TABLE OF CONTENTS

Chapter 1. Changelog
Chapter 2. Introduction
Chapter 3. Getting Started
 3.1. Installing Microsoft Windows Insider Program Builds
 3.2. Installing NVIDIA Drivers
 3.3. Installing WSL 2
Chapter 4. Running CUDA Applications
Chapter 5. Setting up to Run Containers
 5.1. Install Docker
 5.2. Install NVIDIA Container Toolkit
Chapter 6. Running CUDA Containers
 6.1. Simple CUDA Containers
 6.2. Jupyter Notebooks
 6.3. Deep Learning Framework Containers
Chapter 7. Known Limitations
Chapter 1.
CHANGELOG

The following software versions are supported with this preview release for WSL 2:

- NVIDIA Driver for Windows 10: 455.32
- NVIDIA Container Toolkit: nvidia-docker2 (2.3) and libnvidia-container (1.2.0-rc.1)
Chapter 2.
INTRODUCTION

Windows Subsystem for Linux (WSL) is a Windows 10 feature that enables users to run native Linux command-line tools directly on Windows. WSL is a containerized environment within which users can run Linux native applications from the command line of the Windows 10 shell without requiring the complexity of a dual boot environment. Internally, WSL is tightly integrated with the Microsoft Windows operating system, which allows it to run Linux applications alongside traditional Windows desktop and modern store apps.

![Figure 1 CUDA on WSL Overview](Image)

With WSL 2 and GPU paravirtualization technology, Microsoft enables developers to run GPU accelerated applications on Windows.

The following document describes a workflow for getting started with running CUDA applications or containers in a WSL 2 environment.
Chapter 3.
GETTING STARTED

Getting started with running CUDA on WSL requires you to complete these steps in order:

1. Installing the latest builds from the Microsoft Windows Insider Program
2. Installing the NVIDIA preview driver for WSL 2
3. Installing WSL 2

3.1. Installing Microsoft Windows Insider Program Builds

Install the latest builds from the Microsoft Windows Insider Program

- Register for the Microsoft Windows Insider Program.
- Install the latest build from the Fast ring.

Ensure that you install Build version 20145 or higher.
You can check your build version number by running `winver` via the Windows Run command.

3.2. Installing NVIDIA Drivers

- Download the NVIDIA Driver from the download section on the CUDA on WSL page. Choose the appropriate driver depending on the type of NVIDIA GPU in your system - GeForce and Quadro.
- Install the driver using the executable. This is the only driver you need to install.

Do not install any Linux display driver in WSL. The Windows Display Driver will install both the regular driver components for native Windows and for WSL support.
3.3. Installing WSL 2

This section includes details about installing WSL 2, including setting up a Linux distribution of your choice from the Microsoft Store.

1. Install WSL 2 by following the instructions in the Microsoft documentation available here.
2. Ensure you have the latest kernel by hitting “Check for updates” in the “Windows Update” section of the Settings app. If the right update with the kernel 4.19.121+ is installed, you should be able to see it in the Windows Update history. Alternatively, you can check the version number by running the following command in PowerShell:

```
ws1 cat /proc/version
```

3. If you don’t see this update, then in the Windows Update Advanced options, make sure to enable recommended Microsoft updates and run the check again:
Advanced options

Update options
Receive updates for other Microsoft products when you update Windows.

- [] On

Download updates over metered connections (extra charges may apply).

- [] Off

Restart this device as soon as possible when a restart is required to install an update. Windows will display a notice before the restart, and the device must be on and plugged in.

- [] Off

Update notifications
Show a notification when your device requires a restart to finish updating.

- [] Off

Pause updates
Temporarily pause updates from being installed on this device for up to 7 days. When you reach the pause limit, your device will need to get new updates before you can pause again.
Pause until

- [] Select date

Delivery Optimization

Privacy settings

4. If you don’t have the last WSL kernel updated, you will see the following blocking warning upon trying to launch a Linux distribution within WSL 2.
5. Launch the Linux distribution and make sure it runs in WSL 2 mode using the following command:

```
wsl.exe --list -v command
```
Just run your CUDA app as you would run it under Linux! Once the driver is installed there is nothing more to do to run existing CUDA applications that were built on Linux.

A snippet of running the BlackScholes Linux application from the CUDA samples is shown below.

Note that the CUDA sample was built on a Linux workstation running Ubuntu 18.04.

```bash
C:\> wsl
To run a command as administrator (user “root”), use “sudo <command>”.
See “man sudo_root” for details.
$ ./BlackScholes
Initializing data...
...allocating CPU memory for options.
...allocating GPU memory for options.
...generating input data in CPU mem.
...copying input data to GPU mem.
Data init done.
Executing Black-Scholes GPU kernel (131072 iterations)...
Options count : 8000000
BlackScholesGPU() time : 1.314299 msec
Effective memory bandwidth: 60.868973 GB/s
Gigaoptions per second : 6.086897
...
```
This chapter describes the workflow for setting up the NVIDIA Container Toolkit in preparation for running GPU accelerated containers.

5.1. Install Docker

Many Linux distributions may come with Docker-CE pre-installed. If not, use the Docker installation script to install Docker.

```
curl https://get.docker.com | sh
```

5.2. Install NVIDIA Container Toolkit

Now install the NVIDIA Container Toolkit (previously known as nvidia-docker2). WSL 2 support is available starting with `nvidia-docker2` v2.3 and the underlying runtime library (`libnvidia-container` 1.2.0-rc.1).

For brevity, the installation instructions provided here are for Ubuntu 18.04 LTS.

Setup the `stable` and `experimental` repositories and the GPG key. The changes to the runtime to support WSL 2 are available in the experimental repository.
$ distribution=$(./etc/os-release;echo IDVERSION_ID)

$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

Install the NVIDIA runtime packages (and their dependencies) after updating the package listing.

$ sudo apt-get update
$ sudo apt-get install -y nvidia-docker2

Open a separate WSL 2 window and start the Docker daemon again using the following commands to complete the installation.

$ sudo service docker stop
$ sudo service docker start
In this section, we will walk through some examples of running GPU containers in a WSL 2 environment.

6.1. Simple CUDA Containers

In this example, let’s run an N-body simulation CUDA sample. This example has already been containerized and available from NGC.

```
$ docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
```

From the console, you should see an output as shown below.
$ docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark

Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
-fullscreen (run n-body simulation in fullscreen mode)
-fp64 (use double precision floating point values for simulation)
-hostmem (stores simulation data in host memory)
-benchmark (run benchmark to measure performance)
-numbodies=<N> (number of bodies (>= 1) to run in simulation)
-device=<d> (where d=0,1,2,... for the CUDA device to use)
-numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)
-compare (compares simulation results running once on the default GPU and once on the CPU)
-cpu (run n-body simulation on the CPU)
-tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "GeForce GTX 1070" with compute capability 6.1

> Compute 6.1 CUDA device: [GeForce GTX 1070]
15360 bodies, total time for 10 iterations: 11.949 ms
= 197.446 billion interactions per second
= 3948.925 single-precision GFLOP/s at 20 flops per interaction

6.2. Jupyter Notebooks
In this example, let’s run Jupyter notebook.

$ docker run -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter

After the container starts, you can see the following output on the console.
WARNING: You are running this container as root, which can cause new files in mounted volumes to be created as the root user on your host machine.

To avoid this, run the container by specifying your user's userid:

$ docker run -u $(id -u):$(id -g) args...

After the URL is available from the console output, input the URL into your browser to start developing with the Jupyter notebook.

If you navigate to the Cell menu and select the Run All item, then check the log within the Jupyter notebook WSL 2 container to see the work accelerated by the GPU of your Windows PC.
6.3. Deep Learning Framework Containers

In this example, let’s run a TensorFlow container to do a ResNet-50 training run using GPUs using the 20.03 container from NGC. This is done by launching the container and then running the training script from the nvidia-examples directory.
$ docker run --gpus all -it --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 nvcr.io/nvidia/tensorflow:20.03-tf2-py3

==============
== TensorFlow ==
==============

NVIDIA Release 20.03-tf2 (build 11026100)
TensorFlow Version 2.1.0

Container image Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. Copyright 2017-2019 The TensorFlow Authors. All rights reserved.
Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying project or file.

NOTE: MOFED driver for multi-node communication was not detected. Multi-node communication performance may be reduced.

root@c64bb1f70737:/workspace# cd nvidia-examples/
root@c64bb1f70737:/workspace/nvidia-examples# ls
big_lstm build_imagenet_data cnn tensorrt
root@c64bb1f70737:/workspace/nvidia-examples# python cnn/resnet.py
...
WARNING:tensorflow:Expected a shuffled dataset but input dataset `x` is not shuffled. Please invoke `shuffle()` on input dataset.
2020-06-15 00:01:49.476393: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-06-15 00:01:49.701149: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7

Let's look at another example from Lesson 15 of the Learning TensorFlow tutorial. In this example, the code creates a random matrix with a given size as input and then does an element wise operation on the input tensor.

The example also allows you to observe the speedup when the code is run on the GPU. The source code is shown below.
import sys
import numpy as np
import tensorflow as tf
from datetime import datetime

device_name = sys.argv[1] # Choose device from cmd line. Options: gpu or cpu
shape = (int(sys.argv[2]), int(sys.argv[2]))
if device_name == "gpu":
 device_name = "/gpu:0"
else:
 device_name = "/cpu:0"

tf.compat.v1.disable_eager_execution()
with tf.device(device_name):
 random_matrix = tf.random.uniform(shape=shape, minval=0, maxval=1)
 dot_operation = tf.matmul(random_matrix, tf.transpose(random_matrix))
 sum_operation = tf.reduce_sum(dot_operation)

startTime = datetime.now()
with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) as session:
 result = session.run(sum_operation)
print(result)

Print the results
print("Shape:", shape, "Device:", device_name)
print("Time taken:", datetime.now() - startTime)

Save the code as matmul.py on the host's C drive, which is mapped as /mnt/c in WSL 2. Run the code using the same 20.03 TensorFlow container in the previous example. The results of running this script, launched from the mounted drive C, on a GPU and a CPU are shown below. For simplicity the output is reduced.

$ docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -v "/$PWD:/mnt/c" nvcr.io/nvidia/tensorflow:20.03-tf2-py3 python /mnt/c/matmul.py gpu 20000
...
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1
2020-06-16 02:47:23.142774: I tensorflow/core/common_runtime/direct_session.cc:359] Device mapping:
/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device
/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1
random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/device:GPU:0
...
Shape: (20000, 20000) Device: /gpu:0
Time taken: 0:00:06.160917

The same example is now run on the CPU.
$ docker run --gpus all -- shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -v "${PWD}:/mnt/c" nvcr.io/nvidia/tensorflow:20.03-tf2-py3
 python /mnt/c/matmul.py cpu 20000

... random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/device:CPU:0
2020-06-16 02:35:37.554425: I tensorflow/core/common_runtime/placer.cc:114]
 random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/device:CPU:0
 transpose: (Transpose): /job:localhost/replica:0/task:0/device:CPU:0
 ...
Shape: (20000, 20000) Device: /cpu:0
Time taken: 0:00:28.294706

Get started quickly with AI training using pre-trained models available from NVIDIA and the NGC catalog. Follow the instructions in this post for more details.
Chapter 7.
KNOWN LIMITATIONS

The following features are not supported in this release:

1. Performance has not yet been tuned on the preview driver. This is especially true for small workloads which suffer from a high overhead at this point.
2. NVIDIA Management Library (NVML) APIs are not supported.
3. PTX JIT is not supported (so PTX code will not be loaded from CUDA binaries for runtime compilation).
4. The following APIs in CUDA are not yet available in WSL 2:
 - IPC related APIs
 - Memmap APIs with file descriptors
5. Unified Memory is limited to the same feature set as on native Windows systems.
6. With the NVIDIA Container Toolkit for Docker 19.03, only `--gpus all` is supported. This means that on multi-GPU systems it is not possible to filter for specific GPU devices by using specific index numbers to enumerate GPUs.
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2020 NVIDIA Corporation. All rights reserved.