
NVIDIA Messaging Accelerator (VMA)

Documentation Rev 9.8.60

2

Table of Contents
1 Overview .. 6

2 Intended Audience... 7

2.1 Document Revision History .. 7

3 Release Notes... 8

3.1 System Requirements and Interoperability ... 8

3.1.1 System Requirements .. 8

3.1.2 VMA Release Contents.. 9

3.1.3 Certified Applications .. 9

3.2 Changes and New Features.. 9

3.2.1 Changes and New Features in this version .. 9

3.2.2 Deprecated Features and Support.. 9

3.3 Bug Fixes in this Version ... 10

3.4 Known Issues... 10

4 Introduction to VMA ..18

4.1 VMA Overview ... 18

4.2 Basic Features ... 18

4.3 Target Applications ... 18

4.4 Advanced VMA Features.. 19

5 VMA Library Architecture ..20

5.1 Top-Level... 20

5.2 VMA Internal Thread.. 20

5.3 Socket Types ... 21

6 VMA Installation ...22

6.1 Installing VMA ... 22

6.1.1 Installing VMA Binary as Part of NVIDIA® Drivers..................................22

6.1.2 NVIDIA® MLNX_OFED Driver for Linux ..22

6.1.3 NVIDIA® MLNX_EN Driver for Linux..23

6.1.4 Starting the Drivers..23

6.2 Running VMA ... 23

6.2.1 Running VMA using non-root Permission ..24

6.2.2 Benchmarking Example ...24

6.3 VMA Installation Options ... 28

3

6.3.1 Installing VMA Binary Manually...28

6.3.2 Building VMA From Sources ...30

6.3.3 Installing VMA in RHEL 7.x Inbox...31

6.3.4 Installing VMA as DOCA Profile ...31

6.4 Uninstalling VMA .. 32

6.4.1 Automatic VMA Uninstallation ...32

6.4.2 Manual VMA Uninstallation ...32

6.4.3 VMA in RHEL 7.x Inbox Uninstallation...32

6.5 Upgrading libvma.conf ... 33

6.6 Port Type Management / VPI Cards Configuration 33

6.7 Basic Performance Tuning ... 33

6.7.1 VMA Tuning Parameters ...33

6.7.2 Binding VMA to the Closest NUMA ...34

6.7.3 Configuring the BIOS ..35

7 VMA Configuration ..36

7.1 Configuring libvma.conf ... 36

7.1.1 Configuring Target Application or Process..36

7.1.2 Configuring Socket Transport Control...37

7.1.3 Example of VMA Configuration...38

7.2 VMA Configuration Parameters.. 38

7.2.1 Configuration Parameters Values ..40

7.2.2 Beta Level Features Configuration Parameters52

7.3 Loading VMA Dynamically.. 53

8 Advanced Features ...55

8.1 Packet Pacing.. 55

8.1.1 Prerequisites..55

8.1.2 Usage ..55

8.2 Precision Time Protocol (PTP)... 56

8.2.1 Prerequisites..56

8.2.2 Usage ..56

8.3 On-Device Memory.. 56

8.3.1 Prerequisites..57

8.3.2 Verifying On-Device Memory Capability in the Hardware57

8.4 TCP_QUICKACK Threshold ... 57

4

8.5 Linux Guest over Windows Hypervisor... 58

8.5.1 Prerequisites..58

8.5.2 VMA Daemon Design ...58

8.5.3 TAP Statistics ...58

9 Using sockperf with VMA...60

9.1 Example - Running sockperf Ping-pong Test .. 60

10 VMA Extra API..61

10.1 Overview of the VMA Extra API ... 61

10.2 Using VMA Extra API .. 61

10.3 Control Off-load Capabilities During Run-Time....................................... 62

10.3.1 Adding libvma.conf Rules During Run-Time..62

10.3.2 Creating Sockets as Offloaded or Not-Offloaded62

10.4 Packet Filtering ... 63

10.4.1 Zero Copy recvfrom() ...63

10.4.2 Freeing Zero Copied Packet Buffers ..64

10.5 Dump fd Statistics using VMA Logger... 65

10.6 "Dummy Send" to Improve Low Message Rate Latency.............................. 66

10.6.1 Verifying “Dummy Send” capability in HW...66

10.6.2 “Dummy Packets” Statistics..67

10.7 SocketXtreme.. 67

10.7.1 VMA Buffer ..67

10.7.2 Polling for VMA Completions ...68

10.7.3 Getting Number of Attached Rings ..69

10.7.4 Getting Ring FD ..69

10.7.5 Free VMA Packets ..69

10.7.6 Decrement VMA Buffer Reference Counter ..70

10.7.7 Increment VMA Buffer Reference Counter ...70

10.7.8 Usage Example ...71

10.7.9 Installation..72

10.7.10 Limitations ..72

11 Monitoring, Debugging, and Troubleshooting73

11.1 Monitoring – the vma_stats Utility ... 73

11.1.1 Examples ..74

11.2 Debugging .. 79

5

11.2.1 VMA Logs ..79

11.2.2 Ethernet Counters ...80

11.2.3 tcpdump...80

11.2.4 NIC Counters..80

11.3 Peer Notification Service .. 80

11.4 Troubleshooting ... 80

12 Appendixes...84

12.1 Appendix: Sockperf – UDP/TCP Latency and Throughput Benchmarking Tool ... 84

12.1.1 Overview ..84

12.1.2 Configuring the Routing Table for Multicast Tests.................................85

12.1.3 Latency with Ping-pong Test ...86

12.1.4 Bandwidth and Packet Rate with Throughput Test87

12.1.5 sockperf Subcommands ...88

12.1.6 Debugging sockperf..91

12.1.7 Troubleshooting sockperf ...91

12.2 Appendix: Multicast Routing .. 92

12.2.1 Multicast Interface Definitions...92

13 Common Abbreviations, Typography and Related Documents..................93

13.1 Glossary .. 93

13.1.1 Typography..93

14 User Manual Revision History..95

15 Release Notes Revision History ...96

15.1 Release Notes Change History .. 96

15.2 Bug Fixes History.. 97

6

•
•

•
•
•

•
•
•
•
•
•

•
•

1 Overview
The NVIDIA® Messaging Accelerator (VMA) library accelerates latency-sensitive and throughput-
demanding TCP and UDP socket-based applications by offloading traffic from the user-space directly
to the network interface card (NIC) or Host Channel Adapter (HCA), without going through the
kernel and the standard IP stack (kernel-bypass).

VMA leverages the following benefits:

Implements the legacy POSIX socket interface
Increases:

Throughput
Packets per Second (PPS)
Requests per Second (RPS)

Reduces:
Network latency
The magnitude of network latency spikes
Context switches and interrupts
Network congestion
Data copying and moving in unicast and multicast applications

Improves CPU utilization
Compatible with Ethernet

VMA can work on top of MLNX_OFED driver stack and on a lighter driver stack, MLNX_EN.

7

•
•
•
•
•

2 Intended Audience
Market data professionals
Messaging specialists
Software engineers and architects
Systems administrators tasked with installing/uninstalling/maintaining VMA
ISV partners who want to test/integrate their traffic-consuming/producing applications with
VMA

2.1 Document Revision History
For the list of changes made to this document, refer to User Manual Revision History.

8

•
•
•
•

•
•

3 Release Notes
Revision Date Description

9.8.60 May 06, 2024 Initial release of this document version.

The release note pages provide information on the NVIDIA Messaging Accelerator (VMA), such as
changes and new features, system requirements, interoperability parameters, and reports on known
software issues as well as bug fixes.

System Requirements and Interoperability
Changes and New Features
Bug Fixes in this Version
Known Issues

3.1 System Requirements and Interoperability

3.1.1 System Requirements
The following table presents the currently certified combinations of stacks and platforms, and
supported CPU architectures for the current VMA version.

Specification Value

Network Adapter Cards NVIDIA ConnectX-7 (4x25G)

NVIDIA ConnectX-7 (200G) Crypto-disabled

NVIDIA ConnectX-5 / NVIDIA ConnectX-5 Ex

Firmware 28.41.1000

16.35.3502

Driver Stack MLNX_OFED v24.04-0.6.6.0
MLNX_EN v24.04-0.6.6.0

Supported Operating Systems and Kernels Ubuntu 20.04, and RH 8.7, 8.6

CPU Architecture x86_64 (Intel Xeon)

Minimum memory requirements 1 GB of free memory for installation 800 MB per process
running with VMA

Minimum disk space requirements 1 GB

Transport Ethernet/InfiniBand

9

•
•
•
•
•
•

•

•

3.1.2 VMA Release Contents
Description

Binary RPM and DEB packages for 64-bit architecture for
Linux distribution

libvma-9.8.60-1.x86_64.rpm
libvma-devel-9.8.60-1.x86_64.rpm
libvma-utils-9.8.60-1.x86_64.rpm
libvma_9.8.60-1_amd64.deb
libvma-dev_9.8.60-1_amd64.deb
libvma-utils_9.8.60-1_amd64.deb

Documentation VMA Release Notes
VMA Installation and Quick Start Guide
VMA User Manual

3.1.3 Certified Applications
The VMA library has been successfully tested and is certified to work with the applications listed in
the following table.

Application Company / Source Type Notes

sockperf NVIDIA® (Open Source) Bandwidth and Latency
Benchmarking

Version 3.10 (https://
github.com/mellanox/
sockperf)

netperf Open Source Bandwidth and Latency
Benchmarking

Version 2.6.0

NetPIPE Open Source Network Protocol Independent
Performance Evaluator

Version 3.7.2

UMS (formerly LBM) Informatica Message Middleware
Infrastructures

Version 6.7

3.2 Changes and New Features

3.2.1 Changes and New Features in this version
Revision Feature/Category Description

9.8.60 VMA Installation New (Beta) method for VMA installation - See Installing VMA as DOCA
Profile

Bug Fixes See Bug Fixes in this Version section.

3.2.2 Deprecated Features and Support
As of VMA v9.0.2, VMA will no longer be backward compatible with MLNX_OFED versions
earlier than v5.0-1.0.0.0
Multi Packet Receive Queue beta functionality is removed as of VMA v9.3.1

https://github.com/mellanox/sockperf

10

•
•

•

RDMA experimental verbs library (mlnx_lib)
VMA v9.3.1 and up do not enforce the disable_raw_qp_enforcement option; use the
CAP_NET_RAW option instead
IPoIB is no longer supported with MLNX_OFED v5.1 and above

3.2.2.1 Important Notes

3.3 Bug Fixes in this Version
For the list of older bug fixes, see Bug Fixes History.

Internal
Ref.

Number

Details

3749310 Description: Compared to the kernel, the VMA is slower at sending the expected TCP keepAlive
probes.

Keywords: keepalive

Discovered in Version: 9.8.51

Fixed in Version: 9.8.60

3749337 Description: VMA corresponds differently from the kernel when setting a TCP keepAlive timer to
-1

Keywords: keepalive

Discovered in Version: 9.8.51

Fixed in Version: 9.8.60

3.4 Known Issues
The following is a list of general existing limitations and known issues of the various components of
VMA.

Internal
Referenc

e
Number

Details

3876349 Description: There is a risk of TX data corruption when over 16 application threads are involved
in the following conditions: over 16 threads must be handling network sockets, the
XLIO_RING_ALLOCATION_LOGIC_TX setting equals either 20 or 30, and there is a high traffic rate
of packets smaller than 205 bytes.

We recommend using libnl3 as it is the latest version and includes fixes related to

libnl1



Bonding Active-Backup (mode 1) is supported with limitations shown in Known Issues
section.



11

Internal
Referenc

e
Number

Details

Workaround: Either increase the number of BlueFlame registers with MLX5_TOTAL_UUARS env
variable or disable BlueFlame doorbell method with MLX5_SHUT_UP_BF=1. Disabling BlueFlame
will lead to a latency degradation.

Keywords: multithreading, high concurrency, data corruption

Discovered in Version: 9.8.60

3068120 Description: Multipath routing is not supported. A warning is printed if such a route is configured
in the system. Note that traffic that is routed via a multipath route may be unsent.

Workaround: Covert multipath routes to a regular route with a single next hop.

Keywords: ECMP; multipath routing

Discovered in Version: 9.6.4

2371415 Description: In case the switch replicates a UDP packet for both ports, application will get a
duplicated packet on a bonding interface.

Workaround: N/A

Keywords: RoCE LAG; Bonding

Discovered in Version: 9.2.2

2394023 Description: Active-backup fail_over_mac = 1 mode is not be supported on bonding interface.

Workaround: N/A

Keywords: Bonding

Discovered in Version: 9.2.2

2393571 Description: Detaching/attaching slaves on bond interface during runtime is not supported.

Workaround: N/A

Keywords: Bonding

Discovered in Version: 9.2.2

1554637 Description: VMA offloads a NetVSC device (Windows Hyper-V network driver) only if SR-IOV is
enabled upon application initialization.

Workaround: N/A

Keywords: Windows Hypervisor, NetVSC

Discovered in Version: 8.7.5

1542628 Description: Device memory programming is not supported on VMs that lack Blue Flame support.

Workaround: N/A

Keywords: MEMIC, Device Memory, Virtual Machine, Blue flame

Discovered in Version: 8.7.5

12

•
•
•

•

•

Internal
Referenc

e
Number

Details

1262610 Description: When working with Linux guest over Windows Hypervisor, and exceeding the
maximum amount of flow steering rules supported by the VM, the following error message will
appear:

VMA ERROR: rfs[0x32ea410]:273:create_ibv_flow() Create of QP flow ID (tag: 0) failed with flow dst:5
.5.5.77:6891, src:0.0.0.0:0, proto:UDP (errno=12 - Cannot allocate memory)
VMA ERROR: ring_simple[0x3292d50]:555:attach_flow() attach_flow=0 failed!

As a result, TCP Receive Flow will not be supported, and UDP Receive Flow will not be
offloaded.

Workaround: Reduce the amount of supported VMs for the device in the Hypervisor to increase
the total flow steering rules amount for each VM.

Keywords: Windows Hypervisor, flow steering limit

Discovered in Version: 8.5.7

1201675 Description: When a non-privileged user uses VMA with RHEL inbox to perform networking
operations (i.e. allocate IB resources) VMA crashes with a segmentation fault.

Workaround: Use VMA with root privileges on the RHEL inbox driver.

Keywords: RHEL inbox driver, segmentation fault

Discovered in Version: 8.4.10

— Description: The following VMA_ERRORs will be displayed when running ping with root
permissions:

VMA ERROR: ring_simple[0x7f257d18d720]:256:create_resources() ibv_create_comp_channel for tx
failed. m_p_tx_comp_event_channel = (nil) (errno=13 Permission denied)
VMA ERROR: ib_ctx_handler213:mem_dereg() failed de-registering a memory region (errno=13 Permission
denied)

Workaround: N/A

Keywords: VMA_ERROR while running ping with root permissions

Discovered in Version: 8.4.8

965237 Description: The following sockets APIs are directed to the OS and are not offloaded by VMA:
int socketpair(int domain, int type, int protocol, int sv[2]);
int dup(int oldfd);
int dup2(int oldfd, int newfd);

Workaround: N/A

Keywords: sockets, socketpair, dup, dup2

965227 Description: Multicast (MC) loopback within a process is not supported by VMA:
If an application process opens 2 (or more) sockets on the same MC group they will not get
each other's traffic.

Both sockets will receive all ingress traffic coming from the wire

Workaround: N/A

Keywords: Multicast, Loopback

MC loopback between different VMA processes always work.

13

•
•

•
•
•

Internal
Referenc

e
Number

Details

965227 Description: MC loopback between VMA and the OS limitation.
The OS will reject loopback traffic coming from the NIC
MC traffic from the OS to VMA is functional

Workaround: N/A

Keywords: Multicast, Loopback

965227 Description: MC loopback Tx is currently disabled and setsockopt (IP_MULTICAST_LOOP) is not
supported.

Workaround: N/A

Keywords: Multicast, Loopback

919301 Description: VMA supports bonding in the following modes:
For active-passive (mode=1), use either fail_over_mac=0 or fail_over_mac=1.
For active-active (mode=4), use fail_over_mac=0.
For VLAN over bond, use fail_over_mac=0 for traffic to be offloaded

Workaround: N/A

Keywords: High Availability (HA)

1011005 Description: VMA SELECT option supports up to 200 sockets in TCP.

Workaround: Use ePoll that supports up to 6000 sockets.

Keywords: SockPerf

977899 Description: An unsuccessful trial to connect to a local interface, is reported by VMA as
Connection timeout rather that Connection refused.

Workaround: N/A

Keywords: Verification

1019085 Description: Poll is limited with the amount of sockets.

Workaround: Use ePoll for large amount of sockets (tested up to 6000)

Keywords: Poll, ePoll

2394023 Description: VLAN on the bond interface does not function properly when bonding is configured
with fail_over_mac=1 due to a kernel bug.

Workaround: Set the fail_over_mac=0

Keywords: VLAN and High Availability (HA)

— Description: RX UDP UC and MC traffic in Ethernet with fragmented packages (message size is
larger than MTU) is not offloaded by VMA and will pass through the Kernel network stack. There
might be performance degradation.

Workaround: N/A

Keywords: Issues with UDP fragmented traffic reassembly

— Description: The following VMA_PANIC will be displayed when there are not enough open files
defined on the server:

VMA PANIC : si[fd=1023]:51:sockinfo() failed to create internal epoll (ret=-1 Too many open files)

14

Internal
Referenc

e
Number

Details

Workaround: Verify that the number of max open FDs (File Descriptors) in the system (ulimit -n)
is twice as number of needed sockets. VMA internal logic requires one additional FD per
offloaded socket.

Keywords: VMA_PANIC while opening large number of sockets

— Description: In MLNX_OFED versions earlier than v4.0-2.0.0.0 and VMA v8.2.10, socket API is only
supported in the child process if the parent process has not called any socket routines prior to
calling fork.
In MLNX_OFED versions 4.0-1.6.1.0, VMA 8.2.10 and later the above restriction no longer exists
however the child process cannot use any of the parent’s socket resources.

Workaround: VMA supports fork() if VMA_FORK=1 (is enabled) and the Mellanox-supported stack
OFED 4.0-1.6.1.0 or later is used. MLNX_OFED support for fork is for kernels supporting the
MADV_DONTFORK flag for madvise() (2.6.17 and later), provided that the application does not
use threads.
The Posix system() call is supported.

Keywords: There is limited support for fork().

— Description: Applications written in Java use IPv6 by default which is not supported by VMA and
may lead to VMA not offloading packets

Workaround: To change Java to work with IPv4, instruct the application to use “Java
-Djava.net.preferIPv4Stack=true”

Keywords: Java applications using IPv6 stack

— Description: When a VMA-enabled application is running, there are several cases when it does
not exit as expected pressing CTRL-C.

Workaround: Enable SIGINT handling in VMA, by using:

#export VMA_HANDLE_SIGINTR=1

Keywords: The VMA application does not exit when you press CTRL-C.

— Description: VMA does not support network interface or route changes during runtime

Workaround: N/A

Keywords: Dynamic route or IP changes

— Description: The send rate is higher than the receive rate. Therefore when running one sockperf
server with one sockperf client there will be packets loss.

15

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

Internal
Referenc

e
Number

Details

Workaround: Limit the sender max PPS per receiver capacity.
Example below with the following configuration:

O.S: Red Hat Enterprise
Linux Server release 6.2 (Santiago) Kernel \r on an \m
Kernel: 2.6.32-220.el6.x86_64
link layer: InfiniBand 56G Etheronet 10G
GEN type: GEN3
Architecture: x86_64
CPU: 16
Core(s) per socket: 8
CPU socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 45
Stepping: 7
CPU MHz: 2599.926

MC 1 socket max pps 3M
MC 10 sockets (select) max pps 1.5M
MC 20 sockets (select) max pps 1.5M
MC 50 sockets (select) max pps 1M
UC 1 socket max pps 2.8M
UC 10 sockets max pps 1.5M
UC 20 sockets max pps 1.5M
UC 50 sockets max pps

Keywords: Packets loss occurs when running sockperf with max pps rate

946914 Description: VMA behavior of epoll EPOLLET (Edge Triggered) and EPOLLOUT flags with TCP
sockets differs between OS and VMA.

VMA – triggers EPOLLOUT event every received ACK (only data, not syn/fin)
OS – triggers EPOLLOUT event only after buffer was full.

Workaround: N/A

Keywords: VMA behavior of epoll EPOLLET (Edge Triggered) and EPOLLOUT flags with TCP sockets

— Description: VMA does not close connections located on the same node (sends FIN to peers) when
its own process is terminated.

Workaround: N/A

Keywords: VMA connection

— Description: VMA is not closed (sends FIN to peers) when its own process is terminated when
the /etc/init.d/vma is stopped.

Workaround: Launch /etc/init.d/vma start

Keywords: VMA connection

— Description: When a non-offloaded process joins the same MC address as another VMA process on
the same machine, the non-offloaded process does not get any traffic.

Workaround: Run both processes with VMA

Keywords: MC traffic with VMA process and non VMA process on the same machine

— Description: Occasionally, epoll with EPOLLONESHOT does not function properly.

Workaround: N/A

Keywords: epoll with EPOLLONESHOT

16

Internal
Referenc

e
Number

Details

— Description: Occasionally, when running UDP SFNT-STREAM client with poll muxer flag, the client
side ends with an expected error:

ERROR: Sync messages at end of test lost
ERROR: Test failed.

This only occurs with poll flag

Workaround: Set a higher acknowledgment waiting time value in the sfnt-stream.

Keywords: SFNT-STREAM UDP with poll muxer flag ends with an error on client side

— Description: Occasionally, SFNT-STREAM UDP client hangs when running multiple times.

Workaround: Set a higher acknowledgment waiting time value in the sfnt-stream.

Keywords: SFNT-STREAM UDP client hanging issue

— Description: Ethernet loopback functions only if both sides are either off-loaded or non-
offloaded.

Workaround: N/A

Keywords: Ethernet loopback is not functional between the VMA and the OS

— Description: The following error may occur when running netperf TCP tests with VMA:

remote error 107 'Transport endpoint is not connected

Workaround: Use netperf 2.6.0

Keywords: Error when running netperf 2.4.4 with VMA

— Description: Occasionally, a packet is not sent if the socket is closed immediately after send()
(also for blocking socket)

Workaround: Wait several seconds after send() before closing the socket

Keywords: A packet is not sent if the socket is closed immediately after send()

— Description: It can take for VMA more time than the OS to return from an iomux call if all
sockets in this iomux are empty sockets

Workaround: N/A

Keywords: Iomux call with empty sockets

— Description: TCP throughput with maximum rate may suffer from traffic "hiccups".

Workaround: Set the mps = 1000000

Keywords: TCP throughput with maximum rate

— Description: Netcat with VMA on SLES 11 SP1 does not function.

Workaround: N/A

Keywords: Netcat on SLES11 SP1

— Description: Sharing of HW resources between the different working threads might cause lock
contentions which can affect performance.

Workaround: Use different ring allocation logics.

Keywords: Issues with performance with some multi-threaded applications

17

Internal
Referenc

e
Number

Details

— Description: Known NetPIPE bug - Netpipe is trying to access read-only memory.

Workaround: Upgrade to NetPIPE 3.7 or later.

Keywords: Segmentation fault on NetPIPE exit.

— Description: If VMA runs when VMA_HANDLE_SIGINTR is enabled, an error message might be
written upon exiting.

Workaround: Ignore the error message, or run VMA with VMA_HANDLE_SIGINTR disabled.

Keywords: When exiting, VMA logs errors when the VMA_HANDLE_SIGINTR is enabled.

— Description: VMA suffers from high latency in low message rates.

Workaround: Use “Dummy Send”.

Keywords: VMA ping-pong latency degradation as PPS is lowered

— Description: VMA does not support broadcast traffic.

Workaround: Use libvma.conf to pass broadcast through OS

Keywords: No support for direct broadcast

— Description: Directing VMA to access non-valid memory area will cause a segmentation fault.

Workaround: N/A

Keywords: There is no non-valid pointer handling in VMA

— Description: VMA allocates resources on the first connect/send operation, which might take up
to several tens of milliseconds.

Workaround: N/A

Keywords: First connect/send operation might take more time than expected

1452056 Description: Calling select upon shutdown of socket will return “ready to write” instead of
timeout.

Workaround: N/A

Keywords: Calling select() after shutdown (write) returns socket ready to write, while select() is
expected to return timeout

875674 Description: VMA does not raise sigpipe in connection shutdown.

Workaround: N/A

Keywords: VMA does not raise sigpipe

— Description: VMA polls the CQ for packets; if no packets are available in the socket layer, it takes
longer.

Workaround: N/A

Keywords: When there are no packets in the socket, it takes longer to return from the read call

— Description: Select with more than 1024 sockets is not supported

Workaround: Compile VMA with SELECT_BIG_SETSIZE defined.

Keywords: 1024 sockets

18

•
•
•

•

•

•

•

•
•
•

4 Introduction to VMA

4.1 VMA Overview
NVIDIA® Messaging Accelerator (VMA) library is a network-traffic offload, dynamically-linked user-
space Linux library which serves to transparently enhance the performance of socket-based
networking-heavy applications over an Ethernet network. VMA has been designed for latency-
sensitive and throughput-demanding, unicast, and multicast applications. VMA can be used to
accelerate producer applications and consumer applications and enhance application performance
by orders of magnitude without requiring any modification to the application code.

The VMA library accelerates TCP and UDP socket applications, by offloading traffic from the user-
space directly to the network interface card (NIC) or Host Channel Adapter (HCA), without going
through the kernel and the standard IP stack (kernel-bypass). VMA increases overall traffic packet
rate, reduces latency, and improves CPU utilization.

4.2 Basic Features
The VMA library utilizes the direct hardware access and advanced polling techniques of RDMA-
capable network cards. Utilizing Ethernet’s direct hardware access enables the VMA kernel bypass,
which causes the VMA library to bypass the kernel’s network stack for all IP network traffic transmit
and receive socket API calls. Thus, applications using the VMA library gain many benefits, including:

Reduced context switches and interrupts, which result in:
Lower latencies
Improved CPU utilization

Minimal buffer copies between user data and hardware – VMA needs only a single copy to
transfer a unicast or multicast offloaded packet between hardware and the application’s data
buffers.

4.3 Target Applications
Good application candidates for VMA include, but are not limited to:

Fast transaction-based network applications requiring a high rate of request-response type
operations over TCP or UDP unicast, such as a Market Data Order Gateway application
working with an exchange.
Market-data feed-handler software that produces and consumes multicast data feeds, such as
Wombat WDF and Reuters RMDS, or any home-grown feed handlers.
Any other applications that make heavy use of multicast or unicast that require any
combination of the following:

Higher Packets per Second (PPS) rates than with kernel
Lower data distribution latency
Lower CPU utilization by the multicast consuming/producing application in order to
support further application scalability

19

•

•

•

•

•
•
•
•
•
•
•

4.4 Advanced VMA Features
The VMA library provides several significant advantages:

The underlying wire protocol used for the unicast and multicast solution is standard TCP and
UDP IPv4, which is interoperable with any TCP/UDP/IP networking stack. Thus, the opposite
side of the communication can be any machine with any OS, and can be located on an
Ethernet network

Kernel bypass for unicast and multicast transmit and receive operations. This delivers much
lower CPU overhead since TCP/IP stack overhead is not incurred
Reduced number of context switches. All VMA software is implemented in user space in the
user application’s context. This allows the server to process a significantly higher packet rate
than would otherwise be possible
Minimal buffer copies. Data is transferred from the hardware (NIC/HCA) straight to the
application buffer in user space, with only a single intermediate user space buffer and zero
kernel IO buffers
Fewer hardware interrupts for received/transmitted packets
Fewer queue congestion problems witnessed in standard TCP/IP applications
Supports legacy socket applications – no need for application code rewrite
Maximizes Messages per second (MPS) rates
Minimizes message latency
Reduces latency spikes (outliers)
Lowers the CPU usage required to handle traffic

VMA uses a standard protocol that enables an application to use the VMA for
asymmetric acceleration purposes. A “TCP server side” only application, a “multicast
consuming” only or “multicast publishing” only application can leverage this, while
remaining compatible with Ethernet peers.



20

•

•

•
•
•

•
•

5 VMA Library Architecture

5.1 Top-Level
The VMA library is a dynamically linked user-space library. Use of the VMA library does not require
any code changes or recompiling of user applications. Instead, it is dynamically loaded via the Linux
OS environment variable, LD_PRELOAD. However, it is possible to load VMA library dynamically
without using the LD_PRELOAD parameter, which requires minor application modifications. Using
VMA without code modification is described in Running VMA.

When a user application transmits TCP and UDP, unicast and multicast IPv4 data, or listens for such
network traffic data, the VMA library:

Intercepts the socket receive and send calls made to the stream socket or datagram socket
address families.
Implements the underlying work in user space (instead of allowing the buffers to pass on to
the standard OS network kernel libraries).

VMA implements native RDMA verbs API. The native RDMA verbs have been extended into the
Ethernet RDMA-capable NICs, enabling the packets to pass directly between the user application and
the Ethernet NIC, bypassing the kernel and its TCP/UDP handling network stack.

You can implement the code in native RDMA verbs API, without making any changes to your
applications. The VMA library does all the heavy lifting under the hood, while transparently
presenting the same standard socket API to the application, thus redirecting the data flow.

The VMA library operates in a standard networking stack fashion to serve multiple network
interfaces.

The VMA library behaves according to the way the application calls the bind, connect, and
setsockopt directives and the administrator sets the route lookup to determine the interface to be
used for the socket traffic. The library knows whether data is passing to or from an Ethernet NIC. If
the data is passing to/from a supported HCA or Ethernet NIC, the VMA library intercepts the call and
does the bypass work. If the data is passing to/from an unsupported HCA or Ethernet NIC, the VMA
library passes the call to the usual kernel libraries responsible for handling network traffic. Thus,
the same application can listen in on multiple HCAs or Ethernet NICs, without requiring any
configuration changes for the hybrid environment.

5.2 VMA Internal Thread
The VMA library has an internal thread which is responsible for performing general operations in
order to maintain a high level of performance. These operations are performed in the context of a
separate thread to that of the main application.

The main activities performed by the internal thread are:

Poll the CQ if the application does not do so to avoid packet drops
Synchronize the card clock with the system clock
Handle any application housekeeping TCP connections (which should not impact its data path
performance). For example: sending acknowledgements, retransmissions etc...
Handle the final closing of TCP sockets
Update VMA statistics tool data

21

•
•

•

•

Update epoll file descriptor contexts for available non-offloaded data
Handle bond management

There are several parameters by which the user can set the characteristics of the internal thread.
See section VMA Configuration Parameters for a detailed description.

5.3 Socket Types
The following Internet socket types are supported:

Datagram sockets, also known as connectionless sockets, which use User Datagram Protocol
(UDP)
Stream sockets, also known as connection-oriented sockets, which use Transmission Control
Protocol (TCP)

22

•
•
•
•
•
•
•

•
•
•
•
•

1.
2.

3.

6 VMA Installation
Installing VMA
Running VMA
VMA Installation Options
Uninstalling VMA
Upgrading libvma.conf
Port Type Management / VPI Cards Configuration
Basic Performance Tuning

6.1 Installing VMA
Before you begin, verify you are using a supported operating system and a supported CPU
architecture for your operating system. See supported combinations listed in System Requirements
and Interoperability.

The current VMA version can work on top of both MLNX_OFED driver stack that supports Ethernet
and on a lighter driver stack, MLNX_EN that supports only Ethernet.

The VMA library is delivered as a user-space library, and is called libvma.so.X.Y.Z.

VMA can be installed using one of the following methods:

As part of NVIDIA® drivers (described on this page)
Manually (see Installing the VMA Packages)
Building the sources (see Building VMA From Sources)
In RHEL 7.x Inbox (see Installing VMA in RHEL 7.x Inbox)
Beta - As part of DOCA (see Installing VMA as DOCA profile)

6.1.1 Installing VMA Binary as Part of NVIDIA® Drivers
VMA is a part of the NVIDIA® drivers (MLNX_OFED/MLNX_EN) and it depends on the latest drivers,
firmware, libraries, and kernel modules in the package. This installation assures VMA’s correct
functionality. The installation package has multiple supported distributions for RHEL, Ubuntu, and
others. Pay attention to selecting the suitable distribution for your operating system.

This option suits user who want to install a new VMA version or upgrade to the latest VMA version by
overriding the previous one.

6.1.2 NVIDIA® MLNX_OFED Driver for Linux
Download the latest MLNX_OFED driver from here.
Install the VMA packages.

./mlnxofedinstall --vma

Verify the installation completed successfully.

/etc/infiniband/info

http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

23

1.
2.

3.

1.

2.

6.1.3 NVIDIA® MLNX_EN Driver for Linux
Download the latest MLNX_EN driver from here.
Install the VMA packages.

./install --vma

Verify the installation completed successfully.

$ cat /etc/infiniband/info
#!/bin/bash

echo prefix=/usr
echo Kernel=3.10.0-514.el7.x86_64
echo
echo "Configure options: --with-core-mod
--with-user_mad-mod --with-user_access-mod --with-addr_trans-mod
--with-mlx4-mod --with-mlx4_en-mod --with-mlx5-mod --with-ipoib-mod
--with-srp-mod --with-iser-mod --with-isert-mod"
echo

6.1.4 Starting the Drivers
Start the relevant driver (MLNX_OFED/MLNX_EN):

/etc/init.d/openibd restart

or

systemctl restart openibd.service

Verify that the supported version of firmware is installed.

ibv_devinfo

6.2 Running VMA
This section shows how to run a simple network benchmarking test and compare the kernel network
stack results to VMA.

Before running a user application, you must set the library libvma.so into the environment variable
LD_PRELOAD. For further information, please refer to the VMA User Manual.

Example:

$ LD_PRELOAD=libvma.so sockperf server -i 11.4.3.3

To configure NVIDIA® ConnectX® adapter card ports to work with the desired transport,
please refer to the section Port Type Management/VPI Cards Configuration.



https://www.mellanox.com/products/ethernet-drivers/linux/mlnx_en
http://libvma.so

24

•
•

1.

2.

3.

4.

•

•
•

•
•

As a result, a VMA header message should precede your running application.

VMA INFO: VMA_VERSION: X.Y.Z-R Release built on MM DD YYYY HH:mm:ss
VMA INFO: Cmd Line: sockperf server -i 11.4.3.3
VMA INFO: OFED Version: MLNX_OFED_LINUX-X.X-X.X.X.X:
VMA INFO: ---

The output will always show:

The VMA version
The application’s name (in the above example: Cmd Line: sockperf sr)

The appearance of the VMA header indicates that the VMA library is loaded with your application.

6.2.1 Running VMA using non-root Permission
Check if the LD can find the libvma library.

ld -lvma –verbose

Set the UID bit to enforce user ownership.

sudo chmod u+s /usr/lib64/libvma*
sudo chmod u+s /sbin/sysctl

Grant CAP_NET_RAW privileges to the application.

sudo setcap cap_net_raw,cap_net_admin+ep /usr/bin/sockperf

Launch the application under no root.

LD_PRELOAD=libvma.so sockperf sr --tcp -i 10.0.0.4 -p 12345
LD_PRELOAD=libvma.so sockperf pp --tcp -i 10.0.0.4 -p 12345 -t10

6.2.2 Benchmarking Example

6.2.2.1 Prerequisites
Install sockperf – a tool for network performance measurement
This can be done by either

Downloading and building from source from: https://github.com/Mellanox/sockperf
Using

yum install: yum install sockperf

Two machines, one serves as the server and the second as a client
Management interfaces configured with an IP that machines can ping each other

If LD_PRELOAD is assigned with libvma.so without a path (as in the Example) then libvma.so
is read from a known library path under your distributions’ OS otherwise it is read from the
specified path.



https://github.com/Mellanox/sockperf

25

•
•

Physical installation of an NVIDIA® NIC in your machines
Your system must recognize the NVIDIA® NIC. To verify it recognizes it, run:

lspci | grep Mellanox

Output example:

$ lspci | grep Mellanox
82:00.0 Ethernet controller: Mellanox Technologies MT28800 Family [ConnectX-5 Ex]
82:00.1 Ethernet controller: Mellanox Technologies MT28800 Family [ConnectX-5 Ex]

6.2.2.2 Kernel Performance

6.2.2.2.1 Kernel Performance Server Side

On the first machine run:

$ sockperf server -i 11.4.3.3

Server side example output:

sockperf: [SERVER] listen on:sockperf: == version #3.7-no.git ==
sockperf: [SERVER] listen on:
[0] IP = 11.4.3.3 PORT = 11111 # UDP
sockperf: Warmup stage (sending a few dummy messages)...
sockperf: [tid 124545] using recvfrom() to block on socket(s)

6.2.2.2.2 Kernel Performance Client Side

On the second machine run:

$ sockperf ping-pong -t 4 -i 11.4.3.3

Client-side example output:

sockperf: == version #3.7-no.git ==
sockperf[CLIENT] send on:sockperf: using recvfrom() to block on socket(s)

[0] IP = 11.4.3.3 PORT = 11111 # UDP
sockperf: Warmup stage (sending a few dummy messages)...
sockperf: Starting test...
sockperf: Test end (interrupted by timer)
sockperf: Test ended
sockperf: [Total Run] RunTime=4.000 sec; Warm up time=400 msec; SentMessages=307425; ReceivedMessages=307424
sockperf: ========= Printing statistics for Server No: 0
sockperf: [Valid Duration] RunTime=3.550 sec; SentMessages=272899; ReceivedMessages=272899
sockperf: ====> avg-lat= 6.488 (std-dev=0.396)
sockperf: # dropped messages = 0; # duplicated messages = 0; # out-of-order messages = 0
sockperf: Summary: Latency is 6.488 usec
sockperf: Total 272899 observations; each percentile contains 2728.99 observations
sockperf: ---> <MAX> observation = 20.484
sockperf: ---> percentile 99.999 = 17.732
sockperf: ---> percentile 99.990 = 9.364
sockperf: ---> percentile 99.900 = 8.491
sockperf: ---> percentile 99.000 = 7.963
sockperf: ---> percentile 90.000 = 6.975
sockperf: ---> percentile 75.000 = 6.831
sockperf: ---> percentile 50.000 = 6.307
sockperf: ---> percentile 25.000 = 6.212
sockperf: ---> <MIN> observation = 5.887

26

6.2.2.3 VMA Latency
Check the VMA performance by running sockperf and using the "VMA_SPEC=latency" environment
variable.

6.2.2.3.1 VMA Performance Server Side

On the first machine run:

$ LD_PRELOAD=libvma.so VMA_SPEC=latency sockperf server -i 11.4.3.3

Server-side example output:

VMA INFO: VMA_VERSION: X.Y.Z-R Release built on MM DD YYYY HH:mm:ss
VMA INFO: Cmd Line: sockperf server -i 11.4.3.3
VMA INFO: OFED Version: MLNX_OFED_LINUX-X.X-X.X.X.X:
VMA INFO: ---
VMA INFO: VMA Spec Latency [VMA_SPEC]
VMA INFO: Log Level INFO [VMA_TRACELEVEL]
VMA INFO: Ring On Device Memory TX 16384 [VMA_RING_DEV_MEM_TX]
VMA INFO: Tx QP WRE 256 [VMA_TX_WRE]
VMA INFO: Tx QP WRE Batching 4 [VMA_TX_WRE_BATCHING]
VMA INFO: Rx QP WRE 256 [VMA_RX_WRE]
VMA INFO: Rx QP WRE Batching 4 [VMA_RX_WRE_BATCHING]
VMA INFO: Rx Poll Loops -1 [VMA_RX_POLL]
VMA INFO: Rx Prefetch Bytes Before Poll 256 [VMA_RX_PREFETCH_BYTES_BEFORE_POLL]
VMA INFO: GRO max streams 0 [VMA_GRO_STREAMS_MAX]
VMA INFO: Select Poll (usec) -1 [VMA_SELECT_POLL]
VMA INFO: Select Poll OS Force Enabled [VMA_SELECT_POLL_OS_FORCE]
VMA INFO: Select Poll OS Ratio 1 [VMA_SELECT_POLL_OS_RATIO]
VMA INFO: Select Skip OS 1 [VMA_SELECT_SKIP_OS]
VMA INFO: CQ Drain Interval (msec) 100 [VMA_PROGRESS_ENGINE_INTERVAL]
VMA INFO: CQ Interrupts Moderation Disabled [VMA_CQ_MODERATION_ENABLE]
VMA INFO: CQ AIM Max Count 128 [VMA_CQ_AIM_MAX_COUNT]
VMA INFO: CQ Adaptive Moderation Disabled [VMA_CQ_AIM_INTERVAL_MSEC]
VMA INFO: CQ Keeps QP Full Disabled [VMA_CQ_KEEP_QP_FULL]
VMA INFO: TCP nodelay 1 [VMA_TCP_NODELAY]
VMA INFO: Avoid sys-calls on tcp fd Enabled [VMA_AVOID_SYS_CALLS_ON_TCP_FD]
VMA INFO: Internal Thread Affinity 0 [VMA_INTERNAL_THREAD_AFFINITY]
VMA INFO: Thread mode Single [VMA_THREAD_MODE]
VMA INFO: Mem Allocate type 2 (Huge Pages) [VMA_MEM_ALLOC_TYPE]
VMA INFO: ---
sockperf: == version #3.7-no.git ==
sockperf: [SERVER] listen on:
[0] IP = 11.4.3.3 PORT = 11111 # UDP
sockperf: Warmup stage (sending a few dummy messages)...
sockperf: [tid 124588] using recvfrom() to block on socket(s)

6.2.2.3.2 VMA Performance Client Side

On the second machine run:

$ LD_PRELOAD=libvma.so VMA_SPEC=latency sockperf ping-pong -t 4 -i 11.4.3.3

Client-side example output:

VMA INFO: VMA_VERSION: X.Y.Z-R Release built on MM DD YYYY HH:mm:ss
VMA INFO: Cmd Line: sockperf server -i 11.4.3.3
VMA INFO: OFED Version: MLNX_OFED_LINUX-X.X-X.X.X.X:
VMA INFO: ---
VMA INFO: VMA Spec Latency [VMA_SPEC]
VMA INFO: Log Level INFO [VMA_TRACELEVEL]
VMA INFO: Ring On Device Memory TX 16384 [VMA_RING_DEV_MEM_TX]
VMA INFO: Tx QP WRE 256 [VMA_TX_WRE]
VMA INFO: Tx QP WRE Batching 4 [VMA_TX_WRE_BATCHING]
VMA INFO: Rx QP WRE 256 [VMA_RX_WRE]
VMA INFO: Rx QP WRE Batching 4 [VMA_RX_WRE_BATCHING]
VMA INFO: Rx Poll Loops -1 [VMA_RX_POLL]
VMA INFO: Rx Prefetch Bytes Before Poll 256 [VMA_RX_PREFETCH_BYTES_BEFORE_POLL]
VMA INFO: GRO max streams 0 [VMA_GRO_STREAMS_MAX]
VMA INFO: Select Poll (usec) -1 [VMA_SELECT_POLL]
VMA INFO: Select Poll OS Force Enabled [VMA_SELECT_POLL_OS_FORCE]
VMA INFO: Select Poll OS Ratio 1 [VMA_SELECT_POLL_OS_RATIO]
VMA INFO: Select Skip OS 1 [VMA_SELECT_SKIP_OS]

27

•
•

VMA INFO: CQ Drain Interval (msec) 100 [VMA_PROGRESS_ENGINE_INTERVAL]
VMA INFO: CQ Interrupts Moderation Disabled [VMA_CQ_MODERATION_ENABLE]
VMA INFO: CQ AIM Max Count 128 [VMA_CQ_AIM_MAX_COUNT]
VMA INFO: CQ Adaptive Moderation Disabled [VMA_CQ_AIM_INTERVAL_MSEC]
VMA INFO: CQ Keeps QP Full Disabled [VMA_CQ_KEEP_QP_FULL]
VMA INFO: TCP nodelay 1 [VMA_TCP_NODELAY]
VMA INFO: Avoid sys-calls on tcp fd Enabled [VMA_AVOID_SYS_CALLS_ON_TCP_FD]
VMA INFO: Internal Thread Affinity 0 [VMA_INTERNAL_THREAD_AFFINITY]
VMA INFO: Thread mode Single [VMA_THREAD_MODE]
VMA INFO: Mem Allocate type 2 (Huge Pages) [VMA_MEM_ALLOC_TYPE]
VMA INFO: ---
sockperf: == version #3.7-no.git ==
sockperf[CLIENT] send on:sockperf: using recvfrom() to block on socket(s)

[0] IP = 11.4.3.3 PORT = 11111 # UDP
sockperf: Warmup stage (sending a few dummy messages)...
sockperf: Starting test...
sockperf: Test end (interrupted by timer)
sockperf: Test ended
sockperf: [Total Run] RunTime=4.000 sec; Warm up time=400 msec; SentMessages=1855851; ReceivedMessages=1855850
sockperf: ========= Printing statistics for Server No: 0
sockperf: [Valid Duration] RunTime=3.550 sec; SentMessages=1656957; ReceivedMessages=1656957
sockperf: ====> avg-lat= 1.056 (std-dev=0.074)
sockperf: # dropped messages = 0; # duplicated messages = 0; # out-of-order messages = 0
sockperf: Summary: Latency is 1.056 usec
sockperf: Total 1656957 observations; each percentile contains 16569.57 observations
sockperf: ---> <MAX> observation = 4.176
sockperf: ---> percentile 99.999 = 1.639
sockperf: ---> percentile 99.990 = 1.552
sockperf: ---> percentile 99.900 = 1.497
sockperf: ---> percentile 99.000 = 1.305
sockperf: ---> percentile 90.000 = 1.179
sockperf: ---> percentile 75.000 = 1.054
sockperf: ---> percentile 50.000 = 1.031
sockperf: ---> percentile 25.000 = 1.015
sockperf: ---> <MIN> observation = 0.954

6.2.2.4 Comparing Results
VMA is showing over 614.3% performance improvement comparing to kernel

Average latency:

Using Kernel 6.488 usec
Using VMA 1.056 usec

Percentile latencies:

Percentile Kernel VMA

Max 20.484 4.176

99.999 17.732 1.639

99.990 9.364 1.552

99.900 8.491 1.497

99.000 7.963 1.305

90.000 6.975 1.179

75.000 6.831 1.054

50.000 6.307 1.031

25.000 6.212 1.015

MIN 5.887 0.954

In order to tune your system and get best performance see section Basic Performance Tuning.

6.2.2.5 Libvma-debug.so
libvma.so is limited to DEBUG log level. In case it is required to run VMA with detailed logging higher
than DEBUG level – use a library called libvma-debug.so that comes with OFED installation.

28

•

•

•

•

Before running your application, set the library libvma-debug.so into the environment variable
LD_PRELOAD (instead of libvma.so).

Example:

$ LD_PRELOAD=libvma-debug.so sockperf server -i 11.4.3.3

6.3 VMA Installation Options

6.3.1 Installing VMA Binary Manually
VMA can be installed from a dedicated VMA RPM or a Debian package. In this case, please make sure
that the MLXN Driver is already installed and that MLNX Driver and VMA versions match so that VMA
functions correctly.

This option is suitable for users who receive an OEM VMA version, or a Fast Update Release VMA
version which is newer than the installed VMA version.

6.3.1.1 Installing the VMA Packages
This section addresses both RPM and DEB (Ubuntu OS) installations.

VMA includes the following packages which should be saved on your local drive:

The libvma package contains the binary library shared object file (.so), configuration and
documentation files
The libvma-utils package contains utilities such as vma_stats to monitor vma traffic and
statistics
The libvma-devel package contains VMA’s extended API header files, for extra functionality
not provided by the socket API

Before you begin, please verify the following prerequisites:

Check whether VMA is installed:
For RPM packages, run:

libvma-debug.so is located in the same library path as libvma.so under your distribution’s
OS.

For example in RHEL7.x x86_64, the libvma.so is located in /usr/lib64/libvma-debug.so.



NOTE: If you need to compile VMA with a log level higher than DEBUG run “configure” with
the following parameter:

./configure --enable-opt-log=none

See section Building VMA from Sources.



29

•

1.
2.

1.
2.

#rpm -qil libvma

For DEB packages, run:

#dpkg –s libvma

If the VMA packages are not installed, an appropriate message is displayed.
If the VMA packages are installed, the RPM or the DEB logs the VMA package information and
the installed file list.

Uninstall the current VMA:
For RPM packages, run:

#rpm -e libvma

For DEB packages:

#apt-get remove libvma

6.3.1.1.1 Installing the VMA Binary Package
Go to the location where the libvma package was saved.
Run the command below to start installation:
• For RPM packages:

#rpm -i libvma-X.Y.Z-R.<arch>.rpm

• For DEB packages:

#dpkg -i libvma_X.Y.Z-R_<arch>.deb

During the installation process the:
• VMA library is copied to standard library location (e.g. /usr/lib64/libvma.so). In addition
VMA debug library is copied under the same location (e.g. /usr/lib64/libvma-debug.so)
• README.txt and version information (VMA_VERSION) are installed at /usr/share/doc/
libvma-X.Y.Z/
• VMA installs its configuration file, libvma.conf, to the following location: /etc/libvma.conf
• The vmad service utility is copied into /sbin
• The script vma is installed under /etc/init.d/. This script can be used to load and unload
the VMA service utility.

6.3.1.1.2 Install the VMA utils Package
Go to the location where the utils package was saved.
Run the command below to start installation:
• For RPM packages:

#rpm -i libvma-utils-X.Y.Z-R.<arch>.rpm

30

1.
2.

• For DEB packages:

#dpkg -i libvma-utils_X.Y.Z-R_<arch>.deb

During the installation process the VMA monitoring utility is installed at /usr/bin/vma_stats.

6.3.1.1.3 Installing the VMA devel Package
Go to the location where the devel package was saved.
Run the command below to start installation:
• For RPM packages:

#rpm -i libvma-devel-X.Y.Z-R.<arch>.rpm

• For DEB packages:

#dpkg -i libvma-dev_X.Y.Z-R_<arch>.deb

During the installation process the VMA extra header file is installed at /usr/include/
mellanox/vma_extra.h.

6.3.1.2 Verifying VMA Installation
For further information, please refer to Running VMA.

6.3.2 Building VMA From Sources
VMA as an open source enables users to try the code, inspect and modify. This option assumes that
VMA (binary package) is already installed on top of NVIDIA® driver, and functions correctly (as
explained in Installing the VMA Binary Package). Users can download the VMA sources from libvma
GitHub and build a new VMA version. This option is suitable for users who wish to implement custom
VMA modifications.

Please visit the libvma wiki page for various “how-to” issues.

For building VMA from sources, please visit the following page: https://github.com/Mellanox/
libvma/wiki/Build-Instruction

For adding high debug log level to VMA compile it with:

./configure --enable-opt-log=none <other configure parameters>

For libvma configuration file please visit: https://github.com/Mellanox/libvma/wiki/
VMA_Configuration_File.

6.3.2.1 Verifying VMA Compilation
The compiled VMA library is located under:

<path-to-vma-sources-root-tree>/src/vma/.libs/libvma.so

https://github.com/Mellanox/libvma/
https://github.com/Mellanox/libvma/wiki
https://github.com/Mellanox/libvma/wiki/Build-Instruction
https://github.com/Mellanox/libvma/wiki/VMA_Configuration_File

31

When running a user application, you must set the compiled library into the env variable
LD_PRELOAD.

Example:

#LD_PRELOAD=<path-to-vma-sources-root-tree>/src/vma/.libs/libvma.so sockperf ping-pong -t 5 -i 224.22.22.22

As indicated in section Running VMA, the appearance of the VMA header verifies that the compiled
VMA library is loaded with your application.

Remark: it is recommended to keep the original libvma.so under the distribution’s original location
(e.g. /usr/lib64/libvma.so) and not to override it with the newly complied libvma.so.

6.3.3 Installing VMA in RHEL 7.x Inbox

RHEL 7.x distribution contains RoCE drivers version which can be retrieved by running “yum install”.
The NVIDIA® drivers contain a code that was tested and integrated into the Linux upstream.
However, this code may be either more or less advanced than MLNX_OFED version 4.0-x.x.x or
MLNX-EN v3.4-x.x.x. In this case, you can:

This option is suitable for users who do not wish to change their exiting NVIDIA® driver that comes
with RHEL 7.x installation.

RHEL 7.2 with Inbox drivers, please visit: https://github.com/Mellanox/libvma/wiki/VMA-over-
RHEL-7.x-with-inbox-driver.

For running VMA over RHEL 7.3 or later with Inbox drivers, execute:

yum install libvma

For libvma configuration file please visit: https://github.com/Mellanox/libvma/wiki/
VMA_Configuration_File.

For information on how to uninstall VMA in RHEL 7.x Inbox, please refer to VMA in RHEL 7.x Inbox
Uninstallation.

6.3.4 Installing VMA as DOCA Profile

VMA can be installed from a dedicated VMA DOCA profile. In this case, please make sure to follow
the NVIDIA DOCA Installation Guide for Linux - NVIDIA Docs.

Please note, VMA can be installed in RHEL 7.2 and above Inbox Drivers.

By default “yum install libvma” will install one of past VMA versions. In order to run with
latest VMA version, you can compile libvma directly from GitHub.. For further information,
refer to Verifying VMA Compilation.



This feature is at beta level.

https://github.com/Mellanox/libvma/wiki/VMA-over-RHEL-7.x-with-inbox-driver
https://github.com/Mellanox/libvma/wiki/VMA_Configuration_File
https://docs.nvidia.com/doca/sdk/nvidia+doca+installation+guide+for+linux/index.html

32

•

•

For VMA we have a dedicated DOCA profile “doca-vma”, the profile will install vma and all its
dependencies.
To be able to use VMA there is no need to install any other doca profile exept “doca-vma”.

Please follow the instructions for installing “doca-all” but replace it with “doca-vma”, for example:

sudo yum install -y doca-vma

6.4 Uninstalling VMA

6.4.1 Automatic VMA Uninstallation
If you are about to install a new NVIDIA® driver version, the old VMA version will be automatically
uninstalled as part of this process (followed by a new VMA version installation). Please refer to
Installing VMA Binary as Part of NVIDIA Drivers for installing NVIDIA® drivers command details.

If you are about to uninstall the NVIDIA® Driver, VMA will be automatically uninstalled as part of this
process.

6.4.2 Manual VMA Uninstallation
If you are about to manually uninstall VMA packages, please run the following:

For RPM packages:

#rpm -e libvma-utils
#rpm -e libvma-devel
#rpm -e libvma

For DEB packages:

#dpkg -r libvma-utils
#dpkg -r libvma-dev
#dpkg -r libvma

When you uninstall VMA, the libvma.conf configuration file is saved with the existing configuration.
The path of the saved path is displayed immediately after the uninstallation is complete.

6.4.3 VMA in RHEL 7.x Inbox Uninstallation
VMA under RHEL 7.x is built from sources and is not installed as package. Therefore if VMA is not
needed, delete the compiled libvma.so (or the entire libvma sources) and the configuration file
(e.g. /etc/libvma.conf).

Note: Uninstalling RoCE drivers’ package using “yum remove” will neither delete the compiled VMA
library nor the configuration file.

To uninstall VMA, run:

rpm –e libvma

33

•

•

•

•

6.5 Upgrading libvma.conf
When you upgrade VMA (through automatic or manual installation), the libvma.conf configuration
file is handled as follows:

If the existing configuration file has been modified since it was installed and is different from
the upgraded RPM or DEB, the modified version will be left in place, and the version from the
new RPM or DEB will be installed with a new suffix
If the existing configuration file has not been modified since it was installed, it will
automatically be replaced by the version from the upgraded RPM or DEB
If the existing configuration file has been edited on disk, but is not actually different from
the upgraded RPM or DEB, the edited version will be left in place; the version from the new
RPM or DEB will not be installed

6.6 Port Type Management / VPI Cards Configuration
NVIDIA® ConnectX®-5 ports can be individually configured to work as Ethernet ports. If you wish to
change the port type, use the mlxconfig script after the driver is loaded.

For further information on how to set the port type, please refer to the MFT User Manual at https://
docs.nvidia.com/networking/category/mft.

6.7 Basic Performance Tuning
Please see the Tuning Guide and VMA Performance Tuning Guide for detailed instructions on how to
optimally tune your machines for VMA performance.

6.7.1 VMA Tuning Parameters
Parameter Description Example

VMA_SPEC Optimized performance can easily be
measured by VMA predefined specification
profile for latency:

Latency profile spec – optimized
latency on all use cases. System is
tuned to keep balance
between Kernel and VMA.

LD_PRELOAD=libvma.so VMA_SPEC=latency sockperf
ping-pong -t 10 -i 11.4.3.1

It may limit the maximum
bandwidth.



https://docs.nvidia.com/networking/category/mft
https://enterprise-support.nvidia.com/s/article/performance-tuning-for-mellanox-adapters
https://enterprise-support.nvidia.com/s/article/vma-performance-tuning-guide

34

•

•

•

•

•

•

•

1.

2.

3.

Parameter Description Example

VMA_RX_POL
L

For blocking sockets only. It controls the
number of times the ready packets can be
polled on the RX path before they go to
sleep (wait for interrupt in blocked
mode). The recommended value for best
latency is -1 (unlimited).

For best latency, use -1 for infinite
polling
For low CPU usage use 1 for single
poll
Default value is 100000

Server:

VMA_RX_POLL=-1 LD_PRELOAD=libvma.so taskset
-c 15 sockperf sr -i 17.209.13.142

Client:

VMA_RX_POLL=-1 LD_PRELOAD=libvma.so taskset
-c 15 sockperf pp -i 17.209.13.142 -t 5

VMA_INTERN
AL_THREAD_
AFFINITY

Controls which CPU core(s) the VMA
internal thread is serviced on. The
recommended configuration is to run VMA
internal thread on a different core than
the application but on the same NUMA
node.

Server:

VMA_INTERNAL_THREAD_AFFINITY=14 VMA_RX_POLL=-1
 LD_PRELOAD=libvma.so taskset -c 15
sockperf sr -i 17.209.13.142

Client:

VMA_INTERNAL_THREAD_AFFINITY= 14
 VMA_RX_POLL=-1 LD_PRELOAD=libvma.so taskset
-c 15 sockperf pp -i 17.209.13.142 -t 5

6.7.2 Binding VMA to the Closest NUMA
Check which NUMA is related to your interface.

cat /sys/class/net/<interface_name>/device/numa_node

Example:

[root@r-host142 ~]# cat /sys/class/net/ens5/device/numa_node
1

The output above shows that your device is installed next to NUMA 1.
Check which CPU is related to the specific NUMA.

[root@r-host144 ~]# lscpu
NUMA node0 CPU(s): 0-13,28-41
NUMA node1 CPU(s): 14-27,42-55

The output above shows that:
• CPUs 0-13 & 28-41 are related to NUMA 0• CPUs 14-27 & 42-55 are related to NUMA 1
Since we want to use NUMA 1, one of the following CPUs should be used: 14-27 & 42-55
Use the "taskset" command to run the VMA process on a specific CPU.
• Server side:

LD_PRELOAD=libvma.so taskset -c 15 sockperf sr -i < MLX IP interface >

• Client side:

35

1.
2.
3.
4.

5.

LD_PRELOAD=libvma.so taskset -c 15 sockperf pp -i < IP of FIRST machine MLX interface >

In this example, we use CPU 15 that belongs to NUMA 1. You can also use "numactl -
-hardware".

6.7.3 Configuring the BIOS

When configuring the BIOS, please pay attention to the following:

Enable Max performance mode.
Enable Turbo mode.
Power modes – disable C-states and P-states, do not let the CPU sleep on idle.
Hyperthreading – there is no right answer if you should have it ON or OFF.
• ON means more CPU to handle kernel tasks, so the amortized cost will be smaller for each
CPU
• OFF means do not share cache with other CPUs, so cache utilization is better
If all of your system jitter is under control, it is recommended to turn is OFF, if not keep it
ON.
Disable SMI interrupts.
Look for "Processor Power and Utilization Monitoring" and "Memory Pre-Failure Notification"
SMIs.
The OS is not aware of these interrupts, so the only way you might be able to notice them is
by reading the CPU msr register.

Please make sure to carefully read your vendor BIOS tuning guide as the configuration options differ
per vendor.

Each machine has its own BIOS parameters. It is important to implement any server
manufacturer and Linux distribution tuning recommendations for lowest latency.



36

•
•
•

•

•
•

•

•
•
•
•

7 VMA Configuration
You can control the behavior of VMA by configuring:

The libvma.conf file
VMA configuration parameters, which are Linux OS environment variables
VMA extra API

7.1 Configuring libvma.conf
The installation process creates a default configuration file, /etc/libvma.conf, in which you can
define and change the following settings:

The target applications or processes to which the configured control settings apply. By
default, VMA control settings apply to all applications.
The transport protocol to be used for the created sockets.
The IP addresses and ports in which you want to offload.

By default, the configuration file allows VMA to offload everything except for the DNS server-side
protocol (UDP, port 53) which will be handled by the OS.

In the libvma.conf file:

You can define different VMA control statements for different processes in a single
configuration file. Control statements are always applied to the preceding target process
statement in the configuration file.
Comments start with # and cause the entire line after it to be ignored.
Any beginning whitespace is skipped.
Any line that is empty is skipped.
It is recommended to add comments when making configuration changes.

The following sections describe configuration options in libvma.conf. For a sample libvma.conf file,
see Example of VMA Configuration.

7.1.1 Configuring Target Application or Process
The target process statement specifies the process to which all control statements that appear
between this statement and the next target process statement apply.

Each statement specifies a matching rule that all its sub-expressions must evaluate as true (logical
and) to apply.

If not provided (default), the statement matches all programs.

The format of the target process statement is:

application-id <program-name|*> <user-defined-id|*>

37

•
•

•
•

•

•

•
•
•

•
•

Option Description

<program-name|
*>

Define the program name (not including the path) to which the control statements
appearing below this statement apply.
Wildcards with the same semantics as "ls" are supported (* and ?).
For example:

db2* matches any program with a name starting with db2.
t?cp matches ttcp, etc.

<user-defined-id|
*>

Specify the process ID to which the control statements appearing below this statement
apply.

7.1.2 Configuring Socket Transport Control
Use socket control statements to specify when libvma will offload AF_INET/SOCK_STREAM or
AF_INET/SOCK_DATAGRAM sockets (currently SOCK_RAW is not supported).

Each control statement specifies a matching rule that all its sub-expressions must evaluate as true
(logical and) to apply. Statements are evaluated in order of definition according to "first-match".

Socket control statements use the following format:

use <transport> <role> <address|*>:<port range|*>

Where:

Option Description

transport Define the mode of transport:
vma – VMA should be used.
os – the socket should be handled by the OS network stack. In this
mode, the sockets are not offloaded.

The default is vma.

role Specify one of the following roles:
tcp_server – for listen sockets. Accepted sockets follow listen sockets.
Defined by local_ip:local_port.
tcp_client – for connected sockets. Defined by
remote_ip:remote_port:local_ip:local_port
udp_sender – for TX flows. Defined by remote_ip:remote_port
udp_receiver – for RX flows. Defined by local_ip:local_port
udp_connect – for UDP connected sockets. Defined by
remote_ip:remote_port:local_ip:local_port

address You can specify the local address the server is bind to or the remote
server address the client connects to.
The syntax for address matching is:
<IPv4 address>[/<prefix_length>]|*

IPv4 address – [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ each sub number < 255
prefix_length – [0-9]+ and with value <= 32. A prefix_length of 24
matches the subnet mask 255.255.255.0 . A prefix_length of 32
requires matching of the exact IP.

You must also set the VMA_APPLICATION_ID environment variable to the same
value as user-defined-id.



38

•
•
•

•
•

Option Description

port range Define the port range as:

start-port[-end-port]

Port range: 0-65536

7.1.3 Example of VMA Configuration
To set the following:

Apply the rules to program tcp_lat with ID B1
Use VMA by TCP clients connecting to machines that belong to subnet 192.168.1.*
Use OS when TCP server listens to port 5001 of any machine

In libvma.conf, configure:

application-id tcp-lat B1
use vma tcp_client 192.168.1.0/24:*:*:*
use os tcp_server *:5001
use os udp_connect *:53

7.2 VMA Configuration Parameters
VMA configuration parameters are Linux OS environment variables that are controlled with system
environment variables.

It is recommended that you set these parameters prior to loading the application with VMA. You can
set the parameters in a system file, which can be run manually or automatically.

All the parameters have defaults that can be modified.

On default startup, the VMA library prints the VMA version information, as well as the configuration
parameters being used and their values to stderr.

VMA always logs the values of the following parameters, even when they are equal to the default
value:

VMA_TRACELEVEL
VMA_LOG_FILE

For all other parameters, VMA logs the parameter values only when they are not equal to the
default value.

You must also set the VMA parameter:

VMA_APPLICATION_ID=B1



The VMA version information, parameters, and values are subject to change.

39

For example:

VMA INFO: VMA_VERSION: X.Y.Z-R Release built on MM DD YYYY HH:mm:ss
VMA INFO: Cmd Line: sockperf server -i 11.4.3.3
VMA INFO: OFED Version: MLNX_OFED_LINUX-X.X-X.X.X.X:
VMA INFO: ---
 Pid: 2378 Tid: 2378 VMA INFO: Log Level DEBUG [VMA_TRACELEVEL]
 Pid: 2378 Tid: 2378 VMA INFO: Log Details 2 [VMA_LOG_DETAILS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Log Colors Enabled [VMA_LOG_COLORS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Log File [VMA_LOG_FILE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Stats File [VMA_STATS_FILE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Stats shared memory directory /tmp/ [VMA_STATS_SHMEM_DIR]
 Pid: 2378 Tid: 2378 VMA DETAILS: VMAD output directory /tmp/vma [VMA_VMAD_NOTIFY_DIR]
 Pid: 2378 Tid: 2378 VMA DETAILS: Stats FD Num (max) 100 [VMA_STATS_FD_NUM]
 Pid: 2378 Tid: 2378 VMA DETAILS: Conf File /etc/libvma.conf [VMA_CONFIG_FILE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Application ID VMA_DEFAULT_APPLICATION_ID [VMA_APPLICATION_ID]
 Pid: 2378 Tid: 2378 VMA DETAILS: Polling CPU idle usage Disabled [VMA_CPU_USAGE_STATS]
 Pid: 2378 Tid: 2378 VMA DETAILS: SigIntr Ctrl-C Handle Disabled [VMA_HANDLE_SIGINTR]
 Pid: 2378 Tid: 2378 VMA DETAILS: SegFault Backtrace Disabled [VMA_HANDLE_SIGSEGV]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring allocation logic TX 0 (Ring per interface)
[VMA_RING_ALLOCATION_LOGIC_TX]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring allocation logic RX 0 (Ring per interface)
[VMA_RING_ALLOCATION_LOGIC_RX]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring migration ratio TX 100
[VMA_RING_MIGRATION_RATIO_TX]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring migration ratio RX 100
[VMA_RING_MIGRATION_RATIO_RX]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring limit per interface 0 (no limit)
[VMA_RING_LIMIT_PER_INTERFACE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Ring On Device Memory TX 0 [VMA_RING_DEV_MEM_TX]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP max syn rate 0 (no limit)
[VMA_TCP_MAX_SYN_RATE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx Mem Segs TCP 1000000 [VMA_TX_SEGS_TCP]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx Mem Bufs 200000 [VMA_TX_BUFS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx QP WRE 2048 [VMA_TX_WRE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx QP WRE Batching 64 [VMA_TX_WRE_BATCHING]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx Max QP INLINE 204 [VMA_TX_MAX_INLINE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx MC Loopback Enabled [VMA_TX_MC_LOOPBACK]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx non-blocked eagains Disabled
[VMA_TX_NONBLOCKED_EAGAINS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Tx Prefetch Bytes 256
[VMA_TX_PREFETCH_BYTES]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Mem Bufs 200000 [VMA_RX_BUFS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx QP WRE 16000 [VMA_RX_WRE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx QP WRE Batching 64 [VMA_RX_WRE_BATCHING]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Byte Min Limit 65536 [VMA_RX_BYTES_MIN]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Poll Loops 100000 [VMA_RX_POLL]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Poll Init Loops 0 [VMA_RX_POLL_INIT]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx UDP Poll OS Ratio 100
[VMA_RX_UDP_POLL_OS_RATIO]
 Pid: 2378 Tid: 2378 VMA DETAILS: HW TS Conversion 3
[VMA_HW_TS_CONVERSION]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Poll Yield Disabled [VMA_RX_POLL_YIELD]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Prefetch Bytes 256
[VMA_RX_PREFETCH_BYTES]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx Prefetch Bytes Before Poll 0
[VMA_RX_PREFETCH_BYTES_BEFORE_POLL]
 Pid: 2378 Tid: 2378 VMA DETAILS: Rx CQ Drain Rate Disabled
[VMA_RX_CQ_DRAIN_RATE_NSEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: GRO max streams 32 [VMA_GRO_STREAMS_MAX]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP 3T rules Disabled [VMA_TCP_3T_RULES]
 Pid: 2378 Tid: 2378 VMA DETAILS: UDP 3T rules Enabled [VMA_UDP_3T_RULES]
 Pid: 2378 Tid: 2378 VMA DETAILS: ETH MC L2 only rules Disabled
[VMA_ETH_MC_L2_ONLY_RULES]
 Pid: 2378 Tid: 2378 VMA DETAILS: Force Flowtag for MC Disabled
[VMA_MC_FORCE_FLOWTAG]
 Pid: 2378 Tid: 2378 VMA DETAILS: Select Poll (usec) 100000 [VMA_SELECT_POLL]
 Pid: 2378 Tid: 2378 VMA DETAILS: Select Poll OS Force Disabled
[VMA_SELECT_POLL_OS_FORCE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Select Poll OS Ratio 10
[VMA_SELECT_POLL_OS_RATIO]
 Pid: 2378 Tid: 2378 VMA DETAILS: Select Skip OS 4 [VMA_SELECT_SKIP_OS]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Drain Interval (msec) 10
[VMA_PROGRESS_ENGINE_INTERVAL]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Drain WCE (max) 10000
[VMA_PROGRESS_ENGINE_WCE_MAX]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Interrupts Moderation Enabled
[VMA_CQ_MODERATION_ENABLE]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Moderation Count 48
[VMA_CQ_MODERATION_COUNT]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Moderation Period (usec) 50
[VMA_CQ_MODERATION_PERIOD_USEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ AIM Max Count 560
[VMA_CQ_AIM_MAX_COUNT]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ AIM Max Period (usec) 250
[VMA_CQ_AIM_MAX_PERIOD_USEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ AIM Interval (msec) 250
[VMA_CQ_AIM_INTERVAL_MSEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ AIM Interrupts Rate (per sec) 5000
[VMA_CQ_AIM_INTERRUPTS_RATE_PER_SEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Poll Batch (max) 16
[VMA_CQ_POLL_BATCH_MAX]
 Pid: 2378 Tid: 2378 VMA DETAILS: CQ Keeps QP Full Enabled [VMA_CQ_KEEP_QP_FULL]
 Pid: 2378 Tid: 2378 VMA DETAILS: QP Compensation Level 256
[VMA_QP_COMPENSATION_LEVEL]
 Pid: 2378 Tid: 2378 VMA DETAILS: Offloaded Sockets Enabled
[VMA_OFFLOADED_SOCKETS]
 Pid: 2378 Tid: 2378 VMA DETAILS: Timer Resolution (msec) 10
[VMA_TIMER_RESOLUTION_MSEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP Timer Resolution (msec) 100
[VMA_TCP_TIMER_RESOLUTION_MSEC]

40

 Pid: 2378 Tid: 2378 VMA DETAILS: TCP control thread 0 (Disabled) [VMA_TCP_CTL_THREAD]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP timestamp option 0
[VMA_TCP_TIMESTAMP_OPTION]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP nodelay 0 [VMA_TCP_NODELAY]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP quickack 0 [VMA_TCP_QUICKACK]
 Pid: 2378 Tid: 2378 VMA DETAILS: Exception handling mode -1(just log debug message)
[VMA_EXCEPTION_HANDLING]
 Pid: 2378 Tid: 2378 VMA DETAILS: Avoid sys-calls on tcp fd Disabled
[VMA_AVOID_SYS_CALLS_ON_TCP_FD]
 Pid: 2378 Tid: 2378 VMA DETAILS: Allow privileged sock opt Enabled
[VMA_ALLOW_PRIVILEGED_SOCK_OPT]
 Pid: 2378 Tid: 2378 VMA DETAILS: Delay after join (msec) 0
[VMA_WAIT_AFTER_JOIN_MSEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: Internal Thread Affinity -1
[VMA_INTERNAL_THREAD_AFFINITY]
 Pid: 2378 Tid: 2378 VMA DETAILS: Internal Thread Cpuset
[VMA_INTERNAL_THREAD_CPUSET]
 Pid: 2378 Tid: 2378 VMA DETAILS: Internal Thread Arm CQ Disabled
[VMA_INTERNAL_THREAD_ARM_CQ]
 Pid: 2378 Tid: 2378 VMA DETAILS: Internal Thread TCP Handling 0 (deferred)
[VMA_INTERNAL_THREAD_TCP_TIMER_HANDLING]
 Pid: 2378 Tid: 2378 VMA DETAILS: Thread mode Multi spin lock [VMA_THREAD_MODE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Buffer batching mode 1 (Batch and reclaim buffers)
[VMA_BUFFER_BATCHING_MODE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Mem Allocate type 1 (Contig Pages) [VMA_MEM_ALLOC_TYPE]
 Pid: 2378 Tid: 2378 VMA DETAILS: Num of UC ARPs 3
[VMA_NEIGH_UC_ARP_QUATA]
 Pid: 2378 Tid: 2378 VMA DETAILS: UC ARP delay (msec) 10000
[VMA_NEIGH_UC_ARP_DELAY_MSEC]
 Pid: 2378 Tid: 2378 VMA DETAILS: Num of neigh restart retries 1
[VMA_NEIGH_NUM_ERR_RETRIES]
 Pid: 2378 Tid: 2378 VMA DETAILS: IPOIB support Enabled [VMA_IPOIB]
 Pid: 2378 Tid: 2378 VMA DETAILS: SocketXtreme mode Disabled [VMA_SOCKETXTREME]
 Pid: 2378 Tid: 2378 VMA DETAILS: BF (Blue Flame) Enabled [VMA_BF]
 Pid: 2378 Tid: 2378 VMA DETAILS: fork() support Enabled [VMA_FORK]
 Pid: 2378 Tid: 2378 VMA DETAILS: close on dup2() Enabled [VMA_CLOSE_ON_DUP2]
 Pid: 2378 Tid: 2378 VMA DETAILS: MTU 0 (follow actual MTU) [VMA_MTU]
 Pid: 2378 Tid: 2378 VMA DETAILS: MSS 0 (follow VMA_MTU) [VMA_MSS]
 Pid: 2378 Tid: 2378 VMA DETAILS: TCP CC Algorithm 0 (LWIP) [VMA_TCP_CC_ALGO]
 Pid: 2378 Tid: 2378 VMA DETAILS: Polling Rx on Tx TCP Disabled
[VMA_RX_POLL_ON_TX_TCP]
 Pid: 2378 Tid: 2378 VMA DETAILS: Trig dummy send getsockname() Disabled
[VMA_TRIGGER_DUMMY_SEND_GETSOCKNAME]
VMA INFO: ---

7.2.1 Configuration Parameters Values
The following table lists the VMA configuration parameters and their possible values.

VMA Configuration Parameter Description and Examples

VMA_TRACELEVEL PANIC = 0 – Panic level logging.
This trace level causes fatal behavior and halts the application,
typically caused by memory allocation problems. PANIC level is
rarely used.

ERROR = 1 – Runtime errors in VMA.
Typically, this trace level assists you to identify internal logic
errors, such as errors from underlying OS or InfiniBand verb calls,
and internal double mapping/unmapping of objects.

WARN = WARNING = 2– Runtime warning that does not disrupt the
application workflow.
A warning may indicate problems in the setup or in the overall
setup configuration. For example, address resolution failures (due
to an incorrect routing setup configuration), corrupted IP packets
in the receive path, or unsupported functions requested by the user
application.

INFO = INFORMATION = 3– General information passed to the user of
the application.
This trace level includes configuration logging or general
information to assist you with better use of the VMA library.

DETAILS – Greater general information passed to the user of the
application.
This trace level includes printing of all environment variables of
VMA at start up.

41

VMA Configuration Parameter Description and Examples

DEBUG = 4 – High-level insight to the operations performed in VMA.
In this logging level all socket API calls are logged, and internal
high-level control channels log their activity.

FINE = FUNC = 5 – Low-level runtime logging of activity.
This logging level includes basic Tx and Rx logging in the fast path.
Note that using this setting lowers application performance. We
recommend that you use this level with the VMA_LOG_FILE
parameter.

FINER = FUNC_ALL = 6 – Very low-level runtime logging of activity.
This logging level drastically lowers application performance. We
recommend that you use this level with the VMA_LOG_FILE
parameter.

VMA_LOG_DETAILS Provides additional logging details on each log line.
0 = Basic log line
1 = With ThreadId
2 = With ProcessId and ThreadId
3 = With Time, ProcessId, and ThreadId (Time is the amount of
milliseconds from the start of the process)
Default: 0
For VMA_TRACELEVEL >= 4, this value defaults to 2.

VMA_LOG_FILE Redirects all VMA logging to a specific user-defined file.
This is very useful when raising the VMA_TRACELEVEL.
The VMA replaces a single '%d' appearing in the log file name with
the pid of the process loaded with VMA. This can help when running
multiple instances of VMA, each with its own log file name.
Example: VMA_LOG_FILE=/tmp/vma_log.txt

VMA_CONFIG_FILE Sets the full path to the VMA configuration file.
Example: VMA_CONFIG_FILE=/tmp/libvma.conf
Default: /etc/libvma.conf

LOG_COLORS Uses a color scheme when logging; red for errors and warnings, and
dim for very low level debugs.
VMA_LOG_COLORS is automatically disabled when logging is done
directly to a non-terminal device (for example, when
VMA_LOG_FILE is configured).
Default: 1 (Enabled)

VMA_CPU_USAGE_STATS Calculates the VMA CPU usage during polling hardware loops. This
information is available through VMA stats utility.
Default: 0 (Disabled)

VMA_APPLICATION_ID Specifies a group of rules from libvma.conf for VMA to apply.
Example: VMA_APPLICATION_ID=iperf_server
Default: VMA_DEFAULT_APPLICATION_ID (match only the '*' group
rule)

VMA_HANDLE_SIGINTR When enabled, the VMA handler is called when an interrupt signal
is sent to the process.
VMA also calls the application's handler, if it exists.
Range: 0 to 1
Default: 0 (Disabled)

VMA_HANDLE_SIGSEGV When enabled, a print backtrace is performed, if a segmentation
fault occurs.
Range: 0 to 1
Default: 0 (Disabled)

42

VMA Configuration Parameter Description and Examples

VMA_STATS_FD_NUM Maximum number of sockets monitored by the VMA statistics
mechanism.
Range: 0 to 1024
Default: 100

VMA_STATS_FILE Redirects socket statistics to a specific user-defined file.
VMA dumps each socket's statistics into a file when closing the
socket.
Example: VMA_STATS_FILE=/tmp/stats

VMA_STATS_SHMEM_DIR Sets the directory path for VMA to create the shared memory files
for vma_stats.
If this value is set to an empty string: “ “, no shared memory files
are created.
Default: /tmp/

VMA_VMAD_NOTIFY_DIR Sets the directory path for VMA to write files used by vmad.
Default value is /tmp/vma
Note: when used vmad must be run with --notify-dir directing the
same folder.

VMA_TCP_MAX_SYN_RATE Limits the number of TCP SYN packets that VMA handles per second
for each listen socket.
Example: by setting this value to 10, the maximal number of TCP
connection accepted by VMA per second for each listen socket will
be 10.
Set this value to 0 for VMA to handle an unlimited number of TCP
SYN packets per second for each listen socket.
Value range is 0 to 100000.
Default value is 0 (no limit)

VMA_TX_SEGS_TCP Number of TCP LWIP segments allocation for each VMA process.
Default: 1000000

VMA_TX_BUFS Number of global Tx data buffer elements allocation.
Default: 200000

VMA_TX_WRE Number of Work Request Elements allocated in all transmit QP's.
The number of QP's can change according to the number of network
offloaded interfaces.
Default: 3000
The size of the Tx buffers is determined by the VMA_MTU
parameter value (see below).
If this value is raised, the packet rate peaking can be better
sustained; however, this increases memory usage. A smaller number
of data buffers gives a smaller memory footprint, but may not
sustain peaks in the data rate.

VMA_TX_WRE_BATCHING Controls the number of aggregated Work Requests Elements before
receiving a completion signal (CQ entry) from the hardware.
Previously this number was hard coded as 64.
The new update allows a better control of the jitter encountered in
the Tx completion handling.
Valid value range: 1-64
Default: 64

VMA_TX_MAX_INLINE Max send inline data set for QP.
Data copied into the INLINE space is at least 32 bytes of headers
and the rest can be user datagram payload.
VMA_TX_MAX_INLINE=0 disables INLINEing on the TX transmit path.
In older releases this parameter was called VMA_MAX_INLINE.
Default: 220

43

VMA Configuration Parameter Description and Examples

VMA_TX_MC_LOOPBACK Sets the initial value used internally by the VMA to control
multicast loopback packet behavior during transmission. An
application that calls setsockopt() with IP_MULTICAST_LOOP
overwrites the initial value set by this parameter.
Range: 0 - Disabled, 1 - Enabled
Default: 1

VMA_TX_NONBLOCKED_EAGAINS Returns value 'OK' on all send operations that are performed on a
non-blocked udp socket. This is the OS default behavior. The
datagram sent is silently dropped inside the VMA or the network
stack.
When set to Enabled (set to 1), VMA returns with error EAGAIN if it
was unable to accomplish the send operation, and the datagram
was dropped.
In both cases, a dropped Tx statistical counter is incremented.
Default: 0 (Disabled)

VMA_TX_PREFETCH_BYTES Accelerates an offloaded send operation by optimizing the cache.
Different values give an optimized send rate on different machines.
We recommend that you adjust this parameter to your specific
hardware.
Range: 0 to MTU size
Disable with a value of 0
Default: 256 bytes

VMA_RX_BUFS The number of Rx data buffer elements allocated for the processes.
These data buffers are used by all QPs on all HCAs, as determined
by the VMA_QP_LOGIC.
Default: 200000

VMA_RX_WRE The number of Work Request Elements allocated in all received
QPs.
Default: 16000

VMA_RX_WRE_BATCHING Number of Work Request Elements and RX buffers to batch before
recycling.
Batching decreases the latency mean, but might increase latency
STD.
Valid value range: 1-1024
Default: 64

VMA_RX_BYTES_MIN The minimum value in bytes used per socket by the VMA when
applications call to setsockopt(SO_RCVBUF).
If the application tries to set a smaller value than configured in
VMA_RX_BYTES_MIN, VMA forces this minimum limit value on the
socket.
VMA offloaded sockets receive the maximum amount of ready
bytes. If the application does not drain sockets and the byte limit is
reached, newly received datagrams are dropped.
The application's socket usage of current, max,dropped bytes and
packet counters, can be monitored using vma_stats.
Default: 65536

44

•

•

•

•
•

VMA Configuration Parameter Description and Examples

VMA_RX_POLL The number of times to unsuccessfully poll an Rx for VMA packets
before going to sleep.
Range: -1, 0 … 100,000,000
Default: 100,000
This value can be reduced to lower the load on the CPU. However,
the price paid for this is that the Rx latency is expected to
increase.
Recommended values:

10000 – when CPU usage is not critical and Rx path latency is
critical.
0 – when CPU usage is critical and Rx path latency is not
critical.
-1 – causes infinite polling.

Once the VMA has gone to sleep, if it is in blocked mode, it waits
for an interrupt; if it is in non-blocked mode, it returns -1.
This Rx polling is performed when the application is working with
direct blocked calls to read(), recv(), recvfrom(), and recvmsg().
When the Rx path has successful poll hits, the latency improves
dramatically. However, this causes increased CPU utilization. For
more information, see Debugging, Troubleshooting, and Monitoring.

VMA_RX_POLL_INIT VMA maps all UDP sockets as potential Offloaded-capable. Only
after ADD_MEMBERSHIP is set, the offload starts working and the CQ
polling starts VMA.
This parameter controls the polling count during this transition
phase where the socket is a UDP unicast socket and no multicast
addresses were added to it.
Once the first ADD_MEMBERSHIP is called, the VMA_RX_POLL
(above) takes effect.
Value range is similar to the VMA_RX_POLL (above).
Default: 0

VMA_RX_UDP_POLL_OS_RATIO Defines the ratio between VMA CQ poll and OS FD poll.
This will result in a single poll of the not-offloaded sockets every
VMA_RX_UDP_POLL_OS_RATIO offloaded socket (CQ) polls. No
matter if the CQ poll was a hit or miss. No matter if the socket is
blocking or non-blocking.
When disabled, only offloaded sockets are polled.
This parameter replaces the two old parameters:

VMA_RX_POLL_OS_RATIO and
VMA_RX_SKIP_OS

Disable with 0
Default: 10

https://mellanox365-my.sharepoint.com/personal/amirn_mellanox_com/Documents/Desktop/VMA%20v8.7.5/VMA_8_7_5_User_Manual.docx#O_4923

45

•
•

•

•

•

VMA Configuration Parameter Description and Examples

VMA_HW_TS_CONVERSION Defines timestamp conversion method.
The value of VMA_HW_TS_CONVERSION is determined by all
devices, that is, if the hardware of one device does not support the
conversion, then it will be disabled for the other devices.
Currently only UDP RX flow is supported.
Options = [0,1,2,3,4]:

0 – Disabled
1 – Raw-HW time
Only convert the timestamp to seconds.nano_seconds time
units (or disable if hardware does not supports).
2 – Best possible – Raw-HW or system time.
Sync to system time, then Raw hardware time. Disable if none
of them are supported by hardware.
3 – Sync to system time
Convert the timestamp to seconds.nano_seconds time units.
Comparable to UDP receive software timestamp. Disable if
hardware does not supports.
4 – PTP Sync
Convert the timestamp to seconds.nano_seconds time units. In
case it is not supported – will apply option 3 (or disable if
hardware does not supports).

Default value: 3 (Sync to system time)

VMA_RX_POLL_YIELD When an application is running with multiple threads on a limited
number of cores, there is a need for each thread polling inside VMA
(read, readv, recv, and recvfrom) to yield the CPU to another
polling thread so as not to starve them from processing incoming
packets.
Default: 0 (Disabled)

VMA_RX_PREFETCH_BYTES The size of the receive buffer to prefetch into the cache while
processing ingress packets.
The default is a single cache line of 64 bytes which should be at
least 32 bytes to cover the IPoIB+IP+UDP headers and a small part
of the user payload.
Increasing this size can help improve performance for larger user
payloads.
Range: 32 bytes to MTU size
Default: 256 bytes

VMA_RX_CQ_DRAIN_RATE_NSEC Socket's receive path CQ drain logic rate control.
When disabled (default), the socket's receive path attempts to
return a ready packet from the socket's receive ready packet
queue. If the ready receive packet queue is empty, the socket
checks the CQ for ready completions for processing.
When enabled, even if the socket's receive ready packet queue is
not empty, this parameter checks the CQ for ready completions for
processing. This CQ polling rate is controlled in nanosecond
resolution to prevent CPU consumption due to over CQ polling. This
enables improved 'real-time' monitoring of the socket ready packet
queue.
Recommended value is 100-5000 (nsec)
Default: 0 (Disabled)

VMA_RX_POLL_ON_TX_TCP Enables TCP RX polling during TXP TX operation for faster TCP ACK
reception
Default: 0 (Disabled)

46

VMA Configuration Parameter Description and Examples

VMA_GRO_STREAMS_MAX Controls the number of TCP streams to perform GRO (generic
receive offload) simultaneously.
Disable GRO with a value of 0.
Default: 32

VMA_TCP_3T_RULES Uses only 3 tuple rules for TCP, instead of using 5 tuple rules.
This can improve performance for a server with a listen socket
which accepts many connections from the same source IP.
Enable with a value of 1.
Default: 0 (Disabled)

VMA_UDP_3T_RULES This parameter is relevant in case the application uses connected
UDP sockets. 3 tuple rules are used in hardware flow steering rule
when the parameter is enabled, and in 5 tuple flow steering rule
when it is disabled. Enabling this option can reduce hardware flow
steering resources. However, when it is disabled, the application
might see benefits in latency and cycles per packet. Default: 1
(Enable)

VMA_ETH_MC_L2_ONLY_RULES Uses only L2 rules for Ethernet Multicast.
All loopback traffic will be handled by VMA instead of OS.
Enable with a value of 1.
Default: 0 (Disabled)

VMA_SELECT_POLL The duration in micro-seconds (usec) in which to poll the hardware
on Rx path before blocking for an interrupt (when waiting and also
when calling select(), poll(), or epoll_wait()).
Range: -1, 0 … 100,000,000
Default: 100,000
When the selected path has successfully received poll hits, the
latency improves dramatically. However, this comes at the expense
of CPU utilization. For more information, see Debugging,
Troubleshooting, and Monitoring.

VMA_SELECT_POLL_OS_RATIO This enables polling the OS file descriptors while the user thread
calls select(), poll(), or epoll_wait(), and VMA is busy in the
offloaded socket polling loop. This results in a single poll of the
non-offloaded sockets every VMA_SELECT_POLL_RATIO offloaded
socket (CQ) polls.
When disabled, only offloaded sockets are polled.
(See VMA_SELECT_POLL for more information.)
Disable with 0
Default: 10

VMA_SELECT_SKIP_OS In select(), poll(), or epoll_wait()forces the VMA to check the non-
offloaded sockets even though an offloaded socket has a ready
packet that was found while polling.
Range: 0 … 10,000
Default: 4

VMA_CQ_POLL_BATCH_MAX The maximum size of the array while polling the CQs in the VMA.
Default: 16

VMA_PROGRESS_ENGINE_INTERVAL Internal VMA thread safety which checks that the CQ is drained at
least once every N milliseconds. This mechanism allows VMA to
progress the TCP stack even when the application does not access
its socket (so it does not provide a context to VMA). If the CQ was
already drained by the application receive socket API calls, this
thread goes back to sleep without any processing.
Disable with 0
Default: 10 milliseconds

https://mellanox365-my.sharepoint.com/personal/amirn_mellanox_com/Documents/Desktop/VMA%20v8.7.5/VMA_8_7_5_User_Manual.docx#O_4923

47

•
•

VMA Configuration Parameter Description and Examples

VMA_PROGRESS_ENGINE_WCE_MAX Each time the VMA's internal thread starts its CQ draining, it stops
when it reaches this maximum value.
The application is not limited by this value in the number of CQ
elements that it can ProcessId from calling any of the receive path
socket APIs.
Default: 2048

VMA_CQ_MODERATION_ENABLE Enable CQ interrupt moderation.
Default: 1 (Enabled)

VMA_CQ_MODERATION_COUNT Number of packets to hold before generating interrupt.
Default: 48

VMA_CQ_MODERATION_PERIOD_USEC Period in microseconds for holding the packet before generating
interrupt.
Default: 50

VMA_CQ_AIM_MAX_COUNT Maximum count value to use in the adaptive interrupt moderation
algorithm.
Default: 560

VMA_CQ_AIM_MAX_PERIOD_USEC Maximum period value to use in the adaptive interrupt moderation
algorithm.
Default: 250

VMA_CQ_AIM_INTERVAL_MSEC Frequency of interrupt moderation adaptation.
Interval in milliseconds between adaptation attempts.
Use value of 0 to disable adaptive interrupt moderation.
Default: 250

VMA_CQ_AIM_INTERRUPTS_RATE_PER_SE
C

Desired interrupts rate per second for each ring (CQ).
The count and period parameters for CQ moderation will change
automatically to achieve the desired interrupt rate for the current
traffic rate.
Default: 5000

VMA_CQ_KEEP_QP_FULL If disabled (default), the CQ does not try to compensate for each
poll on the receive path. It uses a "debt" to remember how many
WRE are missing from each QP, so that it can fill it when buffers
become available.
If enabled, CQ tries to compensate QP for each polled receive
completion. If there is a shortage of buffers, it reposts a recently
completed buffer. This causes a packet drop, and is monitored in
vma_stats.
Default: 1 (Enabled)

VMA_QP_COMPENSATION_LEVEL The number of spare receive buffer CQ holds that can be allowed
for filling up QP while full receive buffers are being processed
inside VMA.
Default: 256 buffers

VMA_OFFLOADED_SOCKETS Creates all sockets as offloaded/not-offloaded by default.
1 is used for offloaded
0 is used for not-offloaded

Default: 1 (Enabled)

VMA_TIMER_RESOLUTION_MSEC Control VMA internal thread wakeup timer resolution (in
milliseconds).
Default: 10 (milliseconds)

48

•
•

•

•

•
•

•
•

•
•

•
•

•

•

•

VMA Configuration Parameter Description and Examples

VMA_TCP_TIMER_RESOLUTION_MSEC Controls VMA internal TCP timer resolution (fast timer) (in
milliseconds). Minimum value is the internal thread wakeup timer
resolution (VMA_TIMER_RESOLUTION_MSEC).
Default: 100 (milliseconds)

VMA_TCP_CTL_THREAD Does all TCP control flows in the internal thread.
This feature should be disabled if using blocking poll/select (epoll
is OK).

Use value of 0 to disable
Use value of 1 to wake up the thread when there is work to be
done
Use value of 2 to wait for thread timer to expire

Default: 0 (disabled)

VMA_TCP_TIMESTAMP_OPTION Currently, LWIP is not supporting RTTM and PAWS mechanisms.
See RFC1323 for info.

Use value of 0 to disable (enabling causing a slight performance
degradation of ~50-100 nano sec per half round trip).
Use value of 1 for enable.
Use value of 2 for OS follow up.

Default: 0 (disabled)

VMA_TCP_NODELAY If set, it disables the Nagle algorithm option for each TCP socket
during initialization. Meaning that TCP segments are always sent as
soon as possible, even if there is only a small amount of data.
For more information on TCP_NODELAY flag refer to TCP manual
page.
Valid Values are:

0 to disable.
1 to enable (default)

VMA_TCP_QUICKACK If set, it disables the delayed acknowledge ability. Meaning that
TCP will respond after every packet.
For more information on TCP_QUICKACK flag refer to TCP manual
page.
Valid Values are:

0 to disable.
1 to enable (default)

VMA_EXCEPTION_HANDLING Handles missing support or error cases in Socket API or functionality
by VMA.
It quickly identifies VMA unsupported Socket API or features.

Use value of -1 to handle DEBUG severity
Use value of 0 to log DEBUG message and try recovering via
Kernel network stack (un-offloading the socket)
Use value of 1 to log ERROR message and try recovering via
Kernel network stack (un-offloading the socket)
Use value of 2 to log ERROR message and return API respectful
error code
Use value of 3 to log ERROR message and abort application
(throw vma_error exception).

Default: -1

VMA_AVOID_SYS_CALLS_ON_TCP_FD For TCP fd, avoid system calls for the supported options of: ioctl,
fcntl, getsockopt, setsockopt.
Non-supported options will go to OS.
To activate, use VMA_AVOID_SYS_CALLS_ON_TCP_FD=1.
Default: 0 (disabled)

49

•
•
•
•

•
•

•

•
•
•

•
•
•

•

•
•

VMA Configuration Parameter Description and Examples

VMA_THREAD_MODE By default VMA is ready for multi-threaded applications, meaning it
is thread-safe.
If the user application is single threaded, use this configuration
parameter to help eliminate VMA locks and improve performance.
Values:

0 – Single-threaded application
1 – Multi-threaded application with spin lock
2 – Multi-threaded application with mutex lock
3 – Multi-threaded application with more threads than cores
using spin lock

Default: 1 (Multi with spin lock)

VMA_BUFFER_BATCHING_MODE Enables batching of returning Rx buffers and pulling Tx buffers per
socket.

If the value is 0, then VMA will not use buffer batching
If the value is 1, then VMA will use buffer batching and will try
to periodically reclaim unused buffers
If the value is 2, then VMA will use buffer batching with no
reclaim

Default: 1

VMA_MEM_ALLOC_TYPE This replaces the VMA_HUGETBL parameter logic.
VMA will try to allocate data buffers as configured:

0 – "ANON" – using malloc
1 – "CONTIG" – using contiguous pages
2 – "HUGEPAGES" – using huge pages.

OFED will also try to allocate QP & CQ memory accordingly:
0 – "ANON" – default – use current pages ANON small ones.
"HUGE" – force huge pages
"CONTIG" – force contig pages

1 – "PREFER_CONTIG" – try contig fallback to ANON small
pages.
"PREFER_HUGE" – try huge fallback to ANON small pages.

2 – "ALL" – try huge fallback to contig if failed
fallback to ANON small pages.

To override OFED use: (MLX_QP_ALLOC_TYPE,
MLX_CQ_ALLOC_TYPE).
Default: 1 (Contiguous pages)

VMA_FORK Controls VMA fork support. Setting this flag on will cause VMA to
call ibv_fork_init() function. ibv_fork_init() initializes libibverbs's
data structures to handle fork() function calls correctly and avoid
data corruption.
If ibv_fork_init() is not called or returns a non-zero status, then
libibverbs data structures are not fork()-safe and the effect of an
application calling fork() is undefined.
ibv_fork_init() works on Linux kernels 2.6.17 and later, which
support the MADV_DONTFORK flag for madvise().
You should use an OFED stack version that supports fork() with huge
pages (MLNX_OFED 1.5.3 to 3.2 and 4.0-2.0.0.0 and later). VMA
allocates huge pages (VMA_HUGETBL) by default.
For limitations of using fork() with VMA, please refer to the Release
Notes.
Default: 1 (Enabled)

50

•

•

VMA Configuration Parameter Description and Examples

VMA_MTU Size of each Rx and Tx data buffer (Maximum Transfer Unit).
This value sets the fragmentation size of the packets sent by the
VMA library.

If VMA_MTU is 0, then for each interface VMA will follow the
actual MTU
If VMA_MTU is greater than 0, then this MTU value is applicable
to all interfaces regardless of their actual MTU

Default: 0 (following interface actual MTU)

VMA_MSS Defines the max TCP payload size that can be sent without IP
fragmentation.
Value of 0 will set VMA's TCP MSS to be aligned with VMA_MTU
configuration (leaving 40 bytes of room for IP + TCP headers; "TCP
MSS = VMA_MTU - 40").
Other VMA_MSS values will force VMA's TCP MSS to that specific
value.
Default: 0 (following VMA_MTU)

VMA_CLOSE_ON_DUP2 When this parameter is enabled, VMA handles the duplicated file
descriptor (oldfd), as if it is closed (clear internal data structures)
and only then forwards the call to the OS.
This is, in effect, a very rudimentary dup2 support. It supports only
the case where dup2 is used to close file descriptors.
Default: 1 (Enabled)

VMA_INTERNAL_THREAD_AFFINITY Controls which CPU core(s) the VMA internal thread is serviced on.
The CPU set should be provided as either a hexadecimal value that
represents a bitmask or as a comma delimited of values (ranges are
ok). Both the bitmask and comma delimited list methods are
identical to what is supported by the taskset command. See the
man page on taskset for additional information.
The -1 value disables the Internal Thread Affinity setting by VMA.
Bitmask examples:
0x00000001 – Run on processor 0

0x00000007 – Run on processors 1,2, and 3

Comma delimited examples:
0,4,8 – Run on processors 0,4, and 8

0,1,7-10 – Run on processors 0,1,7,8,9 and 10

Default: -1.

VMA_INTERNAL_THREAD_CPUSET Selects a CPUSET for VMA internal thread (For further information,
see man page of cpuset).
The value is either the path to the CPUSET (for example: /dev/
cpuset/my_set), or an empty string to run it on the same CPUSET
the process runs on.

VMA_INTERNAL_THREAD_ARM_CQ Wakes up the internal thread for each packet that the CQ receives.
Polls and processes the packet and brings it to the socket layer.
This can minimize latency for a busy application that is not
available to receive the packet when it arrives.
However, this might decrease performance for high pps rate
applications.
Default: 0 (Disabled)

51

VMA Configuration Parameter Description and Examples

VMA_INTERNAL_THREAD_TCP_TIMER_HA
NDLING

Selects the internal thread policy when handling TCP timers.
Use value of 0 for deferred handling. The internal thread will not
handle TCP timers upon timer expiration (once every 100ms) in
order to let application threads handling it first.
Use value of 1 for immediate handling. The internal thread will try
locking and handling TCP timers upon timer expiration (once every
100ms). Application threads may be blocked till internal thread
finishes handling TCP timers
Default value is 0 (deferred handling)

VMA_WAIT_AFTER_JOIN_MSEC This parameter indicates the time of delay the first packet is send
after receiving the multicast JOINED event from the SM.
This is helpful to overcome loss of first few packets of an outgoing
stream due to SM lengthy handling of MFT configuration on the
switch chips.
Default: 0 (milli-sec)

VMA_NEIGH_UC_ARP_QUATA VMA will send UC ARP in case neigh state is NUD_STALE.
If that neigh state is still NUD_STALE VMA will try
VMA_NEIGH_UC_ARP_QUATA retries to send UC ARP again and then
will send BC ARP.
Default: 3

VMA_NEIGH_UC_ARP_DELAY_MSEC This parameter indicates number of msec to wait between every
UC ARP.
Default: 10000

VMA_NEIGH_NUM_ERR_RETRIES Indicates number of retries to restart NEIGH state machine if NEIGH
receives ERROR event.
Default: 1

VMA_BF Enables/disables BlueFlame usage of the card.
Default: 1 (Enabled)

VMA_SOCKETXTREME When this parameter is enabled, VMA operates in SocketXtreme
mode. SocketXtreme mode brings down latency, eliminating copy
operations and increasing throughput, thus allowing applications to
further utilize true kernel bypass architecture.
An application should use a socket extension API named
SocketXtreme.
Default: 0 (Disabled)

VMA_TRIGGER_DUMMY_SEND_GETSOCKN
AME

This parameter triggers dummy packet sent from getsockname() to
warm up the caches.
For more information see section "Dummy Send" to Improve Low
Message Rate Latency.
Default: 0 (Disable)

52

•

•

•
•
•
•

•
•

VMA Configuration Parameter Description and Examples

VMA_SPEC

VMA predefined specification profile for latency:
latency – Latency profile spec – optimized latency on all use
cases. System is tuned to keep balance between Kernel and
VMA.

Example: VMA_SPEC=latency
multi_ring_latency – Multi ring latency spec – optimized for use
cases that are keen on latency where two applications
communicate using send-only and receive-only TCP sockets
Example: VMA_SPEC=multi_ring_latency

7.2.2 Beta Level Features Configuration Parameters
The following table lists configuration parameters and their possible values for new VMA Beta level
features. The parameters below are disabled by default.

These VMA features are still experimental and subject to changes. They can help improve
performance of multithread applications.

We recommend altering these parameters in a controlled environment until reaching the best
performance tuning.

VMA Configuration Parameter Description and Examples

VMA_RING_ALLOCATION_LOGIC_TX
VMA_RING_ALLOCATION_LOGIC_RX

Ring allocation logic is used to separate the traffic into different
rings.
By default, all sockets use the same ring for both RX and TX over
the same interface. For different interfaces, different rings are
used, even when specifying the logic to be per socket or thread.
Using different rings is useful when tuning for a multi-threaded
application and aiming for HW resource separation.

The logic options are:
0 – Ring per interface
1 – Ring per IP address (using IP address)
10 – Ring per socket (using socket ID as separator)
20 – Ring per thread (using the ID of the thread in which the
socket was created)
30 – Ring per core (using CPU ID)
31 – Ring per core - attach threads: attach each thread to a
CPU core

Default: 0

VMA_SPEC sets all the required configuration parameters
of VMA. Usually, no additional configuration is required.



It may not reach the maximum bandwidth.

This feature might decrease performance for
applications which their main processing loop is based on
select() and/or poll().



53

VMA Configuration Parameter Description and Examples

VMA_RING_MIGRATION_RATIO_TX
VMA_RING_MIGRATION_RATIO_RX

Ring migration ratio is used with the "ring per thread" logic in
order to decide when it is beneficial to replace the socket's ring
with the ring allocated for the current thread.
Each VMA_RING_MIGRATION_RATIO iteration (of accessing the
ring), the current thread ID is checked to see whether the ring
matches the current thread.
If not, ring migration is considered. If the ring continues to be
accessed from the same thread for a certain iteration, the socket
is migrated to this thread ring.
Use a value of -1 in order to disable migration.
Default: 100

VMA_RING_LIMIT_PER_INTERFACE Limits the number of rings that can be allocated per interface.
For example, in ring allocation per socket logic, if the number of
sockets using the same interface is larger than the limit, several
sockets will share the same ring.

Use a value of 0 for an unlimited number of rings.
Default: 0 (no limit)

VMA_RING_DEV_MEM_TX VMA can use the on-device-memory to store the egress packet if it
does not fit into the BF inline buffer. This improves application
egress latency by reducing the PCI transactions.
Using VMA_RING_DEV_MEM_TX, enables the user to set the
amount of the on-device-memory buffer allocated for each TX
ring.
The total size of the on-device-memory is limited to 256k for a
single port HCA and to 128k for dual port HCA.
Default value is 0

VMA_TCP_CC_ALGO TCP congestion control algorithm.
The default algorithm coming with LWIP is a variation of Reno/
New-Reno.
The new Cubic algorithm was adapted from FreeBsd
implementation.
Use value of 0 for LWIP algorithm.
Use value of 1 for the Cubic algorithm.
Use value of 2 in order to disable the congestion algorithm.
Default: 0 (LWIP).

7.3 Loading VMA Dynamically
VMA can be loaded using Dynamically Loaded (DL) libraries. These libraries are not automatically
loaded at program link time or start-up as with LD_PRELOAD. Instead, there is an API for opening a
library, looking up symbols, handling errors, and closing the library.

The example below demonstrates how to load socket() function. Similarly, users should load all
other network-related functions as declared in sock-redirect.h:

#include <stdlib.h>
#include <stdio.h>
#include <dlfcn.h>
#include <arpa/inet.h>
#include <sys/socket.h>

VMA_RX_BUFS might need to be adjusted in order to
have enough buffers for all rings in the system. Each ring
consumes VMA_RX_WRE buffers.



https://github.com/Mellanox/libvma/blob/master/src/vma/sock/sock-redirect.h

54

typedef int (*socket_fptr_t) (int __domain, int __type, int __protocol);

int main(int argc, const char** argv)
{
 void* lib_handle;
 socket_fptr_t vma_socket;
 int fd;

 lib_handle = dlopen("libvma.so", RTLD_LAZY);
 if (!lib_handle) {
 printf("FAILED to load libvma.so\n");
 exit(1);
 }

 vma_socket = (socket_fptr_t)dlsym(lib_handle, "socket");
 if (vma_socket == NULL) {
 printf("FAILED to load socket()\n");
 exit(1);
 }

 fd = vma_socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (fd < 0) {
 printf("FAILED open socket()\n");
 exit(1);
 }

 printf("socket creation succeeded fd = %d\n", fd);
 close(fd);
 dlclose(lib_handle);
 return 0;
}

For more information, please refer to dlopen man page.

For a complete example that includes all the necessary functions, see sockperf’s vma-redirect.h and
vma-redirect.cpp files.

https://github.com/Mellanox/sockperf/blob/sockperf_v2/src/vma-redirect.h
https://github.com/Mellanox/sockperf/blob/sockperf_v2/src/vma-redirect.cpp

55

•
•

1.
2.

•
•

8 Advanced Features

8.1 Packet Pacing
Packets transmitted over an offloaded socket may be rate-limited, thus, allowing granular rate
control over the software defined flows. A rate-limited flow is allowed to transmit a few packets
(burst) before its transmission rate is evaluated, and next packet is scheduled for transmission
accordingly.

8.1.1 Prerequisites
MLNX_OFED version 4.1-x.x.x.x and above
VMA supports packet pacing with NVIDIA® ConnectX®-5 devices.
If you have MLNX_OFED installed, you can verify whether your NIC supports packet pacing by
running:

ibv_devinfo –v

Check the supported pace range under the section packet_pacing_caps (this range is in Kbit
per second).

packet_pacing_caps:
qp_rate_limit_min: 1kbps
qp_rate_limit_max: 100000000kbps

8.1.2 Usage
Ø To apply Packet Pacing to a socket:

Run VMA with VMA_RING_ALLOCATION_LOGIC_TX=10.
Set the SO_MAX_PACING_RATE option for the socket:

uint32_t val = [rate in bytes per second];
setsockopt(fd, SOL_SOCKET, SO_MAX_PACING_RATE, &val, sizeof(val));

Notes:

VMA converts the setsockopt value from bytes per second to Kbit per second.
It is possible that the socket may be used over multiple NICs, some of which support Packet
Pacing and some do not. Hence, setting the SO_MAX_PACING_RATE socket option does not
guarantee that Packet Pacing will be applied.
In case of a failure when setting the packet pacing an error log will be printed to screen and
no pacing will be done.

This is a simple form of Packet Pacing supporting basic functionalities. For advanced
Packing Pacing support and wide-range specification, please refer to Rivermax library.



https://developer.nvidia.com/networking/rivermax

56

•
•

1.

2.

8.2 Precision Time Protocol (PTP)
VMA supports hardware timestamping for UDP-RX flow (only) with Precision Time Protocol (PTP).

When using VMA on a server running a PTP daemon, VMA can periodically query the kernel to obtain
updated time conversion parameters which it uses in conjunction with the hardware time-stamp it
receives from the NIC to provide synchronized time.

8.2.1 Prerequisites
Support devices: HCA clock available (NVIDIA® ConnectX®-4 and above)
Set VMA_HW_TS_CONVERSION environment variable to 4

8.2.2 Usage
Set the SO_TIMESTAMPING option for the socket with value
SOF_TIMESTAMPING_RX_HARDWARE:

uint8_t val = SOF_TIMESTAMPING_RX_HARDWARE
setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, &val, sizeof(val));

Set VMA environment parameter VMA_HW_TS_CONVERSION to 4.

Example:

Use the Linux kernel (v4.11) timestamping example found in the kernel source at: tools/testing/
selftests/networking/timestamping/timestamping.c.

Server
$ sudo LD_PRELOAD=libvma.so VMA_HW_TS_CONVERSION=4 ./timestamping <iface> SOF_TIMESTAMPING_RAW_HARDWARE
SOF_TIMESTAMPING_RX_HARDWARE

Client
$ LD_PRELOAD=libvma.so sockperf tp -i <server-ip> -t 3600 -p 6666 --mps 10

timestamping output:
SOL_SOCKET SO_TIMESTAMPING SW 0.000000000 HW raw 1497823023.070846953 IP_PKTINFO interface index 8
SOL_SOCKET SO_TIMESTAMPING SW 0.000000000 HW raw 1497823023.170847260 IP_PKTINFO interface index 8
SOL_SOCKET SO_TIMESTAMPING SW 0.000000000 HW raw 1497823023.270847093 IP_PKTINFO interface index 8

8.3 On-Device Memory

Each PCI transaction between the system’s RAM and NIC starts at ~300 nsec (and increasing
depended on buffer size). Application egress latency can be improved by reducing as many PCI
transition as possible on the send path.

Today, VMA achieves these goals by copying the WQE into the doorbell, and for small packets (<190
Bytes payload) VMA can inline the packet into the WQE and reduce the data gather PCI transition as
well. For data sizes above 190 bytes, an additional PCI gather cycle by the NIC is required to pull
the data buffer for egress.

VMA uses the on-device-memory to store the egress packet if it does not fit into the BF inline buffer.
The on-device-memory is a resource managed by VMA and it is transparent to the user. The total

On-Device Memory is supported in ConnectX-5 adapter cards and above.

57

•
•
•
•

size of the on-device-memory is limited to 256k for a single port HCA and to 128k for dual port HCA.
Using VMA_RING_DEV_MEM_TX, the user can set the amount of on-device-memory buffer allocated
for each TX ring.

8.3.1 Prerequisites
Driver: MLNX_OFED version 4.1-1.0.3.0.1 and above
NIC: NVIDIA® ConnectX®-5 and above.
Protocol: Ethernet.
Set VMA_RING_DEV_MEM_TX environment variable to best suit the application's requirements

8.3.2 Verifying On-Device Memory Capability in the Hardware
To verify “On Device Memory” capability in the hardware, run VMA with DEBUG trace level:

VMA_TRACELEVEL=DEBUG LD_PRELOAD=<path to libvma.so> <command line>

Look in the printout for a positive value of on-device-memory bytes.

For example:

Pid: 30089 Tid: 30089 VMA DEBUG: ibch[0xed61d0]:245:print_val() mlx5_0: port(s): 1 vendor: 4121 fw: 16.23.0258
 max_qp_wr: 32768 on_device_memory: 131072

To show and monitor On-Device Memory statistics, run vma_stats tool.

vma_stats –p <pid> -v 3

For example:

==
 RING_ETH=[0]
Tx Offload: 858931 / 3402875 [kilobytes/packets]
Rx Offload: 865251 / 3402874 [kilobytes/packets]
Dev Mem Alloc: 16384
Dev Mem Stats: 739074 / 1784935 / 0 [kilobytes/packets/oob]
==

8.4 TCP_QUICKACK Threshold

While TCP_QUICKACK option is enabled, TCP acknowledgments are sent immediately, rather than
being delayed in accordance to a normal TCP receive operation. However, sending the TCP
acknowledge delays the incoming packet processing to after the acknowledgement has been
completed which can affect performance.

TCP_QUICKACK threshold enables the user to disable the quick acknowledgement for payloads that
are larger than the threshold. The threshold is effective only when TCP_QUICKACK is enabled, using
setsockopt() or using VMA_TCP_QUICKACK parameter. TCP_QUICKACK threshold is disabled by
default.

In order to enable TCP_QUICKACK threshold, the user should modify
TCP_QUICKACK_THRESHOLD parameter in the lwip/opt.h file and recompile VMA.



58

•
•

•
•
•

•
•
•
•
•

8.5 Linux Guest over Windows Hypervisor
Network virtual service client (NetVSC) exposes a virtualized view of the physical network adapter
on the guest operating system. NetVSC can be configured to connect to a Virtual Function (VF) of a
physical network adapter that supports an SR-IOV interface.

VMA is able to offload the traffic of the NetVSC using the SR-IOV interface, only if the SR-IOV
interface is available during the application initialization.

While the SR-IOV interface is detached, VMA is able to redirect/forward ingress/egress packets to/
from the NetVSC - this is done using a dedicated TAP device for each NetVSC, in addition to traffic
control rules.

VMA can detect plugin and plugout events during runtime and route the traffic according to the
events’ type.

8.5.1 Prerequisites
HCAs: NVIDIA® ConnectX®-5
Operating systems:

Ubuntu 16.04, kernel 4.15.0-1015-azure
Ubuntu 18.04, kernel 4.15.0-1015-azure
RHEL 7.5, kernel 3.10.0-862.9.1.el7

MLNX_OFED/Inbox driver: 4.5-x.x.x.x and above
WinOF: v5.60 and above, WinOF-2: v2.10 and above
Protocol: Ethernet
Root/Net cap admin permissions
VMA daemon enabled

8.5.2 VMA Daemon Design
VMA daemon is responsible for managing all traffic control logic of all VMA processes, including
qdisc, u32 table hashing, adding filters, removing filters, removing filters when the application
crashes.

For VMA daemon usage instructions, refer to the Installing the VMA Binary Package section in the
Installation Guide.

For VMA daemon troubleshooting, see the Troubleshooting section.

8.5.3 TAP Statistics
To show and monitor TAP statistics, run the vma_stats tool:

vma_stats –p <pid> -v 3

Example:

==
 RING_TAP=[0]
Master: 0x29e4260
Tx Offload: 4463 / 67209 [kilobytes/packets]

59

•
•
•
•
•

Rx Offload: 5977 / 90013 [kilobytes/packets]
Rx Buffers: 256
VF Plugouts: 1
Tap fd: 21
Tap Device: td34f15
==
 RING_ETH=[1]
Master: 0x29e4260
Tx Offload: 7527 / 113349 [kilobytes/packets]
Rx Offload: 7527 / 113349 [kilobytes/packets]
Retransmissions: 1
==

Output analysis:

RING_TAP[0] and RING_ETH[1] have the same bond master 0x29e4260
4463 Kbytes/67209 packets were sent from the TAP device
5977 Kbytes/90013 packets were received from the TAP device
Plugout event occurred once
TAP device fd number was 21, TAP name was td34f15

60

•

•

•
•

•

•

1.

2.

9 Using sockperf with VMA
Sockperf is VMA's sample application for testing latency and throughput over a socket API. The
precompiled sockperf binary is located in /usr/bin/sockperf.

For detailed instructions on how to optimally tune your machines for VMA performance, please see
the Tuning Guide and VMA Performance Tuning Guide.

To run a sockperf UDP test:

To run the server, use:

LD_PRELOAD=libvma.so sockperf sr -i <server ip>

To run the client, use:

LD_PRELOAD=libvma.so sockperf <sockperf test> –i <server ip>

Where:

<server ip> is the IP address of the server
<sockperf test> is the test you want to run, for example, pp for the ping-pong test, tp
for the throughput test, and so on. (Use sockperf -h to display a list of all available
tests.)

To run a sockperf TCP test:

To run the server, use:

LD_PRELOAD=libvma.so sockperf sr -i <server ip> --tcp

To run the client, use:

LD_PRELOAD=libvma.so sockperf <sockperf test> –i <server ip> --tcp

9.1 Example - Running sockperf Ping-pong Test
For optimal performance, please refer to Basic Performance Tuning.

Run sockperf server on Host A:

LD_PRELOAD=libvma.so sockperf sr

Run sockperf client on Host B:

LD_PRELOAD=libvma.so sockperf pp –i <server_ip>

https://enterprise-support.nvidia.com/s/article/performance-tuning-for-mellanox-adapters
https://enterprise-support.nvidia.com/s/article/vma-performance-tuning-guide

61

•
•
•
•

•
•

10 VMA Extra API

10.1 Overview of the VMA Extra API
The information in this chapter is intended for application developers who want to use VMA’s Extra
API to maximize performance with VMA:

To further lower latencies
To increase throughput
To gain additional CPU cycles for the application logic
To better control VMA offload capabilities

All socket applications are limited to the given Socket API interface functions. The VMA Extra API
enables VMA to open a new set of functions which allow the application developer to add code
which utilizes zero copy receive function calls and low-level packet filtering by inspecting the
incoming packet headers or packet payload at a very early stage in the processing.

VMA is designed as a dynamically-linked user-space library. As such, the VMA Extra API has been
designed to allow the user to dynamically load VMA and to detect at runtime if the additional
functionality described here is available or not. The application is still able to run over the general
socket library without VMA loaded as it did previously, or can use an application flag to decide which
API to use: Socket API or VMA Extra API.

The VMA Extra APIs are provided as a header with the VMA binary rpm. The application developer
needs to include this header file in his application code.

After installing the VMA rpm on the target host, the VMA Extra APIs header file is located in the
following link:

#include "/usr/include/mellanox/vma_extra.h"

The vma_extra.h provides detailed information about the various functions and structures, and
instructions on how to use them.

An example using the VMA Extra API can be seen in the udp_lat source code:

Follow the ‘--vmarxfiltercb’ flag for the packet filter logic
Follow the ‘--vmazcopyread’ flag for the zero copy recvfrom logic

A specific example for using the TCP zero copy extra API can be seen under extra_api_tests/
tcp_zcopy_cb.

10.2 Using VMA Extra API
During runtime, use the vma_get_api() function to check if VMA is loaded in your application, and if
the VMA Extra API is accessible.

If the function returns with NULL, either VMA is not loaded with the application, or the VMA Extra
API is not compatible with the header function used for compiling your application. NULL will be the
typical return value when running the application on native OS without VMA loaded.

Any non-NULL return value is a vma_api_t type structure pointer that holds pointers to the specific
VMA Extra API function calls which are needed for the application to use.

62

•
•

•
•
•

•
•

•
•
•

•
•

It is recommended to call vma_get_api()once on startup, and to use the returned pointer throughout
the life of the process.

There is no need to ‘release’ this pointer in any way.

10.3 Control Off-load Capabilities During Run-Time

10.3.1 Adding libvma.conf Rules During Run-Time
Adds a libvma.conf rule to the top of the list. This rule will not apply to existing sockets which
already considered the conf rules. (around connect/listen/send/recv ..)

Syntax:

int (*add_conf_rule)(char *config_line);

Return value:

0 on success
error code on failure

Where:

config_line
Description – new rule to add to the top of the list (highest priority)
Value – a char buffer with the exact format as defined in libvma.conf, and should end
with '\0'

10.3.2 Creating Sockets as Offloaded or Not-Offloaded
Creates sockets on pthread tid as off-loaded/not-off-loaded. This does not affect existing sockets.
Offloaded sockets are still subject to libvma.conf rules.

Usually combined with the VMA_OFFLOADED_SOCKETS parameter.

Syntax:

int (*thread_offload)(int offload, pthread_t tid);

Return value:

0 on success
error code on failure

Where:

offload
Description – Offload property
Value – 1 for offloaded, 0 for not-offloaded

tid
Description – thread ID

63

10.4 Packet Filtering
The packet filter logic gives the application developer the capability to inspect a received packet.
You can then decide, on the fly, to keep or drop the received packet at this stage in processing.

The user’s application packet filtering callback is defined by the prototype:

typedef vma_recv_callback_retval_t (*vma_recv_callback_t) (int fd, size_t sz_iov, struct iovec iov[], struct
vma_info_t* vma_info, void *context);

This callback function should be registered with VMA by calling the VMA Extra API function
register_recv_callback(). It can be unregistered by setting a NULL function pointer.

VMA calls the callback to notify of new incoming packets after the internal IP & UDP/TCP header
processing, and before they are queued in the socket's receive queue.

The context of the callback is always that of one of the user's application threads that called one of
the following socket APIs: select(), poll(), epoll_wait(), recv(), recvfrom(), recvmsg(), read(), or
readv().

Packet Filtering Callback Function
Parameter

Description

fd File descriptor of the socket to which this packet refers.

iov iovector structure array pointer holding the packet
received, data buffer pointers, and the size of each buffer.

iov_sz Size of the iov array.

vma_info Additional information on the packet and socket.

context User-defined value provided during callback registration for
each socket.

10.4.1 Zero Copy recvfrom()
Zero-copy revcfrom implementation. This function attempts to receive a packet without doing data
copy.

Syntax:

int (*recvfrom_zcopy)(int s, void *buf, size_t len, int *flags, struct sockaddr *from, socklen_t *fromlen);

The application can call all the Socket APIs from within the callback context.

Packet loss might occur depending on the application's behavior in the callback context. A
very quick non-blocked callback behavior is not expected to induce packet loss.

Parameters the "iov" and "vma_info" are only valid until the callback context is returned to
VMA. You should copy these structures for later use, if working with zero copy logic.



64

•
•
•

•
•

•
•

Where:

Parameter Name Description Values

s Socket file descriptor

buf Buffer to fill with received data or
pointers to data (see below).

flags Pointer to flags (see below). Usual flags to recvmsg(), and
MSG_VMA_
ZCOPY_FORCE

from If not NULL, is set to the source address
(same as recvfrom)

fromlen If not NULL, is set to the source address
size (same as recvfrom).

The flags parameter can contain the usual flags to recvmsg(), and also the MSG_VMA_ZCOPY_FORCE
flag. If the latter is not set, the function reverts to data copy (i.e., zero-copy cannot be
performed). If zero-copy is performed, the flag MSG_VMA_ZCOPY is set upon exit.

If zero copy is performed (MSG_VMA_ZCOPY flag is returned), the buffer is filled with a
vma_packets_t structure holding as much fragments as `len' allows. The total size of all fragments is
returned. Otherwise, the buffer is filled with actual data, and its size is returned (same as
recvfrom()).

If the return value is positive, data copy has been performed. If the return value is zero, no data has
been received.

10.4.2 Freeing Zero Copied Packet Buffers
Frees a packet received by "recvfrom_zcopy()" or held by "receive callback".

Syntax:

int (*free_packets)(int s, struct vma_packet_t *pkts , size_t count);

Where:

s – socket from which the packet was received
pkts – array of packet identifiers
count – number of packets in the array

Return value:

0 on success, -1 on failure
errno is set to:

EINVAL – not a VMA offloaded socket
ENOENT – the packet was not received from 's'.

Example:

65

entry Source Source-mask Dest Dest-mask Interface Service Routing Status Log
|------|------------|---------------|-----|----------|- 1 any any any any if0 any tunneling active 1 2 192.168.2.0
255.255..255.0 any any if1 any tunneling active 1

Expected result:

sRB-20210G-61f0(statistic)# log show counter tx total pack tx total byte rx total pack rx total byte
 |------|-------------|-------------|-------------|-------------- 1 2733553 268066596 3698 362404

Parameter Description

tx total byte The number of transmit bytes (from InfiniBand-to-Ethernet) associated
with a TFM rule; has a log counter n.
The above example shows the number of bytes sent from Infiniband to
Ethernet (one way) or sent between InfiniBand and Ethernet and
matching the two TFM rules with log counter #1.

rx total pack The number of receive packets (from Ethernet to InfiniBand) associated
with a TFM rule; has a log counter n.

rx total byte The number of receive bytes (from Ethernet to InfiniBand) associated
with a TFM rule; has a log counter n.

10.5 Dump fd Statistics using VMA Logger
Dumps statistics for fd number using log_level log level.

Syntax:

int (*dump_fd_stats) (int fd, int log_level);

Parameters:

Parameter Description

fd fd to dump, 0 for all open fds.

log_level log_level dumping level corresponding vlog_levels_t enum (vlogger.h):
VLOG_NONE = -1
VLOG_PANIC = 0
VLOG_ERROR = 1
VLOG_WARNING = 2
VLOG_INFO =3
VLOG_DETAILS = 4
VLOG_DEBUG = 5
VLOG_FUNC = VLOG_FINE = 6
VLOG_FUNC_ALL = VLOG_FINER = 7
VLOG_ALL = 8

For output example see section Monitoring – the vma_stats Utility.Return values: 0 on success, -1 on
failure

66

10.6 "Dummy Send" to Improve Low Message Rate
Latency

The “Dummy Send” feature gives the application developer the capability to send dummy packets in
order to warm up the CPU caches on VMA send path, hence minimizing any cache misses and
improving latency. The dummy packets reaches the hardware NIC and then is dropped.

The application developer is responsible for sending the dummy packets by setting the
VMA_SND_FLAGS_DUMMY bit in the flags parameter of send(), sendto(), sendmsg(), and sendmmsg()
sockets API.

Parameters:

Parameter Description

VMA_SND_FLAGS_DUMMY Indicates a dummy packet

Same as the original APIs for offloaded sockets. Otherwise, -1 is returned and errno is set to
EINVAL.Return values:

Usage example:

void dummyWait(Timer waitDuration, Timer dummySendCycleDuration) { Timer now = Timer::now(); Timer endTime = now +
waitDuration; Timer nextDummySendTime = now + dummySendCycleDuration; for (; now < endTime ; now = Timer::now()) {
if (now >= nextDummySendTime) { send(fd, buf, len, VMA_SND_FLAGS_DUMMY); nextDummySendTime +=
dummySendCycleDuration; } } }

This sample code consistently sends dummy packets every DummysendCycleDuration using the VMA
extra API while the total time does not exceed waitDuration.

10.6.1 Verifying “Dummy Send” capability in HW
“Dummy Send” feature is supported in hardware starting from ConnectX-4 NIC.

In order to verify “Dummy Send” capability in the hardware, run VMA with DEBUG trace level.

VMA_TRACELEVEL=DEBUG LD_PRELOAD=<path to libvma.so> <command line>

Look in the printout for “HW Dummy send support for QP = [0|1]”.

For example:

Pid: 3832 Tid: 3832 VMA DEBUG: qpm[0x2097310]:121:configure() Creating QP of transport type 'ETH' on ibv device
'mlx5_0' [0x201e460] on port 1 Pid: 3832 Tid: 3832 VMA DEBUG: qpm[0x2097310]:137:configure() HW Dummy send support
for QP = 1 Pid: 3832 Tid: 3832 VMA DEBUG: cqm[0x203a460]:269:cq_mgr() Created CQ as Tx with fd[25] and of size 3000
 elements (ibv_cq_hndl=0x20a0000)

It is recommended not to send more than 50k dummy packets per second.

67

10.6.2 “Dummy Packets” Statistics
Run vma_stats tool to view the total amount of dummy-packets sent.

vma_stats –p <pid> -v 3

The number of dummy messages sent will appear under the relevant fd. For example:

== Fd=[20] - UDP, Blocked, MC Loop Enabled - Local Address = [0
.0.0.0:56732] Tx Offload: 128 / 9413 / 0 / 0 [kilobytes/packets/drops/errors] Tx Dummy messages : 87798 Rx Offload:
128 / 9413 / 0 / 0 [kilobytes/packets/eagains/errors] Rx byte: cur 0 / max 14 / dropped 0 / limit 212992 Rx pkt :
cur 0 / max 1 / dropped 0 Rx poll: 0 / 9411 (100.00%) [miss/hit]
==

10.7 SocketXtreme

The API introduced for this capability allows an application to remove the overhead of socket API
from the receive flow data path, while keeping the well-known socket API for the control interface.
Using such functionality the application has almost direct access to VMA’s HW ring object and it is
possible to implement a design which does not call socket APIs such as select(), poll(), epoll_wait(),
recv(), recvfrom(), recvmsg(), read(), or readv().

The structures and constants are defined as shown below.

VMA Specific Events

typedef enum { VMA_SOCKETXTREME_PACKET = (1ULL << 32), VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED = (1ULL << 33) }
vma_socketxtreme_events_t;

Parameter Description

VMA_SOCKETXTREME_PACKET New packet is available

VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED New connection is auto accepted by server

10.7.1 VMA Buffer

struct vma_buff_t { struct vma_buff_t* next; void* payload; uint16_t len; };

Parameter Description

next Next buffer (for last buffer next == NULL)

payload Point to data

len Data length

Starting from VMA v8.5.x, VMA_POLL parameter is renamed to SocketXtreme.

68

•
•

•
•
•
•

struct vma_packet_desc_t { size_t num_bufs; uint16_t total_len; struct vma_buff_t* buff_lst; };

VMA Packet

Parameter Description

total_len Total data length

buff_lst List of packet's buffers

len Data length

struct vma_completion_t { struct vma_packet_desc_t packet; uint64_t events; uint64_t user_data; struct sockaddr_in
src; int listen_fd; };

Parameter Description

events Set of events

user_data User provided data
By default this field has FD of the socket
User is able to change the content using setsockopt() with level
argument SOL_SOCKET and opname as SO_VMA_USER_DATA

src Source address (in network byte order) set for
VMA_SOCKETXTREME_PACKET and
VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED events

listen_fd Connected socket's parent/listen socket fd number.
Valid in case VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED event is
set.

10.7.2 Polling for VMA Completions
Syntax:

int (*socketxtreme_poll)(int fd, struct vma_completion_t* completions, unsigned int ncompletions, int flags);

Where

fd – file descriptor
completions – array of completion elements
ncompletions – number of elements in passed array
flags – flags to control behavior (set zero)

Return values: Returns the number of ready completions during success. A negative value is returned
in case of failure.

Description: This function polls the `fd` for VMA completions and returns maximum `ncompletions`
- ready completions via the `completions` array. The `fd` represents a ring file descriptor. VMA
completions are indicated for incoming packets and/or for other events. If
VMA_SOCKETXTREME_PACKET flag is enabled in the vma_completion_t.events field the completion

69

•

•
•
•

points to the incoming packet descriptor that can be accessed via the vma_completion_t.packet
field. Packet descriptor points to the VMA buffers that contain data scattered by HW, so the data is
delivered to the application with zero copy. Notice: after the application is finished with the
returned packets and their buffers it must free them using free_vma_packets()/free_vma_buff()
functions. If VMA_SOCKETXTREME_PACKET flag is disabled vma_completion_t.packet field is
reserved. In addition to packet arrival event (indicated by VMA_SOCKETXTREME_PACKET flag) VMA
also reports VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED event and standard epoll events via
the vma_completion_t.events field. VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED event is
reported when new connection is accepted by the server. When working with socketxtreme_poll()
new connections are accepted automatically and accept (listen_socket) must not be called.
VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED event is reported for the new connected/child
socket (vma_completion_t.user_data refers to child socket) and EPOLLIN event is not generated for
the listen socket. For events other than packet arrival and new connection acceptance
vma_completion_t.events bitmask composed using standard epoll API events types. Notice: the
same completion can report multiple events, for example VMA_SOCKETXTREME_PACKET flag can be
enabled together with EPOLLOUT event, etc.

10.7.3 Getting Number of Attached Rings
Syntax:

int (*get_socket_rings_num)(int fd);

Where:

fd – file descriptor

Return values: Returns the number of rings during success. A negative value is returned in case of
failure.

Description: Returns the number of rings that are associated with socket.

10.7.4 Getting Ring FD
Syntax:

int (*get_socket_rings_fds)(int fd, int *ring_fds, int ring_fds_sz);

Where:

fd – file descriptor
ring_fds – int array of ring fds
ring_fds_sz – size of the array

Return values: Returns the number populated array entries during success. A negative value is
returned in case of failure.

Description: Returns FDs of the rings that are associated with the socket.

10.7.5 Free VMA Packets
Syntax:

70

•
•

•

int (*socketxtreme_free_vma_packets)(struct vma_packet_desc_t *packets, int num);

Where:

packets – packets to be freed
num – number of packets in passed array

Return values: Returns zero value during success. A negative value is returned in case failure.

Description: Frees packets received by socketxtreme_poll().

For each packet in the `packets` array this function updates the receive queue size and the
advertised TCP window size, if needed, for the socket that received the packet and frees VMA
buffer list that is associated with the packet. Notice: for each buffer in the buffer list VMA
decreases buffer's ref count and only buffers with ref count zero are deallocated. An application can
call socketxtreme_ref_vma_buf() to increase the buffer reference count in order to hold the buffer
even after socketxtreme_free_vma_packets() has been called. Also, the application is responsible to
free buffers that could not be deallocated during socketxtreme_free_vma_packets() due to non-zero
reference count. This is done by calling the socketxtreme_free_vma_buff() function.

10.7.6 Decrement VMA Buffer Reference Counter
Syntax:

int (*socketxtreme_free_vma_buff)(struct vma_buff_t *buff);

Return values: Returns the buffer's reference count after the change (zero value means that the
buffer has been deallocated). A negative value is returned in case of failure.

Description: Decrement the reference counter of a buffer received by socketxtreme_poll(). This
function decrements the buff reference count. When buff's reference count reaches zero, it is
deallocated.

10.7.7 Increment VMA Buffer Reference Counter
Syntax:

int (*socketxtreme_ref_vma_buff)(struct vma_buff_t *buff);

Where:

buff – buffer to be managed

Return values: Returns buffer's reference count after the change. A negative value is returned in
case of failure.

Description: Increment the reference counter of a buffer received by socketxtreme_poll(). This
function increments the reference count of the buffer. This function should be used in order to hold
the buffer even after a call to socketxtreme_free_vma_packets(). When the buffer is no longer
required it should be freed via socketxtreme_free_vma_buff ().

71

10.7.8 Usage Example
Sockperf benchmark supports socketxtreme mode. Its source code can be used as a reference of
socketxtreme API usage.

The following sample implements server side logic based on the API described above.

In this example, the application just waits for connection requests and accepts new connections.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <mellanox/vma_extra.h>

int main(int argc, char**argv)
{
 int rc = 0;
 int fd = -1;
 struct sockaddr_in addr;
 static struct vma_api_t *_vma_api = NULL;
 static int _vma_ring_fd = -1;
 char *strdev = (argc > 1 ? argv[1] : NULL);
 char *straddr = (argc > 2 ? argv[2] : NULL);
 char *strport = (argc > 3 ? argv[3] : NULL);

 if (!strdev || !straddr || !strport) {
 printf("Wrong options\n");
 exit(1);
 }
 printf("Dev: %s\nAddress: %s\nPort:%s\n", strdev, straddr, strport);

 _/* Get VMA extra API reference */
 _vma_api = vma_get_api();
 if (_vma_api == NULL) {
 printf("VMA Extra API not found\n");
 exit(1);
 }

 fd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 rc = setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE,
 (void *)strdev, strlen(strdev));
 if (rc < 0) {
 printf("setsockopt() failed %d : %s\n", errno, strerror(errno));
 exit(1);
 }

 bzero(&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr(straddr);
 addr.sin_port = htons(atoi(strport));

 rc = bind(fd, (struct sockaddr *)&addr, sizeof(addr));
 if (rc < 0) {
 fprintf(stderr, "bind() failed %d : %s\n", errno, strerror(errno));
 exit(1);
 }

 _/* RX ring is available after bind() */
 _vma_api->get_socket_rings_fds(fd, &_vma_ring_fd, 1);
 if (_vma_ring_fd == -1){
 printf("Failed to return the ring fd\n");
 exit(1);
 }

 listen(fd, 5);
 printf("Waiting on: fd=%d\n", fd);

 while (0 == rc) {
 struct vma_completion_t vma_comps;
 /* Polling any RX events / data */
 rc = _vma_api->socketxtreme_poll(_vma_ring_fd, &vma_comps, 1, 0);
 if (rc > 0) {
 printf("socketxtreme_poll: rc=%d event=0x%lx user_data=%ld\n",
 rc, vma_comps.events, vma_comps.user_data);
 if (vma_comps.events & VMA_SOCKETXTREME_NEW_CONNECTION_ACCEPTED) {
 printf("Accepted connection: fd=%d\n", (int)vma_comps.user_data);
 rc = 0;
 }
 }
 }

 close(fd);
 fprintf(stderr, "socket closed\n");

 return 0;

72

•
•
•

•
•

•

10.7.9 Installation
For instructions on how to install SocketXtreme, please refer to section Installing VMA with
SocketXtreme.

10.7.10 Limitations
No support for:

Multi-thread
ConnectX-3/ConnectX-3 Pro HCAs
MLNX_OFED version lower than v3.4

User should keep in mind the differences in flow between the standard socket API and that based on
the polling completions model.

SocketXtreme mode is used with non-blocking connect() call only
Do not use accept() because socketxtreme_poll() provides special event as
VMA_socketxtreme_NEW_CONNECTION_ACCEPTED to track connection request
Mixed receive methods (recv/recvfrom/recmsg/epoll_wait with socketXtreme) can cause the
user to receive out-of-order packets. UDP is an unreliable protocol, hence working with
mixed receive methods are allowed yet not recommended. Whereas TCP is a reliable
protocol, hence mixed receive methods are not allowed. socketxtreme_poll() is able to notify
about any received data using the event VMA_socketxtreme_PACKET.

73

•
•

•
•
•

11 Monitoring, Debugging, and Troubleshooting

11.1 Monitoring – the vma_stats Utility
Networking applications open various types of sockets.

The VMA library holds the following counters:

Per socket state and performance counters
Internal performance counters which accumulate information for select(), poll() and
epoll_wait() usage by the whole application. An additional performance counter logs the CPU
usage of VMA during select(), poll(), or epoll_wait() calls. VMA calculates this counter only if
VMA_CPU_USAGE_STATS parameter is enabled, otherwise this counter is not in use and
displays the default value as zero.
VMA internal CQ performance counters
VMA internal RING performance counters
VMA internal Buffer Pool performance counters

Use the included vma_stats utility to view the per-socket information and performance counters
during runtime.

Note: For TCP connections, vma_stats shows only offloaded traffic, and not "os traffic."

Usage:

#vma_stats [-p pid] [-k directory] [-v view] [-d details] [-i interval]

The following table lists the basic and additional vma_stats utility options.

Parameter Name Description Values

-p, --pid <pid> Shows VMA statistics for a process with pid:
<pid>.

-k, --directory <directory> Sets shared memory directory path to
<directory>

-n, --name <application> Shows VMA statistics for application:
<application>

-f, --find_pid Finds PID and shows statistics for the VMA
instance running (default).

-F, --forbid_clean When you set this flag to inactive, shared
objects (files) are not removed.

-i, --interval <n> Prints a report every <n> seconds.
Default: 1 sec

-c, --cycles <n> Do <n> report print cycles and exit, use 0
value for infinite.
Default: 0

74

1.

2.
3.

4.

1.

Parameter Name Description Values

-v, --view <1|2|3|4|5> Sets the view type:
Shows the runtime basic performance
counters (default).
Shows extra performance counters.
Shows additional application runtime
configuration information.
Shows multicast group membership
information.

Shows netstat like view of all sockets.

-d, --details <1|2> Sets the details mode:
Show totals (default).

Show deltas.

-S, --fd_dump <fd> [<level>] Dumps statistics for fd number <fd> using log
level <level>. Use 0 value for all open fds.

-z, --zero Zero counters.

-l, --log_level <level> Sets the VMA log level to <level> (1 <= level <=
7).

-D, --details_level <level> Sets the VMA log detail level to <level> (0 <=
level <= 3).

-s, --sockets <list|range> Logs only sockets that match <list> or <range>
format: 4-16 or 1,9 (or combination).

-V, --version Prints the version number.

-h, --help Prints a help message.

11.1.1 Examples
The following sections contain examples of the vma_stats utility.

11.1.1.1 Example 1

11.1.1.1.1 Description

The following example demonstrates basic use of the vma_stats utility.

11.1.1.1.2 Command Line

#vma_stats –p <pid>

11.1.1.1.3 Output

If no process with a suitable pid is running over the VMA, the output is:

If there is only a single process running over VMA, it is not necessary to use the –p option,
since vma_stats will automatically recognize the process.



75

•
•
•
•
•

•

•
•
•
•

•
•

vmastat: Failed to identify process...

If an appropriate process was found, the output is:

fd ------------ total offloaded ------------- ----- total os ------
 pkt Kbyte eagain error poll% pkt Kbyte error
14 Rx: 140479898 274374 0 0 100.0 0 0 0
 Tx: 140479902 274502 0 0 0 0 0
--

11.1.1.1.4 Output Analysis
A single socket with user fd=14 was created
Received 140479898 packets, 274374 Kilobytes via the socket
Transmitted 140479898 packets, 274374 Kilobytes via the socket
All the traffic was offloaded. No packets were transmitted or received via the OS.
There were no missed Rx polls (see VMA_RX_POLL). This implies that the receiving thread did
not enter a blocked state, and therefore there was no context switch to hurt latency.
There are no transmission or reception errors on this socket

11.1.1.2 Example 2

11.1.1.2.1 Description

vma_stats presents not only cumulative statistics, but also enables you to view deltas of VMA
counter updates. This example demonstrates the use of the "deltas" mode.

11.1.1.2.2 Command Line

#vma_stats –p <pid> -d 2

11.1.1.2.3 Output

fd --------------- offloaded ---------------- ---------- os ----------
 pkt/s Kbyte/s eagain/s error/s poll% pkt/s Kbyte/s error/s
 15 Rx: 15186 29 0 0 0.0 0 0 0
 Tx: 15186 29 0 0 0 0 0
 19 Rx: 15186 29 0 0 0.0 0 0 0
 Tx: 15186 29 0 0 0 0 0
 23 Rx: 0 0 0 0 0.0 15185 22 0
 Tx: 0 0 0 0 15185 22 0
select() Rx Ready:15185/30372 [os/offload]
Timeouts:0 Errors:0 Poll:100.00% Polling CPU:70%

11.1.1.2.4 Output Analysis
Three sockets were created (fds: 15, 19, and 23)
Received 15186 packets, 29 Kilobytes during the last second via fds: 15 and 19
Transmitted 15186 packets, 29 Kbytes during the last second via fds: 15 and 19
Not all the traffic was offloaded, as fd 23: 15185 packets, 22 KBytes were transmitted and
received via the OS. This means that fd 23 was used for unicast traffic.
No transmission or reception errors were detected on any socket
The application used select for I/O multiplexing

76

•

•

•

•
•
•
•
•
•

45557 packets were placed in socket ready queues (over the course of the last second): 30372
of them offloaded (15186 via fd 15 and 15186 via fd 19), and 15185 were received via the OS
(through fd 23)
There were no missed Select polls (see VMA_SELECT_POLL). This implies that the receiving
thread did not enter a blocked state. Thus, there was no context switch to hurt latency.
The CPU usage in the select call is 70%
You can use this information to calculate the division of CPU usage between VMA and the
application. For example when the CPU usage is 100%, 70% is used by VMA for polling the
hardware, and the remaining 30% is used for processing the data by the application.

11.1.1.3 Example 3

11.1.1.3.1 Description

This example presents the most detailed vma_stats output.

11.1.1.3.2 Command Line

#vma_stats –p <pid> -v 3 –d 2

11.1.1.3.3 Output

==
 Fd=[14]
- Blocked, MC Loop Enabled
- Bound IF = [0.0.0.0:11111]
- Member of = [224.7.7.7]
Rx Offload: 1128530 / 786133 / 0 / 0 [kilobytes/packets/eagains/errors]
Rx byte: cur 1470 / max 23520 / dropped/s 0 / limit 16777216
Rx pkt : cur 1 / max 16 / dropped/s 0
Rx poll: 10 / 276077 (100.00%) [miss/hit]
==
 CQ=[0]
Packets dropped: 0
Packets queue len: 0
Drained max: 511
Buffer pool size: 500
==
==
 RING_ETH=[0]
Rx Offload: 1192953 / 786133 [kilobytes/packets]
Interrupts: 786137 / 78613 [requests/received]
Moderation: 10 / 181 [frame count/usec period]
==
==
 BUFFER_POOL(RX)=[0]
Size: 168000
No buffers error: 0
==
 BUFFER_POOL(TX)=[1]
Size: 199488
No buffers error: 0
==

11.1.1.3.4 Output Analysis
A single socket with user fd=14 was created
The socket is a member of multicast group: 224.7.7.7
Received 786133 packets, 1128530 Kilobytes via the socket during the last second
No transmitted data
All the traffic was offloaded. No packets were transmitted or received via the OS
There were almost no missed Rx polls (see VMA_RX_POLL)

77

•
•
•

•
•

•
•

•

•
•
•
•
•

•
•
•
•

There were no transmission or reception errors on this socket
The sockets receive buffer size is 16777216 Bytes
There were no dropped packets caused by the socket receive buffer limit (see
VMA_RX_BYTES_MIN)
Currently, one packet of 1470 Bytes is located in the socket receive queue
The maximum number of packets ever located, simultaneously, in the sockets receive queue
is 16
No packets were dropped by the CQ
No packets in the CQ ready queue (packets which were drained from the CQ and are waiting
to be processed by the upper layers)
The maximum number of packets drained from the CQ during a single drain cycle is 511 (see
VMA_CQ_DRAIN_WCE_MAX)
The RING_ETH received 786133 packets during this period
The RING_ETH received 1192953 kilo bytes during this period. This includes headers bytes.
786137 interrupts were requested by the ring during this period
78613 interrupts were intercepted by the ring during this period
The moderation engine was set to trigger an interrupt for every 10 packets and with
maximum time of 181 usecs
There were no retransmissions
The current available buffers in the RX pool is 168000
The current available buffers in the TX pool is 199488
There were no buffer requests that failed (no buffer errors)

11.1.1.4 Example 4

11.1.1.4.1 Description

This example demonstrates how you can get multicast group membership information via vma_stats.

11.1.1.4.2 Command Line

#vma_stats –p <pid> -v 4

11.1.1.4.3 Output

VMA Group Membership Information
Group fd number

[224.4.1.3] 15
[224.4.1.2] 19

11.1.1.5 Example 5

11.1.1.5.1 Description

This is an example of the “netstat like” view of vma_stats (-v 5).

78

•
•
•

•
•
•

•

11.1.1.5.2 Output

Proto Offloaded Local Address Foreign Address State Inode PID
udp Yes 0.0.0.0:44522 0.0.0.0:* 733679757 1576
tcp Yes 0.0.0.0:11111 0.0.0.0:* LISTEN 733679919 1618

11.1.1.5.3 Output Analysis
Two processes are running VMA
PID 1576 has one UDP socket bounded to all interfaces on port 44522
PID 1618 has one TCP listener socket bounded to all interfaces on port 11111

11.1.1.6 Example 6

11.1.1.6.1 Description

This is an example of a log of socket performance counters along with an explanation of the results
(using VMA_STATS_FILE parameter).

11.1.1.6.2 Output

VMA: [fd=10] Tx Offload: 455 / 233020 / 0 [kilobytes/packets/errors]
VMA: [fd=10] Tx OS info: 0 / 0 / 0 [kilobytes/packets/errors]
VMA: [fd=10] Rx Offload: 455 / 233020 / 0 [kilobytes/packets/errors]
VMA: [fd=10] Rx OS info: 0 / 0 / 0 [kilobytes/packets/errors]
VMA: [fd=10] Rx byte: max 200 / dropped 0 (0.00%) / limit 2000000
VMA: [fd=10] Rx pkt : max 1 / dropped 0 (0.00%)
VMA: [fd=10] Rx poll: 0 / 233020 (100.00%) [miss/hit]

11.1.1.6.3 Output Analysis
No transmission or reception errors occurred on this socket (user fd=10).
All the traffic was offloaded. No packets were transmitted or received via the OS.
There were practically no missed Rx polls (see VMA_RX_POLL and VMA_SELECT_POLL). This
implies that the receiving thread did not enter a blocked state. Thus, there was no context
switch to hurt latency.
There were no dropped packets caused by the socket receive buffer limit (see
VMA_RX_BYTES_MIN). A single socket with user fd=14 was created.

11.1.1.7 Example 7

11.1.1.7.1 Description

This is an example of vma_stats fd dump utility of established TCP socket using log level = info.

11.1.1.7.2 Command Line

#vma_stats –-fd_dump 17 info

79

•
•
•
•
•
•
•
•
•

11.1.1.7.3 Output

VMA INFO: ============ DUMPING FD 17 STATISTICS ============
VMA INFO: ==================== SOCKET FD ===================
VMA INFO: Fd number : 17
VMA INFO: Bind info : 22.0.0.4:58795
VMA INFO: Connection info : 22.0.0.3:6666
VMA INFO: Protocol : PROTO_TCP
VMA INFO: Is closed : false
VMA INFO: Is blocking : true
VMA INFO: Rx reuse buffer pending : false
VMA INFO: Rx reuse buffer postponed : false
VMA INFO: Is offloaded : true
VMA INFO: Tx Offload : 12374 / 905105 / 0 / 0 [kilobytes/packets/drops/errors]
VMA INFO: Rx Offload : 12374 / 905104 / 0 / 0 [kilobytes/packets/eagains/errors]
VMA INFO: Rx byte : max 14 / dropped 0 (0.00%) / limit 0
VMA INFO: Rx pkt : max 1 / dropped 0 (0.00%)
VMA INFO: Rx poll : 0 / 905109 (100.00%) [miss/hit]
VMA INFO: Socket state : TCP_SOCK_CONNECTED_RDWR
VMA INFO: Connection state : TCP_CONN_CONNECTED
VMA INFO: Receive buffer : m_rcvbuff_current 0, m_rcvbuff_max 87380, m_rcvbuff_non_tcp_recved 0
VMA INFO: Rx lists size : m_rx_pkt_ready_list 0, m_rx_ctl_packets_list 0, m_rx_ctl_reuse_list 0
VMA INFO: PCB state : ESTABLISHED
VMA INFO: PCB flags : 0x140
VMA INFO: Segment size : mss 1460, advtsd_mss 1460
VMA INFO: Window scaling : ENABLED, rcv_scale 7, snd_scale 7
VMA INFO: Receive window : rcv_wnd 87380 (682), rcv_ann_wnd 87240 (681), rcv_wnd_max 87380 (682),
rcv_wnd_max_desired 87380 (682)
VMA INFO: Send window : snd_wnd 87168 (681), snd_wnd_max 8388480 (65535)
VMA INFO: Congestion : cwnd 1662014
VMA INFO: Receiver data : rcv_nxt 12678090, rcv_ann_right_edge 12765330
VMA INFO: Sender data : snd_nxt 12678080, snd_wl1 12678076, snd_wl2 12678066
VMA INFO: Send buffer : snd_buf 255986, max_snd_buff 256000
VMA INFO: Retransmission : rtime 0, rto 3, nrtx 0
VMA INFO: RTT variables : rttest 38, rtseq 12678066
VMA INFO: First unsent : NULL
VMA INFO: First unacked : seqno 12678066, len 14, seqno + len 12678080
VMA INFO: Last unacked : seqno 12678066, len 14, seqno + len 12678080
VMA INFO: Acknowledge : lastack 12678066
VMA INFO: ==
VMA INFO: ==

11.1.1.7.4 Output Analysis
Fd 17 is a descriptor of established TCP socket (22.0.0.4:58795 -> 22.0.0.3:6666)
Fd 17 is offloaded by VMA
The current usage of the receive buffer is 0 bytes, while the max possible is 87380
The connection (PCB) flags are TF_WND_SCALE and TF_NODELAY (PCB0x140)
Window scaling is enabled, receive and send scales equal 7
Congestion windows equal 1662014
Unsent queue is empty
There is a single packet of 14 bytes in the unacked queue (seqno 12678066)
The last acknowledge sequence number is 12678066

Additional information about the values can be found in the VMA’s wiki page.

11.2 Debugging

11.2.1 VMA Logs
Use the VMA logs in order to trace VMA operations. VMA logs can be controlled by the
VMA_TRACELEVEL variable. This variable's default value is 3, meaning that the only logs obtained
are those with severity of PANIC, ERROR, and WARNING.

You can increase the VMA_TRACELEVEL variable value up to 6 (as described in VMA Configuration
Parameters) to see more information about each thread's operation. Use the VMA_LOG_DETAILS=3 to

https://github.com/Mellanox/libvma/wiki/

80

1.

add a time stamp to each log line. This can help to check the time difference between different
events written to the log.

Use the VMA_LOG_FILE=/tmp/my_file.log to save the daily events. It is recommended to check
these logs for any VMA warnings and errors. Refer to the Troubleshooting section to help resolve the
different issues in the log.

VMA will replace a single '%d' appearing in the log file name with the pid of the process loaded with
VMA. This can help in running multiple instances of VMA each with its own log file name.

When VMA_LOG_COLORS is enabled, VMA uses a color scheme when logging: Red for errors and
warnings, and dim for low level debugs.

Use the VMA_HANDLE_SIGSEGV to print a backtrace if a segmentation fault occurs.

11.2.2 Ethernet Counters
Look at the Ethernet counters (by using the ifconfig command) to understand whether the traffic is
passing through the kernel or through the VMA (Rx and Tx).

11.2.3 tcpdump
For tcpdump to capture offloaded traffic (on ConnectX-4 and above), please follow instructions in
section Offloaded Traffic Sniffer in the MLNX_OFED User Manual.

11.2.4 NIC Counters
Look at the NIC counters to monitor HW interface level packets received and sent, drops, errors,
and other useful information.

ls /sys/class/net/eth2/statistics/

11.3 Peer Notification Service
Peer notification service handles TCP half-open connections where one side discovers the
connection was lost but the other side still see it as active.

The peer-notification daemon is started at system initialization or manually under super user
permissions.

The daemon collects information about TCP connections from all the running VMA processes. Upon
VMA process termination (identified as causing TCP half open connection) the daemon notifies the
peers (by sending Reset packets) in order to let them delete the TCP connections on their side.

11.4 Troubleshooting
This section lists problems that can occur when using VMA, and describes solutions for these
problems.

High Log Level

81

2.

3.

4.

5.

VMA: WARNING: ***
VMA: WARNING: *VMA is currently configured with high log level*
VMA: WARNING: *Application performance will decrease in this log level!*
VMA: WARNING: *This log level is recommended for debugging purposes only*
VMA: WARNING: ***

This warning message indicates that you are using VMA with a high log level.
The VMA_TRACELEVEL variable value is set to 4 or more, which is good for troubleshooting
but not for live runs or performance measurements.
Solution: Set VMA_TRACELEVEL to its default value 3.
On running an application with VMA, the following error is reported:

ERROR: ld.so: object 'libvma.so' from LD_PRELOAD cannot be preloaded: ignored.

Solution: Check that libvma is properly installed, and that libvma.so is located in /usr/lib (or
in /usr/lib64, for 64-bit machines).
On attempting to install vma rpm, the following error is reported:

#rpm –ivh libvma-w.x.y-z.rpm
error: can't create transaction lock

Solution: Install the rpm with privileged user (root).
The following warning is reported:

VMA: WARNING: **
VMA: WARNING: Your current max locked memory is: 33554432. Please change it to unlimited.
VMA: WARNING: Set this user's default to `ulimit -l unlimited`.
VMA: WARNING: Read more about this issue in the VMA's User Manual.
VMA: WARNING: **

Solution: When working with root, increase the maximum locked memory to 'unlimited' by
using the following command:

#ulimit -l unlimited

When working as a non-privileged user, ask your administrator to increase the maximum
locked memory to unlimited.
Lack of huge page resources in the system.The following warning is reported:

VMA WARNING: **
VMA WARNING: * NO IMMEDIATE ACTION NEEDED!
VMA WARNING: * Not enough hugepage resources for VMA memory allocation.
VMA WARNING: * VMA will continue working with regular memory allocation.
VMA INFO: * Optional:
VMA INFO: * 1. Switch to a different memory allocation type
VMA INFO: * (VMA_MEM_ALLOC_TYPE!= 2)
VMA INFO: * 2. Restart process after increasing the number of
VMA INFO: * hugepages resources in the system:
VMA INFO: * "echo 1000000000 > /proc/sys/kernel/shmmax"
VMA INFO: * "echo 800 > /proc/sys/vm/nr_hugepages"
VMA WARNING: * Please refer to the memory allocation section in the VMA's
VMA WARNING: * User Manual for more information
VMA WARNING: ***

This warning message means that you are using VMA with huge page memory allocation
enabled (VMA_MEM_ALLOC_TYPE=2), but not enough huge page resources are available in the
system. VMA will use contiguous pages instead.
Note that VMA_MEM_ALLOC_TYPE= 1 is not supported while working with Microsoft
hypervisor. In this case – please use VMA_MEM_ALLOC_TYPE= 0 (malloc).
If you want VMA to take full advantage of the performance benefits of huge pages, restart the
application after adding more huge page resources to your system similar to the details in the

82

6.

7.

warning message above, or try to free unused huge page shared memory segments with the
script below.

echo 1000000000 > /proc/sys/kernel/shmmax
echo 800 > /proc/sys/vm/nr_hugepages

If you are running multiple instances of your application loaded with VMA, you will probably
need to increase the values used in the above example.

Use the following script to release VMA unused huge page resources:

for shmid in `ipcs -m | grep 0x00000000 | awk '{print $2}'`;
do echo 'Clearing' $shmid; ipcrm -m $shmid;
done;

Wrong ARP resolution when multiple ports are on the same network.
When two (or more) ports are configured on the same network (e.g. 192.168.1.1/24 and
192.168.1.2/24) VMA will only detect the MAC address of one of the interfaces. This will
result in incorrect ARP resolution.
This is due to the way Linux handles ARP responses in this configuration. By default, Linux
returns the same MAC address for both IPs. This behavior is called “ARP Flux”.
To fix this, it is required to change some of the interface’s settings:

$ sysctl -w net.ipv4.conf.[DEVICE].arp_announce=1
$ sysctl -w net.ipv4.conf.[DEVICE].arp_ignore=2
$ sysctl -w net.ipv4.conf.[DEVICE].rp_filter=0

To verify the issue is resolved, clear the ARP tables on a different server that is on the same
network and use the arping utility to verify that each IP reports its own MAC address
correctly:

$ ip -s neigh flush all # clear the arp table on the remote server

$ arping -b -I ens3f1 192.168.1.1
ARPING 192.168.1.1 from 192.168.1.5 ens3f0
Unicast reply from 192.168.1.1 [24:8A:07:9A:16:0A] 0.548ms

$ arping -b -I ens3f1 192.168.1.2
ARPING 192.168.1.2 from 192.168.1.5 ens3f0
Unicast reply from 192.168.1.2 [24:8A:07:9A:16:1A] 0.548ms

VMA process cannot establish connection with daemon (vmad) in Microsoft hypervisor
environment.
When working with Microsoft Hypervisor, VMA daemon must be enabled in order to submit
Traffic Control (TC) rules which will offload the traffic to the TAP device in case of plug-out
events.
The following warning is reported during VMA startup:

Check that your host machine has enough free memory after allocating the huge
page resources for VMA. Low system memory resources may cause your system to
hang.



Use "ipcs -m" and "ipcrm -m shmid" to check and clean unused shared memory
segments.



83

8.

9.

VMA WARNING: ***
VMA WARNING: * Can not establish connection with the daemon (vmad). *
VMA WARNING: * UDP/TCP connections are likely to be limited. *
VMA WARNING: ***

The following warning is reported during any connection establishment/termination:

VMA WARNING: ring_tap[0x1efc910]:135:attach_flow() Add TC rule failed with error=-19

To fix this, run “vmad” as root.
VMA cannot offload traffic when RoCE LAG is enabled.
RoCE LAG is a feature meant for mimicking Ethernet bonding for IB devices and is available
for dual port cards only. When in RoCE LAG mode, instead of having an IB device per physical
port (for example mlx5_0 and mlx5_1), only one IB device is present for both ports.
The following warning appears upon VMA startup:

VMA WARNING: **
VMA WARNING: * Interface bond0 will not be offloaded.
VMA WARNING: * VMA cannot offload the device while RoCE LAG is enabled.
VMA WARNING: * Please refer to VMA Release Notes for more info
VMA WARNING: **
VMA WARNING: **
VMA WARNING: * Bond bond0 will not be offloaded due to problem with its slaves.
VMA WARNING: * Check warning messages for more information.
VMA WARNING: **

RoCE LAG should be disabled in order for VMA to be able to offload traffic.
ConnectX-4 and above HCAs with MLNX_OFED print the following warning with instructions on
how to disable RoCE LAG:

VMA WARNING: **
VMA WARNING: * Interface bond1 will not be offloaded.
VMA WARNING: * VMA cannot offload the device while RoCE LAG is enabled.
VMA WARNING: * In order to disable RoCE LAG please use:
VMA WARNING: * echo 0 > /sys/class/net/ens4f1/device/roce_lag_enable
VMA WARNING: **
VMA WARNING: **
VMA WARNING: * Bond bond1 will not be offloaded due to problem with its slaves.
VMA WARNING: * Check warning messages for more information.
VMA WARNING: **

Device memory programming is not supported on VMs that lack Blue Flame support.
VMA will explicitly disable Device Memory capability if it detects Blue Flame support is
missing on the node on which user application was launched using VMA. The following
warning message will appear:

VMA: WARNING: Device
Memory functionality is not used on devices w/o Blue Flame support.

84

•
•

•

•

•

•

•

•
•

12 Appendixes
The document contains the following appendixes:

Appendix: Sockperf – UDP/TCP Latency and Throughput Benchmarking Tool
Appendix: Multicast Routing

12.1 Appendix: Sockperf – UDP/TCP Latency and
Throughput Benchmarking Tool

This appendix presents sockperf, VMA's sample application for testing latency and throughput over
socket API.

Sockperf can be used natively, or with VMA acceleration.

12.1.1 Overview
Sockperf is an open source utility. For more general information, see https://github.com/Mellanox/
sockperf.

Sockperf's advantage over other network benchmarking utilities is its focus on testing the
performance of high-performance systems (as well as testing the performance of regular networking
systems). In addition, sockperf covers most of the socket API call and options.

Specifically, in addition to the standard throughput tests, sockperf:

Measures latency of each discrete packet at sub-nanosecond resolution (using TSC register
that counts CPU ticks with very low overhead).
Measures latency for ping-pong mode and for latency under load mode. This means that you
can measure latency of single packets even under a load of millions of PPS (without waiting
for reply of packet before sending a subsequent packet on time).
Enables spike analysis by providing in each run a histogram with various percentiles of the
packets’ latencies (for example: median, min, max, 99% percentile, and more) in addition to
average and standard deviation.
Can provide full logs containing all a packet’s tx/rx times, without affecting the benchmark
itself. The logs can be further analyzed with external tools, such as MS-Excel or matplotlib.
Supports many optional settings for good coverage of socket API, while still keeping a very
low overhead in the fast path to allow cleanest results.

Sockperf operates by sending packets from the client (also known as the publisher) to the server
(also known as the consumer), which then sends all or some of the packets back to the client. This
measured roundtrip time is the route trip time (RTT) between the two machines on a specific
network path with packets of varying sizes.

The latency for a given one-way path between the two machines is the RTT divided by two.
The average RTT is calculated by summing the route trip times for all the packets that
perform the round trip and then dividing the total by the number of packets.

Sockperf can test the improvement of UDP/TCP traffic latency when running applications with and
without VMA.

https://github.com/Mellanox/sockperf

85

•
•

•

•

•

•

Sockperf can work as a server (consumer) or execute under-load, ping-pong, playback and
throughput tests as a client (publisher).

In addition, sockperf provides more detailed statistical information and analysis, as described in the
following section.

Sockperf is installed on the VMA server at /usr/bin/sockperf. For examples of running sockperf, see:

Latency with Ping-pong Test
Bandwidth and Packet Rate With Throughput Test

12.1.1.1 Advanced Statistics and Analysis
In each run, sockperf presents additional advanced statistics and analysis information:

In addition to the average latency and standard deviation, sockperf presents a histogram with
various percentiles, including:

50 percentile – the latency value for which 50 percent of the observations are smaller
than it. The 50 percentile is also known as the median, and is different from the
statistical average.
99 percentile – the latency value for which 99 percent of the observations are smaller
than it (and 1 percent are higher)

These percentiles, and the other percentiles that the histogram provides, are very useful for
analyzing spikes in the network traffic.

Sockperf can provide a full log of all packets’ tx and rx times by dumping all the data that it
uses for calculating percentiles and building the histogram to a comma separated file. This
file can be further analyzed using external tools such as Microsoft Excel or matplotlib.

All these additional calculations and reports are executed after the fast path is completed. This
means that using these options has no effect on the benchmarking of the test itself. During runtime
of the fast path, sockperf records txTime and rxTime of packets using the TSC CPU register, which
has a negligible effect on the benchmark itself, as opposed to using the computer’s clock, which can
affect benchmarking results.

12.1.2 Configuring the Routing Table for Multicast Tests
If you want to use multicast, you must first configure the routing table to map multicast addresses
to the Ethernet interface, on both client and server.

Example

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

where eth0 is the Ethernet interface.

You can also set the interface on runtime in sockperf:

If you want to use multicast, you must first configure the routing table to map multicast
addresses to the Ethernet interface, on both client and server. (See Configuring the Routing
Table for Multicast Tests).



86

•

•

1.

2.

1.

2.

1.

Use "--mc-rx-if -<ip>" to set the address of the interface on which to receive multicast
packets (can be different from the route table)
Use "--mc-tx-if -<ip>" to set the address of the interface on which to transmit multicast
packets (can be different from the route table)

12.1.3 Latency with Ping-pong Test
To measure latency statistics, after the test completes, sockperf calculates the route trip times
(divided by two) between the client and the server for all messages, then it provides the average
statistics and histogram.

12.1.3.1 UDP Ping-pong
To run UDP ping-pong:

Run the server by using:

sockperf sr -i <server-ip>

Run the client by using:

sockperf pp -i <server-ip> -m 64

Where -m/--msg-size is the message size in bytes (minimum default 14).

12.1.3.2 TCP Ping-pong
To run TCP ping-pong:

Run the server by using:

sockperf sr -i <server-ip> --tcp

Run the client by using:

sockperf pp -i <server-ip> --tcp –m 64

12.1.3.3 TCP Ping-pong using VMA
To run TCP ping-pong using VMA:

Run the server by using:

VMA_SPEC=latency LD_PRELOAD=libvma.so sockperf sr -i <server-ip> --tcp

For more sockperf Ping-pong options run:

sockperf pp –h



87

2.

1.

2.

3.

4.

1.

2.

Run the client by using:

VMA_SPEC=latency LD_PRELOAD=libvma.so sockperf pp -i <server-ip> --tcp –m 64

Where VMA_SPEC=latency is a predefined specification profile for latency.

12.1.4 Bandwidth and Packet Rate with Throughput Test
To determine the maximum bandwidth and highest message rate for a single-process, single-
threaded network application, sockperf attempts to send the maximum amount of data in a specific
period of time.

12.1.4.1 UDP MC Throughput
To run UDP MC throughput:

On both the client and the server, configure the routing table to map the multicast addresses
to the interface by using:

route add -net 224.0.0.0 netmask 240.0.0.0 dev <interface>

Run the server by using:

sockperf sr -i <server-100g-ip>

Run the client by using:

sockperf tp -i <server-100g-ip> -m 1472

Where -m/--msg-size is the message size in bytes (minimum default 14).
The following output is obtained:

sockperf: Total of 936977 messages sent in 1.100 sec
sockperf: Summary: Message Rate is 851796 [msg/sec]
sockperf: Summary: BandWidth is 1195.759 MBps (9566.068 Mbps)

12.1.4.2 UDP MC Throughput using VMA
To run UDP MC throughput:

After configuring the routing table as described in Configuring the Routing Table for Multicast
Tests, run the server by using:

LD_PRELOAD=libvma.so sockperf sr -i <server-ip>

Run the client by using:

For more sockperf throughput options run:

sockperf tp –h



88

3.

•

•

LD_PRELOAD=libvma.so sockperf tp -i <server-ip> -m 1472

The following output is obtained:

sockperf: Total of 4651163 messages sent in 1.100 sec
sockperf: Summary: Message Rate is 4228326 [msg/sec]
sockperf: Summary: BandWidth is 5935.760 MBps (47486.083 Mbps)

12.1.4.3 UDP MC Throughput Summary
Test 100 Gb Ethernet 100 Gb Ethernet + VMA

Message Rate 851796 [msg/sec] 4228326 [msg/sec]

Bandwidth 1195.759 MBps (9566.068 Mbps) 5935.760 MBps (47486.083 Mbps)

VMA Improvement 4740.001 MBps (396.4%)

12.1.5 sockperf Subcommands
You can use additional sockperf subcommands

Usage: sockperf <subcommand> [options] [args]

To display help for a specific subcommand, use:

sockperf <subcommand> --help

To display the program version number, use:

sockperf --version

Option Description For help, use

help (h ,?) Display a list of supported commands.

under-load (ul) Run sockperf client for latency under load test. # sockperf ul -h

ping-pong (pp) Run sockperf client for latency test in ping pong
mode.

sockperf pp -h

playback (pb) Run sockperf client for latency test using playback
of predefined traffic, based on timeline and
message size.

sockperf pb -h

throughput (tp) Run sockperf client for one way throughput test. # sockperf tp -h

server (sr) Run sockperf as a server. # sockperf sr -h

For additional information, see https://github.com/Mellanox/sockperf.

12.1.5.1 Additional Options
The following tables describe additional sockperf options, and their possible values.

https://github.com/Mellanox/sockperf

89

12.1.5.1.1 Client Options
Short Command Full Command Description

-h,-? --help,--usage Show the help message and exit.

N/A --tcp Use TCP protocol (default UDP).

 -i --ip Listen on/send to IP <ip>.

 -p --port Listen on/connect to port <port> (default 11111).

 -f --file Read multiple ip+port combinations from file
<file> (will use IO muxer '-F').

 -F --iomux-type Type of multiple file descriptors handle [s|select|
p|poll|e|epoll|r|recvfrom|x|socketxtreme]
(default epoll).

N/A --timeout Set select/poll/epoll timeout to <msec> or -1 for
infinite (default is 10 msec).

 -a --activity Measure activity by printing a '.' for the last <N>
messages processed.

 -A --Activity Measure activity by printing the duration for last
<N> messages processed.

N/A --tcp-avoid-nodelay Stop/Start delivering TCP Messages Immediately
(Enable/Disable Nagel).
The default is Nagel Disabled except for in
Throughput where the default is Nagel enabled.

N/A --tcp-skip-blocking-send Enables non-blocking send operation (default
OFF).

N/A --tos Allows setting tos.

N/A --mc-rx-if IP address of interface on which to receive
multicast packets (can be different from the
route table).

N/A --mc-tx-if IP address of interface on which to transmit
multicast packets (can be different from the
route table).

N/A --mc-loopback-enable Enable MC loopback (default disabled).

N/A --mc-ttl Limit the lifetime of the message (default 2).

N/A --mc-source-filter Set the address <ip, hostname> of the mulitcast
messages source which is allowed to receive
from.

N/A --uc-reuseaddr Enables unicast reuse address (default disabled).

N/A --lls Turn on LLS via socket option (value = usec to
poll).

N/A --buffer-size Set total socket receive/send buffer <size> in
bytes (system defined by default).

N/A --nonblocked Open non-blocked sockets.

N/A --recv_looping_num Set sockperf to loop over recvfrom() until EAGAIN
or <N> good received packets, -1 for infinite,
must be used with --nonblocked (default 1).

90

Short Command Full Command Description

N/A --dontwarmup Do not send warm up packets on start.

N/A --pre-warmup-wait Time to wait before sending warm up packets
(seconds).

N/A --vmazcopyread If possible use VMA's zero copy reads API (see the
VMA readme).

N/A --daemonize Run as daemon.

N/A --no-rdtsc Do not use the register when measuring time;
instead use the monotonic clock.

N/A --load-vma Load VMA dynamically even when LD_PRELOAD
was not used.

N/A --rate-limit Use rate limit (packet-pacing). When used with
VMA, it must be run with
VMA_RING_ALLOCATION_LOGIC_TX mode.

N/A --set-sock-accl Set socket acceleration before running VMA
(available for some NVIDIA® systems).

 -d --debug Print extra debug information.

12.1.5.1.2 Server Options
Short Command Full Command Description

N/A --threads-num Run <N> threads on server side (requires '-f'
option).

N/A --cpu-affinity Set threads affinity to the given core IDs in the
list format (see: cat /proc/cpuinfo).

N/A --vmarxfiltercb If possible use VMA's receive path packet filter
callback API (See the VMA readme).

N/A --force-unicast-reply Force server to reply via unicast.

N/A --dont-reply Set server to not reply to the client messages.

-m --msg-size Set maximum message size that the server can
receive <size> bytes (default 65507).

-g --gap-detection Enable gap-detection.

12.1.5.2 Sending Bursts
Use the "-b (--burst=<size>)" option to control the number of messages sent by the client in every
burst.

12.1.5.3 SocketXtreme
sockperf v3.2 and above supports VMA socketXtreme polling mode.

In order to support socketXtreme, sockperf should be configured using --enable-vma-api parameter
compiled with the compatible vma_extra.h file during compilation.

91

1.

•
•
•
•

•

2.

•

•

New iomux type should appear -x / --socketxtreme:

Short Command Full Command Description

-F --iomux-type Type of multiple file descriptors handle [s|select|
p|poll|e|epoll|r|recvfrom|x|socketxtreme]
(default epoll).

In order to use socketXtreme, VMA should also be compiled using --enable-socketxtreme parameter.

socketXtreme requires forcing the Client side to bind to a specific IP address. Hence, while running
UDP client with socketXtreme, running --client_ip is mandatory:

--client_ip -Force the client side to bind to a specific ip address (default = 0).

12.1.6 Debugging sockperf
Use "-d (--debug)" to print extra debug information without affecting the results of the test. The
debug information is printed only before or after the fast path.

12.1.7 Troubleshooting sockperf
If the following error is received:

sockperf error:
sockperf: No messages were received from the server. Is the server down?

Perform troubleshooting as follows:
Make sure that exactly one server is running
Check the connection between the client and server
Check the routing table entries for the multicast/unicast group
Extend test duration (use the " --time " command line switch)

If you used extreme values for --mps and/or --reply-every switch, try other values
or try the default values

If the following error is received, it means that Sockperf is trying to compile against VMA with
no socketXtreme support:

In file included from src/Client.cpp:32:0:
src/IoHandlers.h: In member function 'int IoSocketxtreme::waitArrival()':
src/IoHandlers.h:421:71: error: 'VMA_SOCKETXTREME_PACKET' was not declared in this scope
 if (m_rings_vma_comps_map_itr->second->vma_comp_list[i].events & VMA_SOCKETXTREME_PACKET){
 ^
src/IoHandlers.h:422:18: error: 'struct vma_api_t' has no member named 'socketxtreme_free_vma_packets'
 g_vma_api->socketxtreme_free_vma_packets(&m_rings_vma_comps_map_itr->second-
>vma_comp_list[i].packet, 1);

There are two ways to solve this:

Configure sockperf with --disable-vma-api parameter;
or
Use VMA 8.5.1 or above

SocketXtreme should be also enabled for VMA. For further information, please refer to
Installing VMA with SocketXtreme.



92

12.2 Appendix: Multicast Routing

12.2.1 Multicast Interface Definitions
All applications that receive and/or transmit multicast traffic on a multiple-interface host should
define the network interfaces through which they would prefer to receive or transmit the various
multicast groups.

If a networking application can use existing socket API semantics for multicast packet receive and
transmit, the network interface can be defined by mapping the multicast traffic. In this case, the
routing table does not have to be updated for multicast group mapping. The socket API setsockopt
handles these definitions.

When the application uses setsockopt with IP_ADD_MEMBERSHIP for the receive path multicast join
request, it defines the interface through which it wants the VMA to join the multicast group, and
listens for incoming multicast packets for the specified multicast group on the specified socket.

IGMPv3 source specific multicast: when the application uses setsockopt with
IP_ADD_SOURCE_MEMBERSHIP for the receive path multicast join request, it defines the interface
through which it wants the VMA to join the multicast group, and listens for incoming multicast
packets for the specified multicast group and from a specified source on the specified socket.

When the application uses setsockopt with IP_MULTICAST_IF on the transmit path, it defines the
interface through which the VMA will transmit outgoing multicast packets on that specific socket.

If the user application does not use any of the above setsockopt socket lib API calls, the VMA uses
the network routing table mapping to find the appropriate interface to be used for receiving or
transmitting multicast packets.

Use the route command to verify that multicast addresses in the routing table are mapped to the
interface you are working on. If they are not mapped, you can map them as follows:

#route add -net 224.0.0.0 netmask 240.0.0.0 dev ib0

It is best to perform the mapping before running the user application with VMA, so that multicast
packets are routed via the 10 Gb Ethernet interface and not via the default Ethernet interface eth0.

The general rule is that the VMA routing is the same as the OS routing.

93

13 Common Abbreviations, Typography and
Related Documents

13.1 Glossary
Acronym Definition

API Application Programmer's Interface

CQ Completion Queue

FD File Descriptor

GEth Gigabit Ethernet Hardware Interface

HCA Host Channel Adapter

HIS Host Identification Service

IB InfiniBand

IGMP Internet Group Management Protocol

IP Internet Protocol

IPoIB IP over IB

IPR IP Router

NIC Network Interface Card

OFED OpenFabrics Enterprise Distribution

OS Operating System

pps Packets Per Second

QP Queue Pair

RMDS Reuters Market Data System

RTT Route Trip Time

SM Subnet Manager

UDP User Datagram Protocol

usec microseconds

UMCAST User Mode Multicast

VMA NVIDIA® Messaging Accelerator

VMS VMA Messaging Service

WCE Work Completion Elements

13.1.1 Typography
The following table describes typographical conventions used in this document. All terms refer to
isolated terms within body text or regular table text unless otherwise mentioned in the Notes
column.

94

Term, Construct, Text Block Example Notes

File name, pathname /opt/ufm/conf/gv.cfg

Console session (code) -> flashClear <CR> Complete sample line or block. Comprises
both input and output. The code can also
be shaded.

Linux shell prompt # The "#"character stands for the Linux shell
prompt.

CLI Guest Mode Switch > CLI Guest Mode.

CLI admin mode Switch # CLI admin mode

String < > or [] Strings in angled or square brackets are
descriptions of what will actually be
shown on the screen. For example, the
contents of <your-ip> could be
192.168.1.1.

Management GUI label, item name New Network, New
Environment

Management GUI labels and item names
appear in bold, whether or not the name
is explicitly displayed (for example,
buttons and icons).

User text entered into Manager,
e.g., to assign as the name of a
logical object

"Env1", "Network1" Note the quotes. The text entered does
not include the quotes.

95

•

•

•

•

•

•

•

•

•

•
•

14 User Manual Revision History
Revision Date Description

9.8.1 January 31, 2021 Updated examples across the document to
reflect the new 9.8.1 VMA version

9.7.2 November 30, 2022 Updated examples across the document to
reflect the new 9.7.2 VMA version

9.7.0 October 31, 2022 Updated examples across the document to
reflect the new 9.7.0 VMA version

9.6.4 July 31, 2022 Updated examples across the document to
reflect the new 9.6.4 VMA version

9.5.2 May 3, 2022 Updated examples across the document to
reflect the new 9.5.2 VMA version

Rev 9.4.0 November 30, 2021 Updated examples to reflect the 9.4.0 VMA
version
Updated the examples in Configuring VMA

Rev 9.3.1 June 30, 2021 Added section Running VMA using non-root
Permission
Updated examples to reflect the 9.3.1 VMA
version

Rev 8.9.4 October 02, 2019 Removed the following sections.
Multi-Packet Receive Queue
Installing VMA with SocketXtreme

Rev 8.8.3 April 30, 2019 Updated the example in Configuring VMA

Added VMA_SOCKETXTREME entry to VMA
Configuration table

Added issue #9 under Troubleshooting section

96

•
•

•
•
•

•
•

•

•

•
•
•

•
•

•
•
•

•
•

•
•
•
•
•

•
•

•
•
•

•
•

•
•
•

•

15 Release Notes Revision History
Release Notes Change History
Bug Fixes History

15.1 Release Notes Change History
Rel
eas
e

Description

9.8.5
1

Updated MLNX_OFED and Firmware versions. See System Requirements and Interoperability
Added full support of TCP_KEEPALIVE option
See Bug Fixes History section.

9.8.4
0

Removed DPCP dependency from VMA.
See Bug Fixes History section.

9.8.3
1

See Bug Fixes History section.

9.5.2 Changed the default visibility of socIPoIB is temporarily unavailable when ket API symbols by
hiding internal symbols and enabling export-only functions. This change in the default library
configuration helps to:

Substantially improve the load time of the library
Produce better code quality by the optimizer
Reduces chances of symbol collision

Product source code is migrated to C++11 standard requirements.
See Bug Fixes section.

9.4.0 Updated Certified Applications.
Updated Known Issues.
See Bug Fixes section.

9.2.2 Added RoCE LAG support to VMA over MLNX_OFED RDMA-Core.
Bug Fixes.

9.1.1 Added man pages for libvma.
Added support for UDP 5 tuple hardware flow steering rules.
Added support for a new environment variable VMA_UDP_3T_RULES.
Removed support for ConnectX-3 and ConnectX-3 Pro NICs.
See Bug Fixes section.

9.0.2 Added the option for VMA daemon to set spoofed SYN retry interval.
See Bug Fixes section.

8.9.4 See Bug Fixes section.

8.8.3 Added SocketXtreme API support to the same VMA binary as the traditional Socket API.
Added the ability to specify ring allocation logic for any socket type.
Improved the VMA service installation under different Linux service managers.

8.7.5 Added support for TCP Rx timestamping.
Added support for an additional ring allocation logic: Ring logic per IP
Usage: VMA_RING_ALLOCATION_LOGIC_RX/TX = 1
Added support for IP_TTL socket option.
Added support for re-establishing lost connection with VMA daemon.
Added support for sendfile() and sendfile64() functions, where in_fd is a file descriptor open for
reading, and out_fd is an offloadable socket.
Added support for IPoIB in upstream/inbox drivers for ConnectX-4 and above adapter cards.

https://docs.mellanox.com/display/VMADEV/.Bug+Fixes+v8.9.4
https://docs.mellanox.com/display/VMADEV/.Bug+Fixes+v8.9.4
https://docs.mellanox.com/display/VMADEV/.Bug+Fixes+v8.9.4
https://docs.mellanox.com/display/VMADEV/.Bug+Fixes+v8.9.4
https://docs.mellanox.com/display/VMADEV/.Bug+Fixes+v8.9.4

97

15.2 Bug Fixes History
The following table lists the issues that have been resolved in previous VMA versions.

Internal Ref.
Number

Details

3604175 Description: Fixed VMA hanging infinitely while closing ring with empty RQ

Keywords: ring, termination, stuck, hang up

Discovered in Version: 9.8.30

Fixed in Version: 9.8.40

3591039 Description: Fixed RX buffer leak in case of GRO and out of order packets. Fixed TCP
stream corruption in case of out of order packets

Keywords: TCP, corruption, out of order. GRO

Discovered in Version: 8.4.101

Fixed in Version: 9.8.40

3604175 Description: Fixed VMA hanging infinitely while closing ring with empty RQ

Keywords: ring, termination, stuck, hang up

Discovered in Version: 9.8.30

Fixed in Version: 9.8.40

3525812 Description: Fixed SocketXtreme RX buffer leak.

Keywords: SocketXtreme; leak

Discovered in Version: 9.8.20

Fixed in Version: 9.8.31

3373882 Description: Fixed a compilation error with gcc 13.0.1.

Keywords: gcc compilation error

Discovered in Version: 9.8.1

Fixed in Version: 9.8.20

3173318 Description: Fixed the issue where VMA Debian package installation for Docker container
failed.

Keywords: Debian; Docker; Installation

Discovered in Version: 9.7.0

Fixed in Version: 9.7.2

3173318 Description: Fixed the issue where using send* functions with null elements in iov Tx
vector causes an API error.

Keywords: iov Tx vector

Discovered in Version: 9.6.4

Fixed in Version: 9.7.0

98

Internal Ref.
Number

Details

3092554 Description:
When VMA_HANDLE_SIGINTR=0, the following issues are no longer encountered:
1. When SIGNIT is caught by VMA, subsequent calls to socket API return EINTR error code
immediately.
2. VMA_HANDLE_SIGINTR parameter is ignored by signal() API.
However, when VMA_HANDLE_SIGINTR=1, only the first issue persists.

Keywords: SIGINT; EINTR; signal; sigaction

Discovered in Version: 9.5.2

Fixed in Version: 9.6.4

3092555 Description: Fixed the issue of when attempting to perform a second connect() after the
first connect() has failed, a segmentation fault took place. Now, an error is received
upon second attempt instead.

Keywords: connect(); blocking socket; segmentation fault

Discovered in Version: 9.5.2

Fixed in Version: 9.6.4

3045735 Description: Fixed the issue where there was no traffic as long as SR-IOV mode was
disabled.

Keywords: SR-IOV; traffic

Discovered in Version: 9.3.1

Fixed in Version: 9.6.4

2740920 Description: Added support for fortified glibc functions as __read_chk, __recv_chk,
__recvfrom_chk, __poll_chk, __ppoll_chk.

Keywords: socket API

Discovered in Version: 9.3.0

Fixed in Version: 9.4.0

1714768 Description: Fixed memory leak in vma_free_packets() implementation.

Keywords: Extra API

Discovered in Version: 8.8.2

Fixed in Version: 9.4.0

2366027

Description: Fixed big-endian support for TIMESTAMP option.

Keywords: TCP

Discovered in Version: 9.0.2

Fixed in Version: 9.3.1

2280628 Description: Added TIMESTAMP option into keepalives and zero window probes TCP
packets.

Keywords: TCP

Discovered in Version: 9.0.2

Fixed in Version: 9.3.1

99

Internal Ref.
Number

Details

2246994 Description: Set proper FIN/RST flags for splitted TCP segments.

Keywords: TCP

Discovered in Version: 9.1.1

Fixed in Version: 9.3.1

2130901 Description: Fixed forever loop condition during finalization after setting
VMA_PROGRESS_ENGINE_WCE_MAX=0.

Keywords: Hangup

Discovered in Version: 9.0.2

Fixed in Version: 9.3.1

1775713 Description: Fixed a synchronization issue in attach/detach flow when VMA is configured
to use 3tuple (software rule).

Keywords: Cleanup

Discovered in Release: 8.4.10

Fixed in Version: 9.2.2

2233349 Description: Fixed wrong detection of huge pages with different sizes.

Keywords: Huge Page

Discovered in Version: 9.1.1

Fixed in Version: 9.2.2

2355289 Description: Fixed wrong detection of Blue Flame usage capability.

Keywords: Blue Flame

Discovered in Version: 9.1.1

Fixed in Version: 9.2.2

2132032 Description: Fixed an issue where all traffic was received in one top socket when several
sockets were bound to the same IP:PORT pair and used 5 different tuple rules.

Keywords: UDP steering

Discovered in Version: 9.0.2

Fixed in Version: 9.1.1

2009931 Description: Added fcntl64() support.

Keywords: Socket API

Discovered in Version: 8.9.5

Fixed in Version: 9.1.1

2074332 Description: Fixed the issue where vma_stats utility reported wrong statistics.

Keywords: vma_stats

Discovered in Version: 9.0.1

Fixed in Version: 9.1.1

1973965 Description: Replaced dropped packets statistics data with EAGAIN.

Keywords: vma_stats

100

Internal Ref.
Number

Details

Discovered in Version: 8.9.5

Fixed in Version: 9.1.1

1900224 Description: Fixed the issue where negative values were displayed by vma_stats for
Send queue size during long duration sessions.

Keywords: vma_stats

Discovered in Version: 8.9.2

Fixed in Version: 9.1.1

1565428 Description: Fixed the issue where rdma_lib_reset function was not supported on the
Upstream driver, resulting in fork() function being unsupported.

Keywords: rdma_lib_reset, fork(), Upstream driver

Discovered in Version: 8.7.5

Fixed in Version: 9.1.1

2069198 Description: Disabled Blue Flame (BF) operation usage for Azure.

Keywords: Azure

Discovered in Version: 8.9.3

Fixed in Version: 9.0.2

1794728 Description: Fixed an issue related calling unregister_timer_event() twice.

Keywords: Hangup

Discovered in Version: 8.8.3

Fixed in Version: 9.0.2

1264894 Description: Fixed cleanup issues when not all internal objects related sockets are
destroyed during VMA finalization.

Keywords: Cleanup

Discovered in Version: 8.5.2

Fixed in Version: 9.0.2

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain
functionality, condition, or quality of a product. Neither NVIDIA Corporation nor any of its direct or indirect subsidiaries
and affiliates (collectively: “NVIDIA”) make any representations or warranties, expressed or implied, as to the accuracy
or completeness of the information contained in this document and assumes no responsibility for any errors contained
herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to
this document, at any time without notice. Customer should obtain the latest relevant information before placing orders
and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for
inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable
and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability
of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in
this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product
designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third
party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all
associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason
whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation and/

or Mellanox Technologies Ltd. in the U.S. and in other countries. Other company and product names may be trademarks
of the respective companies with which they are associated.

Copyright
© 2024 NVIDIA Corporation & affiliates. All Rights Reserved.

	Overview
	Intended Audience
	Document Revision History

	Release Notes
	System Requirements and Interoperability
	System Requirements
	VMA Release Contents
	Certified Applications

	Changes and New Features
	Changes and New Features in this version
	Deprecated Features and Support
	Important Notes

	Bug Fixes in this Version
	Known Issues

	Introduction to VMA
	VMA Overview
	Basic Features
	Target Applications
	Advanced VMA Features

	VMA Library Architecture
	Top-Level
	VMA Internal Thread
	Socket Types

	VMA Installation
	Installing VMA
	Installing VMA Binary as Part of NVIDIA® Drivers
	NVIDIA® MLNX_OFED Driver for Linux
	NVIDIA® MLNX_EN Driver for Linux
	Starting the Drivers

	Running VMA
	Running VMA using non-root Permission
	Benchmarking Example
	Prerequisites
	Kernel Performance
	Kernel Performance Server Side
	Kernel Performance Client Side

	VMA Latency
	VMA Performance Server Side
	VMA Performance Client Side

	Comparing Results
	Libvma-debug.so

	VMA Installation Options
	Installing VMA Binary Manually
	Installing the VMA Packages
	Installing the VMA Binary Package
	Install the VMA utils Package
	Installing the VMA devel Package

	Verifying VMA Installation

	Building VMA From Sources
	Verifying VMA Compilation

	Installing VMA in RHEL 7.x Inbox
	Installing VMA as DOCA Profile

	Uninstalling VMA
	Automatic VMA Uninstallation
	Manual VMA Uninstallation
	VMA in RHEL 7.x Inbox Uninstallation

	Upgrading libvma.conf
	Port Type Management / VPI Cards Configuration
	Basic Performance Tuning
	VMA Tuning Parameters
	Binding VMA to the Closest NUMA
	Configuring the BIOS

	VMA Configuration
	Configuring libvma.conf
	Configuring Target Application or Process
	Configuring Socket Transport Control
	Example of VMA Configuration

	VMA Configuration Parameters
	Configuration Parameters Values
	Beta Level Features Configuration Parameters

	Loading VMA Dynamically

	Advanced Features
	Packet Pacing
	Prerequisites
	Usage

	Precision Time Protocol (PTP)
	Prerequisites
	Usage

	On-Device Memory
	Prerequisites
	Verifying On-Device Memory Capability in the Hardware

	TCP_QUICKACK Threshold
	Linux Guest over Windows Hypervisor
	Prerequisites
	VMA Daemon Design
	TAP Statistics

	Using sockperf with VMA
	Example - Running sockperf Ping-pong Test

	VMA Extra API
	Overview of the VMA Extra API
	Using VMA Extra API
	Control Off-load Capabilities During Run-Time
	Adding libvma.conf Rules During Run-Time
	Creating Sockets as Offloaded or Not-Offloaded

	Packet Filtering
	Zero Copy recvfrom()
	Freeing Zero Copied Packet Buffers

	Dump fd Statistics using VMA Logger
	"Dummy Send" to Improve Low Message Rate Latency
	Verifying “Dummy Send” capability in HW
	“Dummy Packets” Statistics

	SocketXtreme
	VMA Buffer
	Polling for VMA Completions
	Getting Number of Attached Rings
	Getting Ring FD
	Free VMA Packets
	Decrement VMA Buffer Reference Counter
	Increment VMA Buffer Reference Counter
	Usage Example
	Installation
	Limitations

	Monitoring, Debugging, and Troubleshooting
	Monitoring – the vma_stats Utility
	Examples
	Example 1
	Description
	Command Line
	Output
	Output Analysis

	Example 2
	Description
	Command Line
	Output
	Output Analysis

	Example 3
	Description
	Command Line
	Output
	Output Analysis

	Example 4
	Description
	Command Line
	Output

	Example 5
	Description
	Output
	Output Analysis

	Example 6
	Description
	Output
	Output Analysis

	Example 7
	Description
	Command Line
	Output
	Output Analysis

	Debugging
	VMA Logs
	Ethernet Counters
	tcpdump
	NIC Counters

	Peer Notification Service
	Troubleshooting

	Appendixes
	Appendix: Sockperf – UDP/TCP Latency and Throughput Benchmarking Tool
	Overview
	Advanced Statistics and Analysis

	Configuring the Routing Table for Multicast Tests
	Latency with Ping-pong Test
	UDP Ping-pong
	TCP Ping-pong
	TCP Ping-pong using VMA

	Bandwidth and Packet Rate with Throughput Test
	UDP MC Throughput
	UDP MC Throughput using VMA
	UDP MC Throughput Summary

	sockperf Subcommands
	Additional Options
	Client Options
	Server Options

	Sending Bursts
	SocketXtreme

	Debugging sockperf
	Troubleshooting sockperf

	Appendix: Multicast Routing
	Multicast Interface Definitions

	Common Abbreviations, Typography and Related Documents
	Glossary
	Typography

	User Manual Revision History
	Release Notes Revision History
	Release Notes Change History
	Bug Fixes History

