
NVIDIA HPC-X Software Toolkit Rev

2.18.0

2

Table of Contents
1 Release Notes.. 6

1.1 Changes and New Features... 6

1.2 HPC-X General Support ... 6

1.2.1 HPC-X Requirements..6

1.2.2 HPC-X Content...7

1.2.3 Important Note..7

1.2.4 Supported Platforms and Operating Systems ...8

1.3 Bug Fixes in this Version .. 8

1.4 Known Issues.. 8

2 Installing and Loading HPC-X... 12

2.1 Installing HPC-X ... 12

2.2 Building and Running Applications with HPC-X ... 12

2.3 Building HPC-X with the Intel Compiler Suite .. 12

2.4 Loading HPC-X Environment from Modules ... 13

2.5 HPC-X Environments.. 13

3 Running, Configuring and Rebuilding HPC-X 15

3.1 Profiling MPI API... 15

3.2 Rebuilding Open MPI.. 15

3.2.1 Rebuilding Open MPI Using a Helper Script ... 15

3.2.2 Rebuilding Open MPI from HPC-X Sources... 16

3.3 Loading KNEM Module .. 16

3.4 Running MPI with HCOLL... 16

3.5 Direct Launch of Open MPI and OpenSHMEM using SLURM 'srun'..................... 17

4 HCOLL ... 18

4.1 Overview ...18

4.2 Using HCOLL ...19

4.2.1 Enabling HCOLL in Open MPI .. 20

4.2.2 Tuning HCOLL Setting... 20

4.2.3 Selecting Ports and Devices ... 20

4.2.4 Enabling Offloaded MPI Non-blocking Collectives.................................. 20

4.2.5 Enabling Multicast Accelerated Collectives ... 21

4.2.6 Enabling NVIDIA SHARP Software Accelerated Collectives........................ 21

3

4.2.7 GPU Buffer Support in HCOLL... 22

4.2.8 Limitations ... 23

5 Unified Communication - X Framework Library 25

5.1 Overview ...25

5.1.1 Supported CPU Architectures ... 25

5.2 Configuring UCX... 25

5.2.1 Using UCX with OpenMPI... 25

5.2.2 Configuring UCX with XPMEM.. 26

5.3 Tuning UCX Settings .. 26

5.4 UCX Features ..29

5.4.1 Hardware Tag Matching .. 29

5.4.2 Single Root IO Virtualization (SR-IOV) ... 30

5.4.3 Adaptive Routing.. 31

5.4.4 CUDA GPU .. 32

5.4.5 Multi-Rail ... 32

5.4.6 Memory in Chip (MEMIC) ... 33

5.4.7 PKey Support .. 33

5.4.8 Close Protocol ... 34

5.4.9 RoCE LAG... 34

5.4.10 Flow Control for RDMA Read Operations .. 34

5.4.11 PCIe Relaxed Ordering Support ... 34

5.4.12 UCX Configuration File ... 34

5.4.13 Instrumentation and Monitoring FUSE-based Tool 35

5.5 UCX Utilities ...35

5.5.1 ucx_perftest ... 35

5.6 Generating UCX Statistics for Open MPI/OpenSHMEM................................. 36

6 Unified Collective Communication (UCC) .. 38

6.1 TL/UCP Special Service Worker... 38

6.2 Out-Of-Box Native GPU Allreduce .. 38

6.3 Data Type Support in CUDA Executor Component (EC)................................ 39

6.4 EC/CUDA One-shot Kernel with Cooperative Launch 39

7 PGAS Shared Memory Access Overview ... 40

7.1 HPC-X Open MPI/OpenSHMEM... 40

7.2 Running HPC-X OpenSHMEM ... 41

4

7.2.1 Running HPC-X OpenSHMEM with UCX ... 41

7.2.2 Developing Application using HPC-X OpenSHMEM together with MPI 42

7.2.3 HPC-X® OpenSHMEM Tunable Parameters... 42

7.3 Tuning MTU Size to the Recommended Value... 44

7.3.1 HPC Applications on Intel Sandy Bridge Machines 44

8 ClusterKit.. 46

8.1 Running ClusterKit .. 46

8.2 Running ClusterKit via Script.. 47

9 NCCL-RDMA-SHARP Plugins ... 48

9.1 Overview ...48

9.2 NCCL UCX Plugin .. 48

9.2.1 Running NCCL UCX Plugin.. 48

9.2.2 Performance Tuning .. 48

9.3 NCCL SHARP Plugin ... 50

9.3.1 NCCL Test Benchmark Example ... 50

10 Common Abbreviations.. 51

10.1 Syntax Conventions ... 51

11 User Manual Revision History... 52

12 Release Notes History ... 53

12.1 Release Notes Change Log History ... 53

12.1.1 HPC-X Toolkit Change Log History .. 53

12.1.2 FCA Change Log History.. 62

12.1.3 HPC-X™ Open MPI/OpenSHMEM Change Log History 63

12.2 Bug Fixes History.. 64

5

•
•

Overview

NVIDIA® HPC-X® is a comprehensive software package that includes MPI and SHMEM
communications libraries. HPC-X also includes various acceleration packages to improve both
the performance and scalability of applications running on top of these libraries, including
UCX (Unified Communication X), which accelerates the underlying send/receive (or put/get)
messages. It also includes HCOLL, which accelerates the underlying collective operations used by
the MPI/PGAS languages.

The documentation here relates to HPC-X:

Release Notes
User Manual

Software Download

Please visit NVIDIA HPC-X

Document Revision History

A list of the changes made to this document are provided in Document Revision History.

Related Documentation

Software Reference

NVIDIA SHARP https://docs.nvidia.com/networking/category/mlnxsharp

You can download a PDF here.

https://developer.nvidia.com/networking/hpc-x
https://docs.nvidia.com/networking/category/mlnxsharp
https://docs.nvidia.com/nvidia-hpc-x-software-toolkit-rev-2-18-0.pdf

6

•
•
•
•
•

1 Release Notes
Release Notes Update History

Revision Date Description

2.18.0 February 8, 2024 Initial release of this document.

1.1 Changes and New Features
HPC-X current version provides the following changes and new features:

Rev 2.18.0

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.6.0
UCC v13.0
ClusterKit v1.12
Added OSU Micro-Benchmarks v7.3
nccl-rdma-sharp-plugin v2.6

HPC-X and
Singularity

Deprecated support for HPC-X singularity containerization.

OSU Micro-
Benchmarks Path

Removed version from the OSU Micro-Benchmarks path.
The current one is ompi/tests/osu-micro-benchmarks and ompi/tests/osu-micro-
benchmarks-cuda

Known Issues See Known Issues.

1.2 HPC-X General Support

1.2.1 HPC-X Requirements
The platform and requirements for HPC-X are detailed in the following table:

Platform Versions

CUDA 12.x

GDRCopy 2.3

MLNX_OFED 24.01

NCCL 2.x

NVIDIA BlueField-2 24.38.1002

NVIDIA BlueField-3 32.38.1002

NVIDIA ConnectX-5/ConnectX-5 Ex 16.35.2000

NVIDIA ConnectX-6 20.38.1900

NVIDIA ConnectX-6 Dx 22.38.1900

NVIDIA ConnectX-6 Lx 26.38.1900

https://docs.nvidia.com/networking/display/HPCXDEV/.HPC-X+General+Support+v2.16.2#id-.HPCXGeneralSupportv2.16.2-hpcxcontent

7

1.

2.
3.

Platform Versions

NVIDIA ConnectX-7 28.38.1900

XPMEM 2.7

Grace-Hopper - GH200 N/A

1.2.2 HPC-X Content
The following communications libraries and acceleration packages are part of this NVIDIA HPC-
X® package:

Library/Acceleration Package Version Number

Open MPI 4.1

NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) 3.6.0

HCOLL 4.8

UCX 1.16.0

UCC 1.3.0

Open SHMEM specification compliance 1.41

ClusterKit2 1.12

nccl-rdma-sharp-plugin3 2.6

OSU Micro-Benchmarks 7.3

Full Open SHMEM v1.4 support is available only if compiled with C11 Standard (see Rebuilding
Open MPI from HPC-X Sources).
ClusterKit is a multifaceted node assessment tool for high performance clusters.
nccl-rdma-sharp plugin enables RDMA and Switch-based collectives (SHARP) with NVIDIA's
NCCL library.

1.2.3 Important Note

When HPC-X is launched with Open MPI without a resource manager job environment
(slurm,pbs, etc.), or when it is launched from a compute node, the default rsh/ssh-based
launcher will be used. This launcher does not propagate environment variables to the
compute nodes. Thus, it is important to ensure the propagation of LD_LIBRARY_PATH
variable from HPC-x is done as follows.

%mpirun -x LD_LIBRARY_PATH -np 2 -H host1,host2 $HPCX_MPI_TESTS_DIR/examples/hello_c

8

1.2.4 Supported Platforms and Operating Systems
The following table lists the supported operating systems and CPUs for the latest HPC-X.

Operating System Platforms

RHEL/CentOS/Rocky 7.x x86_64, aarch64

RHEL/CentOS/Rocky 8.x x86_64, aarch64

RHEL/CentOS/Rocky 9.x x86_64, aarch64

CentOS 8.x Stream x86_64

CentOS 9.x Stream x86_64

SLES 12 SP4 x86_64, aarch64

SLES 12 SP5 x86_64

SLES 15 SP2 x86_64

SLES 15 SP3 x86_64

SLES 15 SP4 x86_64

Ubuntu 18.04 x86_64

Ubuntu 20.04 x86_64, aarch64

Ubuntu 22.04 x86_64, aarch64

OpenEuler 20.03 x86_64, aarch64

Kylin 10 SP1 x86_64, aarch64

Kylin 10 SP2 x86_64, aarch64

Debian 10.x x86_64

Debian 11.x x86_64

1.3 Bug Fixes in this Version
Ref # Description

3712109 Description: Fixed UCC error in PyTorch 23.12 from HPC-X 2.17.0 upgrade

Keywords: UCC error, PyTorch, Upgrade

Discovered in Release: 2.17.0

1.4 Known Issues
The following is a list of general limitations and known issues of the various components of this HPC-
X release.

Starting from HPC-X v2.9, HPC-X will no longer support PPC architecture.

9

Referenc
e

Number

Issue

3633383 Description: When allocating device memory (MEMIC) on some FW versions, by passing
memheap_base_device_nic_mem_seg_size parameter to SHMEM runner, the process may crash
with the error message "failed to allocate 4096 bytes on using md ib". In such cases, avoid using
MEMIC.

Workaround: N/A

Keywords: MEMIC, SHMEM, Allocation

Discovered in Version: 2.17.0

3606732 Description: In some cases, when using Cuda buffers for intra-node transfers, the program may
crash with an assertion ` offset <= key->b_len ' failed in cuda_ipc . This happens due to a

conflict between cuda_ipc and gdrcopy memory registration on the same buffer.

In other cases, the error message " gdr_map failed " can be printed.

Workaround: N/A

Keywords: gdr_copy, cuda_ipc

Discovered in Version: 2.17.0

3586369 Description: When UD transport is being used explicitly, the MPI or SHMEM job may hang during
cleanup or MPI_Finalize , while waiting for UCX endpoint flush operation to complete.

Workaround: Disable adaptive progress optimization by setting the environment variable
UCX_ADAPTIVE_PROGRESS=n , or don't select UD transport explicitly.

Keywords: Hang, UD, Flush

Discovered in Version: 2.17.0

3653404 Description: When registering a large memory region with ucp_mem_map() , and peer failure
handling support is enabled on the UCX endpoint, the process may crash with the error "LRU
push returned Unsupported operation" while sending a buffer belonging to that region. The
issue happens because multi-threaded registration is being used for large regions, and it does
not work well with peer failure support.

Workaround: Disable multi-thread registration by setting the environment variable
" UCX_REG_MT_THRESH=inf ".

Keywords: Multi-Threaded, Indirect, Key Registration

Discovered in Version: 2.17.0

3606445 Description: The performance of osu_mbw_mr for some message sizes can be worse than the
previous release. This can happen because of different default protocol thresholds.

Workaround: Revert to previous thresholds selection logic by setting the environment variable
to UCX_PROTO_ENABLE=n

Keywords: Performance, osu_mbw_mr

Discovered in Version: 2.17.0

- Description: In order to get the best performance when running on ConnectX-7 NDR400 fabric,
the following parameter should be set with mpirun.
mpirun -x UCX_MAX_RNDV_LANES=4 -x UCX_RNDV_THRESH=20k …

Workaround: N/A

10

•

•

Referenc
e

Number

Issue

Keywords: ConnectX-7; UCX; mpirun

Discovered in Version: 2.11 (UCX 1.13)

2705762 Description: UCX job may hang when the DC transport is used.

Workaround:
Exclude RoCE LAG devices from the list of available devices (managed by UCX_NET_DEVICES
environment variable) and make sure UCX_IB_NUM_PATH is set to 1.
Exclude DC from the list of available transports managed by the UCX_TLS environment
variable (e.g. set UCX_TLS=sm,self,rc,tcp).

Keywords: UCX

Discovered in Version: 2.9 (UCX 1.11)

- Description: Once the TCP detects a “Connection reset by a peer” failure on a connection,
it stops sending data, and the MPI/SHMEM application hangs.
Error printouts from the UCP/UCT can be seen in the log.

Workaround: On small scale cases, change the "UCX_TLS=tcp" to "UCX_TLS=sm,tcp"
parameter. On larger scales this workaround is not applicable.

Keywords: UCX hang

Discovered in Version: 2.9 (UCX 1.11)

- Description: NCCL plugin works only with NCCL v2.8 or higher.

Workaround: Build plugin version v2.0 from the following source.
https://github.com/Mellanox/nccl-rdma-sharp-plugins/tree/v2.0.x

Keywords: NCCL Plugin

Discovered in Version: 2.7 (NCCL 2.1)

- Description: UD timeout error may appear.

Workaround: Disable the UD transport and use DC instead. Set UCX_TLS=dc_x,self,sm

Keywords: UD, DC, timeout, UCX

Discovered in Version: 2.7 (UCX 1.9)

2235234 Description: On some platforms, GPUDirect RDMA does not work reliably when the path
between HCA and GPU traverses QPI link.

Workaround: Disable GPUDirect support in UCX by setting UCX_IB_GPU_DIRECT_RDMA=n.

Keywords: GPUDirect. RDMA, UCX

Discovered in Version: 2.7 (UCX 1.9)

4549 Description: UCX may fail to compile with Clang compiler version 9 if --dynamic-list-data
flag is used in the compilation.
(Github issue: https://github.com/openucx/ucx/issues/4549)

Workaround: [optional] Compile UCX without using this flag. However, note that ucx_perftest
will not be available for usage.

Keywords: Clang compiler, UCX

Discovered in Version: 2.6 (UCX 1.8)

https://github.com/Mellanox/nccl-rdma-sharp-plugins/tree/v2.0.x
https://github.com/openucx/ucx/issues/4549

11

Referenc
e

Number

Issue

- Description: When using GPU memory on an InfiniBand network with GPUDirect enabled yet
without gdrcopy library, performance of small messages can be low.

Workaround: Use the Rendezvous protocol by setting the UCX_RNDV_THRESH parameter to 0.

Keywords: GPU, GPUDirect, memory

Discovered in Version: 2.6 (UCX 1.8)

4105 Description: Adaptive Routing is not supported when used with OpenSHMEM applications.
(Github issue: https://github.com/openucx/ucx/issues/4105)

Workaround: N/A

Keywords: Adaptive Routing, AR, OpenSHMEM, OSHMEM

Discovered in Version: 2.5 (OpenSHMEM 1.4)

- Description: In ConnectX-4 and Connect-IB HCAs, when the DC transport is used on a large
scale, “Retry exceeded” messages may be printed from UCX.

Workaround: Configure SL2VL on your OpenSM in the fabric and make UCX use SL=1 when using
the InfiniBand transports via '-x UCX_IB_SL=1'.

Keywords: UCX, DC transport, ConnectX-4, Connect-IB

Discovered in Version: 2.1 (UCX 1.3)

- Description: When UCX requires more memory utilization than the memory space defined in /
proc/sys/kernel/shmmni file, the following message is printed from UCX:
“... total number of segments in the system (%lu) would exceed the limit in /proc/sys/kernel/
shmmni (=%lu)... please check shared memory limits by 'ipcs -l”.

Workaround: Follow the instructions in the error message above and increase the value of
shared memory segments in /proc/sys/kernel/shmmni file.

Keywords: UCX, memory

Discovered in Version: 2.1 (UCX 1.3)

1162 Description: UCX currently does not support canceling send requests.
(Github issue: https://github.com/openucx/ucx/issues/1162)

Workaround: N/A

Keywords: UCX

Discovered in Version: 2.0

- Description: UCX job hangs with SocketDirect/MultiHost/SR-IOV.

Workaround: Set UCX_IB_ADDR_TYPE=ib_global

Keywords: UCX

- Description: As UCX embedded in the HPC-X is compiled with AVX support, UCX cannot be run on
hosts without AVX support.
In case the AVX is not available, recompile the UCX that is available in the HPC-X with the
option: --with-avx=no

Workaround: Recompile UCX with AVX disabled:
$./utils/hpcx_rebuild.sh --rebuild-ucx --ucx-extra-config "--with-avx=no"

Keywords: UCX

https://github.com/openucx/ucx/issues/4105
https://github.com/openucx/ucx/issues/1162

12

1.

2.

2 Installing and Loading HPC-X

2.1 Installing HPC-X
To install HPC-X:

Extract hpcx.tbz into your current working directory.

tar -xvf hpcx.tbz

Update shell variable of the location of HPC-X installation.

$ cd hpcx
$ export HPCX_HOME=$PWD

2.2 Building and Running Applications with HPC-X
HPC-X includes Open MPI v4.1.x. Each Open MPI version has its own module file which can be used
to load the desired version.

The symbolic links hpcx-init.sh and modulefiles/hpcx point to the default version (Open MPI v4.1.x).

To load Open MPI/OpenSHMEM v4.1.x based package:

% source $HPCX_HOME/hpcx-init.sh
% hpcx_load
% env | grep HPCX
% mpicc $HPCX_MPI_TESTS_DIR/examples/hello_c.c -o $HPCX_MPI_TESTS_DIR/examples/hello_c
% mpirun -np 2 $HPCX_MPI_TESTS_DIR/examples/hello_c
% oshcc $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c.c -o $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c
% oshrun -np 2 $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c
% hpcx_unload

2.3 Building HPC-X with the Intel Compiler Suite
As of version 1.7, HPC-X builds are no longer distributed based on the Intel compiler suite.
However, after following the HPC-X deployment example below, HPC-X can subsequently be rebuilt
from source with your Intel compiler suite as follows:

$ tar xfp ${HPCX_HOME}/sources/openmpi-gitclone.tar.gz
$ cd ${HPCX_HOME}/sources/openmpi-gitclone
$./configure CC=icc CXX=icpc F77=ifort FC=ifort --prefix=${HPCX_HOME}/ompi-icc \
--with-hcoll=${HPCX_HOME}/hcoll \
--with-ucx=${HPCX_HOME}/ucx \
--with-platform=contrib/platform/mellanox/optimized \
2>&1 | tee config-icc-output.log
$ make -j32 all 2>&1 | tee build_icc.log && make -j24 install 2>&1 | tee install_icc.log

In the above example, 4 switches are used to specify the compiler suite:

CC: Specifies the C compiler

CXX: Specifies the C++ compiler

F77: Specifies the Fortran 77 compiler

FC: Specifies the Fortran 90 compiler

13

•

•

•

•

•

For rebuilding HPC-X open-source components, please use the helper script as described in
"Rebuilding Open MPI Using a Helper Script" section.

2.4 Loading HPC-X Environment from Modules
 To load Open MPI/OpenSHMEM v4.1.x based package:

% module use $HPCX_HOME/modulefiles
% module load hpcx
% mpicc $HPCX_MPI_TESTS_DIR/examples/hello_c.c -o $HPCX_MPI_TESTS_DIR/examples/hello_c
% mpirun -np 2 $HPCX_MPI_TESTS_DIR/examples/hello_c
% oshcc $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c.c -o $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c
% oshrun -np 2 $HPCX_MPI_TESTS_DIR/examples/hello_oshmem_c
% module unload hpcx

2.5 HPC-X Environments
Starting from version 2.1, HPC-X toolkit is provided with a set of environments. You are to select the
environment that meets your needs best.

HPC-X with CUDA® support - hpcx

This is the default option which is optimized for best performance for the single-thread
mode. This option supports both GPU and non-GPU setups.

HPC-X with multi-threading support - hpcx-mt
This option enables multi-threading support in all of the HPC-X components. Please use this
module in order to run multi-threaded applications.
HPC-X for profiling - hpcx-prof
This option enables UCX compiled with profiling information.
HPC-X for debug - hpcx-debug
This option enables UCX/HCOLL/SHARP compiled in debug mode.
HPC-X stack - hpcx-stack
This environment contains all the libraries that 'Vanilla HPCX' has, except for OMPI.

We strongly recommend using a single compiler suite whenever possible. Unexpected or
undefined behavior can occur when you mix compiler suites in unsupported ways (e.g.,
mixing Fortran 77 and Fortran 90 compilers between different compiler suite is almost
guaranteed not to work.)

In all cases, the Intel compiler suite must be found in your PATH and be able to successfully
compile and link non-MPI applications before Open MPI will be able to be built properly.

Cuda support in SLES 11, RHEL 6 and RHEL OSs lower than 7.4 with PPC arch is no
longer available.

Starting with CUDA 11.0, the minimum recommended GCC compiler is at least GCC 5
due to C++11 requirements in CUDA libraries e.g. cuFFT and CUB.

14

For information on how to load and use the additional environments, please refer to the HPC-
X README file (embedded in the HPC-X package).

When HPC-X is launched with Open MPI without a resource manager job environment
(slurm,pbs, etc.), or when it is launched from a compute node, the default rsh/ssh-based
launcher will be used. This launcher does not propagate environment variables to the
compute nodes. Thus, it is important to ensure the propagation of LD_LIBRARY_PATH
variable from HPC-x is done as follows.

%mpirun -x LD_LIBRARY_PATH -np 2 -H host1,host2 $HPCX_MPI_TESTS_DIR/examples/hello_c

Note that only one of the environments can be loaded to be run.

15

3 Running, Configuring and Rebuilding HPC-X
The sources for SHMEM and OMPI can be found at $HPCX_HOME/sources/ .

Please refer to $HPCX_HOME/sources/ and HPC-X README file for more information on building
details.

3.1 Profiling MPI API
To profile MPI API

$ export IPM_KEYFILE=$HPCX_IPM_DIR/etc/ipm_key_mpi
$ export IPM_LOG=FULL
$ export LD_PRELOAD=$HPCX_IPM_DIR/lib/libipm.so
$ mpirun -x LD_PRELOAD <...>
$ $HPCX_IPM_DIR/bin/ipm_parse -html outfile.xml

For further details on profiling MPI API, please refer to: http://ipm-hpc.org/

The NVIDIA®-supplied version of IPM contains an additional feature (Barrier before Collective), not
found in the standard package, that allows end users to easily determine the extent of application
imbalance in applications which use collectives. This feature instruments each collective so that it
calls MPI_Barrier() before calling the collective operation itself. Time spent in this MPI_Barrier() is
not counted as communication time, so by running an application with and without the Barrier
before Collective feature, the extent to which application imbalance is a factor in performance can
be assessed.

The instrumentation can be applied on a per-collective basis, and is controlled by the following
environment variables:

$ export IPM_ADD_BARRIER_TO_REDUCE=1
$ export IPM_ADD_BARRIER_TO_ALLREDUCE=1
$ export IPM_ADD_BARRIER_TO_GATHER=1
$ export IPM_ADD_BARRIER_TO_ALL_GATHER=1
$ export IPM_ADD_BARRIER_TO_ALLTOALL=1
$ export IPM_ADD_BARRIER_TO_ALLTOALLV=1
$ export IPM_ADD_BARRIER_TO_BROADCAST=1
$ export IPM_ADD_BARRIER_TO_SCATTER=1
$ export IPM_ADD_BARRIER_TO_SCATTERV=1
$ export IPM_ADD_BARRIER_TO_GATHERV=1
$ export IPM_ADD_BARRIER_TO_ALLGATHERV=1
$ export IPM_ADD_BARRIER_TO_REDUCE_SCATTER=1

By default, all values are set to '0'.

3.2 Rebuilding Open MPI

3.2.1 Rebuilding Open MPI Using a Helper Script
The $HPCX_ROOT/utils/hpcx_rebuild.sh script can rebuild OMPI and UCX from HPC-X using the same
sources and configuration. It also takes into account HPC-X's environments: vanilla, MT and CUDA.

For details, run:

$HPCX_ROOT/utils/hpcx_rebuild.sh --help

http://ipm-hpc.org/

16

•

3.2.2 Rebuilding Open MPI from HPC-X Sources
HPC-X package contains Open MPI sources that can be found in $HPCX_HOME/sources/ folder.
Further information can be found in HPC-X README file.

To build Open MPI from sources:

$ HPCX_HOME=/path/to/extracted/hpcx
$./configure --prefix=${HPCX_HOME}/hpcx-ompi
 --with-hcoll=${HPCX_HOME}/hcoll \ --with-ucx=${HPCX_HOME}/ucx \
 --with-platform=contrib/platform/mellanox/optimized \
 --with-slurm --with-pmix
$ make -j9 all && make -j9 install

Open MPI and OpenSHMEM are pre-compiled with UCX and HCOLL, and use them by default.

If HPC-X is intended to be used with SLURM PMIx plugin, Open MPI should be built against external
PMIx, Libevent and HWLOC and the same Libevent and PMIx libraries should be used for both SLURM
and Open MPI.

Additional configuration options:

--with-pmix=<path-to-pmix>
--with-libevent=<path-to-libevent>
--with-hwloc=<path-to-hwloc>

3.3 Loading KNEM Module
UCX intra-node communication uses the KNEM module, which improves the performance
significantly. Make sure this module is loaded on your system:

$ modprobe knem

Making /dev/knem public accessible posses no security threat, as only the memory buffer that was
explicitly made readable and/or writable can be accessed read and/or write through the 64bit
cookie. Moreover, recent KNEM releases enforce by default that the attacker and the target process
have the same UID which prevent any security issues.

3.4 Running MPI with HCOLL

Running with default HCOLL configuration parameters:

$ mpirun -mca coll_hcoll_enable 1 -x HCOLL_MAIN_IB=mlx4_0:1 <...>

On RHEL systems, to enable the KNEM module on machine boot, add these commands into
the /etc/rc.modules script.

HCOLL is enabled by default in HPC-X.

17

•

•

Running OSHMEM with HCOLL:

% oshrun -mca scoll_mpi_enable 1 -mca scoll basic,mpi -mca coll_hcoll_enable 1 <...>

3.5 Direct Launch of Open MPI and OpenSHMEM using
SLURM 'srun'

If Open MPI was built with SLURM support, and SLURM has PMI2 or PMIx support, the Open MPI and
OpenSHMEM applications can be launched directly using the "srun" command:

Open MPI:

`env <MPI/OSHMEM-application-env> srun --mpi={pmi2|pmix} <srun-args> <mpi-app-args>`

All Open MPI/OpenSHMEM parameters that are supported by the mpirun/oshrun command
line can be provided through environment variables using the following rule:

"-mca <param_name> <param-val>" => "export OMPI_MCA_<param_name>=<param-val>"

For example an alternative to "-mca coll_hcoll_enable 1" with 'mpirun' is
"export OMPI_MCA_coll_hcoll_enable=1" with 'srun '

18

4 HCOLL

4.1 Overview
To meet the needs of scientific research and engineering simulations, supercomputers are growing
at an unrelenting rate. As supercomputers increase in size from mere thousands to hundreds-of-
thousands of processor cores, new performance and scalability challenges have emerged. In the
past, performance tuning of parallel applications could be accomplished fairly easily by separately
optimizing their algorithms, communication, and computational aspects. However, as systems
continue to scale to larger machines, these issues become co-mingled and must be addressed
comprehensively.

Collective communications execute global communication operations to couple all processes/nodes
in the system and therefore must be executed as quickly and as efficiently as possible. Indeed, the
scalability of most scientific and engineering applications is bound by the scalability and
performance of the collective routines employed. Most current implementations of collective
operations will suffer from the effects of systems noise at extreme-scale (system noise increases the
latency of collective operations by amplifying the effect of small, randomly occurring OS interrupts
during collective progression.) Furthermore, collective operations will consume a significant fraction
of CPU cycles, cycles that could be better spent doing the meaningful computation.

The two issues of lost CPU cycles and performance loss to the effects of system noise have been
addressed by offloading the communications to the host channel adapters (HCAs) and switches. The
technologies of SHARP (Scalable Hierarchical Aggregation and Reduction Protocols) and CORE-
Direct® (Collectives Offload Resource Engine) provide the most advanced solution available for
handling collective operations, thereby ensuring maximal scalability, minimal CPU overhead, and
providing the capability to overlap communication operations with computation allowing
applications to maximize asynchronous communication.

Additionally, HCOLL contains support for building runtime configurable hierarchical collectives.
HCOLL leverages hardware multicast capabilities to accelerate collective operations. In HCOLL, the
performance and scalability of the UCX point-to-point library in the form of the "ucx_p2p" BCOL is
fully taken advantage of. This enables users to leverage NVIDIA hardware offloads transparently and
with minimal effort.

HCOLL is a standalone library that can be integrated into any MPI or PGAS runtime. Support for
HCOLL is currently integrated into Open MPI versions 1.7.4 and higher. HCOLL release currently
supports blocking and non-blocking variants of "Allgather", "Allgatherv", "Allreduce", "AlltoAll",
"AlltoAllv", "Barrier", and "Bcast".

The following diagram summarizes the HCOLL architecture:

19

The following diagram shows the HCOLL components and the role that each plays in the
acceleration process:

4.2 Using HCOLL

HCOLL is part of the HPC-X software toolkit and does not require any special installation.

20

•

•

•
•
•
•

4.2.1 Enabling HCOLL in Open MPI
HCOLL is enabled by default with HPC-X. Users can explicitly disable it using the following MCA
parameter.

%mpirun -np 32 -mca coll_hcoll_enable 0 ./a.out

4.2.2 Tuning HCOLL Setting
The default HCOLL settings should be optimal for most systems. To check the available
HCOLL parameters and their default values, run the following command after loading HPC-X.

% $HPCX_HCOLL_DIR/bin/hcoll_info –all

HCOLL parameters are simply environment variables and can be modified in one of the following
ways:

Modify the default HCOLL parameters as part of the mpirun command.

% mpirun ... -x HCOLL_ML_BUFFER_SIZE=65536

Modify the default HCOLL parameter values from SHELL:

% export -x HCOLL_ML_BUFFER_SIZE=65536
% mpirun ...

4.2.3 Selecting Ports and Devices

To select the HCA device and port you would like HCOLL to run over:

-x HCOLL_MAIN_IB=<device_name>:<port_num>

4.2.4 Enabling Offloaded MPI Non-blocking Collectives
In order to use hardware offloaded collectives in non-blocking MPI calls (e.g. MPI_Ibcast()), set the
following parameter

-x HCOLL_ENABLE_NBC=1

The supported non-blocking MPI collectives are:Note that enabling non-blocking MPI collectives will
disable multicast acceleration in blocking MPI collectives.

MPI_Ibarrier
MPI_Ibcast
MPI_Iallgather
MPI_Iallreduce (4b, 8b, SUM, MIN, PROD, AND, OR, LAND, LOR)

21

1.

2.

4.2.5 Enabling Multicast Accelerated Collectives
HCOLL uses hardware multicast to accelerate certain collective operations. In order to take full
advantage of this unique capability, you must first have IPoIB configured on every adapter card/port
pair that collective message traffic flows through.

4.2.5.1 Configuring IPoIB
To configure IPoIB, you need to define an IP address on the IB interface.

Use /usr/bin/ibdev2netdev to show all IB interfaces.

hpchead ~ >ibdev2netdev
mlx4_0 port 1 ==> ib0 (Down)
mlx4_0 port 2 ==> ib1 (Down)
mlx5_0 port 1 ==> ib2 (Down)
mlx5_0 port 2 ==> ib3 (Down)

Use /sbin/ifconfig to get the address information for a specific interface (e.g. ib0).

hpchead ~ >ifconfig ib0
ifconfig uses the ioctl access method to get the full address information, which limits
hardware addresses to 8 bytes. Since InfiniBand address has 20 bytes, only the first 8
bytes are displayed correctly.
Ifconfig is obsolete! For replacement check ip.
ib0 Link encap:InfiniBand HWaddr
 A0:04:02:20:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 BROADCAST MULTICAST MTU:2044 Metric:1
 RX packets:58 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1332 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1024
 RX bytes:3248 (3.1 KiB) TX bytes:80016 (78.1 KiB)

Or you can use /sbin/ip for the same purpose

hpchead ~ >ip addr show ib0
4: ib0: <BROADCAST,MULTICAST> mtu 2044 qdisc mq state DOWN qlen 1024
 link/infiniband a0:04:02:20:fe:80:00:00:00:00:00:00:00:02:c9:03:00:21:f9:31 brd 00:ff:ff:ff:ff:12:40:1b:
ff:ff:00:00:00:00:00:00:ff:ff:ff:ff
 inet 192.168.1.1/24 brd 192.168.1.255 scope global ib0-

In the example above, the IP is defined (192.168.1.1). If it is not defined, then you can define an IP
address now.

4.2.6 Enabling NVIDIA SHARP Software Accelerated Collectives
As of v1.7, HPC-X supports NVIDIA SHARP Software Accelerated Collectives. These collectives are
enabled by default if HCOLL v3.5 and above detects that it is running in a supported environment.

To enable NVIDIA SHARP acceleration:

-x HCOLL_ENABLE_SHARP=1

To disable NVIDIA SHARP acceleration:

-x HCOLL_ENABLE_SHARP=0

22

•

•
•
•

•

•

To change the NVIDIA SHARP message threshold:

-x HCOLL_BCOL_P2P_ALLREDUCE_SHARP_MAX=<threshold> (default: tune based on sharp resources)

The maximum small message allreduce algorithm runs through SHARP. Messages with a size greater
than the above will use SHARP streaming aggregation or fall back to non-SHARP-based algorithms
(multicast based or non-multicast based).

For instructions on how to deploy NVIDIA SHARP software in InfiniBand fabric, see NVIDIA Scalable
Hierarchical Aggregation and Reduction Protocol (SHARP) Deployment Guide.

Once NVIDIA SHARP software is deployed, you need to only specify the HCA device (device_name)
and port number (port_num) that is connected to the NVIDIA SHARP software tree in the following
way:

-x HCOLL_MAIN_IB=<device_name>:<port_num>

4.2.7 GPU Buffer Support in HCOLL
HCOLL of version >= 4.4 supports collective operations over GPU buffers. The supported GPU HW
includes NVIDIA® GPUs starting from Tesla K80.

Minimal SW requirement: CUDA® (version >= 9.0).

If CUDA runtime is available during MPI job, HCOLL will automatically enable GPU support.
Collective operations that support GPU buffers:

Allreduce
Bcast
Allgather

If some other collective operation API of libhcoll is called with GPU buffer, then the call would
return HCOLL_ERROR after the buffer type check.

Recommended Additional SW

NCCL (version >= 2.4).
It is recommended to install libnccl for better performance. If it is not available, HCOLL will
print a warning regarding potentially lower performance. The warning can be suppressed by
setting “ -x HCOLL_CUDA_BCOL=ucx_p2p -x HCOLL_CUDA_SBGP=p2p ”.
GPUDirect RDMA nv_peer_mem. If nv_peer_mem module is loaded on all nodes, then Bcast
operation over GPU buffers will be optimized with HW Multicast.

The control parameter is HCOLL_GPU_ENABLE = <0,1,-1>

where:

Parameter Description

0 GPU support disabled. The type of the user buffers’ pointers is not checked. In such a case, if
the user provides the buffer allocated on GPU, the behavior is undefined.

23

•
•
•
•

•
•
•

•

•

•

Parameter Description

1 GPU support enabled. The buffer pointer is checked and HCOLL GPU collectives are enabled.
This is the default value if the CUDA runtime is available.

-1 Partial GPU support. The buffer pointer is checked and HCOLL falls back to the runtime in the
case of GPU buffer.

Limitations

Not all combinations of (OP, DTYPE) are supported for MPI_Allreduce with GPU buffers.

Supported operations:

SUM
PROD
MIN
MAX

Supported types:

INT8,16,32,64
UINT8,16,32,64
FLOAT16,32,64

4.2.8 Limitations
As of v4.1 release, HCOLL does not fully support mixed MPI datatypes. In this context, mixed
datatypes refers to collective operations where the datatype layout of input and output
buffers may be different on different ranks. For example:
For an arbitrary MPI collective operation:

MPI_Collective_op(input, count1, datatype-in_i, output, count2,datatype-out_i, communicator)

Where i = 0,...,(number_of_mpi_processes - 1)
Mixed mode means when i is not equal to j, (datatype-in_i, datatype-out_i) is not necessarily
equal to (datatype-in_j, datatype-out_j).
Mixed MPI datatypes, in general, can prevent protocol consensus inside HCOLL, resulting in
hangs. However, because HCOLL contains a datatype engine with packing and unpacking flows
built into the collective algorithms, mixed MPI datatypes will work under the following
scenarios:

If the packed length of the data (a value all ranks must agree upon regardless of
datatype) can fit inside a single HCOLL buffer (the default is (64Kbytes -
header_space)), then mixed datatypes will work.
If the packed length of count*datatype is bigger than an internal HCOLL buffer, then
HCOLL will need to fragment the message. If the datatypes and counts are defined on
each rank so that all ranks agree on the number of fragments needed to complete the
operation, then mixed datatypes will work. Our datatype engine cannot split across
primitive types and padding, this may result in non-agreement on the number of
fragments required to process the operation. When this happens, HCOLL will hang with

24

•

some ranks expecting incoming fragments and other believing the operation is
complete.

The environment variable HCOLL_ALLREDUCE_ZCOPY_TUNE=<static/dynamic> (default -
dynamic) selects the level of automatic runtime tuning of HCOLL’s large data allreduce
algorithm. “Static” means no tuning is applied at runtime. “Dynamic” - allows HCOLL to
dynamically adjust the algorithms radix and zero-copy threshold selection based on runtime
sampling of performance.
Note: The “dynamic” mode should not be used in cases where numerical reproducibility is
required, as this mode may result in a variation of the floating point reduction result from
one run to another due to non-fixed reduction order.

25

•
•
•
•

•
•
•
•
•

5 Unified Communication - X Framework Library

5.1 Overview
Unified Communication - X Framework (UCX) is an acceleration library, integrated into the Open MPI
(as a pml layer) and to OpenSHMEM (as an spml layer) and available as part of HPC-X. It is an open
source communication library designed to achieve the highest performance for HPC applications.
UCX has a broad range of optimizations for achieving low-software overheads in communication path
which allows near native-level performance.

UCX supports receive side tag matching, one-sided communication semantics, efficient memory
registration and a variety of enhancements which increase the scalability and performance of HPC
applications significantly.

UCX is also highly useful for storage, big-data and cloud domains where client-server based
applications are used.

UCX supports:

InfiniBand transports:
Unreliable Datagram (UD)
Reliable Connected (RC)
Dynamically Connected (DC)

Accelerated verbs
Shared Memory communication with support for KNEM, CMA and XPMEM
RoCE
TCP
CUDA

For further information on UCX, please refer to https://github.com/openucx/ucx and http://
www.openucx.org/

5.1.1 Supported CPU Architectures
Unified Communication - X Framework (UCX) supported CPU architectures are: x86, ARM, PowerPC.

5.2 Configuring UCX

5.2.1 Using UCX with OpenMPI
UCX is the default pml in Open MPI and the default spml in OpenSHMEM.

DC is supported on Connect-IB®/ConnectX®-4 and above HCAs with
MLNX_OFED v5.0 and higher.

As of HPC-X v2.1, UCX is set as the default pml for Open MPI, default spml for OpenSHMEM.

https://github.com/openucx/ucx
http://www.openucx.org/

26

1.
2.

•

To use UCX with Open MPI explicitly:

$mpirun --mca pml ucx -mca osc ucx ...

To use UCX with OpenSHMEM explicitly:

$oshrun --mca spml ucx ...

5.2.2 Configuring UCX with XPMEM
By default, UCX library embedded within HPC-X is compiled with an open source version of the
XPMEM driver. The recommended version of the XPMEM driver is from: https://github.com/openucx/
xpmem.
In order to compile UCX with another version of XPMEM, follow the steps below:

Make sure your host has XPMEM headers and the userspace library is installed.
Untar the UCX sources available inside the $HPCX_HOME/sources directory, and recompile
UCX:

% ./autogen.sh
% ./contrib/configure-release --with-xpmem=/path/to/xpmem --prefix=/path/to/new/ucx/install
% make -j8 install

Note: In case the new UCX version is installed in a different location, use LD_LIBRARY_PATH
for Open MPI to use the new location:

% mpirun -mca pml ucx -x LD_LIBRARY_PATH=/path/to/new/ucx/install/lib:$LD_LIBRARY_PATH ...

5.3 Tuning UCX Settings
The default UCX settings are already optimized. To check the available UCX parameters and their
default values, run the '$HPCX_UCX_DIR/bin/ucx_info -f' utility.

To check the UCX version, run:

$HPCX_UCX_DIR/bin/ucx_info -v

UCX parameters can be modified using one of the following methods:

Modifying the default UCX parameters value as part of the mpirun:

When UCX is compiled from sources, it can be configured for best performance.
To accomplish this, please compile UCX with:

./contrib/configure-release --enable-optimizations

https://github.com/openucx/xpmem

27

•

•

•

•

•

•
•

$mpirun -x UCX_RC_VERBS_RX_MAX_BUFS=128000 <...>

Modifying the default UCX parameters value from SHELL (when running as part of a resource
manager job):

$ export UCX_RC_VERBS_RX_MAX_BUFS=128000
$ mpirun <...>

(when running as part of a resource manager job):
Selecting the transports to use from the command line:

$mpirun -mca pml ucx -x UCX_TLS=sm,rc_x ...

The above command will select pml ucx and set its transports for usage, shared memory, and
accelerated verbs.

Excluding specific transports from the command line:

mpirun -mca pml ucx -x UCX_TLS=^rc ...

The above command line will select pml ucx and use all its available transports except for rc.
The rc transport will be excluded from usage.

The 'device' name for the shared memory transport is 'memory' (for usage in
UCX_SHM_DEVICES).
When selecting one of the several devices or interfaces in the server, please use the
UCX_NET_DEVICES flag to specify which RDMA device you would like to use.

$mpirun -mca pml ucx -x UCX_NET_DEVICES=mlx5_1:1

The above command will select pml ucx and set the HCA for usage, mlx5_1, port 1.

Improving performance at scale by increasing the value of DC initiator QPs (DCI) number used
by the interface when using the DC transport:

$mpirun -mca pml ucx -x UCX_TLS=sm,dc_x -x UCX_DC_MLX5_NUM_DCI=16

In case the DC transport is not available or disabled on a large scale, UCX will fall back to the
UD transport.
The RC transport is disabled after 256 established connections. The counter of established
connections can be overridden using the UCX_RC_MAX_NUM_EPS environmental parameter.

Running UCX on a RoCE port, by:
Configuring the fabric as lossless (see RoCE Deployment Community post), and setting
UCX_IB_TRAFFIC_CLASS=106.
OR

As of HPC-X v2.5, shared memory has new transport naming. The available shared
memory transports are: posix, sysv and xpmem.

https://enterprise-support.nvidia.com/s/article/recommended-network-configuration-examples-for-roce-deployment

28

•

•

•

•

•

•

•

•

Setting the specific port using the UCX_NET_DEVICES environment variable. For
example:

$mpirun -mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1

By default, RoCE v2 and IPv4 are used, if available. Otherwise, RoCE v1 with MAC address is
used. In order to set a specific RoCE version to use, set UCX_IB_GID_INDEX to the index of the
required RoCE version and address type, as reported by “show_gids” command. For example:

$mpirun -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_TRAFFIC_CLASS=106 -x UCX_IB_GID_INDEX=3

Setting the threshold for using the Rendezvous protocol in UCX:

$mpirun -mca pml ucx -x UCX_RNDV_THRESH=16384

By default, UCX will calculate the optimal threshold on its own, but the value can be
overwritten using the above environment parameter.

Setting the threshold for using the zero-copy in UCX:

$mpirun -mca pml ucx -x UCX_ZCOPY_THRESH=16384

By default, UCX will calculate the optimal threshold on its own, but the value can be
overwritten using the above environment parameter.

Setting UCX_IB_ADDR_TYPE=ib_global when running on GID-based multi-host setup (see
also Single Root IO Virtualization (SR-IOV) section below).
Enabling various optimizations intended for homogeneous environment. Enabling this mode
implies that the local transport resources/devices of all entities that connect to each other
are the same.

UCX_UNIFIED_MODE=y

Using -x UCX_IB_SUBNET_PREFIX to filter for the InfiniBand subnet prefix (empty means no
filter). This is relevant for IB link layer only. For example, a filter for the default subnet
prefix can be specified as follows: fe80:0:0:0.
Specifying how DC initiator (DCI) is selected by the endpoint with
UCX_DC_MLX5_TX_POLICY=<policy> (relevant for DC transport only). The policy options are:

Policy Description

dcs The endpoint either uses already assigned DCI, or DCI is allocated in a LIFO order and gets
released once it has no outstanding operations

dcs_quot

a

Same as "dcs". In addition, the DCI is scheduled for release in case it has sent more than
one quota and there are endpoints waiting for a DCI. The DCI is released once it
completes all outstanding operations. This policy ensures that there will be no starvation
among endpoints

rand Every endpoint is assigned with a randomly selected DCI. Multiple endpoints may share
the same DCI

29

•

•

•

•

•

•

•

Using UCX CUDA memory hooks may not work with static building CUDA applications. As a
workaround, extend the configuration with the following options:

-x UCX_MEMTYPE_CACHE=0 -x HCOLL_GPU_CUDA_MEMTYPE_CACHE_ENABLE=0 -x HCOLL_GPU_ENABLE=1

Disabling GPU memory staging protocols and using only GPUDirectRDMA , if possible:

-x UCX_RNDV_SCHEME=get_zcopy

Running the application on close NUMA nodes:

mpirun -mca rmaps_dist_device <HCA name> -mca rmaps_base_mapping_policy dist:span

The shared memory new transport naming:
The available shared memory transport names are: posix, sysv and xpmem.
'sm' and 'mm' will include all the three mentioned above.
The 'device' name for the shared memory transport is 'memory' (for usage in
UCX_SHM_DEVICES)
To get more information in case of any error (for troubleshooting purposes), please set the
following environment parameter:

mpirun -mca pml ucx -x UCX_LOG_LEVEL=diag ...

DC full handshake config can be set by the environment variables
UCX_DC_MLX5_DCI_FULL_HANDSHAKE, UCX_DC_MLX5_DCI_KA_FULL_HANDSHAKE,
UCX_DC_MLX5_DCT_FULL_HANDSHAKE. Possible values are: on / off / auto, with the default
being “off”. In auto mode, FH will be used according to the AR config of the SL in use (if the
SL is with AR – FH will be used, otherwise – HH).

5.4 UCX Features

5.4.1 Hardware Tag Matching
Starting ConnectX-5, Tag Matching previously done by the software, can now be offloaded in UCX to
the HCA. For MPI applications, sending messages with numeric tags accelerates the processing of
incoming messages, leading to better CPU utilization and lower latency for expected messages. In
Tag Matching, the software holds a list of matching entries called matching list. Each matching entry
contains a tag and a pointer to an application buffer. The matching list is used to steer arriving
messages to a specific buffer according to the message tag. The action of traversing the matching
list and finding the matching entry is called Tag Matching, and it is performed on the HCA instead of
the CPU. This is useful for cases where incoming messages are consumed not in the order they
arrive, but rather based on numeric identifier coordinated with the sender.

Hardware Tag Matching avails the CPU for other application needs. Currently, Hardware Tag
Matching is supported for the accelerated RC and DC transports (RC_X and DC_X), and can be
enabled in UCX with the following environment parameters:

For the RC_X transport:

UCX_RC_MLX5_TM_ENABLE=y

30

•

•

•

For the DC_X transport:

UCX_DC_MLX5_TM_ENABLE=y

By default, only messages larger than a certain threshold are offloaded to the transport. This
threshold is managed by the “UCX_TM_THRESH” environment variable (its default value is 1024
bytes).

UCX may also use bounce buffers for hardware Tag Matching, offloading internal pre-registered
buffers instead of user buffers up to a certain threshold. This threshold is controlled by the
UCX_TM_MAX_BB_SIZE environment variable. The value of this variable has to be equal or less than
the segment size, and it must be larger than the value of UCX_TM_THRESH to take effect (1024
bytes is the default value, meaning that optimization is disabled by default).

For further information, refer to Understanding Tag Matching for Developers post.

5.4.2 Single Root IO Virtualization (SR-IOV)
SR-IOV is a technology that allows a physical PCIe device to present itself multiple times through the
PCIe bus. This technology enables multiple virtual instances of the device with separate resources.
These virtual functions can then be provisioned separately. Each VF can be seen as an additional
device connected to the Physical Function. It shares the same resources with the Physical Function,
and its number of ports equals those of the Physical Function.

This feature is supported on ConnectX-5 HCAs and above only.To enable SR-IOV in UCX while it is
configured in the fabric, use the following environment parameter:

UCX_IB_ADDR_TYPE=ib_global

Notes:

This environment parameter should also be used when running UCX on a fabric with Socket
Direct HCA installed. When working with Socket Direct HCAs, make sure Multi-Rail feature is
enabled as well (refer to Multi-Rail.).
SRI-OV is not supported with dc and dc_x transports in UCX.

With hardware Tag Matching enabled, the Rendezvous threshold is limited by the segment
size, which is controlled by UCX_RC_MLX5_TM_MAX_BCOPY or UCX_DC_MLX5_TM_MAX_BCOPY
variables (for RC_X and DC_X transports, respectively). Thus, the real Rendezvous threshold
is the minimum value between the segment size and the value of UCX_RNDV_THRESH
environment variable.

Hardware Tag Matching for InfiniBand requires MLNX_OFED v4.1-x.x.x.x and above.

Hardware Tag Matching for RoCE is not supported.

https://enterprise-support.nvidia.com/s/article/understanding-tag-matching-for-developers

31

5.4.3 Adaptive Routing
Adaptive Routing (AR) enables sending messages between two HCAs on different routes, based on
the network load. While in static routing, a packet that arrives to the switch is forwarded based on
its destination only, in Adaptive Routing, the packet is loaded to all possible ports that the packet
can be forwarded to, resulting in the load being balanced between ports, and the fabric adapting to
load changes over time. This feature requires support for out-of-order arrival of messages, which
UCX has for the RC, rc_x and dc_x transports.

5.4.3.1 Error Handling
Error Handling enables UCX to handle errors that occur due to algorithms with fault recovery logic.
To handle such errors, a new mode was added, guaranteeing an accurate status on every sent
message. In addition, the process classifies errors by their origin (i.e. local or remote) and severity,
thus allowing the user to decide how to proceed and what would that possibly recovery method be.
To use Error Handling in UCX, the user must register with the UCP API (the ucp_ep_create API
function needs to be addressed, for example)

To be able to use Adaptive Routing on the fabric, make sure it is enabled in OpenSM and in
the switches.

Enabling Adaptive Routing on a certain SL is done according to the following table.

UCX_IB_AR_EN

ABLE=yes

UCX_IB_AR_ENA

BLE=no

UCX_IB_AR_EN

ABLE=try

UCX_IB_AR_

ENABLE=aut

o

UCX_IB_SL=a

uto

AR enabled on

some SLs

Use 1st SL

with AR

Use 1st SL

without AR

Use 1st SL

with AR

Use SL=0

AR enabled on

all SLs

Use SL=0 Failure Use SL=0 Use SL=0

AR disabled

on all SLs

Failure Use SL=0 Use SL=0 Use SL=0

UCX_IB_SL=<

sl>

AR enabled on

<sl>

Use SL=<sl> Failure Use SL=<sl> Use

SL=<sl>

AR disabled

on <sl>

Failure Use SL=<sl> Use SL=<sl> Use

SL=<sl>

Adaptive routing is not supported for OpenSHMEM applications.

32

•
•

•
•
•
•

•

•
•
•

•

5.4.4 CUDA GPU

5.4.4.1 Overview
CUDA environment support in HPC-X enables the use of NVIDIA’s GPU memory in UCX and HCOLL
communication libraries for point-to-point and collective routines, respectively.

5.4.4.2 Supported Architectures
CPU architecture: x86
NVIDIA GPU architectures:

Tesla
Kepler
Pascal
Volta

5.4.4.3 System Requirements
CUDA v8.0 or higher - for information on how to install CUDA, refer to NVIDIA documents for
CUDA Toolkit. This version of HPC-X is compiled with CUDA v12.x.
MLNX_OFED GPUDirect RDMA plugin module - for information on how to install:

MLNX_OFED - refer to MLNX_OFED webpage
GPUDirect RDMA - refer to MLNX_OFED GPUDirect RDMA webpage
Once the NVIDIA software components are installed, it is important to verify that the
GPUDirect RDMA kernel module is properly loaded on each of the computing systems
where you plan to run the job that requires the GPUDirect RDMA.

To check whether the GPUDirect RDMA module is loaded, run:
 service nv_peer_mem status

 To run this verification on other Linux flavors:
 lsmod | grep nv_peer_mem

Once GDR COPY is installed, it is important to verify that the gdrcopy kernel module is
properly loaded on each of the compute systems where you plan to run the job that requires
the GDR COPY.GDR COPY plugin module - GDR COPY is a fast copy library from NVIDIA, used
to transfer between HOST and GPU. For information on how to install GDR COPY, refer to
its GitHub webpage

To check whether the GDR COPY module is loaded, run:
 lsmod | grep gdrdrv

5.4.5 Multi-Rail
Multi-Rail enables users to use more than one of the active ports on the host, making better use of
system resources, and allowing increased throughput. When using Socket Direct cards, the Multi-Rail
capability becomes essential.

Each process would be able to use up to the first 4 active ports on the host in parallel (this 4 port
limitation is for performance considerations), if the following parameters are set:

https://developer.nvidia.com/cuda-toolkit
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers
https://network.nvidia.com/products/GPUDirect-RDMA/
https://github.com/NVIDIA/gdrcopy

33

•
•
•
•

For setting the number of active ports to use for the Eager protocol, i.e. for small messages,
please set the following parameter:

% mpirun -mca pml ucx -x UCX_MAX_EAGER_RAILS=4 ...

For setting the number of active ports to use for the Rendezvous protocol, i.e. for large
messages, please set the following parameter:

% mpirun -mca pml ucx -x UCX_MAX_RNDV_RAILS=4 ...

Possible values for these parameters are 1, 2, 3 and 4. The default values
are UCX_MAX_EAGER_LANES =1, and UCX_MAX_RNDV_LANES = 2 .

5.4.6 Memory in Chip (MEMIC)
Memory in chip feature allows for using on-device memory for sending messages from the UCX layer.
This feature is enabled by default on ConnectX-5 HCAs. It is supported only for the rc_x and dc_x
transports in UCX.

The environment parameters that control this feature behavior are:

UCX_RC_MLX5_DM_SIZE
UCX_RC_MLX5_DM_COUNT
UCX_DC_MLX5_DM_SIZE
UCX_DC_MLX5_DM_COUNT

For more information on these parameters, please refer to the ucx_info utility: % $HPCX_UCX_DIR/
bin/ucx_info -f.

5.4.7 PKey Support
UCX supports the usage of a non-default PKey. In order to specify which PKEY value to use, please
set it with the following environment parameter: UCX_IB_PKEY .
Valid values are between 0 - 0x7fff.
In an environment where the default PKey is not found, the PKey in index 0 will be used.

The Multi-Rail feature will be disabled while the Hardware Tag Matching feature is enabled.

Starting from HPC-X v2.8, multi-rail is also supported out-of-box for the client-server API.
To enable or disable it, use the following environment parameter:
UCX_CM_USE_ALL_DEVICES=y/n

34

5.4.8 Close Protocol
When using the UCX client-server API for connection establishment, it is also possible to have a
graceful teardown, i.e a disconnection, between each pair of client and the server it's connected to,
at the end of the communication. Either side can be the initiator of the disconnection.

5.4.9 RoCE LAG
UCX now supports RoCE LAG out-of-box.
UCX is now able to detect a RoCE LAG device and automatically create two RDMA connections to
utilize the full bandwidth of LAG interface.
For Ethernet packets, the network switch path is usually determined by a hash function on the
packet’s IP and UDP header fields. In order to force using distinct paths for various switch
topologies, it is possible to set “UCX_ROCE_PATH_FACTOR=n” environment variable to influence
UDP.source_port field: the first connection will use “UDP.source_port=0xC000”, while the second
connection will use “UDP.source_port=0xC000+<n>”.
The default value for UCX_ROCE_PATH_FACTOR is 1. This feature is currently supported for RC
transport only.

5.4.10 Flow Control for RDMA Read Operations
 This feature is intended to prevent network congestion when many processes send messages to the
same destination. To reduce network pressure, the user may limit the number of simultaneously
transferred data by setting UCX_RC_TX_NUM_GET_BYTES environment variable to a certain value
(e.g. 10MB). In addition, to achieve better pipelining of network transfer and data processing, the
user may limit the maximal message size which can be transferred using RDMA Read operation by
setting UCX_RC_MAX_GET_ZCOPY environment variable to a certain value (e.g. 64KB).

5.4.11 PCIe Relaxed Ordering Support
UCX supports enabling Relaxed Ordering for PCIe Write transactions in order to improve
performance on systems where the PCI bandwidth of relaxed-ordered Writes is higher than that of
the default strict-ordered Writes.
The environment variable UCX_IB_PCI_RELAXED_ORDERING can force a specific behavior: “on”
enables relaxed ordering; “off” disables it; while “auto” (default) sets relaxed ordering mode based
on the system type.

5.4.12 UCX Configuration File
The UCX configuration file enables the user to apply configuration variables set by the user in
the $HPCX_UCX_DIR/etc/ucx/ucx.conf file. A configuration file can be created with initial default
values by running "ucx_info -fC > $HPCX_UCX_DIR/etc/ucx/ucx.conf" .
The values are applied in the following order of precedence:
1. If an environment variable is set explicitly, it overrides the file's configuration.
2. Otherwise, value from $HPCX_UCX_DIR/etc/ucx/ucx.conf is used if it exists.
3. Otherwise, default (compile-time) value is used.

35

•
•

•

•

1.

5.4.13 Instrumentation and Monitoring FUSE-based Tool
This new functionality enables the user to analyze UCX-based applications in runtime. The tool is
based on Filesystem in Userspace (FUSE) interface. If the feature is enabled, a directory for each
process using UCX will be created in /tmp/ucx . The directory name is the PID of the target
process. The process directory contains three sub-directories: UCP, UCT, UCS.

While building, UCX checks for fuse3 library presence and enables building the tool. Once UCX is
built, the ucx_vfs binary will be created in the install directory and will be used to launch a
daemon process and enable UCX-based applications analysis.

You can use the UCX_VFS_ENABLE environment variable to control the feature. It is set to ‘y’ by
default. Setting the variable to ‘n’ disables creating the service thread in user’s UCX application.

5.4.13.1 Requirements
For the feature to function properly, the following is required:

fuse3 utilities to run the daemon and analyze applications
fuse3 library to build the tool

5.4.13.2 Limitations
ucx_vfs daemon must be started before the target processes. Otherwise, if the number of
processes exceeds the limit, fs.inotify.max_user_instances are increased.
If the user starts simultaneously more than the maximum allowed number of processes and
then starts the daemon, only the first processes that meet the limit will be monitored by the
tool.

5.5 UCX Utilities

5.5.1 ucx_perftest
A client-server based application which is designed to test UCX's performance and sanity checks.

To run it, two terminals are required to be opened, one on the server side and one on the client
side.

The working flow is as follow:

The server listens to the request coming from the client.

The configuration file applies settings only to the host where it is located.

This feature requires rebuild of UCX with "--with-fuse3" flag in the configure line. UCX
inside HPC-X is not built with this option by default.

36

2.

3.

•

•

•

•

Once a connection is established, UCX sends and receives messages between the two sides
according to what the client requested.
The results of the communications are displayed.

For further information, run: $HPCX_HOME/ucx/bin/ucx_perftest -help .

Examples:

From the server side, run:
$HPCX_HOME/ucx/bin/ucx_perftest
From the client side, run:
$HPCX_HOME/ucx/bin/ucx_perftest <server_host_name> -t ucp_am_bw

Among other parameters, you can specify the test you would like to run, the message size and the
number of iterations.

5.6 Generating UCX Statistics for Open MPI/OpenSHMEM
In order to generate statistics, the statistics destination and trigger should be set, and they can
optionally be filtered and/or formatted.

The destination is set by UCX_STATS_DEST environment variable whose values can be one of
the following:

Value Description

empty string Statistics are not reported

stdout Print to standard output

stderr Print to standard error

file:<filename> Save to a file. Following substitutions are made: %h: host,
%p:pid, %c:cpu, %t: time, %e:exe

udp:<host>[:<port>] Send over UDP to the given host:port

Example:

$ export UCX_STATS_DEST="file:ucx_%h_%e_%p.stats"
$ export UCX_STATS_DEST="stdout"

Trigger is set by UCX_STATS_TRIGGER environment variables. It can be one of the following:

Environment Variable Description

exit Dump statistics just before exiting the program

timer:<interval> Dump statistics periodically, interval is given in seconds

signal:<signo> Dump when processes signaled

Example:

$ export UCX_STATS_TRIGGER=exit
$ export UCX_STATS_TRIGGER=timer:3.5

37

•

•

It is possible to filter the counters in the report using the UCX_STATS_FILTER environment
parameter. It accepts a comma-separated list of glob patterns specifying counters to display.
Statistics summary will contain only the matching counters. The order is not meaningful. Each
expression in the list may contain any of the following options:

Environment Variable Description

* Matches any number of any characters including none
(prints a full report)

? Matches any single character

[abc] Matches one character given in the bracket

[a-z] Matches one character from the range given in the bracket

More information about this parameter can be found at: https://github.com/openucx/ucx/
wiki/StatisticsIt is possible to filter the counters in the report using the UCX_STATS_FILTER
environment parameter. It accepts a comma-separated list of glob patterns specifying
counters to display. Statistics summary will contain only the matching counters. The order is
not meaningful. Each expression in the list may contain any of the following options:

It is possible to control the formatting of the statistics using the UCX_STATS_FORMAT
parameter:

Environment Variable Description

full Each counter will be displayed in a separate line

agg Each counter will be displayed in a separate line. However,
there will also be an aggregation between similar counters

summary All counters will be printed in the same line

When there are several devices or interfaces in the server, please use the UCX_NET_DEVICES flag to
specify which RDMA device you would like to use.

The statistics feature is only enabled when UCX is compiled with the enable-stats
flag. This flag is set to 'No' by default. Therefore, in order to use the statistics
feature, please recompile UCX using the contrib/configure-prof file, or use the
'debug' version of UCX, which can be found in $HPCX_UCX_DIR/debug:

$ mpirun -mca pml ucx -x LD_PRELOAD=$HPCX_UCX_DIR/debug/lib/libucp.so ...

Please note that recompiling UCX using the aforementioned methods may impact the
performance.

https://github.com/openucx/ucx/wiki/Statistics
http://libucp.so/

38

6 Unified Collective Communication (UCC)
Unified Collective Communication (UCC) was codesigned with industry partners for PyTorch-based
deep learning recommender model training on multi-rail GPU platforms. UCC has been specifically
designed and implemented for high-performance PGAS applications and runtimes. It serves as a
drop-in replacement for HCOLL and will gradually assume the role of default collective library once
UCC fully implements the range of HCOLL's hierarchical algorithms.

For further information on what UCC is and how to use it, please see https://github.com/openucx/
ucc

Please see UCC PyTorch integration layer, Torch_UCC at https://github.com/facebookresearch/
torch_ucc

6.1 TL/UCP Special Service Worker
This feature enables the use of a separate UCX/UCP worker for performing the service collectives,
which are invoked internally during setup. For example, service collectives can be set to use TCP
only, while regular collectives may use InfiniBand.

The feature can be enabled by setting the UCC environment variable as follows:

UCC_TL_UCP_SERVICE_WORKER=1.

You may pass the UCX configuration for the service worker using the "UCC_TL_UCP_SERVICE_" prefix.
For example:

UCC_TL_UCP_SERVICE_NET_DEVICES=mlx5_0:1

For further UCC options, run ucc_info -f

6.2 Out-Of-Box Native GPU Allreduce
This feature enables UCC library to detect the NVIDIA NVLink topology and select the best GPU-
based algorithms for supported collectives (Allgather/v, Reducescatter/v).

To view the NVLink topology, run nvidia-smi topo -m

To activate this feature, make sure to enable the hierarchical component in UCC using the UCC_CLS
environment variable as follows:

UCC_CLS=basic,hier.

To view all available UCC items and options, run ucc_info -f

•

•

UCC is supported in both MPI and OSHMEM. However, it is not enabled by default.
To enable it in MPI, set -mca coll_ucc_enable to 1.

To enable it in OSHMEM, set -mca coll_scoll_enable to 1.

https://github.com/openucx/ucc
https://github.com/facebookresearch/torch_ucc

39

6.3 Data Type Support in CUDA Executor Component
(EC)

This feature enables out-of-box support for all datatypes and reduction operations for UCC
collectives for GPUs.

Supported datatypes: float32, float64, float32_complex, float64_complex, unsinged and signed int8,
int16, int32, int64.

Supported reduction operations: sum, prod, avg, min, max, and, bitwise and, or, bitwise or, xor,
bitwise xor.

6.4 EC/CUDA One-shot Kernel with Cooperative Launch
This feature improves GPU collective performance by utilizing the CUDA cooperative launch feature.
It enables the use of a single CUDA kernel for CUDA operations in UCC GPU collectives.

This feature can be activated by enabling the UCC environment variable
UCC_EC_CUDA_USE_COOPERATIVE_LAUNCH as follows:

UCC_EC_CUDA_USE_COOPERATIVE_LAUNCH=1

40

•
•

7 PGAS Shared Memory Access Overview
The Shared Memory Access (SHMEM) routines provide low-latency, high-bandwidth communication
for use in highly parallel scalable programs. The routines in the SHMEM Application Programming
Interface (API) provide a programming model for exchanging data between cooperating parallel
processes. The SHMEM API can be used either alone or in combination with MPI routines in the same
parallel program.

The SHMEM parallel programming library is an easy-to-use programming model which uses highly
efficient one-sided communication APIs to provide an intuitive global-view interface to shared or
distributed memory systems. SHMEM's capabilities provide an excellent low-level interface for PGAS
applications.

A SHMEM program is of a single program, multiple data (SPMD) style. All the SHMEM processes,
referred to as processing elements (PEs), start simultaneously and run the same program.
Commonly, the PEs perform computation on their own sub-domains of the larger problem, and
periodically communicate with other PEs to exchange information on which the next communication
phase depends.

The SHMEM routines minimize the overhead associated with data transfer requests, maximize
bandwidth, and minimize data latency (the period of time that starts when a PE initiates a transfer
of data and ends when a PE can use the data).

SHMEM routines support remote data transfer through:

“put” operations - data transfer to a different PE
“get” operations - data transfer from a different PE, and remote pointers, allowing direct
references to data objects owned by another PE

Additional supported operations are collective broadcast and reduction, barrier synchronization,
and atomic memory operations. An atomic memory operation is an atomic read-and-update
operation, such as a fetch-and-increment, on a remote or local data object.

SHMEM libraries implement active messaging. The sending of data involves only one CPU where the
source processor puts the data into the memory of the destination processor. Likewise, a processor
can read data from another processor's memory without interrupting the remote CPU. The remote
processor is unaware that its memory has been read or written unless the programmer implements a
mechanism to accomplish this.

7.1 HPC-X Open MPI/OpenSHMEM
HPC-X Open MPI/OpenSHMEM programming library is a one-side communications library that
supports a unique set of parallel programming features including point-to-point and collective
routines, synchronizations, atomic operations, and a shared memory paradigm used between the
processes of a parallel programming application.

HPC-X OpenSHMEM is based on the API defined by the OpenSHMEM.org consortium. The library works
with the OpenFabrics RDMA for Linux stack (OFED), and also has the ability to utilize UCX (Unified
Communication - X) and HCOLL, providing an unprecedented level of scalability for SHMEM programs
running over InfiniBand.

http://OpenSHMEM.org

41

•
•
•
•

•
•
•
•

7.2 Running HPC-X OpenSHMEM

7.2.1 Running HPC-X OpenSHMEM with UCX
Unified Communication - X Framework (UCX) is a new acceleration library, integrated into the Open
MPI (as a pml layer) and to OpenSHMEM (as an spml layer) and available as part of HPC-X. It is an
open source communication library designed to achieve the highest performance for HPC
applications. UCX has a broad range of optimizations for achieving low-software overheads in
communication path which allow near native-level performance.

UCX supports receive side tag matching, one-sided communication semantics, efficient memory
registration and a variety of enhancements which increase the scalability and performance of HPC
applications significantly.

UCX supports the following transports:

InfiniBand transports:
Unreliable Datagram (UD)
Reliable connected (RC)
Dynamically Connected (DC)

Accelerated verbs
Shared Memory communication with support for KNEM, CMA and XPMEM
RoCE
TCP

For further information on UCX, please refer to: https://github.com/openucx/ucx and http://
www.openucx.org/

7.2.1.1 Enabling UCX for HPC-X OpenSHMEM Jobs
UCX is the default spml starting from HPC-X v2.1. For older versions of HPC-X, add the following
MCA parameter to the oshrun command line:

-mca spml ucx

All the UCX environment parameters can be used in the same way with oshrun, as well as with
mpirun. For the complete list of the UCX environment parameters, please run:

$HPCX_UCX_DIR/bin/ucx_info -f

DC is supported on Connect-IB®/ConnectX®-4 and above HCAs with
MLNX_OFED v2.1-1.0.0 and higher.

https://github.com/openucx/ucx
http://www.openucx.org/

42

•
•
•
•
•

1.

2.

7.2.2 Developing Application using HPC-X OpenSHMEM together
with MPI

The SHMEM programming model can provide a means to improve the performance of latency-
sensitive sections of an application. Commonly, this requires replacing MPI send/recv calls with
shmem_put/ shmem_get and shmem_barrier calls. The SHMEM programming model can deliver
significantly lower latencies for short messages than traditional MPI calls. An alternative to
shmem_get /shmem_put calls can also be considered the MPI-2 MPI_Put/ MPI_Get functions.

An example of MPI-SHMEM mixed code:

/* example.c */

#include <stdlib.h>
#include <stdio.h>
#include "shmem.h"
#include "mpi.h"
int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 start_pes(0);

 {
 int version = 0;
 int subversion = 0;
 int num_proc = 0;
 int my_proc = 0;
 int comm_size = 0;
 int comm_rank = 0;
 MPI_Get_version(&version, &subversion);
 fprintf(stdout, "MPI version: %d.%d\n", version, subversion);
 num_proc = _num_pes();
 my_proc = _my_pe();
 fprintf(stdout, "PE#%d of %d\n", my_proc, num_proc);
 MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
 MPI_Comm_rank(MPI_COMM_WORLD, &comm_rank);
 fprintf(stdout, "Comm rank#%d of %d\n", comm_rank, comm_size);
 }
return 0;
}

7.2.3 HPC-X® OpenSHMEM Tunable Parameters
HPC-X® OpenSHMEM uses Modular Component Architecture (MCA) parameters to provide a way to
tune your runtime environment. Each parameter corresponds to a specific function. The following
are parameters that you can change their values to change the application’s function:

memheap - controls memory allocation policy and thresholds
scoll - controls HPC-X OpenSHMEM collective API threshold and algorithms
spml - controls HPC-X OpenSHMEM point-to-point transport logic and thresholds
atomic - controls HPC-X OpenSHMEM atomic operations logic and thresholds
shmem - controls general HPC-X OpenSHMEM API behavior

To display HPC-X OpenSHMEM parameters:
Print all available parameters. Run:

% oshmem_info -a

Print HPC-X OpenSHMEM specific parameters. Run:

% oshmem_info --param shmem all
% oshmem_info --param memheap all

43

•

•
•
•

•

% oshmem_info --param scoll all
% oshmem_info --param spml all
% oshmem_info --param atomic all

7.2.3.1 OpenSHMEM MCA Parameters for Symmetric Heap Allocation
SHMEM memheap size can be modified by adding the SHMEM_SYMMETRIC_HEAP_SIZE parameter to
the oshrun file. The default heap size is 256M.

To run SHMEM with memheap size of 64M. Run:

% oshrun -x SHMEM_SYMMETRIC_HEAP_SIZE=64M -np 512 -mca mpi_paffinity_alone 1 --map-by node -display-map -hostfile
myhostfile example.exe

Memheap can be allocated with the following methods:

sysv - system V shared memory API. Allocation with hugepages is curently not
supportedMemheap can be allocated with the following methods:
verbs - IB verbs allocator is used
mmap - mmap() is used to allocate memory
ucx - used to allocate and register memory via the UCX library

By default HPC-X OpenSHMEM will try a to find the best possible allocator. The priority is verbs, sysv,
mmap and ucx. It is possible to choose a specific memheap allocation method by running -mca
sshmem <name>

7.2.3.2 Parameters Used to Force Connection Creation
Commonly, SHMEM creates connection between PE lazily. That is at the sign of the first traffic.

To force connection creating during startup:
Set the following MCA parameter.

mca shmem_preconnect_all 1

Memory registration (ex: infiniband rkeys) information is exchanged between ranks during
startup.

To enable on-demand memory key exchange:

Set the following MCA parameter.

mca shmalloc_use_modex 0

It is required to drop_caches on all test machines before running OpenSHMEM
application and/or benchmarks in order to free memory:

echo 3 > /proc/sys/vm/drop_caches

44

1.

2.

7.2.3.3 OpenSHMEM MCA Parameters for shmem_quiet, shmem_fence
and shmem_barrier_all

Default synchronization algorithms of OSHMEM may be tuned by spml_ucx_strong_sync parameter:

0 - don't do strong synchronization (default)

1 - use non-blocking get

2 - use blocking get

3 - use flush operation

7.3 Tuning MTU Size to the Recommended Value

When using MLNX_OFED 1.5.3-3.0.0, it is recommended to change the MTU to 4k. Whereas in
MLNX_OFED 3.1-x.x.x and above, the MTU is already set by default to 4k.

To check the current MTU support of an InfiniBand port, use the smpquery tool:

smpquery -D PortInfo 0 1 | grep -i mtu

If the MtuCap value is lower than 4K, enable it to 4K.

Assuming the firmware is configured to support 4K MTU, the actual MTU capability is further
limited by the mlx4 driver parameter.

To further tune it:
Set the set_4k_mtu mlx4 driver parameter to 1 on all the cluster machines. For instance:

echo "options mlx4_core set_4k_mtu=1" >> /etc/modprobe.d/mofed.conf

Restart openibd.

service openibd restart

To check whether the parameter was accepted, run:

cat /sys/module/mlx4_core/parameters/set_4k_mtu

To check whether the port was brought up with 4K MTU this time, use the smpquery tool again.

7.3.1 HPC Applications on Intel Sandy Bridge Machines
Intel Sandy Bridge machines have NUMA hardware related limitation which affects the performance
of HPC jobs utilizing all node sockets. When installing MLNX_OFED 3.1-x.x.x, an automatic

The procedures described below apply to user using MLNX_OFED 1.5.3.-3.0.0 only.

45

•

workaround is activated upon Sandy Bridge machine detection, and the following message is printed
in the job`s standard output device: “mlx4: Sandy Bridge CPU was detected”

To disable MLNX_OFED 3.1-x.x.x Sandy Bridge NUMA related workaround:
Set the SHELL environment variable before launching HPC application. Run:

% export MLX4_STALL_CQ_POLL=0
%oshrun <...>

OR

oshrun -x MLX4_STALL_CQ_POLL=0 <other params>

46

8 ClusterKit
ClusterKit is a multifaceted node assessment tool for high performance clusters. Currently,
ClusterKit is capable of testing latency, bandwidth, effective bandwidth, memory bandwidth,
GFLOPS by node, per-rack collective performance, as well as bandwidth and latency between GPUs
and local/remote memory. ClusterKit employs well known techniques and tests to arrive at these
performance metrics and is intended to give the user a general look at the health and performance
of a cluster.

8.1 Running ClusterKit
After loading the HPC-X package, and in a job allocation, issue one of the following commands.

To test a specific network device:

mpirun -x UCX_NET_DEVICES=mlx5_4:1 $HPCX_CLUSTERKIT_DIR/bin/clusterkit

To allow UCX to choose the network device/devices:

mpirun $HPCX_CLUSTERKIT_DIR/bin/clusterkit

Note that multi-rail is enabled by default.

When not using a job scheduler, the mpirun command line arguments that specify the hosts should
be added.

The application will run with the default set of tests. Run with --help to see all command line
options. During the program run, interim results for each test are printed, so you can track the
progress. This is particularly important for very large clusters, with thousands of nodes.

Towards the end of the program output, you will see the name of the output directory, which is
based on the time and date, and should be similar to the following.

Output directory: 20190915_061634/

The output directory is automatically created, and .json and .txt results are written for each test.

The .txt files are human readable, the .json files are for importing into the UFM-hosted viewer. For
small scale, the .txt files generally suffice, but for larger clusters, the UFM-hosted viewer is
recommended for viewing the .json files.

ClusterKit runs by default in pairwise test cases, which requires at least two nodes to run.

47

8.2 Running ClusterKit via Script
Clusterkit can also be run using the supplied clusterkit.sh convenience script. This script provides a
simple interface to configure some internal UCX parameters.

./clusterkit.sh [options] <parameters>

 Parameters:
 -v|--verbose Set verbose mode
 -f|--hostfile <hostfile> File with newline separated hostnames to run tests on.
 -r|--hpcx_dir <path> Path to HPCX installation root folder (or use env HPCX_DIR)

 Options:
 -p|--ppn <number> Select number of processes per hostname (default: 1)
 -d|--hca_list "string" Comma separated list of HCAs to use (default: autoselect)
 -t|--transport_list "string" List of RDMA transports to use (rc,dc,ud) (default: autoselect best)
 -z|--traffic <nn> Run traffic for 'nn' minutes
 -s|--ssh Use ssh for process launching (default: autoselect)
 -h|--help Show help message
 -n|--dry-run Dry run (do nothing, only print)
 -m|--map-by [node|core|socket] (Used in MPI argument: -- map-by ppr:ppn:map-by)
 -y|--bycore Run on ALL cores, not just a single core per node
 -k|--test_intra_node Run intra-node tests for bandwidth and latency (default: skip intra-node)
 -U|--unidirectional Run unidirectional bandwidth tests (default: bidirectional)
 -e|--mapper shell script that maps local MPI rank to a core and one or more HCAs
 e.g. for testing machines with multiple HCAs, where each HCA needs to be
tested
 -g|--gpu Run GPU lat/bw/neighbor tests
 -G|--gpudirect Run GPU tests with GPU-Direct.
 -w|--rdma_write Use RDMA-write to pass data to the remote host.
 -o|--rdma_read Use RDMA-read to access data from the remote host.
 -P|--performance Set CPU scaling governor to 'performance'. Set back to 'powersave' after
execution
 -a|--output Generate zip of heatmaps and tgz of JSON files from output. Overrides -k.
 output options:
 -l|--normalize Normalize latency results default: false
 -C|--clean Erase output cache directory default: false
 -x|--exe_opt Options for clusterkit.
 -i|--mpi_opt Options for mpirun.

 To pass additional MPI options, use the mpi_opt environment variable.
 To pass additional options to the clusterkit executable, use the ext_opt environment variable.

 Examples:
 % ./clusterkit.sh --ssh --hostfile hostfile.txt

 % ./clusterkit.sh --hca_list "mlx5_0:1,mlx5_2:1" --hostfile hostfile.txt

 % exe_opt="--gpudirect " ./clusterkit.sh --hca_list "mlx5_0:1,mlx5_2:1" --hostfile
hostfile.txt

 % mpi_opt="-x UCX_RNDV_SCHEME=get_zcopy" ./clusterkit.sh --hca_list "mlx5_0:1,mlx5_2:1" --hostfile
hostfile.txt

48

1.

2.

9 NCCL-RDMA-SHARP Plugins
NCCL-RDMA-SHARP plugins enable RDMA and switch-based collectives (SHARP) with NVIDIA's NCCL
library.

9.1 Overview
This plugin replaces the default NCCL internal inter-node communication with RDMA-based
transports. It implements both Point-to-Point transport(Net) (IB verbs (default) and UCX), and
Collective transport(CollNet) (including SHARP Collective transport).

9.2 NCCL UCX Plugin
NCCL UCX plugin (if enabled) replaces the default NCCL verbs-based inter-node communication
routines with UCX-based communication routines.

9.2.1 Running NCCL UCX Plugin

To use NCCL UCX plugin:

For NCCL to detect the network plugin, make sure to add plugin_install_dir to the
library search path environment variable, as shown below.

libnccl_net.so is in <plugin_install_dir>/lib
$ export LD_LIBRARY_PATH=<plugin_install_dir>/lib:$LD_LIBRARY_PATH
$ <run command>

Enable UCX plugin by defining NCCL_PLUGIN_P2P=ucx environment variable.

$ export NCCL_PLUGIN_P2P=ucx
$ <run command>

9.2.2 Performance Tuning
To achieve the ultimate performance, various UCX parameters can be used depending on the
server's hardware configuration.

9.2.2.1 Example
The below is an example of a hardware configuration where the GPU and the NIC share the same
PCIe switch. In such a scenario, GPU Direct RDMA gives the best possible performance.

To use GPU Direct RDMA for all message sizes in UCX:

Define the following environment variables as shown.

$ export NCCL_UCX_RNDV_THRESH=0
$ export NCCL_UCX_RNDV_SCHEME=get_zcopy

49

$ <run command>

Note that for servers with multiple NICs available, you need to define the following additional
variable.

$ export NCCL_UCX_TLS=dc,cuda_copy,cuda_ipc
$ <run command>

9.2.2.2 NCCL Tests Benchmark Example
NCCL tests can be used for NCCL-UCX performance benchmarking (visit https://github.com/nvidia/
nccl-tests to run the benchmark).

Example:

mpirun \
 -np 2 \
 --bind-to socket \
 -x LD_LIBRARY_PATH \
 -x NCCL_UCX_TLS=rc_x,cuda_copy \
 -x NCCL_UCX_RNDV_THRESH=0 \
 -x UCX_MEMTYPE_CACHE=n \
 -x NCCL_COLLNET_ENABLE=0 \
 -x NCCL_PLUGIN_P2P=ucx \
 -x NCCL_DEBUG=info \
 -x NCCL_DEBUG_SUBSYS=NET \
 -x NCCL_IB_HCA=mlx5_0:1 \
 $NCCL_TEST_HOME/build/all_reduce_perf -b 128 -e 128M -f 2 -g 1 -n 50 -w 100 -p 0 -z 0 -t 1 -c 1

nThread 1 nGpus 1 minBytes 128 maxBytes 134217728 step: 2(factor) warmup iters: 100 iters: 50 validation: 1
#
Using devices
Rank 0 Pid 7198 on host1 device 0 [0x06] Tesla V100-SXM2-32GB
Rank 1 Pid 4890 on host2 device 0 [0x06] Tesla V100-SXM2-32GB
host1:7198:7198 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/IB ; OOB ib0:1.1.21.3<0>
NCCL version 2.6.0a0+cuda10.1
host2:4890:4890 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/IB ; OOB ib0:1.1.21.4<0>
host1:7198:7226 [0] NCCL INFO Thread mode multi is not supported
host1:7198:7226 [0] NCCL INFO Worker address length: 55
host2:4890:4920 [0] NCCL INFO Thread mode multi is not supported
host2:4890:4920 [0] NCCL INFO Worker address length: 55
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host1:7198:7226 [0] NCCL INFO NCCL_COLLNET_ENABLE set by environment to 0.
host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host1:7198:7226 [0] NCCL INFO Ring 00 : 1[6000] -> 0[6000] [receive] via NET/UCX/0/GDRDMA
host2:4890:4920 [0] NCCL INFO NCCL_COLLNET_ENABLE set by environment to 0.
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host2:4890:4920 [0] NCCL INFO Ring 00 : 0[6000] -> 1[6000] [receive] via NET/UCX/0/GDRDMA
host1:7198:7226 [0] NCCL INFO Thread mode multi is not supported
host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 1
host1:7198:7226 [0] NCCL INFO Ring 00 : 0[6000] -> 1[6000] [send] via NET/UCX/0/GDRDMA
host2:4890:4920 [0] NCCL INFO Thread mode multi is not supported
host1:7198:7226 [0] NCCL INFO Worker address length: 55
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 1
host2:4890:4920 [0] NCCL INFO Ring 00 : 1[6000] -> 0[6000] [send] via NET/UCX/0/GDRDMA
host2:4890:4920 [0] NCCL INFO Worker address length: 55
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host2:4890:4920 [0] NCCL INFO Ring 01 : 0[6000] -> 1[6000] [receive] via NET/UCX/0/GDRDMA
host2:4890:4920 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 1
host2:4890:4920 [0] NCCL INFO Ring 01 : 1[6000] -> 0[6000] [send] via NET/UCX/0/GDRDMA

By default, NCCL is built as a static library to enable portability. In such a case, you may
experience plugin-related wrong memory type detection and plugin program failures. In
order to avoid this, explicitly disable memory type cache feature in UCX by defining
the UCX_MEMTYPE_CACHE environment variable as follows.

$ export UCX_MEMTYPE_CACHE=n
$ <run command>

https://github.com/nvidia/nccl-tests

50

host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 0
host1:7198:7226 [0] NCCL INFO Ring 01 : 1[6000] -> 0[6000] [receive] via NET/UCX/0/GDRDMA
host2:4890:4920 [0] NCCL INFO Worker address length: 55
host1:7198:7226 [0] NCCL INFO GPU Direct RDMA Enabled for GPU 6000 / HCA 0 (distance 2 <= 3), read 1
host1:7198:7226 [0] NCCL INFO Ring 01 : 0[6000] -> 1[6000] [send] via NET/UCX/0/GDRDMA
host1:7198:7226 [0] NCCL INFO Worker address length: 55

9.3 NCCL SHARP Plugin
The following environment variables enable the SHARP aggregation with NCCL when using the
plugin.

NCCL_COLLNET_ENABLE=1
NCCL_ALGO=CollNet

9.3.1 NCCL Test Benchmark Example
The sanity performance of the setup can be verified with NCCL tests. Please refer to NCCL tests
here: https://github.com/NVIDIA/nccl-tests.

mpirun -np 1024 -map-by ppr:8:node -x NCCL_COLLNET_ENABLE=1 -x NCCL_ALGO=CollNet ./nccl-tests/build/
all_reduce_perf -b 4 -e 2G -f 2 -g 1 -w 50 -n 50

 4 1 float sum 44.53 0.00 0.00 3e-05 44.21 0.00 0.00 3e-05
 8 2 float sum 45.42 0.00 0.00 3e-05 45.85 0.00 0.00 3e-05
 16 4 float sum 46.34 0.00 0.00 3e-05 45.84 0.00 0.00 2e-05
 32 8 float sum 46.20 0.00 0.00 2e-05 46.56 0.00 0.00 2e-05
 64 16 float sum 46.00 0.00 0.00 2e-05 48.33 0.00 0.00 2e-05
 128 32 float sum 48.77 0.00 0.01 2e-05 47.23 0.00 0.01 2e-05
 256 64 float sum 47.88 0.01 0.01 2e-05 47.85 0.01 0.01 2e-05
 512 128 float sum 51.44 0.01 0.02 3e-05 48.66 0.01 0.02 3e-05
 1024 256 float sum 51.27 0.02 0.04 4e-05 51.78 0.02 0.04 4e-05
 2048 512 float sum 57.93 0.04 0.07 4e-05 56.45 0.04 0.07 4e-05
 4096 1024 float sum 57.32 0.07 0.14 4e-05 93.51 0.04 0.09 4e-05
 8192 2048 float sum 106.4 0.08 0.15 4e-05 59.70 0.14 0.27 4e-05
 16384 4096 float sum 103.0 0.16 0.32 4e-05 58.23 0.28 0.56 4e-05
 32768 8192 float sum 74.85 0.44 0.87 4e-05 137.8 0.24 0.48 4e-05
 65536 16384 float sum 96.71 0.68 1.35 4e-05 92.89 0.71 1.41 4e-05
 131072 32768 float sum 115.6 1.13 2.27 4e-05 120.7 1.09 2.17 4e-05
 262144 65536 float sum 197.7 1.33 2.65 4e-05 167.6 1.56 3.13 4e-05
 524288 131072 float sum 222.7 2.35 4.70 4e-05 239.2 2.19 4.38 4e-05
 1048576 262144 float sum 280.9 3.73 7.46 4e-05 197.7 5.30 10.60 4e-05
 2097152 524288 float sum 218.0 9.62 19.22 4e-05 213.9 9.81 19.59 4e-05
 4194304 1048576 float sum 257.6 16.28 32.53 4e-05 254.7 16.47 32.90 4e-05
 8388608 2097152 float sum 354.3 23.68 47.31 4e-05 523.5 16.02 32.02 4e-05
 16777216 4194304 float sum 505.9 33.16 66.26 4e-05 484.1 34.66 69.24 4e-05
 33554432 8388608 float sum 639.2 52.50 104.89 4e-05 678.6 49.45 98.80 4e-05
 67108864 16777216 float sum 1358.2 49.41 98.72 4e-05 1048.6 64.00 127.87 4e-05
 134217728 33554432 float sum 1737.2 77.26 154.37 4e-05 1777.6 75.51 150.86 4e-05
 268435456 67108864 float sum 4359.5 61.58 123.03 4e-05 4262.3 62.98 125.83 4e-05
 536870912 134217728 float sum 5619.7 95.53 190.88 4e-05 5699.0 94.20 188.22 4e-05
 1073741824 268435456 float sum 12169 88.23 176.30 4e-05 11508 93.30 186.42 4e-05
 2147483648 536870912 float sum 22618 94.94 189.70 4e-05 21814 98.44 196.70 4e-05
Out of bounds values : 0 OK
Avg bus bandwidth : 41.2497

NVIDIA switches allow a limited number of streaming aggregation flows (maximum: 2). On
systems with multiple GPUs and multiple HCAs, NCCL creates an aggregation streaming flow
(NCCL Ring/Channel) per HCA rail. It is required to build the cluster topology in such a way
that leaf level switches are connected to the same HCA rail from each server.

https://github.com/NVIDIA/nccl-tests

51

10 Common Abbreviations

10.1 Syntax Conventions
Prompt Shell

machine-name% C shell on UNIX, Linux, or AIX

machine-name# C shell superuser on UNIX, Linux, or AIX

$ Bourne shell and Korn shell on UNIX, Linux, or AIX

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX

C:\> Windows command line

52

11 User Manual Revision History
Revision Date Section Change

Rev 2.17.1 December 12, 2023 No changes were made to this version. N/A

Rev 2.17 November 5, 2023 No changes were made to this version. N/A

Rev 2.16 August 10, 2023 TL/UCP Special Service Worker Updated

Rev 2.15 May 04, 2023 No changes were made to this version. N/A

Rev 2.12 July 31, 2022 No changes were made to this version. N/A

Rev 2.11 May 4, 2022 Unified Collective Communication
(UCC)

New section

IB Router Removed section

Important Note Updated

Configuring UCX with XPMEM Updated

Tuning UCX Settings Updated

Adaptive Routing Updated

Multi-Rail Updated

PCIe Relaxed Ordering Support Updated

ucx_perftest Updated client-side
example

Running ClusterKit via Script Updated example

Rev 2.10 December 5, 2021 OpenSHMEM MCA Parameters for
shmem_quiet, shmem_fence and
shmem_barrier_all

New section

53

•

•
•
•
•
•

•
•

•
•
•
•
•
•

•
•
•
•
•
•

12 Release Notes History

12.1 Release Notes Change Log History

12.1.1 HPC-X Toolkit Change Log History
Category Change

Rev 2.17.1

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.5.1

Known Issues See Known Issues.

Rev 2.17.0

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.5.0
NCCL v2.x
UCX v1.16
ClusterKit v1.11
nccl-rdma-sharp-plugin v2.5

Added the following Supported Platforms and OSs:
Debian 10.x
Debian 11.x

Supported Cards Added support for GH100.

Known Issues See Known Issues.

Rev 2.16.2

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.4.1
UCC v1.3
ClusterKit v1.10
nccl-rdma-sharp-plugin v2.4
NCCL v2.18
XPMEM v2.7

Supported Cards All cards up to BlueField-3 and ConnectX-7.

Bug Fixes See Bug Fixes in this Version.

Rev 2.16

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.4
UCC v1.3
ClusterKit v1.10
nccl-rdma-sharp-plugin v2.4
NCCL v2.18
XPMEM v2.7

Supported Cards Added support for BlueField-3 cards.

https://docs.nvidia.com/networking/display/HPCXDEV/.HPC-X+General+Support+v2.16.2#id-.HPCXGeneralSupportv2.16.2-hpcxcontent
https://confluence.nvidia.com/display/HPCXDEV/.Known+Issues+v2.17.0
https://docs.nvidia.com/networking/display/HPCXDEV/.HPC-X+General+Support+v2.16.2#id-.HPCXGeneralSupportv2.16.2-hpcxcontent
https://docs.nvidia.com/networking/display/HPCXDEV/.Known+Issues+v2.17.0
https://docs.nvidia.com/networking/display/HPCXDEV/.HPC-X+General+Support+v2.16.2#id-.HPCXGeneralSupportv2.16.2-hpcxcontent
https://docs.nvidia.com/networking/display/HPCXDEV/.Bug+Fixes+in+this+Version+v2.16.2
https://docs.nvidia.com/networking/display/HPCXDEV/.HPC-X+General+Support+v2.16#id-.HPCXGeneralSupportv2.16-hpcxcontent

54

•
•
•
•
•
•
•

•
•
•
•
•

Bug Fixes See Bug Fixes.

Rev 2.15

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.3
UCX v1.15
ClusterKit v1.9
nccl-rdma-sharp-plugin v2.3
GDRCopy v2.3
NCCL v2.17.1-1
CUDA v12.1

Bug Fixes See Bug Fixes.

Rev 2.14

TL/UCP Special Service
Worker

Added support for having a separate UCX UCP worker use UCC service collectives.
For further information, please see TL/UCP Special Service Worker section.

Data Type Support in
CUDA Executor
Component (EC)

Added out-of-box support for all datatypes and reduction operations for UCC
collectives for GPUs.
For further information, please see Data Type Support in CUDA Executor Component
section.

EC/CUDA One-shot
Kernel with
Cooperative Launch

Added support for using a single CUDA kernel for CUDA operations in UCC GPU
collectives.
For further information, please see EC/CUDA One-shot Kernel with Cooperative
Launch section.

Out-Of-Box Native GPU
Allreduce

Added support for the UCC library to detect the NVIDIA NVLink topology and select
the best GPU-based algorithms for supported collectives (Allgather/v,
Reducescatter/v).
For further information, please see Out-Of-Box Native GPU Allreduce section.

Bug Fixes See Bug Fixes.

Rev 2.13.1 LTS

Operating System Added support for Ubuntu v20.04 and v20.10.

Rev 2.13

HPC-X Content Updated HPC-X Content section to reflect the communication libraries versions
embedded in this HPC-X release.

NVIDIA SHARP v3.1
HCOLL v4.8
UCC v1.2
ClusterKit v1.8
nccl-rdma-sharp-plugin v2.2

NCCL-RDMA-SHARP-
PLUGIN

Added support for NCCL plugin API v5.

SHARP Added support for SHARP on NDR.

Bug Fixes See Bug Fixes section.

Rev 2.12

UCX Added a method to set RoCE ECE value from UCX configuration.
For example: UCX_IB_ECE=auto will use maximal ECE value, and UCX_IB_ECE= will
use a specific numeric ECE value.

https://docs.nvidia.com/networking/display/HPCXDEV/.Bug+Fixes+History+v2.16

55

•
•

•
•

•
•
•
•

HPC-X Content Updated the version of the UCX communication library to v1.14.

Rev 2.11

Adapter Cards Added support NVIDIA ConnectX-7 adapter card with with 400 Gb/s speed.

SHARPD sharpd daemon process has been removed. sharpd-related activity is now performed
from the user application process

HPC-X Content Updated the versions of the following communication libraries.
UCX version 1.13
ClusterKit 1.6

Added support for UCC, a collective communication operations API and library in
HPC-X. UCC is now part of the HPC-X package.
For further information on UCC, pleased see Unified Collective Communication
(UCC) section.

Rev 2.10

UCX Added support for atomics on GPU memory target

OpenSHMEM Added support for reducing memory overhead on scale

Rev 2.9

UCX Configuration File The UCX configuration file enables the user to apply configuration variables set by
the user in the /etc/ucx/ucx.conf file.
For further information see UCX Configuration File.

Instrumentation and
Monitoring FUSE-based
Tool

This new functionality enables the user to analyze UCX-based applications in
runtime. The tool is based on Filesystem in Userspace (FUSE) interface. If the
feature is enabled, a directory for each process using UCX will be created in /tmp/
ucx.
For further information see Instrumentation and Monitoring FUSE-based Tool.

OS Architecture HPC-X v1.9 onwards will no longer support PPC architecture in its releases.

Bug Fixes Bug Fixes in this Version

Rev 2.8

HPC-X Content Updated the following communication libraries and acceleration packages versions:
Open MPI version 4.1.x
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
2.4.x
HCOLL version 4.7
UCX version 1.10
ClusterKit version 1.3
nccl-rdma-sharp-plugin version 2.1

UCX Added support for Multi-interface for cloud (client-server) applications.

Added support for using Adaptive-Routing (out-of-order) on an SL that supports it.

Added support for UCP Active-Messages API with Rendezvous.

Added support for Keepalive functionality on the UCT layer.

Performed several error handling enhancements.

Added support for GPU-NIC locality discovery.

NCCL-RDMA-SHARP-
PLUGIN

Added support for NCCL Plugin API v4.

Added support for PCIe Relaxed Ordering.

Added support for Adaptive Routing.

56

•

•
•

•

•

•

•
•

Rev 2.7

UCX Added a new request API. For further information on this request API, please refer to
UCX API documentation.

Added support for PCIe Relaxed Ordering.

Added out-of-box support for RoCE LAG.

Added Flow Control support for RDMA Read operations.

AMD Rome optimizations: Optimized IB connection establishment procedures to
reduce system noise.

Rev 2.6

HPC-X Content Updated the following communications libraries and acceleration packages versions:
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
2.1.0
HCOLL version 4.5
UCX version 1.9

UCX Added support in UCX for communication between containers configured to share
the memory namespaces.

Added strided Receive queue support for hardware tag matching.

Made the following performance improvements on AMD EPYC servers.
8-16 KB message: Improved latency by up to 6.4%, bandwidth by up to 20%, and
bidirectional bandwidth by up to 96%
IMB/multiPingPong and osu_mbw_mr for messages up to 32B on full ppn on
MLNX_OFED 5.0.
Note: To enjoy this performance optimization, make sure to enable hardware
tag-matching by setting UCX_RC_TM_ENABLE=y

Added support for multithreaded memory region in Open SHMEM (OSHMEM)
applications to improve performance in job startup and teardown latencies.
The multithreaded MR enables a more efficient use of the CPU resource during
registration of memory regions larger than 4GB.

Cuda Removed Cuda support in SLES 11 and RHEL 6 OSs.

Rev 2.5

HPC-X Content Updated the following communications libraries and acceleration packages versions:
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
2.0
HCOLL version 4.4
UCX version 1.7

Removed CUDA init script (hpcx-init-cuda.sh), and environmental module (modules/
hpcx-cuda) from HPC-X.
Up until HPC-X v2.4, these files used to point to the default files hpcx-init.sh and
modules/hpcx. Now, these CUDA files no longer exist, and users can only use the
default init script and environmental module for enabling CUDA support.

CUDA Unified Vanilla and CUDA environments. CUDA v10.0 is supported out of the box with
standard init script or environmental module.
Note: HPC-X is compiled against CUDA version 10.0, which does not support GCC
versions newer than v8. Therefore, HPC-X built on systems with GCC versions above
v8 will not have CUDA support.

UCX Made performance optimizations.

Added full support for rdma-core.

57

•

•
•

•
•

•
•
•

•

•

Added support for CUDA v10.1.

Rev 2.4

HPC-X Content Updated the following communications libraries and acceleration packages versions:
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)
version 1.8
HCOLL version 4.3
UCX version 1.6

Removed rc.local_mellanox script. HPC-X became more stable and this script is
no longer required.

CUDA Unified Vanilla and CUDA environments. CUDA v9 is supported out of the box with
standard init script or environmental module.
Note: HPC-X is compiled against CUDA version 9, which does not support GCC
versions newer than v7. Therefore, HPC-X built on systems with GCC versions above
v7 will not have CUDA support.

UCX Enabled HDR, SocketDirect and MultiRail features out-of-box.

UCX Random DCI is now at GA level.

Implemented a number of job startup optimizations.

Added support from PCIe atomic operations feature.

HCOLL Added support for performing floating point 16 bit operations for machine learning
scenarios.

OpenMPI Added multi threading support to OpenMPI OSC UCX.

General HPC-X is now available through the EasyBuild framework: https://
easybuild.readthedocs.io/en/latest/

Rev 2.3

HPC-X Content Updated the following communications libraries and acceleration packages versions:
Open MPI version 4.0.x
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
1.7.2
HCOLL version 4.2
UCX version 1.5
OpenSHMEM version 1.4

UCX UCX is now compiled without JAVA bindings.

Added support for running UCX over rdma-core, for DC transport and direct verbs.

Emulation layer: Added the ability to run UCX over software emulation of remote
memory access and atomic operations. This provides full support of SHMEM and MPI-
RMA over shared memory, TCP, and older RDMA hardware, such as ConnectX-3 HCA.

HCOLL HCOLL and NVIDIA SHARP are now compiled with CUDA support.

Added support for CUDA buffers over SRA allreduce algorithm.

MXM Removed support for MXM library.

OpenMPI Added the following configuration options to OMPI:
--with-libevent=internal

--enable-mpi1-compatibility

Updated the configuration file platform/mellanox/optimized config in OMPI
upstream by removing BTL OpenIB and UCT support and removing links to MXM/FCA
usage.

https://easybuild.readthedocs.io/en/latest/

58

Removed PMI2 support.

Rev 2.2

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
1.7
• HCOLL version 4.1
• UCX version 1.4

Added support for Singularity containerization.
For further information, please refer to HPC-X User Manual.

“osc ucx” is no longer the default one-sided-component in OpenMPI.

Removed KNEM library from HPC-X package. UCX will use the KNEM available in
MLNX_OFED.

MXM Support Open MPI and HCOLL are not compiled with MXM anymore. Both are compiled with
UCX only and use it by default.

UCX Added support for the following UCX features:
• New API for establishing client-server connection.
• Out-of-box support for Memory In Chip (MEMIC) on ConnectX-5 HCAs.

HPC-X Setup Added support for HPC-X to work on Huawei ARM architecture.

HCOLL Improved performance by utilizing zero-copy messaging for MPI Bcast.

Rev 2.1

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• Open MPI version 3.1.x
• NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version
1.5
• HCOLL version 4.0
• MXM version 3.7
• UCX version 1.3
• OpenSHMEM v1.3 specification compliant

UCX • UCX is now the default pml layer for Open MPI, default spml layer for OpenSHMEM,
and default OSC component for MPI RMA.
• Added the following UCX features:
• Added support for GPU memory in UCX communication libraries
• Added support for Multi-Rail protocol

MXM The UD_RNDV_ZCOPY parameter is set to ‘no’ by default. This means that the zcopy
mechanism for the UD transport is disabled when using the Rendezvous protocol.

HCOLL • UCX is now the default p2p transport in HCOLL
• Improved multi-threaded performance
• Improved shared memory performance
• Added support for NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP) v1.5
• Added support for NVIDIA SHARP software multi-channel/multi-rail capable
algorithms
• Improved Allreduce large message algorithm
• Improved AlltoAll algorithm

Profiling IB verbs API
(ibprof)

Removed ibprof tool from HPC-X toolkit.

UPC Removed UPC from HPC-X toolkit.

Rev 2.0

59

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• OpenMPI version 3.0.0
• Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version 1.4
• HCOLL version 3.9
• UCX version 1.3

UCX • UCX is now at GA level.
• Added the following UCX features:
• [ConnectX-5 only] Added support for hardware Tag Matching with DC transport.
• [ConnectX-5 only] Added support for Out-of-order RDMA RC and DC to support
adaptive routing with true RDMA.
• Added UCX datatypes - community approved datatype support.
• Added UCX support to Inbox RHEL.
• Added GPU Direct RDMA support.
• Hardware Tag Matching (See section Hardware Tag Matching in the User Manual)
• SR-IOV Support (See section SR-IOV Support in the User Manual)
• Adaptive Routing (AR) (See section Adaptive Routing in the User Manual)
• Error Handling (See section Error Handling in the User Manual)

HCOLL • Added support for Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP) v1.4
• Added support for NCCL on-host GPU based collectives.
• Added support for Hierarchical GPU based allreduce using NCCL for scale-in and
MXM/UCX for scale-out.
• Improved shared memory performance for allreduce, barrier, and broadcast.
Targeting high thread count systems, e.g. Power9.
• Improved large message allreduce (multi-radix, zero-copy fragmentation, CPU
vectorization.)
• Added new and improved AlltoAllv algorithm - hybrid logarithmic pair-wise
exchange.
• Added support for on-demand HCOLL memory. Improves HCOLL's memory footprint
on high thread count system e.g. Power9.
• Added a high performance multithreaded implementation to support
MPI_THREAD_MULTIPLE applications. Designed specifically for high thread count
systems, e.g. Power9.
• HCOLL startup improvements.

Open MPI /
OpenSHMEM

• Added support for Open MPI 3.0.0.
• Added support for xpmem kernel module.
• Added a high performance implementation of shmem_ptr() with UCX SPML.
• Added a UCX allocator. The UCX allocator optimizes intra-node communication by
allowing direct access to memories of processes on the same node. The UCX
allocator can only be used with the UCX SPML.
• Added a UCX one-sided component to support MPI RMA operations.

Rev 1.9.7

Scalable Hierarchical
Aggregation and
Reduction Protocol
(SHARP)

Bug Fixes, see Section 4, “Bug Fixes History”, on page 11

Rev 1.9

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• OpenMPI version 2.1.2a1
• Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) version 1.3.1
• HCOLL version 3.8.1652
• MXM version 3.6.3103
• UCX version 1.2.2947

60

UCX Point-to-point communication API, with tag matching, remote memory access, and
atomic operations.
This can be used to implement MPI, PGAS, and Big Data libraries and applications- IB
transport

A cleaner API with lower software overhead which provides better performance
especially for small messages.

Support for multitude of InifiniBand transports and NVIDIA offloads to optimize data
transfer performance:
• RDMA
• DC
• Out-of-order
• HW tag matching offload
• Registration cache
• ODP

Shared memory communications for optimal intra-node data transfer:
• SysV
• posix
• knem
• CMA
• xpmem

MXM Enabled Adaptive Routing for all the transport layers (UD/RC/DC).

Memory registration optimization.

Scalable Hierarchical
Aggregation and
Reduction Protocol
(SHARP)

Improved the Out-of-the-box performance of Scalable Hierarchical Aggregation and
Reduction Protocol (SHARP).

Shared memory Improved the intranode performance of allreduce and barrier.

Configuration Changed many default parameter setting in order to achieve best out-of-the-box
experience for several applications including - CP2K, miniDFT, VASP, DL-POLY, Amber,
Fluent, GAMES-UK, and LS-DYNA.

FCA As of HPC-X v1.9, FCA v2.5 is no longer included in the HPC-X package.

Improved AlltoAllv algorithm.

Improved large data allreduce.

Improved UCX BCOL.

OS architecture Added support for ARM architecture.

Rev 1.8.2

MXM Updated MXM version to 3.6.2098 which includes memory registration optimization.

Rev 1.8

Cross Channel (CC) Added Cross Channel (CC) AlltoAllv

Added CC zcpy Ring Bcas

Scalable Hierarchical
Aggregation and
Reduction Protocol
(SHARP)

Added Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) non-
blocking collectives

Shared memory POWER Added shared memory POWER optimizations for allreduce

Added shared memory POWER optimizations for Barrier

61

Mixed data types Added support for mixed data types

Non-contiguous Bcast Added support for non-contiguous Bcast with UMR or SGE in CC

UMR Added UMR support in CC bcol

Unified
Communication - X
Framework (UCX)

A new acceleration library, integrated into the Open MPI (as a pml layer) and
available as part of HPC-X. It is an open source communication library designed to
achieve the highest performance for HPC applications.

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• HCOLL updated to v3.7.
Open MPI updated to v2.10

FCA FCA 2.x is no longer the default FCA used in HPC-X.
As of HPC-X v1.8, FCA 3.x (HCOLL) is the default FCA used and it replaces FCA v2.x.

Bug Fixes See Section 4, “Bug Fixes History”, on page 11

Rev 1.7

MXM Updated MXM version to 3.6

FCA Collective Added Cross-Channel based Allgather, Bcast, 8-byte Allreduce.

FCA Added MPI datatype support.

Added optimizations for PPC platforms.

Added support for multiple NVIDIA SHARP technology leaders on a single host.

Added support for collecting NVIDIA SHARP technology usage statistics.

Exposed cross-channel non-blocking collectives to the MPI level.

Rev 1.6

MXM v3.5 See Section 5.3, “MXM Change Log History”, on page 23

IB-Router Allows hosts that are located on different IB subnets to communicate with each
other. This support is currently available when using the 'openib btl' in Open MPI.
Note: When using 'openib btl', RoCE and IB router are mutually exclusive. The Open
MPI inside HPC-X 1.6 is not compiled with ib-router support, therefore it supports
RoCE out-of-the-box.

FCA v3.5 See Section 5.2, “FCA Change Log History”, on page 21

Rev 1.5

HPC-X Content Updated the following communications libraries and acceleration packages versions:
• Open MPI updated to v1.10
• UPC update to 2.22.0
• MXM updated to v3.4.369
• FCA updated to v3.4.799

MXM v3.4.369 See Section 5.3, “MXM Change Log History”, on page 23

FCA v3.4.799 See Section 5.2, “FCA Change Log History”, on page 21

Rev 1.4

FCA v3.3 See Section 5.2, “FCA Change Log History”, on page 21

MXM v3.4 See Section 5.3, “MXM Change Log History”, on page 23

Rev 1.3

MLNX_OFED Added support for OFED Inbox drivers

62

CPU Architecture Added support for PPC architecture

LID Mask Control (LMC) Added support for multiple LIDs usage when the LMC in the fabric is higher than
zero. MXM will use multiple LIDs to distribute traffic across multiple links and
achieve better resource utilization.

Performance Performance improvements for all transport layers.

Adaptive Routing Enhanced support for Adaptive Routing for the UD transport layer.
For further information, please refer to the HPC-X User Manual section “Adaptive
Routing for UD Transport”.

UD zero copy UD zero copy support on receiver side to achieve better bandwidth utilization and
reduce CPU usage.

12.1.2 FCA Change Log History
Category Change

Rev 3.5

FCA Collective Added MPI Allgatherv and MPI reduce

FCA Added support for NVIDIA SHARP library (including SHARP allreduce, reduce and barrier)

Enhanced scalability for CORE-Direct based collectives

Added support for complex data types

Rev 3.4

General UCX support

Communicator caching scheme with eviction: improves jobstart and communicator
creation time

Collectives Collectives: Added Alltoallv and Alltoall small message algorithms.

Rev 3.3

General Ported to PowerPC

Thread safety added

Collectives Improved large message allreduce algorithm (Enabled by default)

Beta version of network topology awareness (Enabled by default)

Rev 3.0

63

Collectives Offload collectives communication from MPI process onto NVIDIA interconnect hardware.

Efficient collectives communication flow optimized to job and topology

MPI collectives Significantly reduce MPI collectives runtime

MPI-3 Native support for MPI-3

Blocking and Non-
blocking collectives

Support for blocking and nonblocking collectives

HCOLL Supports hierarchical communication algorithms (HCOLL)

Collective
algorithm

Supports multiple optimizations within a single collective algorithm

Performance Increase CPU availability and efficiency for increased application performance

MPI libraries Seamless integration with MPI libraries and job schedulers

Rev 2.5

Multicast Group Added MCG (Multicast Group) cleanup tool

Performance Performance improvements

Rev 2.2

Performance Performance improvements

Dynamic offloading
rules

Enabled dynamic offloading rules configuration based on the data type and reduce
operations

Mixed MTU Added support for mixed MTU

Rev 2.1.1

AMD/Interlagos
CPUs

Added support for AMD/Interlagos CPUs

Rev 2.1

Core-Direct® Added support for Core-Direct® technology (enables offloading collective operations to
the HCA.)

Non-contiguous
data layouts

Added support for non-contiguous data layouts

PGI compilers Added support for PGI compilers

12.1.3
HPC-X™ Open MPI/OpenSHMEM Change Log History

Category Change

Rev 2.2

Performance Added Sandy Bridge performance optimizations.

memheap Allocated memheap using contiguous memory provided by the HCA.

ptmalloc allocator Replaced the buddy memheap by the ptmalloc allocator.

64

multiple pSync
arrays

Added the option of using multiple pSync arrays instead of barrier synchronization
between collective routines (fcollect, reduction routines)

spml yoda Optimized small size puts

Performance Performance optimization

Memory footprint
optimizations

Added memory footprint optimizations

Rev 1.8.2

Acceleration
Packages

Added support for new MXM, FCA, HCOLL versions

Job start
optimization

Added job start optimization

Performance Performance improvements

12.2 Bug Fixes History
Internal Reference Number Issue

3436244 Description: On rare occasions, a 'group join' request may reach a
timeout.

Keywords: NDR Switch, SHARP

Discovered in Version: 2.16

Fixed in Version: 2.16.2

3479712 Description: In virtualized environments, the performance of large
messages can drop due to repeated failures to create indirect-atomic
key (KSM).

Keywords: Virtualized Environments; Failure; Indericet-atomic Key;
KSM;

Discovered in Version: 2.15

Fixed in Version: 2.16

3268964 Description: Improved performance in MPI_Bcast on AMD Genoa.
Note: To make use of these improvements, make sure UCC is
explicitly enabled using:
--mca coll_ucc_enable 1 --mca coll_ucc_priority 99 --mca

coll ucc,basic,libnbc --mca coll_ucc_cls basic,hier

Keywords: MPI_Bcast; AMD Genoa; UCC

Discovered in Version: 2.14

Fixed in Version: 2.15

3255925 Description: Fixed the issue where mpi_init was creating an internal
CUDA context on GPU0, which could have an impact on CUDA
applications behavior.

Keywords: CUDA; MPI

Discovered in Version: 2.13

Fixed in Version: 2.14

65

Internal Reference Number Issue

3223214 Description: Fixed the issue where shmem_ulong_wait_until()
unsigned comparison was not working as expected.

Keywords: SHMEM

Discovered in Version: 2.13

Fixed in Version: 2.14

3261844 Description: Fixed the issue of when TCP transport was used on
RDMA-capable setup, this led to lower performance and occasional
hangs during mpi_finalize.

Keywords: TCP; RDMA; MPI; performance

Discovered in Version: 2.13

Fixed in Version: 2.13.1 LTS

3139906 Description: Port counters were not updated for UCX traffic when
creating QP with DevX.

Keywords: UCX; QP; DevX

Discovered in Version: 2.13

Fixed in Version: 2.13.1 LTS

3084053 Description: Fixed the issue where performance of some applications
was lower compared with HPC-X v2.10 and earlier.

Keywords: Performance

Discovered in Version: 2.12

Fixed in Version: 2.13

3163697 Description: Fixed the issue of when the client application used more
than 1024 file descriptors (range limit defined by FD_SETSIZE),
libsharp was prevented from using any more file descriptors. Using
poll() instead of select() enables using the full range of allowed file
descriptors by Linux.

Keywords: File descriptor; libsharp; HCOLL; HPC-X

Discovered in Version: 2.12

Fixed in Version: 2.13

3208615 Description: Fixed Data Integrity failure in Broadcast when using
sparse subarray data type in OMPI with hcoll library by using the TRUE
extent of the datatype, which includes any additional padding the
datatype may require.

Keywords: OMPI; HCOLL; data integrity

Discovered in Version: 1.12

Fixed in Version: 2.13

4549 Description: Fixed the issue where UCX may have failed to compile
with Clang compiler version 9 if --dynamic-list-data flag was
used in the compilation.
(Github issue: https://github.com/openucx/ucx/issues/4549)

Keywords: Clang compiler, UCX

Discovered in Version: 2.6 (UCX 1.8)

https://github.com/openucx/ucx/issues/4549

66

Internal Reference Number Issue

Fixed in Version: 2.11 (UCX 1.13)

- Description: DevX does not work on architectures without "Write
combining" support, such as some flavors of ARM, prompting the
following error message.
UCX ERROR mlx5dv_devx_alloc_uar() failed: Operation not

supported

Keywords: DevX, UCX, ARM

Discovered in Version: 2.8 (UCX 1.10)

Fixed in Version: 2.9 (UCX 1.11)

- Description: NVIDIA SHARP library is not available in HPC-X for the
Community OFED and Inbox OFED.

Keywords: NVIDIA SHARP library

Discovered in Version: 2.0

Fixed in Version: 2.9 (UCX 1.11)

2190337 Description: Fixed the issue where errors from the UCX TCP transport
about refused connection may have appeared.

Keywords: UCX_TLS, UCX, TCP

Discovered in Version: 2.7 (UCX 1.9)

Fixed in Version: 2.8 (UCX 1.10)

2131893 Description: Fixed the issue where OpenSHMEM or MPI applications
may have failed with the following error:
“Fatal: endpoint reconfiguration not supported yet”
This could happen when running in heterogeneous environment, such
as when different nodes in the job had different types of HCAs or PCI
atomics configuration.

Keywords: OpenSHMEM, UCX, MPI

Discovered in Version: 2.7 (UCX 1.9)

Fixed in Version: 2.8 (UCX 1.10)

2084450 Description: Fixed the issue where the osu_ialltoallw and
osu_iallgather benchmarks may have not performed well over RoCE
with the ud_x transport starting messages of 8192 bytes.

Keywords: osu_ialltoallwת osu_iallgather, ud_x transport, RoCE, UCX

Discovered in Version: 2.6 (UCX 1.8)

Fixed in Version: 2.8 (UCX 1.10)

67

•

•

Internal Reference Number Issue

1886580 Description: Fixed the issue where the below error messages might
have been received when running OMPI with ‘direct modex’, i.e.
when the following command line parameters were used:
-mca pmix_base_async_modex 1 -mca mpi_add_procs_cutoff 0

-mca pmix_base_collect_data 0
Error messages:

PMIX ERROR: NOT-FOUND in file server/

pmix_server_get.c at line 751

PMIX ERROR: NOT-FOUND in file client/

pmix_client_get.c at line 334

Keywords: OMPI, pmix, direct modex, full modex

Discovered in Version: 2.5 (OpenMPI 4.0.x)

Fixed in Version: 2.7 (OpenMPI 4.0.x)

4710 Description: Fixed the issue of when using UCX with XPMEM module
on Kernels 4.10 and above, there might have been a "Bus error" due
to an issue in the XPMEM driver.
(Github issue: https://github.com/openucx/ucx/issues/4710)

Keywords: UCX, XPMEM

Discovered in Version: 2.6 (UCX 1.8)

Fixed in Version: 2.7 (UCX 1.9)

2096036 Description: Fixed the issue where the verifier test may have failed
with the following error when using the ud_x transport:
ib_mlx5_log.c:139 Local QP operation on mlx5_0:1/IB (synd

0x2 vend 0x68 hw_synd 0/66)

ib_mlx5_log.c:139 UD QP 0x37161 wqe[368]: SEND --- [rqpn

0x36a01 rlid 93] [inl len 16]

Keywords: ud_x transport, UCX

Discovered in Version: 2.6 (UCX 1.8)

Fixed in Version: 2.7 (UCX 1.9)

2095618 Description: Fixed the issue where the host may have run out of
memory when enabling Hardware Tag-Matching.

Keywords: Hardware Tag-Matching, UCX

Discovered in Version: 2.6 (UCX 1.8)

Fixed in Version: 2.7 (UCX 1.9)

3758 Description: Fixed the issue of when running UCX with TCP transport
on more than 16 hosts with full PPN (processes per node), the
following error message might have appeared.
sock.c:228 UCX ERROR recv(fd=1377) failed: 104
(Github issue: https://github.com/openucx/ucx/issues/3758)

Keywords: TCP, UCX, backlog

Discovered in Version: 2.5 (UCX 1.7)

Fixed in Version: 2.6 (UCX 1.8)

https://github.com/openucx/ucx/issues/4710
https://github.com/openucx/ucx/issues/3758

68

Internal Reference Number Issue

1582208 Description: Fixed the issue where sending data over multiple SHMEM
contexts may lead to memory corruption or segmentation fault.

Keywords: Open SHMEM, segmentation fault

Discovered in Version: 2.3 (Open MPI v4.0.x, OpenSHMEM v1.4)

Fixed in Version: 2.5 (Open MPI v4.0.x, OpenSHMEM v1.4)

2934 Description: Fixed the issue where OpenMPI and OpenSHMEM
applications may hang with DC transport.
(Github issue: https://github.com/openucx/ucx/issues/2934)

Keywords: UCX, Open MPI, DC

Discovered in Version: 2.3 (Open MPI v4.0.x, OpenSHMEM v1.4)

Fixed in Version: 2.5 (Open MPI v4.0.x, OpenSHMEM v1.4)

1307243 Description: Fixed the issue where one-sided tests may fail with a
segmentation fault.

Keywords: OSC UCX, Open MPI, one-sided

Discovered in Version: 2.1 (Open MPI 3.1.x)

Fixed in Version: 2.5 (Open MPI 4.0.x)

-
Description: Fixed the issue where OpenSHMEM atomic operations
AND/OR/XOR for datatypes int32/int64/uint32/uint64 were not
implemented, which might have caused build failures.

Keywords: OpenSHMEM atomic, Open MPI

Discovered in Version: 2.3 (Open MPI v4.0.x, OpenSHMEM v1.4)

Fixed in Version: 2.4 (Open MPI v4.0.x, OpenSHMEM v1.4)

2226 Description: Fixed the issue where the following assertion may have
failed in certain cases:
Assertion `ep->rx.ooo_pkts.head_sn == neth->psn' failed
(Gihub issue: https://github.com/openucx/ucx/issues/2226)

Keywords: UCX, assertion

Discovered in Version: 2.1 (UCX 1.3)

Fixed in Version: 2.4 (UCX 1.6)

- Description: Fixed the issue where zero-length OpenSHMEM
collectives might have failed due to incomplete implementation.

Keywords: OpenSHMEM atomic, Open MPI

Discovered in Version: 2.3 (Open MPI v4.0.x, OpenSHMEM v1.4)

Fixed in Version: 2.4 (Open MPI v4.0.x, OpenSHMEM v1.4)

 - Description: Fixed the issue where OSC UCX module was not selected
by default on ConnectX-4/ConnectX-5 HCAs.

Keywords: OSC UCX, one-sided, Open MPI

Discovered in Version: 2.3 (Open MPI v4.0.x, OpenSHMEM v1.4)

Fixed in Version: 2.4 (Open MPI v4.0.x, OpenSHMEM v1.4)

- Description: Fixed the issue where using UCX on ARM hosts may result
in hangs due to a known issue in Open MPI when running on ARM.

https://github.com/openucx/ucx/issues/2934
https://github.com/openucx/ucx/issues/2226

69

•

•

•

Internal Reference Number Issue

Keywords: UCX

Discovered in Version: 1.3 (Open MPI 1.8.2)

Fixed in Version: 2.3 (Open MPI 4.0.x)

- Description: MCA
options rmaps_dist_device and rmaps_base_mapping_policy are now
functional.

Keywords: Process binding policy, NUMA/HCA locality

Discovered in Version: 2.0 (Open MPI 3.0.0)

Fixed in Version: 2.3 (Open MPI 4.0.x)

2111 Description: Fixed the issue of when UCX was used in the multi-
threaded mode, it might have taken the osu_latency_mt test a long
time to be completed.

(Github issue: https://github.com/openucx/ucx/issues/2111)

Keywords: UCX, multi-threaded

Discovered in Version: 2.1 (UCX 1.3)

Fixed in Version: 2.3 (UCX 1.5)

2267 Description: Fixed the issue where the following error message might
have appeared when running at the scale of 256 ranks with the RC
transport, when UD is used for wireup only:
“ Fatal: send completion with error: Endpoint timeout ”.

(Github issue: https://github.com/openucx/ucx/issues/2267)

Keywords: UCX

Discovered in Version: 2.1 (UCX 1.3)

Fixed in Version: 2.3 (UCX 1.5)

2702 Description: Fixed the issue of when using the Hardware Tag Matching
feature, the following error messages may have been printed:

“rcache.c:481 UCX WARN failed to register region 0xdec25a0
[0x2b7139ae0020..0x2b7139ae2020]: Input/output error”
“ucp_mm.c:105 UCX ERROR failed to register address
0x2b7139ae0020 length 8192 on md[1]=ib/mlx5_0: Input/output
error”
“ucp_request.c:259 UCX ERROR failed to register user buffer
datatype 0x20 address 0x2b7139ae0020 len 8192: Input/output
error”

(Github issue: https://github.com/openucx/ucx/issues/2702)

Keywords: Hardware Tag Matching

Discovered in Version: 2.2 (UCX 1.4)

Fixed in Version: 2.3 (UCX 1.5)

2454 Description: Fixed the issue where some one-sided benchmarks may
have hung when using “osc ucx”.
For example: osu-micro-benchmarks-5.3.2/osu_get_acc_latency
(Latency Test for accumulate with Active/Passive Synchronization).

(Github issue: https://github.com/openucx/ucx/issues/2454)

https://github.com/openucx/ucx/issues/2111
https://github.com/openucx/ucx/issues/2267
https://github.com/openucx/ucx/issues/2702
https://github.com/openucx/ucx/issues/2454

70

Internal Reference Number Issue

Keywords: UCX, one_sided

Discovered in Version: 2.2 (UCX 1.4)

Fixed in Version: 2.3 (UCX 1.5)

2670 Description: Fixed the issue of when enabling the Hardware Tag
Matching feature on a large scale, the following error message may
have been printed due to the increased threshold for BCOPY
messages:
“mpool.c:177 UCX ERROR Failed to allocate memory pool chunk: Out
of memory.”

(Github issue: https://github.com/openucx/ucx/issues/2670)

Keywords: Hardware Tag Matching

Discovered in Version: 2.2 (UCX 1.4)

Fixed in Version: 2.3 (UCX 1.5)

1295679 Description: Fixed the issue where OpenSHMEM group cache had a
default limit of 100 entries, which might have resulted in OpenSHMEM
application exiting with the following message: “ group cache
overflow on rank xxx: cache_size = 100 ”.

Keywords: OpenSHMEM, Open MPI

Discovered in Version: 2.1 (Open MPI 3.1.x)

Fixed in Version: 2.2 (Open MPI 3.1.x)

- Description: Fixed the issue where UCX did not work out-of-the-box
with CUDA support.

Keywords: UCX, CUDA

Discovered in Version: 2.2 (UCX 1.4)

Fixed in Version: 2.1 (UCX 1.3)

1926 Description: Fixed the issue of when using multiple transports, invalid
data was sent out-of-sync with Hardware Tag Matching traffic.

(Github issue: https://github.com/openucx/ucx/issues/1926)

Keywords: Hardware Tag Matching

Discovered in Version: 2.1 (UCX 1.3)

Fixed in Version: 2.2 (UCX 1.4)

1949 Description: Fixed the issue where Hardware Tag Matching might not
have functioned properly with UCX over DC transport.
(Github issue: https://github.com/openucx/ucx/issues/1949)

Keywords: UCX, Hardware Tag Matching, DC transport

Discovered in Version: 2.0

Fixed in Version: 2.1

- Description: Fixed job data transfer from SD to libsharp.

Keywords: NVIDIA SHARP library

Discovered in Release: 1.9

https://github.com/openucx/ucx/issues/2670
https://github.com/openucx/ucx/issues/1926
https://github.com/openucx/ucx/issues/1949

71

Internal Reference Number Issue

Fixed in Release: 1.9.7

884482 Description: Fixed internal HCOLL datatype mapping.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

884508 Description: Fixed internal HCOLL datatype lower bound calculation.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

884490 Description: Fixed allgather unpacking issues.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

885009 Description: Fixed wrong answer in alltoallv.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

882193 Description: Fixed mcast group leak in HCOLL.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

- Description: Added IN_PLACE support for alltoall, alltoallv, and
allgatherv.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

- Description: Fixed an issue related to multi-threaded MPI_Bcast.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

Salesforce: 316541 Description: Fixed a memory barrier issue in MPI_Barrier on Power
PPC systems.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

Salesforce: 316547 Description: Fixed multi-threaded MPI_COMM_DUP and
MPI_COMM_SPLIT hanging issues.

72

Internal Reference Number Issue

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

894346 Description: Fixed Quantum Espresso hanging issues.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

898283 Description: Fixed an issue which caused CP2K applications to hang
when HCOLL was enabled.

Keywords: HCOLL, FCA

Discovered in Release: 1.7.405

Fixed in Release: 1.7.406

906155 Description: Fixed an issue which caused VASP applications to hang in
MPI_Allreduce.

Keywords: HCOLL, FCA

Discovered in Release: 1.6

Fixed in Release: 1.7.406

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain
functionality, condition, or quality of a product. Neither NVIDIA Corporation nor any of its direct or indirect subsidiaries
and affiliates (collectively: “NVIDIA”) make any representations or warranties, expressed or implied, as to the accuracy
or completeness of the information contained in this document and assumes no responsibility for any errors contained
herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to
this document, at any time without notice. Customer should obtain the latest relevant information before placing orders
and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for
inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable
and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability
of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in
this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product
designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third
party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all
associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason
whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation and/or

Mellanox Technologies Ltd. in the U.S. and in other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright
© 2024 NVIDIA Corporation & affiliates. All Rights Reserved.

	Release Notes
	Changes and New Features
	HPC-X General Support
	HPC-X Requirements
	HPC-X Content
	Important Note
	Supported Platforms and Operating Systems

	Bug Fixes in this Version
	Known Issues

	Installing and Loading HPC-X
	Installing HPC-X
	Building and Running Applications with HPC-X
	Building HPC-X with the Intel Compiler Suite
	Loading HPC-X Environment from Modules
	HPC-X Environments

	Running, Configuring and Rebuilding HPC-X
	Profiling MPI API
	Rebuilding Open MPI
	Rebuilding Open MPI Using a Helper Script
	Rebuilding Open MPI from HPC-X Sources

	Loading KNEM Module
	Running MPI with HCOLL
	Direct Launch of Open MPI and OpenSHMEM using SLURM 'srun'

	HCOLL
	Overview
	Using HCOLL
	Enabling HCOLL in Open MPI
	Tuning HCOLL Setting
	Selecting Ports and Devices
	Enabling Offloaded MPI Non-blocking Collectives
	Enabling Multicast Accelerated Collectives
	Configuring IPoIB

	Enabling NVIDIA SHARP Software Accelerated Collectives
	GPU Buffer Support in HCOLL
	Limitations

	Unified Communication - X Framework Library
	Overview
	Supported CPU Architectures

	Configuring UCX
	Using UCX with OpenMPI
	Configuring UCX with XPMEM

	Tuning UCX Settings
	UCX Features
	Hardware Tag Matching
	Single Root IO Virtualization (SR-IOV)
	Adaptive Routing
	Error Handling

	CUDA GPU
	Overview
	Supported Architectures
	System Requirements

	Multi-Rail
	Memory in Chip (MEMIC)
	PKey Support
	Close Protocol
	RoCE LAG
	Flow Control for RDMA Read Operations
	PCIe Relaxed Ordering Support
	UCX Configuration File
	Instrumentation and Monitoring FUSE-based Tool
	Requirements
	Limitations

	UCX Utilities
	ucx_perftest

	Generating UCX Statistics for Open MPI/OpenSHMEM

	Unified Collective Communication (UCC)
	TL/UCP Special Service Worker
	Out-Of-Box Native GPU Allreduce
	Data Type Support in CUDA Executor Component (EC)
	EC/CUDA One-shot Kernel with Cooperative Launch

	PGAS Shared Memory Access Overview
	HPC-X Open MPI/OpenSHMEM
	Running HPC-X OpenSHMEM
	Running HPC-X OpenSHMEM with UCX
	Enabling UCX for HPC-X OpenSHMEM Jobs

	Developing Application using HPC-X OpenSHMEM together with MPI
	HPC-X® OpenSHMEM Tunable Parameters
	OpenSHMEM MCA Parameters for Symmetric Heap Allocation
	Parameters Used to Force Connection Creation
	OpenSHMEM MCA Parameters for shmem_quiet, shmem_fence and shmem_barrier_all

	Tuning MTU Size to the Recommended Value
	HPC Applications on Intel Sandy Bridge Machines

	ClusterKit
	Running ClusterKit
	Running ClusterKit via Script

	NCCL-RDMA-SHARP Plugins
	Overview
	NCCL UCX Plugin
	Running NCCL UCX Plugin
	Performance Tuning
	Example
	NCCL Tests Benchmark Example

	NCCL SHARP Plugin
	NCCL Test Benchmark Example

	Common Abbreviations
	Syntax Conventions

	User Manual Revision History
	Release Notes History
	Release Notes Change Log History
	HPC-X Toolkit Change Log History
	FCA Change Log History
	HPC-X™ Open MPI/OpenSHMEM Change Log History

	Bug Fixes History

