
Exported on 2024-08-13 02:13:43
https://confluence.nvidia.com/x/0Soktg

NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol

(SHARP) Rev 3.8.0

https://confluence.nvidia.com/x/0Soktg

2

Table of Contents
Overview ... 7

Document Revision History .. 8

Release Notes.. 9

General Information... 9

Packages Provided with SHARP .. 9

Prerequisites... 10

Supported Operating Systems and Platforms ... 10

Changes and New Features..11

Changes and New Features.. 11

Parameter Changes ... 11

Bug Fixes in this Version ...12

Known Issues...14

Introduction... 20

Setting up NVIDIA SHARP Environment.. 21

Setup Requirements ..21

Using NVIDIA SHARP from HPC-X..21

Using NVIDIA SHARP from MLNX_OFED...22

Using NVIDIA SHARP Aggregation Manager from UFM ..22

NVIDIA Hardware Capabilities and Limitations ...22

3

Running NVIDIA SHARP Aggregation Manager (AM) Daemons .. 24

NVIDIA SHARP Daemons Installation Script..24

Registering sharp_am as a Service on the Subnet Manager Node ...24

Removing Daemons ...25

Upgrading NVIDIA SHARP AM Daemons ...25

Modifying NVIDIA SHARP Aggregation Manager Configuration ... 26

NVIDIA SHARP Integration with HPC-X ...26

sharp_am Network Interfaces.. 28

Network Interfaces Configuration ..28

Management Host Network Interfaces High Availability ..30

HA Configuration .. 30

UFM Appliance Firewall Settings..31

sharp_am Log and Dump Files ... 32

Activity Log Verbosity Level...32

Log Levels ..32

Log categories config file..33

Operating NVIDIA SHARP in Dynamic Trees Allocation Mode... 35

SHARP Trees..35

Dynamic vs. Static Allocation Mode ..35

Dynamic Trees Allocation Algorithms ..35

Configuring Dynamic Trees Allocation Mode ..36

4

Limitations ...37

SHARP Reservation... 38

SHARP Resource Limit ..38

Operating NVIDIA SHARP with PKeys .. 40

Defining a Special PKey ..40

Supporting Dynamic PKeys...40

Disabling SHARP on Specific Network Devices in OpenSM ... 42

Testing NVIDIA SHARP Setup .. 43

Aggregation Trees Diagnostics ..43

NVIDIA SHARP Hello...44

NVIDIA SHARP Benchmark..45

NVIDIA SHARP Benchmark Script.. 46

NVIDIA SHARP Collective Library... 48

NVIDIA SHARP Library Flags..48

NVIDIA SHARP Configuration Flags.. 48

NVIDIA SHARP Resource Tuning for Low Latency Operations ... 49

NVIDIA SHARP Streaming Aggregation.. 50

SHARP Miscellaneous Tuning... 52

Using NVIDIA SHARP with Open MPI ... 54

HCOLL Library Flags ..54

Example of Allreduce with Default Settings with SHARP Enable .. 55

5

Using NVIDIA SHARP with NVIDIA NCCL ... 57

Requirements..57

Control Flags...58

Cluster Topology for Using NVIDIA SHARP SAT with NCCL ...58

NCCL Benchmark Example...59

SHARP Cleanup ... 61

Deployment Guide Revision History ... 62

Release Notes Revision History .. 64

Release Notes Change History ..64

Changes and New Features History .. 64

Parameters Change History.. 70

Bug Fixes History..81

6

You can download a PDF here.

https://docs.nvidia.com/nvidia-scalable-hierarchical-aggregation-and-reduction-protocol-sharp-rev-3-7-0.pdf

7

•
•

Overview
NVIDIA® Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology improves the performance of MPI and Machine Learning collective
operation, by offloading collective operations from CPUs and GPUs to the network and eliminating the need to send data multiple times between
endpoints.

This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached, and dramatically reduces collective
operations time. Implementing collective offloads communication algorithms supporting streaming for Machine Learning in the network also has additional
benefits, such as freeing up valuable CPU and GPU resources for computation rather than using them to process communication.

With the 3rd generation of SHARP, multiple aggregation trees can be built over the same topology, enabling the aggregation and reductions benefits (also
known as In-Network Computing) to many parallel jobs over the same infrastructure.

Further information on this product can be found in the following NVIDIA SHARP documents:

Release Notes
Deployment Guide

8

Document Revision History
For the list of changes made to this document, refer to Revision History.

9

•
•
•
•

Release Notes
Revision Date Description

3.8.0 August 12, 2024 Initial release of this document version.

The release note pages provide the following information on NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP).

General Information
Changes and New Features
Bug Fixes in this Version
Known Issues

General Information

Packages Provided with SHARP
SHARP Software is provided with the following package:

Package Version

MLNX_OFED 24.07-0.6.1.0

HPC-X 2.20.0

UFM (Aggregation Manager only) 6.18.0

10

Prerequisites

Name Firmware/Software Version

NVIDIA Quantum 27.2014.1090

NVIDIA Quantum-2 31.2014.1090

ConnectX-6 20.38.1900

ConnectX-6 DE 22.38.1900

ConnectX-7 28.38.1900

MLNX-OS 3.12.1002

Subnet Manager OpenSM 5.20

Supported Operating Systems and Platforms
For complete list of supported Operating Systems and platforms, please refer to list of operation systems and platforms supported by HPC-X and
MLNX_OFED.

NVIDIA SHARP requires either NVIDIA Unified Fabric Manager (UFM®), or a dedicated server running Subnet Manager. In the latter case, the
onboard Subnet Manager should be disabled in managed switches.



https://docs.mellanox.com/category/hpcx
https://docs.mellanox.com/category/mlnxofedib

11

Changes and New Features

Changes and New Features
Feature/Change Description

DragonFly (DFP+) Topologies with Dynamic Trees Support Added support for DFP+ topologies while sharp_am operates in dynamic trees mode.

SHARP Reservation Resource Limit Modified the logic of SHARP resource limit per reservation by adding a new parameter to control the number of jobs per HCA
(see reservation_max_jobs_per_hca below).
For further information, please see SHARP Reservation section.

Bug Fixes See Bug Fixes.

Parameter Changes

Parameter Component Description

reservation_max_jobs_per_hca sharp_am New parameter: A numeric parameter. Tells the maximum number of allowed jobs that can use the same HCA.

A value of 0 means no limit.

Valid range: 0-511.

Applies only while operating in reservation mode.

Default: 1 job per HCA.

12

Parameter Component Description

dynamic_tree_algorithm sharp_am Sets which algorithm should be used by the dynamic tree mechanism.

Modified value 1 to include support for DragonFly topologies.

Current values:

0 - Regular FatTree oriented algorithm

1 - Quasi Fat Tree or DragonFly oriented algorithm

Bug Fixes in this Version
Internal Ref. Issue

3844898 Description: Fixed the issue where sharp_am failed to allocate resources for new job requests due to scattered links and unmatched trees, despite a
sufficient number of links available.

Keywords: SHARP, Report No resource

Discovered in Version: 3.5.1

Fixed in Release: 3.8.0

3438393 Description: Fixed the issue where, in the following configuration mode, resource limitations were ignored and no limits were set for any application: when
using dynamic trees allocation, Quasi Fat Tree (QFT)-oriented logic, and reservation_mode is enabled.

Keywords: Dynamic trees allocation; QFT; resource limitation

Discovered in Release: 3.3.0

13

Internal Ref. Issue

Fixed in Release: 3.8.0

3971970 Description: Fixed the issue where sharp_am incorrectly sent a Syslog message indicating it was shutting down, despite being in the startup phase and
functioning correctly.

Keywords: Syslog

Discovered in Release: 3.5.0

Fixed in Release: 3.8.0

3478803 Description: Fixed the issue where obtaining topology information (sharp_cmd topology) failed when executed from the management host.

Keywords: SHARP topology API

Discovered in Release: 3.5.0

Fixed in Release: 3.8.0

14

Known Issues
Internal Reference

Number
Issues

3340353 Description: When reconfiguring a standby management host to operate as a compute host, it will not be able to run SHARP jobs unless sharp_am is restarted.

In case that a host runs the SM process, it will automatically be detected by the master SM as a standby SM and be reported as a standby management host.

Note that restart is not required if ignore_sm_guids is set to FALSE.

Workaround: N/A

Keywords: Slave; compute host; ignore_sm_guids

Discovered in Release: 3.3.0

3371820 Description: Congestion Control cannot be configured on the same SLs used by sharp_am.

Workaround: N/A

Keywords: Congestion control; SL

Discovered in Release: 3.3.0

3305335 Description: When running mpirun with multiple groups, the following error message might be received:

[error] - AM QPAlloc confirm QP MAD response status 0x1c00

This message is received due to to the fact that multiple unserialized MAD requests are run in parallel.

Workaround: Set the SHARP_COLL_SERIALIZE_MADS environment variable to TRUE when running mpirun.

15

Internal Reference
Number

Issues

Keywords: mpirun; SHARP_COLL_SERIALIZE_MADS

Discovered in Release: 3.2.0

3225401 Description: Dynamic trees creation feature does not support a case in which all root switches are down and restarted. If such a scenario takes place, sharp_am should
be restarted once the root switches are up and running.

Workaround: N/A

Keywords: Aggregation Manager; sharp_am; dynamic trees

Discovered in Release: 3.1.0

3237831 Description: SHARP does not support reassignment of LID values.
In case LID reassignment is desired, make sure to stop all SHARP jobs, reassign LIDs via OpenSM, and restart sharp_am once the reassignment is done.

Workaround: N/A

Keywords: Aggregation Manager; OpenSM

Discovered in Release: 3.1.0

3048427 Description: In the case that a switch split mode is modified (off/on), sharp_am does not handle the new number of supported ports unless it is restarted.

Workaround: Restart sharp_am after changing a switch split mode definition.

Keywords: Aggregation Manager; split mode

Discovered in Release: 2.7.0

16

Internal Reference
Number

Issues

3051699 Description: Changing the configuration of SHARP switch ports using device_configuration_file does not take effect on disconnected split ports. If these ports are
connected later, they will remain with their default configuration.

Workaround: If the new configuration is desired for the split ports, make sure to restart the Aggregation Manager after connecting a split port to a host.

Keywords: Aggregation Manager; split port

Discovered in Release: 2.7.0

3051924 Description: Adding or replacing non-leaf switches is currently not supported by Aggregation Manager for Dragonfly+ topologies.

Workaround: Restart Aggregation Manager after the Subnet Manager completes fabric reconfiguration followed by the fabric changes.

Keywords: Fabric extension; Aggregation Manager; AM

Discovered in Release: 2.7.0

- Description: On multi PKEY environment, UCX in SHARP can use only the default PKEY (PKEY at index 0).

Workaround: Use sockets for communication over non-default PKEY.

Keywords: Configuration, SMX, UCX, PKEY

Discovered in Release: 2.4.3

1307124 Description: Begin Job requests with virtual ports might be rejected until fabric virtualization info file is parsed.

Workaround: Wait for AM to discover virtual ports before sending Begin Job requests.

Keywords: Aggregation Manager, Socket Direct, Virtual Ports

17

Internal Reference
Number

Issues

Discovered in Release: 1.5.3

1193629 Description: Configuring sharp_am as daemon is not possible when installing from RPM into non-default location.

Workaround: Configure daemon manually.

Keywords: Configuration

Discovered in Release: 1.5.3

1307108 Description: Discovering a new Aggregation Node (AN) found on the shortest path between two ANs might invalidate the existing path.

Workaround: Restart Aggregation Manager after the Subnet Manager completes fabric reconfiguration followed by the fabric changes.

Keywords: Aggregation Manager, Aggregation Node

Discovered in Release: 1.5.3

- Description: Aggregation Manager High Availability is currently not supported in HPCX/MLNX OFED packages. Therefore, only a single instance of Aggregation Manager
can run in the IB fabric.

Workaround: Use Aggregation Manager in UFM.

Keywords: Aggregation Manager

- Description: Aggregation manager should run on the same Host where the Master Subnet Manager (SM) is running.

Workaround: N/A

Keywords: Aggregation Manager

18

Internal Reference
Number

Issues

- Description: In case of HPCX/MLNX OFED packages, upon Subnet Manager handover/failover, another instance of Aggregation Manager should be started on the Host
where the new Master SM is running

Workaround: Use Aggregation Manager in UFM.

Keywords: Aggregation Manager

- Description: Aggregation Manager should be started after completion of fabric configuration by the Subnet Manager.

Workaround: N/A

Keywords: Aggregation Manager

- Description: Only Fat-Tree, Quasi-Fat-Tree, Hypercube and Dragonfly+ topologies are supported by the Aggregation Manager.

Workaround: N/A

Keywords: Fabric Topology

- Description: Only IB fabrics where all compute nodes are connected to NVIDIA SHARP capable switches are supported by the Aggregation Manager.

Workaround: Manually configure mapping between the compute port and the Aggregation Node.

Keywords: Fabric Topology

- Description: Upon changes in configuration file beyond parameters in 3.3, Aggregation Manager should be restarted to deploy new configuration.

Workaround: N/A

Keywords: Configuration

19

20

Introduction
NVIDIA® Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology improves the performance of MPI and Machine Learning collective
operation, by offloading collective operations from CPUs and GPUs to the network and eliminating the need to send data multiple times between
endpoints.

This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached, and dramatically reduces collective
operations time. Implementing collective offloads communication algorithms supporting streaming for Machine Learning in the network also has additional
benefits, such as freeing up valuable CPU and GPU resources for computation rather than using them to process communication.

With the 3rd generation of SHARP, multiple aggregation trees can be built over the same topology, enabling the aggregation and reductions benefits (also
known as In-Network Computing) to many parallel jobs over the same infrastructure.

21

•
•

•
•

•
•

•
•
•

Setting up NVIDIA SHARP Environment
NVIDIA SHARP binary distribution is available as part of HPC-X, MLNX_OFED and UFM packages (among SHARP binaries, UFM includes Aggregation Manager
(AM) only).

Setup Requirements
Prior to installing and using NVIDIA SHARP, make sure the following requirements are met.

Run Aggregation Manager using a "root user" as trusted entities.
Make sure onboard Subnet Manager is disabled in the managed switches. (Aggregation Manager is a central entity running on a dedicated server with
a master Subnet Manager. This dedicated server cannot serve as a compute node.
Configure TCP/IP before running NVIDIA SHARP and Aggregation Manager communicate over TCP/IP.
Run NVIDIA Switch-IB 2/NVIDIA Quantum/NVIDIA Quantum-2 switches with the supported firmware versions as specified in the Prerequisites section
in the Release Notes (use ibdiagnet utility to check the installed firmware version on the switches).
Enabled IPoIB interface in compute servers in order to enable using UD multicast for result distribution in SHARP.
Make sure SHARP Aggregation Manager out-of-the-box subnets are configured with SM using the following routing engines:

Tree based topologies: updn, ar_updn, ftree, ar_ftree
DragonFly+ topology: dfp
Hypercube topologies: dor routing engine with dor_hyper_cube_mode enabled

Using NVIDIA SHARP from HPC-X
When using HPC-X package, please refer to HPC-X User Manual for installation and configuration procedures.
This deployment guide includes examples on the environment variables HPCX_SHARP_DIR and OMPI_HOME , and assumes that HPC-X installation is in a
shared folder accessible from all compute nodes.
To download the HPC-X packages, go here.

https://developer.nvidia.com/networking/hpc-x

22

•
•

•
•

Using NVIDIA SHARP from MLNX_OFED
When using MLNX_OFED distribution, the HPCX_SHARP_DIR environment variable has to be set to redirect to SHARP installation directory (default
location: /opt/mellanox/sharp), and OMPI_HOME environment variable to the MPI installation directory.

To download MLNX_OFED packages, go here.

Using NVIDIA SHARP Aggregation Manager from UFM
When using Aggregation Manager from UFM, NVIDIA SHARP support has to be enabled in UFM. For further information, refer to the UFM User Manual.

NVIDIA Hardware Capabilities and Limitations
Device Capabilities and limitations

NVIDIA Quantum Supports both SHARP low latency and streaming aggregation operations
Supports up to 126 aggregation trees in the subnet (63 low latency trees, and 63 streaming aggregation trees)

Note: The number of SHARP streaming aggregation operations is limited to one active tree per switch

NVIDIA Quantum-2 Supports both SHARP low latency and streaming aggregation operations
Supports up to 1023 aggregation trees in the subnet (511 low latency trees, and 511 streaming aggregation trees)

Note: Multiple SHARP streaming aggregation operations can be operated in parallel by a single Quantum-2 switch. The
limit is one active tree per port

ConnectX-5 Supports SHARP low latency operation only

UFM package includes only SHARP Aggregation Manager. Other NVIDIA SHARP components are not available through UFM and should be installed
from either HPC-X or MLNX_OFED packages.



https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed

23

Device Capabilities and limitations

ConnectX-6 and above Supports both SHARP low latency and streaming aggregation operations

24

1.

Running NVIDIA SHARP Aggregation Manager (AM) Daemons

This section describes how to install Aggregation Manager in the fabric using NVIDIA SHARP AM daemon script.

NVIDIA SHARP Aggregation Manager daemon (sharp_am) is executed on a dedicated server along with the Subnet Manager.

Installing Aggregation Manager as a service is required when used from the HPC-X or from MLNX_OFED packages.

NVIDIA SHARP Daemons Installation Script
In order to install/remove NVIDIA SHARP AM daemons, use sharp_daemons_setup.sh script provided with the NVIDIA SHARP package. For example:

$HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh

Usage: sharp_daemons_setup.sh (-s | -r) [-p SHARP location dir] -d
<sharpd | sharp_am> [-m]
 -s - Setup SHARP daemon
 -r - Remove SHARP daemon
 -p - Path to alternative SHARP location dir
 -d - Daemon name (sharp_am)
 -b - Enable socket based activation of the service

Registering sharp_am as a Service on the Subnet Manager Node
Run the following as root:

As of NVIDIA SHARP version 2.7.0, sharpd daemon no longer exists. sharpd-related activity is now performed from the user-application process
instead.



25

2.
3.

$HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh -s -d sharp_am

Daemon's log location is: /var/log/sharp_am.log

Set the "run level".
Start sharp_am as root.

service sharp_am start

Removing Daemons

To remove sharp_am, run the following on the AM host:

$HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh -r -d sharp_am

Upgrading NVIDIA SHARP AM Daemons
Upgrading SHARP AM daemons requires their removal and re-registration as instructed in the sections above.

26

•

•

Modifying NVIDIA SHARP Aggregation Manager Configuration
SHARP Aggregation Manager (sharp_am) has factory default configuration that can be modified either by command line parameters or through a
configuration file.

sharp_am is operated either from UFM or HPC-X.

In the case of UFM, sharp_am is provided with UFM default config file. For information on how to operate SHARP from UFM, please refer to "NVIDIA
SHARP Integration" Appendix in the latest UFM User Manual available here.
In the case of HPC-X, please follow the instructions below.

NVIDIA SHARP Integration with HPC-X
SHARP Aggregation Manager (sharp_am) uses a configuration file from the default location /etc/sharp/sharp_am.cfg.

If no such file exists, sharp_am will use the factory defaults.

sharp_am can also be executed using the parameter -O that provides the location of the config file:

$ $HPCX_SHARP_DIR/bin/sharp_am -O <desired config file path>

If the file does not exist, it can be created using the following command:

$ $HPCX_SHARP_DIR/bin/sharp_am -c /etc/sharp/sharp_am.cfg

The above command creates a config file with the factory default settings. Make sure the directory exists before running the command.

In order to modify the configuration settings, edit the file and change the parameter values accordingly. Some parameters require a restart of sharp_am in
order to take effect, while others only require only notifying sharp_am that a change in the config file has taken place.

In the config file, every parameter has the following comment:

Parameter supports update during runtime: yes/no

https://docs.nvidia.com/networking/category/ufmenterprise

27

If one of the modified parameters does not support update during runtime, then sharp_am restart is required. If not, it is sufficient to signal sharp_am
with sighup (kill -1 <pid>).

28

•

•

•

sharp_am Network Interfaces
sharp_am communicates with the following entities:

IB switches - sharp_am sends MADs to get status and configure the switches for SHARP activities.
The MADs communication with IB switches takes place over the IB network.
libsharp - Rank0 of collective operation, sending SHARP job requests to sharp_am and receiving sharp_am instructions.
The communication with libsharp is performed via a proprietary binary protocol called smx. The transport layer of the smx can be via IB using UCX
(InfiniBand transport), or via sockets (Ethernet).
UFM - when operating inside UFM, various information and configuration commands are passed from UFM to sharp_am.
The communication with UFM is also performed via the smx proprietary protocol. However, the transport layer of this communication is unix-socket.

Network Interfaces Configuration
By default, sharp_am uses the opensm IB interface for the MADs and libsharp communication.

The communication with libsharp is done via socket (Ethernet) transport by default.

A unix-socket is kept open by default for communication with UFM.

It is possible to specify certain interfaces and to change the communication protocol, using the following configuration parameters:

Parameter Component Description

ib_port_guid sharp_am Sets the GUID of the port to which sharp_am binds to, for all MAD communication with the
switches.

Value of 0 means to use the same port that is used by OpenSM.

Default value: 0

29

Parameter Component Description

smx_enabled_protocols sharp_am A bitmask specifying which transport layers should be enabled for smx communication. It is
possible to provide multiple options.

Bit 1 (value 1) - UCX

Bit 2 (Value 2) - Sockets.

Bit 3 (value 4) - Unix sockets (needed for UFM).

Default value: 6, which means Sockets & Unix sockets.

smx_protocol sharp_am Defines the default protocol that will be used when communicating with libsharp.

Value 1 - UCX.

Value 2 - Sockets.

Default value: 2, which means sockets.

smx_sock_interface sharp_am Relevant only in case that smx socket transport is enabled.

Sets the interface to be used by smx for the sockets connections. The interface should be
mentioned by its name.

Empty value means to use the same interface used by OpenSM, using IP-over-IB in this case.

When sharp_am is operating inside UFM, this parameter is automatically set by UFM
according to its internal logic and the am_interface parameter in the gv.cfg file.

Default value: Empty.

smx_sock_port sharp_am Relevant only in case that smx socket transport is enabled.

IP port number to be used for the socket listener.

Default value: 6126

30

1.

Parameter Component Description

smx_sock_addr_family sharp_am Relevant only in case that smx socket transport is enabled.

Determines which address family will be used in SMX's sockets. IPv4, IPv6 or try both.

A value 'auto' will use both IPv4 and IPv6 if they are available.

Default value: auto

smx_ucx_interface sharp_am Relevant only in case that smx UCX transport is enabled.

Sets the interface to be used by smx for the UCX connections. The interface should be
mentioned by its name.

Empty value means to use the same interface used by OpenSM.

Default value: Empty.

Management Host Network Interfaces High Availability
In case the management host has multiple network interfaces, sharp_am can operate in HA mode, automatically handling network interface failures and
switching to an active interface without interrupting any activity.

HA support for the IB transport is handled by sharp_am itself, while HA for Ethernet transport is handled by ip-bonding.

HA Configuration
ib_port_guid should be set to 0 (as its default), indicating that sharp_am should choose which port to use and which not to use.

In the event of network failure while a new job is being established, the operation will fail. However, upcoming job requests will not be affected,
and on-going jobs will continue to operate as usual.



31

2.

3.

4.

allow_remote_sm - should be set to False (as its default). HA of the IB ports can operate only when sharp_am resides on the same machines with
OpenSM.
In case smx ucx is enabled, smx_ucx_interface should be empty (as its default), indicating that sharp_am should choose which interface to use and
which not to use.
In case that smx socket is enabled, ip-bonding should be configured on the management host and smx_sock_interface should be set to the bond
interface.

UFM Appliance Firewall Settings
UFM Appliance Gen 3.x uses firewall that is configured to block the TCP port used by sharp_am by default, preventing SHARP clients from communicating
with sharp_am. However, if you need to use UFM Appliance Gen 3.x with SHARP, you can resolve this by opening the required TCP port by running ufw

allow 6126/tcp. Make sure that the port you specify in the 'smx_sock_port' config parameter matches the one you allow through the firewall.

32

sharp_am Log and Dump Files
The sharp_am logs its active logs to a log file named sharp_am.log .

sharp_am also generates various dump files, useful for monitoring and used by sharp_am at restart, to retain the previous run state.

Since some of the dump files are used by sharp_am at restart, it is important not to modify their content.

Activity Log Verbosity Level
Configuration parameters allow control over the verbosity level of the activity log file. The logged messages are categorized by relevancy, such as those
related to network activity or SHARP trees calculations. Each category can have a distinct verbosity level. The two configuration parameters that control
the log verbosity are log_verbosity and log_categories_file .

The log_verbosity config parameter functions as the main log verbosity parameter. The value set in this parameter defines the desired log verbosity for
all categories unless specified differently for a particular category.

The log_categories_file parameter specifies the full path to a configuration file that defines the desired log verbosity for each category. By default in
UFM, the provided file does not set specific levels to any category; all categories are commented out.

If a category is defined in the fabric_log_catgeories.cfg file, its definition overrides the main log verbosity. Sharp_am log verbosity can be updated

without restarting by sending a SIGHUP signal. When updating the sharp_am configuration, you can modify the main log verbosity, update the location of
the categories file, and adjust the content of the categories file.

Log Levels
There are five log levels, and their configuration is determined by numerical representation, however, the log messages are displayed with their full
names.

The log levels include:

33

1.
2.
3.
4.
5.

Error
Warning
Info
Debug
Trace/Verbose

When operating under normal conditions, it is advisable to set the log level to 3-Info.

Log categories config file
The configuration file included in the SHARP package lists possible categories but does not assign any values to them initially, as they are all commented
out. To adjust the log level for a specific category, it is necessary to remove the "#" symbol and set the desired log level.

To implement the modification, either restart sharp_am or send a SIGHUP signal.

The provided package file contains the following text:

34

35

•
•

Operating NVIDIA SHARP in Dynamic Trees Allocation Mode

SHARP Trees
A SHARP tree defines a set of switches and their connected links to be used by one or more SHARP jobs.

A single tree can be used by multiple jobs, as long as they are using different areas of the tree.
A single job can also utilize multiple trees, in case the job is operating on multiple rails, while each rail can use a different tree.

Dynamic vs. Static Allocation Mode
In SHARP v3.3 and earlier, sharp_am used to operate in "Static trees" mode by default. In this mode, SHARP trees were created in the sharp_am
initialization phase. When a new SHARP job started, it was assigned to one of the existing SHARP trees that was available to operate the job.

As of SHARP v3.4, sharp_am's default operation mode is "Dynamic trees" mode. This mode is recommended as the preferred option to use.

When sharp_am operates in Dynamic trees mode, trees are not created in the initialization phase. Instead, they are created per job, immediately assigned
to the job that requires them, and are deleted once the job ends.

The Dynamic trees mode of operation has some benefits over the Static trees mode, as it defines the SHARP configuration on the switches only when
necessary, and enables better utilization of the fabric resource. There are various scenarios in which a Static mode of operation may respond with “No
resources” to a SHARP job request, while in Dynamic mode, the SHARP job would be fulfilled.

Dynamic Trees Allocation Algorithms
sharp_am takes multiple factors into consideration when deciding on the trees to create for each job. Initially, the allocated trees must meet the job's
requirements. However, sharp_am also aims to allocate trees in a manner that preserves available links and switch resources for future jobs that may be
needed.

The distinction between the combinations of trees that can be created in a regular FatTree versus a Quasi Fat Tree are significant. Consequently, sharp_am
offers two distinct algorithms to determine how trees should be created for each job. One algorithm is optimized for regular Fat-Tree fabrics, while the
other is tailored for Quasi Fat Trees (QFTs) and Dragonfly fabrics.

36

•
•
•

Note the following:

Only one algorithm can be used at a given time
sharp_am should be restarted when switching algorithms
Under specific circumstances, when employing one algorithm and running multiple jobs simultaneously, sharp_am might potentially declare "No
resources" for a particular job request. However, if the other algorithm were utilized, the resources would be distributed differently, fulfilling all
job requests.

Please note that there are no definitive right or wrong algorithms for any given topology, as each algorithm comes with its own advantages and limitations.
Additionally, certain features are exclusive to specific algorithms.

It is recommended to consult with NVIDIA experts regarding the suitable algorithm for your system. You can contact us through either of the following
methods:

E-mail: Enterprisesupport@nvidia.com

Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Configuring Dynamic Trees Allocation Mode

To operate in Dynamic trees mode, make sure dynamic_tree_allocation parameter is set to TRUE.

By default, the FatTree-oriented algorithm is used. To switch to the QFT-oriented or Dragonfly algorithm, use the dynamic_tree_algorithm parameter.

If the number of root switches in the fabric is larger than 126 when using the FatTree-oriented algorithm, it is desired to modify max_trees_to_build to be
equal to the number of root switches.

Note that sharp_am restart is required for the configuration to take effect.

sharp_am's default operation mode is set to Dynamic trees mode. Follow the instructions below in case you have the mode set to Static trees or a
change of algorithm is required.



mailto:Enterprisesupport@nvidia.com
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fsupport%2Fenterprise&data=05%7C01%7Cmaye%40nvidia.com%7C1123aef1cfaf4fd44e7f08da4472ff5a%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637897557944317441%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qWlwZIoPJD18a%2Bq8fA6%2FLOJmrz%2B6TyLNIiFUs9gBCnk%3D&reserved=0

37

•

•

•

Limitations
Dynamic trees allocation mode is currently available for Fat-Tree, Quasi-Fat-Tree (QFT), and Dragonfly topologies, and is not supported for
Hypercube topologies. In case sharp_am is configured to operate in Dynamic mode and the topology does not match, sharp_am will automatically
operate in Static mode.
When operating in Dynamic trees mode, ibdiagnet may print warning messages about the existence of multiple distinct trees with the same tree ID.
In Dynamic trees mode, this is a valid situation and these warnings should be ignored.
Warning example: -W- <> - In Node <> found root tree (parent qpn <>) which is already exists for treeID: <>

Note: You can avoid this warning by adding the following parameters to the ibdiagnet command line: --sharp_opt ad_hoc
Dynamic trees creation does not support a case in which all root switches are down and restarted. If such a scenario takes place, sharp_am should
be restarted once the root switches are up and running.

38

•
•

1.

SHARP Reservation
Different entities, such as tenants, applications, jobs, and any desired group of nodes, can be bound together through SHARP reservation. In other words,
SHARP reservation is a method for providing isolation and a set of attributes to each desired group of nodes.

In a public cloud system, this can be used to define a tenant. With the settings of a pkey (see Operating NVIDIA SHARP with PKeys), each tenant can run
SHARP jobs for their applications. Different tenants' applications cannot impact one another, and the cloud admin can control which tenant can use SHARP.
For simplicity, in this document, we address the use case of tenants and refer to the customer applications as running inside a tenant, although the
reservation mechanism can serve other types of groups.

To use the reservation capabilities, the following conditions should be met:

sharp_am should operate from within UFM, as UFM REST-API use is a must to operate in this mode.
In UFM configuration file gv.cfg, the parameter enable_sharp_allocation must be set to True.

Once sharp_am is in allocation mode, compute hosts cannot request a SHARP job unless it was specifically requested through the UFM REST-API.

The REST-API allows for the creation, updating, and deletion of tenants (reservations), with the option to define a related pkey and set a limit on the
SHARP resources available to the tenant.

With this method, the fabric admin can control which compute hosts are allowed to leverage SHARP, and can even limit the number of trees allocated per
tenant.

Full details of the REST-API can be found in the NVIDIA UFM Enterprise REST API guide.

SHARP Resource Limit
Limiting the amount of SHARP resources per tenant is crucial in a multi-tenant system in order to prevent it from consuming resources and impacting other
tenants.

To provide a fair use of the SHARP resources, the default configuration defines the following limits:

A tenant can run multiple SHARP jobs in parallel.

SHARP reservation feature is also called "SHARP allocation" in some APIs and configuration parameters.

39

2.
3.

Two SHARP jobs cannot share the same HCA.
There is no explicit limit on the total number of SHARP jobs a tenant can run. However, since there is a limit per HCA and each SHARP job requires
at least 2 HCAs, the effective limit on the total number of jobs is half the number of HCAs available to the tenant.

The limits described ensure a fair use of the resources and guarantee that, in a non-blocking topology, no tenant can allocate resources in a way that
impacts another tenant's available resources.

You can set an explicit limit on the total number of jobs using the app_resources_default_limit configuration parameter (which applies to all tenants)
or through the UFM REST-API (which allows different values for individual tenants).

Additionally, you can adjust the limit of jobs per HCA using the reservation_max_jobs_per_hca parameter, which affects all tenants.

40

•

•

1.

2.

Operating NVIDIA SHARP with PKeys
SHARP can operate in a system that has either a single static special PKey, or a system that dynamically allocates PKeys.

Defining a Special PKey
This method is used when SHARP is intended to operate exclusively on a single known PKey. To implement this, adjust the ib_qpc_pkey field to the
desired PKey value in the SHARP configuration file.

Remember to ensure the membership bit is properly set, which entails setting both bit 0x8000 and the corresponding pkey value at all times.

Supporting Dynamic PKeys
SHARP enables dynamic declaration of PKeys when operating from the UFM management host.
This feature is facilitated by the enable_sharp_allocation config parameter mentioned in the SHARP Reservation section. Configuring SHARP to
operate in reservation mode via the UFM config file allows UFM to relay PKeys information to SHARP.

To enable this functionality, make sure to set the following parameter in the UFM gv.cfg file:
sharp_allocation_enabled = true
Restart UFM to apply the updated settings.

Note that the manipulation of PKeys does not automatically update the SHARP configuration, meaning that there are 2 sets of REST-API calls that need to
be used:

The pure PKey REST API: This API affects the PKEY settings, however, it is not related to SHARP.

The SHARP Reservation REST API: This API sets SHARP reservation and can refer to the pkeys that were created in the previous API.

See the PKey GUIDs REST API section in the latest NVIDIA UFM Enterprise REST API guide here.

https://docs.nvidia.com/networking/software/management-software/index.html

41

See the NVIDIA SHARP REST API section in the latest NVIDIA UFM Enterprise REST API guide here.

https://docs.nvidia.com/networking/software/management-software/index.html

42

1.

2.

3.

Disabling SHARP on Specific Network Devices in OpenSM
Disabling SHARP on a specific network switch device can be performed using OpenSM device configuration file by performing the following:

Define a port group with the specified network device in the port groups file. The group is specified by the pgrp_policy_file parameter in the
OpenSM configuration file.
For example:

port-group
name: NON_SHARP_SWITCHES
port-guid: 0x0002c90000000001
end-port-group

Configure OpenSM to disable SHARP on the devices of the specified port groups in device configuration file specified by
the device_configuration_file parameter in OpenSM configuration file.

 port-conf
 port-group-name: NON_SHARP_SWITCHES
 sharp-enabled: 0
 end-port-conf

Reload OpenSM.

43

Testing NVIDIA SHARP Setup

Aggregation Trees Diagnostics
Run ibdiagnet utility with SHARP diagnostics option.

$ibdiagnet --sharp

Check fabric summary table in ibdiagnet output for the number of identified aggregation nodes. For example:

Fabric Summary

Total Nodes : 24
IB Switches : 4
IB Channel Adapters : 16
IB Aggregation Nodes : 4
IB Routers : 0

Total number of links : 24
Links at 4x50 : 24

Master SM: Port=1 LID=1 GUID=0x248a070300a28c4d devid=4119 Priority:0 Node_Type=CA Node_Description=pnemo HCA-2
Standby SM : No Standby SM

Check summary table in ibdiagnet output for errors in SHARP diagnostics stage. For example:

Summary
-I- Stage Warnings Errors Comment
-I- Discovery 0 0
-I- Lids Check 0 0
-I- Links Check 0 0
-I- Subnet Manager 0 0
-I- Port Counters 0 0
-I- Nodes Information 0 0
-I- Speed / Width checks 0 0

44

-I- Alias GUIDs 0 0
-I- Virtualization 0 0
-I- Partition Keys 0 0
-I- Temperature Sensing 0 0
-I- SHARP 0 0

Check in SHARP diagnostics output file (/var/tmp/ibdiagnet2/ibdiagnet2.sharp) that SHARP aggregation trees are configured in the subnet.

For example: count number of configured aggregation trees constructed by Aggregation Manager using grep command:

$cat /var/tmp/ibdiagnet2/ibdiagnet2.sharp | grep -c TreeID
126

Note that when operating in dynamic trees mode, ibdiagnet may print warning messages about the existence of multiple distinct trees with the same tree
ID. In dynamic trees mode, this is a valid situation and these warnings should be ignored.

Warning example:

-W- <> - In Node <> found root tree (parent qpn <>) which is already exists for treeID: <>

NVIDIA SHARP Hello
NVIDIA SHARP distribution provides sharp_hello test utility for testing SHARP's end-to-end functionality on a compute node. It creates a single SHARP job
and sends a barrier request to SHARP Aggregation node.

Help

$sharp_hello -h
usage: sharp_hello <-d | --ib_dev> <device> [OPTIONS]
OPTIONS:
 [-d | --ib_dev] - HCA to use
 [-v | --verbose] - libsharp coll verbosity level(default:2)
 Levels: (0-fatal 1-err 2-warn 3-info 4-debug 5-trace)
 [-V | --version] - print program version
 [-h | --help] - show this usage

45

Example #1

$ sharp_hello -d mlx5_0:1 -v 3
[thor001:0:15042 - context.c:581] INFO job (ID: 12159720107860141553) resource request quota: (osts:0
 user_data_per_ost:0 max_groups:0 max_qps:1 max_group_channels:1, num_trees:1)
[thor001:0:15042 - context.c:751] INFO tree_info: type:LLT tree idx:0 treeID:0x0 caps:0x6 quota: (osts:167
 user_data_per_ost:1024 max_groups:167 max_qps:1 max_group_channels:1)
[thor001:0:15042 - comm.c:393] INFO [group#:0] group id:a tree idx:0 tree_type:LLT rail_idx:0 group size:1 quota:
(osts:2 user_data_per_ost:1024) mgid: (subnet prefix:0xff12a01bfe800000 interface id:0x3f020000000a) mlid:c007
Test Passed.

Example #2

$ SHARP_COLL_ENABLE_SAT=1 sharp_hello -d mlx5_0:1 -v 3

[swx-dgx01:0:59023 - context.c:581] INFO job (ID: 15134963379905498623) resource request quota: (osts:0
 user_data_per_ost:0 max_groups:0 max_qps:1 max_group_channels:1, num_trees:1)
[swx-dgx01:0:59023 - context.c:751] INFO tree_info: type:LLT tree idx:0 treeID:0x0 caps:0x6 quota: (osts:167
 user_data_per_ost:1024 max_groups:167 max_qps:1 max_group_channels:1)
[swx-dgx01:0:59023 - context.c:755] INFO tree_info: type:SAT tree idx:1 treeID:0x3f caps:0x16
[swx-dgx01:0:59023 - comm.c:393] INFO [group#:0] group id:3c tree idx:0 tree_type:LLT rail_idx:0 group size:1
 quota: (osts:2 user_data_per_ost:1024) mgid: (subnet prefix:0xff12a01bfe800000 interface id:0xd6060000003c)
mlid:c004
[swx-dgx01:0:59023 - comm.c:393] INFO [group#:1] group id:3c tree idx:1 tree_type:SAT rail_idx:0 group size:1
 quota: (osts:64 user_data_per_ost:0) mgid: (subnet prefix:0x0 interface id:0x0) mlid:0
Test Passed

NVIDIA SHARP Benchmark
NVIDIA SHARP distribution provides a source code for the benchmark to test native SHARP low-level performance for allreduce and barrier operations.

Source code:

46

•
•
•

$module load hpcx
$HPCX_SHARP_DIR/share/sharp/examples/mpi/coll/

Build and run instructions:

$module load hpcx
$HPCX_SHARP_DIR/opt/Mellanox/sharp/share/sharp/examples/mpi/coll/README

NVIDIA SHARP Benchmark Script
NVIDIA SHARP distribution provides a test script which executes OSU (allreduce, barrier) benchmark running with and without NVIDIA SHARP. To run the
NVIDIA SHARP benchmark script, the following packages are required to be installed.

ssh
pdsh
environment-modules.x86_64

You can find this script at $HPCX_SHARP_DIR/sbin/sharp_benchmark.sh after loading the HPC-X module. This script should be launched from a host running
SM and Aggregation Manager. It receives a list of compute nodes from SLURM allocation or from “hostlist” environment variable. “hostlist” is a comma-
separated list which requires hca environment variables to be supplied. It runs OSU allreduce and barrier benchmarks with and without NVIDIA SHARP.

Help

This script includes OSU benchmarks for MPI_Allreduce and MPI_Barrier blocking collective operations.
Both benchmarks run with and without using SHARP technology.

Usage: sharp_benchmark.sh [-t] [-d] [-h] [-f]
 -t - tests list (e.g. sharp:barrier)
 -d - dry run
 -h - display this help and exit
 -f - supress error in prerequsites checking

Configuration:
 Runtime:
 sharp_ppn - number of processes per compute node (default 1)
 sharp_ib_dev - Infiniband device used for communication. Format <device_name>:<port_number>.

47

 For example: sharp_ib_dev="mlx5_0:1"
 This is a mandatory parameter. If it's absent, sharp_benchmark.sh tries to use the first active
device on local machine
 sharp_groups_num - number of groups per communicator. (default is the number of devices in sharp_ib_dev)
 sharp_num_trees - number of trees to request. (default num tress based on the #rails and #channels)
 sharp_job_members_type - type of sharp job members list. (default is SHARP_MEMBER_LIST_PROCESSES_DATA)
 sharp_hostlist - hostnames of compute nodes used in the benchmark. The list may include normal host names,
 a range of hosts in hostlist format. Under SLURM allocation, SLURM_NODELIST is used as a
default
 sharp_test_iters - number of test iterations (default 10000)
 sharp_test_skip_iters - number of test iterations (default 1000)
 sharp_test_max_data - max data size used for testing (default and maximum 4096)
 Environment:
 SHARP_INI_FILE - takes configuration from given file instead of /labhome/danielk/.sharp_benchmark.ini
 SHARP_TMP_DIR - store temporary files here instead of /tmp
 HCOLL_INSTALL - use specified hcoll install instead from hpcx

Examples:
 sharp_ib_dev="mlx5_0:1" sharp_benchmark.sh # run using "mlx5_0:1" IB port. Rest parameters are loaded from /
labhome/danielk/.sharp_benchmark.ini or default
 SHARP_INI_FILE=~/benchmark.ini sharp_benchmark.sh # Override default configuration file
 SHARP_INI_FILE=~/benchmark.ini sharp_hostlist=ajna0[2-3] sharp_ib_dev="mlx5_0:1" sharp_benchmark.sh # Use
specific host list
 sharp_ppn=1 sharp_hostlist=ajna0[1-8] sharp_ib_dev="mlx5_0:1" sharp_benchmark.sh -d # Print commands without
actual run

Dependencies:
 This script uses "python-hostlist" package. Visit https://www.nsc.liu.se/~kent/python-hostlist/ for details

48

NVIDIA SHARP Collective Library
NVIDIA SHARP distribution provides a collective library implementation with high level API to easily integrate into other communication runtime stacks,
such as MPI, NCCL and others.

The SHARP collective library offers collective operations such as Barrier, Allreduce, Reduce, Bcast, Reduce-scatter, and Allgather. It accommodates
datatypes including 16/32/64-bit Integer/Floating-point, as well as 16-bit Bfloat and 8-bit Integer.

NVIDIA SHARP Library Flags

NVIDIA SHARP Configuration Flags
As of NVIDIA SHARP version 2.7.0, sharpd daemon no longer exists, and its activity is now performed from application process.

The previous sharpd configuration is now done from the application command-line instead using the following flags.

Flag Description

SHARP_LOG_VERBOSTIRY Log verbosity level

1 - Errors

2 - Warnings

3 - Info

4 - Debug

5 - Trace

Default: 2

49

•
•
•

Flag Description

SHARP_LOG_FILE Log file

Default: stdout

The log file name accepts the following modifiers in the file name to create a unique file

%D date as DDMMYYYY
%T thread ID
%H host name

SHARP_SMX_SOCK_INTERFACE Network interface to be used by SMX:

empty string (default) - Use interface used for AM connection

Default: (null)

SHARP_SMX_SOCK_ADDR_FAMILY Determines which address family will be used in SMX's sockets.

The value needs to be one of the following: { ipv4, ipv6 }

IPv4 support is required even when choosing the ipv6 option.

Default: ipv6

SHARP_SMX_UCX_INTERFACE Network interface to be used by SMX for UCX connections:

empty string (default) - Use interface used for AM connection

Default: (null)

NVIDIA SHARP Resource Tuning for Low Latency Operations
The following SHARP library flags can be used when running NVIDIA SHARP collectives.

50

•
•

Flag Description

SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST Maximum payload per OST (outstanding transactions). Value 0 means "allocate default value".

Valid values:

0 (default)
128-1024

SHARP_COLL_JOB_QUOTA_OSTS Maximum job (per tree) OST quota request. Value 0 means "allocate default quota".

Default: 0

SHARP_COLL_JOB_QUOTA_MAX_GROUPS Maximum number of groups (comms) quota request. Value 0 means "allocate default value".

Default: 0

SHARP_COLL_OSTS_PER_GROUP Number of OSTs per group.

Default: 8

SHARP_COLL_JOB_QUOTA_MAX_QPS_PER_PORT Maximum QPs/port quota request. Value 0 means "allocate default value".

NVIDIA SHARP Streaming Aggregation
The following NVIDIA SHARP library flags can be used to enable Streaming Aggregation Tree (SAT) and tuning.

Flag Description

SHARP_COLL_ENABLE_SAT Enables SAT capabilities.

Default: 0 (Disabled)

The Maximum message size SAT protocol support is 1073741792 Bytes (32B less than 1GB).

51

•
•
•

Flag Description

SHARP_COLL_SAT_THRESHOLD Message size threshold to use SAT on generic allreduce collective requests.

Default: 16384

SHARP_COLL_SAT_LOCK_BATCH_SIZE SAT lock batch size. Set this to “1” if multiple communicators want to use SAT resources.

Valid range: 1-65535.

Default: 65535 (Infinity)

SHARP_COLL_LOCK_ON_COMM_INIT Get SAT Lock resource during communicator init if lock batch size is Infinity. Return failure if failed to
lock

Default: 0 (Disabled), 1(Enabled) with NCCL SHARP plugin

SHARP_COLL_NUM_COLL_GROUP_RESOURCE_ALLOC_THRESHOLD Lazy group resource allocation.

0 - Disable lazy allocation, allocate group resource at communicator create time

#n - Allocate sharp group resource after #n collective calls requested on the group

Default: 1

SHARP_COLL_JOB_REQ_EXCLUSIVE_LOCK_MODE SAT (Streaming Aggregation Tree) exclusive lock mode for job.

Possible values:

0 - no exclusive lock
1 - try exclusive lock
2 (default)- force exclusive lock

52

•
•
•

•
•

SHARP Miscellaneous Tuning

Flag Description

SHARP_COLL_ENABLE_CUDA Enables CUDA GPU support.

Possible values:

0 - disable
1 - enable
2 (default) - try

SHARP_COLL_PIPELINE_DEPTH Size of fragmentation pipeline for larger collective payload.

Default: 64

SHARP_COLL_ENABLE_MCAST_TARGET Enables MCAST target on NVIDIA SHARP collective operations.

Possible values:

0 (default) - disable
1 - enable

SHARP_COLL_MCAST_TARGET_GROUP_SIZE_THRESHOLD Group size threshold to enable mcast target.

Default: 2

SHARP_COLL_POLL_BATCH Defines the number of CQ completions to poll on at once.

Valid range: 1-16

Default: 4

SHARP_COLL_ERROR_CHECK_INTERVAL Interval in milliseconds that indicates the time between the error checks.

If you set the interval as 0, error check is not performed.

Default: 180,000

53

•
•
•

Flag Description

SHARP_COLL_JOB_NUM_TREES Number of SHARP trees to request. 0 means requesting the number of trees based on the number of rails
and the number of channels.

Default: 0

SHARP_COLL_GROUPS_PER_COMM Number of NVIDIA SHARP groups per user communicator.

Default: 1

SHARP_COLL_JOB_PRIORITY Job priority.

Valid values: 0-10

Default: 0

SHARP_COLL_ENABLE_PCI_RELAXED_ORDERING Enable PCI relaxed order memory access.

Possible values:

0 - disable
1 - enable
2 (default) - auto

For the complete list of SHARP_COLL tuning options, run the sharp_coll_dump_config utility:

$HPCX_SHARP_DIR/bin/sharp_coll_dump_config


54

•
•
•
•
•

•
•
•
•
•
•

Using NVIDIA SHARP with Open MPI
NVIDIA SHARP library is integrated into HCOLL collective library to offload collective operations in MPI applications.

 The following basic flags should be used in environment to enable NVIDIA SHARP protocol in the HCOLL middleware. For the rest of flags, please refer to
NVIDIA SHARP Release Notes.

HCOLL Library Flags
The following HCOLL flags can be used when running NVIDIA SHARP collective with mpirun utility.

Flag Description

HCOLL_ENABLE_SHARP Sets whether SHARP should be used.

Possible values:

0 (default) – do not use NVIDIA SHARP
1 - probe NVIDIA SHARP availability and use it
2 - force to use NVIDIA SHARP
3 - force to use NVIDIA SHARP for all MPI communicators
4 - force to use NVIDIA SHARP for all MPI communicators and for all supported collectives (barrier, allreduce)

SHARP_COLL_LOG_LEVEL NVIDIA SHARP coll logging level. Messages with a higher or equal level to the selected will be printed.

Possible values:

0 - fatal
1 - error
2 (default) - warn
3 - info
4 - debug
5 - trace

55

Flag Description

HCOLL_SHARP_NP Number of nodes (node leaders) threshold in the communicator to create NVIDIA SHARP group and use NVIDIA
SHARP collectives.

Default: 4

HCOLL_SHARP_UPROGRESS_NUM_POLLS Number of unsuccessful polling loops in libsharp coll for blocking collective wait before calling user progress
(HCOLL, OMPI).

Default: 999

HCOLL_ALLREDUCE_SHARP_MAX

(or)

HCOLL_BCOL_P2P_ALLREDUCE_SHARP_MAX

Maximum allreduce size run through NVIDIA SHARP. A message size greater than the above the specified value by
this parameter will fall back to non-SHARP-based algorithms (multicast based or non-multicast based).

The threshold is calculated based on the group resources.

Threshold = #OSTS * Payload_per_ost

Default: Dynamic

Example of Allreduce with Default Settings with SHARP Enable

$ mpirun -np 128 -map-by ppr:1:node -x UCX_TLS=dc,shm,self -x HCOLL_ENABLE_SHARP=3 -x SHARP_COLL_ENABLE_SAT=1
$HPCX_OSU_DIR/osu_allreduce

OSU MPI Allreduce Latency Test v5.6.2
Size Avg Latency(us)
4 7.44
8 8.43
16 7.81
32 8.55
64 9.06
128 8.44

56

256 9.41
512 8.50
1024 9.03
2048 10.43
4096 42.61
8192 37.93
16384 15.48
32768 16.26
65536 17.62
131072 23.09
262144 33.90
524288 58.98
1048576 101.53

57

•

•

•
•
•
•

•
•

•

Using NVIDIA SHARP with NVIDIA NCCL
RDMA and SHARP collectives are enabled with NVIDIA NCCL (‘nickel’) collective communication library through the NCCL-SHARP plugin.

The NCCL-SHARP plugin is distributed through the following channels:

Binary distribution with HPC-X. The plugin will be loaded in the environment with HPC-X modules and NCCL will load it automatically. The plugin can
be built from the source of other CUDA versions.
Source distribution: https://github.com/Mellanox/nccl-rdma-sharp-plugins
User can build the plugin from the source and set LD_LIBRARY_PATH to use it by NCCL.

Requirements
NVIDIA ConnectX-6 HDR and above
NVIDIA Quantum HDR switch and above
MNLX_OFED
GPUDirectRDMA

Plugin
Source code repository

It is important to verify that the GPUDirect RDMA kernel module is properly loaded on each of the computing systems where you plan to run the job
that requires the GPUDirect RDMA.

To check whether the GPUDirect RDMA module is loaded, run:

service nv_peer_mem status

To run this verification on other Linux flavors:

lsmod | grep nv_peer_mem

NCCL version 2.7.3 or higher
Please refer to NVDIA’s Developer Guide for more details: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html

https://github.com/Mellanox/nccl-rdma-sharp-plugins
https://www.mellanox.com/products/GPUDirect-RDMA
https://github.com/Mellanox/nv_peer_memory
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html

58

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

Control Flags
The following environment variables enable the SHARP aggregation with NCCL when using the NCCL-SHARP plugin.

NCCL variables:
NCCL_COLLNET_ENABLE=1

NCCL_ALGO=CollNet (Required to overcome a bug in NCCL <= 2.7.8)
SHARP variables:

For guaranteed SAT resources on initialization: These options are enabled by default with NCCL SHARP Plugin version >= 2.1.x. Users can
enable explicitly using following variables:

SHARP_COLL_LOCK_ON_COMM_INIT=1 (
SHARP_COLL_NUM_COLL_GROUP_RESOURCE_ALLOC_THRESHOLD=0

[Optional] SHARP_COLL_LOG_LEVEL=3
NCCL SHARP Plugin variables:

NCCL_SHARP_DISABLE
NCCL SHARP Streaming aggregation is supported on a single NCCL communicator/process group (PG). Applications can selectively
enable SHARP on specific Process Group (PG) by setting this variable in the application before creating the PG

NCCL_SHARP_GROUP_SIZE_THRESH
Application can set this code option to selectively enable SHARP on the PG based on the group size

NCCL_IBEXT_DISABLE
NCCL plugin will be disabled and NCCL native communication transports will be used instead

Cluster Topology for Using NVIDIA SHARP SAT with NCCL
On systems with multiple GPUs and multiple HCAs, NCCL creates an aggregation streaming flow (NCCL Ring/Channel) per HCA rail. It is required to build
the cluster topology in such a way that leaf level switches connected to same HCA rail from each server.

59

NCCL Benchmark Example
The sanity performance of the setup can be verified with NCCL tests. Please refer to NCCL tests here: https://github.com/NVIDIA/nccl-tests

Example:

$ mpirun -np 1024 -map-by ppr:8:node -x UCX_TLS=dc,shm,self -x LD_LIBRARY_PATH=/sw/nccl/build/lib::/sw/nccl-
rdma-sharp-plugins/install/lib:$LD_LIBRARY_PATH -x NCCL_COLLNET_ENABLE=1 all_reduce_perf -b 4 -e 2G -f 2 -g 1 -w
50 -n 50

 4 1 float sum 44.53 0.00 0.00 3e-05 44.21 0.00 0.00 3e-05
 8 2 float sum 45.42 0.00 0.00 3e-05 45.85 0.00 0.00 3e-05
 16 4 float sum 46.34 0.00 0.00 3e-05 45.84 0.00 0.00 2e-05
 32 8 float sum 46.20 0.00 0.00 2e-05 46.56 0.00 0.00 2e-05
 64 16 float sum 46.00 0.00 0.00 2e-05 48.33 0.00 0.00 2e-05
 128 32 float sum 48.77 0.00 0.01 2e-05 47.23 0.00 0.01 2e-05
 256 64 float sum 47.88 0.01 0.01 2e-05 47.85 0.01 0.01 2e-05
 512 128 float sum 51.44 0.01 0.02 3e-05 48.66 0.01 0.02 3e-05
 1024 256 float sum 51.27 0.02 0.04 4e-05 51.78 0.02 0.04 4e-05
 2048 512 float sum 57.93 0.04 0.07 4e-05 56.45 0.04 0.07 4e-05
 4096 1024 float sum 57.32 0.07 0.14 4e-05 93.51 0.04 0.09 4e-05
 8192 2048 float sum 106.4 0.08 0.15 4e-05 59.70 0.14 0.27 4e-05
 16384 4096 float sum 103.0 0.16 0.32 4e-05 58.23 0.28 0.56 4e-05
 32768 8192 float sum 74.85 0.44 0.87 4e-05 137.8 0.24 0.48 4e-05
 65536 16384 float sum 96.71 0.68 1.35 4e-05 92.89 0.71 1.41 4e-05
 131072 32768 float sum 115.6 1.13 2.27 4e-05 120.7 1.09 2.17 4e-05
 262144 65536 float sum 197.7 1.33 2.65 4e-05 167.6 1.56 3.13 4e-05
 524288 131072 float sum 222.7 2.35 4.70 4e-05 239.2 2.19 4.38 4e-05
 1048576 262144 float sum 280.9 3.73 7.46 4e-05 197.7 5.30 10.60 4e-05
 2097152 524288 float sum 218.0 9.62 19.22 4e-05 213.9 9.81 19.59 4e-05
 4194304 1048576 float sum 257.6 16.28 32.53 4e-05 254.7 16.47 32.90 4e-05
 8388608 2097152 float sum 354.3 23.68 47.31 4e-05 523.5 16.02 32.02 4e-05
 16777216 4194304 float sum 505.9 33.16 66.26 4e-05 484.1 34.66 69.24 4e-05
 33554432 8388608 float sum 639.2 52.50 104.89 4e-05 678.6 49.45 98.80 4e-05
 67108864 16777216 float sum 1358.2 49.41 98.72 4e-05 1048.6 64.00 127.87 4e-05
 134217728 33554432 float sum 1737.2 77.26 154.37 4e-05 1777.6 75.51 150.86 4e-05
 268435456 67108864 float sum 4359.5 61.58 123.03 4e-05 4262.3 62.98 125.83 4e-05
 536870912 134217728 float sum 5619.7 95.53 190.88 4e-05 5699.0 94.20 188.22 4e-05
 1073741824 268435456 float sum 12169 88.23 176.30 4e-05 11508 93.30 186.42 4e-05

https://github.com/NVIDIA/nccl-tests

60

 2147483648 536870912 float sum 22618 94.94 189.70 4e-05 21814 98.44 196.70 4e-05
Out of bounds values : 0 OK
Avg bus bandwidth : 41.2497

61

1.
2.

3.

4.

SHARP Cleanup
This feature enables cleaning up all SHARP-related definitions when it is no longer desired to operate with it. The cleanup helps in leveraging the full
potential of the switch capabilities without allocating resources for SHARP.

Furthermore, when an error takes place due to stuck jobs, uncleaned memory, or other scenarios, a cleanup should help in solving the error without the
need for a switch reboot.

To perform a cleanup, follow the steps below.

Stop sharp_am or make sure sharp_am is not running.
Verify that there are no active SHARP jobs running. In case there are, be aware that cleaning SHARP resources will terminate these jobs, so either
wait for them to finish or stop them gracefully.
Run sharp_am with the following parameters: sharp_am --log_verbosity 3 -- clean_and_exit TRUE
sharp_am will clean all ANs mentioned in the smdb file and exit.
To verify success, look into the sharp_am log file for a message in the following format: "Sent clean command to <> ANs, successes: <>,

fails: <>"

62

•

•
•
•

•

•

•
•

•
•
•
•
•

•

•

•
•

•

•

•

•

•

Deployment Guide Revision History
Revision Date Description

3.8.0 August 12, 2024 Modified SHARP Application Awareness title to SHARP Reservation - see SHARP
Reservation
Modified Operating NVIDIA SHARP in Dynamic Trees Allocation Mode
Modified SHARP Reservation
Modified Operating NVIDIA SHARP with PKeys

3.7.0 May 5, 2024 In sharp_am Network Interfaces, updated the following parameters:

smx_ to smx_sock_addr_family

ucx_interface to smx_ucx_interface

3.6.0 February 8, 2023 N/A

3.5.0 November 7, 2023 Added sharp_am Log and Dump Files
Updated NVIDIA SHARP Collective Library

3.4.0 August 07, 2023 Added UFM Appliance Firewall Settings under sharp_am Network Interfaces
Updated Dynamic vs. Static Allocation Mode
Updated Dynamic Trees Allocation Algorithms
Added Operating NVIDIA SHARP with PKeys
Under NVIDIA SHARP Collective Library:

Updated SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST flag description

Updated the default value of SHARP_COLL_OSTS_PER_GROUP flag

Updated SHARP_COLL_SAT_LOCK_BATCH_SIZE flag description
Added the default value for
SHARP_COLL_NUM_COLL_GROUP_RESOURCE_ALLOC_THRESHOLD flag

Updated the default value for SHARP_COLL_ENABLE_MCAST_TARGET flag

Updated SHARP_COLL_POLL_BATCH description

Added the default value for SHARP_COLL_ERROR_CHECK_INTERVAL

Updated SHARP_COLL_JOB_PRIORITY flag description

Updated SHARP_COLL_ENABLE_PCI_RELAXED_ORDERING flag description

63

•
•
•
•

•
•
•

•
•

•
•

•
•

•
•
•

Revision Date Description

3.3.0 May 1, 2023 Added Configuring Dynamic Trees Allocation Mode
Added SHARP Reservation
Updated Operating NVIDIA SHARP in Dynamic Trees Allocation Mode
Updated smx_sock_interface entry under Network Interfaces Configuration table in
sharp_am Network Interfaces

3.1.1 November 30, 2022 Added SHARP Cleanup.

3.1.0 October 31, 2022 Added Operating NVIDIA SHARP in Dynamic Trees Allocation Mode
Updated Modifying NVIDIA SHARP Aggregation Manager Configuration
Updated Aggregation Trees Diagnostics under Testing NVIDIA SHARP Setup

2.7.0 May 3, 2022 Updated Setup Requirements under Setting up NVIDIA SHARP Environment
Updated NVIDIA Hardware Capabilities and Limitations under Setting up NVIDIA
SHARP Environment
Updated Running NVIDIA SHARP Aggregation Manager (AM) Daemons
Updated Number of Simultaneous Streaming Aggregation Flows under Disabling
SHARP on Specific Network Devices in OpenSM
Added NVIDIA SHARP Configuration Flags under NVIDIA SHARP Collective Library
Added NCCL_IBEXT_DISABLE under Control Flags in Using NVIDIA SHARP with NVIDIA
NCCL

2.6.1 December 5, 2021 Updated the following sections:

Updated NVIDIA Hardware Capabilities and Limitations
Updated the SHARP_COLL_ENABLE_SAT flag in NVIDIA SHARP Streaming Aggregation
Updated SHARP variables and added NCCL SHARP Plugin variables in Control Flags

64

Release Notes Revision History

Release Notes Change History

Changes and New Features History

Feature/Change Description

Rev 3.7.0

Expanded SHARP Jobs Capacity Previously restricted to a maximum of 1023 simultaneous operations, the capacity for SHARP jobs running
concurrently has now been enhanced. The new limit is determined by the size of the cluster and the
available switch resources

Security QKey SHARP now supports the activation of a security QKey on compute nodes, ensuring a heightened level of
security during operation.

SHARP Telemetry Reports Added support for telemetry reports, delivering valuable insights at specified intervals.

Parameter Changes See Parameters Change History below.

Bug Fixes See Bug Fixes.

Rev 3.6.0

Parameter Changes smx_keepalive_refresh_interval

smx_keepalive_min_time_before_connection_refresh

smx_keepalive_min_percentage_of_connections_to_refresh_at_iteration

65

Bug Fixes See Bug Fixes section.

Rev 3.5.1

New SHARP capability Added configuration parameters that control the desired behavior with regard to reservation scale-in and
override of one reservation by another.

Parameter Changes load_reservation_files

reservation_force_guid_assignment

reservation_stop_jobs_upon_scale_in

Bug Fixes See Bug Fixes section.

Rev 3.5.0

Parameter Changes Added support for controlling the sharp_am log messages verbosity level per the desired log category.

Bug Fixes See Bug Fixes section.

Rev 3.4.0

Parameter Changes dynamic_tree_allocation

sharp_am

A boolean parameter, indicates whether trees should be allocated dynamically for each SHARP job or have
trees allocated during sharp_am initialization.

Update: Default value is now True

Bug Fixes See Bug Fixes section.

https://confluence.nvidia.com/display/SharpDEV/.Bug+Fixes+in+this+Version+v3.5.1
https://confluence.nvidia.com/display/SharpDEV/.Bug+Fixes+in+this+Version+v3.5.1

66

Rev 3.3.0

Syslog Capabilities Added support for a new syslog capability to libsharp.

Syslog verbosity level can now be controlled using the SHARP_SYSLOG_VERBOSITY environment variable.

Dynamic Trees Allocation Algorithms Added support for selecting one of two algorithms that determine how trees should be created for each
SHARP job. One algorithm is optimized for SuperPOD fabrics, while the other is optimized for Quasi Fat Trees
(QFTs).

For further information, please see Dynamic Trees Allocation Algorithms section.

REST API Jobs Query Added support for retrieving the status of the current active SHARP jobs along with the structure of the trees
assigned to them.

Note that this information is retrieved via REST-API and requires the use of UFM.

Unhealthy Ports Added support in OpenSM to inform SHARP of dangling or unhealthy links in order to avoid their use in SHARP
jobs.

Bug Fixes See Bug Fixes section.

Rev 3.2.0

High Availability in sharp_am Network Interfaces sharp_am leverages multiple network interfaces of the management host to provide high availability in case
of a network interface failure.

For further information, please see sharp_am Network Interfaces.

Reliable Multicast Added support for SHARP to leverage reliable multicast option with NVIDIA Quantum-2.

SM Data Removed support for reading sm data by a client application. The API functions sharp_request_sm_data,
sharp_get_sm_data_buf_len, and sharp_get_sm_data have been removed and can no longer be used.

In addition, the configuration parameter ftree_ca_order_file is ignored in sharp_am.

67

Bug Fixes See Bug Fixes section.

Rev 3.1.1 LTS

SHARP Cleanup Added the ability to clean up all SHARP-related definitions either to spare resources or to contribute to the
recovery from an error.

General Updated MLNX_OFED and firmware versions in General Information section.

Bug Fixes See Bug Fixes section.

Rev 3.1.0

Aggregation Manager (AM) Added support for dynamic creation of trees instead of static allocation when SHARP is initialized.

Rev 3.0.1

Bug Fixes See Bug Fixes section.

Rev 3.0.0

General Added support for executing multiple jobs that aggregate data through the same set of switches, while each
job utilizes a different set of links.

SHARP logic is now application-aware with UFM capabilities. SHARP jobs can be assigned an App-ID, which can
be used as a reference to the customer application performing these jobs.

For further information, please refer to UFM SLURM Integration Appendix in UFM UM.

Added the option to limit the SHARP resources that applications are allowed to consume.

For further information, please refer to UFM SLURM Integration Appendix in UFM UM.

68

AM Modified the default resources provided to LLT & SAT jobs. This enables operation of a larger amount of SAT
jobs in parallel to few LLT jobs (please see the first three entries in the table below).

libsharp SHARP jobs are now executed in exclusive lock mode by default (please see
SHARP_COLL_JOB_REQ_EXCLUSIVE_LOCK_MODE in the table below).

Rev 2.7.0

Switches Added support for NVIDIA Quantum-2 switches with NDR speed

Adapter Cards Added support for NVIDIA ConnectX-7 adapter card with 400 Gb/s speed

SHARPD sharpd daemon process has been removed. sharpd-related activity is now performed from the user
application process

AM Upon restart of AM, it no longer needs to wait for all concurrent jobs to finish before being able to accept
new jobs

Added a mechanism that periodically checks for errors in Aggregation Trees and attempts to fix them

General Added support for new data types BFLOAT16, INT8 and UNIT8 for performing reduction operations

Rev 2.6.1

General Added support for running libsharp_coll from SHARP 2.6.1 with SHARPD from SHARP 2.4.0 – 2.6.1

General Added information about updatable configuration parameters in the configuration file and help menu

Network Added support for keep-alive on connections to SHARPD

Network Added support for asynchronous connections

Network Disabled UCX listener as default in SHARP Aggregation Manager

69

AM Added support for the non-default subnet prefix

AM Added support for DF+ topologies with more than two-level islands

SHARPD Added support for caching AM address

Rev 2.5.0

Resource Management Added support for exclusive lock requests for streaming aggregation jobs.

Network Enabled connection keep-alive between SHARPD and Aggregation Manager.

Rev 2.4.3

General Added support for identifying Aggregation Nodes based on SMDB.

General Improved minhop tables calculation.

General Added a new API for querying events.

Rev 2.1.4

sharp_am/sharpd/libsharp_coll: Streaming Aggregation Added support for Streaming Aggregation over ConnectX-6 adapter card and Quantum switch.

libsharp_coll: GPU Accelerator Added support for NVIDIA GPU buffers.

sharp_am: OOB Added support for identifying the topology type from the OpenSM SMDB file.

sharp_am: Reboot Fixed an issue where recovery failed after reboot of all switches in the cluster.

Rev 2.0.0

70

•
•

sharp_am/sharpd/libsharp_coll Added support for the following NVIDIA Quantum switch capabilities:

Performing data operations on new data types (unsigned short, short, and short floating point data types)
1K OST payload

sharp_am/sharpd: Resource Management Added support for enabling and disabling reproducibility on the job level.

sharp_am/sharpd: Subnet Management Added support for controlling the SA key for SA operations.

libsharp_coll: GPUDirect Added support for CUDA GPUDirect and GPUDirect RDMA.

Rev 1.8.1

Aggregation Manager (sharp_am): Resiliency Added support for waiting for jobs to end prior to performing fabric reinitialization on AM startup.

Mellanox SHARP Daemon (sharpd): Out-of-Box Improvements Socket-based is now activated by default when installed from RPM/MLNX_OFED.

Parameters Change History

Parameter Component Description

Rev 3.7.0

rdma_sr_enable sharp_am New parameter: A boolean parameter. Tells whether sharp_am should provide its own

service record via rdmacm service, enabling libsharp to find sharp_am even when a
security QKey is enabled.

Default: True.

71

telemetry_interval sharp_am New parameter: A decimal parameter. Tells the interval in seconds between sharp_am
telemetry updates.

A value of 0 means no telemetry reports. Valid range of values: 0, 10-3600

Default: 60 seconds.

telemetry_file_path sharp_am New parameter: A string parameter. Tells the full path of the sharp_am telemetry file
output.

An empty path or (null) means no telemetry reports.

Default in UFM: /opt/ufm/log/sharp_am_telemetry.dump

Default in non UFM systems: (null)

smx_sock_addr_family sharp_am Determines which address family will be used by SMX's sockets.

New option is added, the current possible options are: auto, ipv4, ipv6 .

The new " auto " option means that both IPv4 and IPv6 can be used if applicable, and if only
one of them is configured on the management host, then the configured address will be
used.

Default: auto.

SHARP_SMX_SOCK_ADDR_FAMILY libsharp Parameter Removed.

This environment variable controlled the socket address family that libsharp used (IPv4/
IPv6).
The parameter is removed, since now the selection is automatic, according to the
sharp_am supported address family.

SHARP_USE_USER_QKEY libsharp New parameter: A boolean parameter. Tells whether libsharp should use user QKey for MAD
QPs.

In case that a compute node is configured with security qkey enabled, then sharp should use
a user Qkey and this environment variable should be set to true .

Default: False

72

SHARP_SR_QUERY_SOURCE libsharp New parameter: Defines the source that should be used in order to fetch the sharp_am
service record.

Possible values:

0 - Fetch only from the SA (opensm), this was the only supported option before sharp
version 3.7.0.

1 - Fetch only from Sharp_am itself (requires that sharp_am is configured with

rdma_sr_enable = true).

2 - Try both options, try first from SA (OpenSM) and if not successful, try from Sharp_am.

Default: 2 - Try both options.

Rev 3.5.0

log_categories_file Sharp_am Added support for a new string parameter which enables indicating the log categories file
path.

The value "(NULL)" indicates that the log categories file does not exist.

Default: In UFM, the default path is: /opt/ ufm/files/conf/fabric_log_categories.cfg

Rev 3.3.0

dynamic_tree_algorithm sharp_am New parameter: Sets which algorithm should be used by the dynamic tree mechanism.

This parameter is ignored when dynamic_tree_allocation is false.

Possible values:

0 - SuperPOD oriented algorithm

1 - Quasi Fat Tree oriented algorithm

Default: 0 – SuperPOD oriented algorithm

73

app_resources_default_limit sharp_am Sets the default max number of trees allowed to be used in parallel by a single app.

Modified the possible range of values where the value of –1 means no resource limit, and 0
means no resources by default.
Default: -1 – No resource limit

max_quota sharp_am Deprecated parameter: This parameter is now marked as deprecated. It is ignored and
should not be used.

default_quota sharp_am Deprecated parameter: This parameter is now marked as deprecated. It is ignored and
should not be used.

SHARP_SYSLOG_VERBOSITY libsharp New parameter: Sets the libsharp syslog verbosity level. Possible values:

0 – Disable syslog

1 – Errors log level

2 – Warnings log level

3 – Info log level

Default: 1 – Errors log level

SHARP_GROUP_JOIN_MAD_TIMEOUT libsharp Sets the timeout till a retry for GroupJoin MAD, in milliseconds.

Modified the default value.

Default: 3000 milliseconds

SHARP_GROUP_JOIN_MAD_RETRIES libsharp Sets the number of retries for GroupJoin MAD.

Modified the default value.

Default: 5 retries

SHARP_QP_CONFIRM_MAD_TIMEOUT libsharp Sets the timeout till a retry for QP Allocation confirmation MAD, in milliseconds.

Modified the default value.

Default: 2000 milliseconds

74

Rev 3.2.0

ignore_host_guids_file sharp_am New parameter: File with a list of Host GUIDs to be ignored for SHARP trees.

Default: Null.

ignore_sm_guids sharp_am New parameter: A boolean parameter, telling whether SM GUIDs need to be ignored in
SHARP trees parsed from SMDB file.

Default: True.

ftree_ca_order_file sharp_am Deprecated parameter: This parameter is now marked as deprecated, it is ignored and
should not be used.

enable_sat sharp_am Deprecated parameter: This parameter controlled whether SHARP should allow SAT jobs.

The parameter is now marked as deprecateI. it is ignored and should not be used.

SAT is always supported.

SHARP_COLL_SERIALIZE_MADS libsharp New parameter: Serialize sharp MADs in tree connect and group join operations, it is
recommended to set this flag to true when running mpirun with multiple groups.

Default: False.

SHARP_COLL_JOB_REQUEST_RMC libsharp New parameter: If set to True, require that any allocated SHARP trees will support the
Reliable Multicast feature.

Default: False.

SHARP_COLL_FORCE_BCAST_AS_ALLREDUCE libsharp New parameter: Force Bcast(rmc) as Allreduce operation

Default: False.

Rev 3.1.1 LTS

75

clean_and_exit sharp_am New parameter: A boolean parameter. When set to TRUE, sharp_am does not operate
normally, but instead cleans SHARP resources from all switches and exits.

Default: False - Operate normally.

Rev 3.1.0

dynamic_tree_allocation sharp_am New parameter: A boolean parameter, tells whether trees should be allocated dynamically
for each SHARP job or have trees allocated during sharp_am initialization.

Default: False

max_trees_to_build sharp_am Update: In case dynamic_tree_allocation is set to True, this parameter will have no effect
on the number of trees allocated; sharp_am would determine that value based on the
amount of possible trees the switches can have. However, in the dynamic trees mode, this
parameter affects the number of skeleton trees that sharp_am will use. It is recommended
that the minimal value be the same as the number of root switches in the fabric.

In case dynamic_tree_allocation is set to False, this parameter can be used to fulfil its
purpose.

Default:

SHARP_COLL_IB_TIMEOUT libsharp New parameter: Transport timeout on SHARP QP

Default: 18

SHARP_COLL_IB_RETRY_COUNT libsharp New parameter: Transport retries on SHARP QP

Default: 7

SHARP_COLL_IB_RNR_TIMER libsharp New parameter: RNR timeout on SHARP QP

Default: 12

SHARP_COLL_IB_RNR_RETRY libsharp New parameter: RNR retries on SHARP QP

Default: 7

76

SHARP_COLL_IB_SL libsharp New parameter: SL

Default: 0

SHARP_COLL_ENABLE_MCAST_TARGET

libsharp Update: Modified the default value from True to False.

Default: False

Rev 3.0.0

per_prio_default_quota sharp_am Update: This parameter controls only the default percentage provided to LLT jobs. Its
default value is modified from 3 to 20

per_prio_default_sat_quota sharp_am New parameter: Default percentage of quota (OSTs, Buffers and Groups) per aggregation
node per tree, to be requested for a single SAT job by its priority.

If no explicit quota request is submitted, this parameter will set the quota percentage to be
used.

Format: prio_0_quota, [prio_1_quota, ..., prio_9_quota]

Note that if only one value is set, it will be applied to all priorities.

Default: 3

sat_jobs_default_absolute_osts sharp_am New parameter: Default number of OSTs to be allocated for SAT jobs per aggregation node
per tree.

Zero value means that no absolute value should be used, and the default percentage value
is used instead.

Note that the number of OSTs also affects the number of groups.

Default: 0

77

app_resources_default_limit sharp_am New parameter: A numerical parameter, applicable only when reservation_mode is set to
true. Sets the default max number of trees allowed to be used in parallel by a single app.
This default value can be overridden per app upon reservation request.

A value of 0 means no allowed resources, which means an app cannot execute any sharp
job.

Default: 1

force_app_id_match sharp_am New parameter: A boolean parameter, applicable only when reservation_mode is set to true.
When set to true, an application ID must be provided upon job request, and it must match
the application ID provided upon reservation request. Otherwise, the job will be denied.

Default: False

SHARP_COLL_JOB_REQ_EXCLUSIVE_LOCK_MODE libsharp Update: Changed default value from 0 (no exclusive lock) to 2 (force exclusive lock)

Rev 2.7.0

recovery_retry_interval sharp_am New parameter: A timeout in seconds for trees recovery retries. A value of 0 means do not
try to recover trees.

Default: 300

enable_seamless_restart sharp_am New parameter: A boolean flag. If enabled, AM tries to recover state from last AM run and
continue the operation of the current jobs.

Default: True

seamless_restart_trees_file sharp_am New parameter: Set the SHARP trees file used in Seamless restart. Need to mention only the
file name, full path is constructed using ‘dump_dir’.

Default: sharp_am_trees_structure.dump

seamless_restart_max_retries sharp_am New parameter: Set the number of consecutive retries of seamless restart. If seamless
restart fails more times in a row, it will be disabled in the next run.

Default: 3

78

max_tree_radix sharp_am Update: Change default to 252

Ib_sat_max_mtu sharp_am Update: Change default to 5, to support MAD value that represents 4K MTU.

per_prio_default_quota sharp_am Update: Changed default to 3 instead of 20, enabling more SAT jobs to take place in parallel
on each switch.

Rev 2.6.1

dump_dir sharp_am Update: Changed default to /var/log

smx_enabled_protocols sharp_am Update: Changed default from 7 to 6 (disable UCX by default)

ib_mad_timeout sharp_am Update: Change deault from 200 to 500

dump_dir sharp_am Update: Change default to /var/log

sr_mad_timeout sharpd New parameter: Control timeout for ServiceRecord queries

Default: 10000 millieconds

sr_mad_retries sharpd New parameter: Control number of retries for ServiceRecord queries

Default: 3 retires

Rev 2.5.0

smx_keepalive_interval sharp_am/sharpd New parameter: Keep alive interval in seconds 0 to disable keep alive.

Default: 60 seconds

smx_incoming_conn_keepalive_interval sharp_am New parameter: Keep alive interval for incoming connections 0 to disable

Default: 300 seconds

79

enable_exclusive_lock sharp_am New parameter: Enable/Disable exclusive lock feature.

Default: True

enable_topology_api sharp_am New parameter: Enable/Disable Toplogy API feature

Default: True

max_trees_to_build sharp_am New parameter: Control number of trees for AM to build

Default: 126

Rev 2.4.3

ib_max_mads_on_wire sharp_am Modified behavior: Changed default from 100 to 4096

ib_qpc_local_ack_timeout sharp_am Modified behavior: Changed default from 0x1F to 0x12

ib_sat_qpc_local_ack_timeout sharp_am Modified behavior: Changed default from 0x1F to 0x12

ib_qpc_timeout_retry_limit sharp_am Modified behavior: Changed default from 7 to 6

ib_sat_qpc_timeout_retry_limit sharp_am Modified behavior: Changed default from 7 to 6

Rev 2.0.0

control_path_version sharp_am New parameter
Default

max_compute_ports_per_agg_node sharp_am Modified behavior: When set to 0, AN radix is set to maximal radix value.

Default: 0

80

default_reproducibility sharp_am New parameter: Control default reproducibility mode for jobs.

Default: TURE

ib_sa_key sharp_am New parameter: Control SA key for SA operations.

Default: 0x1

coll_job_quota_max_payload_per_ost sharp_job_quota Modified behavior: Change default value to 1024.

SHARP_COLL_MAX_PAYLOAD_SIZE Libsharp_coll Removed

SHARP_COLL_NUM_SHARP_COLL_REQ Libsharp_coll Removed

SHARP_COLL_ENABLE_REPRODUCIBLE_MODE Libsharp_coll New parameter: Control job reproducibility mode:

0 – Use default.

1 – No reproducibility.

2 – Reproducibility.

SHARP_COLL_ENABLE_CUDA Libsharp_coll New parameter: Enables CUDA GPU direct.

SHARP_COLL_ENABLE_GPU_DIRECT_RDMA Libsharp_coll New parameter: Enables GPU direct RDMA.

Rev 1.8.1

81

pending_mode_timeout sharp_am New parameter: Defines AM waiting time for jobs to complete prior to fabric re-initialization
upon startup.

job_info_polling_interval sharp_am New parameter: Defines job status polling interval when waiting for jobs to complete upon
startup.

Bug Fixes History
The following table provides a list of bugs fixed in this SHARP version.

Internal Ref. Issue

3844898 Description: Fixed the issue where sharp_am failed to allocate resources for new job requests due to scattered links and unmatched trees, despite a
sufficient number of links available.

Keywords: SHARP, Report No resource

Discovered in Release: 3.5.1

Fixed in Release: 3.7.0

3696666 Description: Fixed the issue where libsharp could not communicate with sharp_am on systems that exclusively used IPv6 addresses without IPv4
addresses. Now, both libsharp and sharp_am can utilize either IPv4 or IPv6, depending on the machine configuration.

Keywords: sharp_am, libsharp, tcp/ip, smx

Discovered in Release: 3.5.1

Fixed in Release: 3.7.0

82

Internal Ref. Issue

 3686321 Description: When upgrading UFM from previous versions to UFM 6.15.x, sharp_am persistent directory as mentioned in the configuration file directs to a
path that does not exist.

This leads to failure in saving reservation and job information, so in case of a restart of sharp_am , it won’t be able to retrieve required information and
return to its previous state.

Keywords: sharp_am , UFM, upgrade

Discovered in Release: 3.5.0

Fixed in Release: 3.6.0

3724093 Description: Fixed the issue where libsharp, when communicating with sharp_am via UCX, automatically selects the first available IB adapter instead of the
instructed adapter for the data path.

Keywords: libsharp , UCX

Discovered in Release: 3.5.1

Fixed in Release: 3.6.0

3665349 Description: Fixed an issue where sharp_am failed to detect an abnormal termination of an application executing a SHARP job, which resulted in the failure
to properly clean up its resources.

Keywords: sharp_am , libsharp

Discovered in Release: 3.6.0

Fixed in Release: 3.6.0

83

Internal Ref. Issue

3646010 Description: Fixed an issue in sharp_am where it failed to support virtual ports when OpenSM topology policies were employed, and sharp_am was configured
to utilize only one of the sub-topologies.

Keywords: sharp_am , Virtual Ports, OpenSM, Topology Policy

Discovered in Release: 3.6.0

Fixed in Release: 3.6.0

3609384 Description: Fixed issues concerning Sharp_AM connection creation with rank zero clients of active jobs during a restart when UCX is enabled.

Keywords: sharp_am , libsharp, restart

Discovered in Release: 3.4.0

Fixed in Release: 3.5.0

3541153 Description: Fixed an issue where client application is abnormally terminated before the sharp_coll_finalize method, sharp_am is supposed to automatically
detect and clean the job resources. However, with UCX, only one such termination is detected per cycle, leading to incomplete job cleaning. Similarly, when
using NCCL and hosts with multiple GPUs/HCAs, each HCA gets its own SHARP job, which results in sharp_am taking several cycles to detect all the jobs
that require cleaning. As a consequence, hosts operating in the previous application cannot initiate a new SHARP job until sharp_am detects and cleans all
the necessary jobs.

Keywords: sharp_am , NCCL, UCX

Discovered in Release: 3.4.0

Fixed in Release: 3.5.0

84

Internal Ref. Issue

3400293 Description: Fixed an issue in libsharp where it failed to respond to messages from the SM while searching for Service Records, causing the SM to print
timeout messages.

Keywords: sharp_am; openSM

Discovered in Release: 3.1.0

Fixed in Release: 3.4.0

3479721 Description: Fixed the issue where sharp_am did not handle hypercube topologies well, causing it to incorrectly treat different switches as duplicates.

Keywords: sharp_am; hypercube

Discovered in Release: 3.3.0

Fixed in Release: 3.4.0

3496440 Description: Fixed the issue in sharp_am where excessive log messages were printed for each disconnected or restarted compute host. Now, the information
is printed in a consolidated manner in the form of summaries of disconnected hosts or a list of those hosts in a single log message.
However, for more comprehensive details, the complete list of hosts is still available and printed at the DEBUG level.

Keywords: sharp_am

Discovered in Release: 3.3.0

Fixed in Release: 3.4.0

85

Internal Ref. Issue

3336788 Description: Fixed the issue in Firmware where MAD error responses might have been received in libsharp.

Keywords: sharp_am; libsharp

Discovered in Release: 3.2.0

Fixed in Release: 3.3.0 (Quantum-2 Firmware 31.2010.6064)

3343503 Description: Fixed the issue where sharp_am installed from MLNX_OFED used an invalid range of job IDs, resulting in occasional errors when trying to
establish new SHARP jobs.

Keywords: MLNX_OFED; sharp_am

Discovered in Release: 3.2.0

Fixed in Release: 3.3.0

3368381 Description: Fixed the issue of when no sufficient amount of retries was made to resend failed libsharp GroupJoin MADs, SHARP jobs failed before they even
started.

Keywords: libsharp; MADs

Discovered in Release: 3.0.0

Fixed in Release: 3.3.0

3393902 Description: Fixed the issue where re-created virtual ports were not recognized by sharp_am, thus the correct tree was not built for them. This resulted in
SAT jobs getting ibv_poll_cq failure in libsharp.

Keywords: Virtual port; sharp_am; libsharp; SAT; ibv_poll_cq

86

Internal Ref. Issue

Discovered in Release: 3.2.0

Fixed in Release: 3.3.0

3404474 Description: Fixed an issue where failure of application allocation of all hosts done via /app/sharp/resources REST-API returned a successful job instead of
error.

Keywords: REST API; allocation

Discovered in Release: 3.2.0

Fixed in Release: 3.3.0

3406186 Description: Fixed an issue where SHARP AM failed handling reports from OpenSM if some switch ports were down or isolated.

Keywords: Aggregation Manager; Aggregation Node; OpenSM

Discovered in Release: 3.2.0

Fixed in Release: 3.3.0

3236363 Description: Fixed the way physical link failures between switches are handled. In the event of a link failure, a SHARP job utilizing the link has to be stopped;
however, this will bear no effect on the other present or future jobs.

Keywords: Aggregation Manager; sharp_am; Link Failure

Discovered in Release: 3.1.0

Fixed in Release: 3.2.0

87

Internal Ref. Issue

3230585 Description: Fixed the issue of when operating in Dynamic trees mode, ibdiagnet may have printed warning messages about the existence of multiple distinct
trees with the same tree ID.

Keywords: Dynamic tree; ibdiagnet

Discovered in Release: 3.1.0

Fixed in Release: 3.2.0

3226743 Description: Fixed the issue of when a management host was not connected to a leaf switch, sharp_am might have printed a number of warning messages
about trees that could not reach all aggregation nodes.
As of SHARP v3.2.0, the active management host is automatically identified and is not treated as a potential compute host.
However, please note that this does not include standby management hosts for which a warning message would still appear. These management hosts can be
mentioned in a list of GUIDs to ignore via the parameter ignore_host_guids_file.

Keywords: Aggregation Manager; sharp_am; leaf; GUID

Discovered in Release: 3.0.1

Fixed in Release: 3.2.0

3274564 Description: Fixed an issue where sharp_benchmark bash script failed to operate on all bash versions.

Keywords: sharp_benchmark

Discovered in Release: 3.1.1

Fixed in Release: 3.2.0

3262936 Description: Fixed the issue where a crash took place during sharp_am reboot while physical links were hanging between switches in the fabric.

Keywords: sharp_am; physical links; crash

88

Internal Ref. Issue

Discovered in Release: 3.1.0

Fixed in Release: 3.1.1 LTS

3192770 Description: Fixed the issue where SHARP jobs failed when using virtual interfaces configured with SR-IOV.

Keywords: SR-IOV

Discovered in Release: 3.0.0

Fixed in Release: 3.1.0

3163697 Description: Fixed the issue of when the client application used more than 1024 file descriptors (range limit defined by FD_SETSIZE), libsharp was prevented
from using any more file descriptors. Using poll() instead of select() enables using the full range of allowed file descriptors by Linux.

Keywords: File descriptor; libsharp; HCOLL; HPC-X

Discovered in Release: 3.0.0

Fixed in Release: 3.1.0

3192770 Description: Fixed the issue where SHARP jobs failed when using virtual interfaces configured with SR-IOV.

Keywords: SR-IOV

Discovered in Release: 3.0.0

Fixed in Release: 3.0.1

89

Internal Ref. Issue

3163697 Description: Fixed the issue of when the client application used more than 1024 file descriptors (range limit defined by FD_SETSIZE), libsharp was prevented
from using any more file descriptors. Using poll() instead of select() enables using the full range of allowed file descriptors by Linux.

Keywords: File descriptor; libsharp; HCOLL

Discovered in Release: 3.0.0

Fixed in Release: 3.0.1

2995739 Description: Sharp_am daemon is no longer removed when performing rpm upgrade and is overridden instead.

Keywords: Aggregation Manager; rpm

Discovered in Release: 2.6.1

Fixed in Release: 2.7.0

2972970 Description: Fixed the issue where completion of SHARP installation using sharp_daemons_setup.sh script depended on python availability.

Keywords: Aggregation Manager

Discovered in Release: 2.6.1

Fixed in Release: 2.7.0

2749073 Description: SHARP AM reports the rediscovery of aggregation nodes on every topology change.

Keywords: Aggregation Manager

Workaround: N/A

90

Internal Ref. Issue

Discovered in Release: 2.5.0

2736102 Description: SHARP AM and SHARPD overrides backlog files after restart when log rotation is enabled.

Keywords: Aggregation Manager, SHARPD, log file

Workaround: N/A

Discovered in Release: 2.5.0

2700530 Description: Terminating a job process during job initialization before sending a job request to Aggregation Manager, might result in job resource leakage in
the SHARP Aggregation Manager.

Workaround: N/A

Keywords: SHARPD, Aggregation Manager

Discovered in Release: 2.5.0

2726821

Description: Terminating SHARPD while the job process is still running will result in job resource leakage in SHARP Aggregation Manager.

Workaround: Terminate SHARPD after terminating the job processes.

Keywords: SHARPD, Aggregation Manager

2795902 Description: SHARPD might allocate handlers on GPU when running with UCX.

Keywords: SHARPD, SMX, UCX

Workaround: N/A

91

Internal Ref. Issue

Discovered in Release: 2.5.0

Workaround: Disable UCX

2770210 Description: Syslog verbosity depends on log file verbosity.

Keywords: SHARPD, Aggregation Manager

Discovered in Release: 2.5.0

Workaround: None

2825519 Description: Aggregation Manager continue to run after SM failover.

Keywords: Aggregation Manager

Discovered in Release: 2.5.0

Workaround: Stop AM daemon manually

2754175 Description: SHARP Aggregation Manger might allocate bad links for jobs after receiving timeouts from Aggregation Nodes.

Workaround: Restart corresponding switch or restart SHARP Aggregation Manager.

Keywords: Aggregation Manager

Discovered in Release: 2.5.0

92

Internal Ref. Issue

2796317 Description: SHARP jobs may hang when running in reservations mode (i.e. SHARP allocation is enabled), and reservation is created with limited PKEY, and
configuring reservation PKEY on tree is enabled.

Workaround: The PKEY used for creating the reservation should be "full" (the most significant bit should be on e.g. 0x805c instead of 0x5a).

Keywords: Aggregation Manager, Reservations, PKEY, UFM

Discovered in Release: 2.5.0

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. Neither NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make any representations or
warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any
errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of
third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or
functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to
applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such
inclusion and/or use is at customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information
contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the
application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of
the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no
liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that
is contrary to this document or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER
AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT,

http://www.nvidia.com

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer
might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation and/or Mellanox Technologies Ltd. in the U.S.
and in other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2024 NVIDIA Corporation & affiliates. All Rights Reserved.

http://www.nvidia.com

	Overview
	Document Revision History
	Release Notes
	General Information
	Packages Provided with SHARP
	Prerequisites
	Supported Operating Systems and Platforms

	Changes and New Features
	Changes and New Features
	Parameter Changes

	Bug Fixes in this Version
	Known Issues

	Introduction
	Setting up NVIDIA SHARP Environment
	Setup Requirements
	Using NVIDIA SHARP from HPC-X
	Using NVIDIA SHARP from MLNX_OFED
	Using NVIDIA SHARP Aggregation Manager from UFM
	NVIDIA Hardware Capabilities and Limitations

	Running NVIDIA SHARP Aggregation Manager (AM) Daemons
	NVIDIA SHARP Daemons Installation Script
	Registering sharp_am as a Service on the Subnet Manager Node
	Removing Daemons
	Upgrading NVIDIA SHARP AM Daemons

	Modifying NVIDIA SHARP Aggregation Manager Configuration
	NVIDIA SHARP Integration with HPC-X

	sharp_am Network Interfaces
	Network Interfaces Configuration
	Management Host Network Interfaces High Availability
	HA Configuration

	UFM Appliance Firewall Settings

	sharp_am Log and Dump Files
	Activity Log Verbosity Level
	Log Levels
	Log categories config file

	Operating NVIDIA SHARP in Dynamic Trees Allocation Mode
	SHARP Trees
	Dynamic vs. Static Allocation Mode
	Dynamic Trees Allocation Algorithms
	Configuring Dynamic Trees Allocation Mode
	Limitations

	SHARP Reservation
	SHARP Resource Limit

	Operating NVIDIA SHARP with PKeys
	Defining a Special PKey
	Supporting Dynamic PKeys

	Disabling SHARP on Specific Network Devices in OpenSM
	Testing NVIDIA SHARP Setup
	Aggregation Trees Diagnostics
	NVIDIA SHARP Hello
	NVIDIA SHARP Benchmark
	NVIDIA SHARP Benchmark Script

	NVIDIA SHARP Collective Library
	NVIDIA SHARP Library Flags
	NVIDIA SHARP Configuration Flags
	NVIDIA SHARP Resource Tuning for Low Latency Operations
	NVIDIA SHARP Streaming Aggregation
	SHARP Miscellaneous Tuning

	Using NVIDIA SHARP with Open MPI
	HCOLL Library Flags
	Example of Allreduce with Default Settings with SHARP Enable

	Using NVIDIA SHARP with NVIDIA NCCL
	Requirements
	Control Flags
	Cluster Topology for Using NVIDIA SHARP SAT with NCCL
	NCCL Benchmark Example

	SHARP Cleanup
	Deployment Guide Revision History
	Release Notes Revision History
	Release Notes Change History
	Changes and New Features History
	Parameters Change History

	Bug Fixes History

