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Chapter 1. Introduction

1.1 Document Scope

This document served as a Programmer’s Guide for PVA VPU. It covers VPU processor
architecture, instruction set overview, example code, and instruction details.

1.2 References

1.2.1 Related External Documents
PVA SDK Documentation

1.2.2 Related NVIDIA-Internal Documents

PVA VPS IAS

PVA PPS IAS

PVA Cluster IAS
PVA DMA |IAS

PVA L1 RAMIC IAS
PVA VPS MAS
PVA DLUT MAS

1.3 Glossary and Acronyms

Ccv Computer vision, field of study and application to recover 3D and
motion information from camera views.

PVA Programmable vision accelerator, a unit in Thor SOC that accelerates
computer vision algorithms in autonomous driving use cases,
includes VPU, DMA, and Cortex R5 RISC processor.
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SEC Safety and Event Control at PVA top level. It collects safety error
events in PVA, logs, aggregates, and forwarded as interrupts to the
Cortex R5 processor.

VPU Vector processing unit, the main data processing engine in PVA.
VMEM VPU local/L1 data memory, also shared with DMA, DLUT and PPE
DMA Direct memory access, a hardware block in charge of copying data

between local memory and some other space in the system, which
can be on-chip memory or system memory/DDR.

DLUT Decoupled lookup unit

PPE Pixel Processing Engine

VPS VPU subsystem, including VPU, its I-cache, DLUT and VMEM

PPS PPE subsystem, including PPE and its I-cache

Host1X Command and synchronization unit that works with CPU,

image/video processing and computer vision engines
ISP Image Signal Processor, processes camera images

VIC Video and Image Compositor, capable of affine/perspective image
transformation and format conversion

OFA Optical Flow Accelerator, capable of dense optical flow and stereo
disparity
DLA Deep Learning Accelerator

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 11



Chapter 2. Architecture Overview

A high-level overview of PVA, DMA, VPS and PPS architecture is given in this chapter.
For more in-depth coverage of PVA architecture and DMA programming details, please
consult the PVA SDK documentation.

2.1 PVA

PVA (programmable vision accelerator) is computer vision (CV) processor targeting
Autonomous Driving (AD) applications, including camera, LiDAR, RADAR processing and
sensor fusion. PVA includes a control processor, Cortex R5, 2 copies of vector
processing subsystems (VPS) as data processing engines, 2 copies of pixel processing
engine subsystem (PPS) and 2 copies of directed memory access (DMA) as data
movement engines. Thor PVA also includes an L2 SRAM memory to be shared between
the 2 sets of VPS, PPS and DMA.

The Cortex R5 processor interacts with other SOC components (for example, ISP, VIC,
OFA, DLA) through Host 1X for control and synchronization at the subframe-application
level. R5 configures the VPUs and DMAs at the task level.

The VPUs act like coprocessors in system-level programming model. For each VPU
task, R5 configures DMA, optionally prefetches VPU program into VPU I-cache, and
kicks off each VPU-DMA pair to process a task that runs for typically hundreds of
micro-seconds to a few mini-seconds. Each VPU and DMA pair synchronize between
themselves on tile granularity, and there are typically tens to hundreds of tiles per task.

For memory operations we have 3x32x16-bit throughput, having 3 memory slots and 4
superbanks, each superbank comprising of 32 banks of 16-bit-wide memories, and
each superbank can perform both read and write in the same clock cycle.

In Thor, we have added another compute engine, PPE (pixel processing engine), and we
have 2 instances of PPE. Basically, we have 2 sets of VPU, DLUT, PPE, DMA, and VMEM.
Each set forming a cluster of compute and data movement components sharing
VMEM.
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2.2 DMA

DMA moves data among external memory, PVA L2 memory, the 2 VMEMSs (one in each
VPS), R5 TCM (tightly coupled memory), DMA descriptor memory, and PVA-level config
registers.

Thor DMA contains the following resources

16 channels, each channel can be configured to move data from a source to a
destination. The 16 channels work in parallel and can be optionally coordinated
through programming.

96 descriptors, each descriptor includes up to 5 dimensions to advance
source/destination address pointers. Descriptors can work in parallel or in
sequence through programming.

Hardware sequencer in frame addressing can have up to 7 dimensions of
addressing.

A set of internal buffers (ADB and VDB) to be allocated among channels. ADB, AXI
data buffer, is for storing data read from the external memory controller
temporarily, and VDB, VMEM data buffer, is for storing data read from the VMEM
temporarily.

Please consult PVA SDK documentation for additional details in DMA programming.

2.3 PPS

The PPE Subsystem (PPS) consists of the following major components:

PPE core. PPE is a new compute engine starting from Thor. It uses 2D vector
versus 1D vector in VPU, and in pixel processing tasks offers better performance
than VPU.

PPE instruction cache (l-cache), supplies instruction words to PPE and maintains
temporary instruction storage, with prefetch/invalidation support and with
interface to the system memory through MC interconnects.

2.4 VPS

The VPU Subsystem (VPS) consists of the following major components:

VPU core, the processor and main block of VPS.

VPU instruction cache (I-cache), supplies instruction words to VPU and maintains
temporary instruction storage, with prefetch/invalidation support and with
interface to the system memory through MC interconnects.

VPU vector memory (VMEM), houses data memory and supports various complex
memory access functionality, including transposition, table lookup, histogram,
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vector addressed stores. It also supports accesses from outside-VPS hosts like
DMA and R5, to allow data exchange with R5 and other system-level components.
DLUT, decoupled lookup coprocessor, to offload lookup and interpolation tasks
from VPU

Each major component will be described in more detail in subsequent chapters.

The following block diagram of VPS shows the major components in VPS and how they
are connected.

Figure 1. VPU Subsystem (VPS) block diagram

To Instruction/Data

Interrupts to
MC Interconnect Cortex RS
VPS 256 bit AXI
i IC config 16KB I-Cache
Events to/
GPIO 2—| ” from DMA
h Events
VPU 32bitAPB |
<—r\|—> CPCfg
g
3 veuconts | 4 | 41 41 DLUT
APB | 512-bit SRAM  512-bit SRAM  512-bit SRAM I
; LA VMEM T
SIS R I R G
VMEM —
Debug <«
Super- Super- Super- Super-
Bank 0 Bank 1 Bank 2 Bank 3 Events >
(128kB) || (128KkB) || (128KkB) || (128KB) » PPE
A 512-bit SRAM
512 bit SRAM
\4
Arbitratedlamong
DMA, R5, SOC
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2.5 VPU Processor Models and
Differences

To facilitate model development as well as application software development, a
number of VPU processor models have been constructed.

The most accurate model is the deep pipeline (Working) model. The VPU working
model instruction set simulator (ISS) shall be cycle accurate with VPU processor inside
Thor silicon.

There is a Native compilation model generated by the ASIP tool suite from the shallow
pipeline model. It is mostly an application development platform. Itis a collection of
header files and C library that allows application code to be compiled in generic (thus
named Native) environments, including Linux GCC and Windows Microsoft Visual
Studio. Itis functionally accurate with hardware for math operations. In memory
operations it is mostly functionally accurate with hardware, but there are exceptions.

Because Native is compiled in a generic compute platform, there is no hard limit in data
memory footprint, so is useful for early-stage software development, particularly to
take advantage of the fact that VPU can access almost unlimited amount of memory,
to directly process a whole frame of image, as opposed to processing one tile at a time
through DMA.

Note that, depending on physical memory size of the compute platform it is run on,
large enough memory usage in Native simulation may still lead to excessive thrashing
and slowdown.

Differences in behavior between Native compilation environment and VPU deep
pipeline ISS are:

There is no notion of clock cycles in Native compilation, thus no functioning Time
Stamp Counter functionality.

There is no forced memory address alignment to 16-bit/32-bit with load/store of
short/int types (see 6.3.2).

There is no forced memory address alignment to 512-bit with lookup, histogram, or
vector-addressed stores (see 6.3.2).

There is no forced memory address alignment to 512-bit with agen circular buffer
feature (see 6.4.6).

General purpose input and output (GPIO) in Native is non-functional, toggling GPO
ignored and reading GPI returns O. In ISS, the subset of GPIO pins that connect to
the decoupled lookup coprocessor (DLUT) are functional for interaction between
VPU and DLUT.

In working model ISS, the decoupled lookup table coprocessor (DLUT) is simulated
functionally accurately (bit-exact), but is currently only cycle approximate, NOT cycle-
accurate.
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Although PVA-level simulator incorporating R5, DMA, VPU, DLUT, PPE component
simulators does incorporate budgetary system-level latency, for example external
memory controller latency, but it does not model components outside PVA so cannot
predict actual latency. Thus, PVA-level simulation, even when incorporating cycle-
accurate VPU working ISS, is NOT cycle-accurate with silicon when the simulation
involves outside-VPU interactions, for example, reading from or writing to external
memory.
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Chapter 3. VPU Core

3.1 Block Diagram
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Figure 2. VPU core block diagram
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The VPU core is a vector SIMD VLIW DSP optimized for computer vision. It fetches

instructions through the I-cache, and accesses data through the vector memory (VMEM).
Major components inside VPU core are

> Processor front end: including config/status interface, PC control
> Register files
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Scalar unit: with two scalar ALUs
Vector unit; with two vector ALUs
Memory unit: with 3 load/store units and address generators

3.2 Processor Front End

The VPU instruction format is 7-way VLIW, consisting of

2 scalar operation slots (sO/s1)
2 vector operation slots (vO/v1)
3 memory slots (mO/m1/m2)

Each instruction is encoded in 32-bit, and the instruction encoding supports variable-
length instructions, thus each execution packet contains between 1 and 7 32-bit words.
The compressed instruction stream is decompressed to full 7 instructions per packet and
dispatched to the scalar, vector, and memory units.

Example of compressed instruction packet:
ADD R1, R2, R3 || LDW *R4[28], R5

Corresponding decompressed instruction packet:
ADD R71, R2, R3 || sS1_NOP || VO_NOP || V1_NOP || LDW *R4[20], R5 || m1_NOP || m2_NOP

Front end of the processor includes interface to the instruction cache, 2-level hardware
loops, loop instruction buffer, and fetch/decode stages of the processor pipeline.

Front end includes illegal instruction detection, both while expanding compressed variable-
length instruction packet into full 7-instruction packet using leading few bits of each 32-
bit instruction, and while decoding entire 32-bit instruction in scalar/vector/memory units.

3.3 Register Files

The following register files are in the VPU core:

Scalar register file (Scalar RF): 32 entries x 32-bit
Predicate register file (Predicate RF): 16 entries x 32-bit
Main vector register file (VRF): 32 entries x 384-bit
Working register file (WRF): 32 entries x 384-bit
Accumulator register file (ARF): 32 entries x 384-bit
Agen register file: 8 entries x 620-bit

The vector register files VRF, WRF and ARF support the following data types:

Word: each 384-bit entry is logically partitioned into 8 lanes x 48-bit
Halfword: each 384-bit entry is logically partitioned into 16 lanes x 24-bit
Byte: each 384-bit entry is logically partitioned into 32 lanes x 12-bit
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Support of various operations in various register files is tabulated as follows:

Table 1. Support of scalar/vector operations in register files

Scalar RF Predicate RF | VRF WRF ARF
Scalar math Yes Yes, as src or
dst of a few
Instruction Yes
level
predication
Per-lane Yes VO~V15
predication
Vop11/12 Yes Yes
Vop21 Yes, as src2 Yes Yes
Vop31 some, as src2 Yes some
Vop31_CA, MAC | some,assrc2 | Yes, PO~P15 Yes,as srcl, | some,as Yes, as dst,
as predicate src2, dst src2 src3dst
FP Yes Yes Yes
Load Yes Yes Yes
destination
Store source Yes Yes Yes

3.4 Scalar Unit

The scalar unit supports conventional scalar RISC instruction set, executing up to 2 scalar
operations per cycle.

32-bit integer/fixed-point as well as 16/32-bit floating point Add, Sub, Mul, MAdd, compare
operations are carried out as directed instructions. Some FP32 math functions (square
root, reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various FP/INT
conversions are supported as well.

3.5 Vector Unit

The vector unit executes up to 2 vector math instructions per cycle. Various integer
arithmetic and logic operations are implemented in the vector unit, with support for Byte
(extended to 12-bit), Halfword (extended to 24-bit) and Word (extended to 48-bit) data
types. Bitwise logic operations are also supported.
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In addition to conventional arithmetic/logic operations, some larger or complex operations
(e.g. 3-input min/max/median) as well as FP32/FP 16 operations Add, Sub, Mul, MAdd,
compare. Some FP32 math functions (square root, reciprocal, reciprocal of square root,
exp2, log2, sin, cos, tanh) and various FP/INT conversions are supported as well.

3.6 Load/Store Unit

The load/store unit supports up to 3 load/store instructions per cycle. Word, Halfword,
Byte, and some type promotion/demotion options are supported. For load, both
signed/unsigned flavors are supported. Source and destination can be single scalar
register, double scalar register, single vector register, or double vector register. Quad-
vector-register store is also available to facilitate key filtering benchmarks. Load/store
unit also supports various data distributions.

In general, we would like memory transactions from load/store instructions to be executed
in order through memory dependency checking and dynamic stalling. The VPU has a rich
set of load/store features, and for some features it is cost prohibitive to implement the
dependency checking. Scalar load/store instructions as well as consecutive-location
vector load/store are included in the dependency checking, so they are guaranteed to
execute in order. Transposing load/store, parallel table lookup, parallel histogram, and
vector addressed stores are excluded in the checking, so they are not guaranteed to
execute in order. A MemFence instruction is available to serialize memory transactions
that hardware dependency checking does not cover. Please see 6.3.1 for additional details.
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Chapter 4. VPU Instruction Cache (I-
Cache)

4.1 Overview

The VPU Instruction Cache (I-cache) supplies instruction data to the VPU when
requested, requests missing instruction data from system memory, and basically
maintains temporary instruction storage for the VPU. It also implements the prefetch
command to reduce cache misses, as well as the invalidation command as needed for
error correction and debug.

Having an instruction cache allows for large total code size to be stored in the system
memory, while having small physical memory footprint for area efficiency. However,
there is performance implication of serving cache misses, so strategy to optimize code
layout to employ prefetch and avoid cache misses is outlined as follows.

4.2 Functionality

The following table captures the characteristics of the I-cache.

Table 2. VPU I-cache characteristics

Characteristic Configuration

Capacity 16KB

Associativity 2-way

Instruction width 256-bit

Instruction alignment 256-bit

Block size 128 bytes

Replacement policy LRU

Write policy None (I-cache read only)

Hit under miss (nonblocking, if/when VPU No, fetch interface is in-order, so after a miss, if
requests another instruction word that’s following fetch request hits, it's not possible to
available, go ahead and return hit) indicate so.
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Miss under miss (if/when VPU requests
another instruction word that’s unavailable,
request for that cache line as well)

Yes (request/ready pipelining allows following fetch
request to be conveyed, and if it's a miss involving
another cache line, request can be sent out as well)

Hit latency

2 cycles

Prefetch (software request to fetch cache
lines ahead of execution)

Yes, up to full cache in single R5/VPU interaction.
Depending on outstanding transaction allocation
may request in batches

Interface for misses

256-bit AXI, AR, R channels only

Prefetch request from R5 and VPU

Yes, will have separate config register entries for
concurrency

Prefetch and fetch concurrency

Yes, giving fetch higher priority

ECC single error correction

Yes, corrected on the fly and sent back to VPU

ECC single/double error detection

Yes. Single errors are corrected but correction not
written back to cache; single error handling
software should invalidate cache line to initiate
refetch when the line is requested again.

Double errors are detected but not corrected.

Invalidation from R5

Yes, configurable address range

Invalidation from VPU

Yes, configurable address range

4.2.1 Preemption

The VPU fetch/align unit fetches ahead of execution, and thus may request some
instruction data, but in the next few cycles branches to anther PC location that renders
the previous request unnecessary. In such cases, the fetch/align unit cancels a previous
request and issues a new request from a new PC location. This feature is called
preemption, and is particularly useful when one of the no-longer-needed requests
triggered a cache miss. VPU execution would be stalled if hardware does not have the
capability to cancel the request.

The I-cache handles preemption by clearing the preempted request from the pipeline. In
case the preempted request has been sent to the MC, the MC read request is not
affected, and returned data from MC would be written to a cache line normally, possibly
evicting instruction data on that cache line.

4.2.2 Prefetch

Prefetch capability is provided to both the R5 and the VPU. They use separate register
entries and command queues to avoid any race condition, although SW on both sides
should be coherent and not attempt to request prefetch or invalidation at the same
time.
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When program for a task fits in the I-cache, the R5 should prefetch of the whole
program, then start VPU at its task PC. The VPU may initially see instruction-cache
misses until the whole task is loaded.

When program for a task does not fit in the I-cache, and when the task code can be
partitioned for concurrent execution and subsequent prefetch, the R5 should prefetch
at the beginning of a task, for a code size specific to that task. The initial prefetch
amount should be maintained along with task ID, PC, and other relevant information for
the task.

VPU SW would request subsequent prefetch at the appropriate times to optimally
overlap execution and prefetch.

R5 SW should not start requesting prefetch for VPU’s next task until VPU has completed
its task and is idle. This also ensures prefetches from R5 and VPU do not contend for
cache lines.

4.2.3 Invalidation

The I-cache supports two concurrent invalidation interfaces in the config registers; one
designated for R5 and the other designated for VPU. Each invalidation interface can
selectively invalidate an address range or the whole cache.

Note that invalidating the whole cache is accelerated via some GPO sideband signaling
(see 12.2), while invalidating an address range will involve employing the DMA’s VPU
configuration functionality, which can take 10’s of cycles (which is very little compared
to prefetching code from system memory).

Invalidation can be used to provide a clean slate in the beginning of every task, and the
R5 should be the one invalidating the entire cache.

Invalidation can also be used to handle I-cache single error detection. When a single
error is detected (when the VPU requesting instruction(s) that contains an error), the I-
cache sends the corrected instruction data back to VPU but does not write the
corrected instruction data back to the I-cache’s memory. The R5 software handling I-
cache single error detection should invalidate the cache line to cause the line to be
refreshed from DRAM, which we assume is ECC protected as well and contains the
correct program data.

Invalidation is also needed for VPU debug software breakpoint, which is implemented by
substituting code data at selected break point with SWBRK, software breakpoint
instruction. As I-cache is read-only, code change is implemented by altering the code
image in external memory and invalidating the corresponding cache line. Debug
software running on the CPU or some external/remote host processor connected to the
hardware debug interface should use the “VPU” set of invalidation interface.
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4.2.4  ECC (Single-Bit-Error-Correct Double-Bit-
Error-Detect)

To reduce fault rate against memory cell transient faults, the VPU I-cache is protected
by single bit error correction, double bit error detection scheme.

A single-bit error within a 256-bit instruction word is corrected on the fly, and an error
event is sent to the PVA top-level SEC block, and from there it is forwarded to R5 and
optionally to system-level error collator.

A double-bit error within a 256-bit instruction word is detected but not corrected. An
error event is sent to the PVA top-level SEC block, and from there it is forwarded to R5
and optionally to system-level error collator. The erroneous instruction word is return to
VPU, which continues to execute.

Optionally, I-cache can be configured to suspend upon detection of double bit error, until
R5 software comes in to query I-cache for the error and reset VPS. This feature may be
useful during software development phase to differentiate RAM soft error from other
error sources.
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Chapter 5. VPU Vector Memory (VMEM)

5.1 Overview

VPU vector memory (VMEM) houses local data memory for VPU to access so it can
implement various image processing and computer vision algorithms efficiently. VMEM
supports various complex memory access patterns from VPU, including consecutive
read/write of various lengths, transposition, table lookup, histogram, vector addressed
stores, as well as memory access from DLUT and PPE. It also supports accesses from
DMA, R5 and CPU through RAMIC, to allow data exchange with R5 and other system-
level components.

VMEM includes VMEM I/F arbitration block and four VMEM superbanks of 128KB each.
Each superbank incorporates dual port memory and supports one read AND one write
per cycle. VMEM I/F arbitrates reads and writes separately for each superbank.

The VPU vector memory block diagram is as follows.
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Figure 3. VMEM block diagram
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5.2 VMEM Interface (VMEM |/F)

The VMEM |/F block performs arbitration among VPU load/store and external request
(including DMA), and handles histogram read-modify-write requests. Memory arbitration

is carried out in superbank granularity and parallel between reads and writes. We have a
fixed priority scheme as follows:

Read priority (highest to lowest)

RAMIC (DMA, R5, CPU) read request-high

VPU MO load (including table lookup and histogram read)
VPU M1 load

VPU M2 load

StreamO read (DLUT lookup)

Stream1 read (DLUT index/config)

vVvVvyVvyyvwvyy
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» PPE load
» RAMIC (DMA, R5, CPU) read request-low

Write priority (highest to lowest)

Histogram write

RAMIC (DMA, R5, CPU) write request-high
VPU MO store

VPU M1 store

VPU M2 store

StreamO write (DLUT output)

PPE store

RAMIC (DMA, R5, CPU) write request-low

vVvVvVvyVvvVvYVvYVyYy

In VMEM arbitration, we have VPU accesses prioritized over DLUT streams, the DLUT
streams over PPE load/store. DLUT streams and PPE load/store have buffers in the
access path, so DLUT and PPE performance should not be affected by occasional stalls.
In comparison, arbitration loss in VPU is likely to directly lead to performance loss.

Between DLUT and PPE, we let DLUT have higher priority over PPE. Where DLUT is
employed, its traffic pattern tends to be bursty, whereas in PPE use cases we tend to
see sustained and moderate traffic pattern less affected by occasional loss in
arbitration.

Ideally programmer should allocate memory objects to avoid VPU processing and
DLUT/PPE coprocessor processing to compete for any superbank read/write. When
that is not possible, programmer should consider DLUT/PPE coprocessor VMEM traffic
and allocate memory objects to minimize VMEM contentions.

Multiple memory transactions in the same execution packets and going to the same
superbank are executed sequentially following the above arbitration priority when they
are all reads or all writes. When there are read(s) and write(s), memory coherency may
kick in to sequentialize the accesses. Various multiple read/write in the same cycle cases

RR or RRR: sequentially one at a time

WW or WWW: sequentially one at a time

RW: Execute both in parallel, read will return previous value

RWW: Carry out the read and the first write in parallel, then the second write. The
read will return previous value,

» RRW: Carry out the first read, then the second read and the write in parallel. Both
reads will return previous value.

A 2-bit QoS signal is sent with each external request, and the QoS is translated into a
time-out count via VMEM config registers. Each external request is initially assigned to
the external-low priority. If/when the request waits out the time-out count, it’s
escalated to the external-high priority, which prompts it to be served at next available
cycle, thus ensuring some (configurable) minimal BW to VMEM for each QoS level.
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The VPU supports memory accesses (table lookup, histogram, vector-addressed store,
transposing load/store) that can potentially span a large address range. As each
memory access is routed to a selected superbank based on the base address, no single
memory access can straddle multiple superbanks.

5.3 VMEM Superbanks

The four memory superbanks appear as four memory regions in the VPU memory map,
differentiated by high address bits to allow programmers to allocate, based on memory
footprint and BW needs. Primary memory BW consumers are VPU (3 memory slots
each can perform read or write), DMA, DLUT and PPE. Since read/write accesses are
arbitrated separately, one way to allocate VMEM BW is to assign each superbank
read/write to one client.

For example, if we have DMA -> PPE -> VPU -> DMA dependency pattern, we can assign

Superbank B write = DMA
Superbank B read = PPE
Superbank C write = PPE
Superbank C read = VPU
Superbank D write = VPU
Superbank D read = DMA
Superbank A read = VPU
Superbank A write = VPU

By default, stack is in Superbank A, so we allocate Superbank A read/write to VPU. Rest
of the assignment allows mapping of

DMA -> Superbank B -> PPE -> Superbank C -> VPU -> Superbank D -> DMA
and let VPU, DMA and PPE to perfectly miss one another and have no VMEM contention.

There are times footprint of various application data buffers do not allow such “perfect”
assignment, and we also have DLUT that can consume up to 2 reads and 1 write per
cycle when it’s active. Programmer will need to consider BW and footprint need and find
a feasible assignment that may have some superbank contentions.

Each superbank has 128KB of capacity each. Each superbank sits in 256KB of space to
allow for future expansion. 1 MB is allocated for the 4 superbanks (512KB total
capacity). Address aliasing in the 1 MB space is as shown in the following table.

Table 3. VMEM address map

Byte address Memory Primary/Alias
0x00000 ~ Ox1FFFF Superbank A first 128KB Primary
0x20000 ~ Ox3FFFF Superbank A second 128KB Alias

0x40000 ~ Ox5FFFF Superbank B first 128KB Primary
0x60000 ~ Ox7FFFF Superbank B second 128KB Alias
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0x80000 ~ Ox9FFFF Superbank C first 128KB Primary
OxA0000 ~ OxBFFFF Superbank C second 128KB Alias
0xC0000 ~ OxDFFFF Superbank D first 128KB Primary
OxEO00O0 ~ OxFFFFF Superbank D second 128KB Alias

Note that address aliasing is a side effect of address decoder logic and should not be
taken advantage of in the software, as it is possible to set up address watch point via
debugger to detect out-of-valid-range memory read/write and trigger error interrupts to

PVA-top Cortex R5 processor.

Future generation hardware may change physical memory sizes and memory address
mapping. Best practice for VPU software is to use A/B/C/D memory region naming, for
example, chess_segment(A/B/C/D), instead of hard-coding memory addresses, and to

avoid using the alias memory regions.

5.4 Memory Banking and Read/Write

Access Patterns

Each VMEM superbank consists of 32 banks of 16-bit wide RAMs. Each of the 32
memory banks are independently addressable per clock cycle. This enables a rich set of

access patterns:

Read/write one byte on any byte alignment

vVVvvyVvYvVvyyvyy

Read/write one 16-bit half-word on any half-word alignment
Read/write one 32-bit word on any word alignment
Read/write 8 or 16 consecutive 32-bit words from any half-word alignment.
Read/write 16, 24 or 32 consecutive 16-bit half-words from any half-word alignment
Read/write 32 consecutive 8-bit bytes from any byte alignment

Read/write 64 consecutive 8-bit bytes from any half-word alignment (starting odd

byte is not supported, and shall be forcefully aligned to an even byte)

v

Read/write in various transposed addressing patterns.

» Read/write independent memory rows in each 16-bit bank, leveraged by parallel table
lookup, parallel histogram, and vector addressed store.

Various transposed load/store options, parallel table lookup, histogram, and vector
addressed store options are discussed later. This is just describing access patterns

from VMEM hardware capability point of view.

Example access patterns are shown in the following figures.
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Figure 4. VMEM access pattern examples for consecutive accesses
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Figure 5. VMEM transposed access pattern examples

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 30 | Bank31
<8b> <-16b-> | |
W0
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Figure 6. VMEM access pattern examples for parallel table lookup and
histogram
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BankO Bank1 Bank2 Bank3 Bank4 Bank5 Bank30 | Bank31

<8b>| <-- 16b -->
W_TBL w2
W1
W15
WO
H_TBL H4 H5
H1
H3
HO
H31
2 H30
B_TBL B31
Bl B3
BO
B2 B4 B30
B5

5.5 Load Data Cache

Each VMEM memory bank contains a load data cache for power reduction. VPU
processor pipeline including load timing accommodate both cache-hit and cache-miss
cases. The cache can be enabled or disabled (see 9.6.16 for details) on a superbank
granularity.

The load cache, when enabled, only caches the following types of memory read
transactions:

» Single/double vector load of 32-byte or 64-byte consecutive data

The following types of memory read transactions are ignored by the load cache:

Single vector WX-type load (48-byte transaction)

Single/double vector S (scalar) and C2 (circulating 2 items) distributions
Scalar register loads

Lookups

DMA reading VMEM

DLUT reading VMEM

vVvVvyvVvyyvyy

When enabled, the load cache monitors ALL memory transactions to invalidate cache
entries when there’s a hit, including

» Scalar/vector stores
» Histogram/VAST operations
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» DMA writing VMEM
» DLUT writing VMEM

When cache is enabled and cache hit occurs, load data is retrieved from the cache and
memory read transaction is not issued, saving some power. When cache is enabled and
cache miss occurs, there is no performance penalty, but there is a small power penalty.
Thus, enable/disable control is exposed to the programmer for power optimization. Load
data cache should be enabled when there is repeated accesses to small localities, like in
the case of filtering, and should otherwise be disabled.

5.6 Memory Allocation among VMEM
Superbanks

VPU application code may use storage specifiers {DMb, RAM_Ab, RAM_Bb, RAM_Cb,
RAM_Db}, together with chess_segment(A/B/C/D) and optional alignment constraint to
allocate scalar or array variables onto specific superbank.

Using RAM_Ab, RAM_Bb, RAM_Cb, RAM_Db with chess_segment(A/B/C/D) causes the
linker to allocate variable to superbank A, B, C, or D, respectively

Example 1:
short chess storage(RAM Ab % 512: chess segment (A)) foo[256];

This allocates foo as a 256-element short array on superbank A with 512-byte alignment.

Example 2:

char chess storage(RAM Bb % 512: chess segment (B)) bar[256];
This allocates bar as a 256-element char array on superbank B with 512-byte alignment.

Example 3:
int chess storage(DMb % 4) more foo[256];

Using DMb storage specifier causes the linker to allocate such variables to superbank A
first, followed by B, C, then D, where it fits. Reserved regions between superbanks are
skipped automatically. This allocates more_foo as a 256-element int array with 4-byte
alignment in one of the superbanks.

Example 4:
int more bar([128];

Not using any storage specifier causes the linker to allocate the variable to global
memory (_global segment in BCF file). Application project can supply a custom BCF file
to place _global segment in a valid memory range. Otherwise, the default BCF file
applies and places _global segment in superbank A.
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Chapter 6. VPU Instruction Set
Architecture

6.1 Processor Architecture

6.1.1 Key Features

The VPU instruction set architecture has the following key features:

» VLIW and Wide SIMD vector processor, with multiple operation and multiple
load/store slots.

» Multi-dimension address generation (6 dimensions).

Multiple levels of zero-overhead HW looping (2 levels).

» Instruction-level predication of certain vector operation, scalar load/store, vector
load.

» Lane predication for vector store.

» Loop collapsing to reduce overhead across data block and filter kernel dimension,
enabled by address generation and predication.

» Reduced code size and library construction effort for filtering and other windowing
operations, enabled by zero-overhead nested looping through loop collapsing.

» Memory banking and parallel lookup, histogram, and vector addressed store.

Memory bank address calculation to implement transposed vector load/store for

various transposition options.

Circular buffer addressing for memory-copy-free data/compute reuse.

Rich set of load and store data distribution patterns.

Vector load with permutation of loaded data.

Vector-lane predication of selected store operations.

Protected pipeline with sequential execution (except branch delay slots) and

hardware dependency stalling.

v

v

vvVvyyvyy

The VPU instructions are scheduled in the following 7-way VLIW format. Each
instruction word is 32-bit long, and up to 7 instruction words can be executed together
as an execution packet.
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Table 4. VLIW instruction format

SO S1 VO V1 MO M1 M2

Scalar Scalar Vector Vector Load/store, scalar Load/store, Load/store,
operation or operation operation operation or vector, scalar or scalar or
Control lookup, histogram, | Vector vector
(branch, call, vector-addressed

return, SW stores

breakpoint)

Variable-length packet encoding is supported, so that NOP (no operation) instructions
are skipped and not taking up any code space. There is an exception though. Compiler
may insert NOPs intentionally to align branch target, beginning of function, etc,
execution packets to reduce branch penalty.

In general, control instructions are available only in SO slot. Scalar operations are
available in both scalar slots. Vector operations are available in both vector slots.
Memory operations are available in all 3 memory slots, except lookup, histogram, and
vector-addressed store are available only in MO. Additional details:

» Agen save/restore instructions are available only in MO slot.

» Quad-vector store instructions are available only in MO slot.

» Per-lane predicated store instructions via vector register file are available only in
MO slot.

» Per-lane rounding store (double vector only) instructions are available only in MO
slot.

6.1.2 Program and Data Memory Spaces

Program memory space is 32-bit byte address, with valid range [0, 2732 - 4], as
instruction words are 32-bit each.

Data memory space is 20-bit byte address that spans 1MB, but only valid inside each of
four 128KB superbanks, for a total of 512KB of physical memory. Please see 5.1 for
the memory map.

Access outside the valid range would be wrapped back to the valid range. See Section
5.3 for details in address mapping. Programmer should not take advantage of this
address wrapping, as data memory footprint and layout can change in the next
generation.

Reading uninitialized memory locations WILL NOT be detected as an error, but can
trigger parity error. It's too expensive to implement such detection or automatic
initialization in hardware. Itis software’s responsibility to either initialize the entire
VMEM at the task start, or avoid referencing uninitialized memory locations.
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6.1.3  Architecture Registers

6.1.3.1 Control and Scalar Registers

Program counter (PC), counting in 32-bit granularity so PC = 1 means byte address of
4.

VPU program space is 2732 bytes, due to tool-chain constraints, and hardware
conforms to this constraint. Although PC appears as a 32-bit register, upper 2 bits are
not used. Upon task launch, VPU gets a starting PC specified in a 32-bit byte address
config register by dropping lower 2 bits of the register. Also, interface between VPU
and I-cache carries 27-bit address in 256-bit (32-byte) granularity.

» Scalar registers RO..R31, 32-bit each. Special registers among them: RO = constant
zero

SP (stack pointer) = R1

LR (link register) = R15

Global data page pointer = R16

PL (64-bit product’s low 32-bit, also quotient for DIV) = R12

PH (64-bit product’s high 32-bit, also remainder for DIV) = R13

vvVvyyvVvyy

All scalar registers are reset to 0.

Compiler is instructed to treat RO as constant O and not modify RO. User assembly
program can use RO as a normal register and write non-zero to RO, but this would break
compiled code so is highly inadvisable.

Stack grows by incrementing the stack pointer, so items in the local frame (already in
the stack) are located with negative offset from the stack pointer. For example, the
last int32 word pushed into the stack occupies SP -4 ~ SP - 1 byte addresses, so is
addressed by its starting byte address SP - 4. Compiled code uses load/store with
base + immediate offset addressing mode to address items on the stack, and the
immediate offset has range of [-2048, 2047]. Thus, if we use the stack pointer
register R1 to represent the stack pointer itself, local frame size is limited to 2048
bytes.

In the model’s compiler setting, we tell compiler to put an offset of -2048 between the
logical stack pointer and the actual stack pointer register R1. In other words, we set
SP_register (R1) = SP - 2048. This allows any local frame to take as much as 4096
bytes, thereby doubling the local frame size. This is because SP_reg + [-2048, 2047] =
SP - 2048 + [-2048, 2047] = SP + [-4096, -1].

HW looping registers:

» LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to
-1 (which is encoded as binary “117).

» LS[0..1]: 32-bit loop start PC, reset to O

LE[O..1]: 32-bit loop end PC, reset to O

» LC[O..1]: loop count, 32-bit, reset to 1

v
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There is also a predicate register file to support instruction predication:

» Predication registers: P2..P15 each 32-bit (PO, P1 are unconditional), reset to -1 (all
ones)

Additional miscellaneous registers are:

» GPI: general purpose input register, 32-bit

» GPO: general purpose output register, 32-bit, reset to 0

» TSC: Free running timestamp counter for performance instrumentation, 64-bit,
reset to O

» INV: floating point invalid flag, 1-bit, reset to O

» CFG_VMEM: 3 x 32-bit, 32-bit for each superbank, bit O for load cache enable, bits
31..1 reserved, reset to O

6.1.3.2  Vector Registers

There are 3 vector register files: Main vector register file VO..V31, Working register file
WO0..W31, Accumulator register file ACO..AC31, each register 384-bit and can be
partitioned as

» 8lanes x 48-bit (extended word, vintx)
» 16 lanes x 24-bit (extended half-word, vshortx)
» 32 lanes x 12-bit (extended byte, vcharx)

VRF and WRF have extensive bypassing to reduce load-to-math and math-to-math
latencies. ARF is accessible as accumulators. Compiler maps source code variables to
these register files according to latency requirement and register capacity constraints.

Vector registers are not cleared during reset; it is software’s responsibility to initialize
each register before its value can be used.

6.1.3.3  Agen Registers
Each unit of the agen register file AGEN[0..7] has the following fields:

Addr (32-bit, but only lower 20 bits are used in address calculation), reset to O
Transposition lane offset (12-bit), reset to O

Rounding/truncation option and number of bits (8-bit), reset to O (no rounding)
Saturation option (2-bit), reset to O (saturation disabled)

min/max option (2-bit)

Auto predication off (1-bit), reset to O, indicating agen loop has gone past max
iteration count in all levels, so that subsequent stores should be automatically
predicated off, overriding predicate register (or predicate vector register).
Number of iterations (6 x 16-bit), reset to 1

Address modifiers (6 x 18-bit), reset to O

Circular buffer start and size (2 x 16-bit), reset to O

Saturation parameters (4 x 32-bit), reset to O

vVvVvyVvywyy

vvyywvyy
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» Loop variables (6 x 16-bit), reset to 0
» Min/max values (2 x 32-bit), reset to 0, and initialized to signed/unsigned 32-bit
MAX/MIN values depending on min/max option

Each Agen register has a parameter configuration portion, basically the first 16 words
or 512-bit in memory and 428-bit in register (difference comes from 6 address
modifiers, 32-bit in memory versus 18-bit in register). The rest 6 words or 192-bit
holds loop variables, auto_predicate_off and min/max values.

Agen configuration can be stored in memory in 512-bit, and when it’s read back, loop
variables and min/max values are reset, and this is useful to save and restore Agen
configuration. There are instructions to save/restore the remaining part of Agen. The
entire register entry can be copied from one agen register to another as well.

Data organization of the agen configuration in memory (from Agen configuration save,
AgenCfgST) is as follows.

Figure 7. AGEN data format in memory

Word 31 0
0 Addr
minmax round/truncate
reserved | opt (2- | sat_opt |opt and bits (8- reserved
1 (4-bit) bit) (2-bit) bit) (4-bit)) lane_offset (12-bit)
2 N2 (16-bit) N1 (16-bit)
3 N4 (16-bit) N3 (16-bit)
4 N6 (16-bit) N5 (16-bit)
5 reserved (14 upper bits) MOD1 (18 LSBs)
6 reserved (14 upper bits) MOD2 (18 LSBs)
7 reserved (14 upper bits) MOD3 (18 LSBs)
8 reserved (14 upper bits) MOD4 (18 LSBs)
9 reserved (14 upper bits) MODS5 (18 LSBs)
10 reserved (14 upper bits) MODG6 (18 LSBs)
11 CB_SIZE (16-bit) CB_START (16-bit)
12 SAT_LIM_LOW (comparison)
13 SAT_VAL_LOW (replacement)
14 SAT_LIM_HIGH (comparison)
15 SAT_VAL_HIGH (replacement)
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Word 31 0

16
17
18

19
20
21

12 (16-bit) 11 (16-bit)
14 (16-bit) 13 (16-bit)
16 (16-bit) 15 (16-bit)

auto pred off
reserved (31-bit) (1-bit)

min_val (32-bit)
max_val (32-bit)

The rest of Agen data structure (6 x 32-bit = 192 bits) in the Agen register file, not
directly visible but can be accessed one loop variable at a time through STH
A<id>.I<level>:

In the data structure, ignored fields, basically upper bits of each address modifier, are
writable via CfgAgen Mod instruction as well as CfgAgenLD instruction, but are not
utilized in the address calculation.

Reserved fields are initialized to zero in InitAgen. They are not modifiable via any
CfgAgen instructions, and not utilized in any Agen functionality. Through CfgAgenLD,
if corresponding contents in memory are non-zero, zero will be loaded into Agen data
structure instead. When CfgAgenST is used to store out the whole Agen data
structure, corresponding bits in memory will show zeros.

6.1.3.4  Floating Point Invalid Flag

To facilitate development of floating pointing applications, in VPU we have a Boolean
flag to for floating point invalid, invalid_flag, that captures any invalid outcome (NaN)
from FP32/FP16 operations. It’s a sticky bit, so that when there are any invalid
outcome from S0/S1/VO/V1 slots (as we support scalar as well as vector floating point),
the bit is set.

invalid_flag |=s0_invalid | s1_invalid | vO_invalid | v1_invalid

There are a pair of MOV instructions to move invalid_flag to/from scalar register, so
that the flag can be cleared at beginning of applications and collected (and perhaps
cleared) at key points in the application to check for unexpected outcomes.

Please see 9.4.6 for instruction execution ordering exceptions around FP invalid flag.
Please see 9.6.14 for MOV instructions for FP invalid flag.

Note that the invalid flag read-modify-write dependency is hidden from the compiler,
so that compiler can freely reorder, combine, and even optimize out unnecessary FP
operations to achieve better performance. If, for whatever reason, certain FP
operations should not be optimized out even when they are unnecessary, developer can
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add chess_keep_dead() compiler directive on the variable assigned to the FP
operations.

For example,

float var3 = fadd(varl, var2);
chess keep dead(var3);
// no subsequent use of vars

6.1.4 Control Instructions

Control instructions include:

» Flow control instructions including jump, jump-and-link (call), and conditional
branch.

» Zero-overhead hardware loop instruction

Memory fence instruction

» Miscellaneous hardware control instructions involving GPI, GPO, coprocessor
load/store, R5 interaction, time stamp counter, floating point invalid flag, and load
data cache

» Debug instructions

v

Control instructions are only supported on the SO slot.

There are 2 delay slots following jump, jump-and-link, conditional branch, and hardware
loop. For jump and branch, there is additional 2 to 3 cycles of gap before the first
execution packet of the jump target can be executed, due to the fetch latency.

Memory fence takes variable number of cycles, up to 8 cycles, as it is stalled until
preceding memory writes are committed to memory, to ensure memory coherency.

Hardware control instructions that interact with other hardware components (GP],
GPO, WFE_GPI/R5, SIG_R5, CPLD, CPST) take up to 16 cycles to execute, so that all
preceding instructions complete their execution, to avoid any synchronization issues.

For example, VPU software might write some value in VMEM before toggling a GPO bit
that triggers a DMA transfer to read from VMEM, so it’s only prudent to allow the
memory write to be completed before the GPO bit is toggled.

6.1.4.1 Hardware Looping

VPU supports 2 levels of zero-overhead hardware loops through the hardware loop
instruction (RPT) and the following hardware looping registers:

» LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to
-1 (encoded as binary “11”) to mean not being in any loop

» LS[0..1]: 32-bit loop start PC, reset to O

LE[O..1]: 32-bit loop end PC, reset to O

» LC[O..1]: loop count, 32-bit, reset to 1

v
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Behavior of HW loop (RPT) that encodes a scalar register and an immediate value:
LF++;
LC[LF] = scalar register value, for the loop iteration count.
LS[LF] = starting PC = PC(3 execution packets from RPT)
LE[LF] = ending PC = PC(2 execution packets from RPT) + immediate

HW looping is carried out by RPT updating LF and corresponding LC, LF, LE entries, and
by monitoring PC against LE[LF], the ending PC of current loop level.

LF is initialized to -1, so when RPT is first executed, LC[0], LS[0], LE[O] are filled.

Conditional branch-back from loop-end PC is carried out via:

if (LF >= 0) {
if (PC == LE[LF]) {
if (LC[LF] == 1) {
LF--;
} else {
LC[LF]--;
branch_target = LS[LF]; // take branch right away
// end-of-loop branch back has no delay slots
}
}
}

Note that all these steps, detecting end of the loop body by matching PC against LE,
checking the loop count register LC, making decision to branch back to beginning of
loop body (LS) or to decrement LC then fall out of the loop, all occur in the background
without incurring any explicit instruction, thus the feature zero-overhead looping.

There is a hardware loop buffer to store the first 3 execution packets of the loop body,
so that branching back from loop-end to loop-start does not suffer the usual 2 ~ 3
cycles of pipeline bubble. Loop execution goes seamlessly from one iteration to the
next iteration.

With the preceding HW looping implementation, when nested hardware loops are used
(up to 2 levels), the 2 loop levels should not share the same ending PC. Consequently,
an NOP may be inserted by the compiler when there is no active processing between
the end of two loop levels. For example:

add__sint_add___sint___sint___sint
104 RPT R6,#7 || LHI #0,R7
106 ADD R5,R4,R5 || ADDI R4,#0, R2
108 LHI #0,R5 || ADD R5,R6,R3
1180 RPT R2, #1 // outer loop starts
111 NOP
112 NOP
113 ADD R5,R4,R5 || ADD R3,R7,R7 // innerloop starts/ends
115 NOP // outer loop ends

116 JR R15
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117 SUB R7,R5,R2
118 NOP

In this example, outer loop starts at PC 110, inner loop starts at 113, two delay slots
after the corresponding RPT instruction.

The immediate field of RPT encodes the PC difference between the 2" delay slot (just
before entering the loop) and the last packet of the loop. In the example above, the
outer loop ends at PC 115, so the RPT immediate field encodes 115-108=7. The
inner loop ends at 113, so the RPT immediate field encodes 113-112 = 1.

Currently, compiler would not generate code that branches into the middle of an
execution packet, or into a delay slot of any execution-control instruction. Moreover,
assembly program that has such behavior would be rejected by the loader so would not
simulate. Due to the tool chain restriction, hardware behavior when supplied with such
assembly program is declared undefined.

In case of nested HW loops, the inner loop RPT shall not be placed in a delay slot of the
outer loop RPT, as it complicates the VPU execution controller to support such looping
structure. Compiler does not generate such code sequence.

6.1.5 C Function Calling Convention

C functions shall adopt the following calling convention:

v

Stack pointer = R1

Link register =R15

Global data page pointer = R16

Scalar argument registers: R4, R5, R6, R7, R8, R9, R10, R11,R12, R13,R14
Scalar return value registers: R2, R3

Vector argument registers: VO, V1, V2, V3, V4, V5, V6, V7

Vector return value registers: V8, V9

Double vector argument registers: VO:V1, V2:V3, V4.V5, V6:V7

Double vector return value registers: V8:V9

vVvvyVvvVvyvVvyyvyy

Note that in subsequent generations of VPU, it is likely that scalar and/or vector
register file may be expanded, and the C function calling convention may change. No
assembly backward compatibility is to be expected.

6.1.6 Processor Execution States

VPU execution state diagram is shown in the following figure. Description of the
states, various state transitions and conditions follow the figure.
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Figure 8. VPU execution state diagram
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General priority for state transition, where applicable, is reset > VPU instruction > error
> debug > VPS register programming (halt/unhalt/r5_vpu_start) > VPU internal
state/detection.

Reset state: When reset is asserted, whatever state VPU is in, it shall transition to the
Reset state. De-asserting reset signal would transition VPU to WFE_RS state.

Debug state: When the ocd_req signal in VPU debug interface is asserted, VPU would
transition from any state except the Reset state to the Debug state. The state VPU
transitions from is saved in a shadow execution state (SES) register. If/when resuming
execution is desired, it is debugger software’s responsibility to restore VPU to the
interrupted state (including all VMEM and register contents, except for first 64 bytes
of VMEM), then de-assert ocd_req to allow VPU to resume execution by going to the
state saved in the SES. Debugger software can optionally change the SES before de-
asserting ocd_req to redirect VPU to a different state from the interrupted execution
state. Please see 13.1 for details on debug features.

WFE_RS state: This is when VPU is waiting for R5 to provide a starting PC
(R5_vpu_start_PC). Once R5 writes the starting PC then writes 1 to the R5_vpu_start
register field, VPU transitions out of WFE_RS5 state and jump to the starting PC. VPU
software normally terminates a subframe-level task with an WFE_R5 instruction, which
takes VPU back to this state.

Active state: VPU normal execution is in the active state. From active state, VPU can be
temporarily halted by vpu_halt register been written 1, to transition to the Halted
state. VPU can transition to debug state by debug controller asserting ocd_req, or by
executing SWBRK instruction. VPU can execute a WFE_R5 instruction to go to the
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WFE_RS state. VPU can execute a WFE_GPI instruction to go to the WFE_GPI state.
Upon hardware error and when the error source is configured to error-halt, VPU goes
to the Error-Halted state.

Priority on conditions to transition from active state is reset > error -> debug >
r5_vpu_halt > instruction. Instruction can be WFE_R5 or WFE_GPI. Since both are
control slot (SO) instructions, only one can be executed at any time.

WFE_GPI state: VPU executing a WFE_GPI instruction would transition VPU to this
state. WFE_GPI allows a mask value and a match value as arguments, and hardware
logic keeps VPU in this state until (GPI & mask) == match, upon which VPU is
transitioned back to the Active state.

Note: WFE_GPI is not exclusive to interaction with DMA; it can be used for checking availability
of I-cache prefetch and/or invalidate.

Halted state: R5 can temporarily halt VPU by writing 1 to the vpu_halt register field.
When the field is written O, VPU would go back to the Active state and resume
execution. This mechanism can be used by R5 software to pause VPU execution upon
watch-dog timer expiration, so VPU state can be saved for further diagnosis.

Error-Halted state: When one of the error conditions occur and it’s configured to error-
halt in error handling (see 13.2), VPU is transitioned to the Error-Halted state. From
this state, the debugger can drive the execution state to Debug, or R5 can reset VPU.

Note the transition from WFE_GPI and WFE_R5 to Error-halted. It’s possible for an
instruction causing the error to be close enough to WFE_GPI/WFE_RS instruction that
the execution state is temporarily transitioned to WFE_GPI/WFE_RS5 states before
ending up in Error-halted state.

6.2 Overview of Scalar/Vector Math
Instructions

With VPU execution packets organized as 7-way VLIW, it’'s most convenient to describe
the instructions in terms of instruction set grouping.

» Control instructions can only be placed in the first scalar slot, SO.

» Scalar math instructions can be placed in either of the scalar slots, SO and S1.

» Vector math instructions can be placed in either of the vector math slots, VO and
V1. These 2 slots are symmetrical in functionality.

» Certain memory operations can only be placed in the first memory slot, MO.

» The remaining memory operations can be placed in any of the 3 memory slots, MO,
M1 and M2.

Here is a brief overview of scalar and vector math instructions, including general
functionality description and latency. For more detailed description of each
instruction, please consult Chapter 9 Instruction Set Reference. Memory instructions
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are better understood after some coverage on memory banking and address generator
features.

Note that latency number of cycles specified in the following sub-sections are for
back-to-back execution of the same class of instructions, for example, scalar integer
math to scalar integer math. Latency across different class of instructions is outside
the scope of the VPU Programmer’s Guide.

6.2.1 Scalar Integer Math Instructions

We support common arithmetic and logic operations in both scalar slots.

» Integer addition, subtraction, compare, and, or , exclusive or, sign/zero-extend
Integer shift left/right, signed/unsigned min/max

Integer multiplex (C select operator), shift-and-add, compare within, bit count
32-bit x 32-bit multiplication, keeping 32-bit product

Signed/unsigned 32-bit x signed/unsigned 32-bit multiplication, keeping 64-bit
product

» Integer division, taking up to 33 cycles depending on the dividend bit width

>
>
>
>

All scalar integer math instructions except for integer division have 1 cycle of latency.

6.2.2 Scalar Predicate Instructions

VPU has a predicate register file, and some vector math instructions are predicated,
those with _CA postfix, to support periodically Clearing Accumulator in a filtering
application for example. We support instructions to move between the predicate
register file and scalar register file, as well as a few variations of modular increment
instructions for periodic predication.

All predicate instructions have 2 cycle of latency.

6.2.3 Vector Math Instruction General Rules

We support many vector integer math instructions. There are multiple ways to group
them into digestible chunks. The relevant section in the Instruction Reference chapter
categorizes instructions by number of input/output operands. Here we categorize
instructions by functionality:

» ALU instructions: move, bitwise and/or/exclusive-or/not, bitwise 3-input and/or,
logical and/or/not, promote/demote, Hamming distance. All but Hamming distance
have 1 cycle of latency; Hamming distance has 3 cycles of latency.

» Bit manipulation instructions: bit reverse, bit count, bit interleave/deinterleave,
most significant bit detection. All have 1 cycle of latency.

» Compare instructions: 2/3-input min/max, 3-input median, min/max with LT/GT flag,
Compare GE/GT/LE/LT/EQ/NE, multiplex (C select operator), 2-in/out sort, sort with
payload, horizontal min/max. All have 1 cycle of latency.
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» Add/Subtract: 1-cycle latency instructions are negation, sign-magnitude, apply sign,
add/sub. 2-cycle latency instructions are add2sub (A+B-C), absolute difference,
sum of absolute differences (SAD).

» Shift instructions: shift (left or right), shift-or, shift-add, shift right, shift left, round,
extract bits, split bit sections, normalization. All have 2 cycles of latency.

» Permutation instructions: permute, collate index, expand index, compare bit-pack,
bit unpack, bit transpose, select lane, SGM min-path-cost. All have 4 cycles of
latency.

» MAC (multiply-accumulate) instructions: multiply, multiply-add, multiply-subtract,
2/4/2x2[4x2-term dot-product, 4/4x2/4x2x2-term filtering, blending, complex
multiply, sum of squares, square of sum, 2x2 determinant, 8x4x2 term exclusive-
not-or-add. All have 3 cycles of latency.

6.2.3.1 Extended Precision

The vector unit executes up to 2 vector operations per clock cycle. Various vector ALU
instructions are available. A 32-entry 384-bit vector register file (VRF), a 32-entry 384-
bit working register file (WRF) and a 32-entry 384-bit accumulator vector register file
(ARF) supply the operands and store the outcomes.

Each 384-bit entry in VRF/WRF/ARF is logically partitioned into 32 x 12-bit (extended
byte), 16 x 24-bit (extended halfword), or 8 x 48-bit (extended word).

VPU vector math instructions operate on extended precisions. Extended byte is 12-bit,
versus standard byte being 8-bit. Extended halfword is 24-bit, versus standard
halfword. Extended word is 48-bit, versus standard word being 32-bit.

The idea is that normally in C code, variables and arrays are declared with standard
element type of char/uchar (8-bit), short/ushort (16-bit), and int/uint (32-bit). VPU
compute kernels use signed or unsigned loads to load data from VMEM and sign-
extend or zero-extend the values to place into destination vector registers. Processing
occurs in the vector datapath via vector math instructions, reading from and writing
back into vector register files. Eventually when a suitable chunk of the compute kernel
is completed, results are written back to VMEM in standard precision.

It is possible for VPU programs to store intermediate outcome in extended precision,
and load them back into vector register file. This can be through extended-type
load/store in the code, or can be through compiler automatically spilling vector
variables onto the stack, when size of variables involved in a compute kernel exceeds
size of the vector register files (VRF/WRF/ARF).

In general, we would like to avoid spilling vector variables unto the stack, as it generally
degrades performance and consumes higher power consumption. Programmer should
reduce size of variables involved in the computation by breaking up the computation in
a loop into multiple loops, or by reducing the unrolling factor in the unroll_loop pragma.

Note that lane partitioning does not involve any conversion instruction, but is
accomplished via each vector math instruction specifying what precision it operates
on. Vector math instructions are either type-agnostic, for example bitwise operations,
or have a type designation that can be:
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» W: 48-bit word
» H: 24-bit half-word
» B: 12-bit byte

For example, in VAddH, single vector addition half-word, the ‘H’ specifies that it
operates on extended halfword precision, and thus treats each source and destination
vector register entry as 16 lane x 24-bit. Some instructions involve operands with
multiple precisions. For example, VFilt4x2x2BBH involves extended byte (12-bit) source
operands as well as extended halfword (24-bit) accumulator operand (which is both
source and destination).

Many vector math instructions support one of the source operands coming from a
scalar register, depending on the operation type, appropriate number of lower bits
(number of bits specified in the operation) are extracted, or entire 32-bit value is
signed-extended, then broadcast to all lanes to participate in the vector operation
specified.

6.2.3.2  Signed/Unsigned Handling

Note that there are no signed/unsigned designations in vector math instructions. All
vector arithmetic operations where signed/unsigned makes a difference, including
comparison, min/max, right-shift, round, etc., are performed as signed operations.

Signed and unsigned data may be stored in the memory. Programmer is responsible
for choosing signed/unsigned data type in the load instructions to read data into
vector register file. Signed data type load (for example, VLDB) would cause the
8/16/32-bit data items in memory to be sign-extended to the 12/24/48-bit lanes in a
vector register. Unsigned data type load (for example, VLDBU) would cause the
8/16/32-bit data items in memory to be zero-padded to the 12/24/48-bit lane in a
vector register.

For storing data back to memory, writing to memory itself is type-agnostic, however, if
it’s an agen-based store, and rounding and/or saturation features are enabled, be
aware that right-shift in store-path rounding is performed as signed right-shift, and
comparisons in store-path saturation are performed as signed comparison. Thus, if
programmer intends to use full range of extended precision (12/24/48-bit) to store
unsigned data, store-path rounding and saturation features should be disabled.

6.2.3.3  Data Types and Corresponding Bit Widths

Unless otherwise noted, the following lane partitioning scheme is followed in vector
register:

» Word: 8 lanes x 48-bit, lane 0 in Vreg[47:0], lane 1 in Vreg[95:48], etc

» Half-word: 16 lanes x 24-bit, lane 0 in Vreg[23:0], lane 1 in Vreg[47:24], etc
» Byte: 32 lanes x 12-bit, lane 0 in Vreg[11:0], lane 1 in Vreg[23:12], etc

» No type: bitwise operation on whole 384-bit
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Where a scalar register is used as an operand (can be src2 or src3), the general scalar
operand bit width usage behavior is

» Word: whole 32-bit sign extended to 48-bit and broadcast to 8 x 48-bit lanes
» Half-word: lowest 24-bit broadcast to 16 x 24-bit lanes

» Byte: lowest 12-bit broadcast to 32 x 12-bit lanes

» No type: not applicable, as no-type operations do not allow scalar as operand

Exceptions to the above are stated in the specific instruction description. For example,
for bitwise operations it makes more sense to zero-extend in case of Word type rather
than sign-extend. As another example, VBitUnpk instruction uses its scalar operand
one bit per lane, so it’s 8-bit for Word type, 16-bit for Halfword type, and 32-bit for
Byte type.

Some ALU instructions do not use the full lane, but just 8/16/32 or 9/17/33 LSBs of the
lane, and they are specifically marked as such in the instruction table. Multiply and
multiply-add/subtract and bit reverse are in this category.

6.2.3.4 Internal Bit Widths and Overflow

Arithmetic datapath implementing various instructions employ sufficient precision so
that the functionality can be modeled as having infinite precision, but the final
outcome is presented in the specified output width, so the hardware is not responsible
for outcome overflow.

This style of functionality specification does not pin down internal details, leaving
implementation flexible, while clearly defining the end-to-end behavior. The
implementation flexibility allows sharing logic among various data types.

For example, VAdd adds 2 operands in each Byte/Half-word/Word lane. In case of Byte
lane, inputs are 12-bit signed and output is 12-bit signed, and internal processing width
can be any bit width greater than or equal to 12, so internally we can have

> 32 x 12-bit adders + 16 x 24-bit adders + 8 x 48-bit adders, each data type operates
in separate datapath,

» 8 x 48-bit adders + 8 x 24-bit adders + 16 x 12-bit adders, carrying out half of half-
word addition in 48-bit datapath, and half of byte addition in 24-bit and 48-bit
datapaths, or

» 32 x 12-bit adders with carry logic to conditionally string together 24-bit and 48-bit
additions based on type designation of the instruction.

For certain instructions, we do need internal bitwidth to be expanded to avoid internal
overflow, but this does not mean the output would not overflow. VAbsDif and
VSAD_CA are such instructions. Again, outcome is as if we use infinite arithmetic
precision, but only present the specified bit width to the output.

There is no out-of-range or overflow detection in VPU, and there is no automatic
saturation. There is, however, free (not costing extra cycle) saturation in Agen-based
vector store.
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6.2.3.5 Application Vector Data Types

Various data types are referred to in the intrinsic field: (note that extended width
types are all signed)

VVVVVVVVV VvV V VvV VYV YV VvV VVYVVVYVYVYyVYY

vint: 8 x 32-bit vector (in memory)

vuint: 8 x 32-bit vector (in memory, unsigned)

dvint: 16 x 32-bit vector (in memory)

dvuint: 16 x 32-bit vector (in memory, unsigned)

vintx: 8 x 48-bit vector (mapped to register)

dvintx: 16 x 48-bit vector (mapped to register)

vfloat: 8 x 32-bit FP32 vector (in memory)

dvfloat: 16 x 32-bit FP32 vector (in memory)

vfloatx: 8 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)
dvfloatx: 16 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)
vshort: 16 x 16-bit vector (in memory)

vushort: 16 x 16-bit vector (in memory, unsigned)

dvshort: 32 x 16-bit vector (in memory)

dvushort: 32 x 16-bit vector (in memory, unsigned)

vshortx: 16 x 24-bit vector (mapped to register)

dvshortx: 32 x 24-bit vector (mapped to register)

vhfloat: 16 x 16-bit FP16 vector (in memory)

dvhfloat: 32 x 16-bit FP16 vector (in memory)

vhfloatx: 16 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)
dvhfloatx: 32 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)
vchar: 32 x 8-bit vector (in memory)

vuchar: 32 x 8-bit vector (in memory, unsigned)

dvchar: 64 x 8-bit vector (in memory)

dvuchar: 64 x 8-bit vector (in memory, unsigned)

vcharx: 32 x 12-bit vector (mapped to register)

dvcharx: 64 x 12-bit vector (mapped to register)

Note that there are two floating point formats supported, FP32 and FP16. In
vfloatx/dvfloatx, each 48-bit element contains one FP32 number with sign extended to
fill the upper 16 bits. In vhfloatx/dvhfloatx, each 24-bit lane element contains one
FP16 number with sign extended to fill the upper 8 bits.

For predication of lanes in vector stores, we use

int: 8/16/32 bits of predication, mapped to one predicate register
dpred: 64 bits of predication, mapped to two predicate registers
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6.2.3.6  Data Ordering in Single and Double Vector Registers

Double vector data types have twice as many elements as the corresponding single
vector data type. In vector register allocation, compiler would allocate even/odd
register pairs (for example V2:V3) for double vector data type variables.

There are two schemes of element ordering in a double vector:

» Sequential: take dvintx for example, ascending elements are stored in dv.lo[0],
dv.lo[1], ..., dv.lo[7], dv.hi[O], dv.hi[1], ..., dv.hi[7]

» Interleaved: take dvintx for example, ascending elements are stored in dv.lo[0],
dv.hi[0], dv.lo[1], dv.hi[1], ..., dv.lo[7], dv.hi[7]

The interleaved format is the way physical design works, so is supported throughout
the instruction set. The sequentially format is available only in load/store instructions
and selected vector math operations.

Vector math operations mixing single and double vectors, typically due to 2x width
expansion like VMulHHW, use deinterleaved ordering:

srcl a[l0] |a[1] |a[2] |al3] a[14] | a[15]
src2 b[o] | b[1] | b[2] | bI3] b[14] | b[15]
dst.lo | al0]*b[O] a[2]* b[2] a[14] *b[14]
dst.hi | al11*b[1] a[3] * b[3] a[15] *b[15]

Vector demotion operations have both sequential (VDemote) and interleaving
(VDemote_l) flavors, but promotion operation only has deinterleaving flavor
(VPromote_DI).

See Section 6.3.6 for sequential vs interleaving/deinterleaving flavors in load/store
operations involving double and quad vectors.

6.2.3.7 Endianness

Note that VPU adopts the Little Endian memory organization. In Little Endian, lower
bytes are stored into lower addresses than upper bytes. For example, a vint vector {2,
3,4,5,6, 7,8, 9} in memory would look the same as a vshort vector {2, 0, 3,0, 4,0, 5, O,
6,0,7,0,8,0,9, 0} in memory, or as a vchar vector {2,0,0,0, 3,0,0,0, .., 9,0, 0, 0} in
memory.

Table 5. Little endian layout of various data types

Word 0 1 2 7
Content 2 3 4 9
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Halfword 0] 1 2 3 4 5 14 15
Content 2 0 3 0 4 0 9 0
Byte 0|112|3]41|5161(7 (89 |10 |11 28 (29 |30 |31
Content 20003000 |4j0|0 |0 9 |0 |0 |O

The same Little Endianness is also observed in the lanes of vector registers. For
example, a register holding vintx vector {2, 3, 4, 5, 6, 7, 8, 9} will also has the same
contents of another register holding vshortx vector {2, 0, 3,0, 4,0, 5,0,6,0, 7,0, 8,0, 9,
0}. More generally, word lane i would occupy the same 48-bit section of storage in a
vector register as short lanes 2*i and 2*i+1, with lane 2*i taking the lower 24-bit of that
48-bit section.

6.2.3.8

Most vector math instructions support single vector operands and have intrinsic
functions or operators with single vector data type operands, for example, VBitRev
instruction has the following single vector intrinsic functions:

Intrinsic Functions/Operators Support

vintx vbitreverse(vintx src);
vshortx vbitreverse(vshortx src);
vcharx vbitreverse(vcharx src);

For such instructions, double vector pseudo intrinsic functions/operators are also
available to map to a pair of instructions, for example:

dvintx  dvbitreverse(dvintx src);

dvshortx dvbitreverse(dvshortx src);

dvcharx dvbitreverse(dvcharx src);

The convention is to prefix the intrinsic function names with “d” so that it reads
dv<something>.

Selected vector math instructions allow scalar operand to be broadcast to each lane
before the operation takes place. Their intrinsic functions/operators shall support such
operand type combination as well. For example, for VAbsDif we support:

vintx  vabsdif(vintx src1, vintx src2);
vshortx vabsdif(vshortx src1, vshortx src2);
vcharx vabsdif(vcharx src1, vcharx src2);
vintx vabsdif(vintx srci1, int src2);
vshortx vabsdif(vshortx src1, int src2);
vcharx vabsdif(vcharx src1, int src2);

For such instructions, double vector pseudo intrinsics are also supported, for example,

dvintx  dvabsdif(dvintx
dvshortx dvabsdif(dvshortx
dvcharx dvabsdif(dvcharx

dvintx  src2
dvshortx src2
dvcharx src2
int src2);

srct,
srct,
srct,
srct,

)
)
)

dvshortx dvabsdif(dvshortx
dvcharx dvabsdif(dvcharx

srct,

(

(
dvintx  dvabsdif(dvintx

(

( srct,
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Note that in each function, the same int-type scalar operand is shared between the
two single vectors.

A subset of vector math instructions have cross-lane dependency. For example,
VMaxR does max reduction across 8 extended word lanes, 16 extended halfword lanes,
or 32 extended byte lanes. For such instructions there is no double vector pseudo
intrinsic support to avoid confusion.

Another subset of vector math instructions involved mixed size operands (between
single and double vectors), for example, VMulBBH has two single vector vcharx type
inputs, and its output is a double vector dvshortx type output. As we do not support
quad vector data types, there is no double vector pseudo intrinsic support as well, and
the intrinsics/operator field is similarly noted.

We also support various re-interpret type intrinsic functions:

Functionality Intrinsic

Reinterpret as vcharx vcharx as_vcharx (<vtype>);
Reinterpret as vshortx vshortx as_vshortx (<vtype>);
Reinterpret as vintx vintx as_vintx  (<vtype>);
Reinterpret as vfloatx vfloatx as_vfloatx (<vtype>);
Reinterpret as vhfloatx vhfloatx as_vhfloatx(<vtype>);
Reinterpret as dvcharx dvcharx as_dvcharx (<dvtype>);
Reinterpret as dvshortx dvshortx as_dvshortx(<dvtype>);
Reinterpret as dvintx dvintx as_dvintx (<dvtype>);
Reinterpret as dvfloatx dvfloatx as_dvfloatx(<dvtype>);
Reinterpret as dvhfloatx dvhfloatx as_dvhfloatx(<dvtype>);

Note that with any of such re-interpret type intrinsics, there is no change in the
variable value. The raw data is simply reinterpreted. For example, applying as_vshortx()
on an vintx variable reinterpret each 48-bit lane i as a pair of 24-bit lanes 2*i and 2*i+1,
lower 24-bit as the even lane, upper 24-bit as the odd lane.

For instructions sharing the same register entries (VRF, WRF, ARF) as source and
destination, also known as read-modify-write operands, we expose functionality to the
compiler in the form of intrinsic functions with return values.

For example, vector multiply-add of Byte type has this intrinsic function prototype:

vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);

instead of
void vmaddb(vcharx src1, vcharx src2, vcharx & src3dst, u3imm rnd_opt, int pred);

Rationale for this choice is that return-value functions are more readable in application
code.

Since such instructions normally have accumulator like behavior, we expect
programmer to use the same variable in the src2 fields as well as receiving return value
of the function, for example,
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acc = vmaddb(data, coef, acc, RND_R7, pred);

When the intrinsic functions are used this way, compiler usually achieves efficient
register allocation without incurring additional register movements.

6.2.4  Scalar/Vector Floating-Point Math
Instructions

The following floating-point instructions are supported in scalar and vector slots:

» FP16/FP32 add, subtract, multiply, multiply-add, multiply-subtract

» FP16/FP32 compare LT/LE/GT/GE/EQ/NE

» FP32 transcendental functions: square root, reciprocal, reciprocal of square root,
log/exp base 2, sine, cosine, tanh

» Conversion functions among FP16/FP32/INT16 and INT32. FP-to-INT conversions

include rounding and truncation options, and FP16-to/from-INT conversion includes

fraction bitwidth to support fixed-point processing.

Scalar floating point instructions have 2 latency cases. Scalar floating point
comparison instructions have 1 cycle of latency, and remaining scalar floating point
instructions have 4 cycles of latency.

Vector floating point have 3 latency cases. Vector floating point comparison have 1
cycle of latency, conversion between FP16 and FP32 have 2 cycles of latency, and
remaining vector floating point instructions have 3 cycles of latency.

VPU is an embedded processor that does not support exceptions. As an alternative,
the floating point invalid flag can be polled and set/reset by code explicitly.

The following features are also not supported:
- errno macro
- math_handling macro
- MATH_ERRNO macro
- MATH_ERREXCEPT macro
- EDOM or domain error
- ERANGE or poll error

6.2.4.1 FP Math Corner Cases

FP math outcome for various corner cases, x being a non-zero regular FP number:

Table 6 FP add/subtract/multiply corner cases
FAdd:
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src2

srcl -X zero -zero inf -inf NaN

X zero X X inf -inf NaN

zero -X zero zero inf -inf NaN

-zero -X zero -zero inf -inf NaN

inf inf inf inf inf NaN NaN

-inf -inf -inf -inf NaN -inf NaN

NaN NaN NaN NaN NaN NaN NaN

FSub:
src2
src X zero -zero -inf NaN
inf

X zero X X -inf inf NaN

zero -X zero zero -inf inf NaN

-zero -X -zero zero -inf inf NaN

inf inf inf inf NaN inf NaN

-inf -inf -inf -inf -inf NaN NaN

NaN NaN NaN NaN NaN NaN NaN

FMul:
src2

srct 1 -1 zero -zero inf -inf NaN
1 1 -1 zero -zero inf -inf NaN
-1 -1 1 -zero zero -inf inf NaN
zero zero -zero zero -zero NaN NaN NaN
-zero -zero zero -zero zero NaN NaN NaN
inf inf -inf NaN NaN inf -inf NaN
-inf -inf inf NaN NaN -inf inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 55



Outcome of FMAdd(a, b, c) follows that of FAdd( FMul(a, b), c) for the above corner
cases. Qutcome of FMSub(a, b, c) follows that of FAdd( FMul(-a, b), c) for the corner
cases. For FMAdd, when multiplication a * b results in number too small to represent
even as denormal, the product is represented as +zero or -zero, before the addition is
performed. Similarly for FMSub with multiplication -a * b.

For combination of src2/src3 being zero/-zero , FMAdd and FMSub outcomes are:

Table 7 FP multiply-add/subtract corner cases

src1
src2

src3

FMAdd

FMSub

pos zero

pos zero
pos -zero
pos -zero
neg zero
neg zero
neg -zero

neg -zero

Zero

-Zero

Zero

-Zero

zero

-Zero

zero

-Zero

zero

zero

zZero

-Zero

zero

zero

zero

-Zero

zero

-Zero

zero

zero

zero

-Zero

zero

zero

Note that these corner cases apply to scalar and vector, hfloat (FP16) and float (FP32)

types.

FP multiply corner cases around +/- zero are:

Table 8 FP multiply corner cases around +/- zero

srct src2 FP Mul
zero -zero -zero
-zero zero -zero
zero neg -zero
neg zero -zero
-zero pos -zero
pos -zero -zero
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6.2.4.2 FP MUFU Instruction Corner Cases

Corner cases of reciprocal, square root, reciprocal square root, exp2, log2, sine, cosine
and tanh functions are documented in the corresponding instruction details.

6.2.4.3 FP Comparison Corner Cases

FP comparison always returns integer O (false) or 1 (true), and works as if FP numbers
are placed into these categories that have strict ordering:

-inf < negative FP numbers < -0 == 0 < positive FP numbers < inf
Negative FP numbers and positive FP numbers compare normally.
Behavior of comparison involving inf or -inf is

inf is equivalent to inf, thus inf cmp_op inf is true for {==, <=, >=} and false for
others

-inf is equivalent to -inf, thus -inf cmp_op -inf is true for {==, <=, >=} and false for
others

Behavior of comparison involving NaN is
NaN cmp_op anything (including NaN itself) is false, for cmp_op = {<, <=, >, >=, ==},
NaN != anything (including NaN itself) is true.

Note that FP comparison produces integer outcome, so DOES NOT output NaN or set
the sticky invalid status bit.

Note that the above behavior and corner cases apply both to scalar and vector, hfloat
(FP16) type and float (FP32) type.

6.2.4.4 FP Conversion Corner Cases

FP conversion can produce +/- Inf in case of converting int24/int32/int48/fp32 into
fp16, and can produce NaN in case of conversion between fp32 and fp16. However, FP
conversion DOES NOT set the sticky invalid status bit even when outcome is NaN.

The following table shows scalar and vector floating point conversion corner cases:

Table 9 FP/INT conversion corner cases

Conversion Function +/- Inf NaN
INT_FP Output +/- Inf not possible, as Output NaN is not possible
VINT_FP INT32_MIN / INT32_MAX can

be presented in normal FP32

numbers
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values not representable in
FP16

INT_FP16 Output +/- Inf is possible from | Output NaN is not possible
VINT_FP16 values not representable in
FP16
VINTX_FP Output +/- Inf not possible, as Output NaN is not possible
INT48_MIN / INT48_MAX can
be presented in normal FP32
numbers
VINT24_FP16 Output +/- Inf is possible from Output NaN is not possible

FP_INT_Trunc/Round
VFP_INT_Trunc/Round

Input +/- Inf converts to output
INT32_MIN / INT32_MAX

Input NaN converts to output
INT32_MIN / INT32_MAX

FP16_INT_Trunc/Round
VFP16_INT_Trunc/Round

Input +/- Inf converts output
INT32_MIN / INT32_MAX

Input NaN converts to output
INT32_MIN / INT32_MAX

VFP_INTX_Trunc/Round

Input +/- Inf converts to output
INT48_MIN / INT48_MAX

Input NaN converts to output
INT48_MIN / INT48_MAX

VFP16_INT24_Trunc/Round

Input +/- Inf converts to output
INT24_MIN / INT24_MAX

Input NaN converts to output
INT24_MIN [/ INT24_MAX

FP_FP16 Output +/- Inf is possible from Input NaN converts to output
VFP_FP16 +/- Inf and values not NaN
representable in FP16
FP16_FP Input +/- Inf converts to output | Input NaN converts to output
VFP16_FP +/- Inf NaN
6.2.4.5 FP Conversion to/from Fixed-Point Formats

Some of the VPU scalar/vector FP/Integer conversion instructions support support
fixed-point conversion by having an argument that conveys gbit of the fixed-point

format.

Fixed-point format is one that represents a number having fixed integer and fraction
widths using integer representation. There is a gbit configuration parameter,
sometimes referred to simply as Q, as in Q8, Q15, and so on, that programmer
maintains in software to indicate width of the fraction portion. Qbit can be viewed as
the bit position of an imaginary radix point, or boundary between integer bits and

fraction bits.

Normally, variables in the same block of computation share the same gbit, so that
fixed-point addition and subtraction are performed the same way as integer addition
and subtraction. Fixed-point multiplication is performed as integer multiplication
followed by rounding to get back the same gbit configuration, or a different gbit
configuration if desirable in the application.

To convert a floating point number to fixed-point, we multiply the floating point

number by 2”gbit. To convert from fixed-point to floating point, we divide the fixed-
point number by 27gbit.

For example, numbers 1.125 and 5.0625 are represented in fixed-point with gbit = 8 as
1.125* 2728 = (1 + 1/8) * 256 = 256 + 32 = 288, and 5.0625 * 228 = (5 + 1/16) * 256 =
1280 + 16 = 1296.
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Sum of the two numbers, 1.125 + 5.0625 = 6.1875, can be carried out as 288 + 1296 =
1584, and converted back to floating point as 1584 / 256 = 6.1875.

With gbit argument as part of the conversion, the multiplication or division by 27gbit is
performed in hardware as part of the conversion, expanding precision and dynamic
range internally in the process, and bring some acceleration to the conversion process.

Not all FP/INT conversions support the gbit argument though. Basically, only
conversion involving FP16 has this feature. FP16 format has relatively limited dynamic
range, as its 5 bits of exponent gives +/- 14 range in the exponent in regular (not
denormal) FP16 numbers. There are cases that the multiplication or division by 2”gbit
involved, if carried out in FP16 math would have cause the number to become +/- Inf in
FP16, and if carried out in integer would have overflown the integer representation.
Without a gbit argument as part of the conversion, the programmer would have to go
through FP32, that is, FP16 - FP32 - multiply 2~gbit in FP32 - Integer, or Integer >
FP32 - multiply by 27-gbit in FP32 - FP16, and would have taking much longer.

For example, number 128.0 represented in Q8 fixed-point is integer 0x8000, or 2*15.
It's representable in INT32 or INT24 (vector extended short lane). If we convert this
number from fixed-point to FP16 using standard (no-gbit) conversion and FP16 math,
we would convert it first to FP16 then multiplying by 22-8 in FP16. The first step of
converting INT24 or INT32 0x8000 to FP16 would result in +Inf (positive infinity), then
+Inf * 27-8 = +Inf. For this particular example, it seems we would want to first divide
by 278 in INT24/INT32, before performing the standard INT24/INT32 to FP16
conversion. However, in general doing that would throw away fraction information that
we work hard to obtain, and would like to preserve as much and as long as possible in
the computation.

Conversely, if we are to convert 128.0 represented in FP16 to Q8 fixed-point with
standard (no-gbit) conversion and FP16 math, we would see issues. 128.0 itself we can
represent just fine in FP16. However, the multiplying by 22gbit = 278 involved, if
performed in FP16, we would see intermediate result becoming +Inf, and cannot
proceed to be accurately converted to Q8 fixed-point. For this example, it would work
if we convert 128.0in FP16 to INT24/INT32, then we left-shift by 8 bits in INT24/INT32.
However, in this process we also throw away fractional portion of the input number, so
would not accurately convert, for example, 128.25, to fixed-point.

Converting FP32 to/from fixed-point would not have the same issue, as FP32 with its
8-bit exponent supports wider dynamic range, -126 ~ +126, much wider than integer
side, so inputs that cause intermediate outcome to become +/-Inf would cause the final
converted outcome to be saturated to MAX/MIN integer value for that destination bit
width, so there is no loss of information if the multiplying/dividing by 22gbit is
performed in FP32 before/after conversion to/from integer.
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6.3 Memory Operations

6.3.1 Memory Coherency

There is memory dependency detection logic to stall the processor pipeline to keep
memory coherent.

For this discussion, it is helpful to define coherent vs non-coherent memory operations.
Non-coherent memory operations:

» Transposing load/store
Table lookup (load)
Histogram (load and store)
Vector-addressed store

vwvyy

Coherent memory operations: all other load/store. Each such load/store accesses
consecutive memory contents whose size ranging from one byte to 64 bytes.

The non-coherent accesses are non-consecutive and thus have a wide address range,
so it is too expensive to comprehend in the memory dependency stalling logic. Memory
access for load is in EX5 stage, whereas memory access for store is later in EX9 stage.
Thus, there should be 5 execution packets of separation between storing an item to
the memory before loading of that element should be scheduled.

When a coherent store and the subsequent coherent load are detected by hardware to
have “close enough” addresses and do not have enough execution packet separation in
the code, processor will stall the load to create the separation, so that load would
return memory contents after the store. The checking and stalling mechanism keep
the memory operations coherent, or consistent with sequential execution.

To reduce timing pressure, the address checking is simplified (exact for scalar
load/store but use just starting row address for vector load/store) and is conservative.
Thus, sometimes, a load can be stalled unnecessarily until memory transaction from a
previous store is completed.

In case either or both memory operations are non-coherent, there is not enough
execution packet separation, and even when there are overlaps in addresses, processor
will not stall, causing RAW (read after write) and WAW (write after write) hazards.
WAW does not happen between normal store and vector-addressed-store, but can
happen between normal store and histogram update, as they occur on different
pipeline stages.

To help achieve this separation between non-coherent memory operations, since Orin
(previous generation) we have added a memory fence instruction (MemFence) that can
be used to avoid memory coherency issues. The MemFence instruction would inject
stalls until all preceding memory store operations are committed. It is a broad (works
on all memory operations) and blind (not based on address) fence, so should be used
judiciously, otherwise performance may degrade too much.
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Note that there is also available a compiler pragma chess_memory_fence() that works
similarly as the MemFence instruction. With chess_memory_fence(), compiler inserts
as many NOPs as necessary to ensure that memory store operations before the fence
are committed before memory operations after the fence can start. One advantage
over MemFence instructions is that each MemFence instruction simply inserts stall
cycles, and with chess_memory_fence(), the compiler is supposed to schedule useful
work when it’s possible, so that some useful work may be accomplished while memory
operations after the fence are being delayed.

Histogram read/write has its own per-bank bypass mechanism (covering only
histogram read/write) to implement correct histogram operation despite VMEM
latency.

There is RAW hazard detection and handling built-in for the histogram functionality to
ensure memory coherency among histogram updates. Note that there is no hazard
detection between histogram read/write versus any other load/store accesses, thus
the “non-coherent” memory operation designation for histogram.

6.3.2 Memory Address Alignment

Various scalar/vector load/store shall comply with the address alignment constraint
and misalignment handling.

In case of demoting/promoting load/store, we determine alignment based on the data
type in memory, versus the data type in register file. For example, QVSTHB, quad
vector demoting store from Halfword to Byte, is considered Byte-type store regarding
to address alignment.

» Byte-type load/store:

o Scalar load/store LDB, STB (based-offset, post-modify, agen-based) are 8-bit
aligned.

o Single vector (32 x 8-bit) load/store VLDB, VSTB (based-offset, post-modify,
agen-based) are 8-bit aligned.

o Double vector (64 x 8-bit) load/store DVLDB, DVSTB (post-modify, agen-based)
are 16-bit aligned.

o Promoting/demoting load/store resulting in 32 x 8-bit memory access, VLDBH,
VLDBW, DVSTHB, are 8-bit aligned.

o Demoting store resulting in 64 x 8-bit memory access, QVSTHB, are 16-bit
aligned.

» Halfword-type scalar/vector load/store shall be 16-bit aligned.

Word-type scalar/vector load/store shall be 32-bit aligned.

» Extended-word type vector load/store can be leveraged for extended
Byte/Halfword/Word types (12/24/48-bit), shall be 16-bit aligned.

» Table lookup, histogram, vector-addressed store base address should be 512-bit
aligned, so each 8-bit element is 8-bit aligned, 16-bit element 16-bit aligned, and
32-bit element 32-bit aligned.

v
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e VLUT_* DVLUT_*
e VHIST_* DVHIST_*
« DVAST_*

» Agen configuration (512-bit) load/store should be 32-bit aligned.

AgenCfglLD, AgenCfgST

» Lane predicated vector stores would behave, in terms of address alignment, as
unpredicated vector stores.

» Unsigned load would behave as the corresponding signed load (keeping all other
attributes the same), in terms of address alignment.

v

The hardware enforces the alignment constraint by forcing the lowest {1, 2, 6} bits of
the byte address to zero, based on the alignment requirement being 16-bit, 32-bit, or
256-bit. For 8-bit address alignment, the byte address is not altered.

6.3.3 Memory Address Range Constraints

Load/store addresses should be in valid range consistent with the address map:

» Superbank A: Ox00000 ~ Ox1FFFF
» Superbank B: 0x40000 ~ Ox5FFFF
» Superbank C: O0x80000 ~ Ox9FFFF
» Superbank D: 0xCO000 ~ OxDFFFF

Any single-item load/store should have base address inside the valid range. Any
multiple-item load/store should have base address sufficiently away from the end of
each superbank range, such that no data item would fall out of the valid range. For
example, software should avoid issuing a load or store starting Ox1FFEO and spanning
more than 32 bytes. An exception is lane-predicated store, provided that prediction is
off for the part of store data going outside the valid range.

In case a multiple-item load/store falls partially or fully outside the valid range,
hardware wraps around the access so that the part of load/store falling outside the
valid range is mapped back in, to the superbank indicated by the base address.

In case the base address goes outside the valid range, hardware determines the
superbank by:

» Address bits 19:18 == “00” = Superbank A
» Address bits 19:18 == “01” - Superbank B
» Address bits 19:18 == “10” - Superbank C
» Address bits 19:18 == “11” - Superbank D

However, software should not take advantage of such wrap-around, as address map
change in future generation can change the address wrap around and make the
software not work.
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6.3.4  Scalar Data Types

Byte, half-word and word types are supported. Signed/unsigned flavors of load for
byte and half-word are supported to properly sign or zero-extend into 32-bit scalar
register entry. Store operations are signed/unsigned agnostic so there is just one
flavor.

Table 10 Scalar load/store data types

Element type Size in Size in scalar Memory
memory register alignment
B/BU: signed/unsigned byte 8-bit 32-bit 8-bit
H/HU: signed/unsigned half-word 16-bit 32-bit 16-bit
W/WU: signed/unsigned word 32-bit 32-bit 32-bit

Note that hardware does not tag each scalar register carrying signed or unsigned data,
where behavior is different, signed and unsigned flavors of scalar math operations are
offered, so programmer should choose signed/unsigned flavors in scalar load and
scalar math operations appropriately.

6.3.5 Vector Data Types and Promotion/Demotion

Scalar-based load/store can have immediate offset (10-bit) or can be post-modified
with a second scalar register. Only parallel distribution mode is available, loading 256-
bit or 512-bit from memory to write into single or double vector register, or storing
single or double vector register into 256-bit or 512-bit in memory. The WX type allows
storing the raw bits tightly packed as 384-bit, and can be used to load/store B, H, or W-
type vector registers.

Data types supported for scalar-based vector load/store:
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Table 11 Scalar-based vector load/store data types

Element type Vector Size in memory Size in vector Memory
size register alignment
B/BU: single 32 x 8-bit 32 x 12-bit 8-bit
signed/unsigned byte vchar/vuchar vcharx
double 2 x 32 x 8-bit 2 x 32 x 12-bit 16-bit
dvchar/dvuchar dvcharx
H/HU: single 16 x 16-bit 16 x 24-bit 16-bit
signed/unsigned half- vshort/vushort vshortx
word double 2 x 16 x 16-bit 2 x 16 x 24-bit 16-bit
dvshort/dvushort dvshortx
W/WU: single 8 x 32-bit 8 x 48-bit 32-bit
signed/unsigned vint/vuint vintx
word
double 2 x 8 x 32-bit 2 x 8 x 48-bit 32-bit
dvint/dvuint dvintx
WX: extended single 8 x 48-bit 8 x 48-bit 32-bit
precision (VRF, WRF) vintx vintx

Agen-based load/store offers more flexibility in data types. In addition to standard
data bytes, some type promotion and demotion cases are supported.

Note that Load-Permute instruction type designations DVLDPermHB/HBU are not
included, as these type designations refer to data types in processing steps, permute
as Halfword and zero/sign extend as Byte, and are not indicating type demotion

functionality.

Table 12 Agen-based vector load/store data types

Type name Size in memory Size in vector | Memory
register alignment
B/BU: signed/unsigned byte load single: 32 x 8-bit 32 x 12-bit singe: 8-bit
B:  signed byte store vchar/vuchar vcharx double: 16-bit
double: 64 x 8-bit 2x 32 x 12-bit
dvchar/dvuchar dvcharx
H/HU: signed/unsigned half-word single: 16 x 16-bit 16 x 24-bit 16-bit
load vshort/vushrot vshortx
H:  signed half-word store vhfloat vhfloatx
double: 32 x 16-bit 2x 16 x 24-bit
dvshort/dvushort dvshortx
dvhfloat dvhfloatx
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(no rounding and saturation
support)

W/WU: signed/unsigned word load | single: 8 x 32-bit 8 x 48-bit 32-bit
W: signed word store vint/vuint vintx

vfloat vfloatx

double: 16 x 32-bit 2x 8 x 48-bit

dvint/dvuint dvintx

dvfloat dvfloatx
BH/BHU: byte to half-word double: 32 x 8-bit 2x 16 x 24-bit 8-bit
promoting load vchar/vuchar dvshortx
BW/BWU: byte to word promoting | double: 16 x 8-bit 2x 8 x 48-bit 8-bit
load n/a (half of vchar/vuchar) dvintx
HW/HWU: half-word to word double: 16 x 16-bit 2X 8 x 48-bit 16-bit
promoting load vshort/vushort dvintx
BH: extended byte to half-word single: 32 x 16-bit 32 x 12-bit 16-bit
promoting store dvshort vcharx
HW: extended half-word to word single: 16 x 32-bit 16 x 24-bit 32-bit
promoting store dvint vshortx
HB: half-word to byte demoting quad: 64 x 8-bit 4 x 16 x 24-bit 16-bit
store dvchar 2 x dvshortx

double: 32 x 8-bit 2 x 16 x 24-bit

vchar dvshortx
WH: word to half word demoting quad: 32 x 16-bit 4 x 8 x 48-bit 16-bit
store dvshort 2x dvintx

double: 16 x 16-bit 2 x 8 x 48-bit

vshort dvintx
WX: single vector register full 384- | single: 8 x 48-bit 8 x 48-bit 16-bit
bit load/store vintx vintx

Note that while in scalar/vector math we use “F” and “HF” type designation to denote
float and hfloat data types, in memory operations, float and hfloat are treated like int
and short respectively and are thus mapped to “W” and “H” type designations.

6.3.6

Vector Load/Store Distribution Options

Various data distribution options are supported for vector load/store:

» S:scalar (load 1 element and broadcast to all lanes, store first lane), single register
(storing first lane of vector register) or double register (storing first lane of .lo

single vector and first lane of .hi single vector)

» P: parallel (1-to-1), single or double register
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T: transposing, having constant offset between elements, single or double register
PDI: parallel double register deinterleaving (load-only)
Pl: parallel double register interleaving (store-only)
parallel quad register 4-way interleaving (store-only)
TDI: transposing double register deinterleaving (load-only)
Tl: transposing double register interleaving (store-only)
Pl12: alternate form of quad register interleaving (store-only)
C2: circulate between 2 data points, single register (load only)
T2: transposing after every pair of elements (double Word vector load/store)
T2DI/T2l: T2 with deinterleaving load or with interleaving store (double Word vector
load/store, double Halfword vector load)
T4: transpose every 4 data elements
T8: transpose every 8 data elements
T16: transpose every 16 data elements
T32: transpose every 32 data elements

VVvVvVVvVVvVVVYVYVYVYY

vvyywyy

Interleaving/deinterleaving is to offer data access flexibility as well as to deal with MAC
datapath interleaving in the lane-expanding cases. For double-register deinterleaving
load, we take memory items and interleave (deal) into the two vector registers. For
double-register interleaving store, we interleave (shuffle) data from two vector
registers to sequential items in the memory. For quad-register interleaving store, we
interleave each pair, then between the two pairs.

For example, “QVSTWH_P VO:V1, V2:V3, *A0++” would store out (indexing word lanes of
each register):

Vvo[o], vOo[1], .., VO[7], V1[O], V1[1], ..., V1[7],

ve[o], v2[1], .., Ve[7], v3[0], V3[1], .., V3[7]
The 4-way interleaving version, QVSTWH_PI VO:V1_V2:V3 would store out:

VOo[0], v2[0], V1[0], V3[0], VO[1], V2[1], V1[1], V3[1], .., VOI[7], V2[7], V1[7], V3[7]
where the lowest 16-bit of each word lane is stored out in half-word spacing.

The 4-way interleaving QVSTHB_PI VO:V1, V2:V3 has a similar data pattern, with input
elements pulled from half-word (24-bit) lanes and stored out as bytes.

VO[0], v2[0], V1[0], V3[0], VO[], V2[1], V1[1], V3[1], .., VO[15], V2[15], V1[15],
V3[15]

Alternative interleaving patternin QVSTWH_PI2 VO:V1, V2:V3, each element being 48-
bit input from register, 16-bit output in memory:

Vo[o], v1[0], vo[1], V1[1], ..., VO[7], V1[7], v2[O], V3[0O], V2[1], V3[1], ..., V2[7], V3[7]

Alternative interleaving patternin QVSTHB_PI2 VO:V1, V2:V3, each element being 24-
bit input from register, 8-bit output in memory:

Vo[O], v1[0], vo[1], V1[1], ..., VO[15], V1[15], V2[0O], V3[0], V2[1], V3[1], ..., V2[15],
V3[15]
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Another way to compare with the “_P” distribution option is to look at VO, V1, V2, V3
each as an 8 (in case of WH type) or 16 (in case of HB type) -element array.

QVST*_P stores out VO + V1 + V2 + V3, “+” being concatenation.
QVST*_PI stores out interleave( interleave(VO, V1), interleave(V2, V3)).
QVST*_PI2 stores out interleave(VO, V1) + interleave(V2, V3).

A load with “C2” distribution, for example, “VLDW_C2 *A0++, VO” would read the first 2
32-bit words from the location pointed by agen AQ, say x[0] and x[ 1], and distribute
them such that

VO = {x[0], x[ 1], x[0], x[1], x[0], x[ 1], x[0O], x[ 1]}, seen as word (48-bit) lanes.

6.3.7  Transposing load/store

Transposing load/store accesses array elements vertically when the memory contents
is viewed with the configured line pitch. Here, line pitch is defined by number of
elements.

Six transposition modes are supported, designatedas T, T2, T4, T8, T16 and T32. Tis
the normal transposition mode, and is supported broadly, for all Byte/Halfword/Word
types and various promotion/demotion types, single and double vector load/store.
T<n> transposition, n being a power of 2 from 2 to 32, reads/writes n consecutive data
points before applying the line pitch address offset.

Not all line pitch values are possible. Constraints on the line pitch is dependent on the
data type and the transposition mode, as shown in the following table.
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Table 13. Line pitch constraint for various transposition modes

Trans- Single/double vector - type - load/store Line pitch Programmed

position constraint into

mode lane_ofst
(12-bit
unsigned)

T Single/double Word load (32-bit > 48-bit) 16k + 1 k

Single/double Word store (48-bit > 32-bit)
Single HW promoting store (24-bit > 32-bit)
Single/double Halfword load (16-bit > 24-bit) 32k + 1 k
Single/double Halfword store (24-bit > 16-bit)
Double HW promoting load (16-bit > 24-bit)
Double BH promoting store (12-bit > 16-bit)
Double/quad WH demoting store (48-bit - 16-bit)
Single Byte load (8-bit > 12-bit) 64k + 2 k
Single Byte store (12-bit - 8-bit)

Double BH promoting load (8-bit > 24-bit)
Double BW promoting load (8-bit = 48-bit)
Double/quad HB demoting store (24-bit = 8-bit)

T2 Double Word load (32-bit - 48-bit) 16k + 2 k
Double Word store (48-bit > 32-bit)
Double Halfword load (16-bit = 24-bit) 32k + 2 k
Double Halfword store (24-bit > 16-bit)

T4 Double Halfword load (16-bit = 24-bit) 32k +4 k
Double Halfword store (24-bit = 16-bit)

T8 Double Word load (32-bit > 48-bit) 16k + 8 k
Double Word store (48-bit > 32-bit)
Double Halfword load (16-bit > 24-bit) 32k +8 k
Double Halfword store (24-bit > 16-bit)

T16 Double Halfword load (16-bit = 24-bit) 32k + 16 k
Double Halfword store (24-bit > 16-bit)

T32 Double Byte load (8-bit > 12-bit) 64k + 32 k

Double Byte store (12-bit 2> 8-bit)

Note that it IS allowed to program k = lane_ofst = 0, so that the transposing load/store
behaves like normal (consecutive) load/store in address calculation. Behavior is still
different than normal (consecutive) load/store, in the sense that degenerate
transposing memory transactions are still non-coherent, and can be used intentionally
to avoid unnecessary memory stalls. Please see 6.3.1 for details.

Note that in case there is type promotion or demotion in transposing load/store, it’s
the data type in memory that dictates which line pitch constraint to use.
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For Byte type we only support single vector T transposition load/store. For Halfword
and Word types, both single vector and double vector T transposition load/store are
supported.

In general, transposing load/store calculates byte addresses for each element as
follows for the normal transposition (T):

M = data size in bytes, 1, 2 or 4 for Byte/Halfword/Word type
P=(M==1)7?(64*K + 2) : (64*K + M), line pitch in bytes, K provided by agen lane_ofst
byte_addressl[i] = (base & SUPERBANK_SELECT)
+ alias_within_superbank((base + i*P), i = 0 .. num_lanes - 1
With this address calculation, adjacent lanes are P (pitch in bytes) apart in memory.

The first term of byte address is for superbank selection, which is affected only by the
base address, not by any index. As each superbank occupies 256KB of space (256K =
2718), including aliased region, and we have 4 superbanks, we look at bits 19 and 18 of
byte address to select superbank:

SUPERBANK_SELECT = 0xC0000
For the T2 element-pair transposition, we carry out the following address calculation:
M = 2 for Halfword type, 4 for Word type
P =64*K+2*M [/ line pitch in bytes, K provided by agen lane_ofst
byte_address[2*i] = (base & SUPERBANK_SELECT)
+ alias_within_superbank ((base & BASE_MASK) + i*P)

byte_address[2*i+1] = (base & SUPERBANK_SELECT)

+ alias_within_superbank ((base & BASE_MASK) + i*P + M)

i=0. num_lanes/2 - 1, where BASE_MASK = Ox1FFCO.

With this address calculation, adjacent lanes are alternately M and 64*K+M apart in
memory.

The following diagram shows examples of T and T2 transposition access pattern. Note
that for Byte type, we write either all even bytes of every halfword or all odd bytes of
every halfword, depending on the LSB of byte address.

Figure 9. Access patterns of transposition modes T and T2

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 69



VLDB_T w/ %21 WLOW T w)/ &2

192| DVLOW T2 w/ K73

1984 |

T4,T8, T16, and T32 transposition modes are supported in selective load/store
instructions. Halfword type is more heavily used than the other types in computer
vision, and double vector load/store leverages full throughput of VMEM, so double
vector Halfword load/store supports all the transposition modes. Other type-
transposition combinations are supported where there is demand among use cases.

In general, line pitch in bytes for T<n> transposition is derived as
P = 64 * lane_offset + n * sizeof_data_type

The access pattern is that we would access consecutively n data elements before
taking the line pitch address offset to move down to the next line.
The following diagram shows H_T4, H_T8, H_T 16, B_T32 transposition access pattern.

Figure 10. Access patterns of transposition modes T4, T8, T16 and T32
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Note that the unsigned 12-bit lane offset is applied up to 31 times among the
transposition options of a load/store instruction, and line pitch is 64 bytes times the
lane offset, so the full range of unsigned 12-bit lane offset value can lead the raw
address to map far outside the superbank the base address is pointed to. The
extreme case is with single-vector byte-type T transpose, 31 * (64 * 4095 + 2), almost 8
Mega Bytes (with Mega being 1024/2).

Note that it IS allowed to program k = lane_ofst = O, so that the transposing load/store
behaves like normal (consecutive) load/store in address calculation in all cases except
for byte-type T transposing load/store. Because we have 16-bit memory banks, byte-
type T transposing load/store with zero lane offset would be reading/writing every-
other bytes instead of consecutive bytes.

In case where address pattern of degenerate transposing load/store is identical with
that of normal/consecutive load/store, the exact behavior is still different, in the sense
that degenerate transposing memory transactions are still non-coherent transactions
from memory coherency stall logic point of view, meaning there is no address proximity
checks to stall memory transactions automatically. In certain cases, the degenerate
transposing load/store can be used intentionally to avoid memory coherency stalls, but
programmer should be extremely careful with its use.

The alias_within_superbank function in address calculation keeps subsequent accesses
within one superbank. Only in B_T32/H_T16/W_T8 distribution options, where the line
pitch is applied only once, would we make use of almost-full range of lane offset. It’s
also for future extension of VMEM capacity. Programmers are strongly discouraged to
intentionally allow address to go outside physical memory and rely on address aliasing
in the hardware. Such code may not work in the future when address map changes.
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6.3.8 Parallel Lookup, Histogram and Vector-
Addressed Store

PVA supports parallel table lookup and histogram through table/bin replication, taking
advantage of the memory banking organization in VMEM superbanks.

Vector-addressed store, also called reverse parallel lookup, takes a scalar base address
(512-bit = 64-byte aligned), a vector of indices, a vector of data values, and writes the
data values into the indexed entries. Often per-lane predication is required to perform
store on selected lanes.

Table lookup:

» 1/2/4/8/16 x W/WU word index, word table entry

» 1/2/4/8/16/32 x H/HU halfword index, halfword table entry

» 1/2/4/8/16/32 x B/BU byte index, byte table entry

» 1/2/4/8/16/32 x HB/HBU  halfword index, byte table entry
Histogram:

» 1/2/4/8/16 W word index, word histogram bin

» 1/2/4/8/16/32 H halfword index, halfword histogram bin

Vector-addressed store:

» 16W word index, word store data
» 32H halfword index, halfword store data

Note that only memory slot 0, MO, supports lookup, histogram, and vector-addressed
store features.

6.3.8.1 Data Organization in Memory

Table/histogram/VAST data organization is as follows:

Figure 11. Parallel lookup, histogram and VAST data organization for various
types and parallelism

16-parallel Word-type:
TO[0] T1[0] T15[0]
TO[1] T1[1] T15[1]

é.-parallel Word-type:
\ TO[0..1] \ T1[0..1] \ ] T7[0.1]
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\ TO[2..3]

\ T1[2.3]

| .. [ T72.3]

4-parallel Word-type:

T0[0..3]

T1[0.3]

T3[0..3]

TO[4..7]

T1[4..7]

T3[4..7]

2-parallel Word-type:

T0[0..7]

T1[0..7]

TO[8..15]

T1[8..15]

1-parallel Word-type:

T0[0..15]

T0[16..31]

32-parallel Half-word-type:
TO[0] T1[0] T2[0]
To[1] TI[1] T2[1]

16-parallel Half-word-type:

TO[O..1] Ti1[0..1]

TO[2..3] Ti[2.3]

8-parallel Half-word -type:

T31[0]

T31[1]

T15[0..1]

T15[2..3]

TO[0..3] T1[0.3]

T7[0..3]

TO[4..7] T1[4..7]

T7[4.7]

4-parallel Half-word -type:

TO[0..7] T1[0.7]

T3[0..7]

TO[8..15] T1[8..15]

T3[8..15]

2-parallel Half-word -type:

TO[0..15]

T1[0..15]

T0[16..31]

T1[16.31]

1-parallel Half-word -type:

T0[0..31]

T0[32..63]

32-parallel Byte-type:

TO[0..1]

T1[0..1]

T2[0..1]

TO[2..3]

T1[2..3]

T2[2.3]

16-parallel Byte -type:

TO[0..3]

T1[0..3]

TO[4..7]

T1[4..7]
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8-parallel Byte -type:

TO[0..7] T1[0..7] [ T700.71
TO[8..15] T1[8.15] .. | T718.15]

4-parallel Byte -type:
TO[0..15] T1[0..15] [ 13[0.15]

TO[16.31] T1[16.31] _[m3ne6.31]

2-parallel Byte -type:
TO[0..31] T1[0..31]
TO[32..63] T1[32..63]

1-parallel Byte -type:
TO[0..63]
T0[64..127]

6.3.8.2 Table Lookup

VMEM Superbanks support parallel table lookup with the following data element size
and parallelism combinations:

» For byte element size, 1/2/4/8/16/32 ways of parallelism
» For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism
» For word (32-bit) element size, 1/2/4/8/16 ways of parallelism

The VPU sends a table base address (512-bit or 64-byte aligned) and an index vector to
the VMEM interface (VMEM I/F). The VPU also sends along addressing mode (to convey
that it’s a table lookup transaction), element size and parallelism as sideband signals.
The first K elements of the index vector are consumed for K-way lookup; the rest are
ignored.

The VMEM |/F decodes the upper bits of the base address and forwards all signals
pertaining to the lookup access to the addressed superbank.

The superbank carries out the lookup, extracts the K table entries from memory
according to the base address and the index vector, and sends an outcome vector
through the VMEM I/F back to the VPU. The first K elements of the outcome vector
are consumed by the VPU; the rest are ignored.

The 32 16-bit memory banks are divided evenly to support the various lookup
parallelisms. For example, for 4-way word-size lookup, the 32 memory banks are evenly
divided into 4 parallel tables, with each table residing in 8 16-bit memory banks. Please
see Section 6.3.8.1 for table data organization for various data type and parallelism
combinations.
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Since Orin (previous generation) VPU we have added 2-point lookup and 2x2-point

lookup.

Table 14. Table lookup 2-point and 2x2-point support

Instruction Memory object Index vector Outcome vector
VLUT_*B signed byte (8-bit) sign-extended from byte signed byte (12-bit)
VLUT_2pt_*B lane (12-bit)

VLUT_2x2pt_*B

VLUT_*BU unsigned byte (8-bit) sign-extended from byte signed byte (12-bit)

VLUT_2pt_*BU
VLUT_2x2pt_*BU

lane (12-bit)

[DIVLUT_*H
[DIVLUT_2pt_*H
[DIVLUT_2x2pt_*H

signed half-word (16-bit)

Up to 16 LSBs from half-
word lane (24-bit)

signed half-word (24-bit)

[DIVLUT_*HU
[DIVLUT_2pt_*HU
[DIVLUT_2x2pt_*HU

unsigned half-word (16-bit)

Up to 16 LSBs from half-
word lane (24-bit)

signed half-word (24-bit)

[DIVLUT_*W
[DIVLUT 2pt_*W
[DIVLUT_2x2pt_*W

signed word (32-bit)

Up to 15 LSBs from word
lane (48-bit)

signed word (48-bit)

[DIVLUT_*WU
[DIVLUT_2pt_*WU
[DIVLUT_2x2pt_*WU

unsigned word (32-bit)

Up to 15 LSBs from word
lane (48-bit)

signed word (48-bit)

VLUT_*HB
VLUT_2pt_*HB
VLUT_2x2pt_*HB

signed byte (8-bit)

Up to 17 LSBs from half-
word lane (24-bit)

signed byte (12-bit)

VLUT_*HBU
VLUT_2pt_*HBU
VLUT_2x2pt_*HBU

unsigned byte (8-bit)

Up to 17 LSBs from half-
word lane (24-bit)

signed byte (12-bit)

6.3.8.3

Histogram

VMEM Superbanks support parallel histogram with the following data element size and
parallelism combinations:

» There is no byte element size support

» For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism

» For word (32-bit) element size, 1/2/4/8/16 ways of parallelism
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Since each superbank supports one read transaction and one write transaction per
cycle, histogram reads and writes are pipelined, to achieve up to 32 histogram updates
per cycle, in case of 32-way half-word case.

The VPU sends a histogram base address (512-bit or 64-byte aligned), an index vector
and an update vector to the VMEM interface (VMEM I/F). The VPU also sends along
addressing mode (to convey that it’s a histogram transaction), element size and
parallelism as sideband signals. The first K elements of the index vector and the
update vector respectively are consumed for K-way histogram; the rest are ignored.

The VMEM |/F decodes the upper bits of the base address and forwards all signals
pertaining to the histogram access to the addressed superbank.

The superbank carries out the histogram update, reads the K histogram bins from
memory according to the base address and the index vector, adds the update vector to
the bins, writes the updated bins back to memory (where each bin came from), and
sends the before-update bins as an outcome vector through the VMEM I/F back to the
VPU. The first K elements of the outcome vector are consumed by the VPU; the rest
are ignored.

The 32 16-bit memory banks are divided evenly to support the various histogram
parallelisms. For example, for 4-way word-size histogram, the 32 memory banks are
evenly divided into 4 parallel histograms, with each histogram residing in 8 16-bit
memory banks. Please see Section 6.3.8.1 for histogram data organization for various
data type and parallelism combinations.

Compared to conventional/normal histogram, VPU parallel histogram feature
implements weighted histogram (by allowing an update vector to be added instead of
only incrementing by one), and supports bin value read-back, which is useful in sorting
and decision tree applications to bin records or features for further processing.

Table 15. Histogram support

Instruction Memory object (input & Index & weight vectors | Outcome vector
outcome)
[DIVHIST_*H signed half-word (16-bit) Up to 16 LSBs from half- signed half-word (24-bit)
word lane (24-bit)
[DIVHIST_*W signed word (32-bit) Up to 15 LSBs from word signed word (48-bit)

lane (48-bit)

[DIVHIST_OR_*H

signed half-word (16-bit)

Up to 16 LSBs from half-
word lane (24-bit)

signed half-word (24-bit)

[DIVHIST_OR_*W

signed word (32-bit)

Up to 15 LSBs from word
lane (48-bit)

signed word (48-bit)
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6.3.8.4 Vector Addressed Store

VMEM Superbanks support vector addressed store, which is also called reverse lookup,
since instead of reading back indexed entries, data is written to the indexed entries.
We support the maximal parallelism, 32 half-word and 16-word configurations.

Table 16. Vector addressed store support

Instruction Memory object Index & data vectors Outcome
(outcome) vector
DVAST_32H signed half-word (16-bit) 11 LSBs from half-word n/a
lane (24-bit)
DVAST_16W signed word (32-bit) 11 LSBs from word lane n/a
(48-bit)

Basically, each index lane is sign-extended where insufficient to cover a whole
superbank, otherwise appropriate number of LSBs taken to cover a whole superbank.
Note that when we are extending it's always sign-extended, as opposed to complying
with signed/unsigned designation in the lookup instruction (which is used to sign/zero-
extend table/histogram entry).

In case of byte indices (which is normally for byte entries), since a superbank has 128KB,
17 bits are needed for 1-way lookup, 16 bits for 2-way lookup (each way containing
64KB), and so on, to 12 bits needed for 32-way lookup (each way containing 4KB). We
would sign-extend from 12-bit byte lane.

For the conventional lookup providing starting address of the table as the base, byte-
indexed lookup can only cover 2KB for 1-way, 4KB for 2-way, and so on, to 64KB for 32-
way. Due to the limited table size coverage, we also support using halfword indices for
byte-entry table lookup.

In case of halfword and word entry (which is only possible to go with halfword and word
indices), we have more than sufficient bit width in each index lane to cover a full
superbank, so only an appropriate number of LSBs are used. The address calculation is
signed/unsigned agnostic (except when we need to sign/zero-extend for the case of byte
indices), so it’s safe to treat indices as unsigned, which is how table lookup is naturally
implemented.

In case of VAST, only maximal parallelism is supported for each type (32H and 16W), so
the index is used to point to each 64-byte-aligned wide memory word. Thus, there is just
one bit width used, 11-bit, as superbank size 128KB is 2K x 64B.

The superbank to access is determined solely by the base address. There is no out-of-
bound memory access detection; large index values can cause the resulting address to
land outside the intended table or histogram object in the same superbank in VMEM.

Also note that taking some LSBs of the indices, ignoring upper bits, is essentially
performing index wrap-around in the same superbank, but not in the
table/histogram/VAST-object, as there is no way to indicate size of the
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table/histogram/VAS-object to the processor. It is the programmer’s responsibility to
ensure that lookup/histogram/VAST operations do not index outside the intended
memory range, or suffer the consequences.

For example, a 4KB 32-way H-type lookup table has only 4KB/2/32 = 64 entries in each
sub-table. If/when the base address is the starting address of the table, in conventional
non-negative indexing, only [0, 63] in index range makes sense. If the base address is
right in the middle of the table (starting address + 2KB), for a symmetrical signed
indexing, only [-32, 31] range makes sense. A whole superbank can be reached by the
lookup, with up to 128KB/2/32 = 2K entries. An index value of 2048 would behave the
same as 0, and full range of index values in 24-bit vector lane would wrap 8192 times
(ignoring upper 14 bits) around the superbank, and can access data outside the allocated
4KB table.

Address Calculation

Parallel lookup, histogram, and vector address store addressing involves taking the
prescribed number of indices, separating the indices into vertical and horizontal
components, and accessing the table entry with the vertical/horizontal indices in the
appropriate sub-table.

For example, 4-way parallel lookup of byte type would organize the table memory as 4
banks of 16 entries wide sub-tables, using the 4 LSBs of index horizontally within the
row of 16 entries fetched for a sub-table, and the upper bits vertically to pick the row.
Address calculation for the parallel lookup can be expressed as:

lut_out[i] = table[ (index[i] & OxF) + i*16 + (index[i]>>4)*64 ], fori =0..3

In general, for M bytes-per-point data type, N-way parallel lookup, we calculate stride K
= (64/M)/N = 64/(M*N) = number of entries per table on the same memory line (512 bits
= 64 bytes per line). Hardware accesses table entries at byte addresses

byte_offset[i] = ((index[i] modulo K) + i*K) * M + floor(index[i] / K)*64, for i = 0..N-
1

Basically, the table index is partitioned into two pieces, the modulo K piece for indexing
consecutive entries in a memory line, and the quotient divided by K piece for
addressing memory lines. As K is a power of two (since parallelism N, data size M and
64 are all powers of two), the modulo and the divide operations are implemented as
bitwise AND and right shift.

byte_addressli] = (base & SUPERBANK_SELECT)

+ ((base & BASE_MASK) + byte_offset[i] ) &
SUPERBANK_MASK

The first term of byte address is for superbank selection, which is affected only by the
base address, not by any index. For the first generation, we have

SUPERBANK_SELECT = 0xCO0O00
BASE_MASK = Ox1FFCO,
SUPEBANK_MASK = OxTFFFF.
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For two-point lookup, DVLUT_2pt, up to 16 indices (consistent with the parallelism
designation) are used to calculate byte_offset and byte_address described above.
Then, same number of additional indices, index[i] + 1, go through the same calculation
to perform up to 32 lookups per DVLUT_2pt instruction. See 9.9.6.4 DVLUT_2pt
instruction description for details.

for 2x2-point lookup, DVLUT_2x2pt, up to 8 indices (consistent with the parallelism
designation) are used to calculate byte_offset and byte_address described above.
Then, 3 times number of additional indices, index[i] + 1, index[i] + LP, index[i] + LP + 1,
go through the same calculation to perform up to 32 lookups per DVLUT_2pt
instruction. LP here is line pitch and is derived from the PL register. See 9.9.6.5
DVLUT_2x2pt instruction description for details.

Vector addressed store is also called reverse lookup, as instead of retrieving indexed
entries from memory, write values are to be written to the indexed locations. It is
useful for list-based processing.

6.4 Address Generator Features

Address generator, or agen, is a unique feature in VPU instruction set architecture.
Agen moves much of the multi-dimensional address calculation prominent in image
and vision processing to the background and carried out by hardware, improving
performance and power in common image and vision processing.

6.4.1 Multi-Dimensional Address Calculation

Agen configuration includes address generator and various other load/store
parameters to accelerate regular load/store operations.

Each address generator supports up to 6 dimensional address calculation with its own
set of n1..n6 number of iteration parameters, amod1..amod6 address modifiers, and
loop variables i1..i6. Agen can be viewed as supporting 6-level nested for loop, with
level 1 is being the inner-most loop, and level 6 being the outer-most loop.

For cases when we do not need all 6 dimensions, the convention is to use the lower-
numbered variables, and set the higher-numbered variables to default values. For
example, 2D agen should have

nN3=n4=n5=n6=1
amod3 = amod4 = amod5 = amod6 =0
The Agen supports 6-dimensional address calculation by realizing this function:

address(il1, i2, i3, i4, i5, i6) = base + item_size * (i1*w1 + i2*w2 + i3*w3 + i4*w4 + i5*w5
+ i6*w6),

where w1..w6 are the weights we place on the loop variables i1..i6. We can also
visualize w1..w6 as the step amount, in data elements, for each dimension.

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 79



Instead of the programmer providing the weights and hardware computing the
address via the sum of products expression, the programmer should provide the
address modifiers (amod1~amod6), which is the delta of one address to the next
address as the 6-dimensional iterator is advanced.

The address modifiers should be calculated as follows:

» Insideil loop:amodl =w]l.

» Whenil is reset and i2 is incremented: amod2 =w2 - (n1 - 1)*w]1.

» Whenil and i2 are reset and i3 is incremented: amod3 =w3-(n2-1)*w2-(n1 -
1)*wl.

» Whenil,i2 and i3 are reset and i4 is incremented: amod4 = w4 - (n3 - 1)*w3 - (n2 -
N*w2-(n1-1)*wl.

» Whenil,i2,i3 and i4 are reset and i5 is incremented: amod5 = w5 - (n4 - 1)*w4 - (n3
-1)Pw3-=-(n2-1)*w2-(n1-1)*wl.

» Whenil,i2, i3, i4 and i5 are reset and i6 is incremented: amod6 = w6 - (n5 - 1)*w5 -
n4-1)*wd-(n3-1)*w3-(n2-1)*w2-(n1-1)*wl.

As the above expressions are tedious to program, there is a set of agen wrapper
macros to translate from n1..n6 and w1..w6 into amod1..amod6. Example of
programming with agen wrapper will be given in section 8.3.3.

Agen data structure includes address modifiers as 18-bit fields, and CfgAgen Mod
instruction reads 32-bit from the source scalar register and stores only 18 LSBs,
dropping the upper 14 bits. Addresses generated from each agen is supposed to be
confined within a superbank (128KB = 27 17), so address calculation does not require
upper 14 bits.

Behavior of agen-based load/store is post-increment. Data is accessed from the
current address and type, distribution option, etc configuration. Then address and loop
variables i1..i6 are advanced, and address modifier chosen, according to following
pseudo code:

lpend1 = (i1 == (n1 - 1)) || (n1 == 0);
lpend2 = (i2 == (n2 - 1)) || (n2 == 0);
lpend3 = (i3 == (n3 - 1)) || (n3 == 0);
lpend4 = (i4 == (n4 - 1)) || (n4 == @);
lpend5 = (i5 == (n5 - 1)) || (n5 == @);
lpend6 = (i6 == (n6 - 1)) || (n6 == B);

if (lpendl && lpend2 && lpend3 8&& lpend4 && lpend5 && lpend6) {
amod = @; // stay at last data point
} else if (lpend1 && lpend2 && lpend3 && lpend4 && lpend5) {
i1 = i2 = i3 = i4 = i5 = ©O;
i6 = i6+1;
amod = amod6;
} else if (1lpend1 && lpend2 && lpend3 && lpend4) {
i1 = i2 = i3 = i4 = @;
i5 = i5+1;
amod = amod5;
} else if (lpend1 && lpend2 && lpend3) {
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i1 = i2 = i3 = 0;
i4 = 1441,
amod = amod4;
} else if (lpend1 && lpend2) {
i1 = i2 = 0;
i3 = 1i3+41;
amod = amod3;
} else if (1lpend1) {
i1 = 9;
i2 = 12+41;
amod = amod2;
} else {
i1 = i1 + 1;
amod = amod1;

}

If the agen functionality is implemented in scalar operations, it would take potentially
many instructions.

Agen address calculation is post-modify. When executing an agen-based load/store
operation, the lower 20-bit of Agen address field is used to address the load/store,
amod is calculated as described above, address (unsigned 20-bit) is added with amod
(signed 18-bit).

Consider the VMEM address map (see 5.3). In agen address update, it is NOT possible
to jump from one superbank’s primary region into another superbank’s primary region,
since the gap is 128KB, 2”17 bytes, thus minimal distance 2717 + 1, while signed 18-bit
of amod can encode a range of -2217 ~ (2217 - 1). It IS possible, however, for an agen
address to walk from one primary region to an aliased region, then onward into another
superbank primary region. This is, however, strongly discouraged, as it may break
software compatibility in the future.

See 6.4.6 for additional address calculation steps when circular buffer is configured.

Note that with the reset default values of Addr = 0, amodi =0, Ni =1 and li = 0,
uninitialized agen would have address fixed at O when it’s used in agen-based
load/store.

Also note that Ni = O is treated like Ni = 1 with the way end-of-loop is detected, and
maximal iteration count for any loop level is 65535.

Agen configuration also includes optional lane_offset field for transposing load/store.
For the basic T transposition mode, the lane_offset field provides a row offset scaled
by the lane number. For lane i, relatively to linear/consecutive access, the address
offsetisi * lane_offset * 64 Bytes.

Please see 6.3.7 for use of lane_offset in address calculation across various
transposition modes.
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6.4.2 Automatic Predication

When all loop variables reach their ending count, meaning the agen has executed the
prescribed number of load/stores, all loop variables are stuck at the ending count. Any
subsequent load with that Agen would repeat reading at the ending address. Any
subsequent store with that Agen will be predicated off.

For example, for an Agen with N1 =4, N2 = N3 =N4 =N5 = N6 = 1, its loop variable and
predicate off status with respect to execution of the relevant load/store is as follows.

1 12 13 14 15 16 auto_pred_off
Initial state 0 0 0] 0] 0 0 0
after 1 execution 1 0 0 0 0 0 0O (1st store allowed)
after 2 executions 2 0 0 0 0 0 0 (2nd store allowed)
after 3executions 3 0 0 0 0 0 O (3rd store allowed)
after 4executions 3 0 0 0 0 0 1 (4th store allowed)
after 5 executions 3 0 0 0 0 0 1 (5th store blocked)

We can think of the auto_pred_off as an overflow bit of the Agen loop variables
updated after the execution (like Agen loop variables), but its predication effect applies
on the next memory store transaction.

This agen automatic predication works as an override of programmer-specified
predication on vector or scalar store via predicate register or vector register. When
auto_pred_off is O, programmer-specified predication mechanism applies. When
auto_pred_off is 1, entire memory write transaction is blocked.

Note that the agen automatic predication does not affect loads. Any scalar or vector
load using an Agen with exceeded iteration count (thus auto_pred_off = 1) will still have
its memory transaction carried out and destination register write occurred, albeit with
address stuck at the last valid address so memory read-back value should remain the
same (except if/when there’s another party, VPU, DLUT, PPE or DMA, writing to that
address).

The use case for this feature is loop unrolling. Often VPU code uses pragma
chess unroll loop (K) toindicate to compiler that the loop is to be unroll K times,
for software pipelining.

for (1=0; i<niter; i++) chess_unroll_loop(K)

{
// loop body

}

It is not required that iteration count (niter in the above example) be a multiple of K.
Compiler generates code to check, and break up the loop into a “multiple” loop and a
‘remainder” loop to ensure that the generated code executes correctly.
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If/when the programmer is certain that the iteration count is indeed a multiple of K,
another pragma, chess unroll loop assuming multiple (K), can be used. This
pragma instructs compiler not to generate code to compute/check niter modulo K, and
to not to generate the “remainder” loop.

The automatically predicate-off feature may allow
chess unroll loop assuming multiple (K) to be used whether niterisa multiple
of K, resulting in smaller code size and lower loop overhead.

quotient_ceil = (niter + K —= 1) / K; // ceiling (niter / K)

for (i=0; i< quotient_ceil * K; i++) chess_unroll_loop_assuming_multiple(K)

{
// loop body

}

This technique works for most common loops where outcomes are stored out in the
loop, so extra iterations, as long as stores are predicated off, do not affect the
outcome.

When there is accumulation over loop iterations using vector or scalar register, the
Agen automatic predication feature does not quite work, as the predication applies
only to stores, not to register writes. Also, the store must be driven by Agen, as there’s
no way to specify an ending iteration count using scalar-based (base + offset or post-
modify) stores.

6.4.3 Rounding and Saturation

Agen-based store includes rounding and saturation features. Values from register file
are first rounded, then saturated.

There are corresponding Agen configuration fields to convey the parameters:

» Rounding field includes 1-bit for round/truncation option and 7-bit for number of
bits to round/truncate

» Saturation low/highs limit and values

» Saturation option field indicates whether saturation is enabled, and whether
saturation limits are treated as signed or unsigned

When number of bits to round/truncate exceeds source lane width (B=12, H=24,
W=48), rounding leads to zero for all inputs, and truncation leads to zero for
zero/positive inputs, and to -1 for negative inputs.

Rounding is performed by adding 1 to the bit position one bit lower than the bit count.
For example, if we are rounding off 3 bits, we add (1 << 2) then right-shift by 3 bits.
Truncation is performed by right-shift alone. Examples:

» round(6,1)=(6+(1<<0))>>1=7>>1=3
round(6,2) =6+ (1 <<1))>>2=8>>2=2
round(-6,3) = (-6 + (1 << 2)) >>3 =-2>>3 =-]
truncate(6, 1) =6>>1=3

>
>
>
» truncate(6,2)=6>>2=1
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» truncate(-6,3)=-6>>3=-1

For saturation, we support 4-parameter saturation. When enabled, hardware carries
out

store_val = (reg_val < SatLimLo) ? SatValLo : ((reg_val > SatLimHi) ? SatValHi :
reg_val);

where reg_val is 12/24/48-bit signed. SatLimLo and SatLimHi are sign/zero-extended
from 32-bit values in Agen configuration. We have a 2-bit saturation option SatOpt to
indicate whether to sign or zero extend the 32-bit configuration values. Note that
vector lane values are always read as signed.

Note that rounding and saturation steps are performed with bit width accommodating
both the data source bit width (12/24/48-bit lane width in vector registers) and
comparison values (signed/unsigned 32-bit). Consequently,

» For promoting stores (12-bit into 16-bit, 24-bit into 32-bit), the source data values
are in representation range of signed 12-bit or 24-bit.

» In case comparison values, SatLimLo and/or SatLimHi, exceeds the source data
representation range, reg_val < SatLimLo would never happen, so source data is
unchanged for that saturation bound. For example, SatLimLo (signed) = -
0x8000_0000 when source data is 12-bit, having representation range [-0Ox800,
Ox7FF], reg_val < SatLimLo is always false.

» For extended word type source data (48-bit), and when saturation is enabled, the
comparison is carried out correctly as if it's carried out in signed 48-bit. For
example,
when reg_val = -0x8000_0000_0000 (min value in signed 48-bit) and SatLimLo
(signed) = -0x8000_0000 (min value in signed 32-bit), reg_val < SatLimLo is true and
the replacement occurs.

The saturation replacement values SatValLo and SatValHi are configured as 32-bit
numbers. When the memory store type is 8-bit or 16-bit, and the replacement occurs,
only the 8 or 16 LSBs of SatVallLo or SatValHi are written out to memory; the upper 24
or 16 bits are ignored.

Rounding and saturation features are not available for these cases:

» WX type: can be 8 x 48-bit, 16 x 24-bit, or 32 x 12-bit

Note that rounding and saturation operations are performed as integer operations, so
if enabled on floating point (FP32 or FP16) type store, would interpret floating point
binary values as 48-bit/24-bit integer values, so the resulting values being stored may
not make sense.

6.4.4 Min and Max Value Collection

There is a min and max value collection feature in agen-based scalar/vector stores.
Min/max collection occurs after rounding/saturation, and is predicated upon the
particular lane being stored to the memory.
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There is a 2-bit min/max option to encode

0: disable (default)

1: disable

2: enable for signed min/max

3: enable for unsigned min/max

v

vwvyy

as well as a 32-bit MinVal (min value) and a 32-bit MaxVal (max value) in the Agen
register file.

Upon agen initialization, min/max option is initialized to O (disabled), and min/max
values are initialized to O.

Upon configuring the min/max option to 2 (enabled for signed min/max), the min value
is initialized to MAX_INT32 = Ox7FFF_FFFF. The max value is initialized to MIN_INT32 =
0x8000_0000.

Upon configuring the min/max option to 3 (enabled for unsigned min/max), the min
value is initialized to MAX_UINT32 = OxFFFF_FFFF. The max value is initialized to
MIN_UINT32 = 0.

Upon configuring the min/max option to O or 1 (disabled), the min/max values are reset
to O.

The min/max option is in the first 512-bit part of the Agen config, so is saved with
AgenCfgST, and restored with AgenCfgLD. Upon AgenCfgLD, min/max values are
initialized according to min/max option.

The min/max values are in the second part of the Agen config, so is saved with
AgenCfgST_p2 and restored with AgenCfgLD_p2.

Note that with AgenCfgLD_p2, min/max values are loaded as-is from memory without
checking to see if they make sense:

1. Min value can be larger than Max value according to the signed/unsigned option
designated in MinMaxOpt.

2. Min value and/or Max value may fall outside the valid range of signed/unsigned
option designated in MinMaxOpt and data type previously used agen-based
store associated with the particular Agen.

3. Max/Max values can be non-zero, though MinMaxOpt indicates min/max
collection is disabled.

(1) and (2) are because

» The initialized values for Min/Max values are type-blind, and in fact fall out of valid
char and short ranges in 3 of the 4 possible values (INT32MAX, INT32MIN,
UINT32MAX).

» Agen data structure is type-neutral and does not record type of data being stored.

Because we cannot guarantee that min/max values make sense when min/max
collection feature is enabled, we don’t attempt to correct min/max values when the
feature is disabled, presumably min/max values are not useful to the application in
such cases.
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Upon every Agen-based store (scalar or vector), if min/max feature is enabled, signed or
unsigned min and max operations are carried out, so that the MinVal and MaxVal fields
maintain the min and max values across all stored data. They can be read out after
processing to query min and max values.

Note that min/max collection excludes WX type stores, and that if enabled on floating
point (FP32 or FP16) type store, would interpret floating point binary values as 32-
bit/24-bit integer values, so the resulting min/max values may not make sense. This is
with rounding/saturation steps before min/max collection being disabled. If either
rounding or saturation is enabled, input to min/max collection may already not make
sense.

6.45  Save and Restore to/from Memory

Once individual parameters in an agen are configured, the collection of all parameters
can be saved to the memory via AgenCfgST and restored back via AgenCfgLD. This
allows calculation of parameters to be carried out during application initialization, and
be quickly restored to configure the agens during regular tile processing.

Reserved fields are written out as zeros initialized to zero in InitAgen. They are not
modifiable via any CfgAgen instructions, and not utilized in any Agen functionality.
Through CfgAgenLD, if corresponding contents in memory are non-zero, zero will be
loaded into Agen data structure instead. When CfgAgenST is used to store out the
whole Agen data structure, corresponding bits in memory will show zeros.

Please consult 9.4 Instruction Execution Ordering for various execution order
exceptions w.r.t. various instructions accessing Agen.

6.4.6  Circular Buffer Addressing

PVA supports circular buffer addressing to facilitate data reuse. Circular buffer
addressing is available in agen-based load/store instructions by configuring optional
circular buffer starting address (cbuf_sa) and circular buffer size (cbuf_sz) parameters
in the unit. Circular buffer is enabled when cbuf_sz is configured to a nonzero value.

There’s alignment constraint (consistent between DMA and VPU) that circular buffer
should be 64-byte aligned. We allocate 16-bit for the starting address and the size
parameters. We apply 6-bit up-shift before interpreting the parameters as a byte
addresses to enforce the alignment.

Address is folded into the circular buffer via the following pseudo-code:
CB_start = cbuf_sa << 6;
CB_size = cbuf_sz << 6;

address = CB_start + ((address — CB_start) % CB_size);

// % = modulo operator, returns 0..CB_size-1

The circular buffer address calculation above is applied whenever agen-based
load/store updates its address when each instance of such instruction is executed.
The sequence of operations is as follows:
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Prescribed load/store using the current address

2. Address update using address modifiers, loop iteration count, and loop variables
(see 6.4.1)

3. When circular buffer is enabled, address is folded back to [CB_start,

CB_start+CB_size-1] if it falls out of the range.

With circular buffer enabled (size > 0), address parameters should be constrained as
Base address and circular buffer should be inside a superbank.

Base address should be within the buffer, i.e.,, CB_start <= base_addr < CB_start +
CB_size.

Any address modifier must not have magnitude (absolute value) larger than the circular
buffer size, i.e., ]AMODIi]| <= CB_size.

When circular buffer is enabled, every AGEN address update would be checked to see if
it falls out of the circular buffer. If it falls under (addr < CB_start), it is adjusted with +
CB_size. If it falls over (addr >= CB_start + CB_size), it is adjusted with — CB_size. If
afterward it still falls out of the circular buffer, no error is reported. Note that when
Agen parameters are properly constrained, this should not happen.

Details of circular buffer address calculation are as follows (this information is
intended for verification, where parameters outside normal programming constraints
may be used):

» Lower 20 bits of the AGEN address field is read as an unsigned number, addr

» addr is added with amod, lower 18 bits of one of the 6 address modifiers selected
for this address increment. The addition outcome is kept as a signed 21-bit
number, addr1, as the normally updated address without circular buffering

» Lower 14 bits of cbuf_start (Agen field) is left-shifted 6 bits to become CB_start
(20-bit)

» Lower 14 bits of cbuf_size (Agen field) is left-shifted 6 bits to become CB_size (20-
bit)

» addr2 = addr1 + CB_size, which is addr1 wrapped forward, kept as signed 21-bit
number

» addr3 = addr1 - CB_size, which is addr1 wrapped backward, kept as signed 21-bit
number

» If amod is negative

o If addrl is less than CB_start, meaning the negative address update makes it
fall before circular buffer’s start address, wrapped_addr is assigned addr2
(addr1 wrapped forward)

o Otherwise, wrapped_addr is assigned addr1

» Otherwise
o If addrl is greater than or equal to CB_size + CB_start, meaning the positive
address update makes it fall after circular buffer’s end address, wrapped_addr

is assigned addr3 (addr1 wrapped backward)
o Otherwise, wrapped_addr is assigned addr1
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» Lower 20 bits of wrapped_addr is read as an unsigned number and written back
zero-extended to to the 32-bit AGEN address field.

Note that circular buffer addressing is NOT applied inside a single memory transaction
of single/double vector load/store. Thus, either vector load/store should avoid crossing
the circular buffer boundary, or there should be software workaround.

One software workaround scheme where DMA supplies data to the circular buffer, and
VPU consumes the data, is to allocate additional 64 bytes after the circular buffer as
work-around areas. Before VPU starts consuming data in the circular buffer, the first
64 bytes of circular buffer data should be copied to fill the 64 bytes work-around area.
This work-around only cover linear (consecutive) accesses though, not transposing
load/store, table lookup, or histogram.

There is no easy workaround when VPU supplies data into the circular buffer, and DMA
consumes it. Misaligned data access generally comes from spatial dependency, and is
only in reading data. It is usually feasible to size output block dimension so that data
writes are compliant with reasonable alignment constraints. Thus, there is usually no
need for such workaround.

Figure 12. Workaround for vector accesses across circular buffer boundary

L_GAB_,

Circular Buffer

(2568 aligned)

copy

o]

Note that superbanks are not consecutive in the data memory space (128KB in 256KB
space). In normal application, circular buffer should not go out of any superbank.
When it does, address is wrapped around and mapped back to one of the VMEM
superbanks without any error interrupt being raised.
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Chapter 7. Decoupled Lookup Unit
(DLUT)

In this chapter, overview of the Decoupled Lookup Unit (DLUT) is provided. For
programming example, please refer to 8.5.4.

7.1 Overview

VPU instruction set has been extended through 3 generations within the scope of an
embedded vector SIMD machine. There is one area that we cannot extend in this
scope, that is resolving memory bank conflict in parallel lookup operations.

In the VPU instruction set, we do have various parallel lookup instructions (2/4/8/16/32-
way parallelism), but these instructions require that we have correspondingly that
many tables so that there is inherently no memory bank conflict. These tables are
sometimes replication of one table, and sometimes different tables, depending on the
application.

For example, in image warping we transform one image tile at a time, and parallel
lookup is only possible if we replicate from that one image tile. For example, in feature
tracker, we perform gradient descent on many patches of an image, and parallel lookup
can be performed on the many patches in parallel, if the patches are reformatted into
parallel table organization. Either way, table lookup parallelism is constrained by
memory footprint taken up by the parallel tables.

In applications involving table lookup, we often wish to perform parallel lookup with
certain throughput, while we cannot afford memory footprint to replicate one table
that many times, or load that many parallel tables into memory. Ideally, we want the
processor to allow parallel lookup with just one copy of the table as part of the
instruction set. However, such memory operations would result in data-dependent
memory bank conflicts in execution. For example, 32-way parallel halfword lookup with
one copy of the take may take up to 32 cycles just to carry out reading the table
entries, if all 32 lanes happen to go to the same memory bank. VPU can handle some
degree of data-dependent memory conflict, naming at superbank level. Handling
memory bank level conflicts is simply too difficult to accomplish in an embedded
processor pipeline with limited pipeline depth.
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The decoupled lookup unit (DLUT) is architected to provide this functionality outside
the processor pipeline and can operate concurrently and independently with the
processor pipeline, thus the term “decoupled unit”. The DLUT carries out parallel
lookup with one common table by executing as many lookups in a cycle as it can in a
decoupled pipeline.

Besides lookup/interpolation with one common table, DLUT also supports contention
free lookup/interpolation with multiple tables for certain configurations. Although such
functionality is already supported by VPU, DLUT having this feature allows offloading
VPU processing cycles so there are advantages in performance and power.

DLUT also supports table reformatting needed to bridge between DMA and DLUT or
VPU lookup operations. Again, the table reformatting can be accomplished at the
same throughput by the VPU processor, but by adding this to DLUT, we offload VPU
processing cycles so there is advantages in performance and power, and the
functionality in DLUT leverages datapath we need to have anyway for the main lookup
functionality, so does not pose much area or power increase, just minor engineering
effort.

7.2 DLUT Features

The DLUT provides these operation modes:

1D lookup

2D lookup

1D lookup and linear interpolation

2D lookup and bilinear interpolation

Table reformatting

Conflict free 2D lookup and bilinear interpolation (from parallel copies of table)

2D lookup and bilinear interpolation with auto-indexing, where the index data need
not be supplied; indices are generated by DLUT from a few parameters

vVvvyVvYvVvyyvyy

Other DLUT features:

» 1D/2D lookup from one common table, with conflict detection/resolution

» Optional integer only or fixed-point integer + fraction indices, via configurable
number of fractional bits

» Out-of-range sentinel return value

» Out-of-range predicate off output write

» Configurable X/Y offset to translate between global coordinates and local
coordinates

» Indices can be unsigned 16-bit, or 32-bit (each X or Y in case of 2D lookup)

» Table entries (and output) can be 8-bit, 16-bit, or 32-bit, signed or unsigned, and
entry data type is independent of index data type

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 90



7.3 Task Structure and Operation
Modes

We define a DLUT task as producing N2 * N1 outputs through lookup and optional
post-lookup interpolation. A trimmed down agen (address generator) drives addressing
of index read, and another agen drives output write. The table pointer can step linearly
in the outer dimension of N2, so one task can be regarded as N2 rounds of lookup, with
one table producing N1 outputs per round. These N2 rounds of lookup of one task
share the same parameter block that specifies index/output data type, index read
agen, output write agen, etc.

Besides table lookup and post-lookup interpolation, DLUT also supports conflict-free
2D lookup with bilinear interpolation, and various table reformatting as separate tasks.

DLUT supports the following operation modes:

» 1D lookup: from linear indices, optionally perform rounding or truncation to convert
to integer indices and 1D table lookup.

» 2D lookup: from 2D indices, optionally perform rounding or truncation to convert to

integer indices and 2D table lookup

1D lookup with linear interpolation

2D lookup with bilinear interpolation

2D conflict-free lookup with bilinear interpolation, 32-bit index and 16-bit entry only

Table reformatting

2D lookup and bilinear interpolation, with automatic index generation that supports

starting X/Y and scaling step per round of lookup

vvyVvyyvVvyy

DLUT in operation utilize 3 memory streams, index read stream, lookup read stream,
and output write stream. To simplify hardware design/verification, encourage efficient
operation, and simplify DLUT/VPU/DMA interaction, each stream is tied to the
superbank each task is configured with. Thus, address modification due to agen
update and/or table address offset is performed in bits 17:0 of the respective address
pointers, leaving bits 19:18 that identifies the superbank unchanged from the task-
configured addresses.

Note that for better DLUT performance, index and lookup should not be in the same
superbank. However, such allocation does not affect correctness of outcome.

We define DLUT group size being the number of outputs per clock the hardware can
achieve ideally, when there is no conflict. The group size is basically set by either index
read throughput or lookup throughput, as output write throughput is never lower than
lookup throughput.

Group size for various modes is as follows

» 1D/2D lookup (without interpolation): 32 for Byte/Halfword entries, 16 for Word
entries.
» 1D lookup with interpolation: 16 for Byte/Halfword entries, 8 for Word entries.
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» 2D lookup with interpolation: 8 for Byte/Halfword entries, 4 for Word entries.

» 2D conflict-free lookup with interpolation: 8 (since only Halfword entry type is
supported).

» Table reformatting: 32 (since Halfword type is assumed).

Note that it is NOT required that the inner-loop output size, N1, should be a multiple of
group size. Hardware handles optional partial-group operation in the last inner
iteration by invalidating various index read, lookup, and output write lanes not being
utilized. Note that even when task length N1 is a multiple of group size, we can still
have partial transactions in index read and/or output write.

7.4  Task Sequencing and VPU/DLUT
Interaction

DLUT execution time is dependent on bank conflict within the indices so is not
constant. While it is possible to establish average execution time given random
number distribution of the indices, the actual execution time can be drastically
different. For example, a task of 32 Halfword lookups can take between 1 and 32
cycles to execute, excluding any control and pipelining overhead.

In applications there can be multiple dependent or independent lookup tasks that we
would like DLUT to execute sequentially, while VPU is executing some other compute
tasks. Since DLUT execution time is data dependent and can be drastically different, it
is not convenient for VPU to “check on” DLUT between compute tasks and kick off the
next DLUT task one at a time. To facilitate parallel execution, we architect the DLUT
interface to facilitate task sequencing.

VPU software prepares task parameters, allocate input/output regions, for multiple
tasks at a time, and go through one interaction with DLUT. Parameters for each task is
a fixed-sized data structure that links to the next task.

DLUT carries out the configured tasks sequentially without overlap. Each task is
processed to completion (last output written) before next task is started (first index
read) to simplify hardware implementation.
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Chapter 8. Programming Examples

We show a few relatively simple programming examples in this chapter. Note that the
profiling instruction reports were generated at the time of the writing, and may not be
accurate later, as the performance is subject to processor model revisions and ASIP
tool updates.

8.1 Typical Test Case Organization

A recommended way to organize test source files for a typical algorithm/application
VPU standalone test case, for example, array_add, is to have these source files:

- array_add.prx project file listing source files, header include paths,
compiler settings, etc
- array_add_test.c: containing main function and global input/output arrays

- array_add_ref.c reference function, typically written in plain/scalar C code
- array_add_ref.h reference function header

- array_add_opt.c optimized function

- array_add_opt.h optimized function header

Note that VPU standalone test case typically used to develop/optimize compute
kernels. For developing a PVA application including DMA, one should follow the cuPVA
development flow.

A sample testbench code in array_add_test.c follows:

#include "stdio.h"
#include "string.h"

#define TEST_SZ 4096

int chess_storage(RAM_Ab:chess_segment(A)) in1[TEST_SZ];

int chess_storage(RAM_Bb:chess_segment(B)) in2[TEST_SZ];

int chess_storage(RAM_Cb:chess_segment(C)) out_ref[TEST_SZ];
int chess_storage(RAM_Cb:chess_segment(C)) out_opt[TEST_SZ];
int main()

{

test_mem_fill_int(in1, TEST_SZ, 0x80000000, OX7FFFFFFF);
test_mem_fill_int(in2, TEST_SZ, ©x80000000, Ox7FFFFFFF);

SWE-PVA-077-PGRF | May 2025



memset(out_opt, @, sizeof(out_opt));

array_add_ref(in1, in2, out_ref, TEST_SZ);
array_add_opt(in1, in2, out_opt, TEST_SZ);

int fail = memcmp(out_ref, out_opt, sizeof(out_ref));
return fail;

Note how the arrays are allocated with chess_storage() pragma. In VPU programming
environment, the VMEM L1 data memory, which consists of 4 superbanks each 128KB,
is a precious resource, so typically programmers would allocate manually into the 4
superbanks in a matter that minimize bank conflict during VPU compute kernel
execution. See 5.6 about details in VMEM superbanks and storage specifiers.

For this particular compute kernel, array addition, we need 2 inputs being in different
superbanks. The output array must be in a third superbank in Xavier VPU, since in Gen-
1 VMEM, each superbank has one memory port that can support read or write, but not
both. In Orin and Thor VPU, the output array can be in any superbank since each VMEM
superbank has one read port and one write port.

DMA and DLUT share VMEM superbanks as well, so can potentially conflict with VPU
compute kernel accessing VMEM superbanks. In Orin and Thor VPU, one can take
advantage of the one-read-one-write ports of VMEM superbank to reduce conflicts.
This is because typically we have producer/consumer relationship between each pair of
master transmitting one array of data.

Typically in main program, input arrays are initialized with random values, and optimized
outcome array is initialized to zero. Then, the reference function is called to produce
expected outcome array, the optimized function is called to product optimized
outcome. Finally, the two arrays are matched to verify that optimized function carries
out the intended functionality, and result of the matching, convention being zero
indicating pass, non-zero indicating fail, is return from main().

8.2 1D Array Addition

We shall use a one-dimension array addition function to illustrate the process of taking
some plain C code, and revise it step by step to achieve full performance.

8.2.1 Scalar Code

We start with the same code as the one shown in 6.1.4.1 to show case the hardware
looping feature. We often call this the scalar code, as the code is written without using
vector data type, vector operation intrinsic functions, or vector load/store intrinsic
functions. The code is translated into scalar math and scalar load/store instructions.
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[/ xxxRRkkkkkkkbhhhkhhrhbhhhhrhbhhrhrhbhbrhrhrhbrbrhhrhbrhhhrhbhbhhrhrrrk

// Function implemented with normal/scalar C code
//*********************************************************************

void array_add_ref(int * A, int * B, int * C, int len)

{
for (int 1=0 ; i<len; i++)
{
C[i] = A[i] + B[i];
}
}

Instead of assembly listing, the profiling instruction report is shown next. The report
has performance information annotated besides the assembly listing, so it is a lot more
convenient to assess performance with, than assembly listing. There is also function
level PC range, code size, and cycle/instruction count information that are quite useful.

Note that some manual editing is done on the generated report to shorten labels and
various fields so that the report can easily fit the page width for readability. Somehow
tool generated instruction reports omit labels, and they are manually added back to
make better sense of the control flow.

Function detail: array add ref void array add ref P__sint P __sint P__sint sint

Low PC : 56
High PC 71
Size in program memory: 16
Cycle-count : 14352 (15.31%)
Instruction-count : 6154 ( 7.63%)
Instruction Coverage : 100.00%
PC Assembly Exe-cnt Cycles
56 CMPLEI R7,#0,R2 1 5
57 BNEZ R2,#TGT_Fvoid array add ref 12 1 1
58 NOP 1 1
59 NOP 1 1
60 RPT R7,#LE_Fvoid array add ref 11 1 1
61 ORI RO, #4,R2 1 1
62 NOP || NOP 1 1
64 LDW *R4+=R2,R8 || LDW *R5+=R2,R3 2048 10240
66 ADD R3,R8,R9 2048 2048
.label LE_Fvoid_array add ref 11
67 STW R9,*R6+=R2 2048 2048
.label TGT Fvoid array add ref 12
68 JR R15 1
69 NOP 1
70 NOP || NOP 1

Number in the ‘Exe-Cnt’ column is execution count, or how many times that particular
packet was executed, and number in the ‘Cycles’ column is the cycle count. Where the
two number differ, usually cycle count is an integer multiple of the execution count,
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with the ratio being number of cycles each instance of the packet takes to execute,
usually due to stalling in the execution.

By looking at either number, one can quickly tell the loop body from rest of the code, as
the loop body is iterated many times. In this example, the loop is iterated 2048 times,
so each execution packet in the loop body is executed 2048 times.

The loop body consists of 4 instructions in 3 execution packets, performing,
respectively, 2 loads, 1 operation, and 1 store, exactly as implied in the source code. In
general, plain C code compiles cleanly into scalar instructions.

The first packet of the loop body is taking 10240 cycles to execute 2048 times, so 5
cycles each time. Note that the stalled execution packet is executing 2 parallel loads,
and the very next packet is adding up the 2 destination registers of the loads. The
stalling is due to load-to-use latency of 5 cycles.

Also note that the code has conditional branches, BNEZ, although the branch is not
taken (otherwise the loop is completely bypassed and would get zero execution and
cycle counts. The conditional branch is there in the assembly to guard against the case
when the len (length) argument is zero, to truly implement the correct behavior of the
C-language for loop.

Performance from this plain C code is quite poor, taking 5+1+1 = 7 cycles per iteration,
with exactly one addition operation achieved per iteration. The whole function
execution takes 14,352 cycles. In subsequent sections we will show how performance
can be drastically improved.

8.2.2  Optimization 1: Vectorized Code

We make our first optimization revision by replacing scalar processing with vector
processing, as shown in the following code:
//**************'k'k**'k'k***********************'k'k************************
// Optimization 1: vectorization
//**************'k'k**'k'k***********************'k'k************************
void array_add_opt1(int * A, int * B, int * C, int len)
{

int vecw = chess_elementsof(dvintx);

dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * vptrC = (dvint *) C;

dvintx vA, vB, vC;

for (int i=0 ; i<len/vecw; i++)
{
VA = sign_extend(*vptrA++);
VB = sign_extend(*vptrB++);
vC = VA + VB;
*vptrC++ = extract(vC);
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We use a pragma chess_elementsof(dvintx) to acquire the vector width, as the number
of elements in the dvintx type. Since source/destination arrays are of int type, we
would use dvint as the vector data type in memory, and dvintx as the vector data type
in register file. The two data types have the same number of elements, so it’s just as
valid to code vecw = chess_elementsof(dvint).

We cast each source and destination array points to dvint pointers, and declare vector
variables VA, vB, vC, of dvintx type.

In the loop body, we perform signed vector loads via sign_extend() intrinsic function
with vector pointer dereferencing with post-increment. Sign_extend is thus named to
indicate that we are sign-extending from standard int (32-bit) type into extended word
(48-bit) type for each element of the array.

We load the two source operands vA and vB, we add them up into vC, and we store out
vC. The store is coded as vector pointer dereferencing and the extract() intrinsic
function. Exact is thus names to indicate that we are extracting part of the extended
word (48-bit) in each vector lane into a standard int type (32-bit) before storing into
memory.

The generated (and cosmetically manually edited) profiling instruction report that
shows compiled assembly with execution count and cycle count information is as
follows:

Function detail: array add optl void_array add optl P__sint P__sint P__sint sint

Low PC 72

High PC : 95

Size in program memory: 24
Cycle-count 1044 ( 1.11%)
Instruction-count : 398 ( 0.49%)
Instruction Coverage : 100.00%

PC Assembly Exe-cnt Cycles
72 SRAI R7,#31,R2 1 1
73 ANDI R2,#15,R2 1 1
74 ADD R2,R7,R7 1 1
75 SRAI R7,#4,R2 1 1
76 CMPLEI R2,#0,R7 1 5
77 BNEZ R7,#TGT_Fvoid array add optl 15 1 1
78 NOP 1 1
79 NOP 1 1
80 RPT R2,#LE Fvoid array_add optl_14 1 1
81 ORI RO, #64,R7 1 1
82 NOP 1 1
83 DVLDW_P *R4+=R7,V2:V3|| DVLDW_P *R5+=R7,V0:V1 128 768
85 VAddW v2:V3,V0:V1,V4:V5 128 128

.label LE Fvoid array add optl_14
86 DVSTW_P V4:V5,*R6+=R7 128 128

.label TGT Fvoid array add optl_15
87 JR R15 1 1
88 NOP 1 1

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 97



89 NOP || NOP || NOP || NOP || NOP || NOP || NOP 1 3

The vectorized function takes 1044 cycles to execute, and is about 13.7x the
performance of the scalar code. Basically we gain a speedup of 16x by processing a
dvint, 16 elements of 32-bit, per iteration, but the loop executes 6+1+1 = 8 cycles per
iteration, versus 7 cycles per iteration in the scalar loop, so we give back some of the
speedup from vectorization.

That the compiled assembly is still relatively clean, and the loop body still has 4
instructions in 3 execution packets. The 4 instructions are respectively 2 vector loads,
one vector addition, and one vector store. Here the dereference of pointer with post-
increment in the C code maps perfectly to the vector load/store instructions.

The higher stall count in the first execution packet of the loop body, 6 cycles in the
vectorized loop, versus 5 cycles in the scalar loop, is due to processor pipelining. Vector
addition happens to have its source operands forwarded from the load unit one cycle
later than scalar addition can forward its source operands, so load-to-use latency for
vector operations is one cycle longer.

8.2.3 Optimization 2: Unroll and Pipeline the Loop

Next we tackle the inefficiency caused by load-to-use latency, as shown in the
following optimized code:
//*********************************************************************
// Optimization 2: pipelining & unrolling
//*********************************************************************
void array_add_opt2(int * A, int * B, int * restrict C, int len)
{

int vecw = chess_elementsof(dvintx);

dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * restrict vptrC = (dvint *) C;

dvintx vA, vB, vC;

for (int i=0 ; i<len/vecw; i++) chess_unroll_loop(8)
chess_prepare_for_pipelining chess_loop_range(16,)

VA = sign_extend(*vptrA++);
VB = sign_extend(*vptrB++);
vC = VA + VB;

*yptrC++ = extract(vC);

}

We cannot really reduce the latency. What we can do is to fill the pipeline with useful
work while the latency is played out. Technique to do that is called software pipelining,
and is enabled by the 3 pragma annotated on the for statement:
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» chess_unroll_loop(8) tells the compiler to replicate the loop body 8 times and adjust
the loop iteration count accordingly, by dividing it by 8.

» chess_prepare_for_pipelining tells the compiler to software pipeline this loop,
causing the loop body code (which could be the original loop contents or already
replicated through loop unrolling) to be folded and scheduled into multiple
iterations, and consequently there will be a prolog of the loop and an epilog of the
loop.

Often chess_unroll_loop() and chess_prepare_for_pipelining pragmas go hand-in-
hand. Most loops would need both pragmas to achieve the best performance.

» chess_loop_range(16,) tells the compiler that this loop is guaranteed (by the
programmer) to run at least 16 iterations. This pragma causes generated code to
do without the “what if len is zero” checking and conditional branch, resulting in a
more streamlined control flow in the compiled assembly.

One other thing to point out is the keyword restrict on address pointers C and vC that
we use to write back to memory. This restrict keyword is telling the compiler that it is
safe to perform these writes in any order relative to other memory reads and/or writes.
Without the restrict keyword, compiler cannot overlap multiple instances of the
original load/store operations to software-pipeline the loop effectively.

The corresponding profiling instruction report is shown next.

Function detail: array add opt2 void array add opt2 P__sint P__sint P__sint sint

Low PC : 96

High PC 167

Size in program memory: 72
Cycle-count : 141 ( 0.15%)
Instruction-count : 139 ( 0.17%)
Instruction Coverage : 100.00%

PC Assembly Exe-cnt Cycs
96 SRAI R7,#31,R2 1 1
97 ORI RO,#64,R2 || ANDI R2,#15,R3 1 1
99 ADD R3,R7,R7 1 1

100 SRAI R7,#7,R7 || DVLDW_P *R4+=R2,V30:V31|| DVLDW P *R5+=R2,V26:V27 1 1

103 ADDI R7,#-1,R7 || DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19 1 1

106 DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V1l 1 1

108 DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3 1 1

110 DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1 1 1

112 DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9 1 1

114 RPT R7,#LE_Fvoid array add opt2_54 1 1

115 VAddwW Vv30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17 1 1

118 VAddW Vv22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2|| DVLDW_P *R5+=R2,V24:V25 1 1

122 VAddW V14:V15,v10:V11,Vv10:V11|| DVLDW_P *R4+=R2,V30:V31l|| DVLDW_P *R5+=R2,V26:V27|| DVSTW_P V18:V19,*R6+=R2 15 15

126 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19|| DVSTW_P V10:V11l, *R6+=R2 15 15

130 VAddW Vv4:V5,V0:V1,V0:V1|| DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11l|| DVSTW_P V2:V3, *R6+=R2 15 15

134 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R4+=R2,V6:V7|| DVLDW P *R5+=R2,V2:V3|| DVSTW_P VO0:V1, *R6+=R2 15 15

138 VAddwW v20:V21,V16:V17,V16:V17|| DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1|| DVSTW_P V8:V9,6 *R6+=R2 15 15
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142 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9|| DVSTW_P V16:V17,*R6+=R2 15
146 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17|| DVSTW_P V28:V29,*R6+=R2 15
150 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2|| DVLDW_P *R5+=R2,V24:V25 15
154 VAddW V14:V15,V10:V11,V10:V11|| DVSTW_P V18:V19,*R6+=R2

156 VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11,*R6+=R2

158 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R6+=R2

160 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R6+=R2

162 JR R15 || VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R6+=R2
165 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R6+=R2

R R R R R R R

167 DVSTW_P V28:V29,*R6+=R2

This optimized function takes just 141 cycles to execute and achieves 7.4 times the
performance of the previous code, which is vectorized but not yet software pipelined.
If we compare it to the original plain C code, the speedup is 101.8 times.

This loop has a theoretical max throughput of one dvint vector addition, 16 lanes x 32-
bit, per clock cycle. It's bounded by each dvint vector operation needing 2 loads and 1
store for input/output, saturating the 3 superbanks x 512-bit of VMEM bandwidth.
Vector math throughout for addition is actually one dvintx addition per vector slot, so
in this loop, vector math is only 50% utilized. Each execution packets in the loop body
is packed with one VAddW (double vector addition), 2 DVLDW (double vector load word
type), and one DVSTW (double vector store word type), confirming the math and
memory utilization.

In terms of efficiency, 128/141 = 91%. Overhead comes from 13 cycles spent setting
up the local frame on the stack, extracting arguments from the stack, setting up the
loop, and finally for 2 cycles of pipeline bubble from executing a return instruction (JR
R15) to the caller.

One note about loop unrolling factor: performance wise, it’s not necessary to unroll 8
times. It is convenient to constrain a compute function to limit loop iteration count to
a power of 2, thus unrolling by 2, 4, 8, is more convenient than unrolling by 5, 6, 7, etc.
Minimal number of times to unroll a loop depends on how much vacancy there isin a
single iteration due to load to use latency and sometimes also vector math operation
latency. With compiler and ISS (instruction set simulator), one can just experiment
with different unrolling factors and find a factor that works.

For a simple, single-operation loop like in the array addition example, we need to unroll
6 times to achieve optimal performance. Generally speaking, if unrolling by K times
achieves the optimal performance, unrolling more than K times should achieve the
same performance, but would cause the compiled code size to grow. VPU Instruction
Cache has a set capacity, 16K Bytes since Orin (previous generation), so we should not
unnecessarily increase the code size.

8.3 2D Array Addition

Next we shall use a two-dimension array addition function to illustrate how we leverage
the multi-dimensional address calculation feature of agens to collapse nested for loops
to minimize looping overhead and achieve optimal performance.
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8.3.1 Scalar Code

The following code implements a two-dimension array addition.
//*********************************************************************

// Function implemented with normal/scalar C code
//*********************************************************************
void array2d_add_ref(int * A, int * B, int * C,

int blkw, int blkh,

int lofst_A, int lofst_B, int lofst_C)

{
for (int 1=0 ; i<blkh; i++)
for (int j=0 ; j<blkw; j++)
{
C[1i * lofst_C + j] = A[i * lofst_A + j] + B[1i * lofst_B + j];
}
}

As each source and operand array is two dimensional, in the function’s arguments we
convey block width and block height of the computation, and line offset for each
operand array. This function uses two levels of nested for loops to iterate through
rows and columns. In the loop body, the statement carrying out the addition operation
indexes into each operand array with two-dimensional indexing to acquire each input
data element and to store each output data element.

Compiled assembly, along with execution count and cycle count is shown next:

Function detail: array2d add ref
void_array2d_add_ref P__sint P__sint P__sint sint sint sint sint sint

Low PC : 168

High PC 199

Size in program memory: 32
Cycle-count ;14438 (13.01%)
Instruction-count : 6218 ( 7.16%)
Instruction Coverage : 100.00%

PC Assembly Exe-cnt Cycles
168 CMPLE R7,R0O,R2 || CMPLE R8,R0,R3 1 5
170 BNEZ R3,#TGT_Fvoid array2d add ref 23 1 1
171 NOP 1 1
172 NOP 1 1
173 RPT R8,#LE_Fvoid array2d add ref 22 1 1
174 ORI RO,#4,R3 1 1
175 NOP 1 1
176 BNEZ R2,#TGT_Fvoid_array2d add ref 20 8 8
177 NOP 8 8
178 NOP 8 22
179 RPT R7,#LE_Fvoid array2d add ref 19 8 8
180 ORI R6,#0,R13 8 8
181 MOV R5,R8 || MOV R4,R12 || NOP 8 16
184 LDW *R12+=R3,R17 || LDW *R8+=R3,R14 2048 10240
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186 ADD R14,R17,R18 2048 2048
.label #LE Fvoid array2d add ref 19

187 STW R18,*R13+=R3 2048 2048
.label TGT Fvoid array2d add ref 20

188 SLLIADD R10,#2,R5,R5|| SLLIADD R9,#2,R4,R4 8 8
.label LE Fvoid array2d add ref 22

190 SLLIADD R11,#2,R6,R6 8 8
.label TGT Fvoid array2d add ref 23

191 JR R15 1

192 NOP 1

193 NOP || NOP || NOP || NOP || NOP || NOP || NOP 1

Block width and height are configured as 256 and 8 respectively. The execution count
numbers show execution packets that are outside the loops (those with execution
count of 1), between the loops (those with execution count of 8), and inside the inner-
most loop (those with execution count of 2048).

Compared to the one-dimensional array addition with the same number of element-
wise additions, this function takes 14438 - 14352 = 86 cycles longer, or 0.6% slower.
We can look at these additional number cycles as the cost of performing two-
dimensional addressing. This cost strongly depends on the block width and height.

The additional number of cycles (86) depends only on the block height, as the compiled
code has a fixed number of instructions between loop levels, and they are executed 8
times in this case because the outer loop is iterated 8 times.

The proportion of cycles (0.6%) spent between the loops roughly depends only on the
block width. The compiled code has a fixed number of instructions in the inner-most
loop body as well, which is executed block_width * block_height = 2048 times. Thus,
proportion of time spend between loop levels is some (K1 * block_height) / (K2 *
block_width * block_height) = K1 / (K2 * block_width) = K3 / block_width. The wider the
block width, the smaller proportion the time spent between loop levels.

In this code example, we do not see a large proportion of time spent to handle two-
dimensional addressing, but this is due to the block width being large enough for the
inner loop to be unrolled 8 times and with sufficient iteration count to support the
unrolling, as 16 * 16 = 256. If the block width is less than 256, we would see larger
proportion of processing time spent on two-dimensional addressing. Later in 8.3.4, we
will show cycle counts across different block dimension configurations.

8.3.2  Optimization 1: Vectorized, Unrolled and
Pipelined Loop

Here we apply the vectorization and unrolling/pipelining techniques shown in 8.2.2 and
8.2.3 respectively on the two-dimensional addition function.

[/ ExERRRRkkkkkkkhkkkhkkkkhkhrhkhkhrhrhbhbrkhrhrhdrhrhrhdrhrhrhbhbrhrhrrskx

// Optimization 1: vectorized, unrolled and pipelined
//*********************************************************************
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void array2d_add_opt1(int * A, int * B, int * restrict C,
int blkw, int blkh,
int lofst_A, int lofst_B, int lofst_C)

dvintx vA, vB, vC;

int idx_A, idx_B, idx_C;

int vecw = chess_elementsof(dvint);
dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * restrict vptrC = (dvint *) C;

for (int i=0 ; i<blkh; i++)
{
for (int j=0 ; j<blkw/vecw; j++) chess_loop_range(16,)
chess_unroll_loop(8) chess_prepare_for_pipelining

VA = sign_extend(*vptrA++);
vB = sign_extend(*vptrB++);
vC = VA + VB;
*vptrC++ = extract(vC);

}

A += lofst_A;

B += lofst_B;

C += lofst_C;

vptrA = (dvint *) A;

vptrB = (dvint *) B;

vptrC = (dvint *) C

}

We still need nested for loops to iterate horizontally and vertically. After the inner
loop, between loop levels, there is update of pointers to adjust for the line offset so we
can start the next row coming back to the inner loop.

Note that the chess_loop_range, chess_unroll_loop, and chess_prepare_for_pipelining
pragmas are applied only the inner loop, as it is generally not improving performance to
apply them on the outer loop as well.

The profiling instruction report is shown next:

Function detail: array2d add_optl void array2d_add optl P_ sint P_ sint P_ sint sint sint sint sint sint

Low PC : 200

High PC : 287

Size in program memory: 88

Cycle-count : 226 ( 0.20%)

Instruction-count : 204 ( 0.23%)

Instruction Coverage : 100.00%
PC Assembly Exe-cnt
Cycles
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200 CMPLEI R8,#0,R2 1 5

201 BNEZ R2,#TGT_Fvoid array2d_add optl_ 82 1 1
202 NOP 1 1
203 NOP 1 1
204 SRAI R7,#31,R3 1 1
205 ANDI R3,#15,R3 1 1
206 RPT R8,#LE_Fvoid_array2d add optl_81 || ADD R3,R7,R7 1 1
208 SRAI R7,#7,R7 1 1
209 ORI RO,#64,R2 || ADDI R7,#-1,R7 1 1
211 MOV R5,R3 || MOV R4,R12 8 16
213 DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27 8 8
215 DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19 8 8
217 DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11 8 8
219 DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3 8 8
221 DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1 8 8
223 RPT R7,#LE_Fvoid array2d add optl_62 || DVLDW_P *R12+=R2 8 8
226 ORI R6,#0,R8 || VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21|| DVLDW_P *R3+=R2,V16:V17 8 16
230 VAddW V22:vV23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2|| DVLDW_P *R3+=R2,V24:V25 8 8
234 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27|| DVSTW_P V18:V19,*R8+=R2 8 8
238 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19|| DVSTW_P V10:V11, *R8+=R2 8 8
242 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11|| DVSTW_P V2:V3,*R8+=R2 8 8
246 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3|| DVSTW_P V0:V1, *R8+=R2 8 8
250 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1|| DVSTW_P V8:V9, *R8+=R2 8 8
254 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R12+=R2,V12:V13|| DVLDW_P *R3+=R2,V8:V9|| DVSTW_P V16:V17,*R8+=R2 8 8
258 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21|| DVLDW_P *R3+=R2,V16:V17|| DVSTW_P V28:V29,*R8+=R2 8 8
.label LE Fvoid array2d_add optl_62

262 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2|| DVLDW_P *R3+=R2,V24:V25 8 8
266 SLLIADD R9,#2,R4,R4|| SLLIADD R10,#2,R5,R5|| VAddW V14:V15,V10:V11,V10:V11|| DVSTW_P V18:V19, *R8+=R2 8 8
270 SLLIADD R11,#2,R6,R6|| VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11l,*R8+=R2 8 8
273 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R8+=R2 8 8
275 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R8+=R2 8 8
277 VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R8+=R2 8 8
279 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R8+=R2 8 8
.label LE Fvoid array2d_add optl_81

281 DVSTW_P V28:V29, *R8+=R2 8 8
.label TGT_Fvoid_array2d add_optl_82

282 JR R15 1 1
283 NOP 1

284 NOP || NOP || NOP || NOP 1 3

It is not easy to spot the inner loop from the report, as the execution counts are 8 for
both between-loop packets and inner loop packets. This is because of the inner-loop is
unrolled 8 times, and with prolog and epilog together executing unrolled loop once, the
actual inner loop body is executed just once, as 256 / (8 * chess_elementsof(dvint)) - 1
=256/128-1=1. Blank lines are manually inserted to better visualize the inner-most
loop.
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There is still significant speedup from the scalar code, 14438/226 = 64.9 times. The
inner loop is still packed with 1 VAddW, 2 DVLDW, and 1 DVSTW per execution packet,
in all 8 execution packets.

The use of nested for loops and clock cycles spent between loop levels does add to the
overhead. Compared to the ideal time spent, which is (256 * 8) / 16 = 128 cycles, the
function execution time is only 128/226 = 57% efficient. There is relative high
overhead to handle 2D addressing, versus 91% efficient in the 1D array addition case.

As argued in the previous section, on scalar code performance, proportion of time
spent between loop levels is mostly a function of the inner-loop iteration count. In the
configuration where profiling instruction report is generated, we operate on 8 tall x 256
wide arrays. If it's not as “short-and-wide” in aspect ratio, say it’s 16 tall x 128 wide or
32 tall x 64 wide, we don’t have sufficient number of iterations for the inner-most loop
to fully unroll and pipeline, and we have smaller iteration count on the inner loop, and
both would contribute to reducing the overall efficiency of the code.

In 8.3.4 we will present function cycle count across various 2D array dimensions.

8.3.3  Optimization 2: Leveraging Agen to Collapse
Nested Loops

In this section we tackle the performance degradation from two-dimensional
addressing.

In image and vision processing, we often need even higher dimension of address
calculation. For example, in 2D convolution, we have 2 dimensions from producing
some block-width x block-height of output block, and we have kernel-width x kernel-
height looping to perform convolution between points in the 2D convolution kernel and
2D neighborhood around each output pixel. The address generator, or agen, feature is
there to support up to 6 dimensions of address calculation.

The following optimized code shows how agens are configured and utilized for the 2D
array addition function:
//**************'k'k**'k'k***********************'k'k************************
// Optimization 2: leverage agen, initialization
//**************'k'k**'k'k***********************'k'k************************
void array2d_add_opt2_init(int * A, int * B, int * C,

int blkw, int blkh,

int lofst_A, int lofst_B, int lofst_C,

int * niter, AgenCFG * agen_ptr)

int vecw = chess_elementsof(dvint);
dvintx vA, vB, vC;

agen in@, in1, out;

short niter1 = blkw/vecw;

short niter2 = blkh;

* niter = niter1 * niter2;
agen_wrapper_t wrapper;
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in@ = init(A);
wrapper.size = sizeof(int);

wrapper.n1l = niter1;
wrapper.n2 = niter2;
wrapper.s1l = vecw;

wrapper.s2 = lofst_A;

INIT_AGEN2(in@, wrapper);

in1 = init(B);

wrapper.size = sizeof(int);
wrapper.ni niter1;
wrapper.n2 = niter2;
wrapper.s1l = vecw;
wrapper.s2 = lofst_B;
INIT_AGEN2(in1, wrapper);

out = init(C);

wrapper.size = sizeof(int);
wrapper.ni niter1;
wrapper.n2 = niter2;
wrapper.s1l = vecw;
wrapper.s2 = lofst_C;
INIT_AGEN2(out, wrapper);

chess_separator_scheduler();

*agen_ptr++ = extract_agen_cfg(in@);
*agen_ptr++ = extract_agen_cfg(in1);
*agen_ptr++ = extract_agen_cfg(out);

[[RxRRRRkkkkkkbhhkkhkkhdhhhhrhbhbrhrhbhbhhhhrhbrbhhrhbrbhhrkbhbrhrhrrrx

// Optimization 2: leverage agen
//*********************************************************************
void array2d_add_opt2(int niter, AgenCFG * agen_ptr)
{

agen_A in@ = init_agen_A_from_cfg(*agen_ptr++);

agen_B in1 = init_agen_B_from_cfg(*agen_ptr++);

agen_C out = init_agen_C_from_cfg(*agen_ptr++);

dvintx vA, vB, vC;

for (int i=0 ; i<niter; i++) chess_loop_range(16,)
chess_unroll_loop(8) chess_prepare_for_pipelining

vA = dvint_load(in@);
vB = dvint_load(in1);
vC = VA + VB;
vstore(vC, out);
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}

First note that there are 2 functions, array2d_add_opt2_init() and array2d_add_opt2().
Agen parameter calculation and configuration is placed in an “init” function meant to
be called just once or twice per application. By separating out the agen parameter
calculation and configuration portion, we reduce the per-tile computation time.

Note that the configured agens are saved to memory via the AgenCfgST instruction
(see 9.9.3.12) one at a time, and are restored from memory via AgenCfgLD instruction
(see 9.9.3.13) one at a time before the compute loop.

In the init function, we still have to calculate inner loop number of iterations, niter1,
and outer loop number of iterations, niter2, but they are not used to iterate nested for
loops. Instead, they are used in agen programming, as it’'s agen that needs to know
about these iteration count to carry out the 2D addressing. Product of niter1 and
niter2, niter, is returned to the main function, to supply to the compute function to
iterate the collapsed for loop.

In the init function, we declare wrapper variable of agen_wrapper_t type. Using agen
wrapper allows the programmer to specify the step size of various dimensions and use
macros like INIT_AGENZ to carry out the complex expressions (see 6.4.1) to calculate
the address modifiers, instead of coding the complex expressions directly. In general,
we pre-determine dimension needed in the agens, say K dimensions, we program
wrapper nl..nk, s1..sk, and then call INIT_AGENk to complete the agen programming.

There is a straightforward producess to convert the indexing expression in the scalar
code into the step parameters s1..sk for the wrapper. For example, array A is indexed
as

Al * lofst_A + ]

in the scalar code. We map the inner loop variable j into loop level 1 of agen, and outer
loop variable i into loop level 2.

Fruthermore, in the process of vectorizing the 2D array addition, we process one dvint
at a time, so the original indexing should be converted into loading from

A+i2 *lofst_A+il*vecw

with vecw = chess_elementsof(dvint). We take the vectorized indexing expression and
basically fill step parameters s1..sk with whatever scaling factor is being multiplied with
the corresponding loop variable i1..ik. Thus, we program them as

wrapper.s1l = vecw;
wrapper.s2 = lofst_A;

In the loop body, loading through agen-based load is performed via intrinsic function
dvint_load(agen), and storing through agen-based store is performed via intrinsic
function vstore(variable, agen). vstore() function is type-overloaded to handle various
vector data types.

Note that the 2 agens for load, inO and in1, and the one agen for store, out, are
declared as variables of agen_A/B/C types respectively. These _A/B/C suffixes are to

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 107



denote superbank A/B/C. They do not really need to match the actual pointer values
being in superbank A/B/C, but are there to guide compiler scheduling, so that we don’t
load from the same superbank to store to the same superbank multiple times in an
execution packet and cause unnecessary performance degradation.

With the agen taking up the 2D address calculation, we can collapse the 2 levels of
nested for loops into just one level, and run it niter = niter1 * niter2 times. This also
helps with unrolling and software pipelining, as number of iterations being a multiple of
8 and being at least 16 are now constraints on the overall loop iteration count, and can

apply

to more array dimension cases.

The profiling instruction report is shown next:

Function deta

Low PC
High PC

Size in p

il: array2d add_opt2 void_ array2d_add opt2 sint Pdvuint

: 344
: 415

rogram memory: 72

Cycle-count : 146 ( 0.13%)
Instruction-count : 141 ( 0.16%)
Instruction Coverage : 100.00%

PC Assembly

Exe-cnt Cyc

344 ORI RO,#64,R4 || SRAI R4,#3,R2 1 1
346 ADDI R2,#-1,R2 1 1
347 AgenCfgLD *R5+=R4,A0 1 1
348 AgenCfgLD * (R5+0) ,A2 1 1
349 AgenCfgLD * (R5+64) ,Al 1 4
350 DVLDW_P *A0++,W12:W13 1 1
351 DVLDW_P *AO++,V10:V11|| DVLDW_P *A2++,V14:V15 1 1
353 DVLDW_P *AO++,V6:V7|| DVLDW_P *A2++,W8:W9 1 1
355 DVLDW_P *AO++,V2:V3|| DVLDW_P *A2++,W4:W5 1 1
357 DVLDW_P *AO++,V0:V1|| DVLDW_P *A2++,WO0: W1l 1 1
359 DVLDW_P *AO++,V4:V5|| DVLDW_P *A2++,W2:W3 1 1
361 RPT R2,#LE_Fvoid_array2d add_opt2 54|| DVLDW_P *A2++,W6:W7 1 1
363 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *AO++,V8:V9|| DVLDW_P *A2++,W10:Wll 1 1
366 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *AO++,V12:V13|| DVLDW_P *A2++,W14:W15|| DVSTW_P V16:V17,*Al++ 1 1
370 VAdAW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19,*Al++|| DVLDW_P *AO++,W12:W13|| DVLDW_P *A2++,V14:V15 15 15
374 VAdAW V2:V3,WO0:W1,V22:V23|| DVLDW_P *AO++,V10:V11|| DVLDW_P *A2++,W8:W9|| DVSTW_P V20:V21,*Al++ 15 15
378 VAddW VO0:V1,W2:W3,V24:V25|| DVLDW_P *AO++,V6:V7|| DVLDW_P *A2++,W4:W5|| DVSTW_P V22:V23,*Al++ 15 15
382 VAdAW V4:V5,W6:W7,V26:V27|| DVLDW_P *AO++,V2:V3|| DVLDW_P *A2++,W0:W1l|| DVSTW_P V24:V25,*Al++ 15 15
386 VAddAW V8:V9,W10:W11l,V28:V29|| DVLDW_P *A0++,V0:V1|| DVLDW_P *A2++,W2:W3|| DVSTW_P V26:V27,*Al++ 15 15
390 VAddW V12:V13,W14:W15,V30:V31|| DVLDW_P *AO++,V4:V5|| DVLDW_P *A2++,W6:W7|| DVSTW_P V28:V29,*Al++ 15 15
394 VAddAW W12:W13,V14:V15,V16:V17|| DVLDW_P *AO++,V8:V9|| DVLDW_P *A2++,W10:Wll|| DVSTW_P V30:V31l,*Al++ 15 15
.label LE_Fvoid_array2d add opt2_ 54

398 VAddW Vv10:V11,W8:W9,V18:V19|| DVLDW_P *AO0++,V12:V13|| DVLDW_P *A2++,W14:W15|| DVSTW_P V16:V17,*Al++ 15 15
402 VAdAdW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19, *Al++ 1 1
404 VAdAdW V2:V3,W0:W1,V22:V23|| DVSTW_P V20:V21,*Al++ 1 1
406 VAAdAW VO0:V1,W2:W3,V24:V25|| DVSTW_P V22:V23,*Al++ 1 1
408 VAAAW V4:V5,W6:W7,V26:V27|| DVSTW_P V24:V25,*Al++ 1 1
410 JR R15 || VAddW V8:V9,W10:W11l,Vv28:V29|| DVSTW_P V26:V27,*Al++ 1 1
413 VAddW V12:V13,W14:W15,V30:V31|| DVSTW_P V28:V29, *Al++ 1 1
415 DVSTW_P V30:V31,*Al++ 1 3
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Now the loop body stands out, as there is just one loop level. Scalar code before the
loop is relatively terse, as agen parameter calculation and configuration is moved to the
init function, which takes 51 cycles (not shown here). We don’t add these cycles to the
tile compute function cycle count, as the init function is run just once per application.

It takes just 146 cycles to run the per-tile compute function, compared to 226 cycles
in the vectorized and unrolled/pipelined version that still needs to deal with 2D address
calculation. In this version, agen hardware takes care of 2D address calculation in the
background, so we are not spending any clock cycle. Efficiency of this code is 128/146
= 88%.

834 Performance Across 2D Array Dimensions

We vary the array dimension and collect cycle count, as follows. For optimization 1 and
2, efficiency ratios vs ideal cycle counts are also shown in parenthesis.

Table 17. Performance optimization across array dimensions

Array Array Scalar code Optimization 1 Optimization 2 (vector,
Height | Width (vector, unroll/pipeline, agen)

cveles P e cycles (efficiency %)

cycles (efficiency %)

4 512 14,394 186 (69%) 146 (88%)
8 256 14,438 226 (57%) 146 (88%)
16 128 14,526 322 (40%) 146 (88%)
16 512 57,534 690 (74%) 530 (97%)
32 256 57,710 850 (60%) 530 (97%)
64 128 58,062 1,234 (41%) 530 (97%)

We can see that optimization 2 code’s performance is not at all sensitive to block width
versus height changes, only to the total number of data points, and efficiency is good.
Scalar code performance is a weak function of the block width, wider blocks perform
slightly better. Optimization 1 code’s performance is better than scalar code, but is
worse than optimization 2 code’s performance, and the narrower the block width, the
worse off it gets.

8.4 2D Convolution

Next we see how 2D convolution, a common image processing step, is accelerated by
leveraging the multi-dimension address calculation feature of agens, along with store-
path rounding and predicated vector math instructions.
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8.4.1 Scalar Code

A straightforward implementation of 2D convolution is as follows.
//*********************************************************************

// Filter implemented with natural C code to do 2D addressing
//*********************************************************************
void filter_short_ref(short *data, short *coef, short *out,
int kw, int kh, int gbits, int blkw, int blkh,
int lofst_data, int lofst_out)

{
short sdata;
short scoef;
int prod;
long long acc;
int rnd_add = (gbits == 8) ? @ : (1 << (gbits-1));
for (int 14=0 ; id<blkh; i4++)
for (int i3=0 ; i3<blkw; i3++) {
acc = 0;
for (int i2=0 ; i2<kh; i2++)
for (int 11=0 ; il<kw; i1++) {
sdata = data[(i4 + i2)*lofst_data + i3 + i1];
scoef = coef[i2*kw + i1];
prod = sdata * scoef;
acc += prod;
}
acc = (acc + rnd_add) >> gbits;
out[i4*lofst_out + i3] = acc;
}
}

The function carries out 2D convolution with 4 levels of nested for loop. The 4 levels of
looping is needed to drive indexing of data and coefficient arrays and output array.
Data indexing has 4 dimensions, horizontally and vertically to traverse in the kw x kh
neighborhood to perform dot-product with the coefficient array, and then horizontally
one vector width at a time, vertically one row at a time, to produce the 2D array output.
Coefficient and output each has 2 dimensions of indexing.

There are statements between the outer 2 loop levels and the inner 8 loop levels.
Before entering the inner 2 loop levels, we clear the accumulator. After exiting the
inner 2 loop levels, having already accumulated kw * kh products to the accumulator,
we perform rounding on the accumulated sum then store the rounded outcome to the
output array.

The profiling instruction report of this scalar code is as follows:

Function detail: filter short ref void filter short ref ...

Low PC : 56
High PC : 143
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Size in program memory: 88

Cycle-count : 285663 (71.77%)
Instruction-count : 191024 (73.10%)
Instruction Coverage : 94.92%
PC Assembly Exe-cnt Cycles
56 ADDI R9,#-1,R2 || ADDI R1,#20,R1l 1 1
58 CMPEQ R9,RO,R19 || ORI RO,#1,R3 1 1
60 SLL R3,R2,R2 || CMPLTI R9,#32,R13|| STW R13,* (R1+2036) 1 1
63 ADDI R9,#-32,R18 || CMPLEI R7,#0,R14|| STW R10,* (R1+2028) 1 1
66 ORI RO,#2,R20 || ORI RO,#32,R3 1 1
68 J #__ 114 void filter short ref || ORI RO,#0,R23 1 1
70 SUB R3,R9,R2 || MUX R19,R0,R2,R17|| STW R11,* (R1+2032) 1 1
73 SRAI R17,#31,R15 || CMPLEI RS8,#0,R3|| STW R15,* (R1+2040) 1 3
76 J #__ 113 void filter short ref 32 32
77 SLLIADD R10,#1,R6,R10 32 32
78 ORI RO,#0,R22 || MOV R6,R11 32 96
80 BNEZ R3,#TGT_J Fvoid filter short ref 81 2048 2048
81 ADD R4,R22,R24 2048 2048
82 NOP 2048 2048
83 RPT R8,#TGT_Fvoid filter short ref 48 2048 2048
84 LHI #0,R28 2048 2048
85 ORI RO,#0,R23 || MOV R5,R25 2048 2048
87 BNEZ R14,#TGT_Fvoid filter_ short ref 48 6144 6144
88 NOP 6144 6144
89 NOP 6144 14336
90 RPT R7,#LE_Fvoid filter short ref 46 6144 6144
91 MOV R24,R27 || MOV R25,R26 6144 6144
93 NOP 6144 6144
94 LDH *R27+=R20,R30 || LDH *R26+=R20,R29 18432 92160
96 MUL R29,R30,R30 18432 18432
97 ADD R23,R30,R30 || SRAI R30,#31,R31 18432 18432
99 ORI R30,#0,R21 18432 18432
100 ADD R28,R31,R30 || CMPLTU R30,R23,R31 18432 18432
102 MOV R21,R23 || ADD R30,R31,R28 18432 18432
104 SLLIADD R12,#1,R24,R24|| SLLIADD R7,#1,R25,R25 6144 6144
106 ADD R15,R28,R25 || ADD R17,R23,R24 2048 2048
108 SRL R24,R9,R23 || CMPLTU R24,R23,R26 2048 2048
110 ADDI R22,#2,R22 || ADD R25,R26,R25 2048 2048
112 SRA R25,R18,R25 || SLL R25,R2,R26 2048 2048
114 OR R23,R26,R23 2048 2048
115 MUX R13,R23,R25,R23 2048 2048
116 MUX R19,R24,R23,R23 2048 2048
117 STH R23,*R11+=R20 2048 2048
118 CMPLTU R11,R10,R23 2080 10400
119 BNEZ R23,#TGT_Fvoid filter short_ref 24 2080 2080
120 NOP 2080 2080
121 NOP 2080 6176
122 SLLIADD R12,#1,R4,R4|| LDW * (R14+2044) ,R23 32 32
124 LDW * (R1+2036) ,R22 32 32
125 LDW * (R1+2032) ,R11 32 32
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126 LDW *(R1+2028) ,R10 32 64

127 ADDI R23,#1,R23 32 32
128 SLLIADD R22,#1,R6,R6 32 32
129 CMPLT R23,R11,R1l1 33 165
130 BNEZ R11,#TGT_Fvoid filter short_ref 20 33 33
131 STW R23,*(R1+2044) 33 33
132 NOP 33 97
133 LDW * (R1+2040) ,R4 1 8
134 JR R4 1 1
135 ADDI R1,#-20,R1 1 1
136 NOP 1 3
137 J #TGT_Fvoid filter short_ref 50 0 0
138 ORI RO,#0,R28 || ORI RO, #0,R23 0 0
140 NOP || NOP || NOP || NOP 0 0

The function takes 285,663 cycles to compute a 64 wide x 32 tall outputs worth of 2D
convolution, about 140 cycles per output, or about 15 cycles per data-coefficient
product. From the rising then falling numbers in the execution count and cycle count,
we can tell where the boundaries of 4 levels of for loop are.

In the inner most loop with execution count of 18432 (which is 64 * 32 * 9), we have a
10 cycle loop, as (92160 + 5*18432) / 18432 = 10. These 10 cycles are from 5 cycles of
load and latency, multiply, add, then a few cycles to perform array indexing needed for
the inner-most loop.

Later in the optimized code, we will see how various VPU instructions and agen
features are leveraged, so that we perform all these, loading data/coefficient, multiply-
add, index update, and in vectorized form so doing a double short vector worth thus 32
sets of these, in one cycle. Moreover, the 4 nested for loops are collapsed into one
single loop, with periodic accumulator initialization and rounding and storing of output
all absorbed into the loop body.

8.4.2  Optimization 1: Vectorized and Agen
Optimized Loop

As we have learned in 8.3.3 that, besides vectorization and loop unrolling, software
pipelining, we can leverage multi-dimensional addressing capability of agens to collapse
nested for loops. The following code example includes two functions. There’s an
initialization function to calculate/configure agen parameters and save the agen
configurations to memory. Then there is a run-time compute function to restore the
agens and run the filtering loop.
//*********************************************************************

// Filter optimized, initialization function
//*********************************************************************
void filter_short_opt1_init(short *data, short *coef, short* restrict out,

int kw, int kh, int gbits, int blkw, int blkh,

int lofst_data, int lofst_out, int * niter_ptr,

AgenCFG * cfg_ptr)
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int vecw = chess_elementsof(dvshort);
short niter1 kw;
short niter2 = kh;

short niter3 = blkw/vecw;

short niter4 = blkh;

* niter_ptr++ = niter1 * niter2 * niter3 * niter4;
* niter_ptr = niter1 * niter2;

agen data_agen, coef_agen, out_agen;
agen_wrapper_t wrapper;

data_agen = init((vshort*) data);
wrapper.size = sizeof(short);
wrapper.nl = kw;

wrapper.n2 = kh;

wrapper.n3 = blkw/vecw;
wrapper.n4 = blkh;

wrapper.s1l = 1;

wrapper.s2 = lofst_data;
wrapper.s3 = vecw;

wrapper.s4 = lofst_data;
INIT_AGEN4(data_agen, wrapper);

coef_agen = init((vshort*)coef);
wrapper.size = sizeof(short);
wrapper.n1 = kw * kh;

wrapper.n2 = (blkw/vecw) * blkh;
wrapper.s1l = 1;

wrapper.s2 = 0;
INIT_AGEN2(coef_agen, wrapper);

out_agen = init((vshort*)out);
wrapper.size = sizeof(short);
wrapper.nl = kw * kh;
wrapper.n2 = blkw/vecw;
wrapper.n3 = blkh;

wrapper.s1l = 0;

wrapper.s2 = vecw;

wrapper.s3 = lofst_out;
INIT_AGEN3(out_agen, wrapper);
out_agen.round = gbits;

chess_separator_scheduler();

*cfg_ptr++ = extract_agen_cfg(data_agen);
*cfg_ptr++ = extract_agen_cfg(coef_agen);
*cfg_ptr++ = extract_agen_cfg(out_agen);
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[/ xxxRRkkkkkkkbhhhkhhrhbhhhhrhbhhrhrhbhbrhrhrhbrbrhhrhbrhhhrhbhbhhrhrrrk

// Filter optimized, run-time compute function

[/ xxERRRRkkkkkkkhkkkkkkhkhhhrhbkhrhrhbhbhhrhrhbrbrhrhbrbrhrhbhbrhrhrrxk

void filter_short_opt1(int * niter_ptr, AgenCFG * cfg_ptr)

{

int  count_madd = 0;

int count_store = 1;

int pred_madd = 0;

int pred_store = 0;

int niter = * niter_ptr++;

int  niter_in = * niter_ptr;

dvshortx dvdata;

int coef;

dvintx dvacc@, dvaccl;

agen_A data_agen = init_agen_A_from_cfg(*cfg_ptr++);

agen_B coef_agen = init_agen_B_from_cfg(*cfg_ptr++);

agen_C out_agen = init_agen_C_from_cfg(*cfg_ptr++);

chess_separator_scheduler();

for (int i=0; i<niter; i++) chess_prepare_for_pipelining

chess_unroll_loop(8) chess_loop_range(16,) {

dvdata = dvshort_load_di(data_agen);
coef = short_load(coef_agen);
dvacc@ = vmaddhw(dvdata.lo, coef, dvacc®, VPU_ROUND_@, pred_madd);
dvacc1l = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_@, pred_madd);
vstore_i(dvacc@, dvaccl, out_agen, pred_store);
count_madd = (count_madd == niter_in-1) ? @ : (count_madd + 1);
pred_madd = (count_madd!=0) ? (int)OxFFFFFFFF : ©;
count_store = (count_store == niter_in-1) ? @ :(count_store + 1);
pred_store = (count_store==0) ? (int)@xFFFFFFFF : 0;

}

}

Agen programming for data, coefficients and outputs follow the nested loop iteration
counts and data, coefficient, and output indexing in the scalar code.

Nested for loops in the scalar code:
for (int i14=0 ; id<blkh; i4++)
for (int i3=0 ; i3<blkw; i3++) {

for (int i2=0 ; i2<kh; i2++)
for (int 11=0 ; il<kw; i1++) {
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t
}

Let's compare the data indexing in the scalar code:
sdata = data[(i4 + i2)*lofst_data + i3 + i1];

with data agen programming:
data_agen = init((vshort*) data);
wrapper.size = sizeof(short);
wrapper.n1 = kw;
wrapper.n2 = kh;
wrapper.n3 = blkw/vecw;
wrapper.n4 = blkh;
wrapper.s1l = 1;
wrapper.s2 = lofst_data;
wrapper.s3 = vecw;
wrapper.s4 = lofst_data;
INIT_AGEN4(data_agen, wrapper);

The iteration counts are translated directly to the iteration counts in data agen
programming, except that in i3 loop, we run for blkw/vecw iterations instead of blkw,
due to computing vecw elements of the output array in parallel through the
vectorization process. The step amount is adjusted accordingly to vecw elements
instead of one.

Coefficient indexing in the scalar code:

scoef = coef[i2*kw + i1];

Coefficient agen programming:
coef_agen = init((vshort*)coef);
wrapper.size = sizeof(short);
wrapper.nl = kw * kh;
wrapper.n2 = (blkw/vecw) * blkh;
wrapper.s1l = 1;
wrapper.s2 = 0;
INIT_AGEN2(coef_agen, wrapper);

Note that we lump the scalar for loops il and i2 into just one dimension in coefficient
agen. This is because coefficient indexing just advance by one element per iteration in
the inner 2 loop levels. In coefficient agen programming we can just use one loop level
with the combined number of iterations kw * kh to comprehend the inner 2 loop levels
in the scalar code.

In the scalar code, coefficient indexing has no i3 or i4 components, the two outer loop
variables. Consequently, coefficient addressing just repeats the same pattern when
we iterate the outer loops. In agen programming, we accomplish this repeating pattern
by configuring an outer dimension n2 parameter to the combined iteration count of
the two outer loops, (blkw/vecw) * blkh, and with step amount s2 configured to O.

Output indexing in the scalar code:
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out[i4*1lofst_out + i3] = acc;

Output agen programming:
out_agen = init((vshort*)out);
wrapper.size = sizeof(short);
wrapper.n1 = kw * kh;
wrapper.n2 = blkw/vecw;
wrapper.n3 = blkh;
wrapper.s1l = 0;
wrapper.s2 = vecw;
wrapper.s3 = lofst_out;
INIT_AGEN3(out_agen, wrapper);
out_agen.round = gbits;

Note that in the scalar code, output is stored out between the inner 2 loops and outer
2 loops, as in the inner 2 loops we are accumulating the products between data points
and coefficients, and only when we are out of the inner 2 loops, we are ready to store
the outcome to memory.

In the optimized code, the store is placed in the loop body instead of in an outer loop.
Of course, it is functionally correct to move the store to the outer loop. but doing that
would introduce much loop prolog/epilog time between loop levels and slow down the
processing significantly. Itis possible to avoid more of the loop prolog/epilog overhead
if we fully unroll by kw * kh iterations so that the revised code has again single loop
level, but doing that would hard-wire the code to a fixed convolution kernel size (if not
kw x kh, at least the product kw * kh), which will have impact in code size if an
application requires more than one convolution kernel size.

By moving the store inside the loop, we need to make two changes in the code. One is
that the store should be predicated to execute periodically, once per kw * kh iterations.
The other is that we need to change the output agen programming.

Store predication is accomplished through calculation of the predicate flag pred_store
in the optimized code:

(count_store == niter_in-1) ? @ : (count_store + 1);
(count_store==0) ? (int)@xFFFFFFFF : @;

count_store
pred_store

count_store is initialized to 1, and pred_store to O, outside the loop. Inside the loop,
count_store is modularly incremented, meaning it’s incremented by 1 each time, until it
reaches niter_in - 1, whereas it is reset to 0. pred_store flag is set -1 when count_store
is zero, and otherwise is set 0. With these statements, we implement a periodic
pred_store with pattern:

00..0100..1..

with period being niter_in, which is calculated in the initialization function to be kw * kh
and stored to memory and restored in the run-time function. This achieves the
objective of storing out once at the end of each period of kw * kh executions of the
store.

These 2 lines of code involve many scalar operations, so seems time consuming to
execute. To avoid predication becoming the bottleneck in compute loops, we have
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architected our predicate instructions to implement common periodic predication
patterns, so these 2 lines of code map to just one predicate instruction,
MODINC_NOTP. The “NOT” comes from the predication being derived negatively from
the counter (true when counter is zero).

The output agen programming is also adjusted to account for placing the store inside
the loop. Aninner dimension n1 is inserted before the outer 2 dimensions iterating
over output horizontally one vector width at a time, and vertically one row at a time.
The inner dimension n1 is iterated kw * kh times with zero stepping, to implement a
pattern that keeps the address static for kw * kh executions of the store before each
advancement of the address.

The outer 2 dimensions of the output agen follow that of the scalar code, except that
horizontally we are advancing by vector width at a time, due to vectorization, and
vertically one row at a time.

The fact that we need an inner dimension for the output agen has to do with how
predicated store is executed in the pipeline. In the processor pipeline, we need all
memory operation to have address calculation early in the pipeline to deal with memory
latency. Agen update is part of address calculation, and thus is executed early and
unconditionally even when there is predication on the store. The store predicate that
controls whether memory write is taking place is evaluated later in the pipeline, just in
time to drive out to the VMEM interface along with data to be stored.

Similar predication is needed to implement accumulator initialization, which is also
executed between between loop levels. Through these 2 statements we implement
another periodic predicate signal, pred_madd:

count_madd = (count_madd == niter_in-1) ? @ : (count_madd + 1);

pred_madd = (count_madd!=0) ? (int)@xFFFFFFFF : 0;

Both count_madd and pred_madd are initialized to O outside the loop. The pred_madd
signal implemented has this pattern:

OT1..10171..1..

with period being also niter_in = kw * kh, matching the period of pred_store.
pred_madd goes into the argument of vmaddhw, which is mapped to the predicated
vector multiply-add instruction VMAddHHW_CA. When predicate is O, the instruction
does just multiplication, and when the predicate is non-zero, the instruction does
multiply-add. Thus, the pred_madd pattern drives the MAC instruction to clear the
accumulators for the first iteration in a period of kw * kh iterations.

These 2 lines of optimized code producing the pred_madd signal, although looking
expensive, is mapped into just one predicate instruction, MODINCP.

Optimized code has loop body as follows:

dvdata = dvshort_load_di(data_agen);

coef = short_load(coef_agen);

dvacc@ = vmaddhw(dvdata.lo, coef, dvacc®, VPU_ROUND_@, pred_madd);
dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_@, pred_madd);
vstore_i(dvacc®, dvaccl1, out_agen, pred_store);
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Note the use of deinterleaving load, dvshort_load_di(), and interleaving store, vstore_i().
They are a matched pair to deal with data ordering when we use expanding MAC
instructions, in this case VMAddHHW_CA, to produce outcome.

The expanding MAC instruction VMAddHHW _CA performs 17-bit x 17-bit
multiplications (rather than 16-bit, so we can handle both signed 16-bit and unsigned
16-bit multiplication) and accumulates in 48-bit accumulators, to account for both
product bit width and room for dynamic range growth in accumulating multiple
products.

Here coefficients are loaded to a scalar variable/register, one at a time, and the scalar
register is fed directly to the VMAddHHW_CA instruction and broadcast to all vector
lanes performing the mutiply-add. In most vector math instructions, we support scalar
source 2 operand optionally.

The profiling instruction report is as follows:

Function detail: filter_ short optl void filter short optl P__sint _ Pdvuint

Low PC : 232

High PC : 359

Size in program memory: 128

Cycle-count : 597 ( 0.15%)

Instruction-count : 593 ( 0.23%)

Instruction Coverage : 100.00%
PC Assembly Exe-cnt Cyc
232 ORI RO,#64,R3 || LDW * (R4+4) ,R2 || LDW * (R4+0) ,R4

235 AgenCfgLD *R5+=R3,A0

236 AgenCfgLD * (R5+64) ,A2

237 AgenCfgLD * (R5+0) ,Al

238 ORI RO,#0,R5 || SRAI R4,#3,R4

240 ADDI R2,#-1,R2 || ADDI R4,#-1,R13

242 ORI RO,#1,R4 || MOVSP R5,P2

244 MOVP P2,P9 || DVLDH_PDI *AO++,V12:V13
246 DVLDH_PDI *AO0++,V8:V9

247 LDH *Al++, R11 || DVLDH_PDI *A0++,V4:V5
249 LDH *Al++, RO || DVLDH_PDI *AO++,V0:V1
251 LDH *Al++, R7 || DVLDH_PDI *AO++,V2:V3
253 LDH *Al++, R3 || DVLDH_PDI *AO++,V6:V7
255 LDH *Al++, R6

R R R R R R R R R R B B R RBRB
R B H R B KH R B KB R B KBNRN

256 RPT R13,#LE_Fvoid_filter_short_optl_P_sint_Pdvuint_89|| LDH *Al++, R8
258 MODINCP R2,R5,P10 || NOP || [P9] VMAddHHW CA V13,R11,ACO0:AC1|| [P9] VMAddHHW CA V12,R11,AC2:AC3

|| DVLDH_PDI *AO++,V10:V11l|| LDH *Al++, R10|| NOP 1 1
265 MODINC_NOTP R2,R4,P4||MODINCP R2,R5,P3||[P10] VMAddHHW CA V9,R9,ACO:AC1||[P10] VMAddHHW CA V8,R9,AC2:AC3

| | [P2] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++||LDH *Al++, R12||DVLDH_PDI *AO++,V14:V15 1 1
272 MODINCP R2,R5,P14 ||MODINC_NOTP R2,R4,P5||[P3] VMAddHHW CA V4,R7,AC2:AC3||[P3] VMAddHHW CA V5,R7,AC0:AC1

| | [P4] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++||DVLDH_PDI *AO++,V12:V13||LDH *Al++,R11 71 71
279 MODINCP R2,R5,P5 ||MODINC_NOTP R2,R4,P6||[P14] VMAddHHW CA VO,R3,AC2:AC3||[P14] VMAddHHW_CA V1,R3,AC0:ACl

|| [P5] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++||DVLDH_PDI *AO++,V8:V9||LDH *Al++,R9 71 71
286 MODINCP R2,R5,P13 | |MODINC_NOTP R2,R4,P7||[P5] VMAddHHW CA V2,R6,AC2:AC3||[P5] VMAddHHW CA V3,R6,ACO:AC1

| | [P6] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++||DVLDH_PDI *AO++,V4:V5||LDH *Al++,R7 71 71
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293

300

307

314

321

328

333

338

343

348

353
354

358

MODINCP R2,R5,P7 ||MODINC_NOTP R2,R4,P15||[P13] VMAddHHW CA V6,R8,AC2:AC3||[P13] VMAddHHW CA V7,R8,ACO:AC1l

| | [P7] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++||DVLDH_PDI *AO++,V0:V1||LDH *Al++,R3

MODINCP R2,R5,P11 ||MODINC_NOTP R2,R4,P8||[P7] VMAddHHW CA V10,R10,AC2:AC3||[P7] VMAddHHW CA V11,R10,AC0:AC1
| | [P15] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++||DVLDH_PDI *AO++,V2:V3||LDH *Al++,R6

MODINC_NOTP R2,R4,P12||MODINCP R2,R5,P9||[P11] VMAddHHW CA V14,R12,AC2:AC3||[P11] VMAddHHW_CA V15,R12,ACO:AC1
| | [P8] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++||DVLDH_PDI *AO++,V6:V7||LDH *Al++,8

MODINCP R2,R5,P10 ||MODINC_NOTP R2,R4,P2||[P9] VMAddHHW CA V13,R11,ACO:AC1||[P9] VMAddHHW CA V12,R11,AC2:AC3
|| [P12] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++||DVLDH_PDI *AO++,V10:V11||LDH *Al++,R10

MODINCP R2,R5,P3 ||MODINC_NOTP R2,R4,P4||[P10] VMAddHHW CA V8,R9,AC2:AC3||[P10] VMAddHHW CA V9,R9,ACO:AC1
|| [P2] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++||DVLDH_PDI *AO++,V14:V15||LDH *Al++,R12

MODINCP R2,R5,P14 || MODINC_NOTP R2,R4,P5|| [P3] VMAddHHW CA V4,R7,AC2:AC3|| [P3] VMAddHHW_CA V5,R7,ACO:AC1
|| [P4] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++

MODINC_NOTP R2,R4,P6|| MODINCP R2,R5,P5|| [P14] VMAddHHW CA V1,R3,ACO:AC1|| [P14] VMAddHHW_CA VO,R3,AC2:AC3
|| [P5] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++

MODINC_NOTP R2,R4,P7|| MODINCP R2,R5,P13|| [P5] VMAddHHW CA V3,R6,ACO0:AC1|| [P5] VMAddHHW CA V2,R6,AC2:AC3
|| [P6] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++

MODINC_NOTP R2,R4,P15|| MODINCP R2,R5,P7|| [P13] VMAddHHW CA V7,R8,ACO0:AC1|| [P13] VMAddHHW CA V6,R8,AC2:AC3
|| [P7] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++

MODINC_NOTP R2,R4,P8|| MODINCP R2,R5,P11|| [P7] VMAddHHW CA V11,R10,ACO0:AC1|| [P7] VMAddHHW CA V10,R10,AC2:AC3

|| [P15] QVSTWH_PI AC2:AC3,ACO:ACL,*A2++

JR R15

MODINC_NOTP R2,R4,P12|| [P11] VMAddHHW_CA V14,R12,AC2:AC3|| [P11] VMAddHHW_CA V15,R12,ACO:AC1
|| [P8] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++

NOP || [P12] QVSTWH_PI AC2:AC3,ACO:ACl,*A2++

The loop body is scheduled optimally into 8 cycles, packing 2 scalar predicate

instructions, 2 vector math instructions, and 3 memory operations (2 loads and 1 store)

in every execution packet.

Note the loop prolog starting well ahead of the loop body, and the loop epilog ending

well after the loop body, as the loop is unrolled 8 times and software pipelined.

71

71

71

71

71

The optimized function completes the same 64 wide x 32 tall output convolution task

in 597 cycles. There is an almost 480x speedup compared to 285,663 cycles by the
scalar code.

Next, we will see how we leverage a denser MAC instruction, VFilt4x2HHW_CA, to
achieve further speedup.

8.4.3 Optimization 2: Leveraging Denser MAC
Instruction

In VPU instruction set, besides vector multiply-add, we have densor MAC instructions.

For 16-bit data, we have

- VDotP2HHW_CA 2-term dot-product

- VDotP4 _CA 4-term dot-product

- VDotP4x2_CA 2 sets of 4-term dot-product
- VFilt4HHW_CA 4-tap filtering

- VFilt4x2HHW_CA 2 sets of 4-tap filtering
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Of these VDotP* instructions are suitable for dot-product. VFilt4HHW_CA delivers 4
MACs per halfword lane is very useful for 2D convolution.

We do have VFilt4x2HHW_CA that delivers 8 MACs per halfword lane so has 2x raw
MAC throughput of VFilt4HHW_CA. However, VFilt4x2HHW is more suitable for CNN
or filter banks, where multiple output planes are produced. It is possible to leverage it
for 2D convolution where a single output plane is produced, but there is some
preprocessing and postprocessing steps involved to reformat data and output, and to
avoid spending VPU cycles on pre- and post-processing, we will have to configure DMA
to perform the reformatting while transferring data in and out of VMEM, so
construction of the test case is much more involved.

VFilt4HHW_CA performs horizontal 4-tap filtering on 16 lanes of 16-bit
data/coefficients, and accumulates sum of products in 16 lanes of 48-bit
accumulators. To leverage VFilt4HHW_CA, we need to zero-pad the coefficients
horizontally into multiple of 4 kernel width.

Compared to VMAddHHW_CA that performs one MAC per halfword lane,
VFilt4HHW_CA performs 4 MACs per halfword lane, so we need to feed 4 data points
and 4 coefficient points to each lane to feed the MACs. The way we accomplish this,
on the data feed, is to leverage the sliding-window dependency and provide 2 single
vectors of data loaded with overlapping data. On the coefficient feed, we take
advantage of the fact that in convolution we use the same filter kernel for all output
data points to share coefficients within each group of lanes.

From instruction details in 9.8.7.13, we see that the intrinsic for VFilt4HHW _CA

dvshortx vfilt4 bbh(vcharx srcla, vcharx srclb, vcharx src2, dvshortx src3dst, int
pred) ;

requires that data, coefficients, accumulators within each group of 4 lanes being laid
out as:

srcla D[0] D[1] D[2] D[3]
srclb D[4] D[5] D[6] D[7]
src2 C[o] Cl1] C[2] C[3]
src3dst.lo ACCI[O0] ACC[?2]
src3dst.hi ACCI[1] ACCI[3]

and in each group of 4 lanes, the instruction carries out:

ACCI[0] +=D[0] *C[0] + D[1]1*C[1] + D[2] *C[2] + D[3] * C[3];
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ACC[1] +=D[1]1*C[0] + D[2] * C[1] + DI[3] * C[2] + D[4] * C[3];
ACC[2] +=D[2] * C[0] + D[3] * C[1] + D[4]*C[2] + D[5] * C[3];
ACC[3] +=D[3]*C[0] + D[4] *C[1] + D[5] * C[2] + D[6] * C[3];

Similar to the other examples, we want to double-up vector math to take advantage of
the double vector load/store throughput. Thus to feed 2 VFilt4HHW_CA instructions
placed on both vector slots of the same execution packet, we would load from the data
array 2 double vectors with 4 element offset for data, and either use VLDPerm to load
from the coefficient array 4 elements and create the 4-term repeating pattern in the
coefficient single vector, or we reformat the coefficients outside the compute kernel
function to create this pattern.

However, if we use 2 loads for data, 1 load for coefficient, to feed the MACs, and
together with predicated store to write outcome to VMEM when all product terms are
accumulated, we would spend 4 memory operations to feed 2 vector math operations,
and would not be able to execute optimally as it would become memory bound. To
reduce the memory-to-vector-math ratio, we reuse data between 2 output rows;
essentially working on 2 double vectors worth of output at a time, and the 2 double
vectors are mapped to even and odd rows of the output array. By working on 2 rows of
output at a time, we will also to zero-pad coefficients vertically, and perform the 3x3
FIR filtering as 4x4 FIR filtering.

Derivation for number of iterations and step parameters for the agen is similar to the
other examples, so here we shall just show program listings and profiling instruction
report.

filter_16b_filt4_init() function:

void filter_16b_filt4_init(short *data, short *coef, short* restrict out,
int kw, int kh, int gbits, int blkw, int blkh,
int lofst_data, int lofst_out,
AGEN_PTR * agen_cfg, int * niter, int * niter_in)

int vecw = chess_elementsof(dvshort);

short niter1 = (kw+3)/4;
short niter2 = kh+1;
short niter3 = blkw/vecw;
short niter4 = blkh/2;

agen_wrapper_t wrapper@, wrapper1, wrapper2;

*niter
*niter_in

niter1 * niter2 * niter3 * niter4;
niter1 * niter2;

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 121



agen a@ = init

wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrappere@.
wrapper@.
wrapper@.

size
nt =
n2 =
n3 =
n4 =
nd =
s1 =
s2 =
s3 =
s4 =
S5

N 11—~

niter1i;
niter2;
niter3;
niter4;

4;

4;
lofst_data
VeCcw;

2 * lofst_data;

INIT_AGEN5(a@, wrapper®);

agen al =
wrapper1.
wrapper1.
wrapper1.
wrapper1.
wrapper1.

init((vshort*) coef);
= sizeof(vshort);
2 * niter1 * niter2;
niter3 * niter4;

size
nl =

>
N
1

s1 =
s2 =

1
6;

INIT_AGEN2(al1, wrapperl);

agen a2 = init((dvshort* restrict ) out);
= sizeof(short);
niter1 * niter2;

wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.

size
nl =
n2 =
n3 =
s1 =
s2 =
s3

niter3;
niter4;
0;
Vecw;

2 * lofst_out;

INIT_AGEN3 (a2, wrapper2);
a2.round = gbits;

agen a3 =

a3.a = (vint * restrict) (out + lofst_out);

*agen_cfg++
*agen_cfg++

a2;

*agen_cfg++ =

*agen_cfg++

ad.get_cfg
al.get_cfg
a2.get_cfg
a3.get_cfg

—~ o~~~
~— — — ~—

(dvshort*)data);
sizeof(short);

filter_16b_filter_exec() function, noting how the pair of double vectors for data are

reused for 2 sets of accumulators.
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void filter_16b_filt4_exec(AGEN_PTR * agen_cfg, int niter, int niter_in)

{

dvshortx vdata®, vdatal;

vshortx vcoef@, vcoefl;

dvintx vacc@, vaccl;

dvintx vacc2, vacc3;

int count_madd = 0;

int  count_store = 1;

int pred_madd = 0;

int pred_store = 0;

agen a@ = a@.expand_cfg(*agen_cfg++);

agen al = al.expand_cfg(*agen_cfg++);

agen a2 = a2.expand_cfg(*agen_cfg++);

agen a3 = a3.expand_cfg(*agen_cfg++);

chess_separator_scheduler();

for (int i=0; i<niter; i++) chess_prepare_for_pipelining
chess_unroll_loop(4) chess_loop_range(12,)

{
vdata® = dvshort_load(a@);
vdatal = dvshort_load(a®);
vcoef® = vshort_load(al);
vcoef1 = vshort_load(al);
vacc@ = vfilt4_hhw(vdata®.lo, vdatal.lo, vcoef®@, vacc®, pred_madd);
vacc1 = vfilt4_hhw(vdata®.hi, vdatal.hi, vcoef®@, vaccl, pred_madd);
vacc2 = vfilt4_hhw(vdata®.lo, vdatal.lo, vcoefl, vacc2, pred_madd);
vacc3 = vfilt4_hhw(vdata®.hi, vdatal.hi, vcoef1, vacc3, pred_madd);
vstore_i2(vacc@, vaccl, a2, pred_store);
vstore_i2(vacc2, vacc3, a3, pred_store);

}

}

The profiling instruction report of the _exec function is as follows.

Function detail: filter_ 16b_filt4 exec void_filter_ 16b_filt4_exec Pdvuint sint sint

Low PC : 168
High PC : 279
Size in program memory: 112

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 123



Cycle-count : 279 ( 5.41%)

Exe Cyc
1 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

31 31
31 31
31 31
31 31
31 31
31 31

Instruction-count : 276 ( 9.98%)
Instruction Coverage : 100.00%
PC Assembly
168 ORI RO,#64,R7
169 AgenCfgLD *R4+=R7,A0
170 AgenCfgLD *R4+=R7,Al
171 AgenCfgLD * (R4+64) ,A2
172 AgenCfgLD * (R4+0) ,A3
173 GPO_SETLI #1
174 ORI RO, #0,R7 || SRAI R5,#2,R5
176 ADDI R5,#-1,R4 || DVLDH P *A0++,V10:V1l
178 VLDH_P *Al++,W6 || DVLDH P *A0++,V12:V13
180 VLDH_P *Al++,W4 || DVLDH P *A0++,V2:V3
182 VLDH_P *Al++,W2 || DVLDH P *A0++,V4:V5
184 VLDH_P *Al++,Wl || DVLDH P *A0++,V0:V1
186 VLDH_P *Al++,W0 || DVLDH P *A0++,V6:V7
188 RPT R4, #LE_Fvoid_filter 16b_filtd_exec || VLDH_P *Al++,W3
190 MOVSP R7,P6 || ADDI R6,#-1,R6 || DVLDH_P *AO++,V8:V9|| VLDH_P *Al++,W5
194 MOVP P6,P2 || ORI RO,#1,R5 || [P6] VFilt4HHW CA V11,V13,W6,ACO:AC1l|| [P6] VFilt4HHW CA V10,V12,W6,AC2:AC3
|| DVLDH_P *AO++,V14:V15|| VLDH P *Al++,W7
200 MODINCP R6,R7,P7 || [P6] VFilt4HHW_CA V11,V13,W4,AC4:AC5|| [P6] VFilt4HHW CA V10,V12,W4,AC6:AC7
|l [P2] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| DVLDH_P *AQO++,V10:V11l|| VLDH P *Al++,W6
206 MODINC_NOTP R6,R5,P4|| [P7] VFilt4HHW CA V3,V5,W2,ACO0:AC1l|| [P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3
|l [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH_P *AQ++,V12:V13|| VLDH P *Al++,W4
212 MODINCP R6,R7,P8 || [P7] VFilt4HHW CA V3,V5,W1,AC4:AC5|| [P7] VFilt4HHW_CA V2,V4,W1l,AC6:AC7
|| [P4] QVSTWH_PI2 AC2:AC3,ACO:AC1,*A3++|| DVLDH P *AO++,V2:V3|| VLDH_P *Al++,W2
218 MODINC_NOTP R6,R5,P5|| [P8] VFilt4HHW_CA V1,V7,W0,ACO:AC1|| [P8] VFilt4HHW_CA VO0,V6,WO0,AC2:AC3
|| [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH P *AO++,V4:V5|| VLDH_P *Al++,Wl
224 MODINCP R6,R7,P9 || MODINC_NOTP R6,R5,P3|| [P8]VFilt4HHW CA V1,V7,W3,AC4:AC5||[P8] VFilt4HHW_CA VO0,V6,W3,AC6:AC7
|| [P5] QVSTWH_PI2 AC2:AC3,ACO:AC1,*A3++|| DVLDH P *AO++,V0:V1|| VLDH_P *Al++,WO
231 MODINC_NOTP R6,R5,P2|| MODINCP R6,R7,P6|| [P9]VFilt4HHW CA V9,V15,W5,ACO0:AC1||[P9] VFilt4HHW _CA V8,V14,W5,AC2:AC3
|l [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH P *AO++,V6:V7|| VLDH_P *Al++,W3
238 [P9] VFilt4HHW CA V9,V15,W7,AC4:AC5|| [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7
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263

266

269

272

275

|l [P3] QVSTWH PI2 AC2:AC3,ACO0:AC1l,*A3++|| DVLDH P *AO++,V8:V9|| VLDH P *Al++,W5 31

[P6] VFilt4HHW CA V11,V13,W6,ACO:ACL|| [P6] VFilt4HHW CA V10,V12,W6,6AC2:AC3

|| [P3] QVSTWH PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH_P *AO++,V14:V15|| VLDH_P *Al++,W7 31
MODINCP R6,R7,P7|| MODINC_NOTP R6,R5,P4||[P6]VFilt4HHW CA V11,V13,W4,AC4:AC5|| [P6]VFilt4HHW CA V10,V12,W4,AC6:ACT

|| [P2] QVSTWH PI2 AC2:AC3,ACO:ACl,*A3++ 1
MODINC_NOTP R6,R5,P5|| MODINCP R6,R7,P8|| [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7||[P7]VFilt4HHW_CA V3,V5,W1,AC4:AC5

|| [P2] QVSTWH PI2 AC6:AC7,AC4:ACS,*A2++ 1
MODINC_NOTP R6,R5,P3|| MODINCP R6,R7,P9|| [P7] VFiltdHHW CA V2,V4,W2,AC2:AC3||[P7]VFilt4HHW_CA V3,V5,W2,AC0:ACl

|| [P4] QVSTWH PI2 AC6:AC7,AC4:ACS,*A2++ 1
[P8] VFilt4HHW CA VO,V6,W3,AC6:AC7|| [P8] VFilt4HHW_CA V1,V7,W3,AC4:AC5|| [P4] QVSTWH PI2 AC2:AC3,ACO:ACl,*A3++ 1
[P8] VFilt4HHW CA VO,V6,WO0,AC2:AC3|| [P8] VFilt4HHW_CA V1,V7,W0,ACO:ACL|| [P5] QVSTWH PI2 AC6:AC7,AC4:ACS,*A2++ 1
[P9] VFilt4HHW CA V8,V14,W7,AC6:AC7|| [P9] VFiltd4HHW CA V9,6V15,W7,AC4:ACS5|| [P5] QVSTWH_PI2 AC2:AC3,ACO:ACL,*A3++ 1
[P9] VFilt4HHW CA V8,V14,W5,AC2:AC3|| [P9] VFiltd4HHW CA V9,6V15,W5,ACO:ACl|| [P3] QVSTWH_PI2 AC6:AC7,AC4:ACS5,*A2++ 1
[P3] QVSTWH_PI2 AC2:AC3,ACO:ACL,*A3++ 1
GPO_CLRLI #1 1
JR R15 1
NOP 1
NOP 1

Note how the vector slots are fully utilized in the loop body, executing a pair of MAC
instructions (VFilt4HHW) in every execution packet. Also, the 3 memory slots are also
packed with one double vector load for data, one single vector load for coefficients,
and one quad vector store. Well, we could have loaded coefficients with a double
vector load and left the memory slots less utilized. The key is that, if at all possible, we
want to saturate the vector math slots to achieve best performance. If, to achieve full
vector math utilization, we need to saturate memory slots as well, that’s OK, but if
possible, if we can achieve full vector math utilization with less memory slots utilization,
we would achieve better power efficiency at well.

The loop body portion executes for 8 * 31 = 248 cycles, compared with 8*71 = 568
cycles in the VMAdd implementation. The 4x MAC density is diluted somewhat from
implementing 3x3 FIR filter as 4x4 FIR; 4 *9 [ 16 = 2.25x speedup. For larger FIR kernel,
the diluting would not be as bad.

8.4.4 Further Optimization for Power

The proceeding programming examples are about techniques in performance
optimization. While reducing processing time often leads to reduction in the energy
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exerted to implement particular functions, there are additional techniques one can
follow to further optimize for power.

VPU has load data cache feature that can help reduce power when used correctly.
Load data cache reduces power consumption by bypassing VMEM superbank read for
the memory banks that are read with the same row address. In a 2D convolution, both
data and coefficient read may be implemented to have such address pattern and can
leverage load data cache feature. In the 2D convolution optimization 1 and
optimization 2 examples, we already have data read address pattern that works for
load data cache.

Optimization 1 data agen initialization:
wrapper@.size = sizeof(short);
wrapper.nl = kw;
wrapper.n2 = kh;

wrapper.si 1;
wrapper.s2 = lofst_data;

For data read in optimization 1 agen inner-most i1 loop, we move the read pointer 1
pixel at a time for kw reads from the agen, and each read is a double vector read.
Enabling load data cache for data agen can save (kw-1)*31 out of every kw*32 memory
bank read transactions for data read. In the next i2 loop, we move data pointer by one
row of data, which is usually greater than 64 bytes (as we vectorize processing we
should process minimally the vector width).

Optimization 2 data agen initialization:
wrapper@.size = sizeof(short);
wrapper@.nl = 2;
wrapper@.n2 = niter1; // (kw+3)/4
wrapper@.n3 = niter2; // kh+1

wrapper@.s1 = 4;
wrapper@.s2 = 4;
wrapper@.s3 = lofst_data;

For data read in optimization 2 agen inner-most i1 loop, we move the read pointer 4
pixels at a time for 2 reads from the agen, and again each read is a double vector read.
Enabling load data cache can save 128 out of every 2*32 memory bank read
transactions. In case kw > 4, the pointer moves by 4 pixels, and there is further power
saving.

For coefficient read in optimization 1, coefficients are read one element at a time into a
scalar register. Scalar reads are not cached (see 5.5), so optimization 1 coefficient read
does not work for load cache.

Optimization 2 coefficient agen initialization:

wrapper1.size = sizeof(vshort);
wrapper1.n1 = 2 * niter1 * niter2;
wrapper1.n2 = niter3 * niter4;
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i
0;

wrapper1.si
wrapper1.s2

For coefficient read in optimization 2, coefficients are reformatted outside the filtering
loop so that in the filtering loop coefficients are read one single vector at a time
(vshort) without repetition, so the pattern does not work for load cache.

It is possible to leverage load cache, but we will have to change the coefficient
reformatting loop. To simplify the filtering loop in the example, we have the coefficient
reformatting loop create the 2-output-rows-at-a-time zero-padded coefficient array
AND repeated 4 times, as there are 4 4-lane groups in a single vector of halfwords. If
we revise the coefficient reformatting loop to not repeat the coefficient data 4 times,
and revise the filtering loop to use VLDPerm to load and permute the coefficients with
appropriate permutation pattern, we can leverage load data cache for coefficient reads
as well, and further reduce power consumption for 2D convolution.

For example, if we have 3x3 filtering (kw = kh = 3), current optimization 2 code
coefficient reformatting loop would produce:

coef[] = {co, C1, C2, @, Co, C1, C2, @, CO, C1, C2, @, CB, C1, C2, @, // out @ row @
e, o0, o, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, @, 0, // out 1 row®
c3, C4, C5, o, C3, C4, C5, o, C3, C4, C5, 0, C3, C4, C5, @, // out @ row 1
ce, C1, C2, o, Co, C1, C2, 0, Co, C1, C2, 0, CO, C1, C2, @, // out 1 row 1
ce6, C7, c8, o, Co6, C7, C8, 0, C6, C7, C8, @, C6, C7, C8, @, // out @ row 2
C3, C4, C5, o, C3, C4, C5, o, C3, C4, C5, @, C3, C4, C5, @, // out 1 row 2
e, o, @, o, 0, 0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, // out O row 3
c6, c7, Cc8, o, C6, C7, C8, @, C6, C7, C8, @, C6, C7, C8, @};// out 1 row 3

To leverage load data cache for coefficients, we would skip the 4-time repetition, so
that the reformatted coefficients would be:

coef[] = {C0, C1, C2, @, // out @ row @
0, 0, 0, 0, // out row
C3, C4, C5, 0, // out
ce, C1, C2, 0, // out
0

1
0 row
1
C6, C7, C8, @, // out @ row
1
0
1

row

C3, C4, C5, 0, // out row
0, 0, 0, 0, // out row
C6, C7, C8, @};// out 1 row

W W NN - 2o

Note that load data cache is enabled on a per VMEM superbank basis, so to have
effective caching, we would need data and coefficient arrays be allocated in different
VMEM superbanks. Otherwise, the load cache would be threshing from data and
coefficient reads giving different row addresses to the same memory banks, and the
cache would have poor hit rate. When load data cache is enabled when the read data
pattern has few repeated read to the memory banks, we may end up consuming higher
power, from additional activity in recording/matching the memory bank row addresses.
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8.5

Interpolated 2D Lookup

In computer vision we sometimes need to perform interpolated 2D lookup, typically to
resize an image, to undistort an image, or to warp an image patch for object tracking.
Most common interpolation scheme is bilinear interpolation. VPU instruction set
includes instructions that accelerates interpolated 2D lookup.

For this example, we shall look at scalar/reference code, VPU optimized code, and code
leveraging the DLUT (decoupled lookup table unit) to perform interpolated 2D lookup.

Here we skip the profiling instruction report.

8.5.1 Scalar Code

The following is the scalar/reference function performing interpolated 2D lookup:

[ [ XFRKRREkkkkkkkkhkbkkhhbhrhhdhhhhdhrhbhrhrbhrbrbhhhrbhrbhdhrbhrhrbkrhrtk

// interpolate_lookup2d_ref
// 2D table tblw wide

// index X/Y interleaved
//*********************************************************************

void interpolated_lookup2d_ref(int tblw, int len_out, int frac_bits,
short * tbl, short * idx, short * out)

int
int
int
int
int

for

X, Yy, int_x, int_y, frac_x, frac_y;

lu_idx, entry@, entryl, entry2, entry3;
out@1, out23, outd123;

frac_mask = (1 << frac_bits) - 1;
rnd_add = 1 << (frac_bits - 1);

(int 1 = @; i < len_out; i++) {

X = *idx++;

y = *idx++;

int_x = x >> frac_bits;
int_y = y >> frac_bits;
frac_x = x & frac_mask;
frac_y = y & frac_mask;
lu_idx = int_y * tblw + int_x;

entry® = tbl[lu_idx];
entryl = tbl[lu_idx + 1];
entry2 = tbl[lu_idx + tblw];

entry3 = tbl[lu_idx + tblw + 1];
outd1 = entryd + (((entryl - entry@) * frac_x + rnd_add)
out23 = entry2 + (((entry3 - entry2) * frac_x + rnd_add)
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out0123 = out@1 + (((out23 - out@1) * frac_y + rnd_add) >> frac_bits);
*out++ = out0f123;

The index data is X/Y interleaved. Each element (carrying either X or Y) is a fixed-point
number with number of fraction bits being frac_bits.

The reference code reads X & Y indices, separates out integer and fraction
components, calculate a linear index using the integer X & Y components, performs the
2x2 lookup, then uses the fraction X & Y components to perform bilinear interpolation
to produce one output value. Notice how we perform horizontal interpolation to blend
entryO with entry1 to produce outO1, and entry2 with entry3 to produce out23. Then
we perform vertical interpolation to blend outO1 and out23 to produce the final output.

This scalar/reference function takes 63,504 cycles to produce 2048 outputs
interpolating from a 66 x 34 image patch, averaging 31 cycles per output.

8.5.2  VPU Parallel Lookup

VPU has parallel lookup instruction to perform 2x2 lookup, up to a parallelism of 8. To
leverage such instruction, we will need to replicate the orignal table containing the
image patch 8 times.

Given the replicated lookup table, VPU optimized function performing interpolated 2D
lookup is as follows:

void interpolated_lookup2d_opt(int tblw, int len_out, int frac_bits,

{

short * tbl, short * idx, short * restrict out)

dvshortx vidx;

dvshortx bitpos;

bitpos.lo = replicateh(frac_bits);

bitpos.hi = replicateh(frac_bits);

dvshortx xy_int, xy_frac, xy_frac_norm;

vshortx Jlu_idx, lu_idx_even, lu_idx_odd;

dvshortx entry_even, entry_odd;

vshortx out@1, out23, out@123;

int 1sh_bits = 15 - frac_bits;

int 1p_k = tblw/4;

short even_arr[] = {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1};
short odd_arr[]
vshortx pat_even = zero_extend(*((vushort *) even_arr));
vshortx pat_odd = zero_extend(*((vushort *) odd_arr));
int niter = len_out/16;

{1, 38, 5, 7, 9, 11, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1};
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agen_A aidx =
aidx.n1 = niter;
aidx.mod1 =
agen_C aout =
aout.n1 = niter;
aout.mod1 =

init_A(idx);

sizeof(dvshort);
init_C(out);

// write 16 at a time

sizeof(vshort);

short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =
(short chess_storage(DMb%64:chess_segment(B)) *) tbl;

#define UNROLL1 7

// round up to multiple of unrolling factor

niter = ((niter +

UNROLLT - 1)/UNROLLT) * UNROLL1;

for (int 1 = @; i1 < niter; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL1) chess_loop_range(3 * UNROLLT,)

{
vidx = dvshort_load_di(aidx); // x/y intrlv -> lo/hi
dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y
lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);

// int_y * tblw + int_x

xy_frac_norm = xy_frac << lsh_bits;
lu_idx_even = vpermute(lu_idx, pat_even); // 8,2, 4, ..., 14
lu_idx_odd = vpermute(lu_idx, pat_odd); // 1, 3,5 ..., 15
entry_even = vlookup_2x2pt_8h(thl_ptr, lu_idx_even, lp_k);
entry_odd = vlookup_2x2pt_8h(tbl_ptr, lu_idx_odd, 1p_k);
oute1 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);
out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);
oute123 = vblend(out@1, out23, xy_frac_norm.hi);
vstore(out@123, aout);

}

Notice the use of vpermute() to reorganize elements in lu_idx vector to separate even
and odd data points. This is unfortunately needed to work with viookup_2x2pt_8h, as
only 8 data points are needed in each index vector of vshortx type (which holds 16
lanes). After the 8 even/odd data points, rest of the lanes are zero-filled, by padding -1

in the even_arr[] and odd_arr[] arrays.

The loop has the following vector math operations:

- 2x vsplitbits
- vmaddh

- 2xvsla

- 2xvpermute
- 2xvhblend_i
- vblend

That’s 10 operations, so we would say the SOL (speed of light/ideal) performance is 5

cycles per iteration.
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Unrolling factor from 4 to 8 are tried, and with 7x loop unrolling, we found the best
performance at 39 cycles per iteration, or 5. 57 cycles per original iteration.

Compiler often, but does not always achieve SOL performance. The loop body has
relatively long latency due to cascading of long math and lookup latencies (vmaddh >
vpermute = vlookup), and would need to unroll more to allow compiler to pack the
vector math slots, but unrolling more leads to more challenging register allocation.

The optimized function executes for 805 cycles for the same test configuration (2048
outputs, 66 x 34 image patch). This translates to 0.393 cycle per output, and roughly
78.9x speedup over scalar/reference function.

8.5.3  VPU Parallel Lookup in Two Loops

One optimization strategy we can try when we have a long string of math operations in
the loop is to break it into 2 loops. For the VPU parallel lookup code 1 in the previous
section, there is another advantage in breaking up the loop into two, in that the
permutation operation in vector math we can get for free (of vector math operations)
by leveraging the load with permute instruction. The resulting code is as follows:

void interpolated_lookup2d_opt2(int tblw, int len_out, int frac_bits,
short * tbl, short * idx, short * temp_buf_idx,
short * temp_buf_frac, short * out)

dvshortx vidx;
dvshortx bitpos;
bitpos.lo = replicateh(frac_bits);
bitpos.hi = replicateh(frac_bits);
dvshortx xy_int, xy_frac, xy_frac_norm;
vshortx lu_idx;
dvshortx dv_lu_idx;
dvshortx entry_even, entry_odd;
vshortx out@1, out23, out@123;
int 1p_k = tblw/4;
char perm_pat_arr[] = {0, 2, 4, 6, 8, 18, 12, 14, -1,-1,-1,-1,-1,-1,-1,-1,
1, 3,5, 7,9, 11, 13, 15, -1,-1,-1,-1,-1,-1,-1,-1};
vcharx perm_pat = sign_extend(*((vchar *) perm_pat_arr));
short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =
(short chess_storage(DMb%64:chess_segment(B)) *) tbl;

int niter = len_out/16;

agen_A aidx = init_A(idx); // read 16 X + 16 Y at a time
aidx.n1 = niter;

aidx.mod1 = sizeof(dvshort);

agen_C atemp_idxw = init_C(temp_buf_idx); // write 16 indices at a time
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atemp_idxw.n1 = niter;

atemp_idxw.mod1 = sizeof(vshort);

agen_C atemp_fracw = init_C(temp_buf_frac);// write 16 dX + 16 dY at a time
atemp_fracw.n1 = niter;

atemp_fracw.mod1 = sizeof(dvshort);

agen_C atemp_idxr = init_C(temp_buf_idx); // read 16 indices at a time
atemp_idxr.n1 = niter;

atemp_idxr.mod1 = sizeof(vshort);

agen_C atemp_fracr = init_C(temp_buf_frac);// read 16 dX + 16 dY at a time
atemp_fracr.n1 = niter;

atemp_fracr.mod1 = sizeof(dvshort);

agen_C aout = init_C(out); // write 16 outputs at a time
aout.n1 = niter;

aout.mod1 = sizeof(vshort);

chess_separator_scheduler();

#define UNROLL2 6

#define UNROLL3 5
// round up to multiple of unrolling factor
int niter1 = ((niter + UNROLL2 - 1)/UNROLL2) * UNROLL2;
int niter2 = ((niter + UNROLL3 - 1)/UNROLL3) * UNROLL3;

for (int i = @; 1 < niter1; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL2) chess_loop_range(3 * UNROLL2,)

{
vidx = dvshort_load_di(aidx); // x/y intrlv -> lo/hi
dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y
xy_frac_norm = xy_frac << (15 - frac_bits); // lo=x, hi=y
lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);

// int_y * tblw + int_x

vstore(xy_frac_norm, atemp_fracw); // 16 dX + 16 dY
vstore(lu_idx, atemp_idxw); // 16 IDX

}

chess_separator_scheduler();

for (int i = @; 1 < niter2; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL3) chess_loop_range(3 * UNROLL3,)

{
dv_lu_idx = dvshort_load_perm(atemp_idxr, perm_pat); // 8 even + 8 odd
xy_frac_norm = dvshort_load(atemp_fracr); // 16 dX + 16 dY
entry_even = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.lo, 1lp_k);
entry_odd = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.hi, 1p_k);
out01 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);
out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);
out@123 = vblend(out@1, out23, xy_frac_norm.hi);
vstore(out@123, aout);

}
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The two inner loops the following vector math operations, respectively:

- 2x vsplitbits
- vmaddh
- 2xvsla

- 2xvhblend_i
- vblend

After adding loads and stores to both loops to make them work, the resulting first loop
is still vector math-bound at SOL of 2.5 cycles per iteration. The second loop becomes
MO-slot and lookup-bound, at SOL of 2 cycles per iteration.

Again, unrolling factor from 4 to 8 are tried, and with 6x loop unrolling, we found the
best performance at 17 cycles per iteration, or 2.83 cycles per original iteration. The
second loop is 5x unrolled at 10 cycles per iteration, or 2 cycles per original iteration,
meeting SOL.

The optimized function executes for 748 cycles for the same test configuration (2048
outputs, 66 x 34 image patch). The difference in inner-loop performance, 2.83 + 2 =
4.83 cycles per iteration versus 5.57 cycles per iteration, can lead to bigger gap in cycle
count if there is a bigger workload.

In breaking up the long sequence math into two loops, we achieve slightly faster
compute function, but we also incur greater power consumption by having more VMEM
read/write for the same application. The two-loop solution is also likely to have larger
code size, which can lead to higher I-cache misses in an application. So there is pros
and cons in ths implementation.

854 Leveraging DLUT

Interpolated 2D lookup is one of the operation modes supported by DLUT. To leverage
DLUT, we need to leverage Sampler APIs in PVA SDK. For this particular problem, we
configure the DLUT task with:

#include <cupva_device.h>
void dlut_setup_interp2D(CupvaSampler *restrict sampler,
int tblw, int tblh, int len_out, int frac_bits,

short * tbl, short * idx, short * out)

CupvaSamplerInput2D const sampler_tbl = {

.data = tbl,
.type = SAMPLER_INPUT_TYPE_S16,
.width = tblw,
.height = tblh,
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.1linePitch = tblw,

.outOfRangeMode = SAMPLER_OUT_OF_RANGE_CONSTANT,
.outOfRangeval =8, // don't care, not using on OOR feature
.flags =@, // don't care, linePitch is specified
H
CupvaSamplerIndices2D const sampler_idx = {
.data = idx,
.type = SAMPLER_INDEX_TYPE_U16,
.width = len_out, // idx & out are 1D
.height = 9,
.1linePitch =0,
.fractionalBits = frac_bits,
.fractionalHandling = SAMPLER_FRAC_HANDLING_INTERPOLATE,
.offsetX =0,
.offsetY =0,
.interleaving = SAMPLER_INTERLEAVING_ELEMENTS,
i
CupvaSamplerOutput const sample_out = {
.data = out,
.pitch =0, // output 1D

.transMode = TRANS_MODE_NONE,
i

cupvaSamplerSetup(sampler, &sampler_tbl, &sampler_idx, &sample_out);

This is setting up the DLUT task as 2D interpolation task mode and providing relevant
parameters to the DLUT task.

In the main() function of this test case, DLUT is configured then invoked by this
sequence of steps:

CupvaSampler sampler_interp2D;

dlut_setup_interp2D(&sampler_interp2D, tblw, tblh, len_out, frac_bits,
tbl, idx, out);

cupvaSamplerStart(&config.z_reorder_sampler);

cupvaSamplerWait();

For common image processing tasks that process a constant-sized tile at a time, DLUT
setup should ideally be performed in the application initialization time, perhaps with
multiple sets of input, index, and output buffers for double-buffering.

Not counting the setup time, per-tile DLUT execution time is about 60 cycles of latency
plus about len_out/4 cycles (for 16-bit 2D interpolated lookup), around 60 + 2048/4 =
572 cycles.
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Besides faster processing speed than VPU, leveraging DLUT has the following
advantages:

The table does not need to be replicated, and this saves VMEM footprint,
processing time and power consumption.

While DLUT is busy performing the interpolated lookup, VPU can be potentially
doing some useful work.

DLUT generally consumes much less energy compared to VPU doing the same
lookup or interpolated lookup workload.

DLUT configuration and interaction code, in general, takes up less VPU code size
than VPU doing the same lookup or interpolated lookup workload.
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Chapter 9. Instruction Set Reference

9.1 VPU Changes from Orin to Thor

Changes in VPU from Orin (Gen-2) to Thor (Gen-3) are as follows; throughput numbers

are for one VPU:

>

vvVvyyvVvyy

Double FP16/FP32 throughput

Add/Subtract/Multiply/Multiply-Add/Multiply-Subtract
Compares

O O O O

square root, log2, exp2, sin, cos, tanh

FP32 to/from INT conversion added Q-bit support (scalar & vector), to accelerate

FP32 to/from fixed-point conversion.

VMAddF and VMSubF allow 3™ source from a scalar register

Added a 4™ VMEM superbank, 128KB

DLUT auto-index mode support 8-bit table type

Remove 1-bit CNN instruction VXNORADD8x4x2_CA

Remove XRF (8-bit MAC with 32-bit accumulator; now reduced to 24-bit
accumulators), and XARF variations of vector move, vector math, and vector
load/store instructions.

VMov XACsrc, XACdst

<pred> DVMov DXACsrc, DXACdst
VPromote_DI<type> XACsrc, Vdst1, Vdst2
VDemote_l<type> Vsrcl, Vsrc2, XACdst
VFilt4x2x2BBW_CA

VDotP4BBW_CA

VDotP4x2BBW_CA

<pred> VST<type>_<distr> XACsrc, *A<id>++
<pred> DVST<type>_<distr> DXACsrc, *A<id>++

O O O O 0O O O O ©O

» VMEM connection to PPE
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9.2

VPU Math Operation Throughput

Math throughput is an important performance metric for a processor. The most
important math operation for throughput comparison is multiply-add, especially for
DSP processors. Multiplication is expensive in power, so it's useful to have a summary
of various multiplication and MAC instructions to correlate performance and power
consumption. Throughput numbers for a wider range of operations are also tabulated.

9.2.1

Multiply/MAC Instructions

Multiply/multiply-accumulate instructions, per instruction throughput, and per VPU
MAC throughput are as follow.

Instruction Function Thrupu | Mul / MAC
t Thruput
per per VPU
slot (1)

VMuIB Multiply round_trunc(9b x 9b) = 12b 32 64 x 8b

VMuIBBH Multiply round_trunc(9b x 9b) = 24b 32 64 x 8b

VMulH Multiply round_trunc(17b x 17b) = 24b 16 32 x 16b

VMulHHW Multiply round_trunc(17b x 17b) = 48b 16 32 x 16b

VMulWHW Multiply round_trunc(33b x 17b) = 48b 8 64 x 16b

VMulWWL Multiply 33b x 33b = 48b : 32b 8 16 x 32b

VMuIBBH  (2x) Multiply 9b x 9b = 24b 64 128 x 8b

VMulHHW Multiply 17b x 17b = 48b 32 64 x 16b

VMulWHW Multiply 33b x 17b = 48b 16 64 x 16b

VMulW Multiply trunc_16b(33b x 33b) = 48b 16 32 x32b

VMul2B Multiply round_trunc(8b x 9b) = 12b 64 128 x 8b

VMul2H Multiply round_trunc(17b x 17b) = 24b 32 64 x 16b

VMul2WHW Multiply round_trunc(33b x 17b) = 48b 16 64 x 16b

VMAddB_CA Multiply-add 12b + round_trunc(9b x 9b) = 12b 32 64 x 8b

VMAddBBH_CA Multiply-add 24b + round_trunc(9b x 9b) = 24b 32 64 x 8b

VMAddH_CA Multiply-add 24b + round_trunc(17b x 17b) = 24b 16 32x 16b

VMAddHHW_CA Multiply-add 48b + round_trunc(17b x 17b) = 48b 16 32 x 16b

VMAddWHW_CA Multiply-add 48b + round_trunc(33b x 17b) = 48b 8 32x 16b

VMAddB_CA (2x) Multiply-add 12b + 9b x 9b = 12b 64 128 x 8n

VMAddBBH_CA Multiply-add 24b + 9b x 9b = 24b 64 128 x 8b

VMAddH_CA Multiply-add 24b + 17b x 17b = 24b 32 64 x 16b

VMAddHHW_CA Multiply-add 48b + 17b x 17b = 48b 32 64 x 16b

VMAddWHW_CA Multiply-add 48b + 33b x 17b = 48b 16 64 x 16b

VMAddW_CA Multiply-add 48b + trunc_16b(33b x 33b) = 48b 16 32x32b
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VDotP2BBH_CA 2-term dot product 24b + 9b x 9b + 9b x 9b = 24b 32 128 x 8b
VDotP2HHW_CA 2-term dot product 48b + 17b x 17b + 17b x 17b = 48b 16 64 x 16b
VDotP2WHW_CA 2-term dot product 48b + 33b x 17b + 33b x 17b = 48b 8 32 x 16b
VDotP2W_CA 2-term dot product 48b + trunc_16b(33b x 33b) 8 32x32b
+ trunc_16b(33b x 33b) = 48b
VDotP2x2W_CA (2x) 2-term dot product 48b + trunc_16b(33b x 33b) 16 64 x 32b
+trunc_16b(33b x 33b) = 48b
VDotP4BBH_CA (2x) 4-term dot product 24b + 9b x 9b + ... + 9b x 9b = 24b 32 256 x 8b
VDotP4HHW_CA 4-term dot product48b + 17bx 17b + ...+ 17b x 17b = 48b 16 128 x 16b
VDotP4WHW_CA 4-term dot product 48b + 33bx 17b + ... + 33bx 17b=48b | 8 128 x 16b
VDotP4x2BBH_CA (4x) 4-term dot product 24b + 9b x 9b + ... + 9b x 9b = 24b 64 512 x 8b
VDotP4x2HHW_CA 4-term dot product 48b + 17bx 17b + ...+ 17bx 17b=48b | 32 256 x 16b
VFilt4BBH_CA (2x) 4-term filter 24b + 24b + 9b x 9b + ... + 9b x 9b = 24b 32 256 x 8b
VFilt4dHHW_CA 4-term filter 48b + 17b x 17b + ... + 17b x 17b = 48b 16 128 x 16b
VFilt4x2BBH_CA (4x) 4-term filter 24b + 24b + 9b x 9b + ... + 9b x 9b = 24b 64 512 x8b
VFiltdx2HHW_CA 4-term filter 48b + 17bx 17b + ...+ 17b x 17b = 48b 32 256 x 16b
VFilt4x2x2BBH_CA (8x) | 4x2-term filter 24b + 24b + 9b x 9b + ... + 9b x 9b = 24b 64 1024 x 8b

Notes: Count conventional 8b/16b/32b multiplications or multiply-accumulates. 33b x

17b counted as 2 16b MACs.

9.2.2

MAC-Related Instructions

Additional instructions that leverage multiply-add or multiply-accumulate datapath:

Instruction Function Thrupu | Mul / MAC
t Thruput
per per VPU
slot (1)

VCMulH Complex multiply round_trunc(17b x 17b) = 24b 8 64 x 16b

VCMulHHW Complex multiply round_trunc(17b x 17b) = 48b 8 64 x 16b

VCMulHHW (2x) Complex multiply 17b x 17b = 48b 16 128 x 16b

VCMulWHW (2x) Complex multiply 33b x 17b = 48b 128 x 16b

VCMulwW Complex multiply trunc_16b(33b x 33b) = 48b 64 x 32b

VMSubB_CA Multiply-subtract 12b + round_trunc(9b x 9b) = 12b 32 64 x 8b

VMSubBBH_CA Multiply-subtract 24b + round_trunc(9b x 9b) = 24b 32 64 x 8b

VMSubH_CA Multiply-subtract 24b + round_trunc(17b x 17b) = 24b 16 32x 16b

VMSuUbHHW_CA Multiply-subtract 48b + round_trunc(17b x 17b) = 48b 16 32x 16b

VMSubWHW_CA Multiply-subtract 48b + round_trunc(33b x 17b) = 48b 8 32x 16b

VMSubW_CA Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b 8 16 x 32b
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VMSubB_CA (2x) Multiply-subtract 12b + 9b x 9b = 12b 64 128 x 8b
VMSubBBH_CA Multiply-subtract 24b + 9b x 9b = 24b 64 128 x 8b
VMSubH_CA Multiply-subtract 24b + 17b x 17b = 24b 32 64 x 16b
VMSubHHW_CA Multiply-subtract 48b + 17b x 17b = 48b 32 64 x 16b
VMSubWHW_CA Multiply-subtract 48b + 33b x 17b = 48b 16 64 x 16b
VMSubW_CA Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b 16 32x32b
VBlendB Blend 12b + round(9b x 8b - 9b x 8b) = 12b 32 128 x 8b
VBlendH Blend 24b + round(17b x 16b - 17bb x 16b) = 24b 16 64 x 16b
VBlendW Blend (48b << 16) + trunc_16b(33b x 32b) 8 32 x32b
- trunc_16b(33b x 32b) = 48b
VHBlend_IB Blend 12b + round(9b x 8b - 9b x 8b) = 12b 32 128 x 8b
VHBlend_IH Blend 24b + round(17b x 16b - 17bb x 16b) = 24b 16 64 x 16b
VHBIlend_IW Blend (48b << 16) + trunc_16b(33b x 32b) 8 32x32b
- trunc_16b(33b x 32b) = 48b
VHBIlend_IBHB Blend 12b + round(9b x 8b - 9b x 8b) = 12b 32 128 x 8b
VSumSgBBH Sum of square 9b x 9b + 9b x 9b = 24b 32 128 x 8b
VSumSgqHHW Sum of square 17b x 17b + 17b x 17b = 48b 16 64 x 16b
VSumSgw Sum of square trunc_16b(33b x 33b) 8 32 x32b
+ trunc_16b(33b x 33b) = 48b
VSqSumBBH Square of sum (9b + 9b) x (9b + 9b) = 24b 32 192 x 8b
VSqSumHHW Square of sum (17b + 17b) x (17b + 17b) = 48b 16 96 x 16b
VDet2x2HHW Determinant 2x2 17bx 17b + 17b x 17b = 48b 16 64 x 16b
VDet2x2W Determinant 2x2 trunc_16b(33b x 33b) 8 32 x32b
-trunc_16b(33b x 33b) = 48b
9.2.3  Other Accelerated Vector Math Instructions

Selected math operations are accelerated over baseline 32 x 12-bit, 16 x 24-bit, or 8 x
48-bit per vector slot.

Instruction Function Thrupu | Operation
t Thruput
per per VPU
slot

VAddB/H/W Addition

VSubB/H/W Subtraction

VAndB/H/W Bitwise and

VOrB/H/W Bitwise or

VXorB/H/W Bitwise exclusive-or

VMinB/H/W Min
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VMaxB/H/W Max

VCmpLTB/H/W Compare less than

VCmpLEB/H/W Compare less than or equal to

VCmpGTB/H/W Compare greater than

VCmpGEB/H/W Compare greater than or equal to

VCmpEQB/H/W Compare equal

VCmpNEB/H/W Compare not equal

VBitCntB/H/W Bit count

VAbsDifB/H/W Absolute difference
12-bit operation 32 64 x 12-bit
24-bit operation 16 32 x 24-bit
48-bit operation 8 16 x 48-bit

2x perf of above 12-bit operation 64 128 x 12-bit
24-bit operation 32 64 x 24-bit
48-bit operation 16 32 x 48-bit

VAdd2SubB 12-bitA+B-C 32 128 x 12-bit

VAdd2SubH 24-bitA+B-C 16 64 x 24-bit

VAdd2SubW 48-bitA+B-C 8 32 x 48-bit
4-input-2-output add/subtract for radix-4 FFT

VAddSub4x2B (3x) 12-bit 32 192 x 12-bit

VAddSub4x2H 24-bit 16 96 x 24-bit

VAddSub4x2W 48-bit 8 48 x 48-bit
4-input-2-output configurable add/subtract

VCfgAddSub4x2B (3x) 12-bit 32 192 x 12-bit

VCfgAddSub4x2H 24-bit 16 96 x 24-bit

VCfgAddSub4x2W 48-bit 8 48 x 48-bit

9.2.4  Scalar/Vector Floating Point Instructions

In Xavier (Gen-1) VPU we support only scalar FP32 instructions. In Orin (Gen-2) VPU to
extend floating support to both scalar and vector, and both FP32 and FP16. In Thor
(Gen-3) VPU we double the throughput for most FP32 and FP 16 operations.

Instruction Function Thruput | Operation
per slot | Thruput
per VPU
VAddF FP32 addition 16 32 x 32-bit
VSubF FP32 subtraction
VMulF FP32 multiplication
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VMAddF

FP32 multiply-add

VMSubF FP32 multiply-subtract

VCmp*F FP32 comparison LT/LE/GT/GE/EQ/NE

VRCPF FP32 reciprocal

VSQRTF FP32 square root

VRSQF FP32 reciprocal of square root

VEXP2F FP32 exponent based 2

VLOG2F FP32 log based 2

VSINF FP32 sine

VCOSF FP32 cosine

VTANHF FP32 hyperbolic tangent

VAddHF FP16 addition 32 64 x 16-bit
VSubHF FP16 subtraction

VMulHF FP16 multiplication

VMAddHF FP16 multiply-add

VMSubHF FP16 multiply-subtract

VCmp*HF FP16 comparison LT/LE/GT/GE/EQ/NE

VINT_FP INT32 to FP32 conversion 16 32 x 32/48-
VFP_INT_Trunc FP32 to INT32 conversion with truncation bit
VFP_INT_Round FP32 to INT32 conversion with rounding

VINTX_FP INT48 to FP32 conversion

VFP_INTX_Trunc FP32 to INT48 conversion with truncation

VFP_INTX_Round FP32 to INT48 conversion with rounding

VINT_FP16 INT32 to FP16 conversion 16 32 x 16/24-
VFP16_INT_Trunc FP16 to INT32 conversion with truncation bit
VFP16_INT_Round FP16 to INT32 conversion with rounding

VFP16_FP FP16 to FP32 conversion

VFP_FP16 FP32 to FP16 conversion

VINT24_FP16 INT24 to FP16 conversion 32 64 x 16-bit
VFP16_INT24_Trunc FP16 to INT24 conversion with truncation

VFP16_INT24_Round FP16 to INT24 conversion with rounding

FAdd (Scalar) FP32 addition 1 2 x 32-bit
FSub FP32 subtraction

FMul FP32 multiplication

FMAdd FP32 multiply-add

FMSub FP32 multiply-subtract

FCmp* FP32 comparison LT/LE/GT/GE/EQ/NE

HFAdd (Scalar) FP16 addition 1 2 x 16-bit
HFSub FP16 subtraction

HFMul FP16 multiplication

HFMAdd FP16 multiply-add

HFMSub FP16 multiply-subtract
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HFCmp* FP16 comparison LT/LE/GT/GE/EQ/NE

FRCP (Scalar) FP32 reciprocal 1 2 X 32-bit
FSQRT FP32 square root

FRSQ FP32 reciprocal of square root

FEXP2 FP32 exponent based 2

FLOG2 FP32 log based 2

FSIN FP32 sine

FCOS FP32 cosine

FTANH FP32 hyperbolic tangent

INT_FP (Scalar) INT32 to FP32 conversion 1 2 X 32-bit
FP_INT_Trunc FP32 to INT32 conversion with truncation

FP_INT_Round FP32 to INT32 conversion with rounding

INT_FP16 INT32 to FP16 conversion

FPT16_INT_Trunc
FP16_INT_Round
FP16_FP
FP_FP16

FP16 to INT32 conversion with truncation
FP16 to INT32 conversion with rounding
FP16 to FP32 conversion

FP32 to FP16 conversion

9.2.5  Scalar Integer Math Instructions

In the 2 scalar math slots, we support a variety of integer math instructions as well:

Instruction Function

Add Addition

Sub Subtraction

And Bitwise and

Or Bitwise or

Xor Bitwise exclusive-or

SLL Shift left logical

SRL Shift right logical/unsigned

SRA Shirt right arithmetic/signed

SXTD Sign-extend

ZXTD Zero-extend

CmpEQ Compare equal

CmpNE Compare not equal

CmpGE (U) Compare greater than (unsigned)
CmpGT (U) Compare greater than or equal to (unsigned)
CmpLE (V) Compare less than (unsigned)

CmpLT (U) Compare less than or equal to (unsigned)
MIN (U) Minimal (unsigned)
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MAX (V)

Maximal (unsigned)

Mul 32-bit x 32-bit -> 32-bit multiply

LMulSS 32-bit x 32-bit -> 64-bit multiply signed-signed
LMulSU 32-bit x 32-bit -> 64-bit multiply signed-unsigned
LMulUU 32-bit x 32-bit -> 64-bit multiply unsigned-unsigned
Div Integer division (variable # cycles)

MODINC Modular increment

MODINCP Modular increment and predicate if not zero
MODINC_NOTP Modular increment and predicate if zero
DPMODINCP Modular increment and predicate double if not zero

DPMODINC_NOTP
MUXP

Modular increment and predicate double if zero

Multiplex from predicate (C select operator)

MUX Multiplex from scalar register (C select operator)
SLLIADD Shift left immediate and add

CMPWITHIN Compare within low/high bounds

BITCNT Bit count

9.3 VPU Compatibility

9.3.1 Compatibility Exceptions

We aim to maintain C source code backward compatibility with Orin (Gen-2) VPU. We
do not plan to support assembly code or binary compatibility.

There are a few cases where we need to break C source code compatibility from Orin to
Thor.

» 1-bit CNN instruction intrinsic function (vxnor_add8x4x2) are not supported.

» 8-bit dense MAC with 32-bit accumulator intrinsic functions (vdotp4_bbw,
vdotp4x2_bbw, vfilt4x2x2_bbw) are not supported.

» 16 x 32-bit single vector data type xvshortx is not supported.

32 x 32-bit double vector data type dxvshortx is not supported.

» Promote/demote involving xvshortx, vpromote_di() & vdemote_i(), are not
supported.

v

9.3.2 Removed/Emulated Instructions

None from Orin to Thor.
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9.4 Instruction Execution Ordering

9.4.1 Processor Pipeline

Normally processor pipelining is behind the scenes, as execution packets appear to
execute sequentially, and mostly one packet per cycle, with instructions in the same
packet executed in parallel. However, to understand various conditions where the
processor stalls, and the few exceptions to the sequential execution behavior better,
we need to learn about the VPU processor pipeline stages:

» IF1.IF3: Instruction fetch stages
» ID: Instruction decode stage

» EXT .. EX9: execution stages

» VPU pipeline diagram follows.
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Figure 13. VPU processor pipeline
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9.4.2 Default/General Behavior

The VPU instructions execute in the following general order consistent with assembly
encoding:

1. Scalar and vector instructions in the same VLIW execution packet are executed
in parallel.

2. Within the same VLIW execution packet, loads are executed before stores.

3. Multiple stores are executed in parallel if they go to different memory

superbanks. Multiple writes going to the same memory superbanks are

executed in slot order.

Reading same register (scalar or vector) by multiple slots is supported.

5. Writing to same register (scalar or vector) by multiple slots is NOT allowed
(compiler does not schedule such code, and such code would cause assembler
to fail).

6. Same register (scalar or vector) can be read (multiple times) and written (only
once) in the same execution packet, read preceding write.

»

9.4.3 Delay Slots for Branch Instructions

Branch and hardware loop instructions have delay slots, so also appear as executing
out of order; 2 packets after branch instruction are executed before taking the branch.

SWRBK, CLR_HWLP, STW HWLP, WFE_GPI, and WFE_R5 should not be placed in a
branch delay slot.

Please see 9.6.1 Control Instruction summary for number of delay slots for each
instruction.

9.4.4 Exception for Instructions Accessing
Address Generator

Address Generator fields have the following read/write accesses:

» MovAgen reads and writes Agen in EX2

» Agen-based load/store reads and writes Agen in EX2 (reading most fields, writing
base and loop variables)

Agen-based store reads and writes Agen in EX7 (updating MinVal, MaxVal)
InitAgen and CfgAgen writes Agen in EX2

Store Agen Loopvar reads Agen in EX2

AgenCfgST/AgenCfgST_p2 reads Agen in EX7

AgenCfgLD/AgenCfgST_p2 writes Agen in EX7

vvVvyyvVyy

In the processor model we have HW stalls so that instructions appear to be executed
sequentially. However, instructions from the same execution packet are executed or
stalled together, except stalling for memory dependency. Thus, Agen read/write
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instructions that access Agen in different pipeline stages exhibit non-sequential
behavior.

Write-EX2 + Read-EX7 in the same packet: would appear that write precedes read,
violating rule #6. Possible combinations for this category are:

» MovAgen with AgenCfgST in same packet: Moved Agen contents is stored to
memory.

» Agen-based load/store with AgenCfgST in same packet: Updated Agen contents is
stored to memory.

» InitAgen or CfgAgen with AgenCfgST in same packet: Configured Agen contents is
stored to memory.

Write-EX2 + Write-EX7 in the same packet: allowed, with Write-EX2 occurring before
Write-EX7, so outcome from Write-EX7 stays. This is violating rule #5. Possible
combinations for this category are:

» MovAgen with AgenCfgLD in same packet: Moved Agen contents is lost, overridden
by load outcome of AgenCfgLD.

» Agen-based load with AgenCfgLD in same packet: Agen-based load is carried out
with current address value (since agen-update is post-modifying). Agen address
update is lost, overridden by load outcome of AgenCfgLD.

» InitAgen or CfgAgen with AgenCfgLD in same packet: Configured Agen contents is
lost, overridden by load outcome of AgenCfgLD.

Note that Read-EX2 + Write-EX7, Read-EX2 + Write-EX2, and Read-EX7 + Write-EX7 in
same packet would appear that read precedes write and thus conform to the general
instruction ordering (rule #6).

Agen-based load/store (reading agen configuration in EX2) and AgenCfgLD (writing
agen configuration in EX7) in same packet: agen-based load/store uses configuration
before AgenCfgLD

MovAgen (reading source agen in EX2) and InitAgen/AgenCfg (writing agen
configuration in EX2) in same packet: source agen of MovAgen is read first, before
being updated by InitAgen/AgenCfg

AgenCfgST_p2 (reading agen loop variables and min/max value in EX7) and agen-based
store (reading/writing agen loop variables and min/max value in EX7, min/max value
only when min/max collection is enabled) in same packet: AgenCfgST_p2 stores agen
loop variables etc. before being updated by the agen-based store.

Note that agen-based load with AgenCfgLD in same packet is allowed in Xavier VPU,
but is disallowed in Orin and Thor VPU. In Orin we have added min/max collection
feature, and both instructions are writing into MinVal/MaxVal agen fields in EX7. The
min/max collection feature is present in Thor VPU as well.
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9.4.5 Exception for Instructions Accessing HW
Loop Registers

The hardware zero-overhead looping utilizes the following registers:

» LF: 2-bitloop level, -1, 0 or 1, indicating which loop level the execution is in, reset to
-1 (which is encoded as binary “117).

» LS[0..1]: 32-bit loop start PC, reset to O

» LE[O..1]: 32-bit loop end PC, reset to O

» LC[0..1]: loop count, 32-bit, reset to 1

The HW Loop instruction RPT accesses these registers (both read and write) in EX2
stage.

The PCU, program control unit, accesses these registers (both read and write) upon
end of the loop (PC matching LE[LF]) to implement looping behavior.

These registers are written by CLR_HWLP instruction, to clear hardware loop context
for a new algorithm task, and read by STW HWLP instruction, for debug. These
instructions have placement restrictions with respect to hardware loop, to avoid
hazards.

CLR_HWLP should not be placed:

In two packets before RPT

in the same packet as RPT

in the two RPT delay slots

in first 2 packets of loop body
in last 2 packets of loop body
In first 2 packets after the loop.

vVvVvyvVvyvwvyy

Otherwise, hardware loop state is non-deterministic.
STW HWLP should not be placed:

In two packets before RPT

In the same packet as RPT

In two RPT delay slots

In first 3 packets of loop body
In last 3 packets of loop body
In first 2 packets after the loop.

vVvVvyVvyvwvyy

Otherwise, stored contents are non-deterministic.

Note that these restrictions do not affect instructions injected through debug in
Debug State, since such instructions are executed one instruction at a time through all
pipeline stages.
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9.4.6 Exception for Instructions Accessing FP
Invalid Flag

With the scalar and vector unit FP instructions, we have an invalid flag that FP
operations can set, and a pair of move instructions moving between the flag and a
scalar register that we can used to acquire and clear the flag.

Interesting scenarios:

» When there are multiple FP operations in the same packet, invalid outcome from
any operation can set the invalid flag, and since the flag is sticky, the flag update
can be represented as

invalid_flag |= sO_invalid | s1_invalid | vO_invalid | v1_invalid

» When MOV R, INV instruction (only in SO since it’s classified as a control instruction)
and FP operation(s) (in S1/VO/V1 slots) are placed in the same packet, writing of the
flag from MOV R, INV instruction is ignored, overridden by the FP operation(s).

» When MOV INV, R instruction (in SO) and FP operation(s) (in S1/VO/V1 slots) are
placed in the same packet, reading of the flag occurs before the FP operation(s)
affect the flag. This case is consistent with the “read before write” general
ordering rule.

9.4.7 Hardware Stalls to Comply with Sequential
Execution Order

There is RAW (read after write) and WAW (write after write) data hazard detection on
all register files (scalar, predicate, agen, VRF, WRF, ARF) to ensure sequential execution
regarding dependency through registers.

Various control instructions interact with components external to the VPU processor in
various pipeline stages:

» GPO_SET/CLR/WR affect GPO pins in the EX2 stage.

» GPI_RD reads GPI pins in the EX2 stage.

» CPST writes to coprocessor space via APB write transaction in the EX4 stage
(address/write-request/write-data driven in EX4, wait for peripheral ready in EX5).

» CPLD reads from coprocessor space via APB read transaction in the EX5 stage
(address/read-request driven in EX4, wait for peripheral ready and read-data in
EX5).

» SIG_RS5 raises vpu_start_r5 control signal to R5 in the EX3 stage.

» WEFE_GPI and WFE_RS waits for all proceeding instructions to exit pipeline before
execution, so has their own mechanism to ensure sequential execution.

SIG_R5 and WFE_RS are involved in R5/VPU communication. As R5 and VPU are two
separate processor cores, we are not relying on fine timing of individual signals, but on
the interaction protocol, to ensure coherent behavior.
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Among the remaining external interface instructions, i.e. GPI/GPO/CPLD/CPST, GPI and
CPLD are read actions, and GPO and CPST are write actions. We need to watch for
potential RAW hazards:

» GPIl after GPO: both execute in EX2, so execution order is preserved.

» GPIl after CPST: CPST executes in EX4 and GPI in EX2, so potential RAW hazard.
Hardware stalls GPI in EX2 (or earlier) until peripheral responds readiness for the
CPST transaction.

» CPLD after GPO: GPO executes in EX2 and CPLD in EX4, so execution order is
preserved.

» CPLD after CPST: CPST executes in EX4 and CPLD in EX5, also APB bus is
sequential, so execution order is preserved.

and potential WAW hazards:

» GPO after CPST: CPST executes in EX4 and GPO in EX2, so potential WAW hazard.
Hardware stalls GPO in EX1 (or earlier) until peripheral responds readiness for the
CPST transaction.

» CPST after GPO: GPO executes in EX2 and CPST in EX4, so execution order is
preserved.

9.5 Instruction Predication

The VPU has 14 32-bit predicate registers, P2... P15. PO are P1 are reserved to indicate
unpredicated (always-execute) instructions. In addition, First half of the main vector
register file, VO..V15, can be used for vector store lane predication.

The following predication features are available:

» Vector math instruction-level predication
» Vector load instruction-level predication

» Scalar store instruction-level predication
» Vector store lane predication.

9.5.1 Instruction-Level Predication for Register
Moves

Scalar-to-scalar, scalar-to-vector, and vector-to-scalar are instruction-level predicated.
When predication is on (nonzero), the register move is performed. When predication is
off (zero), the register move is skipped.

Predicated register move can be used for conditional execution to avoid conditional
branches.
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95.2 Instruction-Level Predication for Vector
Math

Selected vector ALU instructions are predicated on or off identically across lanes,
MOVS (scalar-to-vector move) and those with “_CA” suffix in mnemonic. It's a common
decision for all lanes to carry out one functionality or the other, with the predication-
off functionality emulating clearing of the accumulator.

For example:

[P2] VMAddHHW_CA Ve, V1, V2:V3 // if (P21==8), V2:V3 = VO*V1
// otherwise V2:V3 += VO*V1

Clearing of the accumulator typically happens periodically, once every K iterations,
where K is number of items being accumulated, as in filtering. MODINCP can be used
to implement a modulo K counter to control the periodic predication.

Please see consult description of individual instructions for additional details.

9.5.3 Predication for Load/Store

Predication support for various addressing modes of scalar/vector load/store is shown
as follows:

Table 18. Scalar/vector load/store predication support

Predication feature Base+offset Post-modify Agen-based
Scalar load not available instruction-level not available
Scalar store not available instruction-level instruction-level
Vector load not available not available instruction-level
Vector store not available not available per-lane

9.5.3.1 Instruction-Level Predication for Post-Modify Scalar
Load
Scalar load with post-modify addressing mode is instruction-level predicated.

When predication is on, memory read, address register update, and destination write
are carried out. Otherwise, none of these are carried out. Of course, predicate register
will always be read for the predication.

Predicated scalar load/store is used to accelerate various conditional scalar processing.
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9.5.3.2 Instruction-Level Predication for Post-Modify and
Agen-Based Scalar Store

Scalar store, both post-modify and agen-based variations are instruction-level
predicated.

For the post-modify scalar store, predication drives both memory write and the
register update (base += modifier). When predication is on, both memory write and
register update are carried out, otherwise, both are not carried out.

For the agen-based scalar store, predication drives only memory write. Agen update is
always carried out. When predication is on, memory write is carried out, otherwise,
memory write is not carried out.

In both kinds of scalar stores, source register read is carried out unconditionally, with
any necessary hardware stalling to preserve source register dependency.

Predicated scalar load/store is used to accelerate various conditional scalar processing.

9.5.3.3 Instruction-Level Predication for Agen-Based Vector
Load

Agen-based vector load instructions are instruction-level predicated. When predication
is on, memory read and destination vector register write are performed. When
predication is off, memory read and destination vector register write are skipped.
Address update is carried out unconditionally.

A use case for predicated vector load is for integral image, where predication is used
to deal with boundary rows.

9.5.3.4  Lane Predication for Agen-Based Vector Store

Agen-based vector store instructions are predicated per lane. Predication-on lanes are
written to memory, predication-off lanes are skipped. Address update is carried out
unconditionally.

Predication is conveyed via either predicate register(s) or a single vector register in
VRF.

In case of predication via predicate register(s), as many bits of predicate register are
used as the number of lanes, and up to 64 lanes, or two predicate registers, are used.
The predication bits are least significant bit justified.

For example, “[P2] DVSTW_PI VO, *AO0++” stores 16 word lanes, with lane i predicated by
bit i of the predicate register P2.

In case of predication via a single vector register in VRF, predicates are evenly spaced
starting from bit 0. The VRF entry is regarded as a 384-bit vector, and a single bit is
used for each lane. Bit position for each lane is lane_index * (384/num_lanes).
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For vector store with scalar distribution, for example, VSTW_S, predication is

supported only through predicate registers, and not through vector register. We are
storing out just one or two values so there is little value in using vector register to

convey predicates.

The following table shows bits of VRF used across variations of vector store:

Table 19. Vector register predicated vector store variations

Vector store Number of | Bits used in As bit 0 of array
source predicate VRF entry | elements
lanes

VSTB_P/T 32 0,12,24,..,372 arr_vcharx|[O, 1, .., 31]

VSTBH_P/T

VSTH_P/T 16 0, 24, 48, ..., 360 arr_vshorx[0, 1, ..., 15]

VSTHW_P/T

VSTW_P/T 8 0, 48, 96, ..., 336 arr_vintx[O, 1, ..., 7]

VSTWX_P

VSTB_S 1 Predication via VRF not supported

VSTH_S

VSTW_S

DVSTB_P/PI 64 0,6,12,..,378 as bit 0 and bit 6 of
arr_vcharx[O, 1, ..., 31]

DVSTH_P/PI/T/TI 32 0,12,24,..,372 arr_vcharx[0O, 1, .., 31]

DVSTHB_P/PI

DVSTW_P/PI/T/TI[T2/T2I 16 0, 24,48, ..., 360 arr_vshortx[O, 1, ..., 15]

DVSTWH_P/PI/T/TI

DVSTB_S 2 Predication via VRF not supported

DVSTH_S

DVSTW_S

QVSTHB_P/PI/PI2 64 Predication via VRF not supported

QVSTWH_P/PI/PI2[T/TI2 32 Predication via VRF not supported

For example, “[V2] DVSTW_PI VO, *AO++” stores 16 word lanes, with lane i predicated by
bit i*24 of V2, or bit O of each element of a vshortx-type variable mapped to V2.

There is a behavior difference between using predicate register file and vector register
file for predication. With predicate register file, in case all lanes are predicated off, the
memory transaction is not issued, conserving power consumption. With vector
register file, to shorten the latency the VRF entry is read late in the pipeline, same
stage as the store data, too late to block the memory transaction, so the predicated

memory transaction is always issued.
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Lane-predicated store via predicate register is supported in all type and distribution
combination of Agen-based scalar/vector stores as well as VAST, vector addressed
stores, and in all memory slots.

Lane-predicated store via VRF is supported in agen-based single/double vector store of
VRF, non-scalar distribution, and in MO slot only.

9.6 Control Instructions

9.6.1 Instruction Summary

The following control instructions are supported. Most are available only in the SO slot,
except the following:

» RD_TSC.L/H can be issued in both SO and S1 slots.
» CPLD, CPST, MemFence are available only in MO slots.

In the table, delay slots refer to execution packets (one slot is one packet) following the
control instruction that are executed before the control instruction takes place. For
example, the JR instruction has 2 delay slots, so two execution packets following the
JR instruction’s own packet are executed before the jump takes place.

Table 20. Control instructions

Function Assembly Format Comments
Jump to immediate | Jimm20_addr Jump to relative immediate address, with 2 delay slots.
Jump to register JR Raddr Jump to absolute address in register, with 2 delay slots.

Jump and link (call)

JAL imm?20_addr

Call (jump and link) relative immediate address., with 2
delay slots.

Jump and link
register (call)

JALR Raddr

Call absolute address in register, with 2 delay slots.

Branch if zero

BEQZ Rsrc, imm14_addr

Branch if Rsrc is zero to relative immediate address, 2 delay
slots.

Branch if nonzero

BNEZ Rsrc, imm14_addr

Branch if Rsrc is not zero to relative immediate address, 2
delay slots.

Software break
point

SWBRK

Software break point.

Hardware loop

RPT Rsrc,imm16

Hardware zero-overhead loop, with the Rsrc specifying
number of iterations, and the immediate encoding size of
the loop, with 2 delay slots.

Clear hardware loop
registers

CLR_HWLP

Initialize hardware loop registers to default values

GP out set low

GPO_SETLI imm16

Set lower 16-bit of GPO according to immediate
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GP out set high

GPO_SETHI imm16

Set higher 16-bit of GPO according to immediate

GP out clear low

GPO_CLRLI imm16

Clear lower 16-bit of GPO according to immediate

GP out clear high

GPO_CLRHIimm16

Clear higher 16-bit of GPO according to immediate

GP out set GPO_SET Rsrc Set 32-bit of GPO according to Rsrc

GP out clear GPO_CLR Rsrc Clear 32-bit of GPO according to Rsrc

GP out write GPO_WR Rsrc Copy 32-bit Rsrc to 32-bit GPO

GP out read GPO_RD Rdst Copy 32-bit GPO into Rdst

GP inread GPI_RD Rdst Sample 32-bit GPI into Rdst

Wait for GPI WFE_GPI Rsrc1, Rsrc2 Wait until (GPI & Rsrc1) == Rsrc2

pattern

Wait for R5 event WFE_R5 Transition into low-power WFE_R5 state until R5 writes
R5_vpu_start to dispatch next task

Signal R5 SIG_R5 Rsrc Send software interrupt to R5; Rsrc carries a software-
defined 32-bit data to write to a VPU config register, which
R5 interrupt service routine can read.

Enable timestamp ENABLE_TSC Enable performance counter

counter

Once enabled, timer increments in Active state (and not
increment in Reset, Debug, WFE_R5, WFE_GPI, Halted,
Error-Halted states).

Read timestamp
counter

RD_TSCL Rdst
RD_TSCH Rdst

Copy performance counter lower/upper 32-bit to Rdst.
SO and S1 slots.

Move FP invalid flag

MOV INV-R
MOV R-INV

Move floating-point invalid flag to/from scalar register

OCD load/store

OCD_LD PC/GPO
OCD_ST PC/GPI/GPO

OCD (debug) load/store

Configure VMEM
Superbanks

CFG_VMEM_SBA/B/C/D Rsrc

RD_CFG_VMEM_SBA/B/C/D
Rdst

Write configuration

Read configuration

Coprocessor store

CPST Rsrc, Rdaddr
CPST Rsrc, #imm12

Coprocessor load CPLD Rsaddr, Rdst MO slot only
CPLD #imm12, Rdst
Memory fence MemFence MO slot only

The VPU does not take interrupts, and thus there is no enable/disable interrupt, return

from interrupt, etc. instructions available.

Note that PC is internally modeled to count in 32-bit increments. For example, PC =1
means byte address of 4. The 20-bit absolute immediate field for J, JAL, the 14-bit
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relative immediate fields for BEQZ, BNEZ, the 16-bit immediate field for RPT, conform
to this convention (count in 32-bit increments).

By default, compiler align all branch targets to 256-bit = 32-byte = 8-word alignment,
to avoid the instruction fetch interface spending an extra cycle to fetch a execution
packet starting from target PC.

9.6.2  Branch/Jump/Call Delay Slots

In order for the processor pipeline to work, 2 execution packets after the
branch/jump/call instructions are executed before taking the branch/jump/call. These
2 execution packets are called in the delay slots of the branch/jump/call instructions.
Please see instruction summary or details in each branch/jump/call instruction for how
many delay slots there are.

Note that the branching action is delayed but register read/write is still executed
sequentially.

For example, case 1:
1 LDHI R5, #0
2 BEQZ R5, #42
3 ADDI R5, #-1,R5
4 NOP
5 HALT

In this case, R5 for instruction #2 is sampled and branch decision made accordingly.
Subsequent instruction #3 that changes R5 does not change the branch decision.

For example, case 2:
1 LDHI R15, #0
2 JAL #42
3 ADDIR15, #-1,R15
4 NOP
5 HALT

In this case, R15, the link register, is changed in instruction #1, but JAL (jump and link)
in instruction #2 would overwrite R15 with the return PC (after 2 delay slots, thus #5).
R15 is then revised again by instruction #3 before taking the branch. Thus, when the
called function returns via JR R15, execution starts at #4, rather than the normal
behavior, 2 delay slots past the JAL, at #5.

9.6.3 Jump and Link (JAL, JALR)

‘ Instruction name ‘ JAL

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 156



Functionality

Jump and link (call)

Assembly format

JAL imm20_addr

Type and bit width

20-bit signed immediate

Predication

not available

Source options

not available

Destination options

not available (implicit: PC and LR)

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump and link (call) relative immediate address.
There're 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the
destination.

PC after the delay slot is written to the link register R15. This is where a
subsequent JR R15 should jump to, when returning from the called function.

Instruction name JALR

Functionality Jump and link register (call)
Assembly format JALR Raddr

Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

not available (implicit: PC and LR)

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump and link (call) absolute address in register.
There're 2 delay slots.

Immediate value is calculated as the PC offset from the 2"? delay slot to the
destination.

PC after the delay slots is written to the link register R15. This is where a
subsequent JR R15 should jump to, when returning from the called function.

9.6.4

Jump (J, JR)

Instruction name J
Functionality Jump to immediate
Assembly format Jimm20_addr

Type and bit width

20-bit signed immediate

Predication

not available

Source options

not available
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Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump to relative immediate address.

There’re 2 delay slots; one execution packets immediately following the jump
would be executed before the jump takes place.

Immediate value is calculated as the PC offset from the 2nd delay slot to the
destination.

Instruction name JR
Functionality Jump to register
Assembly format JR Raddr

Type and bit width

32-bit absolute address

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump to absolute address in register.

There are 2 delay slots.

9.6.5

Conditional Branch (BEQZ, BNEZ)

Instruction name

BEQZ

Functionality

Branch if zero

Assembly format

BEQZ Rsrc, imm14_addr

Type and bit width

14-bit signed immediate

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Branch if Rsrc is zero to relative immediate address.
There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2" delay slot to the
destination.

Instruction name

BNEZ
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Functionality

Branch if not zero

Assembly format

BNEZ Rsrc, imm14_addr

Type and bit width

14-bit signed immediate

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Branch if Rsrc is not zero to relative immediate address.
There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2" delay slot to the
destination.

9.6.6

Software Break Point (SWBRK)

Instruction name SWBRK
Functionality Software break point
Assembly format SWBRK

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Upon executing this, VPU transitions into debug state. Only debug controller
can transition VPU back to active state.

SWBRK should not be placed in any branch or hardware loop delay slots.

9.6.7

Hardware Zero-Overhead Loop (RPT)

Instruction name

RPT

Functionality

Hardware loop

Assembly format

RPT Rsrc,imm16

Type and bit width

Rsrc: 32-bit unsigned iteration count
Imm16: 16-bit unsigned PC offset

Predication

not available

Source options

scalar register
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Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Hardware zero-overhead loop, with Rsrc indicating number of iterations.
There are 2 delay slots.

The immediate field encodes loop size, which is the PC difference between
the 2"? delay slot packet (very next packet is beginning of loop) and the last
packet of the loop.

Rsrc is checked at the end of the loop body, so loop is iterated at least one
time. Loop with Rsrc = O will be executed one time (same behavior as Rsrc =

1).

Instruction name CLR_HWLP
Functionality Clear hardware loop registers
Assembly format CLR_HWLP

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void clr_hwlp();

Additional details

Initialize LF = -1 (2-bit binary 11), LC[0..1] = 1, LS[0..1] = 0, LE[0..1] = 0.
Should be included in each task starting code to clear hardware loop
registers for the new task.

Should not be placed:

» in the same packet as RPT

in RPT delay slots

in first 2 packets of loop body
in last 2 packets of loop body

vwvyy

9.6.8

General Purpose Output (GPO_¥)

The following instructions are available for GPO feature:

GPO_SETLI
GPO_SETHI
GPO_CLRLI
GPO_CLRHI
GPO_SET
GPO_CLR
GPO_RD
GPO_WR

vVvVvvVvVvYVyYVYYy
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GPO set/clear low/high immediate are used to set or clear a number of GPO bits at the
same time, all in the lower 16 bits or upper 16 bits and known at compile time. For
example, gpo_clrh(5) would map to “GPO_CLRHI #5” to clear GPO[18] and GPO[16],
while leaving all other GPO pins unchanged.

GPO set/clear are used to set or clear a number of GPO bits at the same time, either
not all in lower/upper 16 bits or unknown at compile time. The set/clear bit mask value
is supplied by a scalar register. For example, gpo_set(val) would map to “GPO_SET R4”
(assuming variable val is allocated to R4), to set GPO pins where bits of val are one,
leaving all other GPO pins unchanged.

GPO read/write are used to replace (or not replace) a number of GPO bits at the same
time, allowing any binary transition (0 > 0,0> 1,1 > 0, 1 = 1) in each bit. For
example, to replace GPO[7:4] with a 4-bit value in val, one would code:

temp = gpo_rd();
temp &= OxFFFF_FFOF;
temp |= val << 4;
gpo_wr (temp) ;

which would map to (assuming val is allocated to R6):

GPO_RD R4

LHI #6xFFFF, R5

ORI RS, #BxFFOF, RS
AND R4, R5, R4

SLLI R6, #4, RS

OR R4, R5, R4
GPO_WR R4

Instruction name GPO_SETLI

Functionality General purpose output set low immediate

Assembly format GPO_SETLIimm16

Type and bit width 16-bit unsigned immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void gpo_setl(unsigned short imm);

Additional details Set lower 16-bit of GPO according to immediate. When a bit of the

immediate is on, the corresponding bit of GPO is set. Remaining GPO bits are
left unchanged.

For example, GPO_SETLI #0x11 would set bits 4 and 0 of GPO.

Instruction name GPO_SETHI
Functionality General purpose output set high immediate
Assembly format GPO_SETHI imm16
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Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_seth(unsigned short imm);

Additional details

Set upper 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit in upper 16 bits of GPO is set.
Remaining GPO bits are left unchanged.

For example, GPO_SETHI #0x11 would set bits 20 and 16 of GPO.

Instruction name

GPO_CLRLI

Functionality

General purpose output clear low immediate

Assembly format

GPO_CLRLI imm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clrl(unsigned short imm);

Additional details

Clear lower 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit of GPO is cleared. Remaining GPO
bits are left unchanged.

For example, GPO_CLRLI #0x11 would clear bits 4 and O of GPO.

Instruction name

GPO_CLRHI

Functionality

General purpose output clear high immediate

Assembly format

GPO_CLRHI imm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clrh(unsigned short imm);

Additional details

Clear upper 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit in upper 16 bits of GPO is cleared.
Remaining GPO bits are left unchanged.

For example, GPO_CLRHI #0x11 would clear bits 20 and 16 of GPO.
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Instruction name

GPO_SET

Functionality

General purpose output set register

Assembly format

GPO_SET Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_set(unsigned int);

Additional details

Set 32-bit GPO according to register source. When a bit of the scalar
register is on, the corresponding bit of GPO is set. Remaining GPO bits are
left unchanged.

For example, GPO_SET R1 with R1 = 0x11 would set bits 4 and O of GPO.

Instruction name

GPO_CLR

Functionality

General purpose output clear register

Assembly format

GPO_CLR Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clr(unsigned int);

Additional details

Clear 32-bit GPO according to register source. When a bit of the scalar
register is on, the corresponding bit of GPO is cleared. Remaining GPO bits
are left unchanged.

For example, GPO_CLR R1 with R1 = 0x11 would clear bits 4 and O of GPO.

Instruction name GPO_RD
Functionality General purpose output read
Assembly format GPO_RD Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned int gpo_rd();

Additional details

Copy 32-bit GPO to destination register Rdst.
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Instruction name

GPO_WR

Functionality

General purpose output write

Assembly format

GPO_WR Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_wr(unsigned int var);

Additional details

Copy 32-bit source register Rsrc to GPO.

9.6.9

General Purpose Input (GPI_RD)

Instruction name GPI_RD
Functionality General purpose input read
Assembly format GPI_RD Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned int gpi_rd();

Additional details

Sample 32-bit GPI into destination register Rdst.

9.6.10 Wait for GPI Event (WFE_GPI)

Instruction name

WFE_GPI

Functionality

Wait for GPI pattern

Assembly format

WFE_GPI Rsrc1, Rsrc2

Type and bit width

32-bit unsigned

Predication

not available

Source options

Two scalar registers

Destination options

not available

Additional options

not available

Intrinsics/operator

void wfe_gpi(unsigned int mask, unsigned int match);

Additional details

Wait until (GPI & Rsrc1) == Rsrc2, Rsrc1 being the bit mask and Rsrc2 being
the match pattern.
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For example, WFE_GPI R1, R2, with R1 = 3 and R2 = 1 would wait for GPI[0] =
1 and GPI[1] = 0 before proceeding to the next execution packet.

Should not be placed in a branch delay slot.

9.6.11

Wait for R5 Event (WFE_R5)

Instruction name WFE_R5
Functionality Wait for R5 event
Assembly format WFE_RS

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void wfe_r5();

Additional details

Transition into low-power WFE_R5 state until R5 writes R5_vpu_start to
dispatch next task.

Should be included as the last statement in every task’s exit code. Should
not be placed in a loop.

Should not be placed in a branch delay slot.

9.6.12 Signal R5 (SIG_R5)

Instruction name SIG_R5
Functionality Signal R5
Assembly format SIG_R5 Rsrc

Type and bit width

not applicable

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void sig_r5(unsigned int data);

Additional details

Send software interrupt to R5; Rsrc carries a software-defined 32-bit data to
write to a VPU config register, which R5 interrupt service routine can read.
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9.6.13 Performance Counter (ENABLE/RD_TSC)

Instruction name ENABLE_TSC
Functionality Enable performance counter
Assembly format ENABLE_TSC

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void enable_TSC();

Additional details

Once enabled, the 64-bit counter increments in Active state (and not
increment in Reset, Debug, WFE_R5, WFE_GPI, Halted, Error-Halted states).

Once enabled, subsequent ENABLE TSC would be ignored.

Though the counter is called TSC, it does not count in real time scale, but in
VPU clock cycles.

Instruction name

RD_TSC

Functionality

Read performance counter

Assembly format

RD_TSCL Rdst
RD_TSCH Rdst

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned long long read_TSC();//read lower/upper parts together
unsigned int read_TSCL(); // read just lower part
unsigned int read_TSCH(); // read just upper part

Additional details

Copy TSC lower/upper 32-bit to Rdst.

It’s available on both SO and S1 slots, and ideally should be schedule in both
S0 and S1 to copy lower/upper parts to avoid skewed copy introducing
inconsistency.

Intrinsic functions are supported to read just lower or upper part, or
both parts. Intrinsic function reading both parts are implemented such
that, RD_TSCL and RD_TSCH are executed in the same execution packet
and with no other fused operations to avoid potential inconsistency.

unsigned long long start_time = read_TSC();

// loop code

unsigned long long end_time = read_TSC();
printf(“Loop XXX cycle count = %1d \n”, end_time - start_time);
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9.6.14 Floating Point Invalid Flag

Instruction name MOV INV-R

Functionality Move floating point invalid flag to register
Assembly format MOV INV, Rdst

Type and bit width 1-bit

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

int invalid_flag();

Additional details

Move floating point invalid flag to scalar register. After the move, the scalar
register becomes either O or 1.

The invalid flag is set when any input or output floating point value is NaN
(not a number).

Instruction name MOV R-INV
Functionality Move register to floating point invalid flag
Assembly format MOV Rsrc, INV

Type and bit width

not applicable

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void set_invalid_flag(int var);

Additional details

Move scalar register to floating point invalid flag. Invalid flag is cleared if the
scalar register is zero, and set if the scalar register is non-zero.

9.6.15 OCD Load/Store

Instruction name OCD_LD
Functionality OCD (on-chip debug) load
Assembly format OCD_LD PC

OCD_LD GPO

OCD_LD SES (shadow execution state)

Type and bit width

32-bit unsigned

Predication

not available
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Source options

dedicated ocd_data register

Destination options

PC or GPO

Additional options

not available

Intrinsics/operator

not available

Additional details

Copy from ocd_data dedicated debug register to PC, GPO, or SES, for debug.

Only take effect in debug mode; treated like NOP otherwise.

Instruction name OCD_ST
Functionality OCD (on-chip debug) store
Assembly format OCD_ST PC

OCD_ST GPI

OCD_ST GPO

OCD_ST SES (shadow execution state)

Type and bit width

32-bit unsigned

Predication

not available

Source options

PC, GPI or GPO

Destination options

dedicated ocd_data register

Additional options

not available

Intrinsics/operator

not available

Additional details

Copy from PC, GPI, GPO, SES to ocd_data dedicated debug register.

9.6.16 Configure VMEM Superbanks
(CFG_VMEM_SBA/B/C/D)

Instruction name

CFG_VMEM_SBA/B/C/D

Functionality

Cofigure VMEM Superbanks

Assembly format

CFG_VMEM_SBA/B/C/D Rsrc

Type and bit width

not applicable

Predication

not available

Source options

32-bit scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

int data
int data
int data
int data

void cfg_vmem_sba
void cfg_vmem_sbb
void cfg_vmem_sbc
void cfg_vmem_sbd

1

1

— = = =

)
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Additional details

Write VMEM superbank A/B/C/D configuration data, 32-bit for each
superbank.

Bit O: Load cache enable (O = disable, 1 = enable)
Bits 1 ~ 31: Reserved
Reset value =0

For example, cfg_vmem_sba(0) disables load cache in Superbank A, and
cfg_vmem_sbb(1) enables load cache in Superbank B.

Instruction name

RD_CFG_VMEM_SBA/B/C/D

Functionality

Read cofiguration of VMEM Superbanks

Assembly format

RD_CFG_VMEM_SBA/B/C Rdst

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

32-bit scalar register

Additional options

not available

Intrinsics/operator

int rd_cfg_vmem_sba();
int rd_cfg_vmem_sbb();
int rd_cfg_vmem_sbc();
int rd_cfg_vmem_sbd();

Additional details

Read VMEM superbank A/B/C/D configuration data, 32-bit for each
superbank and return in destination register.

Bit O: Load cache enable (O = disable, 1 = enable)
Bits 1 ~ 31: Reserved

Reset value =0

9.6.17 Coprocessor Control/Status Register
Load/Store

Instruction name

CPST

Functionality

Coprocessor store

Assembly format

CPST Rsrc, Rdaddr
CPST Rsrc, #imm12

Type and bit width

32-bit

Predication

not available

Source options

32-bit scalar register

Destination options

Coprocessor address supplied by bits 13:2 of Rdaddr
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or 12-bit immediate word address

Additional options

not available

Intrinsics/operator

void cp_store(unsigned int src, int daddr);

Additional details

Available in MO slot

Instruction name

CPLD

Functionality

Coprocessor load

Assembly format

CPLD Rsaddr, Rdst
CPLD #imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

Coprocessor address supplied by bits 13:2 of Rdaddr
or 12-bit immediate word address

Destination options

32-bit scalar register

Additional options

not available

Intrinsics/operator

unsigned int cp_load(int saddr);

Additional details

Available in MO slot

9.6.18 Memory Fence

Instruction name

MemFence

Functionality

Memory fence

Assembly format

MemFence

Type and bit width

none

Predication not available
Source options none
Destination options none

Additional options

not available

Intrinsics/operator

void mem_fence();

Additional details

Available in MO slot

Stall appropriately for any preceding memory write (scalar/vector store,
histogram, VAST) to commit to memory before the execution packet where
MemFence resides can execute, to ensure memory coherency and prevent
RAW data hazards.

See 6.3.1 for comparison between MemFence instruction and
chess_memory_fence() pragma.
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9.7 Scalar ALU Instructions

The scalar unit supports various common scalar arithmetic and logic operations in the
SO and ST slots.

9.7.1 ALU RRR Instructions

9.7.1.1 Instruction Summary

These RRR (register-register-register) instructions have two source registers and one
destination register. Unless otherwise noted, these are 32-bit operations.

Table 21. Scalar ALU RRR instructions

Function Assembly Format Comments

Add ADD Rsrc1, Rsrc2, Rdst

Subtract SUB Rsrc1, Rsrc2, Rdst

Multiply MUL Rsrc1, Rsrc2, Rdst

And AND Rsrc1, Rsrc2, Rdst Bitwise and

Or ORRsrc1, Rsrc2, Rdst Bitwise or

Exclusive or XOR Rsrc1, Rsrc2, Rdst Bitwise exclusive or

Shift left logical SLL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count, also works for shift left
arithmetic.

6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Shift right logical SRL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Shift right SRA Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

arithmetic 6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Sign extend SXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to sign
extend from. 6 LSBs of Rsrc2 are read as unsigned
bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does
sh = 32 - Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (O or > 32), Rdst = 0.

Zero extend ZXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to zero
extend from. 6 LSBs of Rsrc2 are read as unsigned
bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does
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sh = 32 - Rsrc2[5:0];
Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.

Compare equal

CMPEQ Rsrc1, Rsrc2, Rdst

Compare not equal

CMPNE Rsrc1, Rsrc2, Rdst

Compare greater
than or equal

CMPGE Rsrc1, Rsrc2, Rdst

Compare greater
than or equal
unsigned

CMPGEU Rsrc1, Rsrc2, Rdst

Compare greater
than

CMPGT Rsrc1, Rsrc2, Rdst

Compare greater
than unsigned

CMPGTU Rsrc1, Rsrc2, Rdst

Compare less than
or equal

CMPLE Rsrc1, Rsrc2, Rdst

Compare less than
or equal unsigned

CMPLEU Rsrc1, Rsrc2, Rdst

Compare less than

CMPLT Rsrc1, Rsrc2, Rdst

Compare less than
unsigned

CMPLTU Rsrc1, Rsrc2, Rdst

Modular increment

MODINC Rsrc1, Rsrc2, Rdst

Modular increment:
Rdst = (Rsrc2 == Rsrc1) ?0: (Rsrc2 + 1);

For example, with R4 = 3, R5 = 0, repeated execution
of MODINC R4, R5, R5 resultsinR5=1, 2, 3,0, 1, ...

Min

MIN Rsrc1, Rsrc2, Rdst

Min unsigned

MINU Rsrc1, Rsrc2, Rdst

Max

MAX Rsrc1, Rsrc2, Rdst

Max unsigned

MAXU Rsrc1, Rsrc2, Rdst

9.7.1.2 ADD
Instruction name ADD
Functionality Add

Assembly format

ADD Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator+(int src1, int src2);
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‘ Additional details

9.7.1.3 SUB

Instruction name SUB

Functionality Subtract

Assembly format SUB Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator-(int src1, int src2);

Additional details

9.7.14 MUL
Instruction name MUL
Functionality Multiply
Assembly format MUL Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator*(int src1, int src2);

Additional details

9.7.1.5 AND
Instruction name AND
Functionality Bitwise and
Assembly format AND Rsrcl, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register
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Additional options

Intrinsics/operator

int operator&(int src1, int src2);

Additional details

9.716 OR

Instruction name OR

Functionality Bitwise or

Assembly format OR Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator|(int src1, int src2);

Additional details

9.7.1.7  XOR

Instruction name

XOR

Functionality

Bitwise exclusive or

Assembly format

XOR Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator?(int src1, int src2);

Additional details

9.7.1.8 SLL

Instruction name SLL

Functionality Shift left

Assembly format SLL Rsrcl, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available
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Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator<<(int srcl1, int src2);
unsigned int operator<<(unsigned int src1, int src2);

Additional details

Rsrc2 carries the shift count, also works for shift left arithmetic.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

9.719 SRL

Instruction name

SRL

Functionality

Shift right logical

Assembly format

SRL Rsrcl, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int operator>>(unsigned int src1, int src2);

Additional details

Rsrc2 carries the shift count.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Zeroes are shifted into the most significant bits (logical vs arithmetic).

9.7.1.10 SRA

Instruction name

SRA

Functionality

Shift right arithmetic

Assembly format

SRA Rsrcl1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator>>(int src1, int src2);

Additional details

Rsrc2 carries the shift count.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Source 1 sign bit is into the most significant bits (arithmetic vs logic).

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 175



9.7.1.11

SXTD

Instruction name SXTD

Functionality Sign extend

Assembly format SXTD Rsrcl, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int ext(int srcl1, int src2);

Additional details

Rsrc2 carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs of
Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:

sh = 32 - Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Examples:

src1 = OxFO with src2 = 6 would take the lower 6 bits of src1, 0x30, sign-
extend it to OXxFFFF_FFFO, and copy to dst.

src1 = OxFO with src2 = 4 would take the lower 4 bits of src1, 0, sign-extend it
to O and copy to dst.

9.7.1.12 ZXTD

Instruction name

ZXTD

Functionality

Zero extend

Assembly format

ZXTD Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int extu(int src1, int src2);

Additional details

Rsrc2 carries the bit width of Rsrc1 we want to zero extend from. 6 LSBs of
Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:
sh =32 - Rsrc2[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.
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Examples:

src1 = OxFO with src2 = 6 would take the lower 6 bits of src1, 0x30, zero-

extend it to 0x30, and copy to dst.

src1 = OxFO with src2 = 4 would take the lower 4 bits of src1, O, zero-extend it

to 0 and copy to dst.

9.7.1.13 CMPEQ

Instruction name

CMPEQ

Functionality

Compare equal

Assembly format

CMPEQ Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(int src1, int src2);

Additional details

9.7.1.14 CMPNE

Instruction name

CMPNE

Functionality

Compare not equal

Assembly format

CMPNE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(int src1, int src2);

Additional details

9.7.1.15 CMPGE

Instruction name

CMPGE

Functionality

Compare greater or equal

Assembly format

CMPGE Rsrc1, Rsrc2, Rdst
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Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(int srci1, int src2);

Additional details

9.7.1.16 CMPGEU

Instruction name

CMPGEU

Functionality

Compare greater or equal unsigned

Assembly format

CMPGEU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(unsigned int src1, unsigned int src2);

Additional details

9.7.1.17 CMPGT

Instruction name

CMPGT

Functionality

Compare greater than

Assembly format

CMPGT Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(int src1, int src2);

Additional details

9.7.1.18 CMPGTU

Instruction name

CMPGTU
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Functionality

Compare greater than unsigned

Assembly format

CMPGTU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(unsigned int src1, unsigned int src2);

Additional details

9.7.1.19 CMPLE

Instruction name

CMPLE

Functionality

Compare less or equal

Assembly format

CMPLE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(int src1, int src2);

Additional details

9.7.1.20 CMPLEU

Instruction name

CMPLEU

Functionality

Compare less or equal unsigned

Assembly format

CMPLEU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(unsigned int src1, unsigned int src2);

Additional details

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 179



9.7.1.21

CMPLT

Instruction name

CMPLT

Functionality

Compare less than

Assembly format

CMPLT Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(int src1, int src2);

Additional details

9.7.1.22 CMPLTU

Instruction name

CMPLTU

Functionality

Compare less than unsigned

Assembly format

CMPLTU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(unsigned int src1, unsigned int src2);

Additional details

9.7.1.23 MODINC

Instruction name

MODINC

Functionality

Modular increment

Assembly format

MODINC Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int dst = mod_inc(int src2, int srci1);

unsigned int dst = mod_inc(unsigned int src2, unsigned int src1);
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// note change in order vs assembly, src2 is the counter,

// src1l is the max value

Additional details

Modular increment:

Rdst = (Rsrc2 == Rsrc1) ?0: (Rsrc2 + 1);
For example, with R4 = 3, R5 = 0, repeated execution of

MODINC R4, R5, R5
resultsinR5=1, 2, 3,0, 1, ..

9.7.1.24 MIN

Instruction name MIN

Functionality Minimal

Assembly format MIN Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int min(int src1, int src2);

Additional details

9.7.1.25 MINU

Instruction name

MINU

Functionality

Minimal unsigned

Assembly format

MINU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int min(unsigned int src1, unsigned int src2);

Additional details

9.7.1.26 MAX

Instruction name

MAX
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Functionality

Maximal

Assembly format

MAX Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int max(int src1, int src2);

Additional details

9.7.1.27 MAXU

Instruction name

MAXU

Functionality

Maximal unsigned

Assembly format

MAXU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int max(unsigned int src1, unsigned int src2);

Additional details

9.7.2

9.7.2.1

ALU RIR Instructions

Instruction Summary

These RIR (register-immediate-register) instructions have one source register, one 12-
bit immediate, and one destination register. The immediate operand can be sign-
extended (where designated as Imm12) or zero-padded (where designated as UImm12).

Table 22. Scalar ALU RIR instructions

Function Assembly Format Comments
Add ADDI Rsrc1, Imm12, Rdst

Add ADDUI Rsrc1, UImm12, Rdst

Subtract SUBI Rsrc1, Imm12, Rdst
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Subtract SUBUI Rsrc1, UImm12, Rdst
And ANDI Rsrc1, UImm12, Rdst
Exclusive or XORI Rsrc1, UImm12, Rdst

Shift left logical

SLLI Rsrc1, UImm12, Rdst

Immediate carries the shift count, also works for shift
left arithmetic. 6 LSBs of immediate are read as
unsigned bit count; other bits are ignored.

Shift right logical

SRLI Rsrc1, UImm12, Rdst

Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count;
other bits are ignored.

Shift right SRAI Rsrc1, Umm12, Rdst Immediate carries the shift count.

arithmetic 6 LSBs of immediate are read as unsigned bit count;
other bits are ignored.

Sign extend SXTDI Rsrc1, UImm12, Rdst Immediate carries the bit width of Rsrc1 we want to

sign extend from. 6 LSBs of Immediate are read as
unsigned bit width; other bits are ignored.

When Imm([5:0] is between 1 and 32, VPU does:
sh = 32 - Imm[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Zero extend

ZXTDI Rsrc1, Umm12, Rdst

Immediate carries the bit width of Rsrc1 we want to
zero extend from. 6 LSBs of Rsrc2 are read as
unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:
sh =32 - Imm[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.

Compare equal

CMPEQI Rsrc1, Imm12, Rdst

Compare not equal

CMPNEI Rsrc1, Imm12, Rdst

Compare greater
than or equal

CMPGEI Rsrc1, Imm12, Rdst

Compare greater
than or equal
unsigned

CMPGEUI Rsrc1,Ulmm12, Rdst

Compare greater
than

CMPGTI Rsrc1, Imm12, Rdst

Compare greater
than unsigned

CMPGTUI Rsrc1, UImm12, Rdst

Compare less than
or equal

CMPLEI Rsrc1, Imm12, Rdst

Compare less than
or equal unsigned

CMPLEU Rsrc1, UImm12, Rdst

Compare less than

CMPLTI Rsrc1, Imm12, Rdst

Compare less than
unsigned

CMPLTUI Rsrc1, UImm12, Rdst
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Min

MINI Rsrc1, Imm12, Rdst

Min unsigned

MINUI Rsrc1, UImm12, Rdst

Max

MAXI Rsrc1, Imm12, Rdst

Max unsigned

MAXUI Rsrc1, UImm12, Rdst

9.7.2.2

ADDI

Instruction name

ADDI

Functionality

Add immediate

Assembly format

ADDI Rsrcl, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator+(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.3

ADDUI

Instruction name

ADDUI

Functionality

Add unsigned immediate

Assembly format

ADDUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator+(int src1, int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.4

SUBI

Instruction name

SuBI

Functionality

Subtract immediate

Assembly format

SUBI Rsrc1, Imm12, Rdst
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Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// instructions to correctly implement expressions

// involving scalar subtraction operation.

Additional details

Imm12 is sign-extended before the operation.

9.7.2.5

SUBUI

Instruction name

SUBUI

Functionality

Subtract unsigned immediate

Assembly format

SUBUI Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// instructions to correctly implement expressions

// involving scalar subtraction operation.

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.6

ANDI

Instruction name

ANDI

Functionality

Bitwise and immediate

Assembly format

ANDI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator&(int src1, int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.
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9.7.2.7 XORI

Instruction name

XORI

Functionality

Bitwise exclusive or immediate

Assembly format

XORI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator?(int src1, int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.8  SLLI

Instruction name

SLLI

Functionality

Shift left immediate

Assembly format

SLLI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator<<(int src1, int uimmi12);
unsigned int operator<<(unsigned int src1, int src2);

Additional details

Immediate carries the shift count, also works for shift left arithmetic. 6 LSBs
of immediate are read as unsigned bit count; other bits are ignored.

9.72.9  SRLI

Instruction name

SRLI

Functionality

Shift right logical immediate

Assembly format

SRLI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register
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Additional options

Intrinsics/operator

unsigned int operator>>(unsigned int src1, int uimmi2);

Additional details

Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.10 SRAI

Instruction name

SRAI

Functionality

Shift right arithmetic immediate

Assembly format

SRAI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator>>(int src1, int uimmi12);

Additional details

Immediate carries the shift count.
6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.11

SXTDI

Instruction name

SXTDI

Functionality

Sign extend immediate

Assembly format

SXTDI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int ext(int src1, int uimm12);

Additional details

Immediate carries the bit width of Rsrc1 we want to sign extend from. 6
LSBs of Immediate are read as unsigned bit width; other bits are ignored.
When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 — Imm[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.
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9.7.2.12 ZXTDI

Instruction name

ZXTDI

Functionality

Zero extend immediate

Assembly format

ZXTDI Rsrc1,UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int extu(int srcl1, int uimmi12);

Additional details

Immediate carries the bit width of Rsrc1 we want to zero extend from. 6
LSBs of Rsrc2 are read as unsigned bit width; other bits are ignored.
When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 — Imm[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

9.7.2.13 CMPEQI

Instruction name

CMPEQI

Functionality

Compare equal immediate

Assembly format

CMPEQI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.14 CMPNEI

Instruction name

CMPNEI

Functionality

Compare not equal immediate

Assembly format

CMPNE Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register
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Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.15 CMPGEI

Instruction name

CMPGEI

Functionality

Compare greater or equal immediate

Assembly format

CMPGEI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.16  CMPGEUI

Instruction name

CMPGEUI

Functionality

Compare greater or equal unsigned immediate

Assembly format

CMPGEUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(unsigned int src1, unsigned int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.17 CMPGTI

Instruction name

CMPGTI

Functionality

Compare greater than immediate

Assembly format

CMPGTI Rsrc1, Imm12, Rdst
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Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.18 CMPGTUI

Instruction name

CMPGTUI

Functionality

Compare greater than unsigned immediate

Assembly format

CMPGTUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(unsigned int src1, unsigned int uimmi12);

Additional details

Ulmm 12 is zero-extended before the operation.

9.7.2.19 CMPLEI

Instruction name

CMPLEI

Functionality

Compare less or equal immediate

Assembly format

CMPLEI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(int srcl1, int imm12);

Additional details

Imm12 is signed-extended before the operation.
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9.7.2.20 CMPLEUI

Instruction name

CMPLEUI

Functionality

Compare less or equal unsigned immediate

Assembly format

CMPLEUI Rsrc1, UiImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(unsigned int src1, unsigned int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.21

CMPLTI

Instruction name

CMPLTI

Functionality

Compare less than immediate

Assembly format

CMPLTI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.222 CMPLTUI

Instruction name

CMPLTUI

Functionality

Compare less than unsigned immediate

Assembly format

CMPLTUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(unsigned int src1, unsigned int uimmi12);

Additional details

Ulmm12 is zero-extended before the operation.
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9.7.2.23 MINI

Instruction name

MINI

Functionality

Minimal immediate

Assembly format

MINI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int min(int src1, int imm12);

Additional details

9.7.2.24 MINUI

Instruction name

MINUI

Functionality

Minimal unsigned immediate

Assembly format

MINUI Rsrc1, Imm12, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int min(unsigned int src1, unsigned int uimm12);

Additional details

9.7.2.25 MAXI

Instruction name

MAXI

Functionality

Maximal Immediate

Assembly format

MAXI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options
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Intrinsics/operator

int max(int src1, int imm12);

Additional details

9.7.2.26 MAXUI

Instruction name

MAXUI

Functionality

Maximal unsigned immediate

Assembly format

MAXUI Rsrc1, Imm12, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int max(unsigned int src1, unsigned int uimm12);

Additional details

9.7.3 Long Multiplication Instructions

9.7.3.1 Instruction Summary

The scalar ALU also supports long multiply, multiplication between two
signed/unsigned 32-bit operands. Outcome is placed in the PL/PH special register pair.

Table 23. Scalar ALU long multiply instructions

Function

Assembly Format

Comments

Long multiply
signed-signed

LMULSS Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

Long multiply
signed-unsigned

LMULSU Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

Long multiply
unsigned-unsigned

LMULUU Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

9.7.3.2 LMULSS

Instruction name

LMULSS

Functionality

Long multiply signed-signed
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Assembly format

LMULSS Rsrc1, Rsc2

Type and bit width

signed 32-bit x signed 32-bit - signed 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

long long mulwl_s(int src1, int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.3

LMULSU

Instruction name

LMULSU

Functionality

Long multiply signed-unsigned

Assembly format

LMULSU Rsrc1, Rsc2

Type and bit width

signed 32-bit x unsigned 32-bit 2> signed 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

long long mulwl_su(int src1, unsigned int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.4

LMULUU

Instruction name

LMULUU

Functionality

Long multiply unsigned-unsigned

Assembly format

LMULUU RsrcT, Rsc2

Type and bit width

unsigned 32-bit x unsigned 32-bit = unsigned 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned long long mulwl_u(unsigned int src1, unsigned int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).
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9.7.4

9.7.4.1 Instruction Summary

Predicate Instructions

Moving between scalar register and predicate register, and modular
increment/decrement on predicate register is also supported. These are used for
periodic predication that enables loop collapsing.

Function Assembly Format

Comments

Move scalar to MOVSP Rsrc, Pdst

predicate

Move scalar register to predicate register

Negate scalar to NOTSP Rsrc, Pdst

predicate

Negate scalar register to predicate register

Move predicate to MOVPS Psrc, Rdst

scalar

Move predicate register to scalar register

MOVP Psrc, Pdst
MOVP DPsrc, DPdst

Move predicate

Move single/double predicate register

Modular increment MODINC Rsrc1, Ps2d

Modular increment predicate register Ps2d. Rsrc1
conveys the max value.

Modular increment MODINCP Rsrc1, Rs2d, Pdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and Pdst is set all O or all 1 based on
Rs2d outcome being zero/non-zero

Modular increment
NOT

MODINC_NOTP Rsrc1, Rs2d,
Pdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and Pdst is set all O or all 1 based on
Rs2d outcome being non-zero/zero, inversed w.r.t.
MODINCP

DPMODINCP Rsrc1, Rs2d,
DPdst

Modular increment,
double predicate

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and DPdst is set all O or all 1 based on
Rs2d outcome being zero/non-zero. Both destination
predicate registers are set identically.

DPMODINC_NOTP Rsrc1, Rs2d,
DPdst

Modular increment
NOT, double
predicate

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and DPdst is set all O or all 1 based on
Rs2d outcome being non-zero/zero, inversed w.r.t.
DPMODINCP. Both destination predicate registers are
set identically.

Predicated Move [Preg] MOV Rsrc, Rdst

Predicated scalar register move

Multiplex to predicate | MUXP Rsrc1, Rsrc2, Rsrc3,

Pdst

Multiplex to predicate destination.

For example, with Rsrc1 = 1, Rsrc2 = 2, Rsrc3 = 3, Pdst =
(Rsrc11=0) ? Rsrc2 : Rsrc3, so would set Pdst to Rsrc2 =
2.

Table 24. Scalar predicate instructions

See section 9.5 for use cases of instruction predication.
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9.74.2

MOVSP

Instruction name

MOVSP

Functionality

Move scalar to predicate

Assembly format

MOVSP Rsrc, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement
// with destination variable mapped to a predicate register
// example: int dst_predicate = int src;

Additional details

PO and P1 contain constant -1, and should not be a destination of MOVSP

9.7.4.3

NOTSP

Instruction name

NOTSP

Functionality

Negate (bitwise not) scalar to predicate

Assembly format

NOTSP Rsrc, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// bitwise logic instructions to correctly implement

// expressions involving bitwise not operations. NOTSP,

// specifically, may be used when the outcome is mapped to
// a predicate register.

Additional details

PO and P1 contain constant -1, and should not be a destination of NOTSP

9.74.4

MOVPS

Instruction name

MOVPS

Functionality

Move predicate to scalar

Assembly format

MOVPS Psrc, Rdst
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Type and bit width

32-bit

Predication

not available

Source options

predicate register

Destination options

scalar register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement
// with source variable mapped to a predicate register and
// destination variable mapped to a scalar register

// example: int dst = int src_predicate;

Additional details

9.7.4.5

MOVP

Instruction name

MOVP

Functionality

Move predicate register

Assembly format

MOVP Psrc, Pdst
MOVP DPsrc, DPdst

Type and bit width

32-bit

Predication

not available

Source options

single or double predicate register

Destination options

single or double predicate register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement

// with source and destination variables mapped to predicate
// registers

// example: int dst_predicate = int src_predicate;

Additional details

PO and P1 contain constant -1, and should not be a destination of MOVP

9.7.4.6

MODINC

Instruction name

MODINC

Functionality

Modular increment

Assembly format

MODINC Rsrc1, Ps2d

Type and bit width

32-bit

Predication

not available

Source options

scalar register and predicate register

Destination options

predicate register

Additional options

Intrinsics/operator

int mod_inc(int s2d, int src1);
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unsigned int mod_inc(unsigned int s2d, unsigned int src1);
// note the change in operand order vs assembly
// s2d is the counter, src1 is the max value

Additional details Modular increment predicate register:

Ps2d = (Ps2d == Rsrc1) ?0: (Ps2d + 1);

For example, with R1 = 4, P2 = 0, a sequence of
MODINC R1, P2

resultsinP2=1, 2, 3, 4,0, 1, ..

This is useful for VMadd_CA to occasionally clear the accumulator.

9.7.47  MODINCP

Instruction name MODINCP

Functionality Modular increment predicate
Assembly format MODINCP Rsrc1, Rs2d, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and predicate register

Additional options

|ntrinsics/operator int mod_inc_pred_nz(int s2d, int srcl1, int & pdst);
unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, in
pdst);

// Note the change in operand order compared to assembly
// First argument is the modular counter input

// Second argument src1 is the max counter value input

// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular

// increment is non-zero, otherwise is set 0

// Return modular counter value after the increment

// Typical usage:

// count = mod_inc_pred_nz(count, period_mns_1, count_nz);

Additional details Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst =Rs2d ?-1:0;//setOorall 1s(-1)
For example, with R1 = 4, initial R2 = 0, a sequence of
MODINCP R1, R2, P2
resultsinR2=1, 2, 3, 4,0, 1, ...
p2=-1,-1,-1,-1,0,-1, ...
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9.7.4.8

MODINC_NOTP

Instruction name

MODINC_NOTP

Functionality

Modular increment not predicate

Assembly format

MODINC_NOTP Rsrc1, Rs2d, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register and predicate register

Additional options

Intrinsics/operator

int mod_inc_pred_z(int s2d, int srci1, int & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, int

pdst);

// Note the change in operand order compared to assembly

// First argument is the modular counter input

// Second argument src1 is the max counter value input
// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular

// increment is 0, otherwise is set ©

// Return modular counter value after the increment

// Typical usage:

// count = mod_inc_pred_nz(count, period_mns_1,

count_z);

Additional details

Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst = (Rs2d==0) ?-1:0; // set O or all 1s (-1)
For example, with R1 = 4, initial R2 = 0, a sequence of
MODINC_NOTP R1, R2, P2
resultsinR2=1, 2, 3, 4, 0, 1, ..
P2=0,0,0, 0,-1,0, ...

9.7.4.9

DPMODINCP

Instruction name

DPMODINCP

Functionality

Modular increment predicate, double predicate

Assembly format

DPMODINCP Rsrc1, Rs2d, DPdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register and double predicate register

Additional options

Intrinsics/operator

int mod_inc_pred_nz(int s2d, int src1, dpred & pdst);
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unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, dp
& pdst);

// note the change in operand order

// s2d is the counter, src1 is the max value, pdst is

// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst =Rs2d ?-1:0;//setOorall 1s (-1)
For example, with R1 = 4, initial R2 = 0, a sequence of
DPMODINCP R1, R2, P2:P3
resultsinR2=1, 2, 3, 4,0, 1, ..
p2=P3=-1,-1,-1,-1,0,-1, ...

9.7.4.10 DPMODINC_NOTP

Instruction name DPMODINC_NOTP

Functionality Modular increment not predicate, double predicate
Assembly format DPMODINC_NOTP Rsrc1, Rs2d, DPdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and double predicate register

Additional options

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, dpred & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, dpr
pdst);

// note the change in operand order
// s2d is the counter, src1 is the max value, pdst is
// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst = (Rs2d==0) ?-1:0;//setOorall 1s(-1)

For example, with R1 = 4, initial R2 = 0, a sequence of
DPMODINC_NOTP R1, R2, P2:P3
resultsinR2=1, 2, 3, 4, 0, 1, ..
p2=P3=0,0,0,0,-1,0,..

9.7.4.11 Predicated MOV

Instruction name Predicated MOV
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Functionality

Predicated scalar register move

Assembly format

[Preg] MOV Rsrc, Rdst

Type and bit width

32-bit

Predication

Instruction-level predication

Source options

scalar register and predicate register

Destination options

scalar register

Additional options

Intrinsics/operator

// not needed, instantiated from the following code
// if (preg) chess_guard {

!/ int dst = int src;

/1 }

Additional details

9.74.12 MUXP

Instruction name

Multiplex to predicate

Functionality

Multiplexing with scalar sources and predicate destination

Assembly format

MUXP Rsrc1, Rsrc2, Rsrc3, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler may leverage MUXP to implement a ternary

// conditional operator when the outcome variable is mapped
// to a predicate register. For example,

/1l int chess_storage(PA2) dst = (a@ != @) ? al : a2;

Additional details

Multiplex to predicate destination.
Pdst = (Rsrc1 !=0) ? Rsrc2 : Rsrc3;
For example, with R1 =1,R2=2,R3 = 3,
MUXP R1, R2, R3, P4
would set P4 to R2, which is 2.
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9.7.5  Scalar Floating Point Instructions

9.7.5.1 Instruction Summary

Floating point add, subtract, multiply, multiply-add, and float-to-int, int-to-float
conversion instructions are available in the SO and S1 instruction slots. Scalar registers
supply the sources and destination of FP instructions.

FP multiply-add is implemented with a fused multiply-add datapath that preserves full
product precision, and has higher precision than separate FP multiply and FP add
operations.

A sticky invalid status bit, INV, is available, for software to read, set, or clear by moving
between INV and a scalar register. We have (detailed in 9.3.14):

» MOV INV-R: moving from the invalid flag to a scalar register
» MOV R-INV: moving from a scalar register to the invalid flag

It's sticky in the sense that once a floating-point instruction produces an invalid (NaN)
outcome, the flag is set if it's previously clear, and remains set until a MOV R-INV
instruction moves zero value to the flag.

The flag can also be set by software, by a MOV R-INV instruction moving a software-
calculated invalid value to the flag. This is useful for software emulation of floating
point functions (reciprocal, square root, etc.).

R5 software can configure VPU to go to error-halted mode upon the flag being set, or
to just continue execution.

FP instructions output a fixed NaN encoding value of Ox7FCO_0000, which is a quiet
NaN (as opposed to a signaling NaN), as invalid output. Note that this is different
behavior from X86 FP NaN output, going with some NaN propagation rule with priority
among inputs to propagate input NaN value to the output.

Note that there is just one invalid status bit to indicate floating point outcome being
NaN.

Table 25. Scalar floating point instructions

Function Assembly Format Comments
FP add FAdd Rsrc1, Rsrc2, Rdst

FP subtract FSub Rsrc1, Rsrc2, Rdst

FP multiply FMul Rsrc1, Rsrc2, Rdst

FP multiply-add FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

FP multiply-subtract FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

FP16 add HFAdd Rsrc1, Rsrc2, Rdst

FP16 subtract HFSub Rsrc1, Rsrc2, Rdst
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FP16 multiply

HFMul Rsrc1, Rsrc2, Rdst

FP16 multiply-add

HFMAdd Rsrc1, Rsrc2, Rsrc3,
Rdst

FP16 multiply-subtract

HFMSub Rsrc1, Rsrc2, Rsrc3,
Rdst

INT to FP conversion

INT_FP Rsrc, Rdst
INT_FP Rsrc1, Rsrc2, Rdst

Integer to floating point conversion

FP to INT conversion with
truncation

FP_INT_Trunc Rsrc, Rdst

FP_INT_Trunc Rsrc1, Rsrc2, Rdst

Floating point to integer conversion with
truncation (consistent with C float-to-int
type casting)

FP to INT conversion with
rounding

FP_INT_Round Rsrc, Rdst

FP_INT_Round Rsrc1, Rsrc2,
Rdst

Floating point to integer conversion with
rounding

INT to FP16 conversion

INT_FP16 Rsrc1, Rsrc2, Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to INT conversion
wth truncation

FP16_INT_Trunc Rsrc1, Rsrc2,
Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to INT conversion
wth rounding

FP16_INT_Round Rsrc1, Rsrc2,
Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to FP32 conversion

FP16_FP Rsrc, Rdst

FP32 to FP16 conversion

FP_FP16 Rsrc, Rdst

FP compare LT

FCmpLT Rsrc1, Rsrc2, Rdst

FP compare LE

FCmpLE Rsrc1, Rsrc2, Rdst

FP compare GT

FCmpGT Rsrc1, Rsrc2, Rdst

FP compare GE

FCmpGE Rsrc1, Rsrc2, Rdst

FP compare EQ

FCmpEQ Rsrc1, Rsrc2, Rdst

FP compare NE

FCmpNE Rsrc1, Rsrc2, Rdst

FP16 compare LT

HFCmpLT Rsrc1, Rsrc2, Rdst

FP16 compare LE

HFCmpLE Rsrc1, Rsrc2, Rdst

FP16 compare GT

HFCmpGT Rsrc1, Rsrc2, Rdst

FP16 compare GE

HFCmpGE Rsrc1, Rsrc2, Rdst

FP16 compare EQ

HFCmpEQ Rsrc1, Rsrc2, Rdst

FP16 compare NE

HFCmpNE Rsrc1, Rsrc2, Rdst

FP reciprocal

FRCP Vsrc, Vdst

FP square root

FSQRT Vsrc, Vdst

FP reciprocal square root

FRSQ Vsrc, Vdst

FP exponential base-2

FEXP2 Vsrc, Vdst

FP logarithm base-2

FLOG2 Vsrc, Vdst

FP sine

FSIN Vsrc, Vdst

FP cosine

FCOS Vsrc, Vdst

FP hyperbolic tangent

FTANH Rsrc, Rdst
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9.75.2 FAdd

Instruction name

FAdd

Functionality

Floating point add

Assembly format

FAdd Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fadd(float src1, float src2); //bit-exact between ISS & Native
float operator+(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating point add. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.3 FSub

Instruction name

FSub

Functionality

Floating point subtract

Assembly format

FSub Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fsub(float src1, float src2); //bit-exact between ISS & Native
float operator-(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating point subtract. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.
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9.75.4

FMul

Instruction name

FMul

Functionality

Floating point multiply

Assembly format

FMul Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmul(float src1, float src2); //bit-exact between ISS & Native
float operator*(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating point multiply. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

9.75.5

FMAdd

Instruction name

FMAdd

Functionality

Floating point multiply-add

Assembly format

FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmadd(float src1, float src2, float src3);

Additional details

Performing multiply-add with IEEE compliant floating point multiply and add.
Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Example:

FMAdd R1, R2,R3, R4

would perform R4 = R1 * R2 + R3, reading the source registers R1, R2, R3 as
32-bit floating point numbers, and producing 32-bit floating point outcome in
R4.
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9.7.5.6

FMSub

Instruction name

FMSub

Functionality

Floating point multiply-subtract

Assembly format

FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmsub(float src1, float src2, float src3);

Additional details

Performing IEEE compliant floating point multiply-subtract, src3 —src1 * src2.
Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Example:

FMSub R1, R2, R3, R4

would perform R4 = R3-R1 * R2, reading the source registers R1, R2, R3 as
32-bit floating point numbers, and producing 32-bit floating point outcome in
R4.

9.7.5.7

HFAdd

Instruction name HFAdd

Functionality FP16 add

Assembly format HFAdd Rsrc1, Rsrc2, Rdst
Type and bit width 16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfadd(hfloat src1, hfloat src2);
hfloat operator+(hfloat src1, hfloat src2);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 addition performed, and FP16 outcome is sign-extended to 32-bit in
the destination register.

IEEE compliant half-precision floating point add. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.
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9.7.5.8

HFSub

Instruction name

HFSub

Functionality

FP16 subtract

Assembly format

HFSub Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfsub(hfloat src1, hfloat src2);
hfloat operator-(hfloat src1, hfloat src2);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 subtraction performed, and FP16 outcome is sign-extended to 32-bit in
the destination register.

IEEE compliant half-precision floating point subtract. Handles denormal,
zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

9.7.5.9

HFMul

Instruction name HFMul

Functionality FP16 multiply

Assembly format HFMul Rsrc1, Rsrc2, Rdst
Type and bit width 16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfmul(hfloat src1, hfloat src2);
hfloat operator*(hfloat src1, hfloat src2);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiplication performed, and FP16 outcome is sign-extended to 32-bit
in the destination register.

IEEE compliant half-precision floating point multiply. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.
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9.7.5.10 HFMAdd

Instruction name

HFMAdd

Functionality

FP16 multiply-add

Assembly format

HFMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfmadd(hfloat src1, hfloat src2, hfloat src3);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiply-add src1 * src2 + src3 performed, and FP16 outcome is sign-
extended to 32-bit in the destination register.

Fused multiply-add is performed, preserving intermediate precision as much
as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

9.75.11

HFMSub

Instruction name

HFMSub

Functionality

FP16 multiply-subtract

Assembly format

HFMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfmsub(hfloat src1, hfloat src2, hfloat src3);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiply-subtract src3 - src1 * src2 performed, and FP16 outcome is
sign-extended to 32-bit in the destination register.

Fused multiply-subtract is performed, preserving intermediate precision as
much as possible. Handles denormal, zero, infinity, NaN. Generates quiet
NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 208



9.75.12

INT_FP

Instruction name

INT_FP

Functionality

Integer to floating point conversion

Assembly format

INT_FP Rsrc, Rdst
INT_FP Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit signed integer input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float int_fp(int src); //bit-exact between ISS & Native float
float int_fp(int src1, int src2);

// Type casting int into float also compiles into INT_FP,
// but it’'s not bit-exact between ISS and Native. For example,
float_var = (float) int_var;

Additional details

Integer/fixed-point to FP32 conversion.

If src2 is present, it’s first saturated to [0, 31] to indicate the gbit (humber of
fraction bits) for src1, and src1 is viewed as fixed-point presentation.
Otherwise, src1 is viewed as an integer.

For example, if src1 =5, src2 = 2, src1 is viewed as 5.0/272 = 1.25, anf if src1
=5, src2 = 0 or missing, src1 is viewed as 5.0.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.75.13 FP_INT_Trunc

Instruction name

FP_INT_Trunc

Functionality

Floating point to integer conversion

Assembly format

FP_INT_Trunc Rsrc, Rdst
FP_INT_Trunc Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit signed integer output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int fp_int_trunc(float src); //bit-exact between ISS & Native float
int fp_int_trunc(float src1, int src2);

// Type casting float into int also compiles into FP_INT_Trunc,
// but it’'s not bit-exact between ISS and Native. For example,
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int_var = (int) float_var;

Additional details FP32 to integer conversion with truncation.

If src2 is present, it’s first saturated to [0, 31] to indicate the gbit (humber of
fraction bits) for src1, and output is in fixed-point presentation. Otherwise,
outputisin integer.

For example, if src1 = Ox3FCO_0000 (1.5 in FP32), src2 = 3 indicating 3
fraction bits, output is 1.5 * 273 = 12, and if src2 is missing or src2 = 0,
output is truncated to 1.0.

Note that

- truncation is used during the conversion, consistent with C float-to-int type
casting.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 2”2src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

9.75.14 FP_INT_Round

Instruction name FP_INT_Round
Functionality Floating point to integer conversion
Assembly format FP_INT_Round Rsrc, Rdst
FP_INT_Round Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit float input, 32-bit signed integer output
Predication not available
Source options scalar register
Destination options scalar register

Additional options

Intrinsics/operator int fp_int_round(float src);
int f32_to_i32_rte(float src); // Gen-1 legacy
int fp_int_round(float src1, int src2);

Additional details FP32 to integer conversion with rounding.

If src2 is present, it’s first saturated to [0, 31] to indicate the gbit (number of
fraction bits) for src1, and output is in fixed-point presentation. Otherwise,
outputisin integer.

For example, if src1 = 0x3FCO_0000 (1.5 in FP32), src2 = 3 indicating 3
fraction bits, output is round(1.5 * 223) = round(12.0) = 12.0. If src2is
missing or 0, output is round(1.5) = 2.0, as 1.5 is tied between 1 and 2, we
round to 2.0 (even).

Note that
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- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is
saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements
rounding implicitly, programmers are strongly encouraged to switch to Gen-2
intrinsic function fp_int_round() to avoid confusion.

9.7.5.15

INT_FP16

Instruction name

INT_FP16

Functionality

Integer to 16-bit floating point conversion

Assembly format

INT_FP16 Rsrc1, Rsrc2, Rdst

Type and bit width

32-bitint input, 16-bit float output

Predication

not available

Source options

src1: scalar register

src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat int_fp16(int src1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in source
fixed-point representation. dst =src1/27src2.

Note that rounding is included in this instruction’s functionality.
Only rounding mode supported is round to nearest, ties to even.
16-bit floating point output is sign-extended into the 32-bit container.

Where output absolute value falls below normal FP16 range, denormal FP16
output is generated.

9.75.16  FP16_INT_Trunc

Instruction name

FP16_INT_Trunc

Functionality

Floating point to integer conversion with truncation

Assembly format

FP16_INT_Trunc Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available
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Source options

src1: scalar register

src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int fp16_int_trunc(hfloat src1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = trunc(src1 * 2”src2).

16-bit floating point input is read from 16 LSBs of the 32-bit input.
Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 27src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.
- Denormal FP16 input value is supported.

9.7.5.17 FP16_INT_Round

Instruction name

FP16_INT_Round

Functionality

Floating point to integer conversion with rounding

Assembly format

FP16_INT_Round Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

src1: scalar register

src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int fp16_int_round(hfloat src1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = round(src1 * 2”src?2).

16-bit floating point input is read from 16 LSBs of the 32-bit input.
Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).
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- When output value round(src1 * 2”src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

9.7.5.18 FPI16_FP

Instruction name

FP16_FP

Functionality

Floating point FP16 to floating point FP32 conversion

Assembly format

FP16_FP Rsrc, Rdst

Type and bit width

16-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fp16_fp(hfloat src);

Additional details

FP16 floating point input is read from 16 LSBs of the 32-bit source,
converted to FP32 floating point outcome, and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.

9.7.5.19 FP_FPI16

Instruction name

FP_FP16

Functionality

Floating point FP32 to floating point FP16 conversion

Assembly format

FP_FP16 Rsrc, Rdst

Type and bit width

32-bit float input, 16-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat fp_fp16(float src);

Additional details

FP32 floating point input is read from 32-bit source, converted to FP16
floating point outcome, sign-extended and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.
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9.7.5.20 FCmpLT

Instruction name

FCmpLT

Functionality

Floating point compare less than

Assembly format

FCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.21

FCmpLE

Instruction name

FCmpLE

Functionality

Floating point compare less than or equal to

Assembly format

FCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.22 FCmpGT

Instruction name

FCmpGT

Functionality

Floating point compare greater than

Assembly format

FCmpGT Rsrcl, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options
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Intrinsics/operator

bool operator>(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.23 FCmpGE

Instruction name

FCmpGE

Functionality

Floating point compare greater than or equal to

Assembly format

FCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.24 FCmpEQ

Instruction name

FCmpEQ

Functionality

Floating point compare equal

Assembly format

FCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.25 FCmpNE

Instruction name

FCmpNE

Functionality

Floating point compare not equal

Assembly format

FCmpNE Rsrc1, Rsrc2, Rdst
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Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.26 HFCmpLT

Instruction name

HFCmpLT

Functionality

FP16 compare less than

Assembly format

HFCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.75.27 HFCmpLE

Instruction name

HFCmpLE

Functionality

FP16 compare less than or equal

Assembly format

HFCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.
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9.7.5.28 HFCmpGT

Instruction name

HFCmpGT

Functionality

FP16 compare greater than

Assembly format

HFCmpGT Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.29 HFCmpGE

Instruction name

HFCmpGE

Functionality

FP16 compare greater than or equal

Assembly format

HFCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.30 HFCmpEQ

Instruction name

HFCmpEQ

Functionality

FP16 compare equal

Assembly format

HFCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options
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Intrinsics/operator

bool operator==(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.31

HFCmpNE

Instruction name

HFCmpNE

Functionality

FP16 compare not equal

Assembly format

HFCmpNE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.32 FRCP

Instruction name

FRCP

Functionality

Floating point reciprocal

Assembly format

FRCP Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float frep(float src);

Additional details

Performing FP32-input, FP32-output reciprocal. Set invalid status flag when

output is NaN.

Corner cases:
RCP(+denorm) gives +Inf
RCP(-denorm) gives -Inf
RCP(+0.0)
RCP(-0.0)

gives +Inf

gives -Inf

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 218



RCP(+1.0) gives +1.0
RCP(-1.0) gives-1.0
RCP(+Inf) gives +0.0
RCP(-Inf) gives -0.0
RCP(NaN) gives NaN

Max relative error is 2”-23 over entire normal floating point range.

9.7.5.33 FSQRT

Instruction name FSQRT

Functionality Floating point square root

Assembly format FSQRT Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output
Predication not available

Source options scalar register

Destination options scalar register

Additional options
Intrinsics/operator float fsqrt(float src);

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag
when output is NaN.

Corner cases:
SQRT(+denorm) gives +0.0
SQRT(-denorm) gives -0.0
SQRT(+0.0) gives +0.0
SQRT(-0.0) gives -0.0
SQRT(+1.0) gives +1.0
SQRT(-1.0) gives NaN
SQRT(+Inf) gives +Inf
SQRT(-Inf) gives NaN
SQRT(NaN) gives NaN
SQRT(negative) gives NaN (other than for -denorm or -0)

Max relative error is 22-23 over entire normal floating point range.

9.7.5.34 FRSQ

Instruction name FRSQ

Functionality Floating point reciprocal square root
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Assembly format

FRSQ Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float frsq(float src);

Additional details

Performing FP32-input, FP32-output reciprocal square root. Set invalid
status flag when output is NaN.

Corner cases:
RSQ(+denorm) gives +Inf
RSQ(-denorm) gives -Inf

RSQ(+0.0) gives +Inf
RSQ(-0.0) gives -Inf

RSQ(+1.0) gives +1.0
RSQ(-1.0) gives NaN
RSQ(+Inf) gives +0.0
RSQ(-Inf) gives NaN
RSQ(NaN) gives NaN

(

RSQ(negative) gives NaN (other than for -denorm or -0)

Max relative error is 2*-22.4 over entire normal floating point range.

9.7.5.35 FEXP2

Instruction name

FEXP2

Functionality

Floating point exponential base-2

Assembly format

FEXP2 Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fexp2(float src);

Additional details

Performing FP32-input, FP32-output exponential base-2 function. Set invalid
status flag when output is NaN.

Corner cases:
EXP2(+denorm) gives +1.0
EXP2(-denorm) gives +1.0

EXP2(+0.0) gives +1.0
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EXP2(-0.0) gives +1.0
EXP2
EXP2(-Inf) gives +0.0
EXP2(NaN) gives NaN

+Inf) gives +Inf

(
(
(
(

Max relative error is 22-22.5 over entire normal floating point range.

9.7.5.36 FLOG2

Instruction name

FLOG2

Functionality

Floating point logarithm base-2

Assembly format

FLOG?2 Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float flog2(float src);

Additional details

Performing FP32-input, FP32-output logarithm base-2 function. Set invalid
status flag when output is NaN.

Corner cases:

LOG2(+denorm) gives -Inf

LOG2(-denorm) gives -Inf
LOG2(+0.0) gives -Inf
LOG2(-0.0) gives -Inf
LOG2(+Inf) gives +Inf
LOG2(-Inf) gives NaN
LOG2(NaN) gives NaN
LOG2(negative) gives NaN (other than for -denorm or -0)

Max absolute error is 2#-22 in range (0.5, 2.0).
Max relative error can be as large as 0.9 in range (0.5, 2.0).
Max relative error is 27-22.5 in range [0, 0.5] and [2.0, +Inf].

9.7.5.37 FSIN

Instruction name

FSIN

Functionality

Floating point sine

Assembly format

FSIN Rsrc, Rdst
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Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fsin(float src);

Additional details

Performing FP32-input, FP32-output sine function. Input in radians should be
pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-
normalized by multiplying 1.0/360. Set invalid status flag when output is
NaN.

Corner cases:
SIN(+denorm) gives +0.0
SIN(-denorm) gives -0.0

(-
SIN(+0.0) gives +0.0
SIN(-0.0) gives -0.0
SIN(+Inf) gives NaN
SIN(-Inf) gives NaN
SIN(NaN) gives NaN

(

SIN(normal) is always in the range [-1, +1]

Max absolute error is 22-20.5 in range -2*pi ~ 2*pi.

Max absolute error is 2*-14.7 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-
normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no
defined error guarantees.

9.7.5.38 FCOS

Instruction name

FCOS

Functionality

Floating point cosine

Assembly format

FCOS Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fcos(float src);

Additional details

Performing FP32-input, FP32-output cosine function. Input in radians should
be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 222



normalized by multiplying 1.0/360. Set invalid status flag when output is
NaN.

Corner cases:
COS(+denorm) gives +1.0
COS(-denorm) gives +1.0
COS(+0.0) gives +1.0
COS(-0.0) gives +1.0
COS(+Inf) gives NaN
COS(-Inf) gives NaN
COS(NaN) gives NaN

COS(normal) is always in the range [-1, +1]

Max absolute error is 22-20.9 in range -2*pi ~ 2*pi.
Max absolute error is 2”2-15.3 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-
normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no
defined error guarantees.

9.7.5.39 FTANH

Instruction name

FTANH

Functionality

Floating point hyperbolic tangent

Assembly format

FTANH Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float ftanh(float src);

Additional details

Performing FP32-input, FP32-output hyperbolic function. Set invalid status
flag when output is NaN.

Corner cases:

TANH(-denorm) gives -0.0

TANH(-0.0) gives -0.0

TANH(+0.0) gives +0.0

TANH(+denorm) gives +0.0

TANH(-Inf) gives -1.0

TANH(+Inf) gives 1.0

TANH(NaN) gives NaN

TANH(normal) is always in the range [-1.0 .. +1.0]

Max relative error is 22-11 over the entire normal floating point range.
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‘ ‘ Max absolute error is 27-12 over the entire normal floating point range.

9.7.6

9.7.6.1 Instruction Summary

Table 26. Other scalar ALU instructions

Other Scalar ALU Instructions

Function Assembly Format

Comments

Count leading bits CLB Rsrc, Rdst

If bit 31 is zero, count leading O bits, otherwise, count
leading 1 bits

Load high LHI imm16, Rdst

Set destination to (immediate << 16)

Or immediate ORI Rsrc1,imm16, Rdst

Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate
value into a scalar register.

Mux MUX Rsrc1, Rsrc2, Rsrc3, Rdst Select between 2 items
Rdst = Rsrc1 ? Rsrc2 : Rsrc3
Divide DIV Rsrc1, Rsrc2 Divide Rsrc1 by Rsrc2, resulting quotient into PL and

remainder into PH, takes multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit
number.

When Rsrc?2 is zero, return quotient = OxFFFF_FFFF
(max value of unsigned 32-bit), and return remainder
=Rsrcl.

Divide-by-zero would generate error interrupt to R5.
Only available in SO slot.

Logical left shift SLLIADD Rsrc1, UImm4, Rsrc2, dst = (srcl << imm) + src2;

and add Rdst

Compare within CMPWITHIN Rsrc1, Rsrc2, dst = (srcl <= src2) && (src2 < src3);
Rsrc3, Rdst

Bit count BITCNT Rsrc, Rdst Count number of bits set to one

9.7.6.2 CLB

Instruction name CLB

Functionality Count leading bits

Assembly format CLB Rsrc, Rdst

Type and bit width 32-bit
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Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int clb(int src);

Additional details

If bit 31 of the source is 0, count number of consecutive O bits from bit 31
down. Otherwise, count number of consecutive 1 bits from bit 31 down.

Examples:
clb(0) = 32
clb(0x1000_0000) = 3
clb(0x6000_0000) = 1
clb(0x8000_0000) = 1
clb(OXxEOO0_0000) = 3

(
(
(
clb(0OxFFFO_0000) = 12

9.7.6.3 LHI

Instruction name

LHI

Functionality

Load high. Load (immediate << 16) into scalar destination, and thus not just
loading high, but clearing low at the same time.

Assembly format

LHI imm16, Rdst

Type and bit width

32-bit

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

Intrinsics/operator

// not available, instantiated automatically when assigning
// a value exceeding 12-bit to variable mapped to a scalar
// register, for example,

!/ int var1l = 0x654321;

// is compiled into

/] LHI ox65, R4

11/ ORI 0x4321, R4

// when var1 is mapped to R4. When the value fits 12-bit,
// compiler instantiates ADDI, for example,

1/ ADDI RO, #321, R4

Additional details

Set destination to (immediate << 16)
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9.76.4 ORI

Instruction name

ORI

Functionality

Bitwise OR with 16-bit immediate

Assembly format

ORI Rsrc1,imm16, Rdst

Type and bit width

32-bit

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

Intrinsics/operator

// not available, instantiated automatically when assigning // value
exceeding 16-bit to variable mapped to a scalar

/] register, for example,

!/ int var1l = 0x654321;

// is compiled into

!/ LHI 0x65, R4

!/ ORI 0x4321, R4

// when var1 is mapped to R4. When the value fits 12-bit,

// compiler instantiates ADDI, for example,

// ADDI RO, #321, R4

Additional details

Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate value into a scalar
register.

9.7.6.5

MUX

Instruction name

MUX

Functionality

Scalar multiplexing

Assembly format

MUX Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

char  mux(int srcl1, char src2, char src3)
short mux(int src1, short src2, short src3)
int mux(int srci1, int src2, int src3)
hfloat mux(int src1, hfloat src2, hfloat src3)
float mux(int src1, float src2, float src3);
char  mux(bool src1, char src2, char src3)
short mux(bool src1, short src2, short src3)
int mux(bool src1, int src2, int src3)
hfloat mux(bool src1, hfloat src2, hfloat src3)
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float mux(bool src1, float src2, float src3);

Additional details

Select between 2 data items,
Rdst = Rsrc1 ? Rsrc2 : Rsrc3

9.76.6 DIV

Instruction name DIV
Functionality Scalar divide
Assembly format DIV Rsrc1, Rsrc2
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

void udiv(unsigned int src1, unsigned int src2, unsigned int & dst1,
unsigned int & dst2);

unsigned int operator/( unsigned int src1, unsigned int src2);
unsigned int operator%( unsigned int src1, unsigned int src2);

Additional details

Divide Rsrc1 by Rsrc2, resulting quotient into PL and remainder into PH, takes
multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit number.

When Rsrc?2 is zero, return quotient = OxFFFF_FFFF (max value of unsigned
32-bit), and return remainder = Rsrc1.

Divide-by-zero would generate error interrupt to R5.

This is a multi-cycle instruction, taking up to 33 cycles to complete.
Subsequent instructions using PL/PH as source or destination shall be stalled
until DIV completes. Also, to avoid task switch before PL/PH are written,
subsequent HALT, WFE_RS5, and GPO writes are stalled until DIV completes.

Note that DIV is only available in the SO slot.

9.7.6.7

SLLIADD

Instruction name

SLLIADD

Functionality

Scalar shift and add

Assembly format

SLLIADD Rsrc1, Umm4, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register
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Additional options

Intrinsics/operator

int slladd(int src1, int shift_uimm4, int src2);

Additional details

Unsigned 4-bit immediate value is used as left shift bit count, to shift left by
up to 15 bits.

int dst = ((int srcl) << imm) + (int src2);

Note: Why just 4-bit? The intention of this instruction is to support address calculation
of base[index], byte_addr(base) + index * sizeof(base), when the size of the data type is
a power of 2. 4-bit left shift would cover up to size of 2215 = 32768 bytes, and is more
than commonly needed.

9.7.6.8

CMPWITHIN

Instruction name

CMPWITHIN

Functionality

Compare within

Assembly format

CMPWITHIN Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int cmpwithin(int src1, int src2, int src3);

Additional details

Returns (src1 <= src2) && (src2 < src3);

Note that signed comparison is carried out.

9.7.6.9 BITCNT
Instruction name BITCNT
Functionality Bit count
Assembly format BITCNT Rsrc, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int bitcount(int src);

Additional details

Count number of bits set to one; a scalar version of VBitCnt.

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 228



and contains 3 ones.

For example, bitcount(13) = 3, as the binary representation of 13is “1101”

0.8 Vector ALU Instructions

9.8.1 Move Instructions

9.8.1.1 Instruction Summary

Table 27 Scalar/vector move instructions

Function

Assembly Format

Comments

Vector move

VMov Vsrc/Wsrc, Vdst/Wdst
VMov Vsrc, ACdst
VMov ACsrc, Vdst
VMov ACsrc, ACdst

Move vector register

Move scalar to
vector

<pred> VMovS<W/WU/H/B> Rsrc,
Vdst/Wdst/ACdst

Broadcast scalar register to all
W/H/B lanes of vector register

Vector move double

<pred> DVMov DVsrc/DWsrc, DVdst/DWdst
<pred> DVMov DACsrc, DACdst

DVMov DVsrc, DACdst

DVMov DACsrc, DVdst

Move double vector register

Vector move pair

VMov2 Vsrcl, Vsrc2, Vdst1, Vdst2

Move 2 vector registers

Move from vector
to scalar

<pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst

Move vector lane O to scalar
register
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Table 28 vector register move support matrix

Destination
VRF WRF ARF
VRF single/double single/double single/double
Source WRF single/double single/double
ARF single/double single/double
9.8.1.2 VMOV
Instruction name VMOV
Functionality Vector move
Assembly format VMov Vsrc/Wsrc, Vdst/Wsrc

VMov Vsrc, ACdst
VMov ACsrc, Vdst
VMov ACsrc, ACdst

Type and bit width n/a: 384-bit

Predication not available

Source options Single vector register in VRF, WRF, ARF
Destination options Single vector register in VRF, WRF, ARF

Additional options

Intrinsics/operator // not needed; instantiated from assignment statement
// between source and destination of same single vector
/] type, for example,

// vintx dst = vintx src;

// vshortx dst = vshortx src;

// vcharx dst = vcharx src;

// vfloatx dst = vfloatx src;

// vhfloatx dst = vhfloatx src;

Additional details

9.8.1.3 VMOVS

Instruction name VMOVS

Functionality Move scalar to vector
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Assembly format <pred> VMovS<type> Rsrc, Vdst/Wdst/ACdst

pred = none, [P2..P15]

Type and bit width W: 32-bit sign-extended to 48-bit and broadcast to 8 x 48-bit
WU: 32-bit zero-extended to 48-bit and broadcast to 8 x 48-bit
H: lowest 24-bit broadcast to 16 x 24-bit

B: lowest 12-bit broadcast to 32 x 12-bit

Note that float/vfloatx type intrinsic function is mapped to W type
instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H
type instruction.

Predication Instruction-level predication
Source options Scalar register
Destination options Single vector register in VRF, WRF, ARF

Additional options

Intrinsics/operator vintx replicatew(int src)

vintx replicatew(un31gned int src);

vshortx replicateh(int src)

vcharx replicateb(int src)

vfloatx replicatef(float src); // W type, float value
// sign-extended to 48-bit

vhfloatx replicatehf(hfloat src); // H type, hfloat value
// sign-extended to 24-bit

Additional details Example:
[P2] VMoVSH R2, V3

When P2 is non-zero, this would copy R2[23:0] to all 16 half-word lanes of V3.
Otherwise, V3 is unchanged.

The predication feature is not exposed through intrinsic functions, but with
code pattern:

if (condition) chess_guard {
vector_var = replicatew(scalar_value);

9.8.1.4 DVMOV

Instruction name DVMOV
Functionality Move double vector
Assembly format <pred> DVMov DVsrc/DWsrc, DVdst/DWdst

<pred> DVMov DACsrc, DACdst
DVMov DVsrc, DACdst
DVMov DACsrc, DVdst
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pred = none, [P2..P15]

Type and bit width

n/a: 768-bit

Predication

Instruction-level predication on DV/DW moves

Source options

Double vector register in VRF, WRF, ARF

Destination options

Double vector register in VRF, WRF, ARF

Additional options

Intrinsics/operator

// not needed; instantiated from assignment statement
// between source and destination of same single vector
/] type, for example,

// dvintx dst = dvintx src;

// dvshortx dst = dvshortx src;

// dvcharx dst = dvcharx src;

// dvfloatx dst = dvfloatx src;

// dvhfloatx dst = dvhfloatx src;

Additional details

9.8.1.5

VMOV?2

Instruction name

VMOV2

Functionality

Move vector pair

Assembly format

VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

n/a: 384-bit

Predication

not available

Source options

Two vector registers in VRF

Destination options

Two vector registers in VRF

Additional options

Intrinsics/operator

// Optional; instantiated from two assignments of the

// same single vector data type, or one assignment of the

// same double vector data type, for example,

// vintx dst = vintx src;

// vshortx dst = vshortx src;

// vcharx dst = vcharx src;

// vfloatx dst = vfloatx src;

// vhfloatx dst = vhfloatx src;

void dvmov(vfloatx srci1, vfloatx src2, vfloatx &dst1, vfloatx &dst2);
void dvmov(vhfloatx src1, vhfloatx src2, vhfloatx &dst1, vhfloatx &dst
void dvmov(vintx src1, vintx src2, vintx &dst1, vintx &dst2);

void dvmov(vshortx srci1, vshortx src2, vshortx &dst1, vshortx &dst2);
void dvmov(vcharx src1, vcharx src2, vcharx &dst1, vcharx &dst2);

= = = =

Additional details
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9.8.1.6

MOVVS

Instruction name

MOVVS

Functionality

Move vector lane O to scalar

Assembly format

<pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst
pred = none, [P2..P15]

Type and bit width

W: 32-bit

H: 24-bit sign-extend to 32-bit
B: 12-bit sign-extend to 32-bit
HU: 24-bit zero-pad to 32-bit
BU: 12-bit zero-pad to 32-bit

Note that float/vfloatx type intrinsic function is mapped to W type
instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H
type instruction.

Predication

Instruction-level predication

Source options

Vector register (lane 0) in VRF

Destination options

Scalar register

Additional options

n/a

Intrinsics/operator

int smovw (vintx src);
int smovh (vshortx src);
int smovb (vcharx src);

int smovhu (vshortx src);
int smovbu (vcharx src);
float smovf (vfloatx src);
hfloat smovhf (vhfloatx src);

Additional details

Available in memory slots.

The predication feature is not exposed through intrinsic functions, but with
code pattern:

if (condition) chess_guard {

scalar_var = smovw(vector_value);

9.8.2

Vector OP11 Instructions

These are one-source, one-destination operation vector instructions.
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The double vector flavor is supported for selected operators.

9.8.2.1

Instruction Summary

Table 29. Vector OP11 instructions

Function

Assembly Format

Comments

Vector not bitwise

VNot Vsrc/Wsrc, Vdst/Wsrc

Vector not logical

VNotL<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector bit reverse

VBitRev<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Use standard (32/16/8) bit width

Vector negate

VNeg<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector sum VSumR<type> Vsrc/Wsrc, Sum of all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst
type = {BW, HW, W}

Vector min VMInR<W/H/B> Vsrc/Wsrc, Rdst Min of all lanes.

reduction Scalar destination only

Vector max VMaxR<W/H/B> Vsrc/Wsrc, Rdst Max of all lanes.

reduction Scalar destination only

Vector AND VAndR<W/H/B> Vsrc/Wsrc, Bitwise AND across all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst

Vector OR VOrR<W/H/B> Vsrc/Wsrc, Bitwise OR across all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst

Vector XOR VXorR<W/H/B> Vsrc/Wsrc, Bitwise XOR across all lanes.

reduction Vdst/Wdst/Rdst

Result stored across all lanes of Vdst

Vector bitunpack

VBitUnpk<W/H/B> Rsrc, Vdst/Wdst

Bit unpack from scalar

Vector bit-
transpose

VBitTranspH Vsrc/Wsrc, Vdst/Wdst

Transpose 16-bit across 16 lanes.

Used in LBP encode, speedup ~ 2x

Vector most-
significant bit
detect

VMSBD<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Return most significant bit position, input
must be non-negative, return -1 for zero
input

Vector bit count

VBitCnt<W/H/B> Vsrc/Wsrc, Vdst/Wdst

VBitCnt<W/H/B> DVsrc/DWsrc,
DVdst/DWdst

Count number of 1 bits

Vector collate
indices

VCollateldx<W/H> Vsrc/Wsrc, Vdst/Wdst

Compute indices to nonzero lanes

Vector expand
indices

VExpandldx<W/H> Vsrc/Wsrc/Rsrc,
Vdst/Wdst

Compute indices to expand collated data

Vector horizontal 2-
term min-ID

VHMIn2IDW Vsrc/Wsrc, Vdst/Wdst

Computer min & ID in each lane pair
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Vector horizontal 2-
term max-ID

VHMax2IDW Vsrc/Wsrc, Vdst/Wdst

Computer max & ID in each lane pair

Vector shuffle
permutation

VShuffle<type> Vsrc/Wsrc, Vdst/Wdst

9.8.2.2

VNOT

Instruction name

VNOT

Functionality

Vector inversion bitwise

Assembly format

VNot Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

no type: 384-bit (bitwise)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  operator~(vintx src);
vshortx operator~(vshortx src);
vcharx operator~(vcharx src);

// double vector pseudo intrinsics
dvintx operator~(dvintx src);
dvshortx operator~(dvshortx src);
dvcharx operator~(dvcharx src);

Additional details

9.8.2.3

VNOTL

Instruction name

VNOTL

Functionality

Vector inversion logical

Assembly format

VNotL<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options
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Intrinsics/operator

vintx operator!(vintx src);
vshortx operator!(vshortx src);
vcharx operator!(vcharx src);

// double vector pseudo intrinsics
dvintx operator!(dvintx src);
dvshortx operator!(dvshortx src);
dvcharx operator!(dvcharx src);

Additional details

Example:
VNotLB V1, V2

This would detect zero/non-zero of V1 byte lanes, and set a byte lane of V2 to
0 if the corresponding lane in V1 is non-zero, and 1 if the corresponding lane
inV1is zero.

9.8.24  VBITREV

Instruction name

VBITREV

Functionality

Vector bit reverse

Assembly format

VBitRev<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vbitreverse(vintx src);
vshortx vbitreverse(vshortx src);
vcharx vbitreverse(vcharx src);

// double vector pseudo intrinsics
dvintx  dvbitreverse(dvintx src);
dvshortx dvbitreverse(dvshortx src);
dvcharx dvbitreverse(dvcharx src);

Additional details

Reverse lower 8/16/32 bits of each lane; upper bits are dropped.

Output lower 8/16/32 bits of each lane bit-reversed; upper bits are zero, and
appear unsigned (or non-negative).

Example:
vintx src = {0, 0x100, 0x200, 0x300, O, O, O, O};
vintx dst = vbitreverse(src);

Expected dst = {0, 0x80_0000, 0x40_0000, 0xC0_0000, 0, 0, 0, 0}
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9.8.25 VNEG

Instruction name

VNEG

Functionality

Vector negate

Assembly format

VNeg<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator-(vintx src);
vshortx operator-(vshortx src);
vcharx operator-(vcharx src);

// double vector pseudo intrinsics
dvintx operator-(dvintx src);
dvshortx operator-(dvshortx src);
dvcharx operator-(dvcharx src);

Additional details

9.8.2.6

VSUMR

Instruction name

VSUMR

Functionality

Vector sum reduction

Assembly format

VSumR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width

W: 8 x 48-bit > 8 x 48-bit

HW: 16 x 24-bit > 8 x 48-bit

BW: 32 x 12-bit > 8 x 48-bit

Note that sign extension is applied for HW and BW cases.

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator

vintx vsumr(vintx src);
vintx vsumr(vshortx src);
vintx vsumr(vcharx src);
int vsumr_s(vintx src);
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int vsumr_s(vshortx src);
int vsumr_s(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details

Sum across all lanes of source is broadcast to all lanes of destination.
Destination is of W-type to reduce chance of overflow.

Note that number of lanes reduces for HW and BW variations.

Programmer should be aware of possibility of overflow in the VSumRW case,
and code accordingly.

For scalar destination, in W-type, 32 LSBs of the sum is returned.
Programmer should be aware of potential overflow in the outcome. In H-type
and B-type, the sum is sign-extended to 32-bit.

9.8.2.7 VMINR

Instruction name

VMINR

Functionality

Vector min reduction

Assembly format

VMinR<type> Vsrc/Wsrc, Rdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single register in scalar register file

Additional options

Intrinsics/operator

int vminr_s(vintx src);

int vminr_s(vshortx src);

int vminr_s(vcharx src);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

vintx  vminr(vintx src);

vshortx vminr(vshortx src);

vcharx vminr(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details

Min across all lanes of source is stored in the scalar destination.

For W-type, 32 LSBs of the min value is returned. Programmer should be
aware of potential overflow in the outcome. In H-type and B-type, the min
value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination

register. For W-type 48-bit min value is output in each lane of the vector
destination.

For Halfword and Byte types, the emulation uses vminr_s() and replicateh/b().
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For Word type, using just vminr_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Examples:

VMInRB V1, V2 is emulated as VMInRB V1, R2; VMovSB R2, V2.

vminr(vcharx_src) as { replicateb(vminr_s(vcharx_src)); }

VMInRH V1, V2 is emulated as VMIinRH V1, R2; VMovSH R2, V2.
vminr(vshortx_src) as { replicateh(vminr_s(vshortx_src)); }

VMInRW V1, V2 is emulated as VHMIin2IDW V1, V3; VMinSkip2RIDW V3, V2,
R2.

vminr(vintx_src) as {
vhmin2id(vintx_src, temp);
vminskip2rid(temp, vintx_dst1, id_dst2);

return vintx_dst1;

9.8.2.8 VMAXR

Instruction name

VMAXR

Functionality

Vector max reduction

Assembly format

VMaxR<type> Vsrc/Wsrc, Rdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single register in scalar register file

Additional options

Intrinsics/operator

int vmaxr_s(vintx src);

int vmaxr_s(vshortx src);

int vmaxr_s(vcharx src);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

vintx  vmaxr(vintx src);

vshortx vmaxr(vshortx src);

vcharx vmaxr(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details

Max across all lanes of source is stored in the scalar destination.
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For W-type, 32 LSBs of the max value is returned. Programmer should be
aware of potential overflow in the outcome. In H-type and B-type, the max
value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination
register. For W-type 48-bit max value is output in each lane of the vector
destination.

For Halfword and Byte types, the emulation uses vmaxr_s() and replicateh/b().

For Word type, using just vmaxr_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmax2id() and vmaxskip2rid(). See 9.8.2.18 and 9.8.3.10 for details.

Examples:

VMaxRB V1, V2 is emulated as VMaxRB V1, R2; VMovSB R2, V2.

vmaxr(vcharx_src) as { replicateb(vmaxr_s(vcharx_src)); }

VMaxRH V1, V2 is emulated as VMaxRH V1, R2; VMovSH R2, V2.

vmaxr(vshortx_src) as { replicateh(vmaxr_s(vshortx_src)); }

VMaxRW V1, V2 is emulated as VHMax2IDW V1, V3; VMaxSkip2RIDW V3, V2,
R2.

vmaxr(vintx_src) as {
vhmax2id(vintx_src, temp);
vmaxskip2rid(temp, vintx_dst1, id_dst2);

return vintx_dst1;

9.8.2.9 VANDR

Instruction name VANDR

Functionality Vector bitwise AND reduction

Assembly format VAndR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register
Additional options

Intrinsics/operator vintx vandr(vintx src);
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vshortx vandr(vshortx src);
vcharx vandr(vcharx src);
int vandr_s(vintx src);
int vandr_s(vshortx src);
int vandr_s(vcharx src)
// double vector pseudo intrinsics unavailable

1

Additional details Bitwise AND across all lanes of source is broadcast to all lanes of destination.
dst[i] = src[0] & src[1] & ... & src[nlanes - 1]
For scalar destination, in W-type, 32 LSBs of the AND reduction value is

returned. Programmer should be aware of potential overflow in the outcome.
In H-type and B-type, the AND reduction value is zero-extended to 32-bit.

9.8.2.10 VORR

Instruction name VORR

Functionality Vector bitwise OR reduction

Assembly format VOrR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options
Intrinsics/operator vintx vorr(vintx src);

vshortx vorr(vshortx src);

vcharx vorr(vcharx src);

int vorr_s(vintx src);

int vorr_s(vshortx src);

int vorr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Bitwise OR across all lanes of source is broadcast to all lanes of destination.
dst[i] =src1[0] | src1[1]]...| src1[nlanes - 1]
For scalar destination, in W-type, 32 LSBs of the OR reduction value is

returned. Programmer should be aware of potential overflow in the outcome.
In H-type and B-type, the OR reduction value is zero-extended to 32-bit.
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9.8.2.11 VXORR

Instruction name VXORR

Functionality Vector bitwise XOR reduction

Assembly format VXorR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options
Intrinsics/operator vintx  vxorr(vintx src);

vshortx vxorr(vshortx src);

vcharx vxorr(vcharx src);

int vxorr_s(vintx src);

int vxorr_s(vshortx src);

int vxorr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details XOR across all lanes of source is broadcast to all lanes of destination.
dst[i] = src[0] ~ src[1] ~ ... * src[nlanes - 1]
For scalar destination, in W-type, 32 LSBs of the XOR reduction value is

returned. Programmer should be aware of potential overflow in the outcome.
In H-type and B-type, the XOR reduction value is zero-extended to 32-bit.

9.8.2.12 VBITUNPK

Instruction name VBITUNPK

Functionality Vector unpack from scalar

Assembly format VBitUnpk<type> Rsrc, Vdst/Wdst

Type and bit width W: take Rsrc[7:0], unpack into 8 x 48-bit, each lane gets O or 1

H: take Rsrc[15:0], unpack into 16 x 24-bit, each lane gets O or 1
B: take Rsrc[31:0], unpack into 32 x 12-bit, each lane gets O or 1

Predication not available
Source options Scalar register
Destination options Single vector register in VRF or WRF

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 242



Additional options

Intrinsics/operator vcharx vbitunpackb(int src);
vshortx vbitunpackh(int src);
vintx  vbitunpackw(int src);
// double vector pseudo intrinsics unavailable

Additional details Unpack lower 8/16/32-bit of source scalar register, one bit into each vector
lane, bit i into lane i.

For example, with R4 = OxFO, “VBitUnpkW R4, VO” would result in
vo={0,0,0,0,1,1,1,1}

9.8.2.13 VBITTRANSP

Instruction name VBITTRANSP

Functionality Vector bit transpose

Assembly format VBitTranspH Vsrc/Wsrc, Vdst/Wsrc
Type and bit width H: 16 x 16-bit

Predication not available

Source options Single vector register in VRF or WRF
Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx vbittranspose(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details Transpose between bit dimension (16 bits) and lane dimension (16 lanes),
useful for census transform and rank transform

Example for VBitTranspH:
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Additional options

Intrinsics/operator

vintx  vmsbd(vintx src);
vshortx vmsbd(vshortx src);

vcharx vmsbd(vcharx src);

// double vector pseudo intrinsics
dvintx  dvmsbd(dvintx src);
dvshortx dvmsbd(dvshortx src);
dvcharx dvmsbd(dvcharx src);

Additional details

Return most significant bit position, treat input as unsigned, return -1 for
zero input.

For example, value of 0x12 has leading bit in bit 4, thus MSBD would return 4.

9.8.2.15 VBITCNT

Instruction name

VBITCNT

Functionality

Vector bit count

Assembly format

VBitCnt<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  vbitcount(vintx src);
vshortx vbitcount(vshortx src);
vcharx vbitcount(vcharx src);

Additional details

Count input “1” bits. For example, input of 12 = 0xOC would lead to bit count
of 2.

Instruction name

VBITCNT

Functionality

Double vector bit count

Assembly format

VBitCnt<type> DVsrc/DWsrc, DVdst/DWsrc

Type and bit width

W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Predication

not available

Source options

Double vector register in VRF or WRF

Destination options

Double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  dvbitcount(dvintx src);
dvshortx dvbitcount(dvshortx src);
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dvcharx dvbitcount(dvcharx src);

Additional details

Count input “1” bits. For example, input of 12 = 0xOC would lead to bit count
of 2.

9.8.2.16 VCOLLATEIDX

Instruction name

VCOLLATEIDX

Functionality

Vector collate

Assembly format

VCollateldx<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector registers in VRF or WRF

Additional options

Intrinsics/operator

vintx vcollate_idx(vintx src);
vshortx vcollate_idx(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details

Vdst/Wdst gets indices to nonzero lanes (sequentially from lane 0) of
Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc.

For example, VCollateldxW VO, V1, with VO = {0, -1, 2,-3, 0, 0, 0, 4}. Non-zero
lanes are lane 1, 2, 3, and 7. Expected outcome V1 ={1,2,3,7,0,4,5,6}. The
idea is that a subsequent VPermW would use V1 as indices to
extract/compact VO nonzero and zero lanes into {-1, 2,-3, 4,0, 0, O, O}.

9.8.2.17 VEXPANDIDX

Instruction name

VEXPANDIDX

Functionality

Vector expand, the inverse operation of vector collate

Assembly format

VExpandldx<type> Vsrc/Wsrc/Rsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication

not available

Source options

Single vector register in VRF or WRF, or scalar register

Destination options

Single vector registers in VRF or WRF

Additional options

Intrinsics/operator

vintx  vexpand_idx(vintx src);
vshortx vexpand_idx(vshortx src);
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vintx  vexpand_idxw(int src);
vshortx vexpand_idxh(int src);
// double vector pseudo intrinsics unavailable

Additional details

Identify nonzero lanes of Vsrc/Wsrc (sequentially from lane 0) and replace
these lanes with incrementing indices. Zero lanes continue the indexing from
non-zero lanes.

When scalar register source is used, extract zero/nonzero directly from the
scalar, biti = 1 indicating lane i is nonzero.

The source contains a Boolean array. The expanded index can be used to
expand, or uncollated, a collated array back to original data.

For example, VExpandldxW VO, V1, with VO ={0, 1,1, 1,0, 0, O, 1}. Non-zero
lanes are 1, 2, 3, and 7. Expected outcome V1={4,0,1,2,5,6, 7,3}. Theidea
is that a subsequent VPermW would use V1 as indices to expand collated
data, for example, {-1, 2,-3,4,0,0,0,0} to {0, -1, 2,-3,0, 0, 0, 4}.

9.8.2.18 VHMINZ2ID

Instruction name

VHMIN2ID

Functionality

Vector horizontal (between lane) min and ID

Assembly format

VHMin2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vhmin2id(vintx src);

Additional details

Min-ID between even/odd lanes in each lane pair. even destination lane gets
the minimal value, odd destination lane gets the lane ID (0 or 1) that has the
minimal value, in case of tie, ID = 0.

dst[2*i] = min(src[2*i], src[2*i+1]);
dst[2*i+1] = (src[2*i] <= src[2*i+1]) ?0: 1;

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMInRID with scalar register destinations.

9.8.2.19 VHMAX2ID
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Instruction name

VHMAX2ID

Functionality

Vector horizontal (between lane) max and 1D

Assembly format

VHMax2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vhmax2id(vintx src);

Additional details

Min-ID between even/odd lanes in each lane pair. even destination lane gets
the maximal value, odd destination lane gets the lane ID (O or 1) that has the
maximal value, in case of tie, ID = 0.

dst[2*i] = max(src[2*i], src[2*i+1]);
dst[2*i+1] = (src[2*i]] >= src[2*i+1]) ?0: 1;

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMaxRID with scalar register destinations.

9.8.2.20 VSHUFFLE

Instruction name

VSHUFFLE

Functionality

Vector shuffle permutation

Assembly format

VShuffle<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

B: 32 x 12-bit
H: 16 x 24-bit
W: 8 x 48-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vcharx vshuffle(vcharx src);
vshortx vshuffle(vshortx src);
vintx vshuffle(vintx src);

Additional details

Perform shuffle permutation among byte/halfword/word lanes. Equivalent to
VPerm with pattern:

Byte: {0,16,1,17,2,18,3,19,4,20,5, 21, 6,22, 7, 23,
8,24,9,25,10,26,11,27,12,28, 13,29, 14,30, 15, 31}

Halfword: {0, 8, 1,9,2,10,3,11,4,12,5,13,6, 14,7, 15}
Word: {0, 4, 1,5, 2, 6, 3, 7}
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9.8.3

9.8.3.1

Vector OP12 Instructions

These are one-source, two-destination operation vector instructions.

Instruction Summary

Table 30. Vector OP12 instructions

Function Assembly Format Comments

Vector sign- VSignMag<W/H/B> Vdst1/Wdst2 gets sign values.
magnitude Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 Vdst2/Wdst2 gets magnitude values.
Vector min VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the min value.

reduction & ID

dst2 gets the min ID.

Vector max
reduction & ID

VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2

dst1 gets the max value.
dst2 gets the max ID.

Vector type VPromote_DlI<type> With and without deinterleaving
promotion Vsrc/Wsrc, Vdst 1/Wdst 1, Vdst2/Wdst2
Vector bit VBitDelntrivW 1:1 and 2:1 deinterleaving

deinterleaving

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2
VBitDelntrlv21W
Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Collate index and
bits

VCollateldx_Bits<type> Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Vector min skip2
reduction-ID

VMinSkip2RIDW Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Complete min reduction-ID, assuming src
is outcome from VHMin2ID

Vector max skip2
reduction-ID

VMaxSkip2RIDW Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Complete max reduction-ID, assuming src
is outcome from VHMax2I1D

9.8.3.2

VSIGNMAG

Instruction name

VSIGNMAG

Functionality

Vector sign magnitude
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Assembly format

VSignMag<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vsignmag(vintx src, vintx & dst1, vintx & dst2);
void vsignmag(vshortx src, vshortx & dst1, vshortx & dst2);
void vsignmag(vcharx src, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsignmag(dvintx src, dvintx & dst1, dvintx & dst2);
void dvsignmag(dvshortx src, dvshortx & dst1, dvshortx & dst2);
void dvsignmag(dvcharx src, dvcharx & dst1, dvcharx & dst2);

Additional details

dst1 gets the sign, O for zero/positive and 1 for negative. dst2 gets the
magnitude (absolute value).

9.8.3.3

VMINRID

Instruction name

VMINRID

Functionality

Vector min reduction with ID

Assembly format

VMInRID<type> Vsrc/Wsrc, Rdst1, Rdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1, dst2: scalar registers

Additional options

Intrinsics/operator

void vminrid_s(vintx src, int & dst1, int & dst2);
void vminrid_s(vshortx src, int & dst1, int & dst2);
void vminrid_s(vcharx src, int & dst1, int & dst2);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

void vminrid(vintx src, vintx & dst1, vintx & dst2);

void vminrid(vshortx src, vshortx & dst1, vshortx & dst2);

void vminrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details

dst1 gets the min value among lanes, 12-bit/24-bit outcome is sign-extended
to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with
upper 16 bits dropped.

dst2 gets lane ID (0 ~ 7/15/31) where the min value is found, lowest lane when
there’s a tie.
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Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination
registers. For W-type 48-bit min value is output in each lane of the first vector
destination.

For Halfword and Byte types, the emulation uses vminrid_s() and
replicateh/b().

For Word type, using just vminrid_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Examples:

VMInRIDB V1, V2, V3 is emulated as VMInRIDB V1, R2, R3; VMovSB R2, V2;
VMovSB R3, V3.

vminrid(vcharx_src, vcharx_dst1, vcharx_dst?2) as {
vminrid_s(vcharx_src, min_dst, id_dst);
vcharx_dst1 = replicateb(min_dst);

vcharx_dst2 = replicateb(id_idst);

VMInRIDH V1, V2, V3 is emulated as VMInRIDH V1, R2, R3; VMovSH R2, V2;
VMovSH R3, V3.

vminrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
vminrid_s(vshortx_src, min_dst, id_dst);
vshortx_dst1 = replicateh(min_dst);
vshortx_dst2 = replicateh(id_idst);

VMInRIDW V1, V2, V3 is emulated as VHMin2IDW V1, V4; VMinSkip2RIDW V4,
V2, R2; VMovS R2, V3.

vminrid(vintx_src, vintx_dst1, vintx_dst2) as {
vhmin2id(vintx_src, temp);
vminskip2rid(temp, vintx_dst1, id_dst2);
vintx_dst2 = replicatew(id_dst2);

98.34 VMAXRID

Instruction name VMAXRID
Functionality Vector max reduction with ID

Assembly format VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 251



Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available
Source options Single vector register in VRF or WRF
Destination options dst1, dst2: scalar registers

Additional options

Intrinsics/operator void vmaxrid_s(vintx src, int & dst1, int & dst2);
void vmaxrid_s(vshortx src, int & dst1, int & dst2);
void vmaxrid_s(vcharx src, int & dst1, int & dst2);
// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

void vmaxrid(vintx src, vintx & dst1, vintx & dst2);
void vmaxrid(vshortx src, vshortx & dst1, vshortx & dst2);
void vmaxrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details dst1 gets the max value among lanes, 12-bit/24-bit outcome is sign-extended
to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with
upper 16 bits dropped.

dst2 gets lane ID (0 ~ 7/15/31) where the max value is found, lowest lane when
there’s a tie.

Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination
registers. For W-type 48-bit min value is output in each lane of the first vector
destination.

For Halfword and Byte types, the emulation uses vmaxrid_s() and
replicateh/b().

For Word type, using just vmaxrid_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmax2id() and vmaxskip2rid(). See 9.8.2.19 and 9.8.3.10 for details.

Examples:

VMaxRIDB V1, V2, V3 is emulated as VMaxRIDB V1, R2, R3; VMovSB R2, V2;
VMovSB R3, V3.

vmaxrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {
vmanxrid_s(vcharx_src, max_dst, id_dst);
vcharx_dst1 = replicateb(max_dst);
vcharx_dst2 = replicateb(id_idst);

VMaxRIDH V1, V2, V3 is emulated as VMaxRIDH V1, R2, R3; VMovSH R2, V2;
VMovSH R3, V3.

vmanxrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
vmaxrid_s(vshortx_src, max_dst, id_dst);
vshortx_dst1 = replicateh(max_dst);
vshortx_dst2 = replicateh(id_idst);
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VMaxRIDW V1, V2, V3 is emulated as VHMax2IDW V1, V4; VMaxSkip2RIDW
V4,V2, R2; VMovS R2, V3.

vmaxrid(vintx_src, vintx_dst1, vintx_dst2) as {
vhmax2id(vintx_src, temp);
vmaxskip2rid(temp, vintx_dst1, id_dst2);
vintx_dst2 = replicatew(id_dst2);

9.83.5 VPROMOTE_DI

Instruction name

VPROMOTE_DI

Functionality

Vector type promotion with deinterleaving

Assembly format

VPromote_Dl<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

BH: 32 x 12-bit > 2 x 16 x 24-bit, HW: 16 x 24-bit > 2 x 8 x 48-bit, with sign
extension

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vpromote_di(vcharx src, vshortx & dst1, vshortx & dst2);
void vpromote_di(vshortx src, vintx & dst1, vintx & dst2);
dvshortx vpromote_di(vcharx src);

dvintx vpromote_di(vshortx src);

// double vector pseudo intrinsics unavailable

Additional details

Expand byte to half-word or half-word to word, with 2 single registers as
destination and with deinterleaving.

Example:
VPromote_DIHW V1, V2, V3

with V1 ={0, 1, 2, .., 15} would copy V1’s contents to V2 and V3 deinterleavingly,
so that

v2 ={0, 2, 4, ..., 14} and
v3={1,3,5,.., 15}
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9.8.3.6 VPROMOTE (Emulated)

Instruction name

VPROMOTE (Emulated)

Functionality

Vector type promotion (without deinterleaving)

Assembly format

VPromote<type> Vsrc, Vdst1, Vdst2

Type and bit width

BH: 32 x 12-bit > 2 x 16 x 24-bit, HW: 16 x 24-bit > 2 x 8 x 48-bit, with sign
extension

Predication

not available

Source options

Single vector register

Destination options

Single vector register

Additional options

Intrinsics/operator

void vpromote(vshortx src, vintx & dstl, vintx & dst2);
void vpromote(vcharx src, vshortx & dst1, vshortx & dst2);
dvintx vpromote(vshortx src);

dvshortx vpromote(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details

Expand byte to half-word or half-word to word, with 2 single registers as
destination and without deinterleaving.

It's an instruction in Xavier (Gen-1) VPU only. In Orin(Gen-2) and Thor (Gen-3), it
was removed to reduce timing pressure in cross-lane unit. The intrinsic is
supported by implementing the same functionality using multiple instructions.

The emulation uses vshuffle() and vpromote_di() intrinsic functions. See 9.8.2.20
and 9.8.3.5 for details.

Examples:

VPromoteBH V1, V2, V3 is emulated as VShuffleB V1, V4; VPromote_DIBH V4,
Ve, V3.

vpromote(vcharx_src, vshortx_dst1, vshortx_dst?2) as {
vpromote_di(vshuffle(vcharx_src), vshortx_dst1, vshortx_dst2); }

VPromoteHW V1, V2, V3 is emulated as VShuffleH V1, V4; VPromote_DIHW V4,
V2, V3.

vpromote(vcharx_src, vintx_dst1, vintx_dst?2) as {
vpromote_di(vshuffle(vshortx_src), vintx_dst1, vintx_dst2); }

9.8.3.7 VBITDEINTRLV

Instruction name

VBITDEINTRLV

Functionality

Vector bit deinterleave
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Assembly format

VBitDeintrlv<type> Vsrc/Wsrc, Vdst1/Wdst 1, Vdst2/Wdst2

Type and bit width

W: 8 x 32-bit > 8 x 16-bit + 8 x 16-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vbit_deinterleave(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details

In each 48-bit W lane, bit-deinterleave src[31:0] into dst1[15:0] and dst2[15:0]
dst1[15] = src[31], dst2[15] = src[30],

dst1[14] = src[29], dst2[14] = src[28], and so on.

dst1[47:16] = dst2[47:16] =0

Instruction name

VBITDEINTRLV21

Functionality

Vector bit deinterleave 2:1

Assembly format

VBitDelntrlv21<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

W: 8 x 48-bit > 8 x 32-bit + 8 x 16-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vbit_deinterleave_21(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave_21(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details

In each 48-bit W lane, bit-deinterleave src[47:0] into dst1[31:0] and dst2[15:0]
dst1[31:30] = src[47:46], dst2[15] = src[45],

dst1[29:28] = src[44:43], dst2[14] = src[42], and so on.

dst1[47:32] = dst2[47:16] =0

9.8.3.8

VCOLLATEIDX_BITS

Instruction name

VCOLLATEIDX_BITS
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Functionality

Vector collate index and bits

Assembly format

VCollateldx_Bits<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector registers in VRF or WRF

Scalar register

Additional options

Intrinsics/operator

void vcollate_idx_bits(vintx src, vintx& dst1, int& dst2);
void vcollate_idx_bits(vshortx src, vshortx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details

Vdst1/Wdst1 gets indices to nonzero lanes (sequentially from lane 0) of
Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc. Rdst2 gets bit-
packed Boolean vector indicating nonzero lanes of Vsrc/Wsrc.

For example, VCollateldxW VO, V1, R2, with VO = {0, -1, 2,-3,0, 0, 0, 4}. Non-
zero lanes are lane 1, 2, 3, and 7. Expected outcome V1 ={1,2,3,7,0, 4, 5, 6},
R2 = Ox8E (bits 1, 2, 3, 7 are ones).

The idea is that a subsequent VPermW would use V1 as indices to
extract/compact VO nonzero and zero lanes into {-1, 2,-3, 4,0,0,0,0}. R2is
saved for later-on expanding the nonzeros back to original data array.

9.8.3.9

VMINSKip2RID

Instruction name

VMINSKIP2RID

Functionality

Vector every-other-lane horizontal min reduction and ID

Assembly format

VMinSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: scalar register

Additional options

Intrinsics/operator

void vminskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details

Complete min reduction-ID functionality cross lanes, assuming the source is
outcome of VHMIin2ID, with even lanes containing min values and LSB of odd
lanes containing 1-bit min-ID (between lanes 2*1 and 2*1+1).
min_val = min(src[@], src[2], src[4], src[6]);
id_val = (src[@] == min_val) ? src[1][0] :

((src[2] == min_val) ? (2 + src[3][8]) :
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((src[4] == min_val) ? (4 + src[5][@]) : (6 +
src[7][e])));
dst1[@..7] = min_val;
dst2 = id_val;

src[i][0] means bit O of srclil.

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMInRID with scalar register destinations.

For example, start with VO ={3, 1, 4,0, 2,5, 9, 1}, holding 8 int48 values.
After VHMIn2IDW VO, V1, we shall have

V1={1,1,0,1,2,0, 1, 1}, this is because

min(3, 1) = 1 from odd lane, min(4, O) = O from odd lane, and so on.
While executing VMinSkip2RID V1, V2, R3, we have

min_val = min(1,0, 2, 1) =0,

and we have src1[2] == min_val, so id_val = 2 + src[3][0] = 2+1 = 3.

We return

v2={0,0,0,0,0,0,0,0}and R3 =3

9.8.3.10 VMAXSkip2RID

Instruction name

VMAXSKIP2RID

Functionality

Vector every-other-lane horizontal max reduction and ID

Assembly format

VMaxSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF

dst2: scalar register

Additional options

Intrinsics/operator

void vmaxskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details

Complete max reduction-ID functionality cross lanes, assuming the source is
outcome of VHMax2ID, with even lanes containing max values and LSB of
odd lanes containing 1-bit max-ID (between lanes 2*l and 2*I+1).
max_val = max(src[0], src[2], src[4], src[6]);
id_val = (src[@] == max_val) ? src[1] :

((src[2] == max_val) ? (2 + src[3]) :

((src[4] == max_val) ? (4 + src[5]) : (6 + src[7])));
dst1[@..7] = max_val;
dst2 = id_val;
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This operation is supported only for the Word type, to handle potential
overflow of Word-type MaxRID with scalar register destinations.

See example in VMinSkip2RID instruction description.

9.8.4

Vector OP21 Instructions

These are two-source, one-destination operation vector instructions.

9.8.4.1

Instruction Summary

For some of these two-source, one-destination instructions, source 2 can be vector
register or scalar register. In case of scalar register, its value is broadcast to all lanes
before the operation, depending on the type:

» For Byte-type operations, bits 11:0 of scalar register is broadcast to all extended
byte lanes (12-bit each).
» For Halfword-type operations, bits 23:0 of scalar register is broadcast to all
extended halfword lanes (24-bit each).
» For Word-type operations, the 32-bit scalar register is sign-extended to extended
word lanes (48-bit each).

Double vector flavor is supported for selected operators.

Table 31 Vector OP21 instructions

Function

Assembly Format

Comments

Vector and bitwise

VAnd<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VAnd<W/H/B> DWSsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector and logical VAndL<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Vector or bitwise VOr<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector or logical

VOrL<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector exclusive or

VXor<W/H/B>
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Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector add

VAdd<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector subtract

VSub<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector absolute
difference

VAbsDif<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VAbsDif<W/H/B> DVsrc1,
DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector min

VMin<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMin<W/H/B> DVsrc1/Wsrcl,
DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector max

VMax<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMax<W/H/B> DVsrc1/Wsrcl,
DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector shift

VShift<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, when
positive shift left, when negative
shift right. Bit counts are saturated
to [-12, 12], [-24, 24] or [-48, 48]
range before applying the shift.

Vector shift left

VSLA<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] before
applying the left shift.

Vector shift right

VSRA<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] range before
applying the right shift.
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Vector round

VRound<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] range before
applying the right shift.

Vector permute

VPerm<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.
src2 carries permute pattern in
corresponding lane, value i for lane i.

Only 5/4/3 LSBs are read as
unsigned indices for W/H/B type.

Vector compare GT

VCmpGT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpGT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare GE

VCmpGE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpGE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LT

VCmpLT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpLT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LE

VCmpLE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpLE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare EQ

VCmpEQ<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpEQ<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpEQ<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare NE

VCmpNE<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpNE<W/H/B>
DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
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VCmMpNE<W/H/B>
DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare VBitCmp<type> Compare src1 >= src2, bit-pack

and bit-pack Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, outcome, then broadcast to all lanes
Vdst/Wdst/Rdst
type = {BBW, H, WWB}

Vector normalize VNorm<W/H/B> Normalize src1 data with most-

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

significant bit position src2

Vector octant

VOctDetH

src1 =Y values, src2 = X values,

detect Vsrc1/Wsrcl, Vsrc2/Wsrc2, Vdst/Wdst detect octant of (X, Y) vectors.
Vector type VDemote_l<type> Type demotion with and without
demotion Vsrc1/Wsrcl, Vsrc2/Wsrc2, Vdst/Wdst interleaving

VDemote<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

type = {HB, WH}
Vector bit VBitIntrivwW Bit interleaving, 1:1 and 2:1
interleaving Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

VBitIntriv2 TW
Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Vector apply sign

VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2,
Vdst/Wdst

Inverse operation of VSignMag,
treating src1 as sign (O for
zero/positive and 1 for negative),
and src2 as magnitude.

Vector select lane

VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

9.84.2 VAND

Instruction name

VAND

Functionality

Vector bitwise AND

Assembly format

VAnd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

broadcast to all vector lanes.

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register
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Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator&(vintx srcl, vintx src2);
vshortx operator&(vshortx src1, vshortx src2);
vcharx operator&(vcharx src1, vcharx src2);
vintx operator&(vintx srcl1, unsigned int src2);
vshortx operator&(vshortx src1, unsigned int src2);
vcharx operator&(vcharx srcl1, unsigned int src2);

Additional details

Instruction name VAND

Functionality

Double vector bitwise AND

Assembly format

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit
Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcas

t to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx
dvshortx
dvcharx
dvintx
dvshortx
dvcharx

operator&(dvintx srcft,
operator&(dvshortx srct,
operator&(dvcharx srct,
operator&(dvintx  srcft,
operator&(dvshortx srci,
operator&(dvcharx srci,

dvintx src2);
dvshortx src2);
dvcharx src2);
unsigned int src2);
unsigned int src2);
unsigned int src2);

Additional details

9.8.4.3

VANDL

Instruction name

VANDL

Functionality

Vector logical AND

Assembly format

VAndL<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
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Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all
vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator&&(vintx src1, vintx src2);

vshortx operator&&(vshortx src1, vshortx src2);

vcharx operator&&(vcharx srci1, vcharx src2);

vintx operator&(vintx srcl, unsigned int src2);
vshortx operator&&(vshortx srcl, unsigned int src2);
vcharx operator&&(vcharx srcl, unsigned int src2);
// double vector pseudo intrinsics

dvintx operator&&(dvintx srcl, dvintx src2);
dvshortx operator&&(dvshortx src1, dvshortx src2);
dvcharx operator&&(dvcharx srcl1, dvcharx src2);
dvintx  operator&&(dvintx srcl1, unsigned int src2);
dvshortx operator&&(dvshortx src1, unsigned int src2);
dvcharx operator&&(dvcharx src1, unsigned int src2);

Additional details

9.8.4.4

VOR

Instruction name

VOR

Functionality

Vector bitwise OR

Assembly format

VOr<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator|(vintx srcl, vintx src2);
vshortx operator|(vshortx src1, vshortx src2);
vcharx operator|(vcharx srcl1, vcharx src2);
vintx operator|(vintx srcl1, unsigned int src2);
vshortx operator|(vshortx src1, unsigned int src2);
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vcharx operator|(vcharx src1, unsigned int src2);

Additional details

Instruction name

VOR

Functionality

Double vector bitwise OR

Assembly format

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator|
dvshortx operator|
dvcharx operator|
dvintx operator|
dvshortx operator|
dvcharx operator|

dvintx  src1, dvintx src2);
dvshortx src1, dvshortx src2);
dvcharx src1, dvcharx src2);
dvintx  src1, unsigned int src2);
dvshortx src1, unsigned int src2);
dvcharx srci1, unsigned int src2);

~ o~ o~ o~ o~ —~

Additional details

9.8.4.5

VORL

Instruction name

VORL

Functionality

Vector logical OR

Assembly format

VOrL Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all
vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator||(vintx srcl1, vintx src2);
vshortx operator||(vshortx src1, vshortx src2);
vcharx operator||(vcharx src1, vcharx src2);
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vintx operator||(vintx srcl, unsigned int src2);
vshortx operator||(vshortx src1, unsigned int src2);
vcharx operator||(vcharx src1, unsigned int src2);
// double vector pseudo intrinsics

dvintx operator||(dvintx srcl1, dvintx src2);
dvshortx operator||(dvshortx src1, dvshortx src2);
dvcharx operator||(dvcharx srcl1, dvcharx src2);
dvintx operator||(dvintx src1, unsigned int src2);
dvshortx operator||(dvshortx srcl1, unsigned int src2);
dvcharx operator||(dvcharx srcl, unsigned int src2);

Additional details

9.846 VXOR

Instruction name

VXOR

Functionality

Vector bitwise exclusive or

Assembly format

VXor<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator*(vintx srcl, vintx src2);
vshortx operator®(vshortx src1, vshortx src2);
vcharx operator*(vcharx src1, vcharx src2);

vintx operator*(vintx src1, unsigned int src2);
vshortx operator?(vshortx src1, unsigned int src2);
vcharx operator?*(vcharx srcl1, unsigned int src2);

Additional details

Instruction name

VXOR

Functionality

Double vector bitwise exclusive or

Assembly format

VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit
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Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx

dvshortx operator?(dvshortx

dvcharx
dvintx

dvshortx operator?(dvshortx

dvcharx

operator®(dvintx

(
operator*(dvcharx
operator®(dvintx

(
operator*(dvcharx

srct,
srct,
srct,
srct,
srct,
srct,

dvintx src2);
dvshortx src2);
dvcharx src2);
unsigned int src2);
unsigned int src2);
unsigned int src2);

Additional details

9.8.4.7

VADD

Instruction name

VADD

Functionality

Vector add

Assembly format

VAdd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator+(vintx srcl1, vintx src2);
vshortx operator+(vshortx srci1, vshortx src2);
vcharx operator+(vcharx srci1, vcharx src2);
vintx operator+(vintx srcl1, int src2);
vshortx operator+(vshortx src1, int src2);
vcharx operator+(vcharx srcl, int src2);

Additional details

Instruction name VADD
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Functionality

Double vector add

Assembly format

VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  srci1, dvintx src2);
dvshortx src1, dvshortx src2);
dvcharx srci1, dvcharx src2);
dvintx srcl1, int src2);
dvshortx src1, int src2);
dvcharx srcl1, int src2);

dvintx operator+
dvshortx operator+
dvcharx operator+
dvintx operator+
dvshortx operator+
dvcharx operator+

—~ o~ o~ o~ o~ —~

Additional details

9.8.4.8

VSUB

Instruction name

VSUB

Functionality

Vector subtract

Assembly format

VSub<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx srcl1, vintx src2);
vshortx srci1, vshortx src2);
vcharx srcl1, vcharx src2);
vintx srcl1, int src2);
vshortx src1, int src2);
vcharx srcl1, int src2);

vintx operator-
vshortx operator-
vcharx operator-
vintx  operator-
vshortx operator-
vcharx operator-

—~ o~ o~ o~ —~ —

Additional details
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Instruction name

VSUB

Functionality

Double vector subtract

Assembly format

VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator-(dvintx src1, dvintx src2);
dvshortx operator-(dvshortx src1, dvshortx src2);
dvcharx operator-(dvcharx src1, dvcharx src2);
dvintx  operator-(dvintx srcl1, int src2);
dvshortx operator-(dvshortx src1, int src2);
dvcharx operator-(dvcharx srcl1, int src2);

Additional details

9.8.4.9

VABSDIF

Instruction name

VABSDIF

Functionality

Vector absolute difference

Assembly format

VAbsDif<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  vabsdif(vintx src1, vintx src2);
vshortx vabsdif(vshortx src1, vshortx src2);
vcharx vabsdif(vcharx src1, vcharx src2);
vintx vabsdif(vintx srcl1, int src2);
vshortx vabsdif(vshortx srci1, int src2);
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vcharx vabsdif(vcharx srci1, int src2);

Additional details

Instruction name

VABSDIF

Functionality

Double vector absolute difference

Assembly format

VAbsDif<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  dvabsdif(dvintx src1, dvintx src2);
dvshortx dvabsdif(dvshortx srci1, dvshortx src2);
dvcharx dvabsdif(dvcharx src1, dvcharx src2);
dvintx  dvabsdif(dvintx src1, int src2);
dvshortx dvabsdif(dvshortx src1, int src2);
dvcharx dvabsdif(dvcharx srci1, int src2);

Additional details

9.8.4.10 VMIN

Instruction name

VMIN

Functionality

Vector min

Assembly format

VMin<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vmin(vintx src1, vintx src2);
vshortx vmin(vshortx src1, vshortx src2);
vcharx vmin(vcharx src1, vcharx src2);
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vintx vmin(vintx srci1, int src2);
vshortx vmin(vshortx src1, int src2);
vcharx vmin(vcharx src1, int src2);

Additional details

Return minimal of 2 inputs

Instruction name

VMIN

Functionality

Double vector min

Assembly format

VMin<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VMin<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  dvmin(dvintx srci1, dvintx src2);
dvshortx dvmin(dvshortx src1, dvshortx src2);
dvcharx dvmin(dvcharx srci1, dvcharx src2);
dvintx  dvmin(dvintx srci1, int src2);
dvshortx dvmin(dvshortx src1, int src2);
dvcharx dvmin(dvcharx srci1, int src2);

Additional details

Return minimal of 2 inputs

9.84.11

VMAX

Instruction name

VMAX

Functionality

Vector max

Assembly format

VMax<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  vmax(vintx srcl, vintx src2);

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 270



vshortx vmax(vshortx src1, vshortx src2)
vcharx vmax(vcharx src1, vcharx src2)
vintx  vmax(vintx srci1, int src2);
vshortx vmax(vshortx src1, int src2)
vcharx vmax(vcharx srci1, int src2)

Additional details

Return maximal of 2 inputs

Instruction name

VMAX

Functionality

Double vector max

Assembly format

VMax<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VMax<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  dvmax(dvintx src1, dvintx src2)
dvshortx dvmax(dvshortx src1, dvshortx src2)
dvcharx dvmax(dvcharx src1, dvcharx src2);
dvintx  dvmax(dvintx srci1, int src2)
dvshortx dvmax(dvshortx srci1, int src2)

)

dvcharx dvmax(dvcharx srci1, int src2

Additional details

Return minimal of 2 inputs

9.8.4.12 VSHIFT

Instruction name

VSHIFT

Functionality

Vector shift

Assembly format

VShift<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF
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Additional options

Intrinsics/operator

vintx vshift(vintx srcl1, vintx src2
vshortx vshift(vshortx srcl1, vshortx src2
vcharx vshift(vcharx srcl1, vcharx src2
(
(

’
1

)
)
);
)
)
)

vintx vshift(vintx src1, int src2);
vshortx vshift(vshortx src1, int src2);
vcharx vshift(vcharx srci1, int src?);

// double vector pseudo intrinsics
dvintx dvshift(dvintx src1, dvintx src2

1

( )
dvshortx dvshift(dvshortx src1, dvshortx src2);
dvcharx dvshift(dvcharx src1, dvcharx src2)
(
(

’

dvintx dvshift(dvintx srci1, int src2);
dvshortx dvshift(dvshortx srci1, int src2);
dvcharx dvshift(dvcharx srci1, int src2);

Additional details

When the lane value in src2 is positive, perform left shift, otherwise perform
right shift, -k indicating >> k.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [-12, 12], [-24, 24], [-48, 48] range
before detecting sign and applying the shift.

9.8.4.13 VSLA

Instruction name

VSLA

Functionality

Vector shift left

Assembly format

VSLA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

1

vintx  operator<<(vintx src1, vintx src2
vshortx operator<<(vshortx src1, vshortx src2
vcharx operator<<(vcharx src1, vcharx src2

)
i
Ik
vintx  operator<<(vintx srcl1, int src2);
vshortx operator<<(vshortx src1, int src2)
vcharx operator<<(vcharx srci1, int src2)

// double vector pseudo intrinsics

dvintx  operator<<(dvintx srcl1, dvintx src2);
dvshortx operator<<(dvshortx src1, dvshortx src2);

dvcharx operator<<(dvcharx src1, dvcharx src2);

’

’

’
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dvintx operator<<(dvintx src1, int src2);
dvshortx operator<<(dvshortx src1, int src2);
dvcharx operator<<(dvcharx src1, int src2);

Additional details

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before
applying the shift.

9.8.4.14 VSRA

Instruction name

VSRA

Functionality

Vector shift right

Assembly format

VSRA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  operator>>(vintx srcl, vintx src2);
vshortx operator>>(vshortx src1, vshortx src2);
vcharx operator>>(vcharx srcl, vcharx src2);
vintx operator>>(vintx srci1, int src2);
vshortx operator>>(vshortx src1, int src2);
vcharx operator>>(vcharx src1, int src2);

// double vector pseudo intrinsics

dvintx  operator>>(dvintx srcl1, dvintx src2);
dvshortx operator>>(dvshortx src1, dvshortx src2);
dvcharx operator>>(dvcharx src1, dvcharx src2);
dvintx operator>>(dvintx src1, int src2);
dvshortx operator>>(dvshortx src1, int src2);
dvcharx operator>>(dvcharx srcl1, int src2);

Additional details

Shift right arithmetic (preserving sign). Unsigned data should be loaded with
appropriate unsigned type of vector load, and zero-padded when loading into
extended vector lanes.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before
applying the shift.
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9.8.4.15 VROUND

Instruction name

VROUND

Functionality

Vector round

Assembly format

VRound<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  vround(vintx srcl, vintx src2)

vshortx vround(vshortx src1, vshortx src2)

vcharx vround(vcharx srcl1, vcharx src2);
vintx  vround(vintx srcl1, int src2)

vshortx vround(vshortx srci1, int src2)

vcharx vround(vcharx srci1, int src2)

// double vector pseudo intrinsics

dvintx dvround(dvintx src1, dvintx src2

( i
dvshortx dvround(dvshortx src1, dvshortx src2);
dvcharx dvround(dvcharx src1, dvcharx src2)

(

(

dvintx dvround(dvintx src1, int src2);
dvshortx dvround(dvshortx src1, int src2);
dvcharx dvround(dvcharx src1, int src2);

Additional details

In case of Vsrc2/Wsrc2, each lane gets an independent number of bits to
round. In case of Rsrc2, lower 12/24/32 bits are broadcast so all lanes are
rounded by the same number of bits.

Number of bits to round is read as a signed number and saturated to [0, 12],
[0, 24], or [0, 48] range before being applied to the rounding.

Let rnd_bits be number of bits to round. Rounding is performed in each lane
where rnd_bits >= 1, by

temp1 = src1 >> (rnd_bits - 1);

dst = (templ + 1) >> 1;

In lanes where rnd_bits <=0, dst = src1 (no rounding).

Note that rounding by the lane width or more bits would result in O for both
positive and negative inputs.

9.84.16 VPERM
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Instruction name

VPERM

Functionality

Vector permute

Assembly format

VPerm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  vpermute(vintx srcl, vintx src2);
vshortx vpermute(vshortx srcl, vshortx src2);
vcharx vpermute(vcharx srcl1, vcharx src2)

( )
e

vfloatx vpermute(vfloatx srcl, vintx src2

vhfloatx vpermute(vhfloatx src1, vshortx src2);
vintx  vpermute(vintx srcl1, int src2);
vshortx vpermute(vshortx srci1, int src2);
vcharx vpermute(vcharx srci1, int src2);
vfloatx vpermute(vfloatx srct, int  src2);
vhfloatx vpermute(vhfloatx src1, int src2);

// double vector pseudo intrinsics unavailable

Additional details

Treat src1 as lane data and src2 as lane indices.
For each lane, return value of the lane pointed to by the index.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are
ignored.

For example, say if we start with
v0={1,3,5,7,9, 11,13, 15}in W lanes
V1={4,5,6,7,0,0,1,1}in W lanes
VPermW VO, V1, V2 would result in
V2={9,11,13,15,1,1,3,3}in W lanes

When using scalar register as src2, the value in 3/4/5 LSBs of the scalar
register is used to select one of 8/16/32 W/H/B lanes of src1, and value in the
selected lane is replicated in all lanes of the destination.

9.8.4.17 VCMPGT

Instruction name

VCMPGT

Functionality

Vector compare greater than
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Assembly format

VCmpGT<type> Vsrc1/Wsrcl, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  operator>(vintx srcl, vintx src2);
vshortx operator>(vshortx src1, vshortx src2);
vcharx operator>(vcharx src1, vcharx src2);
vintx  operator>(vintx srcl1, int src2);
vshortx operator>(vshortx src1, int src2);

(

vcharx operator>(vcharx srcl1, int src2);

Additional details

Instruction name

VCMPGT

Functionality

Double vector compare greater than

Assembly format

VCmpGT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator>(dvintx src1, dvintx src2);
dvshortx operator>(dvshortx src1, dvshortx src2);
dvcharx operator>(dvcharx src1, dvcharx src2);
dvintx operator>(dvintx src1, int src2);
dvshortx operator>(dvshortx src1, int src2);
(

dvcharx operator>(dvcharx src1, int src2);

Additional details

9.8.4.18 VCMPGE

Instruction name

VCMPGE

Thor PVA VPU Programmer’s Guide

SWE-PVA-077-PGRF | 276



Functionality

Vector compare greater than or equal

Assembly format

VCmpGE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator>=(vintx srcl1, vintx src2);
vshortx operator>=(vshortx src1, vshortx src2);
vcharx operator>=(vcharx srcl1, vcharx src2);
vintx operator>=(vintx src1, int src2);
vshortx operator>=(vshortx srcl1, int src2);
vcharx operator>=(vcharx src1, int src2);

Additional details

Instruction name

VCMPGE

Functionality

Double vector compare greater than or equal

Assembly format

VCmpGE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  operator>=(dvintx srcl1, dvintx src2);
dvshortx operator>=(dvshortx src1, dvshortx src2);
dvcharx operator>=(dvcharx srcl1, dvcharx src2);
dvintx operator>=(dvintx srcl, int src2);
dvshortx operator>=(dvshortx src1, int src2);
dvcharx operator>=(dvcharx src1, int src2);

Additional details

9.8.4.19 VCMPLT
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Instruction name

VCMPLT

Functionality

Vector compare less than

Assembly format

VCmpLT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<(vintx srcl, vintx src2);
vshortx operator<(vshortx src1, vshortx src2);
vcharx operator<(vcharx src1, vcharx src2);
vintx  operator<(vintx srcl, int src2);
vshortx operator<(vshortx src1, int src2);

(

vcharx operator<(vcharx srcl1, int src2);

Additional details

Instruction name

VCMPLT

Functionality

Double vector compare less than

Assembly format

VCmpLT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx  operator<(dvintx src1, dvintx src2);

dvshortx operator<(dvshortx src1, dvshortx src2);

dvcharx operator<(dvcharx src1, dvcharx src2);

dvintx operator<(dvintx src1, int src2);

dvshortx operator<(dvshortx src1, int src2);
(

dvcharx operator<(dvcharx src1, int src2);

Additional details
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9.8.4.20 VCMPLE

Instruction name

VCMPLE

Functionality

Vector compare less than or equal

Assembly format

VCmpLE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<=(vintx srci1, vintx
vshortx operator<=(vshortx src1, vshortx src2);
vcharx operator<=(vcharx srcl1, vcharx src2);
vintx  operator<=(vintx srcl, int src2);
(
(

src2);

vshortx operator<=(vshortx src1, int src2);
vcharx operator<=(vcharx src1, int src2);

Additional details

Instruction name

VCMPLE

Functionality

Double vector compare less than or equal

Assembly format

VCmpLE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator<=
dvshortx operator<=
dvcharx operator<=
dvintx operator<=
dvshortx operator<=
dvcharx operator<=

dvintx srcl1, dvintx src2);
dvshortx src1, dvshortx src2);
dvcharx srcl1, dvcharx src2);
dvintx srcl1, int src2);
dvshortx srcl1, int src2);
dvcharx srcl1, int src2);

P

Additional details
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9.8.4.21

VCMPEQ

Instruction name

VCMPEQ

Functionality

Vector compare equal

Assembly format

VCmpEQ<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  operator==(vintx srci1, vintx
vshortx operator==(vshortx src1, vshortx src2);
vcharx operator==(vcharx src1, vcharx src2);
vintx operator==(vintx srcl, int src2);
(
(

src2);

vshortx operator==(vshortx src1, int src2);
vcharx operator==(vcharx src1, int src2);

Additional details

Instruction name

VCMPEQ

Functionality

Double vector compare equal

Assembly format

VCmpEQ<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpEQ<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator==
dvshortx operator==
dvcharx operator==
dvintx operator==
dvshortx operator==
dvcharx operator==

dvintx srcl1, dvintx src2);
dvshortx src1, dvshortx src2);
dvcharx srcl1, dvcharx src2);
dvintx srcl1, int src2);
dvshortx srcl1, int src2);
dvcharx srcl1, int src2);

P

Additional details
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9.8.4.22 VCMPNE

Instruction name

VCMPNE

Functionality

Vector compare not equal

Assembly format

VCmpNE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx  operator!=(vintx srcl1, vintx src2);
vshortx operator!=(vshortx srci1, vshortx src2);
vcharx operator!=(vcharx srcl1, vcharx src2);
vintx  operator!=(vintx src1, int src2);
vshortx operator!=(vshortx src1, int src2);
vcharx operator!=(vcharx src1, int src2);

Additional details

Instruction name

VCMPNE

Functionality

Double vector compare not equal

Assembly format

VCmpNE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpNE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator!=
dvshortx operator!=
dvcharx operator!=
dvintx operator!=
dvshortx operator!=
dvcharx operator!=

dvintx srcl1, dvintx src2);
dvshortx src1, dvshortx src2);
dvcharx srcl1, dvcharx src2);
dvintx srcl1, int src2);
dvshortx srcl1, int src2);
dvcharx srcl1, int src2);

P

Additional details
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9.8.4.23 VBITCMP

Instruction name

VBITCMP

Functionality

Vector compare and bit-pack

Assembly format

VBitCmp<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst/Rdst

Type and bit width

Vector operand:

WWAB: 8 x 48-bit compare as signed - 8-bit - broadcast to B lanes.

H: 16 x 24-bit compare as signed > 16-bit > broadcast to H lanes.
BBW: 32 x 12-bit compare as signed > 32-bit > broadcast to W lanes.
Scalar operand:

WWAB: full 32-bit sign-extended to 48-bit, H: 24 LSBs, BBW: 12 LSBs,
compare as signed.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator

’

vintx  vbitcmp(vcharx vsrcl, vcharx vsrc2)
vshortx vbitcmp(vshortx vsrc1, vshortx vsrc2);
vcharx vbitcmp(vintx  vsrcl, vintx vsrc2);
vintx  vbitemp(vcharx vsrcl, int vsrc2);
vshortx vbitcmp(vshortx vsrcl, int vsrc2)
vcharx vbitcmp(vintx vsrcl, int vsrc2)
int vbitcmp_s(vcharx vsrcl1, vcharx vsrc2);
int vbitcmp_s(vshortx vsrcl1, vshortx vsrc2)
int vbitcmp_s(vintx  vsrcl, vintx vsrc2);
int vbitcmp_s(vcharx vsrcl, int vsrc2);
int vbitcmp_s(vshortx vsrcl, int vsrc2)
int vbitemp_s(vintx  vsrcl, int vsrc2);
// double vector pseudo intrinsics unavailable

’

’

Additional details

Compare src1 >=src2 in each W/H/B lane, compact to 8/16/32-bit scalar,
broadcast to all destination B/H/W lanes.

For example, say if we start with

V0={1,3,5,7,9,11,13,15}in W lanes

V1={5,5,5,5,10, 10, 10, 10} in W lanes

VBitCmpWWB V0, V1, V2 would result in {0,0,1,1,0,1,1,1} = OxEC,
V2 = {OxEC, OxEC, ..., OXEC} in B lanes

For scalar destination, in WWB-type, the 8-bit scalar is zero-extended to 32-
bit and returned. In H-type, the 16-bit scalar is zero-extended to 32-bit and
returned. In BBW-type, the 32-bit scalar is returned.
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9.8.4.24 VNORM

Instruction name

VNORM

Functionality

Vector normalize

Assembly format

VNorm<type> Vsrc1/Wsrcl, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vcharx vnorm(vcharx vsrcl, vcharx vsrc2);
vshortx vnorm(vshortx vsrc1, vshortx vsrc2);
vintx  vnorm(vintx vsrcl, vintx vsrc2);

// double vector pseudo intrinsics

dvintx  dvnorm(dvintx vsrcl1, dvintx vsrc2);
dvshortx dvnorm(dvshortx vsrc1l, dvshortx vsrc2);
dvcharx dvnorm(dvcharx vsrcl1, dvcharx vsrc2);

Additional details

Each 12/24/48-bit lane of Vsrc2/Wsrc2 is read as an signed number, 7 -
src2, 15-src2, or 31 -src2 is performed, outcome saturated to [-12, 12], [-
24, 24], [-48, 48] range, then src1 is shifted by this many bits. Arithmetic
shift is performed to preserve sign bit when shifting right.

The intention is to precede VNorm with VMSBD, so that src2 holds the
most significant bit position of src1. VNorm would then shift the most
significant bit (left or right) to bit 7 for B, bit 15 for H, bit 31 for W.

For example, when src2 = 11, the shift amountis 7 - 11 = -4, to shift src1
right by 4 bits. When src2 = 5, the shift amountis 7 -5 = 2, to shift src1 left
by 2 bits.

9.8.4.25 VOCTDET

Instruction name

VOCTDET

Functionality

Vector octant detection for atan2(Y, X)

Assembly format

VOctDetH Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

H: 16 x 24-bit, signed

Predication

not available

Source options

src1: single vector register in VRF or WRF
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src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx voct_detect(vshortx vsrcl, vshortx vsrc2);

// double vector pseudo intrinsics

dvshortx dvoct_detect(dvshortx vsrcl, dvshortx vsrc2);

Additional details Treat Vsrc1/Wsrc1 as 'Y, Vsrc2/Wsrc2 as X, return octant of (X, Y) in 2D
plane, 0 ~ 7.

First (O™) octant from O to 44.999 degree, second (1th) from 45 to 89.999
degree, etc, O degree being the X axis.

Condition Octant and angle range
X>=0, Y>=0, |Y|<=|X] 0: [0 ~ 0.25 pil
X>=0, Y>=0, |Y|>|X| 1: (0.25 pi ~ 0.5 pi)

X<0, Y>=0, |Y|>|X| 2: (0.5 pi ~ 0.75 pi)
X<0,Y>=0, |Y|<=|X|]  3:[0.75 pi~ pi]
X<0, Y<O0, |Y]<=|X]| 4: (pi ~ 1.25 pi)
X<0, Y<O0, |Y|>|X| 5:(1.25 pi ~ 1.5 pi)
X>=0,Y<0, |Y|>|X| 6:[1.5 pi ~ 1.75 pi]

X>=0,Y<0, |Y|<=|X|  7:[1.75 pi~ 2 pi]

9.8.426 VDEMOTE_I

Instruction name VDEMOTE_I

Functionality Vector type demotion with interleaving

Assembly format VDemote_l<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width HB: 2 x 16 x 24-bit 2 32 x 12-bit, WH: 2 x 8 x 48-bit > 16 x 24-bit
Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator void vdemote_i(vshortx src1, vshortx src2, vcharx & dst);
void vdemote_i(vintx  srcl1, vintx src2, vshortx & dst);
vcharx vdemote_i(dvshortx src);

vshortx vdemote_i(dvintx src);

// double vector pseudo intrinsics unavailable

Additional details Compress half-word to byte or word to half-word, with 2 single registers as
source and with interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,
lower 24 bits. Programmer should be aware of the possibility of overflow.
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Example:
VDemote_IWH V1, V2, V3

withV1={0,1,2,..,7}and V2 ={8,9, .., 15} would copy V1 and V2 contents
to V3 interleavingly, such that

v3={0,8,1,9,..,7, 15}

9.8.4.27 VDEMOTE

Instruction name

VDEMOTE

Functionality

Vector type demotion

Assembly format

VDemote<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

HB: 2 x 16 x 24-bit = 32 x 12-bit, WH: 2 x 8 x 48-bit 2> 16 x 24-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vdemote(vintx src1,  vintx src2, vshortx & dst);
void vdemote(vshortx src1, vshortx src2, vcharx & dst);
vcharx vdemote(dvshortx src);

vshortx vdemote(dvintx src);

// double vector pseudo intrinsics unavailable

Additional details

Compress half-word to byte or word to half-word, with 2 single registers as
source and without interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,
lower 24 bits. Programmer should be aware of the possibility of overflow.

Example:
VDemoteWH V1, V2, V3

withV1={0,1,2,..,7Yand V2 ={8, 9, ..., 15} would copy V1 and V2 contents
to V3 sequentially, such that

v3={0,1,2,.., 15}

9.8.4.28 VBITINTRLV

Instruction name

VBITINTRLV

Functionality

Vector bit interleave

Assembly format

VBitIntrlv<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
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Type and bit width W: 8 x 16-bit + 8 x 16-bit > 8 x 32-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbit_interleave(vintx src1, vintx src2);

// double vector pseudo intrinsics

dvintx dvbit_interleave(dvintx src1, dvintx src2);

Additional details In each 48-bit W lane, bit-interleave src1[15:0] and src2[15:0] into dst
dst[31] = src1[15], dst[30] = src2[15],

dst[29] = src1[14], dst[28] = src2[14], and so on.

dst[47:32] = 0.

Instruction name VBITINTRLV21

Functionality Vector bit interleave 2:1

Assembly format VBitIntrlv21<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
Type and bit width W: 8 x 32-bit + 8 x 16-bit > 8 x 48-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbit_interleave_21(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvintx dvbit_interleave_21(dvintx src1, dvintx src2);

Additional details In each 48-bit W lane, bit-interleave src1[31:0] and src2[15:0] into dst in 2-
bit, 1-bit pattern.

dst[47:46] = src1[31:30], dst[45] = src2[15],
dst[44:43] = src1[29:28], dst[42] = src2[14], and so on.

9.8.4.29 VAPPLYSIGN

Instruction name VAPPLYSIGN
Functionality Vector apply sign
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Assembly format

VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

B: 32 x 12-bit
H: 16 x 24-bit
W: 8 x 48-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vcharx vapply_sign(vcharx src1, vcharx src2);
vshortx vapply_sign(vshortx src1, vshortx src2);
vintx vapply_sign(vintx src1, vintx src2);

// double vector pseudo intrinsics

dvcharx dvapply_sign(dvcharx src1, dvcharx src2);
dvshortx dvapply_sign(dvshortx src1, dvshortx src2);
dvintx dvapply_sign(dvintx src1, dvintx src2);

Additional details

Inverse operation of VSignMag (vector sign-magnitude). The intention is that
in each vector lane (width depending on data type), we treat src1 as a
Boolean carrying the sign bit that we want to apply on src2 that carries the
magnitude.

The hardware performs
dst =srcl ?-src2:src2

so that output gets negated src2 when src1 is true (non-zero), and src2 as-is
when src1 is false (zero).

Thus, in addition to applying a sign to a magnitude, it can be used to
conditionally flip the sign of any number.

Note that this instruction does not perform absolute value function on src2
before applying the sign.

9.8.4.30 VSelectLane

Instruction name

VSelectLane

Functionality

Vector select lane

Assembly format

VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

Type and bit width

Vector operand:
W: 32-bit
H: 24-bit sign-extend to 32-bit
B: 12-bit sign-extend to 32-bit
Scalar operand: W: 3 LSBs, H: 4 LSBs, B: 5 LSBs

Predication

not available

Source options

src1: single vector register in VRF or WRF
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src2: scalar register

Destination options

dst: destination register

Additional options

Intrinsics/operator

int vselectlane(vintx srcl1, int src2);

int vselectlane(vshortx src1, int src2);

int vselectlane(vcharx srcl1, int src2);

float vselectlane(vfloatx srcl, int src2);
hfloat vselectlane(vhfloatx src1,int src2);

// double vector pseudo intrinsics unavailable

Additional details

Treat src1 as lane data and src2 as lane index.

For W-type, 32 LSBs of the selected 48-bit lane is returned in the destination
scalar register. Programmer should be aware of potential overflow in the
outcome. For H/B-type, selected 12-bit/24-bit is sign-extend to 32-bit in the

destination register.

ignored.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are

9.8.5

Vector OP22 Instructions

These are two-source, two-destination operation vector instructions.

9.8.5.1

Instruction Summary

Table 32. Vector OP22 instructions

Function

Assembly Format

Comments

Non-overwriting

Vector 2-item sort

VSort2<W/H/B> Vsrcl, Vsrc2, Vdst1, Vdst2

Vdst1 = min(Vsrc1, Vsrc2);
Vdst2 = max(Vsrc1, Vsrc2);

Vector
add/subtract

VAddSub<W/H/B> Vsrcl, Vsrc2, Vdst1, Vdst2

Vdst1 = Vsrc1 + Vsrc2;
Vdst2 = Vsrc1 - Vsrc2;

Vector complex
add/sub

VCAddSubH Vsrcl1, Vsrc2, Vdst1, Vdst2

Like VAddSub but swap
even/odd lanes of Vsrc2 and
add/subtract, see details

Vector min-LT-flag

VMInLT<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Vdst1 = min(Vsrc1, Vsrc2);
Vdst2 = Vsrc1 < Vsrc2;

Vector max-GT-flag

VMaxGT<W/H/B> Vsrcl1, Vsrc2, Vdst1, Vdst2

Vdst1 = max(Vsrc1, Vsrc2);
Vdst2 = Vsrc1 > Vsrc2;

Vector 2-item sort
with payload

VSort2PL<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Key and payload interleaved in
each source and destination
vector register
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Vector split bits

VSplitBits Vsrc1, Vsrc2, Vdst1, Vdst2

justified bit fields

9.8.5.2

VSORT?2

Instruction name

VSORT2

Functionality

Vector 2-point sort

Assembly format

VSort2<type> Vsrcl, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsort2(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vsort2(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsort2(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsort2(dvintx srcl, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvsort2(dvshortx srci1, dvshortx src2, dvshortx & dst1, dvshortx &
dst2);

void dvsort2(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 = min(src1, src2), dst2 = max(src1, src2)

9.8.5.3

VADDSUB

Instruction name

VADDSUB

Functionality

Vector add-subtract

Assembly format

VAddSub<type> Vsrcl, Vsrcz2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available
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Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vaddsub(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vaddsub(vshortx srcl, vshortx src2, vshortx & dst1, vshortx & dst2);
void vaddsub(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvaddsub(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx &
dst2);

void dvaddsub(dvcharx srci1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 =src1 + src2, dst2 = src1 -src2.

9.8.54

VCADDSUB

Instruction name

VCADDSUB

Functionality

Vector add-subtract

Assembly format

VCAddSub<type> Vsrcl, Vsrc2, Vdst1, Vdst2

Type and bit width

H: 16 x 24-bit

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF
dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vcaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
// double vector pseudo intrinsics
void dvcaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);

Additional details

Even lanes, dst1[2*i] = src1[2*] + src2[2*i+1]
dst2[2*i] = src1[2*] - src2[2*i+1]

Odd lanes, , dst1[2*i+1] = src1[2*i+1] - src2[2*i]
dst2[2*i+1] = src1[2*i+1] + src2[2*i]

This is for 16-bit FFT acceleration, where real and imaginary components are
interleaved, even lanes being real, odd lanes being imaginary.

We are implementing rotating complex number src2 by +/- 90 degree and
adding to src1:

dst1 =srcl - j*srcz;

dst2 = srcl +j*srcz;

Thus,
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dst1[2*] (R) =src1[2*](R) + src2[2*i+1] ()
dst1[2*i+1] (1) = src1[2*i+1] (I) - src2[2*i] (R)
dst2[2*i] (R) =src1[2*](R)-src2[2*+1] (1)
dst2[2*i+1] (1) = src1[2*i+1] (I) + src2[2*]] (R)

9.8.5.5

VMINLT

Instruction name

VMINLT

Functionality

Vector min-less-than-flag

Assembly format

VMinLT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vminLT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vminLT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vminLT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvminLT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvminLT(dvshortx srci1, dvshortx src2, dvshortx & dst1, dvshortx &
dst2);

void dvminLT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 = min(src1, src2), dst2 = (src1 < src2), so that flag = 1
indicating src1 being the min, and O indicating src2 being the min.

9.8.5.6

VMAXGT

Instruction name

VMAXGT

Functionality

Vector max-greater-than-flag

Assembly format

VMaxGT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available
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Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

dst1: single vector register in VRF
dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vmaxGT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vmaxGT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vmaxGT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvmaxGT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvmaxGT(dvshortx srci1, dvshortx src2, dvshortx & dst1, dvshortx &
dst2);

void dvmaxGT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 = max(src1, src2), dst2 = (src1 > src2), so that flag = 1
indicating src1 being the max, and O indicating src2 being the max.

9.8.5.7

VSORTZ2PL

Instruction name

VSORT2PL

Functionality

Vector 2-item sort with payload

Assembly format

VSort2PL<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsort2pl(vintx srci1, vintx src2, vintx & dst1, vintx & dst2);

void vsort2pl(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

void vsort2pl(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsort2pl(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvsort2pl(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvsort2pl(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

Key and payload are lane-interleaved; even lanes carry key, odd lanes carry
payload.
For each pair of lanes 2*i and 2*i+1:

if (src1[2*i] <= src2]2*i]) {
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dst1[2*i] = src1[2*i];
dst2[2*i] = src2[2*i];
dst1[2*i+1] = src1[2*i+1];
dst2[2*i+1] = src2[2*i+1];

}

else {
dst1[2*i] = src2[2*i];
dst2[2*i] = src1[2*i];
dst1[2*i+1] = src2[2*i+1];
dst2[2*i+1] = src1[2*i+1];

}

9.8.5.8 VSPLITBITS

Instruction name

VSPLITBITS

Functionality

Vector split bit fields and right-justify

Assembly format

VSplitBits<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsplitbits(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vsplitbits(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsplitbits(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsplitbits(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvsplitbits(dvshortx srci1, dvshortx src2, dvshortx & dst1, dvshortx & dst2
void dvsplitbits(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

Each lane of src2 is read as a signed number and saturated to [0, 48], [0, 24], [0,
12] to obtain the bit position T. Each lane of src1 is read as a signed number.
dst1 (signed) gets right-justified upper bits of src1, from bit T and up. dst2
(unsigned) gets lower bits of src1, from bit T-1 down.
Pseudo-code for the Halfword case:

T=(src2 <0) ?20 : ((src2 >24) ? 24 : src2);

mask = (1 << T) - 1;

dst1 = src1 >> T;

dst2 = src1 & mask;
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9.8.6 Vector OP31 Instructions

These are three-source, one-destination operation vector instructions.

9.8.6.1 Instruction Summary

The subset of three-source, one-destination instructions with “_CA” suffix support the
“clear-accumulator” feature. They are optionally predicated, but not predicated in the
conventional sense of being executed or skipped. They are predicated to execute one
of two different functionalities, and one being a subset of the other to clear the
accumulators.

For example, [P2] VMin3W_CA VO, V1, V2 does
V2 = min(VO, V1, V2) when P2 1=0
V2 = min(VO, V1) otherwise

This is used to carry out cumulative minimum operation, with V2 being the
accumulator. When predicate is off, the minimum is carried out without V2, effectively
clearing the accumulator.

The _CA suffix is also used in a few vector multiply-add, multiply-subtract instructions
in the Vector Multiply-Add Instruction section.

The _CA predicated instructions are overwriting, using the 3™ operand as both the 3™
source and the destination. This is so there’s room in the encoding for the additional
predication field.

The non-_CA instructions in the Vector OP31 group are non-overwriting, with
destination being a separate field. Compiler can opt to assign the same register as the
3"d source and destination, to accomplish overwriting.

Note that valid predicate registers are P2...P15 for predication. PO and P1 are reserved
for unpredicated execution of the full functionality (min of 3 items in case of VMin3,
for example), and in assembly listing, the leading [PO] or [P1] would be omitted to
indicate unpredicated execution.

Table 33 Vector OP31 instructions

Function Assembly Format Comments

Vector multiplexor VMux<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst Vdst = (src1 !=0) ? src2 :src3
VMux<W/H/B> Wsrc1, Vsrc2, Vsrc3, Vdst
VMux<W/H/B> Vsrc1, Wsrc2, Vsrc3, Vdst
VMux<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst
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Vector multiplexor
with scalar src2

VMux<W/H/B> Vsrc1, Rsrc2, Vsrc3, Vdst

Vdst = (Vsrc11=0) ? Rsrc2 :
Vsrc3

Double vector
multiplexor

VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1
VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1
VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Vdst = (src1!=0) ? src2: src3

Vector mid of 3

VMid3<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst
VMid3<W/H/B> Vsrcl, Vsrc2, Wsrc3, Vdst
VMid3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = mid(src1, src2, src3)

Vector A+B-C

VAdd2Sub<W/H/B> Vsrcl, Vsrc2, Vsrc3/Rsrc3, Vdst

Vdst = Vsrc1 + Vsrc2 - Vsrc3

Vector shift-or

VShiftOr<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst

Vdst = VShift(Vsrc1, Vsrc2) |
Vsrc3.

Vector shift-add

VShiftAdd<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst

Vdst = Vshift(Vsrc1, Vsrc2) +
Vsrc3.

Vector extract bits

VExtrBits<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst

Extract low, high bits from
src3, 8-bit each.

Shift(Vsrc1, Vsrc2) then AND
with bit mask between low
and high bit positions.

Vector atan2 post-
processing

VAtan2PPH Vsrc1, Vsrc2, Vsrc3, Vdst

Vsrcl =Y, Vsrc2 = X, detect
octant of (X, Y) vector then
map Vsrc3 angle from first-
octan arctan angle to the
appropriate octant.

Vector min of 3

VMin3<W/H/B>
VMin3<W/H/B>
VMin3<W/H/B>

Vsrcl, Vsrc2, Vsrc3, Vdst
Vsrcl, Vsrc2, Wsrc3, Vdst
Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = min(src1, src2, src3)

Vector max of 3

VMax3<W/H/B>
VMax3<W/H/B>

Vsrcl, Vsrc2, Vsrc3, Vdst
Vsrcl, Vsrc2, Wsrc3, Vdst
VMax3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = max(src1, src2, src3)

Vector add 3

VAdd3<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 + Vsrc2 + Vsrc3

Vector bitwise-and 3

VANnd3 Vsrcl, Vsrc2/, Vsrc3, Vdst

Vdst = Vsrc1 & Vsrc2 & Vsrc3

Vector bitwise-or 3

VOr3 Vsrcl, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 | Vsrc2 | Vsrc3

Vector bitwise-xor 3

VXor3 Vsrcl, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 A Vsrc2 ~ Vsrc3

Vector min of 3,

<pred> VMin3<W/H/B>_CA Vsrcl1, Vsrc2, ACsrc3dst

predicated
Vector max of 3, <pred> VMax3<W/H/B>_CA Vsrcl, Vsrc2, ACsrc3dst
predicated
Vector add 3, <pred> VAdd3<W/H/B>_CA Vsrcl, Vsrc2, ACsrc3dst
predicated

Vector bitwise-and 3,
predicated

<pred> VANnd3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector bitwise-or 3,
predicated

<pred> VOr3_CA Vsrc1, Vsrc2, Vsrc3dst
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Vector bitwise-xor 3,
predicated

<pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector sum of
absolute differences

<pred> VSAD<W/H/B/BH/HW>_CA Vsrcl, Vsrc2,
ACsrc3dst/DACsrc3dst

Vector sum of
Hamming distance

<pred> VSumHD<W/H/B>_CA Vsrc1, Vsrc2/Rsrc2,
ACsrc3dst

Vector compare LT
and AndL

VCmpLT_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE
and AndL

VCmpLE_AndL<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst

Vector compare EQ
and AndL

VCmpEQ_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE
and AndL

VCmpNE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LT
and OrL

VCmpLT_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE
and OrL

VCmpLE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare EQ
and OrL

VCmpEQ_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE
and OrL

VCmpNE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector cross-element
shift right

VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Vector cross-element
shift left

VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

9.8.6.2

VMUX

Instruction name

VMUX

Functionality

Vector multiplexor

Assembly format

VMux<type> Vsrc1, Vsrc2, Vsrc3, Vdst1
VMux<type> Wsrc1, Vsrc2, Vsrc3, Vdst 1
VMux<type> Vsrc1, Wsrc2, Vsrc3, Vdst1
VMux<type> Vsrc1, Vsrc2, Wsrc3, Vdst 1

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF
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src3: single vector register in VRF or WRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx  vmux(vintx srcl, vintx src2, vintx src3);
vshortx vmux(vshortx src1, vshortx src2,vshortx src3);
vcharx vmux(vcharx src1, vcharx src2, vcharx src3);
vhfloatx vmux(vshortx src1,vhfloatx src2,vhfloatx src3);
vfloatx vmux(vintx srci1, vfloatx src2, vfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

9.8.6.3 VMUX (Rsrc?2)

Instruction name

VMUX

Functionality

Vector multiplexor with scalar src2

Assembly format

VMux<type> Vsrc1, Rsrc2, Vsrc3, Vdst1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF
src2: scalar register

src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx  vmux(vintx src1, int src2, vintx src3);
vshortx vmux(vshortx src1, int src2, vshortx src3);
vcharx vmux(vcharx srcl, int src2, vcharx src3);
vhfloatx vmux(vshortx src1, hfloat src2,vhfloatx src3);
vfloatx vmux(vintx src1, float src2, vfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

src2 is from a scalar register, its lower 12/24/32-bit is broadcast to all vector
lanes as the “true” data input.

9.8.6.4 VMUX (Double Vector)
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Instruction name

VMUX (double vector/double throughput)

Functionality

Vector multiplexor

Assembly format

VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1
VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1
VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Type and bit width

W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Predication

not available

Source options

src1: double vector register in VRF
src2: double vector register in VRF or WRF, or scalar register
src3: double vector register in VRF or WRF

Destination options

dst1: double vector register in VRF

Additional options

Intrinsics/operator

dvintx  dvmux(dvintx srci1, dvintx src2, dvintx src3);
dvshortx dvmux(dvshortx src1, dvshortx src2,dvshortx src3);
dvcharx dvmux(dvcharx srci1, dvcharx src2, dvcharx src3);

dvhfloatx dvmux(dvshortx src1, dvhfloatx src2,dvhfloatx src3);

dvfloatx dvmux(dvintx src1, dvfloatx src2, dvfloatx src3);
dvintx dvmux(dvintx  src1, int src2, dvintx src3);
dvshortx dvmux(dvshortx src1, int src2, dvshortx src3);
dvcharx  dvmux(dvcharx src1, int src2, dvcharx src3);
dvhfloatx dvmux(dvshortx src1, hfloat src2, dvhfloatx src3);
dvfloatx dvmux(dvintx src1, float src2, dvfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

9.8.6.5

VMID3

Instruction name

VMID3

Functionality

Vector median3

Assembly format

VMid3<type> Vsrcl, Vsrc2, Vsrc3, Vdst1
VMid3<type> Vsrc1, Vsrc2, Wsrc3, Vdst
VMid3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options

dst1: single vector register in VRF

Additional options
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Intrinsics/operator

vintx  vmid3(vintx srcl1, vintx src2, vintx src3);
vshortx vmid3(vshortx srci1, vshortx src2, vshortx src3);
vcharx vmid3(vcharx srci1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx  dvmid3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmid3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmid3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details

For each lane, return median of 3 sources.

9.8.6.6 VADD2SUB

Instruction name

VADD2SUB (to change intrinsic to +/- operators)

Functionality

Vector add then subtract

Assembly format

VAdd2Sub<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst 1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx  vadd2sub(vintx src1, vintx src2, vintx sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, vshortx sc3);
vcharx vadd2sub(vcharx src1, vcharx src2, vcharx sc3);
vintx  vadd2sub(vintx srcl, vintx src2, int sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, int sc3);
vcharx vadd2sub(vcharx srcl, vcharx src2, int sc3);

// double vector pseudo intrinsics

dvintx dvadd2sub(dvintx src1, dvintx src2, dvintx sc3);
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, dvshortx sc3);
dvcharx dvadd2sub(dvcharx srci1, dvcharx src2, dvcharx sc3);

(

(

dvintx dvadd2sub(dvintx src1, dvintx src2, int sc3);

dvshortx dvadd2sub(dvshortx src1, dvshortx src2, int sc3);
(

dvcharx dvadd2sub(dvcharx srci1, dvcharx src2, int sc3);

Additional details

For each lane, dst1 = src1 + src2 - src3.
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9.8.6.7 VSHIFTOR

Instruction name VSHIFTOR

Functionality Vector shift-or
Assembly format VShiftOr<type> Vsrcl, Vsrc2/Rsrc2, Vsrc3, Vdst1
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes, as signed.

Predication not available

Source options src1: single vector register in VRF
src2: single vector register in VRF or scalar register
src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx  vshiftor(vintx srcl, vintx src2, vintx src3);
vshortx vshiftor(vshortx src1, vshortx src2, vshortx src3);
vcharx vshiftor(vcharx srcl, vcharx src2, vcharx src3);
vintx  vshiftor(vintx src1, int src2, vintx src3);
vshortx vshiftor(vshortx src1, int src2, vshortx src3);
vcharx vshiftor(vcharx src1, int src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvshiftor(dvintx srcl1, dvintx src2, dvintx src3);
dvshortx dvshiftor(dvshortx srci1, dvshortx src2, dvshortx src3);
dvcharx dvshiftor(dvcharx srci1, dvcharx src2, dvcharx src3);

(

(

dvintx dvshiftor(dvintx srcl1, int src2, dvintx src3);

dvshortx dvshiftor(dvshortx src1, int src2, dvshortx src3);
(

dvcharx dvshiftor(dvcharx srcl1, int src2, dvcharx src3);

Additional details For each lane, dst1 = shift(src1, src2) | src3.

Shift left or right based on sign of src2. src2 is read as a signed number and
saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying
the shift. Positive bit count shifts left, and negative bit count shifts right.

9.8.6.8 VSHIFTADD

Instruction name VSHIFTADD

Functionality Vector shift-add
Assembly format VShiftAdd<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst 1
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes, as signed.
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Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or scalar register
src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx  vshiftadd(vintx srci1, vintx src2, vintx src3);
vshortx vshiftadd(vshortx srci1, vshortx src2, vshortx src3);
vcharx vshiftadd(vcharx srci1, vcharx src2, vcharx src3);
vintx vshiftadd(vintx src1, int src2, vintx src3);
vshortx vshiftadd(vshortx src1, int src2, vshortx src3);
vcharx vshiftadd(vcharx srcl1, int src2, vcharx src3);

// double vector pseudo intrinsics

dvintx  dvshiftadd(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvshiftadd(dvcharx srci1, dvcharx src2, dvcharx src3);
dvintx dvshiftadd(dvintx src1, int src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, int src2, dvshortx src3);

(

dvcharx dvshiftadd(dvcharx src1, int src2, dvcharx src3);

Additional details

For each lane, dst1 = shift(src1, src2) + src3.

Shift left or right based on sign of src2. src2 is read as a signed number and
saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying
the shift. Positive bit count shifts left, and negative bit count shifts right.

9.8.6.9

VEXTRBITS

Instruction name

VEXTRBITS

Functionality

Vector extract bits

Assembly format

VExtrBits<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vintx  vextract_bits(vintx srci1, vintx src2, vintx src3);
vshortx vextract_bits(vshortx srci1, vshortx src2, vshortx src3);
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vcharx vextract_bits(vcharx srcl1, vcharx src2, vcharx src3);
vintx vextract_bits(vintx srcl1, vintx src2, int src3);

vshortx vextract_bits(vshortx src1, vshortx src2, int src3);

vcharx vextract_bits(vcharx srci1, vcharx src2, int src3);

// double vector pseudo intrinsics

dvintx dvextract_bits(dvintx srcl, dvintx src2, dvintx src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvextract_bits(dvintx srcl, dvintx src2, int src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, int src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, int src3);

Additional details

Shift input then AND with bitmask between low and high bit positions.

low = src3[7:0]; // Unsigned bit
high = src3([15:8] // Unsigned bit

// in H/W types
high = src3[11:8]; // Unsigned bit

templ = shift(srcl, src2);
temp2 = ~((1 << low)-1);
temp3 = (1 << high+l) - 1;

dst = templ & temp2 & temp3

position
position, Rsrc3 or Vsrc3

position, Vsrc3 in B type

// up or down based on src2 sign

If low > high or if low >= BITWIDTH, O is returned. Otherwise, high is saturated

to top bit position of the lane.

For example, with byte lane input src1 = 0x12, src2 = 4, low = 4, high =7,

temp1 = shift(0Ox12, 4) = 0x120

temp?2 = OxFFO (enable bits 4 and higher)
temp3 = OxOFF (enable bits 7 and lower)
return Ox120 & OxFFO & OxOFF = 0x20

9.8.6.10 VATANZPP

Instruction name

VATAN2PP

Functionality

Vector atan2 post-processing

Assembly format

VAtan2PP<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width

H: 16 x 24-bit

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF
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Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vshortx vatan2_postp(vshortx srcl1, vshortx src2, vshortx src3);
// double vector pseudo intrinsics
dvshortx dvatan2_postp(dvshortx src1, dvshortx src2, dvshortx src3);

Additional details

Treat Vsrc1 asY, Vsrc2 as X, detect octant of (X, Y) in 2D plane, 0 ~ 7 (see
9.8.4.25 VOctDetH). Treat Vsrc3 as first-octant outcome of atan, A, and return:

Condition

X>=0, Y>=0, |Y|<=|X]
X>=0, Y>=0, |Y|>|X]
X<0, Y>=0, |Y|>|X|
X<0, Y>=0, |Y|<=|X]
X<0, Y<0, |Y|<=|X|
X<0, Y<0, |Y|>|X|

Octant and ang range Return angle

0: [0~ 0.25 pi] A & Ox7FFF

1:(0.25 pi~0.5pi) (0x2000 - A) & Ox7FFF
2: (0.5 pi~0.75pi) (0x2000 + A) & Ox7FFF
3:[0.75 pi ~ pi] (Ox4000 - A) & OX7FFF
4: (pi ~ 1.25 pi) (Ox4000 + A) & OX7FFF
5:(1.25pi~ 1.5pi) (Ox6000 - A) & OX7FFF

X>=0,Y<0, |Y[>|X| 6:[1.5pi~ 1.75pi] (0x6000 + A) & OX7FFF
X>=0,Y<0, |Y[<=|X| 7:[1.75 pi ~ 2 pi] (Ox8000 - A) & OX7FFF

For example, in a particular lane, say we have src1 = X =100, src2 =Y = -200,
src3 = A =0x972. It'sinthe 6% octant, as X is positive, Y is negative, and |Y| >
|X|. Return value is Ox6000 + 0x972 = Ox6972.

The atan2(y, x) function is implemented with table lookup. In order to compress the
table, we take the absolute value of y, x, and sort (|y|, |x]) so that |y| <= |x|]. This folds

the whole 2*pi range of output to 1/8 of the range, 0 ~ pi/4.

After doing lookup and post-lookup interpolation with the sorted (ly|, [x|), we use the
VAtan2PPH with the first-octant angle and (y, x) as inputs to map the angle back to the
full range, as shown in the following diagram:

Thor PVA VPU Programmer’s Guide

oct tan ang

0 y/x a

1 xly 1/4-a

2 xly 1/4+a

3 -y/x 1/2-a
X 4 yix 1/2+a

5 xly 3l4-a

6 -xly 3/4+a

7 -yIx 1-a
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Note that the 2*pi full range is quantized to 15-bit, O ~ Ox7FFF. Thus, 90-degree is
0x2000, 180-degree 0x4000, and 270-degree Ox6000.

9.8.6.11 VMIN3

Instruction name VMIN3
Functionality Vector min3
Assembly format VMin3<type> Vsrc1, Vsrc2, Vsrc3, Vdst 1

VMin3<type> Vsrcl, Vsrc2, Wsrc3, Vdst
VMin3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Predication not available
Source options src1: single vector register in VRF

src2: single vector register in VRF or WRF
src3: single vector register in VRF or WRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx  vmin3(vintx srcl1, vintx src2, vintx src3);
vshortx vmin3(vshortx src1, vshortx src2, vshortx src3);
vcharx vmin3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics

dvintx  dvmin3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmin3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmin3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return minimal of 3 sources.

9.8.6.12 VMIN3_CA

Thor PVA VPU Programmer’s Guide SWE-PVA-077-PGRF | 304



Instruction name

VMIN3_CA

Functionality

Vector min3

Assembly format

<pred> VMin3<type>_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2..P15]
[PO] is omitted

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

Available across lanes to clear accumulator

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

src3dst: single vector register in ARF

Additional options

Intrinsics/operator

vint