid INTEGER, --
 Serialized GlobalId.
 gpu INTEGER, -- GPU
 index.
 taskId INTEGER NOT NULL, -- The
 event task ID.
 eventId INTEGER NOT NULL, -- Event
 ID.
 allocationGlobalHandle INTEGER NOT NULL, --
 Address of the global allocation handle.
 dmaBuffer INTEGER NOT NULL, -- The
 reported address of dma buffer.
 size INTEGER NOT NULL, -- The
 size of the dma buffer in bytes.
 offset INTEGER NOT NULL, -- The
 offset from the start of the reported dma buffer in bytes.
 memoryTransferType INTEGER NOT NULL --
 REFERENCES ENUM_ETW_MEMORY_TRANSFER_TYPE(id)
);
CREATE TABLE NV_LOAD_BALANCE_MASTER_EVENTS (
 -- Raw ETW NV-wgf2um LoadBalanceMaster events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER NOT NULL, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 eventId INTEGER NOT NULL, -- Event
 ID.
 task TEXT NOT NULL, -- The
 task name.
 frameCount INTEGER NOT NULL, -- The
 frame ID.
 frameTime REAL NOT NULL, -- Frame
 duration.
 averageFrameTime REAL NOT NULL, --
 Average of frame duration.
 averageLatency REAL NOT NULL, --
 Average of latency.
 minLatency REAL NOT NULL, -- The
 minimum latency.
 averageQueuedFrames REAL NOT NULL, --
 Average number of queued frames.
 totalActiveMs REAL NOT NULL, -- Total
 active time in milliseconds.
 totalIdleMs REAL NOT NULL, -- Total
 idle time in milliseconds.
 idlePercent REAL NOT NULL, -- The
 percentage of idle time.
 isGPUAlmostOneFrameAhead INTEGER NOT NULL -- True
 or False if GPU is almost one frame ahead.
);
CREATE TABLE NV_LOAD_BALANCE_EVENTS (
 -- Raw ETW NV-wgf2um LoadBalance events.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalTid INTEGER NOT NULL, --
 Serialized GlobalId.
 gpu INTEGER NOT NULL, -- GPU
 index.
 eventId INTEGER NOT NULL, -- Event
 ID.
 task TEXT NOT NULL, -- The
 task name.
 averageFPS REAL NOT NULL, --
 Average frame per second.
 queuedFrames REAL NOT NULL, -- The
 amount of queued frames.
 averageQueuedFrames REAL NOT NULL, --
 Average number of queued frames.
 currentCPUTime REAL NOT NULL, -- The
 current CPU time.
 averageCPUTime REAL NOT NULL, --
 Average CPU time.
 averageStallTime REAL NOT NULL, --
 Average of stall time.
 averageCPUIdleTime REAL NOT NULL, --
 Average CPU idle time.
 isGPUAlmostOneFrameAhead INTEGER NOT NULL -- True
 or False if GPU is almost one frame ahead.
);
CREATE TABLE PROCESSES (
 -- Names and identifiers of processes captured in the report.

 globalPid INTEGER, --
 Serialized GlobalId.
 pid INTEGER, -- The
 process ID.
 name TEXT -- The
 process name.
);
CREATE TABLE CUPTI_ACTIVITY_KIND_OPENACC_DATA (
 -- OpenACC data events collected using CUPTI.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 globalTid INTEGER, --
 Serialized GlobalId.
 eventKind INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_EVENT_KIND(id)
 DeviceType INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_DEVICE(id)
 lineNo INTEGER NOT NULL, -- Line
 number of the directive or program construct.
 cuDeviceId INTEGER NOT NULL, -- CUDA
 device ID. Valid only if deviceType is acc_device_nvidia.
 cuContextId INTEGER NOT NULL, -- CUDA
 context ID. Valid only if deviceType is acc_device_nvidia.
 cuStreamId INTEGER NOT NULL, -- CUDA
 stream ID. Valid only if deviceType is acc_device_nvidia.
 srcFile INTEGER, --
 REFERENCES StringIds(id) -- Source file name or path
 funcName INTEGER, --
 REFERENCES StringIds(id) -- Function in which event occurred
 bytes INTEGER, -- Number
 of bytes.
 varName INTEGER --
 REFERENCES StringIds(id) -- Variable name
);
CREATE TABLE CUPTI_ACTIVITY_KIND_OPENACC_LAUNCH (
 -- OpenACC launch events collected using CUPTI.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 globalTid INTEGER, --
 Serialized GlobalId.
 eventKind INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_EVENT_KIND(id)
 DeviceType INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_DEVICE(id)
 lineNo INTEGER NOT NULL, -- Line
 number of the directive or program construct.
 cuDeviceId INTEGER NOT NULL, -- CUDA
 device ID. Valid only if deviceType is acc_device_nvidia.
 cuContextId INTEGER NOT NULL, -- CUDA
 context ID. Valid only if deviceType is acc_device_nvidia.
 cuStreamId INTEGER NOT NULL, -- CUDA
 stream ID. Valid only if deviceType is acc_device_nvidia.
 srcFile INTEGER, --
 REFERENCES StringIds(id) -- Source file name or path
 funcName INTEGER, --
 REFERENCES StringIds(id) -- Function in which event occurred
 numGangs INTEGER, -- Number
 of gangs created for this kernel launch.
 numWorkers INTEGER, -- Number
 of workers created for this kernel launch.
 vectorLength INTEGER, -- Number
 of vector lanes created for this kernel launch.
 kernelName INTEGER --
 REFERENCES StringIds(id) -- Kernel name
);
CREATE TABLE CUPTI_ACTIVITY_KIND_OPENACC_OTHER (
 -- OpenACC other events collected using CUPTI.

 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 nameId INTEGER NOT NULL, --
 REFERENCES StringIds(id) -- Event name
 globalTid INTEGER, --
 Serialized GlobalId.
 eventKind INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_EVENT_KIND(id)
 DeviceType INTEGER NOT NULL, --
 REFERENCES ENUM_OPENACC_DEVICE(id)
 lineNo INTEGER NOT NULL, -- Line
 number of the directive or program construct.
 cuDeviceId INTEGER NOT NULL, -- CUDA
 device ID. Valid only if deviceType is acc_device_nvidia.
 cuContextId INTEGER NOT NULL, -- CUDA
 context ID. Valid only if deviceType is acc_device_nvidia.
 cuStreamId INTEGER NOT NULL, -- CUDA
 stream ID. Valid only if deviceType is acc_device_nvidia.
 srcFile INTEGER, --
 REFERENCES StringIds(id) -- Source file name or path
 funcName INTEGER --
 REFERENCES StringIds(id) -- Function in which event occurred
);
CREATE TABLE NET_NIC_METRIC (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalId INTEGER NOT NULL, --
 Serialized GlobalId.
 metricsListId INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_NETWORK_METRICS(metricsListId)
 metricsIdx INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_NETWORK_METRICS(metricsIdx)
 value INTEGER NOT NULL --
 Counter data value
);
CREATE TABLE NET_IB_SWITCH_METRIC (
 start INTEGER NOT NULL, -- Event
 start timestamp (ns).
 end INTEGER NOT NULL, -- Event
 end timestamp (ns).
 globalId INTEGER NOT NULL, --
 Serialized GlobalId.
 metricsListId INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_NETWORK_METRICS(metricsListId)
 metricsIdx INTEGER NOT NULL, --
 REFERENCES TARGET_INFO_NETWORK_METRICS(metricsIdx)
 value INTEGER NOT NULL --
 Counter data value
);

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 260

24.1.2. SQLite Schema Event Values
Here are the set values stored in enums in the Nsight Systems SQLite schema

CUDA Event Class Values

0 - TRACE_PROCESS_EVENT_CUDA_RUNTIME
1 - TRACE_PROCESS_EVENT_CUDA_DRIVER
13 - TRACE_PROCESS_EVENT_CUDA_EGL_DRIVER
28 - TRACE_PROCESS_EVENT_CUDNN
29 - TRACE_PROCESS_EVENT_CUBLAS
33 - TRACE_PROCESS_EVENT_CUDNN_START
34 - TRACE_PROCESS_EVENT_CUDNN_FINISH
35 - TRACE_PROCESS_EVENT_CUBLAS_START
36 - TRACE_PROCESS_EVENT_CUBLAS_FINISH
67 - TRACE_PROCESS_EVENT_CUDABACKTRACE
77 - TRACE_PROCESS_EVENT_CUDA_GRAPH_NODE_CREATION

See CUPTI documentation for detailed information on collected event and data types.

NVTX Event Type Values

33 - NvtxCategory
34 - NvtxMark
39 - NvtxThread
59 - NvtxPushPopRange
60 - NvtxStartEndRange
75 - NvtxDomainCreate
76 - NvtxDomainDestroy

The difference between text and textId columns is that if an NVTX event message was
passed via call to nvtxDomainRegisterString function, then the message will be available
through textId field, otherwise the text field will contain the message if it was provided.

OpenGL Events

KHR event class values

62 - KhrDebugPushPopRange
63 - KhrDebugGpuPushPopRange

KHR source kind values

0x8249 - GL_DEBUG_SOURCE_THIRD_PARTY
0x824A - GL_DEBUG_SOURCE_APPLICATION

https://docs.nvidia.com/cupti/Cupti/index.html

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 261

KHR type values

0x824C - GL_DEBUG_TYPE_ERROR
0x824D - GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR
0x824E - GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR
0x824F - GL_DEBUG_TYPE_PORTABILITY
0x8250 - GL_DEBUG_TYPE_PERFORMANCE
0x8251 - GL_DEBUG_TYPE_OTHER
0x8268 - GL_DEBUG_TYPE_MARKER
0x8269 - GL_DEBUG_TYPE_PUSH_GROUP
0x826A - GL_DEBUG_TYPE_POP_GROUP

KHR severity values

0x826B - GL_DEBUG_SEVERITY_NOTIFICATION
0x9146 - GL_DEBUG_SEVERITY_HIGH
0x9147 - GL_DEBUG_SEVERITY_MEDIUM
0x9148 - GL_DEBUG_SEVERITY_LOW

OSRT Event Class Values

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OSRT events may have callchains attached to them, depending on selected profiling
settings. In such cases, one can use callchainId column to select relevant callchains from
OSRT_CALLCHAINS table

OSRT event class values

27 - TRACE_PROCESS_EVENT_OS_RUNTIME
31 - TRACE_PROCESS_EVENT_OS_RUNTIME_START
32 - TRACE_PROCESS_EVENT_OS_RUNTIME_FINISH

DX12 Event Class Values

41 - TRACE_PROCESS_EVENT_DX12_API
42 - TRACE_PROCESS_EVENT_DX12_WORKLOAD
43 - TRACE_PROCESS_EVENT_DX12_START
44 - TRACE_PROCESS_EVENT_DX12_FINISH
52 - TRACE_PROCESS_EVENT_DX12_DISPLAY
59 - TRACE_PROCESS_EVENT_DX12_CREATE_OBJECT

PIX Event Class Values

65 - TRACE_PROCESS_EVENT_DX12_DEBUG_API
75 - TRACE_PROCESS_EVENT_DX11_DEBUG_API

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 262

Vulkan Event Class Values

53 - TRACE_PROCESS_EVENT_VULKAN_API
54 - TRACE_PROCESS_EVENT_VULKAN_WORKLOAD
55 - TRACE_PROCESS_EVENT_VULKAN_START
56 - TRACE_PROCESS_EVENT_VULKAN_FINISH
60 - TRACE_PROCESS_EVENT_VULKAN_CREATE_OBJECT
66 - TRACE_PROCESS_EVENT_VULKAN_DEBUG_API

Vulkan Flags

VALID_BIT = 0x00000001
CACHE_HIT_BIT = 0x00000002
BASE_PIPELINE_ACCELERATION_BIT = 0x00000004

SLI Event Class Values

62 - TRACE_PROCESS_EVENT_SLI
63 - TRACE_PROCESS_EVENT_SLI_START
64 - TRACE_PROCESS_EVENT_SLI_FINISH

SLI Transfer Info Values

0 - P2P_SKIPPED
1 - P2P_EARLY_PUSH
2 - P2P_PUSH_FAILED
3 - P2P_2WAY_OR_PULL
4 - P2P_PRESENT
5 - P2P_DX12_INIT_PUSH_ON_WRITE

WDDM Event Values

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 263

VIDMM operation type values

0 - None
101 - RestoreSegments
102 - PurgeSegments
103 - CleanupPrimary
104 - AllocatePagingBufferResources
105 - FreePagingBufferResources
106 - ReportVidMmState
107 - RunApertureCoherencyTest
108 - RunUnmapToDummyPageTest
109 - DeferredCommand
110 - SuspendMemorySegmentAccess
111 - ResumeMemorySegmentAccess
112 - EvictAndFlush
113 - CommitVirtualAddressRange
114 - UncommitVirtualAddressRange
115 - DestroyVirtualAddressAllocator
116 - PageInDevice
117 - MapContextAllocation
118 - InitPagingProcessVaSpace
200 - CloseAllocation
202 - ComplexLock
203 - PinAllocation
204 - FlushPendingGpuAccess
205 - UnpinAllocation
206 - MakeResident
207 - Evict
208 - LockInAperture
209 - InitContextAllocation
210 - ReclaimAllocation
211 - DiscardAllocation
212 - SetAllocationPriority
1000 - EvictSystemMemoryOfferList

Paging queue type values

0 - VIDMM_PAGING_QUEUE_TYPE_UMD
1 - VIDMM_PAGING_QUEUE_TYPE_Default
2 - VIDMM_PAGING_QUEUE_TYPE_Evict
3 - VIDMM_PAGING_QUEUE_TYPE_Reclaim

Packet type values

0 - DXGKETW_RENDER_COMMAND_BUFFER
1 - DXGKETW_DEFERRED_COMMAND_BUFFER
2 - DXGKETW_SYSTEM_COMMAND_BUFFER
3 - DXGKETW_MMIOFLIP_COMMAND_BUFFER
4 - DXGKETW_WAIT_COMMAND_BUFFER
5 - DXGKETW_SIGNAL_COMMAND_BUFFER
6 - DXGKETW_DEVICE_COMMAND_BUFFER
7 - DXGKETW_SOFTWARE_COMMAND_BUFFER

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 264

Engine type values

0 - DXGK_ENGINE_TYPE_OTHER
1 - DXGK_ENGINE_TYPE_3D
2 - DXGK_ENGINE_TYPE_VIDEO_DECODE
3 - DXGK_ENGINE_TYPE_VIDEO_ENCODE
4 - DXGK_ENGINE_TYPE_VIDEO_PROCESSING
5 - DXGK_ENGINE_TYPE_SCENE_ASSEMBLY
6 - DXGK_ENGINE_TYPE_COPY
7 - DXGK_ENGINE_TYPE_OVERLAY
8 - DXGK_ENGINE_TYPE_CRYPTO

DMA interrupt type values

1 = DXGK_INTERRUPT_DMA_COMPLETED
2 = DXGK_INTERRUPT_DMA_PREEMPTED
4 = DXGK_INTERRUPT_DMA_FAULTED
9 = DXGK_INTERRUPT_DMA_PAGE_FAULTED

Queue type values

0 = Queue_Packet
1 = Dma_Packet
2 = Paging_Queue_Packet

Driver Events

Load balance event type values

1 - LoadBalanceEvent_GPU
8 - LoadBalanceEvent_CPU
21 - LoadBalanceMasterEvent_GPU
22 - LoadBalanceMasterEvent_CPU

OpenMP Events

OpenMP event class values

78 - TRACE_PROCESS_EVENT_OPENMP
79 - TRACE_PROCESS_EVENT_OPENMP_START
80 - TRACE_PROCESS_EVENT_OPENMP_FINISH

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 265

OpenMP event kind values

15 - OPENMP_EVENT_KIND_TASK_CREATE
16 - OPENMP_EVENT_KIND_TASK_SCHEDULE
17 - OPENMP_EVENT_KIND_CANCEL
20 - OPENMP_EVENT_KIND_MUTEX_RELEASED
21 - OPENMP_EVENT_KIND_LOCK_INIT
22 - OPENMP_EVENT_KIND_LOCK_DESTROY
25 - OPENMP_EVENT_KIND_DISPATCH
26 - OPENMP_EVENT_KIND_FLUSH
27 - OPENMP_EVENT_KIND_THREAD
28 - OPENMP_EVENT_KIND_PARALLEL
29 - OPENMP_EVENT_KIND_SYNC_REGION_WAIT
30 - OPENMP_EVENT_KIND_SYNC_REGION
31 - OPENMP_EVENT_KIND_TASK
32 - OPENMP_EVENT_KIND_MASTER
33 - OPENMP_EVENT_KIND_REDUCTION
34 - OPENMP_EVENT_KIND_MUTEX_WAIT
35 - OPENMP_EVENT_KIND_CRITICAL_SECTION
36 - OPENMP_EVENT_KIND_WORKSHARE

OpenMP thread type values

1 - OpenMP Initial Thread
2 - OpenMP Worker Thread
3 - OpenMP Internal Thread
4 - Unknown

OpenMP sync region kind values

1 - Barrier
2 - Implicit barrier
3 - Explicit barrier
4 - Implementation-dependent barrier
5 - Taskwait
6 - Taskgroup

OpenMP task kind values

1 - Initial task
2 - Implicit task
3 - Explicit task

OpenMP prior task status values

1 - Task completed
2 - Task yielded to another task
3 - Task was cancelled
7 - Task was switched out for other reasons

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 266

OpenMP mutex kind values

1 - Waiting for lock
2 - Testing lock
3 - Waiting for nested lock
4 - Tesing nested lock
5 - Waitng for entering critical section region
6 - Waiting for entering atomic region
7 - Waiting for entering ordered region

OpenMP critical section kind values

5 - Critical section region
6 - Atomic region
7 - Ordered region

OpenMP workshare kind values

1 - Loop region
2 - Sections region
3 - Single region (executor)
4 - Single region (waiting)
5 - Workshare region
6 - Distrubute region
7 - Taskloop region

OpenMP dispatch kind values

1 - Iteration
2 - Section

24.1.3. Common SQLite Examples
Common Helper Commands

When utilizing sqlite3 command line tool, it’s helpful to have data printed as named
columns, this can be done with:

.mode column

.headers on

Default column width is determined by the data in the first row of results. If this doesn’t
work out well, you can specify widths manually.
.width 10 20 50

Obtaining Sample Report

CLI interface of Nsight Systems was used to profile radixSortThrust CUDA sample, then
the resulting .nsys-rep file was exported using the nsys export.

nsys profile --trace=cuda,osrt radixSortThrust
nsys export --type sqlite report1.nsys-rep

Serialized Process and Thread Identifiers

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 267

Nsight Systems stores identifiers where events originated in serialized form. For events
that have globalTid or globalPid fields exported, use the following code to extract
numeric TID and PID.

SELECT globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID
 FROM TABLE_NAME;

Note: globalTid field includes both TID and PID values, while globalPid only containes
the PID value.

Correlate CUDA Kernel Launches With CUDA API Kernel Launches

ALTER TABLE CUPTI_ACTIVITY_KIND_RUNTIME ADD COLUMN name TEXT;
ALTER TABLE CUPTI_ACTIVITY_KIND_RUNTIME ADD COLUMN kernelName TEXT;

UPDATE CUPTI_ACTIVITY_KIND_RUNTIME SET kernelName =
 (SELECT value FROM StringIds
 JOIN CUPTI_ACTIVITY_KIND_KERNEL AS cuda_gpu
 ON cuda_gpu.shortName = StringIds.id
 AND CUPTI_ACTIVITY_KIND_RUNTIME.correlationId = cuda_gpu.correlationId);

UPDATE CUPTI_ACTIVITY_KIND_RUNTIME SET name =
 (SELECT value FROM StringIds WHERE nameId = StringIds.id);

Select 10 longest CUDA API ranges that resulted in kernel execution.

SELECT name, kernelName, start, end FROM CUPTI_ACTIVITY_KIND_RUNTIME
 WHERE kernelName IS NOT NULL ORDER BY end - start LIMIT 10;

Results:

name kernelName start end
---------------------- ----------------------- ---------- ----------
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 658863435 658868490
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 609755015 609760075
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 632683286 632688349
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 606495356 606500439
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 603114486 603119586
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 802729785 802734906
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 593381170 593386294
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 658759955 658765090
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 681549917 681555059
cudaLaunchKernel_v7000 RadixSortScanBinsKernel 717812527 717817671

Remove Ranges Overlapping With Overhead

Use the this query to count CUDA API ranges overlapping with the overhead ones.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 268

Replace "SELECT COUNT(*)" with "DELETE" to remove such ranges.

SELECT COUNT(*) FROM CUPTI_ACTIVITY_KIND_RUNTIME WHERE rowid IN
(
 SELECT cuda.rowid
 FROM PROFILER_OVERHEAD as overhead
 INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as cuda ON
 (cuda.start BETWEEN overhead.start and overhead.end)
 OR (cuda.end BETWEEN overhead.start and overhead.end)
 OR (cuda.start < overhead.start AND cuda.end > overhead.end)
);

Results:

COUNT(*)

1095

Find CUDA API Calls That Resulted in Original Graph Node Creation.

SELECT graph.graphNodeId, api.start, graph.start as graphStart, api.end,
 api.globalTid, api.correlationId, api.globalTid,
 (SELECT value FROM StringIds where api.nameId == id) as name
FROM CUPTI_ACTIVITY_KIND_RUNTIME as api
JOIN
 (
 SELECT start, graphNodeId, globalTid from CUDA_GRAPH_EVENTS
 GROUP BY graphNodeId
 HAVING COUNT(originalGraphNodeId) = 0
) as graph
ON api.globalTid == graph.globalTid AND api.start < graph.start AND api.end >
 graph.start
ORDER BY graphNodeId;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 269

Results:

graphNodeId start graphStart end globalTid correlationId
 globalTid name
----------- ---------- ---------- ---------- --------------- -------------
 --------------- -----------------------------
1 584366518 584378040 584379102 281560221750233 109
 281560221750233 cudaGraphAddMemcpyNode_v10000
2 584379402 584382428 584383139 281560221750233 110
 281560221750233 cudaGraphAddMemsetNode_v10000
3 584390663 584395352 584396053 281560221750233 111
 281560221750233 cudaGraphAddKernelNode_v10000
4 584396314 584397857 584398438 281560221750233 112
 281560221750233 cudaGraphAddMemsetNode_v10000
5 584398759 584400311 584400812 281560221750233 113
 281560221750233 cudaGraphAddKernelNode_v10000
6 584401083 584403047 584403527 281560221750233 114
 281560221750233 cudaGraphAddMemcpyNode_v10000
7 584403928 584404920 584405491 281560221750233 115
 281560221750233 cudaGraphAddHostNode_v10000
29 632107852 632117921 632121407 281560221750233 144
 281560221750233 cudaMemcpyAsync_v3020
30 632122168 632125545 632127989 281560221750233 145
 281560221750233 cudaMemsetAsync_v3020
31 632131546 632133339 632135584 281560221750233 147
 281560221750233 cudaMemsetAsync_v3020
34 632162514 632167393 632169297 281560221750233 151
 281560221750233 cudaMemcpyAsync_v3020
35 632170068 632173334 632175388 281560221750233 152
 281560221750233 cudaLaunchHostFunc_v10000

Backtraces for OSRT Ranges

Adding text columns makes results of the query below more human-readable.

ALTER TABLE OSRT_API ADD COLUMN name TEXT;
UPDATE OSRT_API SET name = (SELECT value FROM StringIds WHERE OSRT_API.nameId =
 StringIds.id);

ALTER TABLE OSRT_CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE OSRT_CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
 symbol = StringIds.id);

ALTER TABLE OSRT_CALLCHAINS ADD COLUMN moduleName TEXT;
UPDATE OSRT_CALLCHAINS SET moduleName = (SELECT value FROM StringIds WHERE
 module = StringIds.id);

Print backtrace of the longest OSRT range

SELECT globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID,
 start, end, name, callchainId, stackDepth, symbolName, moduleName
FROM OSRT_API LEFT JOIN OSRT_CALLCHAINS ON callchainId == OSRT_CALLCHAINS.id
WHERE OSRT_API.rowid IN (SELECT rowid FROM OSRT_API ORDER BY end - start DESC
 LIMIT 1)
ORDER BY stackDepth LIMIT 10;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 270

Results:

PID TID start end name
 callchainId stackDepth symbolName moduleName

---------- ---------- ---------- ---------- ----------------------
 ----------- ---------- ------------------------------
 --
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 0 pthread_cond_timedwait@GLIBC_2 /lib/x86_64-linux-gnu/
libpthread-2.27.so
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 1 0x7fbc983b7227 /usr/lib/x86_64-linux-gnu/
libcuda.so.418
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 2 0x7fbc9835d5c7 /usr/lib/x86_64-linux-gnu/
libcuda.so.418
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 3 0x7fbc983b64a8 /usr/lib/x86_64-linux-gnu/
libcuda.so.418
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 4 start_thread /lib/x86_64-linux-gnu/
libpthread-2.27.so
19163 19176 360897690 860966851 pthread_cond_timedwait 88
 5 __clone /lib/x86_64-linux-gnu/
libc-2.27.so

Profiled processes output streams

ALTER TABLE ProcessStreams ADD COLUMN filename TEXT;
UPDATE ProcessStreams SET filename = (SELECT value FROM StringIds WHERE
 ProcessStreams.filenameId = StringIds.id);

ALTER TABLE ProcessStreams ADD COLUMN content TEXT;
UPDATE ProcessStreams SET content = (SELECT value FROM StringIds WHERE
 ProcessStreams.contentId = StringIds.id);

Select all collected stdout and stderr streams.

select globalPid / 0x1000000 % 0x1000000 AS PID, filename, content from
 ProcessStreams;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 271

Results:

PID filename content

---------- ---
 --

19163 /tmp/nvidia/nsight_systems/streams/pid_19163_stdout.log /home/
user_name/NVIDIA_CUDA-10.1_Samples/6_Advanced/radixSortThrust/radixSortThrust
 Starting...

GPU Device 0: "Quadro P2000" with compute capability 6.1

Sorting 1048576 32-bit unsigned int keys and values

radixSortThrust, Throughput = 401.0872 MElements/s, Time = 0.00261 s, Size =
 1048576 elements
Test passed

19163 /tmp/nvidia/nsight_systems/streams/pid_19163_stderr.log

Thread Summary

Please note, that Nsight Systems applies additional logic during sampling events
processing to work around lost events. This means that the results of the below query
might differ slightly from the ones shown in “Analysis summary” tab.

Thread summary calculated using CPU cycles (when available).

SELECT
 globalTid / 0x1000000 % 0x1000000 AS PID,
 globalTid % 0x1000000 AS TID,
 ROUND(100.0 * SUM(cpuCycles) /
 (
 SELECT SUM(cpuCycles) FROM COMPOSITE_EVENTS
 GROUP BY globalTid / 0x1000000000000 % 0x100
),
 2
) as CPU_utilization,
 (SELECT value FROM StringIds WHERE id =
 (
 SELECT nameId FROM ThreadNames
 WHERE ThreadNames.globalTid = COMPOSITE_EVENTS.globalTid
)
) as thread_name
FROM COMPOSITE_EVENTS
GROUP BY globalTid
ORDER BY CPU_utilization DESC
LIMIT 10;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 272

Results:

PID TID CPU_utilization thread_name
---------- ---------- --------------- ---------------
19163 19163 98.4 radixSortThrust
19163 19168 1.35 CUPTI worker th
19163 19166 0.25 [NS]

Thread running time may be calculated using scheduling data, when PMU counter data
was not collected.

CREATE INDEX sched_start ON SCHED_EVENTS (start);

CREATE TABLE CPU_USAGE AS
SELECT
 first.globalTid as globalTid,
 (SELECT nameId FROM ThreadNames WHERE ThreadNames.globalTid =
 first.globalTid) as nameId,
 sum(second.start - first.start) as total_duration,
 count() as ranges_count
FROM SCHED_EVENTS as first
LEFT JOIN SCHED_EVENTS as second
ON second.rowid =
 (
 SELECT rowid
 FROM SCHED_EVENTS
 WHERE start > first.start AND globalTid = first.globalTid
 ORDER BY start ASC
 LIMIT 1
)
WHERE first.isSchedIn != 0
GROUP BY first.globalTid
ORDER BY total_duration DESC;

SELECT
 globalTid / 0x1000000 % 0x1000000 AS PID,
 globalTid % 0x1000000 AS TID,
 (SELECT value FROM StringIds where nameId == id) as thread_name,
 ROUND(100.0 * total_duration / (SELECT SUM(total_duration) FROM CPU_USAGE),
 2) as CPU_utilization
FROM CPU_USAGE
ORDER BY CPU_utilization DESC;

Results:

PID TID thread_name CPU_utilization
---------- ---------- --------------- ---------------
19163 19163 radixSortThrust 93.74
19163 19169 radixSortThrust 3.22
19163 19168 CUPTI worker th 2.46
19163 19166 [NS] 0.44
19163 19172 radixSortThrust 0.07
19163 19167 [NS Comms] 0.05
19163 19176 radixSortThrust 0.02
19163 19170 radixSortThrust 0.0

Function Table

These examples demonstrate how to calculate Flat and BottomUp (for top level only)
views statistics.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 273

To set up:

ALTER TABLE SAMPLING_CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE SAMPLING_CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
 symbol = StringIds.id);

ALTER TABLE SAMPLING_CALLCHAINS ADD COLUMN moduleName TEXT;
UPDATE SAMPLING_CALLCHAINS SET moduleName = (SELECT value FROM StringIds WHERE
 module = StringIds.id);

To get flat view:

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /
 (SELECT SUM(cpuCycles) FROM COMPOSITE_EVENTS), 2) AS flatTimePercentage
FROM SAMPLING_CALLCHAINS
LEFT JOIN COMPOSITE_EVENTS ON SAMPLING_CALLCHAINS.id == COMPOSITE_EVENTS.id
GROUP BY symbol, module
ORDER BY flatTimePercentage DESC
LIMIT 5;

To get BottomUp view (top level only):

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /
 (SELECT SUM(cpuCycles) FROM COMPOSITE_EVENTS), 2) AS selfTimePercentage
FROM SAMPLING_CALLCHAINS
LEFT JOIN COMPOSITE_EVENTS ON SAMPLING_CALLCHAINS.id == COMPOSITE_EVENTS.id
WHERE stackDepth == 0
GROUP BY symbol, module
ORDER BY selfTimePercentage DESC
LIMIT 5;

Results:

symbolName moduleName flatTimePercentage
----------- ----------- ------------------
[Max depth] [Max depth] 99.92
thrust::zip /home/user_ 24.17
thrust::zip /home/user_ 24.17
thrust::det /home/user_ 24.17
thrust::det /home/user_ 24.17
symbolName moduleName selfTimePercentage
-------------- --- ------------------
0x7fbc984982b6 /usr/lib/x86_64-linux-gnu/libcuda.so.418.39 5.29
0x7fbc982d0010 /usr/lib/x86_64-linux-gnu/libcuda.so.418.39 2.81
thrust::iterat /home/user_name/NVIDIA_CUDA-10.1_Samples/6_ 2.23
thrust::iterat /home/user_name/NVIDIA_CUDA-10.1_Samples/6_ 1.55
void thrust::i /home/user_name/NVIDIA_CUDA-10.1_Samples/6_ 1.55

DX12 API Frame Duration Histogram

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 274

The example demonstrates how to calculate DX12 CPU frames durartion and construct a
histogram out of it.

CREATE INDEX DX12_API_ENDTS ON DX12_API (end);

CREATE TEMP VIEW DX12_API_FPS AS SELECT end AS start,
 (SELECT end FROM DX12_API
 WHERE end > outer.end AND nameId == (SELECT id FROM StringIds
 WHERE value == "IDXGISwapChain::Present")
 ORDER BY end ASC LIMIT 1) AS end
FROM DX12_API AS outer
 WHERE nameId == (SELECT id FROM StringIds WHERE value ==
 "IDXGISwapChain::Present")
ORDER BY end;

Number of frames with a duration of [X, X + 1) milliseconds.

SELECT
 CAST((end - start) / 1000000.0 AS INT) AS duration_ms,
 count(*)
FROM DX12_API_FPS
WHERE end IS NOT NULL
GROUP BY duration_ms
ORDER BY duration_ms;

Results:

duration_ms count(*)
----------- ----------
3 1
4 2
5 7
6 153
7 19
8 116
9 16
10 8
11 2
12 2
13 1
14 4
16 3
17 2
18 1

GPU Context Switch Events Enumeration

GPU context duration is between first BEGIN and a matching END event.

SELECT (CASE tag WHEN 8 THEN "BEGIN" WHEN 7 THEN "END" END) AS tag,
 globalPid / 0x1000000 % 0x1000000 AS PID,
 vmId, seqNo, contextId, timestamp, gpuId FROM GPU_CONTEXT_SWITCH_EVENTS
WHERE tag in (7, 8) ORDER BY seqNo LIMIT 10;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 275

Results:

tag PID vmId seqNo contextId timestamp gpuId

---------- ---------- ---------- ---------- ---------- ----------

BEGIN 23371 0 0 1048578 56759171 0

BEGIN 23371 0 1 1048578 56927765 0

BEGIN 23371 0 3 1048578 63799379 0

END 23371 0 4 1048578 63918806 0

BEGIN 19397 0 5 1048577 64014692 0

BEGIN 19397 0 6 1048577 64250369 0

BEGIN 19397 0 8 1048577 1918310004 0

END 19397 0 9 1048577 1918521098 0

BEGIN 19397 0 10 1048577 2024164744 0

BEGIN 19397 0 11 1048577 2024358650 0

Resolve NVTX Category Name

The example demonstrates how to resolve NVTX category name for NVTX marks and
ranges.

WITH
 event AS (
 SELECT *
 FROM NVTX_EVENTS
 WHERE eventType IN (34, 59, 60) -- mark, push/pop, start/end
),
 category AS (
 SELECT
 category,
 domainId,
 text AS categoryName
 FROM NVTX_EVENTS
 WHERE eventType == 33 -- new category
)
SELECT
 start,
 end,
 globalTid,
 eventType,
 domainId,
 category,
 categoryName,
 text
FROM event JOIN category USING (category, domainId)
ORDER BY start;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 276

Results:

start end globalTid eventType domainId category
 categoryName text
---------- ---------- --------------- ---------- ---------- ----------
 ------------------------- ----------------
18281150 18311960 281534938484214 59 0 1
 FirstCategoryUnderDefault Push Pop Range A
18288187 18306674 281534938484214 59 0 2
 SecondCategoryUnderDefaul Push Pop Range B
18294247 281534938484214 34 0 1
 FirstCategoryUnderDefault Mark A
18300034 281534938484214 34 0 2
 SecondCategoryUnderDefaul Mark B
18345546 18372595 281534938484214 60 1 1
 FirstCategoryUnderMyDomai Start End Range
18352924 18378342 281534938484214 60 1 2
 SecondCategoryUnderMyDoma Start End Range
18359634 281534938484214 34 1 1
 FirstCategoryUnderMyDomai Mark A
18365448 281534938484214 34 1 2
 SecondCategoryUnderMyDoma Mark B

Rename CUDA Kernels with NVTX

The example demonstrates how to map innermost NVTX push-pop range to a matching
CUDA kernel run.

ALTER TABLE CUPTI_ACTIVITY_KIND_KERNEL ADD COLUMN nvtxRange TEXT;
CREATE INDEX nvtx_start ON NVTX_EVENTS (start);

UPDATE CUPTI_ACTIVITY_KIND_KERNEL SET nvtxRange = (
 SELECT NVTX_EVENTS.text
 FROM NVTX_EVENTS JOIN CUPTI_ACTIVITY_KIND_RUNTIME ON
 NVTX_EVENTS.eventType == 59 AND
 NVTX_EVENTS.globalTid == CUPTI_ACTIVITY_KIND_RUNTIME.globalTid AND
 NVTX_EVENTS.start <= CUPTI_ACTIVITY_KIND_RUNTIME.start AND
 NVTX_EVENTS.end >= CUPTI_ACTIVITY_KIND_RUNTIME.end
 WHERE
 CUPTI_ACTIVITY_KIND_KERNEL.correlationId ==
 CUPTI_ACTIVITY_KIND_RUNTIME.correlationId
 ORDER BY NVTX_EVENTS.start DESC LIMIT 1
);

SELECT start, end, globalPid, StringIds.value as shortName, nvtxRange
FROM CUPTI_ACTIVITY_KIND_KERNEL JOIN StringIds ON shortName == id
ORDER BY start LIMIT 6;

Results:

start end globalPid shortName nvtxRange
---------- ---------- ----------------- ------------- ----------
526545376 526676256 72057700439031808 MatrixMulCUDA
526899648 527030368 72057700439031808 MatrixMulCUDA Add
527031648 527162272 72057700439031808 MatrixMulCUDA Add
527163584 527294176 72057700439031808 MatrixMulCUDA My Kernel
527296160 527426592 72057700439031808 MatrixMulCUDA My Range
527428096 527558656 72057700439031808 MatrixMulCUDA

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 277

Select CUDA Calls With Backtraces

ALTER TABLE CUPTI_ACTIVITY_KIND_RUNTIME ADD COLUMN name TEXT;
UPDATE CUPTI_ACTIVITY_KIND_RUNTIME SET name = (SELECT value FROM StringIds WHERE
 CUPTI_ACTIVITY_KIND_RUNTIME.nameId = StringIds.id);

ALTER TABLE CUDA_CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE CUDA_CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
 symbol = StringIds.id);

SELECT globalTid % 0x1000000 AS TID,
 start, end, name, callchainId, stackDepth, symbolName
FROM CUDA_CALLCHAINS JOIN CUPTI_ACTIVITY_KIND_RUNTIME ON callchainId ==
 CUDA_CALLCHAINS.id
ORDER BY callchainId, stackDepth LIMIT 11;

Results:

TID start end name callchainId stackDepth
 symbolName
---------- ---------- ---------- ------------- ----------- ----------

11928 168976467 169077826 cuMemAlloc_v2 1 0
 0x7f13c44f02ab
11928 168976467 169077826 cuMemAlloc_v2 1 1
 0x7f13c44f0b8f
11928 168976467 169077826 cuMemAlloc_v2 1 2
 0x7f13c44f3719
11928 168976467 169077826 cuMemAlloc_v2 1 3
 cuMemAlloc_v2
11928 168976467 169077826 cuMemAlloc_v2 1 4
 cudart::driver
11928 168976467 169077826 cuMemAlloc_v2 1 5
 cudart::cudaAp
11928 168976467 169077826 cuMemAlloc_v2 1 6
 cudaMalloc
11928 168976467 169077826 cuMemAlloc_v2 1 7
 cudaError cuda
11928 168976467 169077826 cuMemAlloc_v2 1 8 main

11928 168976467 169077826 cuMemAlloc_v2 1 9
 __libc_start_m
11928 168976467 169077826 cuMemAlloc_v2 1 10
 _start

SLI Peer-to-Peer Query

The example demonstrates how to query SLI Peer-to-Peer events with resource size
greater than value and within a time range sorted by resource size descending.

SELECT *
FROM SLI_P2P
WHERE resourceSize < 98304 AND start > 1568063100 AND end < 1579468901
ORDER BY resourceSize DESC;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 278

Results:

start end eventClass globalTid gpu frameId
 transferSkipped srcGpu dstGpu numSubResources resourceSize
 subResourceIdx smplWidth smplHeight smplDepth bytesPerElement
 dxgiFormat logSurfaceNames transferInfo isEarlyPushManagedByNvApi
 useAsyncP2pForResolve transferFuncName regimeName debugName bindType
---------- ---------- ---------- ----------------- ---------- ----------
 --------------- ---------- ---------- --------------- ------------
 -------------- ---------- ---------- ---------- ---------------
 ---------- --------------- ------------ -------------------------
 --------------------- ---------------- ---------- ---------- ----------
1570351100 1570351101 62 72057698056667136 0 771 0
 256 512 1 1048576 0
 256 256 1 16 2
 3 0 0

1570379300 1570379301 62 72057698056667136 0 771 0
 256 512 1 1048576 0
 64 64 64 4 31
 3 0 0

1572316400 1572316401 62 72057698056667136 0 773 0
 256 512 1 1048576 0
 256 256 1 16 2
 3 0 0

1572345400 1572345401 62 72057698056667136 0 773 0
 256 512 1 1048576 0
 64 64 64 4 31
 3 0 0

1574734300 1574734301 62 72057698056667136 0 775 0
 256 512 1 1048576 0
 256 256 1 16 2
 3 0 0

1574767200 1574767201 62 72057698056667136 0 775 0
 256 512 1 1048576 0
 64 64 64 4 31
 3 0 0

Generic Events

Syscall usage histogram by PID:

SELECT json_extract(data, '$.common_pid') AS PID, count(*) AS total
FROM GENERIC_EVENTS WHERE PID IS NOT NULL AND typeId = (
 SELECT typeId FROM GENERIC_EVENT_TYPES
 WHERE json_extract(data, '$.Name') = "raw_syscalls:sys_enter")
GROUP BY PID
ORDER BY total DESC
LIMIT 10;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 279

Results:

PID total
---------- ----------
5551 32811
9680 3988
4328 1477
9564 1246
4376 1204
4377 1167
4357 656
4355 655
4356 640
4354 633

Fetching Generic Events in JSON Format

Text and JSON export modes don’t include generic events. Use the below queries
(without LIMIT clause) to extract JSON lines representation of generic events, types and
sources.

SELECT json_insert('{}',
 '$.sourceId', sourceId,
 '$.data', json(data)
)
FROM GENERIC_EVENT_SOURCES LIMIT 2;

SELECT json_insert('{}',
 '$.typeId', typeId,
 '$.sourceId', sourceId,
 '$.data', json(data)
)
FROM GENERIC_EVENT_TYPES LIMIT 2;

SELECT json_insert('{}',
 '$.rawTimestamp', rawTimestamp,
 '$.timestamp', timestamp,
 '$.typeId', typeId,
 '$.data', json(data)
)
FROM GENERIC_EVENTS LIMIT 2;

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 280

Results:

json_insert('{}',
 '$.sourceId', sourceId,
 '$.data', json(data)
)

{"sourceId":72057602627862528,"data":
{"Name":"FTrace","TimeSource":"ClockMonotonicRaw","SourceGroup":"FTrace"}}
json_insert('{}',
 '$.typeId', typeId,
 '$.sourceId', sourceId,
 '$.data', json(data)
)

--

{"typeId":72057602627862547,"sourceId":72057602627862528,"data":
{"Name":"raw_syscalls:sys_enter","Format":"\"NR %ld (%lx,
 %lx, %lx, %lx, %lx, %lx)\", REC->id, REC->args[0], REC-
>args[1], REC->args[2], REC->args[3], REC->args[4], REC-
>args[5]","Fields":[{"Name":"common_pid","Prefix":"int","Suffix":""},
{"Name":"id","Prefix":"long","S
{"typeId":72057602627862670,"sourceId":72057602627862528,"data":
{"Name":"irq:irq_handler_entry","Format":"\"irq=%d name=%s\", REC->irq,
 __get_str(name)","Fields":[{"Name":"common_pid","Prefix":"int","Suffix":""},
{"Name":"irq","Prefix":"int","Suffix":""},{"Name":"name","Prefix":"__data_loc
 char[]","Suffix":""},{"Name":"common_type",
json_insert('{}',
 '$.rawTimestamp', rawTimestamp,
 '$.timestamp', timestamp,
 '$.typeId', typeId,
 '$.data', json(data)
)
--

{"rawTimestamp":1183694330725221,"timestamp":6236683,"typeId":72057602627862670,"data":
{"common_pid":"0","irq":"66","name":"327696","common_type":"142","common_flags":"9","common_preempt_count":"0"}}
{"rawTimestamp":1183694333695687,"timestamp":9207149,"typeId":72057602627862670,"data":
{"common_pid":"0","irq":"66","name":"327696","common_type":"142","common_flags":"9","common_preempt_count":"0"}}

24.1.4. Arrow Format Description
The Arrow type exported file uses the IPC stream format to store the data in a file. The
tables can be read by opening the file as an arrow stream. For example one can use the
open_stream function from the arrow python package. For more information on the
interfaces that can be used to read an IPC stream file, please refer to the Apache Arrow
documentation [1, 2].

The name of each table is included in the schema metadata. Thus, while reading each
table, the user can extract the table title from the metadata. The table name metadata
field has the key table_name. The titles of all the available tables can be found in
section SQLite Schema Reference.

https://arrow.apache.org/docs/python/api/ipc.html
https://arrow.apache.org/docs/python/ipc.html

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 281

24.1.5. JSON and Text Format Description
JSON and TXT export formats are generated by serializing buffered messages, each on
a new line. First, all collected events are processed. Then strings are serialized, followed
by stdout, stderr streams if any, followed by thread names.

Output layout:

{Event #1}
{Event #2}
...
{Event #N}
{Strings}
{Streams}
{Threads}

For easier grepping of JSON output, the --separate-strings switch may be used to
force manual splitting of strings, streams and thread names data.

Example line split: nsys export --export-json --separate-strings
sample.nsys-rep -- -

{"type":"String","id":"3720","value":"Process 14944 was launched by the
 profiler"}
{"type":"String","id":"3721","value":"Profiling has started."}
{"type":"String","id":"3722","value":"Profiler attached to the process."}
{"type":"String","id":"3723","value":"Profiling has stopped."}
{"type":"ThreadName","globalTid":"72057844756653436","nameId":"14","priority":"10"}
{"type":"ThreadName","globalTid":"72057844756657940","nameId":"15","priority":"10"}
{"type":"ThreadName","globalTid":"72057844756654400","nameId":"24","priority":"10"}

Compare with: nsys export --export-json sample.nsys-rep -- -

{"data":["[Unknown]","[Unknown kernel module]","[Max depth]","[Broken
 backtraces]",
 "[Called from
 Java]","QnxKernelTrace","mm_","task_submit","class_id","syncpt_id",
 "syncpt_thresh","pid","tid","FTrace","[NSys]","[NSys Comms]", "..." ,"Process
 14944 was launched by the profiler","Profiling has started.","Profiler
 attached
 to the process.","Profiling has stopped."]}
{"data":[{"nameIdx":"14","priority":"10","globalTid":"72057844756653436"},
 {"nameIdx":"15","priority":"10","globalTid":"72057844756657940"},
{"nameIdx":"24",
 "priority":"10","globalTid":"72057844756654400"}]}

Note, that only last few lines are shown here for clarity and that carriage returns and
indents were added to avoid wrapping documentation.

24.2. Statistical Analysis

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 282

Statistical Reports Shipped With Nsight Systems
The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested statistical reports. These scripts will be updated to
adapt to any changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

Note: The ability to display mangled names is a recent addition to the report file
format, and requires that the profile data be captured with a recent version of Nsys. Re-
exporting an existing report file is not sufficient. If the raw, mangled kernel name data is
not available, the default demangled names will be used.

Note: All time values given in nanoseconds by default. If you wish to output the results
using a different time unit, use the --timeunit option when running the recipe.

cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (API/Kernels/
MemOps)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this kernel
‣ Instances: Number of executions of this object
‣ Avg : Average execution time of this kernel
‣ Med : Median execution time of this kernel
‣ Min : Smallest execution time of this kernel
‣ Max : Largest execution time of this kernel
‣ StdDev : Standard deviation of execution time of this kernel
‣ Category : Category of the operation
‣ Operation : Name of the kernel

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time column is calculated using a summation
of the Total Time column, and represents that API call's, kernel's, or memory operation's
percent of the execution time of the APIs, kernels and memory operations listed, and not
a percentage of the application wall or CPU execution time.

This report combines data from the cuda_api_sum, cuda_gpu_kern_sum, and
cuda_gpu_mem_size_sum reports. It is very similar to profile section of nvprof --
dependency-analysis.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 283

cuda_api_sum -- CUDA API Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this function
‣ Num Calls : Number of calls to this function
‣ Avg : Average execution time of this function
‣ Med : Median execution time of this function
‣ Min : Smallest execution time of this function
‣ Max : Largest execution time of this function
‣ StdDev : Standard deviation of the time of this function
‣ Name : Name of the function

This report provides a summary of CUDA API functions and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cuda_api_trace -- CUDA API Trace
Arguments - None

Output: All time values given in nanoseconds

‣ Start : Timestamp when API call was made
‣ Duration : Length of API calls
‣ Name : API function name
‣ Result : return value of API call
‣ CorrID : Correlation used to map to other CUDA calls
‣ Pid : Process ID that made the call
‣ Tid : Thread ID that made the call
‣ T-Pri : Run priority of call thread
‣ Thread Name : Name of thread that called API function

This report provides a trace record of CUDA API function calls and their execution
times.

cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/
Block Summary
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 284

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this kernel
‣ Instances : Number of calls to this kernel
‣ Avg : Average execution time of this kernel
‣ Med : Median execution time of this kernel
‣ Min : Smallest execution time of this kernel
‣ Max : Largest execution time of this kernel
‣ StdDev : Standard deviation of the time of this kernel
‣ GridXYZ : Grid dimensions for kernel launch call
‣ BlockXYZ : Block dimensions for kernel launch call
‣ Name : Name of the kernel

This report provides a summary of CUDA kernels and their execution times. Kernels
are sorted by grid dimensions, block dimensions, and kernel name. Note that the Time
column is calculated using a\ summation of the Total Time column, and represents that
kernel's percent of the execution time of the kernels listed, and not a percentage of the
application wall or CPU execution time.

cuda_gpu_kern_sum[:base|:mangled] -- CUDA GPU Kernel Summary
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this kernel
‣ Instances : Number of calls to this kernel
‣ Avg : Average execution time of this kernel
‣ Min : Smallest execution time of this kernel
‣ Max : Largest execution time of this kernel
‣ StdDev : Standard deviation of the time of this kernel
‣ Name : Name of the kernel

This report provides a summary of CUDA kernels and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
Arguments - None

Output: All memory values given in KiB

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 285

‣ Total : Total number of KiB utilized by this operation
‣ Operations : Number of executions of this operation
‣ Avg : Average memory size of this operation
‣ Min : Smallest memory size of this operation
‣ Max : Largest memory size of this operation
‣ StdDev : Standard deviation of execution time of this operation
‣ Name : Name of the operation

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
Arguments - None

Output: All memory values given in KiB

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this operation
‣ Operations: Number of operations of this type
‣ Avg : Average execution time of this operation
‣ Min : Smallest execution time of this operation
‣ Max : Largest execution time of this operation
‣ StdDev : Standard deviation of execution time of this operation
‣ Operation : Name of the memory operation

This report provides a summary of GPU memory operations and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that operation's percent of the execution time of the operations listed,
and not a percentage of the application wall or CPU execution time.

cuda_gpu_sum[:base|:mangled] -- CUDA GPU Summary (Kernels/
MemOps)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this kernel
‣ Instances : Number of executions of this object
‣ Avg : Average execution time of this kernel
‣ Min : Smallest execution time of this kernel
‣ Max : Largest execution time of this kernel
‣ StdDev : Standard deviation of execution time of this kernel

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 286

‣ Category : Category of the operation
‣ Name : Name of the kernel

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the cuda_gpu_kern_sum and
cuda_gpu_mem_time_sum reports. This report is very similar to output of the command
nvprof --print-gpu-summary.

cuda_gpu_trace[:base|:mangled] -- CUDA GPU Trace
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output:

‣ Start : Start time of trace event in seconds
‣ Duration : Length of event in nanoseconds
‣ CorrId : Correlation ID
‣ GrdX, GrdY, GrdZ : Grid values
‣ BlkX, BlkY, BlkZ : Block values
‣ Reg/Trd : Registers per thread
‣ StcSMem : Size of Static Shared Memory
‣ DymSMem : Size of Dynamic Shared Memory
‣ Bytes : Size of memory operation
‣ Thru : Throughput in MB per Second
‣ SrcMemKd : Memcpy source memory kind or memset memory kind
‣ DstMemKd : Memcpy destination memory kind
‣ Device : GPU device name and ID
‣ Ctx : Context ID
‣ Strm : Stream ID
‣ Name : Trace event name

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

cuda_kern_exec_sum[:base|:mangled] -- CUDA Kernel Launch &
Exec Time Summary
Arguments

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 287

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

‣ PID : Process ID that made kernel launch call
‣ TID : Tread ID that made kernel launch call
‣ DevId : CUDA Device ID that executed kernel (which GPU)
‣ Count : Number of kernel records
‣ QCount : Number of kernel records with positive queue time
‣ Average, Median, Minimum, Maximum, and Standard Deviation for:

‣ TAvg, TMed, TMin, TMax, TStdDev : Total time
‣ AAvg, AMed, AMin, AMax, AStdDev : API time
‣ QAvg, QMed, QMin, QMax, QStdDev : Queue time
‣ KAvg, KMed, KMin, KMax, KStdDev : Kernel time

‣ API Name : Name of CUDA API call used to launch kernel
‣ Kernel Name : Name of CUDA Kernel

This report provides a summary of the launch and execution times of CUDA kernels.
The launch and execution is broken down into three phases: API time, the execution
time of the CUDA API call on the CPU used to launch the kernel; Queue time, the time
between the launch call and the kernel execution; and Kernel time, the kernel execution
time on the GPU. The Total Time is not a just sum of the other times, as the phases
sometimes overlap. Rather, the total time runs from the start of the API call to end of the
API call or the end of the kernel execution, whichever is later.

The reported queue time is measured from the end of the API call to the start of the
kernel execution. The actual queue time is slightly longer, as the kernel is enqueued
somewhere in the middle of the API call, and not in the final nanosecond of function
execution. Due to this delay, it is possible for kernel execution to start before the CUDA
launch call returns. In these cases, no queue time will be reported. Only kernel launches
with positive queue times are included in the queue average, minimum, maximum, and
standard deviation calculations. The QCount column indicates how many launches had
positive queue times (and how many launches were involved in calculating the queue
time statistics). Subtracting QCount from Count will indicate how many kernels had no
queue time.

Be aware that having a queue time is not inherently bad. Queue times indicate that the
GPU was busy running other tasks when the new kernel was scheduled for launch.
If every kernel launch is immediate, without any queue time, that may indicate an
idle GPU with poor utilization. In terms of performance optimization, it should not
necessarily be a goal to eliminate queue time.

cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch &
Exec Time Trace
Arguments

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 288

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

‣ API Start : Start timestamp of CUDA API launch call
‣ API Dur : Duration of CUDA API launch call
‣ Queue Start : Start timestamp of queue wait time, if it exists
‣ Queue Dur : Duration of queue wait time, if it exists
‣ Kernel Start : Start timestamp of CUDA kernel
‣ Kernel Dur : Duration of CUDA kernel
‣ Total Dur : Duration from API start to kernel end
‣ PID : Process ID that made kernel launch call
‣ TID : Thread ID that made kernel launch call
‣ DevId : CUDA Device ID that executed kernel (which GPU)
‣ API Function : Name of CUDA API call used to launch kernel
‣ GridXYZ : Grid dimensions for kernel launch call
‣ BlockXYZ : Block dimensions for kernel launch call
‣ Kernel Name : Name of CUDA Kernel

This report provides a trace of the launch and execution times of CUDA kernels. The
launch and execution is broken down into three phases: API time, the execution time of
the CUDA API call on the CPU used to launch the kernel; Queue time, the time between
the launch call and the kernel execution; and Kernel time, the kernel execution time on
the GPU. The Total Time is not a just sum of the other times, as the phases sometimes
overlap. Rather, the total time runs from the start of the API call to end of the API call or
the end of the kernel execution, whichever is later.

The reported queue time is measured from the end of the API call to the start of the
kernel execution. The actual queue time is slightly longer, as the kernel is enqueued
somewhere in the middle of the API call, and not in the final nanosecond of function
execution. Due to this delay, it is possible for kernel execution to start before the CUDA
launch call returns. In these cases, no queue time will be reported.

Be aware that having a queue time is not inherently bad. Queue times indicate that the
GPU was busy running other tasks when the new kernel was scheduled for launch.
If every kernel launch is immediate, without any queue time, that may indicate an
idle GPU with poor utilization. In terms of performance optimization, it should not
necessarily be a goal to eliminate queue time.

dx11_pix_sum -- DX11 PIX Range Summary
Arguments - None

Output: All time values default to nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 289

‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Med : Median execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of D3D11 PIX CPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that range's percent of the execution time of the ranges listed,
and not a percentage of the application wall or CPU execution time.

dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges
Summary
Arguments - None

Output: All time values default to nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Med : Median execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of DX12 PIX GPU command list debug markers, and
their execution times. Note that the Time column is calculated using a summation of
the Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

dx12_pix_sum -- DX12 PIX Range Summary
Arguments - None

Output: All time values default to nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Med : Median execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 290

‣ Range : Name of the range

This report provides a summary of D3D12 PIX CPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that range's percent of the execution time of the ranges listed,
and not a percentage of the application wall or CPU execution time.

nvtx_gpu_proj_trace -- NVTX GPU Projection Trace
Arguments - None

Output: All time values default to nanoseconds

‣ Name : Name of the NVTX range
‣ Projected Start : Projected range start timestamp
‣ Projected Duration : Projected range duration
‣ Orig Start : Original NVTX range start timestamp
‣ Orig Duration : Original NVTX range duration
‣ Style : Range style; Start/End or Push/Pop
‣ PID : Process ID
‣ TID : Thread ID
‣ NumGPUOps : Number of enclosed GPU operations
‣ Lvl : Stack level, starts at 0
‣ NumChild : Number of children ranges
‣ RangeId : Arbitrary ID for range
‣ ParentId : Range ID of the enclosing range
‣ RangeStack : Range IDs that make up the push/pop stack

This report provides a trace of NVTX time ranges projected from the CPU onto the GPU.
Each NVTX range contains one or more GPU operations. A GPU peration is considered
to be contained by an NVTX range if the CUDA API call used to launch the operation
is within the NVTX range. Only ranges that start and end on the same thread are taken
into account.

The projected range will have the start timestamp of the first enclosed GPU operation
and the end timestamp of the last enclosed GPU operation, as well as the stack state and
relationship to other NVTX ranges.

nvtx_gpu_proj_sum -- NVTX GPU Projection Summary
Arguments - None

Output: All time values default to nanoseconds

‣ Range : Name of the NVTX range
‣ Total Proj Time : Total projected time used by all instances of this range name
‣ Total Range Time : Total original NVTX range time used by all instances of this

range name
‣ Style : Range style; Start/End or Push/Pop
‣ Range Instances : Number of instances of this range

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 291

‣ Proj Avg : Average projected time for this range
‣ Proj Med : Median projected time for this range
‣ Proj Min : Minimum projected time for this range
‣ Proj Max : Maximum projected time for this range
‣ Proj StdDev : Standard deviation of projected times for this range
‣ Total GPU Ops : Total number of GPU ops
‣ Avg GPU Ops : Average number of GPU ops
‣ Avg Range Lvl : Average range stack depth
‣ Avg Num Child : Average number of children ranges

This report provides a summary of NVTX time ranges projected from the CPU to the
GPU. Each NVTX range contains one or more GPU operations. A GPU operation is
considered to be contained by the NVTX range if the CUDA API call used to launch the
operation is within the NVTX range. Only ranges that start and end on the same thread
are taken into account.

The projected range will have the start timestamp of the start of the first enclosed GPU
operation and the end timestamp of the end of the last enclosed GPU operation. This
report then summarizes all the range instances by name and style. Note that in cases
when one NVTX range might enclose another, the time of the child(ren) range(s) is not
subtracted from the parent range. This is because the projected times may not strictly
overlap like the original NVTX range times do. As such, the total projected time of all
ranges might exceed the total sampling duration.

nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

‣ mangled - Optional argument, if given, will cause summary to be over the raw
mangled name of the kernel, rather than the templated name.

Output: All time values default to nanoseconds.

‣ NVTX Range : Name of the range
‣ Style : Range style; Start/End or Push/Pop
‣ PID : Process ID for this set of ranges and kernels
‣ TID : Thread ID for this set of ranges and kernels
‣ NVTX Inst : Number of NVTX range instances
‣ Kern Inst : Number of CUDA kernel instances
‣ Total Time : Total time used by all kernel instances of this range
‣ Avg : Average execution time of the kernel
‣ Med : Median execution time of the kernel
‣ Min : Smallest execution time of the kernel
‣ Max : Largest execution time of the kernel
‣ StdDev : Standard deviation of the execution time of the kernel
‣ Kernel Name : Name of the kernel

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 292

This report provides a summary of CUDA kernels, grouped by NVTX ranges. To
compute this summary, each kernel is matched to one or more containing NVTX range
in the same process and thread ID. A kernel is considered to be contained by an NVTX
range if the CUDA API call used to launch the kernel is within the NVTX range. The
actual execution of the kernel may last longer than the NVTX range. A specific kernel
instance may be associated with more than one NVTX range if the ranges overlap.
For example, if a kernel is launched inside a stack of push/pop ranges, the kernel is
considered to be contained by all of the ranges on the stack, not just the deepest range.
This becomes very confusing if NVTX ranges appear inside other NVTX ranges of the
same name.

Once each kernel is associated to one or more NVTX range(s), the list of ranges and
kernels grouped by range name, kernel name, and PID/TID. A summary of the kernel
instances and their execution times is then computed. The NVTX Inst column indicates
how many NVTX range instances contained this kernel, while the Kern Inst column
indicates the number of kernel instances in the summary line.

nvtx_pushpop_sum -- NVTX Push/Pop Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time column is calculated using a summation of the Total
Time column, and represents that range's percent of the execution time of the ranges
listed, and not a percentage of the application wall or CPU execution time.

nvtx_pushpop_trace -- NVTX Push/Pop Range Trace
Arguments - None

Output: All time values given in nanoseconds

‣ Start : Range start timestamp
‣ End : Range end timestamp
‣ Duration : Range duration
‣ DurChild : Duration of all child ranges
‣ DurNonChild : Duration of this range minus child ranges
‣ Name : Name of the NVTX range
‣ PID : Process ID

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 293

‣ TID : Thread ID
‣ Lvl : Stack level, starts at 0
‣ NumChild : Number of children ranges
‣ RangeId : Arbitrary ID for range
‣ ParentId : Range ID of the enclosing range
‣ RangeStack : Range IDs that make up the push/pop stack
‣ NameTree : Range name prefixed with level indicator

This report provides a trace of NV Tools Extensions Push/Pop Ranges, their execution
time, stack state, and relationship to other push/pop ranges.

nvtx_startend_sum -- NVTX Start/End Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of NV Tools Extensions Start/End Ranges and their
execution times. Note that the Time column is calculated using a summation of the Total
Time column, and represents that range's percent of the execution time of the ranges
listed, and not a percentage of the application wall or CPU execution time.

nvtx_sum -- NVTX Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Style : Range style; Start/End or Push/Pop
‣ Range : Name of the range

This report provides a summary of NV Tools Extensions Start/End and Push/Pop
Ranges, and their execution times. Note that the Time column is calculated using
a summation of the Total Time column, and represents that range's percent of the

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 294

execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

nvvideo_api_sum -- NvVideo API Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Num Calls : Number of calls to this function
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this function
‣ Max : Largest execution time of this function
‣ StdDev : Standard deviation of execution time of this function
‣ Event Type : Which API this function belongs to
‣ Name : Name of the function

This report provides a summary of NvVideo API functions and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that function's percent of the execution time of the functions listed, and
not a percentage of the application wall or CPU execution time.

openacc_sum -- OpenACC Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Count : Number of event type
‣ Avg : Average execution time of event type
‣ Min : Smallest execution time of event type
‣ Max : Largest execution time of event type
‣ StdDev : Standard deviation of execution time of event type
‣ Name : Name of the event

This report provides a summary of OpenACC events and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range
Summary
Arguments - None

Output: All time values given in nanoseconds

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 295

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Med : Median execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of OpenGL KHR_debug GPU PUSH/POP debug
Ranges, and their execution times. Note that the Time column is calculated using
a summation of the Total Time column, and represents that range's percent of the
execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

opengl_khr_range_sum -- OpenGL KHR_debug Range Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Med : Median execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of OpenGL KHR_debug CPU PUSH/POP debug
Ranges, and their execution times. Note that the Time column is calculated using
a summation of the Total Time column, and represents that range's percent of the
execution time of the ranges listed, and not a percentage of the application wall or CPU
execution time.

openmp_sum -- OpenMP Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of event type
‣ Count : Number of event type
‣ Avg : Average execution time of event type
‣ Min : Smallest execution time of event type
‣ Max : Largest execution time of event type

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 296

‣ StdDev : Standard deviation of execution time of event type
‣ Name : Name of the event

This report provides a summary of OpenMP events and their execution times. Note
that the Time column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrt_sum -- OS Runtime Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this function
‣ Num Calls : Number of calls to this function
‣ Avg : Average execution time of this function
‣ Min : Smallest execution time of this function
‣ Max : Largest execution time of this function
‣ StdDev : Standard deviation of execution time of this function
‣ Name : Name of the function

This report provides a summary of operating system functions and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

um_cpu_page_faults_sum -- Unified Memory CPU Page Faults
Summary
Arguments - None

Output:

‣ CPU Page Faults : Number of CPU page faults that occurred
‣ CPU Instruction Address : Address of the CPU instruction that caused the CPU

page faults

This report provides a summary of CPU page faults for unified memory.

um_sum[:rows=<limit>] -- Unified Memory Analysis Summary
Arguments

‣ rows=<limit> - Maximum number of rows returned by the query. Default is 10.

Output:

‣ Virtual Address : Virtual base address of the page(s) being transferred
‣ HtoD Migration Size : Bytes transferred from Host to Device
‣ DtoH Migration Size : Bytes transferred from Device to Host

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 297

‣ CPU Page Faults : Number of CPU page faults that occurred for the virtual base
address

‣ GPU Page Faults : Number of GPU page faults that occurred for the virtual base
address

‣ Migration Throughput : Bytes transferred per second

This report provides a summary of data migrations for unified memory.

um_total_sum -- Unified Memory Totals Summary
Arguments - None

Output:

‣ Total HtoD Migration Size : Total bytes transferred from Host to Device
‣ Total DtoH Migration Size : Bytes transferred from Device to Host
‣ Total CPU Page Faults : Total number of CPU page faults that occurred
‣ Total GPU Page Faults : Total number of GPU page faults that occurred
‣ Minimum Virtual Address : Minimum value of the virtual address range for the

pages transferred
‣ Maximum Virtual Address : Maximum value of the virtual address range for the

pages transferred

This report provides a summary of all the page faults for unified memory.

vulkan_api_sum -- Vulkan API Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all executions of this function
‣ Num Calls : Number of calls to this function
‣ Avg : Average execution time of this function
‣ Med : Median execution time of this function
‣ Min : Smallest execution time of this function
‣ Max : Largest execution time of this function
‣ StdDev : Standard deviation of execution time of this function
‣ Name : Name of the function

This report provides a summary of Vulkan API functions and their execution times.
Note that the Time column is calculated using a summation of the Total Time column,
and represents that function's percent of the execution time of the functions listed, and
not a percentage of the application wall or CPU execution time.

vulkan_api_trace -- Vulkan API Trace
Arguments - None

Output:

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 298

‣ Start : Timestamp when API call was made
‣ Duration : Length of API calls
‣ Name : API function name
‣ Event Class : Vulkan trace event type
‣ Context : Trace context ID
‣ CorrID : Correlation used to map to other Vulkan calls
‣ Pid : Process ID that made the call
‣ Tid : Thread ID that made the call
‣ T-Pri : Run priority of call thread
‣ Thread Name : Name of thread that called API function

This report provides a trace record of Vulkan API function calls and their execution
times.

vulkan_gpu_marker_sum -- Vulkan GPU Range Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Med : Median execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

This report provides a summary of Vulkan GPU debug markers, and their execution
times. Note that the Time column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

vulkan_marker_sum -- Vulkan Range Summary
Arguments - None

Output:

‣ Time : Percentage of Total Time
‣ Total Time : Total time used by all instances of this range
‣ Instances : Number of instances of this range
‣ Avg : Average execution time of this range
‣ Min : Smallest execution time of this range
‣ Max : Largest execution time of this range
‣ StdDev : Standard deviation of execution time of this range
‣ Range : Name of the range

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 299

This report provides a summary of Vulkan debug markers on the CPU, and their
execution times. Note that the Time column is calculated using a summation of the
Total Time column, and represents that function's percent of the execution time of the
functions listed, and not a percentage of the application wall or CPU execution time.

wddm_queue_sum -- WDDM Queue Utilization Summary
Arguments - None

Output:

‣ Instances : Number of events
‣ Avg : Average event duration
‣ Med : Median event duration
‣ Min : Smallest event duration
‣ Max : Largest event duration
‣ StdDev : Standard deviation of event durations
‣ Name : Event name
‣ Q Type : Queue type ID
‣ Q Name : Queue type name
‣ PID : Process ID associated with event
‣ GPU ID : GPU index
‣ Context : WDDM context of queue
‣ Engine : Engine type ID
‣ Node Ord : WDDM node ordinal ID

This report provides a summary of the WDDM queue utilization. The utilization is
calculated by comparing the amount of time when the queue had one or more active
events to total duration, as defined by the minimum and maximum event time for a
given Process ID (regardless of the queue context).

Report Formatters Shipped With Nsight Systems
The following formats are available in Nsight Systems

Column
Usage:

column[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 300

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "…" character, to indicate
the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.
This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum
width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table
Usage:

table[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

CSV
Usage:

csv[:nohdr]

Arguments

‣ nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 301

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV
Usage:

tsv[:nohdr][:esc]

Arguments

‣ nohdr : Do not display the header
‣ esc : escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON
Usage:

json

Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and
converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc
Usage:

hdoc[:title=<title>][:css=<URL>]

Arguments:

‣ title : string for HTML document title
‣ css : URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 302

HTable
Usage:

htable

Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

24.3. Expert Systems Analysis
The Nsight Systems expert system is a feature aimed at automatic detection of
performance optimization opportunities in an application's profile. It uses a set of
predefined rules to determine if the application has known bad patterns.

Using Expert System from the CLI
usage:
nsys [global-options] analyze [options]
 [nsys-rep-or-sqlite-file]

If a .nsys-rep file is given as the input file and there is no .sqlite file with the same name
in the same directory, it will be generated.

Note: The Expert System view in the GUI will give you the equivalent command line.

Using Expert System from the GUI
The Expert System View can be found in the same drop-down as the Events View. If
there is no .sqlite file with the same name as the .nsys-rep file in the same directory, it
will be generated.

The Expert System View has the following components:

 1. Drop-down to select the rule to be run
 2. Rule description and advice summary
 3. CLI command that will give the same result
 4. Table containing results of running the rule
 5. Settings button that allows users to specify the rule’s arguments

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 303

A context menu is available to correlate the table entry with the timeline. The options are
the same as the Events View:

‣ Zoom to Selected on Timeline (ctrl+double-click)

The highlighting is not supported for rules that do not return an event but rather an
arbitrary time range (e.g. GPU utilization rules).

The CLI and GUI share the same rule scripts and messages. There might be some
formatting differences between the output table in GUI and CLI.

Expert System Rules
Rules are scripts that run on the SQLite DB output from Nsight Systems to find common
improvable usage patterns.

Each rule has an advice summary with explanation of the problem found and
suggestions to address it. Only the top 50 results are displayed by default.

There are currently six rules in the expert system. They are described below. Additional
rules will be made available in a future version of Nsight Systems.

CUDA Synchronous Operation Rules
Asynchronous memcpy with pageable memory

This rule identifies asynchronous memory transfers that end up becoming synchronous
if the memory is pageable. This rule is not applicable for Nsight Systems Embedded
Platforms Edition

Suggestion: If applicable, use pinned memory instead

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 304

Synchronous Memcpy

This rule identifies synchronous memory transfers that block the host.

Suggestion: Use cudaMemcpy*Async APIs instead.

Synchronous Memset

This rule identifies synchronous memset operations that block the host.

Suggestion: Use cudaMemset*Async APIs instead.

Synchronization APIs

This rule identifies synchronization APIs that block the host until all issued CUDA calls
are complete.

Suggestions: Avoid excessive use of synchronization. Use asynchronous CUDA event
calls, such as cudaStreamWaitEvent and cudaEventSynchronize, to prevent host
synchronization.

GPU Low Utilization Rules
Nsight Systems determines GPU utilization based on API trace data in the collection.
Current rules consider CUDA, Vulkan, DX12, and OpenGL API use of the GPU.

GPU Starvation

This rule identifies time ranges where a GPU is idle for longer than 500ms. The
threshold is adjustable.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 305

‣ For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device.

‣ GPU gaps that cannot be addressed by the user are excluded. This includes:

‣ Profiling overhead in the middle of a GPU gap.
‣ The initial gap in the report that is seen before the first GPU operation.
‣ The final gap that is seen after the last GPU operation.

GPU Low Utilization

This rule identifies time regions with low utilization.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

‣ For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device. This time range is then
divided into equal chunks, and the GPU utilization is calculated for each chunk. The
utilization includes all GPU operations as well as profiling overheads that the user
cannot address.

‣ The utilization refers to the "time" utilization and not the "resource" utilization.
This rule attempts to find time gaps when the GPU is or isn't being used, but does
not take into account how many GPU resources are being used. Therefore, a single
running memcpy is considered the same amount of "utilization" as a huge kernel
that takes over all the cores. If multiple operations run concurrently in the same
chunk, their utilization will be added up and may exceed 100%.

‣ Chunks with an in-use percentage less than the threshold value are displayed.
If consecutive chunks have a low in-use percentage, the individual chunks are
coalesced into a single display record, keeping the weighted average of percentages.
This is why returned chunks may have different durations.

Other Rules
DX12 Memory Operations

This rule identifies memory operations with the following warnings:

‣ HEAP_CREATED_WITH_ZEROING: ID3D12Heap object created with zeroing. Add
D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to pDesc->Flags to avoid overhead
of zeroing.

‣ COMMITTED_RESOURCE_CREATED_WITH_ZEROING:
Committed ID3D12Resource object created with zeroing. Add
D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to HeapFlags to avoid overhead of
zeroing.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 306

‣ NONEMPTY_MAP_FROM_UPLOAD_HEAP: Non-empty ID3D12Resource::Map
from upload heap. Upload heaps are not optimized for reading data back to the
CPU.

‣ NONEMPTY_MAP_TO_WRITE_COMBINE_PAGE: Non-empty
ID3D12Resource::Map to write-combine CPU page. Write-combine pages are not
optimized for reading data back from the GPU.

‣ NONEMPTY_UNMAP_TO_READBACK_HEAP: Non-empty
ID3D12Resource::Unmap to readback heap. Readback heaps are not optimized for
uploading data from the CPU.

‣ NONEMPTY_UNMAP_FROM_WRITE_BACK_PAGE: Non-empty
ID3D12Resource::Unmap from write-back CPU page. Write-back pages are not
optimized for uploading data to the GPU.

‣ READ_FROM_UPLOAD_HEAP_SUBRESOURCE:
ID3D12Resource::ReadFromSubresource from upload heap. Upload heaps are not
optimized for reading data back to the CPU.

‣ READ_FROM_SUBRESOURCE_TO_WRITE_COMBINE_PAGE:
ID3D12Resource::ReadFromSubresource to write-combine CPU page. Write-
combine pages are not optimized for reading data back from the GPU.

‣ WRITE_TO_READBACK_HEAP_SUBRESOURCE:
ID3D12Resource::WriteToSubresource to readback heap. Readback heaps are not
optimized for uploading data from the CPU.

‣ WRITE_TO_SUBRESOURCE_FROM_WRITE_BACK_PAGE:
ID3D12Resource::WriteToSubresource from write-back CPU page. Write-back pages
are not optimized for uploading data to the GPU.

24.4. Multi-Report Analysis
PREVIEW FEATURE

Nsight Systems Multi-Report Analysis is new functionality that is being added to the
Nsight Systems tool to better support complex statistical analysis across multiple result
files. Possible use cases for this functionality include:

‣ Multi-Node Analysis - When you run Nsight Systems across a cluster, it typically
generates one result file per rank on the cluster. While you can load multiple result
files into the GUI for visualization, this analysis system allows you to run statistical
analysis across all of the result files.

‣ Multi-Pass Analysis - Some features in Nsight Systems cannot be run together due to
overhead or hardware considerations. For example, there are frequently more CPU
performance counters available than your CPU has registers. Using this analysis,
you could run multiple runs with different sets of counters and then analyze the
results together.

‣ Multi-Run Analysis - Sometimes you want to compare two runs that were not taken
at the same time together. Perhaps you ran the tool on two different hardware
configurations and want to see what changed. Perhaps you are doing regression
testing or performance improvement analysis and want to check your status.
Comparing those result files statistically can show patterns.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 307

Analysis Steps

 Note:

Prior
to
using
multi-
report
analysis,
please
make
sure
that
you
have
installed
all
required
dependencies.
See
Installing
Multi-
Report
Analysis
System
in
the
Installation
Guide
for
more
information.

 1. Generate the reports - Generate the reports as you always have, in fact, you can use
reports that you have generated previously.

 2. Set up - Choose the recipe (See Available Recipes, below), give it any required
parameters, and run.

 3. Launch Analysis - Nsight Systems will run the analysis, using your local system or
Dask, as you have selected.

 4. Output - the output is an .nsys-analysis file, which can then be opened within the
Nsight Systems GUI.

 5. View the data - depending on your recipe, you can have any number of
visualizations, from simple tabular information to Jupyter notebooks which can be
opened inside the GUI.

Available Recipes
All recipes are run using the new "recipe" CLI command switch.

usage:
nsys recipe [args] <recipe-name> [recipe args]

Nsight Systems provides several initial analysis recipes, mostly based around making
our existing statistics and expert systems rules run multi-report.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 308

These recipes can be found at <target-linux-x64>/python/packages/
nsys_recipe. They are written in Python, and you can edit them if you would like.
However, be advised that as this is a preview release, it is likely that the APIs will
change between now and the final release. Additional recipes will be added before the
product release and on an ongoing basis.

Statistics and Expert Systems Recipes

The following stats and expert systems options from Nsight Systems are available as
recipes. For more information about them please use nsys recipe [recipe name]
-–help or see Nsight Systems Report Scripts in this documentation

‣ cuda_api_sum -- CUDA API Summary
‣ cuda_api_sync -- CUDA Synchronization APIs
‣ cuda_gpu_kern_sum -- CUDA GPU Kernel Summary
‣ cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
‣ cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
‣ cuda_memcpy_async -- CUDA Async Memcpy with Pageable Memory
‣ cuda_memcpy_sync -- CUDA Synchronous Memcpy
‣ cuda_memset_sync -- CUDA Synchronous Memset
‣ dx12_mem_ops -- DX12 Memory Operations
‣ gpu_gaps -- GPU Gaps
‣ gpu_time_util -- GPU Time Utilization
‣ nvtx_gpu_proj_trace -- NVTX GPU Trace
‣ nvtx_sum -- NVTX Range Summary
‣ osrt_sum -- OS Runtime Summary

Please note that all recipes are in the form of python scripts. You may alter the given
recipes or write your own to meet your needs. Refer to Tutorial: Create a User-Defined
Recipe for an example of how to do this

Heatmap Recipes

‣ cuda_gpu_time_util_map -- CUDA GPU Kernel Time Utilization Heatmap
‣ gpu_metric_util_map -- GPU Metric Utilization Heatmap

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 309

Both recipes generate a Jupyter notebook with code cells ready to plot the heatmap
chart:

cuda_gpu_time_util_map -- CUDA GPU Kernel Time Utilization Heatmap

$ nsys recipe cuda_gpu_time_util_map --help
usage: cuda_gpu_time_util_map.py [-h] [--output OUTPUT] [--force-overwrite]
 [--start time] [--end time]
 [--nvtx range[@domain]] [--rows limit]
 [--bins BINS] --dir DIR
 [--mode {none,concurrent,dask-futures}]

This recipe calculates the percentage of GPU utilization based on the presence
of CUDA kernels. Note that the utilization refers to the "time" utilization
and not the "resource" utilization. If multiple kernels run concurrently,
their utilization will be added up and may exceed 100%.

options:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --start time Start time used for filtering in nanoseconds
 --end time End time used for filtering in nanoseconds
 --nvtx range[@domain]
 NVTX range and domain used for filtering
 --rows limit Maximum number of rows per input file
 --bins BINS Number of bins
 --dir DIR Directory of nsys-rep files

gpu_metric_util_map -- GPU Metric Utilization Heatmap

$ nsys recipe gpu_metric_util_map --help
usage: gpu_metric_util_map.py [-h] [--output OUTPUT] [--force-overwrite]
 [--start time] [--end time]
 [--nvtx range[@domain]] [--rows limit]
 [--bins BINS] --dir DIR
 [--mode {none,concurrent,dask-futures}]

This recipe calculates the percentage of SM Active, SM Issue, and Tensor
Active metrics.

options:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --start time Start time used for filtering in nanoseconds
 --end time End time used for filtering in nanoseconds
 --nvtx range[@domain]
 NVTX range and domain used for filtering
 --rows limit Maximum number of rows per input file
 --bins BINS Number of bins
 --dir DIR Directory of nsys-rep files

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 310

Pacing Recipes

‣ cuda_gpu_kern_pace -- CUDA GPU Kernel Pacing
‣ nvtx_pace -- NVTX Pacing

Both recipes generate a Jupyter notebook with code cells ready to plot various graphs
showing the progress of the target operation/range for each rank:

cuda_gpu_kern_pace -- CUDA GPU Kernel Pacing

$ nsys recipe cuda_gpu_kern_pace --help
usage: cuda_gpu_kern_pace.py [-h] [--output OUTPUT] [--force-overwrite] --name
 NAME --dir DIR
 [--mode {none,concurrent,dask-futures}]

This recipe investigates the progress and consistency of an iteration based
application.

optional arguments:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --name NAME Name of the kernel used as delineator between
 iterations
 --dir DIR Directory of nsys-rep files

nvtx_pace -- NVTX Pacing

$ nsys recipe nvtx_pace --help
usage: nvtx_pace.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu] --name
 NAME --dir DIR [--mode {none,concurrent,dask-futures}]

This recipe investigates the progress and consistency of an iteration based
application.

optional arguments:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --gpu GPU projection
 --name NAME Name of the NVTX range used as delineator between
 iterations
 --dir DIR Directory of nsys-rep files

Additional Statistics Recipes

‣ mpi_sum -- MPI Summary
‣ nccl_sum -- NCCL Summary
‣ nvtx_gpu_proj_sum -- NVTX GPU Projection Summary

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 311

All recipes generate a Jupyter notebook with code cells ready to plot various statistical
graphs:

mpi_sum -- MPI Summary

$ nsys recipe mpi_sum --help
usage: mpi_sum.py [-h] [--output OUTPUT] [--force-overwrite] --dir DIR
 [--mode {none,concurrent,dask-futures}]

This recipe provides a summary of MPI functions and their execution times.

optional arguments:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --dir DIR Directory of nsys-rep files

nccl_sum -- NCCL Summary

$ nsys recipe nccl_sum --help
usage: nccl_sum.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu] --dir
 DIR [--mode {none,concurrent,dask-futures}]

This recipe provides a summary of NCCL functions and their execution times.

optional arguments:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --gpu GPU projection
 --dir DIR Directory of nsys-rep files

nvtx_gpu_proj_sum -- NVTX GPU Projection Summary

$ nsys recipe nvtx_gpu_proj_sum --help
usage: nvtx_gpu_proj_sum.py [-h] [--output OUTPUT] [--force-overwrite] [--gpu]
 --dir DIR [--mode {none,concurrent,dask-futures}]

This recipe provides a summary of NVTX time ranges projected from the CPU onto
the GPU, and their execution times.

optional arguments:
 -h, --help show this help message and exit

Context:
 --mode {none,concurrent,dask-futures}
 Mode to run tasks

Recipe:
 --output OUTPUT Output directory name
 --force-overwrite Overwrite existing directory
 --gpu GPU projection
 --dir DIR Directory of nsys-rep files

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 312

Opening in Jupyter Notebook
Running the recipe command creates a new analysis file (.nsys-analysis). Open the
Nsight Systems GUI and select File->Open, and pick your file.

Open the folder icon and click on the notebook icon to open the Jupyter notebook.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 313

Run the Jupyter notebook:

And the output appears on-screen. In this case a heat map of activity running a Jacobi
solver.

Configuring Dask
The multi-report analysis system does not offer options to configure the Dask
environment. However, you could achieve this by modifying the recipe script directly or
using one of the following from Dask’s configuration system:

‣ YAML files: Dask by default searches for all YAML files in ~/.config/dask/ or
/etc/dask/. This search path can be changed using the environment variable
DASK_ROOT_CONFIG or DASK_CONFIG. See Dask documentation for the complete list
of locations and the lookup order. Example:

$ cat example.yaml
'Distributed':
 'scheduler':
 'allowed-failures': 5

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 314

‣ Environment variables: Dask searches for all environment variables that start with
DASK_, then transforms keys by converting to lower-case and changing double-
underscores to nested structures. See Dask documentation for the complete list of
variables. Example:
DASK_DISTRIBUTED__SCHEDULER__ALLOWED_FAILURES=5

Dask Client

With no configuration set, the dask-futures mode option initializes the Dask Client with
the default arguments, which results in creating a LocalCluster in the background. The
following are the YAML/environment variables that could be set to change the default
behavior:

‣ distributed.comm.timeouts.connect /
DASK_DISTRIBUTED__COMM__TIMEOUTS__CONNECT

‣ client-name / DASK_CLIENT_NAME
‣ scheduler-address / DASK_SCHEDULER_ADDRESS
‣ distributed.client.heartbeat / DASK_DISTRIBUTED__CLIENT__HEARTBEAT
‣ distributed.client.scheduler-info-interval /

DASK_DISTRIBUTED__CLIENT__SCHEDULER_INFO_INTERVAL
‣ distributed.client.preload / DASK_DISTRIBUTED__CLIENT__PRELOAD
‣ distributed.client.preload-argv /

DASK_DISTRIBUTED__CLIENT__PRELOAD_ARGV

Recipe’s environment variables

Recipe has its own list of environment variables to make the configuration more
complete and flexible. These environment variables are either missing from Dask’s
configuration system or specific to the recipe system:

‣ NSYS_DASK_SCHEDULER_FILE: Path to a file with scheduler information. It will
be used to initialize the Dask Client.

‣ NSYS_DIR: Path to the directory of Nsight Systems containing the target and host
directories. The nsys executable and the recipe dependencies will be searched in this
directory instead of the one deduced from the currently running recipe file path.

Tutorial: Create a User-Defined Recipe
The Nsight Systems recipe system is designed to be extensible and we hope that many
users will use it to create their own recipes. This short tutorial will highlight the steps
needed to create a recipe that is a customized version of one of the recipes that is
included in the Nsight Systems recipe package.

Step 1: Create the recipe directory and script

Make a new directory in the <install-dir>/target-linux-x64/python/
packages/nsys_recipe folder based on the name of your new recipe. For this
example, we will call our new recipe new_metrics_util_map. We will copy the existing
gpu_metric_util_map.py script and create a new script called new_metrics_util_map.py

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 315

in the new_metrics_util_map directory. We will also copy the heatmap.ipynb file into the
new_metrics_util_map directory. Type these steps in a Linux terminal window:

> cd <install-dir>/target-linux-x64/python/packages/nsys_recipe
> mkdir new_metrics_util_map
> cp gpu_metric_util_map/gpu_metric_util_map.py new_metrics_util_map/
new_metrics_util_map.py
> cp gpu_metric_util_map/heatmap.ipynb new_metrics_util_map/

Then open new_metrics_util_map.py in your editor and search and replace GpuMetric
with NewMetrics. There will be three lines that need this change:

class GpuMetricUtilReport(nsysstats.Report):
class GpuMetricUtilMap(recipe.Recipe):
return helpers.stats_cls_to_df(sqlite_file, parsed_args, GpuMetricUtilReport)

Go ahead and do this search and replace to rename the classes now. We will discuss the
detailed functionality of the new recipe code in the subsequent steps.

Step 2: Modify the mapper function

Many recipes are structured as a map-reduce algorithm. The mapper function is called
for every .nsys-rep file in the report directory. The mapper function performs a series of
calculations on the events in each Nsight Systems report and produces an intermediate
data set. The intermediate results are then combined by the reduce function to produce
the final results.The mapper function can be called in parallel, either on multiple cores of
a single node (using the concurrent python module), or multiple ranks of a multi-node
recipe analysis (using the Dask distributed module).

Most of the Recipe operations are defined in the Recipe class in the lib/recipe.py file.
When we create a new recipe, we need to create a class that derives from recipe.Recipe.
For our example, that class will be called NewMetricsUtilMap (which we had renamed
in step 1).

The mapper function is called mapper_func() and is shown here:

 @staticmethod
 def mapper_func(nsysrep, parsed_args):
 sqlite_file = helpers.nsysrep_to_sqlite(nsysrep)
 if sqlite_file is None:
 return None

 return helpers.stats_cls_to_df(
 sqlite_file, parsed_args, NewMetricsUtilReport)

The call to nsysrep_to_sqlite() converts the .nsys-rep file into an SQLite database, if the
SQLite file does not already exist.

The stats_cls_to_df() helper method takes the report class object and reads its SQL query
into a Pandas DataFrame. All Stats report class are derived from the nsysstats.Report
base class, that could be found in the <install-dir>/target-linux-x64/python/
lib/nsysstats.py file. This allows recipes to leverage the library of report analysis
classes that were developed for the Nsight Systems Stats and Expert Systems analysis
commands. In our example, the stats report class is called NewMetricsUtilReport and is
defined at the top of our new_metrics_util_map.py file. (It is one of the other classes that
we renamed in Step 1). We will modify the query in NewMetricsUtilReport in the next
step.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 316

Step 3: Modify the SQL Query

The mapper function for our recipe created a helper class called NewMetricsUtilReport
to do the heavy lifting of extracting the GPU metrics events from the Nsight Systems
report data (in the SQLite file). GPU Metric data is stored using a database schema table
called GenericEvents. For extra flexibility, GenericEvents represents their data as a JSON
object, which is stored as a string in the GenericEvent table. The NewMetricsUtilReport
class contains an SQL query that extracts fields from the JSON object and accumulates
them over the histogram bins of the heat map.

The original script retrieved three GPU metrics: SM Active, SM Issue, and Tensor Active.
In our new version of the script, we will extract a fourth metric, Unallocated Warps in
Active SMs.

 1. Find this line (approximately line 49):

 CAST(JSON_EXTRACT(data, '$.SM Active') as INT) AS smActive,

Copy and paste it so it is in the file two times. Then change the first line so it extracts
the Unallocated Warps in Active SMs field from the JSON event data:

 CAST(JSON_EXTRACT(data, '$.Unallocated Warps in Active SMs') as
 INT) AS unallocatedWarp,

 2. Find this line (approximately line 86):

 sum(CAST(min(metrics.end, bin.cend) - max(metrics.start,
 bin.cstart)
 AS FLOAT) * smActive) / (bin.cend - bin.cstart) AS
 smActiveAverage,

Copy and paste it so it is in the file two times. Then change the first line to reference
UnallocatedWarp. This line averages the metric value across the histogram bin of the
heatmap. The new line will be:

 sum(CAST(min(metrics.end, bin.cend) - max(metrics.start,
 bin.cstart)
 AS FLOAT) * unallocatedWarp) / (bin.cend - bin.cstart) AS
 unallocatedWarpAverage,

 3. Find this line (approximately line 103):

 round(smActiveAverage, 1) AS "SmActive",

Copy and paste it so that it is in the file two times. Then change the first line to
reference UnallocatedWarp. The new line will be:

 round(unallocatedWarpAverage, 1) AS "UnallocatedWarp",

This completes the changes to the data extraction query in the helper class for the
mapper function.

Please note that all copy and paste operations in this step requested that the new
unallocatedWarp field be added on the first line (of the two duplicate lines). This
means it will be the first of the four metrics returned by the query. This is important
when we update the reduce function in the next step.

Step 4: Modify the reduce function

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 317

Our new mapper function will extract four GPU metrics and return them as a Pandas
DataFrame. The reduce function receives a list of DataFrames, one for each .nsys-rep
in the analysis, and combines them into a single dataframe using the Pandas concat
function. We need to make one change to the reduce function to label our new data
column. Because we added UnallocatedWarp as the first metric of the four that were
returned by the mapper query, we need to add it as the first of the four metric columns
in the DataFrame, right after Duration and before SmActive. The new reducer function
should look like this:

 def reducer_func(self, dfs):
 dfs = helpers.filter_none(dfs)
 df = pd.concat(dfs)
 df = df[['Duration', 'UnallocatedWarp', 'SmActive', 'SmIssue',
 'TensorActive', 'GPU', 'Report']]
 df.to_parquet(self.add_output_file('analysis.parquet'))

Step 5: Add a plot to the Jupyter notebook

Our new recipe class will create a Parquet output file with all the data produced by the
reducer function, using the to_parquet() function. It will also create a Jupyter notebook
file using the create_notebook() function.

In this step, we will change the create_notebook() function to produce a plot for our
fourth metric. To do this, we need to change these two lines (located in the second cell of
new_metrics_util_map/heatmap.ipynb):

 metrics = ('SmActive', 'SmIssue', 'TensorActive')
 fig = make_subplots(3, 1, subplot_titles=metrics)

To this:

 metrics = (‘UnallocatedWarp’, 'SmActive', 'SmIssue', 'TensorActive')
 fig = make_subplots(4, 1, subplot_titles=metrics)

That completes all the modifications for our NewRecipeUtilMap class.

Step 6: Add the new recipe to the nsys_recipe module

The final step is to add this new recipe to the nsys_recipe module. This will allow Nsight
Systems to find the recipe when you run the nsys recipe new_recipe_util_map
command.

Open the __init__.py file for the nsys_recipe module, which is located in the nsys_recipe
directory (the parent to our NewMetricsUtilMap directory.

Copy and paste the last line of the __init__.py file so there are two copies of the line:

 from nsys_recipe.gpu_metric_util_map.gpu_metric_util_map import
 GpuMetricUtilMap

Edit one of the copies so that it refers to our new recipe class. The new line should look
like this:

 from nsys_recipe.new_metrics_util_map.new_metrics_util_map import
 NewMetricsUtilMap

That’s it! We are done with the code for our new recipe.

Post-Collection Analysis

www.nvidia.com
User Guide v2023.3.1 | 318

Step 7: Run the new recipe

We can run our new recipe using the nsys recipe command, like this:

> nsys recipe new_metrics_util_map --dir <directory of reports>

When successful, the recipe should produce a new recipe result directory called
new_metrics_util_map-1.

If we open the Jupyter notebook in that recipe and execute the code, we should see our
new heatmap along with the three plots produced by the original version of the recipe.
Here is an example:

www.nvidia.com
User Guide v2023.3.1 | 319

Chapter 25.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.nsys-rep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

‣ Manual — timestamps are set using absolute values.
‣ Relative — timestamps are set using relative values with regards to report file

which is being merged with nvtxt file.
‣ ClockMonotonicRaw — timestamps values in nvtxt file are considered to be

gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime(CLOCK_MONOTONIC_RAW, ...) call.

‣ CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:

Print help message:
-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:
--cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode_name
 mode_args] [--target <Hw:Vm>] [--update_report_time]

Merge nvtxt file to existing report file:
--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args] [--target <Hw:Vm>] [--update_report_time]

Modes description:

‣ lerp - Insert with linear interpolation
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

‣ lin - insert with linear equation
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

Modes' parameters:

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

www.nvidia.com
User Guide v2023.3.1 | 320

‣ ns_a - a nanoseconds value
‣ ns_b - a nanoseconds value (greater than ns_a)
‣ nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
‣ nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds
‣ freq - the nvtxt file's timer frequency
‣ --target <Hw:Vm> - specify target id, e.g. --target 0:1
‣ --update_report_time - prolong report's profiling session time while merging if

needed. Without this option all events outside the profiling session time window
will be skipped during merging.

Commands
Info

To find out report's start and end time use info command.

Usage:
ImportNvtxt --cmd info -i [--input] arg

Example:
ImportNvtxt info Report.nsys-rep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create

You can create a report file using existing NVTXT with create command.

Usage:
ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

Import NVTXT

www.nvidia.com
User Guide v2023.3.1 | 321

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:
ImportNvtxt --cmd create -n Sample.nvtxt -o Report.nsys-rep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:
ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m
 [--mode] mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example
ImportNvtxt --cmd merge -i Report.nsys-rep -n Sample.nvtxt -o NewReport.nsys-rep

www.nvidia.com
User Guide v2023.3.1 | 322

Chapter 26.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

‣ Target application path
‣ Command line parameters
‣ Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

Visual Studio Integration

www.nvidia.com
User Guide v2023.3.1 | 323

For more information about using Nsight Systems from within Visual Studio, please
visit

‣ NVIDIA Nsight Integration Overview
‣ NVIDIA Nsight Integration User Guide

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

www.nvidia.com
User Guide v2023.3.1 | 324

Chapter 27.
TROUBLESHOOTING

27.1. General Troubleshooting
Profiling

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

‣ Close the host application.
‣ Restart the target device.
‣ Start the host application and connect to the target device.

Nsight Systems uses a settings file (NVIDIA Nsight Systems.ini) on the host to
store information about loaded projects, report files, window layout configuration,
etc. Location of the settings file is described in the Help → About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

Environment Variables

By default, Nsight Systems writes temporary files to /tmp directory. If you are using
a system that does not allow writing to /tmp or where the /tmp directory has limited
storage you can use the TMPDIR environment variable to set a different location. An
example:
TMPDIR=/testdata ./bin/nsys profile -t cuda matrixMul

Environment variable control support for Windows target trace is not available, but
there is a quick workaround:

‣ Create a batch file that sets the env vars and launches your application.
‣ Set Nsight Systems to launch the batch file as its target, i.e. set the project settings

target path to the path of batch file.
‣ Start the trace. Nsight Systems will launch the batch file in a new cmd instance and

trace any child process it launches. In fact, it will trace the whole process tree whose
root is the cmd running your batch file.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 325

WebGL Testing

Nsight Systems cannot profile using the default Chrome launch command. To profile
WebGL please follow the following command structure:
“C:\Program Files (x86)\Google\Chrome\Application\chrome.exe”
 --inprocess-gpu --no-sandbox --disable-gpu-watchdog --use-angle=gl
 https://webglsamples.org/aquarium/aquarium.html

Common Issues with QNX Targets

‣ Make sure that tracelogger utility is available and can be run on the target.
‣ Make sure that /tmp directory is accessible and supports sub-directories.
‣ When switching between Nsight Systems versions, processes related to the previous

version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

27.2. CLI Troubleshooting
If you have collected a report file using the CLI and the report will not open in the GUI,
check to see that your GUI version is the same or greater than the CLI version you used.
If it is not, download a new version of the Nsight Systems GUI and you will be able to
load and visualize your report.

This situation occurs most frequently when you update Nsight Systems using a CLI only
package, such as the package available from the NVIDIA HPC SDK.

27.3. Launch Processes in Stopped State
In many cases, it is important to profile an application from the very beginning of its
execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec() system call on
Linux.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep() somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 326

LD_PRELOAD
The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

‣ For ARMv7 binaries, preload
/opt/nvidia/nsight_systems/libLauncher32.so

‣ Otherwise if running from host, preload
/opt/nvidia/nsight_systems/libLauncher64.so

‣ Otherwise if running from CLI, preload
[installation_directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:
$ LD_PRELOAD=/opt/nvidia/nsight_systems/libLauncher64.so ./my-aarch64-binary --
arguments

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+Z in the terminal. The process is now a background job, and you can use standard
commands like jobs, fg and bg to control them. Use jobs -l to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

Launcher
The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:
$ /opt/nvidia/nsight_systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:
$ pkill -USR1 launcher

 Note:

Note
that
pkill
will
send
the
signal
to
any
process
with
the
matching
name.
If
that

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 327

is
not
desirable,
use
kill
to
send
it
to
a
specific
process.
The
standard
output
and
error
streams
are
redirected
to
/
tmp/
stdout_<PID>.txt
and
/
tmp/
stderr_<PID>.txt.

The launcher mechanism is more complex and less automated than the LD_PRELOAD
option, but gives more control to the user.

27.4. GUI Troubleshooting
If opening the Nsight Systems Linux GUI fails with one of the following errors, you may
be missing some required libraries:
This application failed to start because it could not find or load the Qt
 platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
 the application may fix this problem.

or
error while loading shared libraries: [library_name]: cannot open shared object
 file: No such file or directory

Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root
privileges
‣ Launch the following command, which will install all the required libraries in

system directories:
[installation_path]/host-linux-[arch]/Scripts/DependenciesInstaller/install-
dependencies.sh

‣ Launch the Linux GUI as usual.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 328

Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 without
root privileges
‣ Choose the directory where dependencies will be installed (dependencies_path).

This directory should be writeable for the current user.
‣ Launch the following command (if it has already been run, move to the next step),

which will install all the required libraries in [dependencies_path]:
[installation_path]/host-linux-[arch]/Scripts/DependenciesInstaller/install-
dependencies-without-root.sh [dependencies_path]

‣ Further, use the following command to launch the Linux GUI:
source [installation_path]/host-linux-[arch]/Scripts/DependenciesInstaller/
setup-dependencies-environment.sh [dependencies_path] &&
 [installation_path]/host-linux-x64/nsys-ui

Other platforms, or if the previous steps did not help
Launch Nsight Systems using the following command line to determine which libraries
are missing and install them.
$ QT_DEBUG_PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is
empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

27.5. Symbol Resolution
If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. This can be done by right-clicking
the report file in the Project Explorer window and selecting "Resolve Symbols...".

Alternatively, you can find the utility as a separate executable in the
[installation_path]\Host directory. This utility works with ELF format files, with
Windows PDB directories and symbol servers, or with files where each line is in the
format <start><length><name>.

Short Long Argument Description

-h --help Help message
providing
information about
available options.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 329

Short Long Argument Description

-l --process-list Print global process
IDs list

-s --sym-file filename Path to symbol file

-b --base-addr address If set then <start>
in symbol file is
treated as relative
address starting
from this base
address

-p --global-pid pid Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

-f --force This option forces
use of a given
symbol file.

-i --report filename Path to the report
with unresolved
symbols.

-o --output filename Path and name of
the output file. If
it is omitted then
"resolved" suffix
is added to the
original filename.

-d --directories directory paths List of symbol folder
paths, separated
by semi-colon
characters. Available
only on Windows.

-v --servers server URLs List of symbol
servers that uses
the same format as
_NT_SYMBOL_PATH
environment
variable, i.e.
srv*<LocalStore>*<SymbolServerURL>.
Available only on
Windows.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 330

Short Long Argument Description

-n --ignore-nt-sym-
path

Ignore the
symbol locations
stored in the
_NT_SYMBOL_PATH
environment
variable. Available
only on Windows.

Broken Backtraces on Tegra
In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMv7 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. This information is the most precise. .zdebug_frame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame_hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.
‣ Exception handling information in EHABI format provided in .ARM.exidx and

.ARM.extab ELF sections. .ARM.extab might be absent if all information is
compact enough to be encoded into .ARM.exidx.

Compiler flag: -funwind-tables.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

For Aarch64 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. See additional comments above.

Compiler flag: -g.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 331

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):
$ gcc -Q --help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every .cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

Debug Versions of ELF Files
Often, after a binary is built, especially if it is built with debug information (-g compiler
flag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/lib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in BuildID is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 332

27.6. Logging
To enable logging on the host, refer to this config file:
host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in the
Help → About dialog. If possible, attach log files and report (.nsys-rep) files, as they
already contain necessary version information.

Verbose Remote Logging on Linux Targets
Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:
/opt/nvidia/nsight_systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Restart the target device.
 3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems

directory on target.
 4. From SSH console, launch the following command:

sudo /opt/nvidia/nsight_systems/nsys --daemon --debug

 5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose CLI Logging on Linux Targets
To enable verbose logging of the Nsight Systems CLI and the target application's
injection behavior:

 1. In the target-linux-x64 directory, rename the nvlog.config.template file
to nvlog.config.

 2. Inside that file, change the line
$ }}{{{}nsys-ui.log

 to
$ }}{{{}nsys-agent.log

 3. Run a collection and the target-linux.x64 directory should include a file
named nsys-agent.log.

Please note that in some cases, debug logging can significantly slow down the profiler.

Troubleshooting

www.nvidia.com
User Guide v2023.3.1 | 333

Verbose Logging on Windows Targets
Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2023.3

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Terminate the nsys process.
 3. Place nvlog.config from host directory next to Nsight Systems Windows agent on

the target device

‣ Local Windows target:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2023.3\target-
windows-x64

‣ Remote Windows target:
C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight_systems

 4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

www.nvidia.com
User Guide v2023.3.1 | 334

Chapter 28.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Training Seminars
NVIDIA Deep Learning Institute Training - Self-Paced Online Course Optimizing CUDA
Machine Learning Codes With Nsight Profiling Tools

2018 NCSA Blue Waters Webinar - Video Only Introduction to NVIDIA Nsight Systems

Blog Posts
NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

‣ 2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM
‣ 2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof
‣ 2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof
‣ 2019 - NVIDIA Nsight Systems Add Vulkan Support
‣ 2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public
‣ 2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems
‣ 2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM

Feature Videos
Short videos, only a minute or two, to introduce new features.

‣ OpenMP Trace Feature Spotlight
‣ Command Line Sessions Video Spotlight
‣ Direct3D11 Feature Spotlight
‣ Vulkan Trace

https://courses.nvidia.com/courses/course-v1:DLI+S-AC-03+V1/
https://courses.nvidia.com/courses/course-v1:DLI+S-AC-03+V1/
https://www.youtube.com/watch?v=WA8C48FJi3c
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M

Other Resources

www.nvidia.com
User Guide v2023.3.1 | 335

‣ Statistics Driven Profiling
‣ Analyzing NCCL Usage with NVDIA Nsight Systems

Conference Presentations
‣ GTC 2023 Optimize Multi-Node System Workloads With NVIDIA Nsight Systems
‣ GTC 2023 Ray-Tracing Development using NVIDIA Nsight Graphics and NVIDIA

Nsight Systems
‣ GTC 2022 - Killing Cloud Monsters Has Never Been Smoother
‣ GTC 2022 - Optimizing Communication with Nsight Systems Network Profiling
‣ GTC 2022 - Optimizing Vulkan 1.3 Applications with Nsight Graphics & Nsight

Systems
‣ GTC 2021 - Tuning GPU Network and Memory Usage in Apache Spark
‣ GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD

Molecular Dynamics Program for Modern GPUs using Nsight Systems
‣ GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across

Multiple Nodes
‣ GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics

Simulation Program
‣ GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs
‣ GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA

Nsight Systems
‣ GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools
‣ Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU

Performance

For More Support
To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI, go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

https://www.youtube.com/watch?v=fyhPFTF75tk
https://www.youtube.com/embed/bda5Er27jqo
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-d52660/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-dlit51580/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-dlit51580/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41518/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41500/
https://www.nvidia.com/en-us/on-demand/session/other2021-vlk2201/
https://www.nvidia.com/en-us/on-demand/session/other2021-vlk2201/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566/
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

Other Resources

www.nvidia.com
User Guide v2023.3.1 | 336

	Table of Contents
	Profiling from the CLI
	1.1. Installing the CLI on Your Target
	1.2. Command Line Options
	1.2.1. CLI Global Options

	1.3. CLI Command Switches
	1.3.1. CLI Analyze Command Switch Options
	1.3.2. CLI Cancel Command Switch Options
	1.3.3. CLI Export Command Switch Options
	1.3.4. CLI Launch Command Switch Options
	1.3.5. CLI Profile Command Switch Options
	1.3.6. CLI Sessions Command Switch Subcommands
	1.3.6.1. CLI Sessions List Command Switch Options

	1.3.7. CLI Shutdown Command Switch Options
	1.3.8. CLI Start Command Switch Options
	1.3.9. CLI Stats Command Switch Options
	1.3.10. CLI Status Command Switch Options
	1.3.11. CLI Stop Command Switch Options

	1.4. Example Single Command Lines
	1.5. Example Interactive CLI Command Sequences
	1.6. Example Stats Command Sequences
	1.7. Example Output from --stats Option
	1.8. Importing and Viewing Command Line Results Files
	1.9. Using the CLI to Analyze MPI Codes
	1.9.1. Tracing MPI API calls
	1.9.2. Using the CLI to Profile Applications Launched with mpirun

	Profiling from the GUI
	2.1. Profiling Linux Targets from the GUI
	2.1.1. Connecting to the Target Device
	2.1.2. System-Wide Profiling Options
	2.1.2.1. Linux x86_64
	2.1.2.2. Linux for Tegra

	2.1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	2.1.4. Hotkey Trace Start/Stop
	2.1.5. Launching Processes
	Specify additional environment variables

	2.3. Profiling QNX Targets from the GUI
	2.2. User Guide

	Container Support on Linux Servers
	GUI VNC container
	GUI WebRTC container

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Direct3D Trace
	5.1. D3D11 API trace
	5.2. D3D12 API Trace

	WDDM Queues
	WDDM HW Scheduler
	Vulkan API Trace
	8.1. Vulkan Overview
	8.2. Pipeline Creation Feedback
	8.3. Vulkan GPU Trace Notes

	Stutter Analysis
	9.1. FPS Overview
	9.2. Frame Health
	9.3. GPU Memory Utilization
	9.4. Vertical Synchronization

	OpenMP Trace
	OS Runtime Libraries Trace
	11.1. Locking a Resource
	11.2. Limitations
	11.3. OS Runtime Libraries Trace Filters
	11.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	13.1. CUDA GPU Memory Allocation Graph
	13.2. Unified Memory Transfer Trace
	Unified Memory CPU Page Faults
	Unified Memory GPU Page Faults

	13.3. CUDA Graph Trace
	13.4. CUDA Python Backtrace
	13.5. CUDA Default Function List for CLI
	13.6. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	15.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	GPU Metrics
	Overview
	Launching GPU Metric from the CLI
	Launching GPU Metrics from the GUI
	Sampling frequency
	Available metrics
	Exporting and Querying Data
	Limitations

	CPU Profiling Using Linux OS Perf Subsystem
	NVIDIA Video Codec SDK Trace
	19.1. NV Encoder API Functions Traced by Default
	19.2. NV Decoder API Functions Traced by Default
	19.3. NV JPEG API Functions Traced by Default

	Network Communication Profiling
	20.1. MPI API Trace
	20.2. OpenSHMEM Library Trace
	20.3. UCX Library Trace
	20.4. NVIDIA NVSHMEM and NCCL Trace
	20.5. NIC Metric Sampling
	20.6. InfiniBand Switch Metric Sampling

	Python Profiling
	21.1. Python Backtrace Sampling
	21.2. Python NVTX Annotations

	Reading Your Report in GUI
	22.1. Generating a New Report
	22.2. Opening an Existing Report
	22.3. Sharing a Report File
	22.4. Report Tab
	22.5. Analysis Summary View
	22.6. Timeline View
	22.6.1. Timeline
	Timeline Navigation
	Row Height
	Row Percentage

	22.6.2. Events View
	22.6.3. Function Table Modes
	22.6.4. Function Table Notes
	22.6.5. Filter Dialog
	22.6.6. Example of Using Timeline with Function Table

	22.7. Diagnostics Summary View
	22.8. Symbol Resolution Logs View

	Adding Report to the Timeline
	23.1. Time Synchronization
	23.2. Timeline Hierarchy
	23.3. Example: MPI
	23.4. Limitations

	Post-Collection Analysis
	24.1. Available Export Formats
	24.1.1. SQLite Schema Reference
	24.1.2. SQLite Schema Event Values
	24.1.3. Common SQLite Examples
	24.1.4. Arrow Format Description
	24.1.5. JSON and Text Format Description

	24.2. Statistical Analysis
	Statistical Reports Shipped With Nsight Systems
	cuda_api_gpu_sum[:base|:mangled] -- CUDA Summary (API/Kernels/MemOps)
	cuda_api_sum -- CUDA API Summary
	cuda_api_trace -- CUDA API Trace
	cuda_gpu_kern_gb_sum[:base|:mangled] -- CUDA GPU Kernel/Grid/Block Summary
	cuda_gpu_kern_sum[:base|:mangled] -- CUDA GPU Kernel Summary
	cuda_gpu_mem_size_sum -- CUDA GPU MemOps Summary (by Size)
	cuda_gpu_mem_time_sum -- CUDA GPU MemOps Summary (by Time)
	cuda_gpu_sum[:base|:mangled] -- CUDA GPU Summary (Kernels/MemOps)
	cuda_gpu_trace[:base|:mangled] -- CUDA GPU Trace
	cuda_kern_exec_sum[:base|:mangled] -- CUDA Kernel Launch & Exec Time Summary
	cuda_kern_exec_trace[:base|:mangled] -- CUDA Kernel Launch & Exec Time Trace
	dx11_pix_sum -- DX11 PIX Range Summary
	dx12_gpu_marker_sum -- DX12 GPU Command List PIX Ranges Summary
	dx12_pix_sum -- DX12 PIX Range Summary
	nvtx_gpu_proj_trace -- NVTX GPU Projection Trace
	nvtx_gpu_proj_sum -- NVTX GPU Projection Summary
	nvtx_kern_sum[:base|:mangled] -- NVTX Range Kernel Summary
	nvtx_pushpop_sum -- NVTX Push/Pop Range Summary
	nvtx_pushpop_trace -- NVTX Push/Pop Range Trace
	nvtx_startend_sum -- NVTX Start/End Range Summary
	nvtx_sum -- NVTX Range Summary
	nvvideo_api_sum -- NvVideo API Summary
	openacc_sum -- OpenACC Summary
	opengl_khr_gpu_range_sum -- OpenGL KHR_debug GPU Range Summary
	opengl_khr_range_sum -- OpenGL KHR_debug Range Summary
	openmp_sum -- OpenMP Summary
	osrt_sum -- OS Runtime Summary
	um_cpu_page_faults_sum -- Unified Memory CPU Page Faults Summary
	um_sum[:rows=<limit>] -- Unified Memory Analysis Summary
	um_total_sum -- Unified Memory Totals Summary
	vulkan_api_sum -- Vulkan API Summary
	vulkan_api_trace -- Vulkan API Trace
	vulkan_gpu_marker_sum -- Vulkan GPU Range Summary
	vulkan_marker_sum -- Vulkan Range Summary
	wddm_queue_sum -- WDDM Queue Utilization Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	24.3. Expert Systems Analysis
	Using Expert System from the CLI
	Using Expert System from the GUI
	Expert System Rules
	CUDA Synchronous Operation Rules
	GPU Low Utilization Rules
	Other Rules

	24.4. Multi-Report Analysis
	Available Recipes
	Opening in Jupyter Notebook
	Configuring Dask
	Tutorial: Create a User-Defined Recipe

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	27.1. General Troubleshooting
	27.2. CLI Troubleshooting
	27.3. Launch Processes in Stopped State
	LD_PRELOAD
	Launcher

	27.4. GUI Troubleshooting
	Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 with root privileges
	Ubuntu 18.04/20.04/22.04 and CentOS 7/8/9 without root privileges
	Other platforms, or if the previous steps did not help

	27.5. Symbol Resolution
	Broken Backtraces on Tegra
	Debug Versions of ELF Files

	27.6. Logging
	Verbose Remote Logging on Linux Targets
	Verbose CLI Logging on Linux Targets
	Verbose Logging on Windows Targets

	Other Resources
	Training Seminars
	Blog Posts
	Feature Videos
	Conference Presentations
	For More Support

