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Chapter 1. Introduction 

1.1 Document Scope 
This document serves as a Programmer’s Guide for PVA VPU. It covers VPU processor 

architecture, instruction set overview, example code, and instruction details. 

1.2 References 

1.2.1 Related External Documents  
> PVA SDK Documentation 

1.2.2 Related NVIDIA-Internal Documents  
> PVA VPS IAS  

> PVA Cluster IAS  

> PVA DMA IAS  

> PVA L1 RAMIC IAS  

> PVA VPS MAS  

> PVA DLUT MAS  

1.3 Glossary and Acronyms 
CV Computer vision, field of study and application to recover 3D and motion 

information from camera views.  

PVA Programmable vision accelerator, a unit in Orin that accelerates computer vision 

algorithms in autonomous driving use cases, includes VPU, DMA, and Cortex R5 RISC 

processor. 

SEC Safety and Event Control at PVA top level. It collects safety error events in PVA, 

logs, aggregates, and forwarded as interrupts to the Cortex R5 processor. 

VPU Vector processing unit, the main data processing engine in PVA. 
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VMEM VPU vector memory, the local/L1 data memory for VPU, also shared with DMA and 

DLUT 

DMA Direct memory access, a hardware block in charge of copying data between local 

memory and some other space in the system, which can be on-chip memory or 

system memory/DDR.  

DLUT Decoupled lookup unit 

VPS VPU subsystem, including VPU, its I-cache, DLUT and VMEM 

Host1X Command and synchronization unit that works with CPU,  image/video  processing 

and computer vision engines 

ISP Image Signal Processor, processes camera images 

VIC Video and Image Compositor, capable of affine/perspective image transformation 

and format conversion 

OFA Optical Flow Accelerator, capable of dense optical flow and stereo disparity 

DLA Deep Learning Accelerator 
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Chapter 2. Architecture Overview 

A high-level overview of PVA, DMA, and VPS architecture is given in this chapter. For 

more in-depth coverage of PVA architecture and DMA programming details, please 

consult PVA SDK documentation. 

2.1 PVA  
PVA (programmable vision accelerator) is a computer vision (CV) processor targeting 

Autonomous Driving (AD) applications, including camera, LiDAR, RADAR processing and 

sensor fusion. PVA includes a control processor, Cortex R5, 2 copies of vector processing 

subsystems (VPS) as data processing engines, and 2 copies of directed memory access 

(DMA) as data movement engines. Orin PVA also includes an L2 SRAM memory to be 

shared between the 2 sets of VPS and DMA. 

The Cortex R5 processor interacts with other SOC components (for example, ISP, VIC, 

OFA, DLA) through Host1X for control and synchronization at the subframe-application 

level.  R5 configures the VPUs and DMAs at the task level. 

The VPUs act like coprocessors in system-level programming model. For each VPU task, 

R5 configures DMA, optionally prefetches VPU program into VPU I-cache, and kicks off 

each VPU-DMA pair to process a task that runs for typically hundreds of micro-seconds 

to a few mini-seconds. Each VPU and DMA pair synchronize between themselves on tile 

granularity, and there are typically tens to hundreds of tiles per task. 

For Orin, the second generation of PVA, we have one PVA having 2 VPUs, each VPU 

having 2 symmetrical vector functional units of 384-bit data path each.  

For memory operations we have 3x32x16-bit throughput, having 3 memory slots and 3 

superbanks, each superbank comprising of 32 banks of 16-bit-wide memories, and each 

superbank can perform both read and write in the same clock cycle. 

2.2 DMA  
DMA moves data among external memory, PVA L2 memory, the 2 VMEMs (one in each 

VPS), R5 TCM (tightly coupled memory), DMA descriptor memory, and PVA-level config 

registers. 

Orin DMA contains the following resources 
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> 16 channels, each channel can be configured to move data from a source to a 

destination. The 16 channels work in parallel and can be optionally coordinated 

through programming. 

> 64 descriptors, each descriptor includes up to 5 dimensions to advance 

source/destination address pointers. Descriptors can work in parallel or in sequence 

through programming. 

> A set of internal buffers (ADB and VDB) to be allocated among channels. ADB, AXI 

data buffer, is for storing data read from the external memory controller temporarily, 

and VDB, VMEM data buffer, is for storing data read from the VMEM temporarily. 

Please consult PVA SDK documentation for additional details in DMA programming. 

2.3 VPS   
The VPU Subsystem (VPS) consists of the following major components: 

> VPU core, the processor and main block of VPS. 

> VPU instruction cache (I-cache) supplies instruction words to VPU and maintains 

temporary instruction storage, with prefetch/invalidation support and with interface 

to the system memory through MC interconnects. 

> VPU vector memory (VMEM) houses data memory and supports various complex 

memory access functionalities, including transposition, table lookup, histogram, and 

vector addressed stores. It also supports accesses from outside-VPS hosts like DMA 

and R5, to allow data exchange with R5 and other system-level components. 

> DLUT, decoupled lookup coprocessor, offloads lookup and interpolation tasks from 

VPU 

Each major component will be described in more detail in subsequent chapters. 

The following block diagram of VPS shows the major components in VPS and how they 

are connected. 
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Figure 1. VPU Subsystem (VPS) block diagram 
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2.4 VPU Processor Models and 

Differences 
To facilitate model development as well as application software development, a number 

of VPU processor models have been constructed.   

The most accurate model is the deep pipeline (Working) model. The VPU working model 

instruction set simulator (ISS) shall be cycle accurate with VPU processor inside Orin 

silicon.   
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There is a Native compilation model generated by the ASIP tool suite from the shallow 

pipeline model. It is mostly an application development platform. It is a collection of 

header files and C library that allows application code to be compiled in generic (thus 

named Native) environments, including Linux GCC and Windows Microsoft Visual Studio. 

It is functionally accurate with hardware for math operations. In memory operations it is 

mostly functionally accurate with hardware, but there are exceptions.  

Because Native is compiled in a generic compute platform, there is no hard limit in data 

memory footprint, so is useful for early-stage software development.  In this platform  

VPU code can access almost unlimited amount of memory, to directly process a whole 

frame of image, as opposed to processing one tile at a time through DMA.  

Note that, depending on the physical memory size of the compute platform it is run on, 

large enough memory usage in Native simulation may still lead to excessive thrashing 

and slowdown.  

Differences in behavior between Native compilation environment and final product, 

which is deep pipeline ISS and silicon are: 

> There is no notion of clock cycles in Native compilation, thus Time Stamp Counter is 

not functional. 

> There is no forced memory address alignment to 16-bit/32-bit with load/store of 

short/int types (see Memory Address Alignment). 

> There is no forced memory address alignment to 512-bit with lookup, histogram, or 

vector-addressed stores (see Memory Address Alignment). 

> There is no forced memory address alignment to 512-bit with agen circular buffer 

feature (see Circular Buffer Addressing). 

> General purpose input and output (GPIO) in Native is non-functional, toggling GPO 

ignored and reading GPI returns 0.  In ISS, the subset of GPIO pins that connect to 

the decoupled lookup coprocessor (DLUT) are functional for interaction between VPU 

and DLUT.    

In working model ISS, the decoupled lookup table coprocessor (DLUT) is simulated 

functionally accurately (bit-exact), but is currently only cycle approximate, NOT cycle-

accurate.  

Although PVA-level simulator incorporating R5, DMA, VPU, DLUT component simulators 

does incorporate budgetary system-level latency, for example external memory 

controller latency, but it does not model components outside PVA so cannot predict 

actual latency.  Thus, PVA-level simulation, even when incorporating cycle-accurate VPU 

working ISS, is NOT cycle-accurate with silicon when the simulation involves outside-VPU 

interactions, for example, reading from or writing to external memory. 
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Chapter 3. VPU Core 

3.1 Block Diagram 

Figure 2. VPU core block diagram 
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The VPU core is a vector SIMD VLIW DSP optimized for computer vision. It fetches 

instructions through the I-cache, and accesses data through the vector memory 

(VMEM). Major components inside VPU core are 

> Processor front end including config/status interface and PC control 

> Register files 

> Scalar unit with two scalar ALUs 

> Vector unit with two vector ALUs 

> Memory unit with 3 load/store units and address generators  

3.2 Processor Front End  
The VPU instruction format is a 7-way VLIW, consisting of: 

> 2 scalar operation slots (s0/s1) 

> 2 vector operation slots (v0/v1) 

> 3 memory slots (m0/m1/m2) 

Each instruction is encoded in 32-bit, and the instruction encoding supports variable-

length instructions, thus each execution packet contains between 1 and 7 32-bit words. 

The compressed instruction stream is decompressed to full 7 instructions per packet 

and dispatched to the scalar, vector, and memory units.  

Example of compressed instruction packet: 

ADD R1, R2, R3 || LDW *R4[20], R5 

Corresponding decompressed instruction packet: 

ADD R1, R2, R3 || s1_NOP || v0_NOP || v1_NOP || LDW *R4[20], R5 || m1_NOP || m2_NOP 

The front end of the processor includes an interface to the instruction cache, 2-level 

hardware loops, loop instruction buffer, and fetch/decode stages of the processor 

pipeline. 

The front end includes illegal instruction detection, both while expanding compressed 

variable-length instruction packet into full 7-instruction packet using leading few bits of 

each 32-bit instruction, and while decoding entire 32-bit instruction in 

scalar/vector/memory units. 

3.3 Register Files 
The following register files are in the VPU core: 

> Scalar register file (Scalar RF): 32 entries x 32-bit 

> Predicate register file (Predicate RF): 16 entries x 32-bit 

> Main vector register file (VRF): 32 entries x 384-bit 

> Working register file (WRF): 32 entries x 384-bit 

> Extended accumulator register file (XARF): 32 entries x 512-bit 
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• Accumulator register file (ARF): 32 entries x 384-bit, part of XARF 

> Agen register file: 8 entries x 620-bit 

The vector register files VRF, WRF and ARF support the following data types: 

> Word: each 384-bit entry is logically partitioned into 8 lanes x 48-bit  

> Halfword: each 384-bit entry is logically partitioned into 16 lanes x 24-bit  

> Byte: each 384-bit entry is logically partitioned into 32 lanes x 12-bit 

XARF register file supports 

> Word: each 512-bit entry partitioned into 16 lanes x 32-bit (for VFilt4x2x2BBW, 

VDotP4BBW, VDotP4x2BBW instructions) 

> Halfword: each 512-bit entry partitioned into 32 lanes x 16-bit (for VXNorAnd8x4x2 

instruction) 

Support of operations in various register files is tabulated as follows:  

 

Table 1. Support of scalar/vector operations in register files 
 

 Scalar RF Predicate RF VRF WRF ARF/XARF 

Scalar math Yes Yes, as src or 

dst of a few 

   

Instruction 

level 

predication 

 Yes    

Per-lane 

predication 

 Yes V0~V15   

Vop11/12   Yes Yes  

Vop21 Yes, as src2  Yes Yes  

Vop31 some, as src2   Yes some  

Vop31_CA, 

MAC  

some, as src2  Yes, P0~P15 

as predicate 

Yes, as src1, 

src2, dst 

some, as 

src2  

Yes, as dst, 

src3dst 

FP Yes  Yes Yes  

Load 

destination 

Yes  Yes Yes  

Store source Yes  Yes  Yes 

 

3.4 Scalar Unit 
The scalar unit supports conventional scalar RISC instruction set, executing up to 2 

scalar operations per cycle.  
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32-bit integer/fixed-point as well as 16/32-bit floating-point Add, Sub, Mul, MAdd, 

compare operations are supported through instructions.  Some FP32 math functions 

(square root, reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various 

FP/INT conversions are supported as well. 

3.5 Vector Unit 
The vector unit executes up to 2 vector math instructions per cycle. Various integer 

arithmetic and logic operations are implemented in the vector unit, with support for 

Byte (extended to 12-bit), Halfword (extended to 24-bit) and Word (extended to 48-bit) 

data types. Bitwise logic operations are also supported.  

In addition to conventional arithmetic/logic operations, some larger or complex 

operations (e.g., 3-input min/max/median) as well as FP32/FP16 operations Add, Sub, 

Mul, MAdd, and compare are supported. Some FP32 math functions (square root, 

reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various FP/INT 

conversions are supported as well. 

3.6 Load/Store Unit 
The load/store unit supports up to 3 load/store instructions per cycle. Word, Halfword, 

Byte, and selected promotion/demotion options are supported. For load, both 

signed/unsigned flavors are supported. Source and destination can be single scalar 

register, double scalar register, single vector register, or double vector register. Quad-

vector-register store is also available to facilitate key filtering benchmarks. Load/store 

unit also supports various data distributions.  

In Orin we have added load-and-permute instructions to manipulate/reorganize data 

from a double vector in memory to a double vector register destination in any 

permutation pattern. This enables various data access patterns to be efficiently carried 

out through such instructions. 

In general, we would like memory transactions from load/store instructions to be 

executed in order through memory dependency checking and dynamic stalling. The VPU 

has a rich set of load/store features, and for some features it is cost prohibitive to 

implement the dependency checking. Scalar load/store instructions as well as 

consecutive-location vector load/store are included in the dependency checking, so they 

are guaranteed to execute in order. Transposing load/store, parallel table lookup, parallel 

histogram, and vector addressed stores are excluded in the checking, so they are not 

guaranteed to execute in order. A MemFence instruction is available to serialize memory 

transactions that hardware dependency checking does not cover. See Memory 

Coherency for additional details. 
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Chapter 4. VPU Instruction Cache (I-

Cache) 

4.1 Overview 
The VPU Instruction Cache (I-cache) supplies instruction data to the VPU when 

requested, requests missing instruction data from system memory, and basically 

maintains temporary instruction storage for the VPU. It also implements the prefetch 

command to reduce cache misses, as well as the invalidation command as needed for 

error correction and debug.  

Having an instruction cache allows for large total code size to be stored in the system 

memory, while having small physical memory footprint for area efficiency.   

4.2 Functionality 
The following table captures the characteristics of the I-cache. 

Table 2. VPU I-cache characteristics 

Characteristic Configuration 

Capacity 16KB  

Associativity 2-way  

Instruction width 256-bit 

Instruction alignment 256-bit 

Block size 128 bytes 

Replacement policy LRU 

Write policy None (I-cache read only) 

Hit under miss (nonblocking, if/when VPU 

requests another instruction word that’s 

available, go ahead and return hit)  

No, fetch interface is in-order, so after a miss, if 

following fetch request hits, it’s not possible to 

indicate so. 

Miss under miss (if/when VPU requests 

another instruction word that’s unavailable, 

request for that cache line as well) 

Yes (request/ready pipelining allows following fetch 

request to be conveyed, and if it’s a miss involving 

another cache line, request can be sent out as well) 

Hit latency 2 cycles  
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Characteristic Configuration 

Prefetch (software request to fetch cache 

lines ahead of execution) 

Yes, up to full cache capacity in a single R5/VPU 

interaction. Depending on outstanding transaction 

allocation may request in batches  

Interface for misses 256-bit AXI, AR, R channels only 

Prefetch request from R5 and VPU Yes, will have separate config register entries for 

concurrency 

Prefetch and fetch concurrency Yes, giving fetch higher priority 

ECC single error correction Yes, corrected on the fly and sent back to VPU 

ECC single/double error detection Single errors are corrected but correction not 

written back to cache; single error handling 

software should invalidate cache line to initiate 

refetch when the line is requested again. 

Double errors are detected but not corrected. 

Invalidation from R5 Yes, configurable address range 

Invalidation from VPU Yes, configurable address range 
 

4.2.1 Preemption 

The VPU fetch/align unit fetches ahead of execution, and thus may request some 

instruction data, but in the next few cycles branches to another PC location that renders 

the previous request unnecessary. In such cases, the fetch/align unit cancels a previous 

request and issues a request for the new PC location. This feature is called preemption 

and is particularly useful when one of the no-longer-needed requests triggered a cache 

miss. VPU execution would be stalled if hardware does not have the capability to cancel 

such requests.   

The I-cache handles preemption by clearing the preempted request from the pipeline. In 

case the preempted request has been sent to the MC, the MC read request is not 

affected, and returned data from MC would be written to a cache line normally, possibly 

evicting instruction data on that cache line. 

4.2.2 Prefetch 

Prefetch capability is provided to both the R5 and the VPU. They use separate register 

entries and command queues to avoid any race conditions, although SW on both sides 

should be coherent and not attempt to request prefetch or invalidation at the same 

time.  

When a program for a task fits the I-cache, the R5 should prefetch the whole task, then 

start VPU at its task PC. The VPU may initially see instruction-cache misses until the 

whole task is loaded. 

When program for a task does not fit the I-cache, we recommend that the task code is 

partitioned into subtasks for concurrent execution and prefetch.  Given the 2-way set 
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associativity characteristics of instruction cache and the cache capacity of 16KB, each 

subtask should ideally be under 8KB. 

The R5 should prefetch just the first subtask before starting the VPU task.  VPU code 

for a subtask should prefetch the next subtask at the appropriate time so that ideally 

the prefetch is hidden behind execution.   

R5 SW should not start requesting prefetch for VPU’s next task until VPU has completed 

its current task and is idle. This also ensures prefetches from R5 and VPU do not 

contend for cache lines. 

4.2.3 Invalidation 

The I-cache supports two concurrent invalidation interfaces through the config 

registers; one designated for R5 and the other designated for VPU. Each invalidation 

interface can selectively invalidate an address range or the whole cache.  

Invalidating the whole cache by VPU is supported via GPO sideband signaling (see 

Summary of GPI/GPO Signals).  Invalidating an address range by VPU is currently not 

supported by software.   

Invalidation can be used to provide a clean slate for I-cache at the beginning of every 

task, and the R5 should be the one invalidating the entire cache. 

Invalidation can also be used to handle I-cache single error detection. When a single 

error is detected (when the VPU requesting instruction(s) that contains an error), the I-

cache sends the corrected instruction data back to VPU but does not write the 

corrected instruction data back to the I-cache’s memory. The R5 software handling I-

cache single error detection should invalidate the cache line to cause the line to be 

refreshed from DRAM, which we assume is ECC protected as well and contains the 

correct program data. 

Invalidation is also needed for VPU debug software breakpoint, which is implemented by 

substituting code data at selected break point with SWBRK, software breakpoint 

instruction. As I-cache is read-only, code change is implemented by altering the code 

image in external memory and invalidating the corresponding cache line.   

4.2.4 ECC (Single-Bit-Error-Correct Double-Bit-

Error-Detect) 

To reduce fault rate against memory cell transient faults, the VPU I-cache is protected 

by single bit error correction, double bit error detection scheme.  

A single-bit error within a 256-bit instruction word is corrected on the fly, and an error 

event is sent to the PVA top-level SEC block, and from there it is forwarded to R5 and 

optionally to system-level error collator.  

A double-bit error within a 256-bit instruction word is detected but not corrected. An 

error event is sent to the PVA top-level SEC block, and from there it is forwarded to R5 
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and optionally to system-level error collator. The erroneous instruction word is return to 

VPU, which continues to be executed.  

Optionally, I-cache can be configured to suspend upon detection of double bit error, until 

R5 software comes in to query I-cache for the error and reset VPS. This feature may be 

useful during software development phase to differentiate RAM soft error from other 

error sources. 
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Chapter 5. VPU Vector Memory (VMEM) 

5.1 Overview 
VPU vector memory (VMEM) houses local data memory for VPU to access so it can 

implement various image processing and computer vision algorithms efficiently. VMEM 

supports various complex memory access patterns from VPU, including consecutive 

read/write of various lengths, transposition, table lookup, histogram, vector addressed 

stores. It also supports accesses from outside-VPS hosts like DMA and R5, to allow data 

exchange with R5 and other system-level components. 

VMEM includes VMEM I/F arbitration block and three VMEM superbanks of 128KB each. 

Each superbank incorporates dual port memory and supports one read AND one write 

per cycle. VMEM I/F arbitrates reads and writes separately for each superbank.  

The VPU vector memory block diagram is as follows. 
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Figure 3. VMEM block diagram 
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5.2 VMEM Interface (VMEM I/F) 
The VMEM I/F block performs arbitration among VPU load/store and external requests 

(including DMA), and handles histogram read-modify-write requests. Memory arbitration 

is carried out in superbank granularity and parallel between reads and writes. We have a 

fixed priority scheme as follows: 

Read priority (highest to lowest) 

> External (including DMA) read request-high 

> VPU M0 load (including table lookup and histogram read) 

> VPU M1 load 

> VPU M2 load 

> Stream0 read (DLUT lookup) 

> Stream1 read (DLUT index/config) 

> External (including DMA) read request-low 
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Write priority (highest to lowest) 

> Histogram write 

> External (including DMA) write request-high 

> VPU M0 store  

> VPU M1 store 

> VPU M2 store 

> Stream0 write (DLUT output) 

> External (including DMA) write request-low 

We have VPU load/store prioritized over stream read/write in VMEM arbitration. Stream 

read/write are driven by coprocessors. Normally coprocessors should have stream 

buffers so performance may not be affected by occasional stalls. In comparison, 

arbitration loss in VPU is likely to lead to performance loss.  

Ideally, programmers should allocate memory objects to avoid VPU processing and 

coprocessor processing to compete for any superbank read/write.  When that is not 

possible, programmers should consider coprocessor VMEM traffic and allocate memory 

objects to minimize VMEM contentions.  

The cases when there are read(s) and write(s) in near execution packets to near address 

ranges in the memory are governed by memory coherency handling and are discussed 

separately in Memory Coherency. Here we are discussing VMEM arbitration for memory 

read/write transactions being executed at the same clock cycle. 

Multiple memory transactions at the same clock cycle and going to the same superbank 

are executed sequentially following the above arbitration priority, when they are all reads 

or all writes. Mixed read/write cases (in the same execution packet) are:  

> RW: Execute both in parallel, read will return the previous value 

> RWW: Carry out the read and the first write in parallel, then the second write. The 

read will return the previous value,  

> RRW: Carry out the first read, then the second read and the write in parallel. Both 

reads return the previous value.  

A 2-bit QoS signal is sent with each external request, and the QoS is translated into a 

time-out count via VMEM config registers. Each external request is initially assigned to 

the external-low priority. If/when the request waits out the time-out count, it’s escalated 

to the external-high priority, which prompts it to be served at next available cycle, thus 

ensuring some (configurable) minimal BW to VMEM for each QoS level.  

The VPU supports memory accesses (table lookup, histogram, vector-addressed store, 

transposing load/store) that can potentially span a large address range. As each memory 

access is routed to a selected superbank based on the base address, no single memory 

access can straddle multiple superbanks.  
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5.3 VMEM Superbanks 
The three memory superbanks appear as three memory regions in the VPU memory 

map, differentiated by high address bits to allow programmers to allocate, based on 

memory footprint and BW needs.  

One simple way to allocate VMEM superbanks and avoid contention is 

 Superbank A write = DMA 

 Superbank A read = VPU 

 Superbank B read/write = VPU 

 Superbank C write = VPU 

 Superbank C read = DMA 

This allows DMA to move data from system memory to Superbank A. VPU code would 

read that data for processing, and can use Superbank B for intermediate outcome, and 

write final outcome to Superbank C.  DMA would then move data from Superbank C to 

system memory.  The DMA input and output buffers can be ping-ponged to allow 

simultaneous read/write by VPU and DMA, without causing any contention.   

This ideal, contention-free allocation scheme is only possible when DLUT is not involved, 

and DMA input/output buffer as well as intermediate buffers fit the 3 superbanks 

respectively. 

When the buffer sizing does not work out, or when DLUT is involved, one will need to 

allocate buffers among superbanks carefully to minimize contention among the VPU, 

DMA and DLUT.  

Each superbank has 128KB of capacity each. Each superbank sits in 256KB of space to 

allow for future expansion. 1 MB is allocated for the 3 superbanks (384KB total 

capacity). Address aliasing in the 1 MB space is as shown in the following table. 

Table 3. VMEM address map 

Byte address Memory Primary/Alias 

0x00000 ~ 0x1FFFF Superbank A first 128KB Primary 

0x20000 ~ 0x3FFFF Superbank A second 128KB Alias 

0x40000 ~ 0x5FFFF Superbank B first 128KB Primary 

0x60000 ~ 0x7FFFF Superbank B second 128KB Alias 

0x80000 ~ 0x9FFFF Superbank C first 128KB Primary 

0xA0000 ~ 0xBFFFF Superbank C second 128KB Alias 

0xC0000 ~ 0xDFFFF Superbank C third 128KB Alias 

0xE0000 ~ 0xFFFFF Superbank C last 128KB Alias 
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Note: Address aliasing is a side effect of address decoder logic and should not be taken 

advantage of in the software, as it is possible to set up address watch point via debugger 

to detect out-of-valid-range memory read/write and trigger error interrupts to PVA-top 

Cortex R5 processor. 
 

Future generation hardware may change physical memory sizes and memory address 

mapping. Best practice for VPU software is to use A/B/C memory region naming (for 

example, chess_segment(A/B/C)) instead of hard-coding memory addresses, and to avoid 

using the alias memory regions.  

5.4 Memory Banking and Read/Write 

Access Patterns 
Each VMEM superbank consists of 32 banks of 16-bit wide RAMs. Each of the 32 

memory banks are independently addressable per clock cycle. This enables a rich set of 

access patterns: 

> Read/write one byte on any byte alignment 

> Read/write one 16-bit half-word on any half-word alignment 

> Read/write one 32-bit word on any word alignment 

> Read/write 8 or 16 consecutive 32-bit words from any half-word alignment. 

> Read/write 16, 24 or 32 consecutive 16-bit half-words from any half-word alignment 

> Read/write 32 consecutive 8-bit bytes from any byte alignment  

> Read/write 64 consecutive 8-bit bytes from any half-word alignment (starting odd 

byte is not supported, and shall be forcefully aligned to an even byte) 

> Read/write in various transposed addressing patterns. 

> Read/write independent memory rows in each 16-bit bank, leveraged by parallel table 

lookup, parallel histogram, and vector addressed store. 

Various transposed load/store options, parallel table lookup, histogram, and vector 

addressed store options are discussed later. This is just describing access patterns from 

VMEM hardware capability point of view.  

Example access patterns are shown in the following figures. 
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Figure 4. VMEM access pattern examples for consecutive accesses 

 

Figure 5. VMEM transposed access pattern examples 
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Figure 6. VMEM access pattern examples for parallel table lookup and histogram 
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> DMA writing VMEM 

> DLUT writing VMEM 

When cache is enabled and cache hit occurs, load data is retrieved from the cache and 

memory read transaction is not issued, saving some power. When the cache is enabled 

and a cache miss occurs, there is no performance penalty, but there is a small power 

penalty. Thus, enable/disable control is exposed to the programmer for power 

optimization. Load data cache should be enabled when there are repeated accesses to 

small localities, like in the case of filtering, and should otherwise be disabled. 

5.6 Memory Allocation among VMEM 

Superbanks  
VPU application code may use storage specifiers {DMb, RAM_Ab, RAM_Bb, RAM_Cb}, 

together with chess_segment(A/B/C) and optional alignment constraint to allocate 

scalar or array variables onto specific superbank. 

Using RAM_Ab, RAM_Bb, RAM_Cb with chess_segment(A/B/C) causes the linker to 

allocate variable to superbank A, B, or C, respectively 

Example 1: 

short chess_storage(RAM_Ab % 512: chess_segment(A)) foo[256]; 

This allocates foo as a 256-element short array on superbank A with 512-byte alignment. 

Example 2: 

char chess_storage(RAM_Bb % 512: chess_segment(B)) bar[256]; 

This allocates bar as a 256-element char array on superbank B with 512-byte alignment. 

Example 3: 

int chess_storage(DMb % 4) more_foo[256]; 

Using DMb storage specifier causes the linker to allocate such variables to superbank A 

first, followed by B, then C, where it fits. Reserved regions between superbanks are 

skipped automatically. This allocates more_foo as a 256-element int array with 4-byte 

alignment in one of the superbanks. 

Example 4: 

int more_bar[128]; 

Not using any storage specifier causes the linker to allocate the variable to global 

memory (_global segment in BCF file). Application project can supply a custom BCF file 

to place _global segment in a valid memory range. Otherwise, the default BCF file applies 

and places _global segment in superbank A. 
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Chapter 6. VPU Instruction Set 

Architecture  

6.1 Processor Architecture 

6.1.1 Key Features 

The VPU instruction set architecture has the following key features: 

> VLIW and Wide SIMD vector processor, with multiple operations and multiple 

load/store slots. 

> Multi-dimension address generation (6 dimensions). 

> Multiple levels of zero-overhead hardware looping (2 levels). 

> Instruction-level predication of certain vector operation, scalar load/store, vector 

load. 

> Lane predication for vector store. 

> Loop collapsing to reduce overhead across data block and filter kernel dimension, 

enabled by address generation and predication. 

> Reduced code size and library construction effort for filtering and other windowing 

operations, enabled by zero-overhead nested looping through loop collapsing. 

> Memory banking and parallel lookup, histogram, and vector addressed store.  

> Memory bank address calculation to implement transposed vector load/store for 

various transposition options. 

> Circular buffer addressing for memory-copy-free data/compute reuse. 

> Rich set of load and store data distribution patterns. 

> Vector load with permutation of loaded data. 

> Vector-lane predication of selected store operations. 

> Protected pipeline with sequential execution (except branch delay slots) and 

hardware dependency stalling. 

The VPU instructions are scheduled in the following 7-way VLIW format.  Each 

instruction word is 32-bit long, and up to 7 instruction words can be executed together 

as an execution packet. 
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Table 4. VLIW instruction format 

S0 S1 V0 V1 M0 M1 M2 

Scalar 

operation or 

Control 

(branch, call, 

return, SW 

breakpoint) 

Scalar 

operation 

Vector 

operation 

Vector 

operation 

Load/store, scalar 

or vector,  

lookup, histogram, 

vector-addressed 

stores 

Load/store, 

scalar or 

vector 

 

  

Load/store, 

scalar or 

vector 

 

 

Variable-length packet encoding is supported, so that NOP (no operation) instructions 

are skipped and not taking up any code space. There is an exception though. Compiler 

may insert NOPs intentionally to align branch target, beginning of function, etc., 

execution packets to reduce branch penalty. 

In general, control instructions are available only in S0 slot. Scalar operations are 

available in both scalar slots. Vector operations are available in both vector slots. 

Memory operations are available in all 3 memory slots, except lookup, histogram, and 

vector-addressed store are available only in M0. Additional details: 

> Agen save/restore instructions are available only in M0 slot. 

> Quad-vector store instructions are available only in M0 slot. 

> Per-lane predicated store instructions via vector register file are available only in M0 

slot. 

> Per-lane rounding store (double vector only) instructions are available only in M0 slot. 

6.1.2 Program and Data Memory Spaces 

Program memory space is 32-bit byte address, with valid range [0 , 2^32 – 4], as 

instruction words are 32-bit each. 

Data memory space is 20-bit byte address that spans 1MB, but only valid inside each of 

three 128KB superbanks, for a total of 384KB of physical memory. Please see VMEM 

Overview for the memory map. 

Access outside the valid range would be wrapped back to the valid range. See Section 

VMEM Superbanks for details in address mapping. Programmers should not take 

advantage of this address wrapping, as data memory footprint and layout can change in 

the next generation. 

Reading uninitialized memory locations WILL NOT be detected as an error but can 

trigger parity error. It’s too expensive to implement such detection or automatic 

initialization in hardware. It is software’s responsibility to either initialize the entire 

VMEM at the start of task or avoid referencing uninitialized memory locations.  
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6.1.3 Architecture Registers 

6.1.3.1 Control and Scalar Registers 

Program counter (PC), counting in 32-bit granularity so PC = 1 means byte address of 4.  

VPU program space is 2^32 bytes, due to tool-chain constraints, and hardware conforms 

to this constraint. Although PC appears as a 32-bit register, upper 2 bits are not used. 

Upon task launch, VPU gets a starting PC specified in a 32-bit byte address config 

register by dropping lower 2 bits of the register. Also, the interface between VPU and I-

cache carries 27-bit address in 256-bit (32-byte) granularity. 

> Scalar registers R0..R31, 32-bit each. Special registers among them: R0 = constant 

zero 

> SP (stack pointer) = R1 

> LR (link register) = R15 

> Global data page pointer = R16 

> PL (64-bit product’s low 32-bit, also quotient for DIV) = R12 

> PH (64-bit product’s high 32-bit, also remainder for DIV) = R13 

All scalar registers are reset to 0.  

Compiler is instructed to treat R0 as constant 0 and not modify R0. User assembly 

program can use R0 as a normal register and write non-zero to R0, but this would break 

compiled code so is highly inadvisable. 

Stack grows by incrementing the stack pointer, so items in the local frame (already in 

the stack) are located with negative offset from the stack pointer. For example, the last 

int32 word pushed into the stack occupies SP – 4 ~ SP – 1 byte addresses, so is 

addressed by its starting byte address SP – 4. Compiled code uses load/store with base + 

immediate offset addressing mode to address items on the stack, and the immediate 

offset has range of [-2048, 2047].  Thus, if we use the stack pointer register R1 to 

represent the stack pointer itself, local frame size is limited to 2048 bytes. 

In the model’s compiler setting, we tell compiler to put an offset of -2048 between the 

logical stack pointer and the actual stack pointer register R1. In other words, we set 

SP_register (R1) = SP – 2048. This allows any local frame to take as much as 4096 bytes, 

thereby doubling the local frame size.  This is because SP_reg + [-2048, 2047] = SP – 

2048 + [-2048, 2047] = SP + [-4096, -1]. 

Hardware looping registers: 

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (which is encoded as binary “11”). 

> LS[0..1]: 32-bit loop start PC, reset to 0 

> LE[0..1]: 32-bit loop end PC, reset to 0 

> LC[0..1]: loop count, 32-bit, reset to 1 

There is also a predicate register file to support instruction predication: 
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> Predication registers: P2..P15 each 32-bit (P0, P1 are unconditional), reset to -1 (all 

ones) 

Additional miscellaneous registers are: 

> GPI: general purpose input register, 32-bit 

> GPO: general purpose output register, 32-bit, reset to 0 

> TSC: Free running timestamp counter for performance instrumentation, 64-bit, reset 

to 0  

> INV: floating-point invalid flag, 1-bit, reset to 0 

> CFG_VMEM: 3 x 32-bit, 32-bit for each superbank, bit 0 for load cache enable, bits 

31..1 reserved, reset to 0 

6.1.3.2 Vector Registers 

There are 3 vector register files: the main vector register file V0..V31; the working 

register file W0..W31; and the accumulator register file AC0..AC31. Each register 384-bit 

and can be partitioned as follows:  

> 8 lanes x 48-bit (extended word, vintx) 

> 16 lanes x 24-bit (extended half-word, vshortx) 

> 32 lanes x 12-bit (extended byte, vcharx) 

In addition, there is an extension register file, XRF, that extends precision of ARF on a 

lane-by-lane basis. It’s used in selected MAC operation (VFilt4x2x2BBW) with 16 lanes x 

32-bit per vector register entry, with lower 24-bit supplied by ARF, upper 8-bit supplied 

by XRF. The extended accumulator register file, XARF, XAC0..XAC31, is partitioned as 

> 16 lanes x 32-bit (Further extended half-word, xvshortx) 

> 32 lanes x 16-bit (Further extended byte, xvcharx)  

VRF and WRF have extensive bypassing to reduce load-to-math and math-to-math 

latencies. ARF is accessible as accumulators. Compiler maps source code variables to 

these register files according to latency requirement and register capacity constraints.  

Vector registers are not cleared during reset; it is software’s responsibility to initialize 

each register before its value can be used. 

6.1.3.3 Agen Registers 

Each unit of the agen register file AGEN[0..7] has the following fields: 

> Addr (32-bit, but only lower 20 bits are used in address calculation), reset to 0 

> Transposition lane offset (12-bit), reset to 0  

> Rounding/truncation option and number of bits (8-bit), reset to 0 (no rounding) 

> Saturation option (2-bit), reset to 0 (saturation disabled) 

> min/max option (2-bit)  
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> Auto predication off (1-bit), reset to 0, indicating agen loop has gone past max 

iteration count in all levels, so that subsequent stores should be automatically 

predicated off, overriding predicate register (or predicate vector register). 

> Number of iterations (6 x 16-bit), reset to 1 

> Address modifiers (6 x 18-bit), reset to 0  

> Circular buffer start and size (2 x 16-bit), reset to 0 

> Saturation parameters (4 x 32-bit), reset to 0 

> Loop variables (6 x 16-bit), reset to 0 

> Min/max values (2 x 32-bit), reset to 0, and initialized to signed/unsigned 32-bit 

MAX/MIN values depending on min/max option 

Each Agen register has a parameter configuration portion, basically the first 16 words or 

512-bit in memory and 428-bit in register (difference comes from 6 address modifiers, 

32-bit in memory versus 18-bit in register). The last 6 words or 192-bit holds loop 

variables, auto_predicate_off and min/max values.  

Agen configuration can be stored in memory in 512-bit, and when it’s read back, loop 

variables and min/max values are reset, and this is useful to save and restore Agen 

configuration.  In Orin there are instructions to save/restore the remaining part of Agen. 

The entire register entry can be copied from one agen register to another as well.   

Data organization of the agen configuration in memory (from Agen configuration save, 

AgenCfgST) is as follows.  

Figure 7. AGEN data format in memory 

Word 31                   0  

0 Addr 

1 
reserved 

(4-bit) 
minmax 

_opt (2-bit) 
sat_opt (2-

bit) 
round/truncate opt 

and bits (8-bit) 

reserved  

(4-bit)) lane_offset (12-bit) 

2 N2 (16-bit) N1 (16-bit) 

3 N4 (16-bit) N3 (16-bit) 

4 N6 (16-bit) N5 (16-bit) 

5 reserved (14 upper bits) MOD1 (18 LSBs) 

6 reserved (14 upper bits) MOD2 (18 LSBs) 

7 reserved (14 upper bits) MOD3 (18 LSBs) 

8 reserved (14 upper bits) MOD4 (18 LSBs) 

9 reserved (14 upper bits) MOD5 (18 LSBs) 

10 reserved (14 upper bits) MOD6 (18 LSBs) 

11 CB_SIZE (16-bit) CB_START (16-bit) 

12 SAT_LIM_LOW (comparison) 

13 SAT_VAL_LOW (replacement) 

14 SAT_LIM_HIGH (comparison) 

15 SAT_VAL_HIGH (replacement) 
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The rest of Agen data structure (6 x 32-bit = 192 bits) in the Agen register file, not 

directly visible but can be accessed one loop variable at a time through STH 

A<id>.I<level>: 

In the data structure, ignored fields, basically upper bits of each address modifier, are 

writable via CfgAgen Mod instruction as well as CfgAgenLD instruction, but are not 

utilized in the address calculation.  

Reserved fields are initialized to zero in InitAgen. They are not modifiable via any 

CfgAgen instructions and not utilized in any Agen functionality. Through CfgAgenLD, if 

corresponding contents in memory are non-zero, zero will be loaded into Agen data 

structure instead. When CfgAgenST is used to store out the whole Agen data structure, 

corresponding bits in memory will show zeros.  

6.1.3.4 Floating-point Invalid Flag  

To facilitate development of floating-pointing applications, in VPU we have a Boolean 

flag to for floating-point invalid, invalid_flag, that captures any invalid outcome (NaN) 

from FP32/FP16 operations. It’s a sticky bit, so that when there is any invalid outcome 

from S0/S1/V0/V1 slots (as we support scalar as well as vector floating-point), the bit is 

set.  

invalid_flag |= s0_invalid | s1_invalid | v0_invalid | v1_invalid  

There are a pair of MOV instructions to move invalid_flag to/from scalar register, so that 

the flag can be cleared at beginning of applications and collected (and perhaps cleared) 

at key points in the application to check for unexpected outcomes. 

Please see Exception for Instructions Accessing FP Invalid Flag for instruction execution 

ordering exceptions around FP invalid flag. Please see Floating-Point Invalid Flag for 

MOV instructions for FP invalid flag. 

Note that the invalid flag read-modify-write dependency is hidden from the compiler, so 

that compiler can freely reorder, combine, and even optimize out unnecessary FP 

operations to achieve better performance. If, for whatever reason, certain FP operations 

should not be optimized out even when they are unnecessary, developer can add 

chess_keep_dead() compiler directive on the variable assigned to the FP operations. 

Word 31               0 

16 I2 (16-bit) I1 (16-bit) 

17 I4 (16-bit) I3 (16-bit) 

18 I6 (16-bit) I5 (16-bit) 

19 reserved (31-bit)  
auto pred off 

(1-bit) 

20 min_val (32-bit) 

21 max_val (32-bit) 
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For example, 

 float var3 = fadd(var1, var2); 
 chess_keep_dead(var3); 
 // no subsequent use of vars 

6.1.4 Control Instructions 

Control instructions include the following: 

> Flow control instructions include jump, jump-and-link (call), and conditional branch. 

> Zero-overhead hardware loop instruction 

> Memory fence instruction 

> Miscellaneous hardware control instructions involving GPI, GPO, coprocessor 

load/store, R5 interaction, time stamp counter, floating-point invalid flag, and load 

data cache 

> Debug instructions 

Control instructions are only supported on the S0 slot. 

There are 2 delay slots following jump, jump-and-link, conditional branch, and hardware 

loop. For jump and branch, there are additional 2 to 3 cycles of gap before the first 

execution packet of the jump target can be executed, due to the fetch latency. 

Memory fence takes variable number of cycles, up to 8 cycles, as it is stalled until 

preceding memory writes are committed to memory, to ensure memory coherency. 

Hardware control instructions that interact with other hardware components (GPI, GPO, 

WFE_GPI/R5, SIG_R5, CPLD, CPST) take up to 16 cycles to execute, so that all preceding 

instructions complete their execution, to avoid any synchronization issues.  

For example, VPU software might write some value in VMEM before toggling a GPO bit 

that triggers a DMA transfer to read from VMEM, so it’s only prudent to allow the 

memory write to be completed before the GPO bit is toggled. 

6.1.4.1 Hardware Looping  

VPU supports 2 levels of zero-overhead hardware loops through the hardware loop 

instruction (RPT) and the following hardware looping registers: 

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (encoded as binary “11”) to mean not being in any loop 

> LS[0..1]: 32-bit loop start PC, reset to 0 

> LE[0..1]: 32-bit loop end PC, reset to 0 

> LC[0..1]: loop count, 32-bit, reset to 1 

Behavior of hardware loop (RPT) that encodes a scalar register and an immediate value: 

• LF++; 

• LC[LF] = scalar register value, for the loop iteration count. 

• LS[LF] = starting PC = PC(3 execution packets from RPT)  
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• LE[LF] = ending PC = PC(2 execution packets from RPT) + immediate 

Hardware looping is carried out by RPT updating LF and corresponding LC, LF, LE entries, 

and by monitoring PC against LE[LF], the ending PC of current loop level.  

LF is initialized to -1, so when RPT is first executed, LC[0], LS[0], LE[0] are filled.  

Conditional branch-back from loop-end PC is carried out via:  

if (LF >= 0) { 
    if (PC == LE[LF]) { 
   if (LC[LF] == 1) { 
     LF--;   
   } else { 
     LC[LF]--; 
     branch_target = LS[LF];  // take branch right away 
                 // end-of-loop branch back has no delay slots 
   } 
 } 
} 

All these steps – detecting end of the loop body by matching PC against LE, checking 

the loop count register LC, making the decision to branch back to beginning of loop 

body (LS) or to decrement LC then fall out of the loop – occur in the background without 

incurring any explicit instruction, thus they feature zero-overhead looping.  

There is a hardware loop buffer to store the first 3 execution packets of the loop body, 

so that branching back from loop-end to loop-start does not suffer the usual 2 ~ 3 

cycles of pipeline bubble. Loop execution goes seamlessly from one iteration to the next 

iteration. 

With the preceding hardware looping implementation, when nested hardware loops are 

used (up to 2 levels), the 2 loop levels should not share the same ending PC. 

Consequently, an NOP may be inserted by the compiler when there is no active 

processing between the end of two loop levels. For example: 

add__sint_add___sint___sint___sint 
    104 RPT R6,#7     || LHI #0,R7     
    106 ADD R5,R4,R5   || ADDI R4,#0, R2  
    108 LHI #0,R5     || ADD R5,R6,R3   
    110 RPT R2,#1             // outer loop starts 
    111 NOP 
    112 NOP 
    113 ADD R5,R4,R5   || ADD R3,R7,R7 // innerloop starts/ends 
    115 NOP                // outer loop ends 
    116 JR R15 
    117 SUB R7,R5,R2 
    118 NOP 

In this example, the outer loop starts at PC 110, the inner loop starts at 113, two delay 

slots after the corresponding RPT instruction.  

The immediate field of RPT encodes the PC difference between the 2nd delay slot (just 

before entering the loop) and the last packet of the loop. In the example above, the 
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outer loop ends at PC 115, so the RPT immediate field encodes 115 – 108 = 7.  The inner 

loop ends at 113, so the RPT immediate field encodes 113 – 112 = 1. 

Currently, the compiler does not generate code that branches into the middle of an 

execution packet, or into a delay slot of any execution-control instruction. Moreover, an 

assembly program that has such behavior would be rejected by the loader so it would 

not simulate. Due to the tool chain restriction, hardware behavior when supplied with 

such an assembly program is declared undefined. 

In the case of nested hardware loops, the inner loop RPT shall not be placed in a delay 

slot of the outer loop RPT, as it complicates the VPU execution controller to support 

such looping structure. Compiler does not generate such a code sequence.  

6.1.5 C Function Calling Convention 

C functions shall adopt the following calling convention: 

> Stack pointer = R1 

> Link register = R15 

> Global data page pointer = R16 

> Scalar argument registers: R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14 

> Scalar return value registers: R2, R3 

> Vector argument registers: V0, V1, V2, V3, V4, V5, V6, V7 

> Vector return value registers: V8, V9 

> Double vector argument registers: V0:V1, V2:V3, V4:V5, V6:V7 

> Double vector return value registers: V8:V9 

In subsequent generations of VPU, it is likely that scalar and/or vector register file may 

be expanded, and the C function calling convention may change. No assembly backward 

compatibility is expected. 

6.1.6 Processor Execution States 

VPU execution state diagram is shown in the following figure. Description of the states, 

various state transitions and conditions follow the figure.  
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Figure 8. VPU execution state diagram 
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General priority for state transition, where applicable, is reset > VPU instruction > error > 

debug > VPS register programming (halt/unhalt/r5_vpu_start) > VPU internal 

state/detection. 

Reset state: When reset is asserted, whatever state VPU is in, it shall transition to the 

Reset state. De-asserting reset signal would transition VPU to WFE_R5 state. 

Debug state: When the ocd_req signal in VPU debug interface is asserted, VPU would 

transition from any state except the Reset state to the Debug state. The state VPU 

transitions from is saved in a shadow execution state (SES) register. If/when resuming 

execution is desired, it is debugger software’s responsibility to restore VPU to the 

interrupted state (including all VMEM and register contents, except for first 64 bytes of 

VMEM), then de-assert ocd_req to allow VPU to resume execution by going to the state 

saved in the SES. Debugger software can optionally change the SES before de-asserting 

ocd_req to redirect VPU to a different state from the interrupted execution state. Please 

see 13.1 for details on debug features. 

WFE_R5 state: This is when VPU is waiting for R5 to provide a starting PC 

(R5_vpu_start_PC). Once R5 writes the starting PC then writes 1 to the R5_vpu_start 

register field, VPU transitions out of WFE_R5 state and jumps to the starting PC. VPU 

software normally terminates a subframe-level task with WFE_R5 instruction, which 

takes VPU back to this state.   

Active state: VPU normal execution is in the active state. From active state, VPU can be 

temporarily halted by vpu_halt register been written 1, to transition to the Halted state. 

VPU can transition to debug state by debug controller asserting ocd_req, or by 

executing SWBRK instruction. VPU can execute a WFE_R5 instruction to go to the 

WFE_R5 state. VPU can execute a WFE_GPI instruction to go to the WFE_GPI state. 
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Upon hardware error and when the error source is configured to error-halt, VPU goes to 

the Error-Halted state.  

Priority on conditions to transition from active state is reset > error -> debug > 

r5_vpu_halt > instruction. Instructions can be WFE_R5 or WFE_GPI. Since both are 

control slot (S0) instructions, only one can be executed at any time. 

WFE_GPI state: VPU executing a WFE_GPI instruction would transition VPU to this state. 

WFE_GPI allows a mask value and a match value as arguments, and hardware logic keeps 

VPU in this state until (GPI & mask) == match, upon which VPU is transitioned back to 

the Active state.   
 

 

Note: WFE_GPI is not exclusive to interaction with DMA; it can be used for checking 

availability of I-cache prefetch and/or invalidate. 

 

Halted state: R5 can temporarily halt VPU by writing 1 to the vpu_halt register field. 

When the field is written 0, VPU would go back to the Active state and resume 

execution. This mechanism can be used by R5 software to pause VPU execution upon 

watch-dog timer expiration, so VPU state can be saved for further diagnosis.   

Error-Halted state: When one of the error conditions occurs and it’s configured to error-

halt in error handling (see 13.2, and for further details please see PVA VPS IAS), VPU is 

transitioned to the Error-Halted state. From this state, the debugger can drive the 

execution state to Debug, or R5 can reset VPU. 

The transition from WFE_GPI and WFE_R5 to Error-halted. It is possible for an 

instruction causing the error to be close enough to WFE_GPI/WFE_R5 instruction that 

the execution state is temporarily transitioned to WFE_GPI/WFE_R5 states before 

ending up in Error-halted state. 

6.2 Overview of Scalar/Vector Math 

Instructions 
With VPU execution packets organized as 7-way VLIW, it is most convenient to describe 

the instructions in terms of instruction set grouping. 

> Control instructions can only be placed in the first scalar slot, S0. 

> Scalar math instructions can be placed in either of the scalar slots, S0 and S1. 

> Vector math instructions can be placed in either of the vector math slots, V0 and V1. 

These 2 slots are symmetrical in functionality. 

> Certain memory operations can only be placed in the first memory slot, M0. 

> The remaining memory operations can be placed in any of the 3 memory slots, M0, 

M1 and M2.  
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This is a brief overview of scalar and vector math instructions, including general 

functionality description and latency. For a more detailed description of each instruction, 

consult Chapter 9 Instruction Set Reference. Memory instructions are better 

understood after some coverage on memory banking and address generator features. 

The latency number of cycles specified in the following sub-sections are for back-to-

back execution of the same class of instructions; for example, scalar integer math to 

scalar integer math. Latency across different classes of instructions is outside the scope 

of the VPU Programmer’s Guide. 

6.2.1 Scalar Integer Math Instructions  

We support common arithmetic and logic operations in both scalar slots.  

> Integer addition, subtraction, compare, and, or , exclusive or, sign/zero-extend  

> Integer shift left/right, signed/unsigned min/max 

> Integer multiplex (C select operator), shift-and-add, compare within, bit count 

> 32-bit x 32-bit multiplication, keeping 32-bit product 

> Signed/unsigned 32-bit x signed/unsigned 32-bit multiplication, keeping 64-bit 

product 

> Integer division, taking up to 33 cycles depending on the dividend bit width 

All scalar integer math instructions except for integer division have 1 cycle of latency. 

6.2.2 Scalar Predicate Instructions 

VPU has a predicate register file, and some vector math instructions are predicated, 

those with _CA postfix, to support periodically Clearing Accumulator in a filtering 

application for example. We support instructions to move between the predicate 

register file and scalar register file, as well as a few variations of modular increment 

instructions for periodic predication. 

All predicate instructions have 2 cycles of latency. 

6.2.3 Vector Math Instruction General Rules  

We support many vector integer math instructions. There are multiple ways to group 

them into digestible chunks. The relevant section in the Instruction Reference chapter 

categorizes instructions by number of input/output operands. Here we categorize 

instructions by functionality:  

> ALU instructions: move, bitwise and/or/exclusive-or/not, bitwise 3-input and/or, 

logical and/or/not, promote/demote, Hamming distance. All but Hamming distance 

have 1 cycle of latency; Hamming distance has 3 cycles of latency. 

> Bit manipulation instructions: bit reverse, bit count, bit interleave/deinterleave, most 

significant bit detection. All have 1 cycle of latency. 
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> Compare instructions: 2/3-input min/max, 3-input median, min/max with LT/GT flag, 

Compare GE/GT/LE/LT/EQ/NE, multiplex (C select operator), 2-in/out sort, sort with 

payload, horizontal min/max. All have 1 cycle of latency. 

> Add/Subtract: 1-cycle latency instructions are negation, sign-magnitude, apply sign, 

add/sub. 2-cycle latency instructions are add2sub (A+B-C), absolute difference, sum 

of absolute differences (SAD).  

> Shift instructions: shift (left or right), shift-or, shift-add, shift right, shift left, round, 

extract bits, split bit sections, normalization. All have 2 cycles of latency. 

> Permutation instructions: permute, collate index, expand index, compare bit-pack, 

bit unpack, bit transpose, select lane, SGM min-path-cost. All have 4 cycles of 

latency. 

> MAC (multiply-accumulate) instructions: multiply, multiply-add, multiply-subtract, 

2/4/2x2/4x2-term dot-product, 4/4x2/4x2x2-term filtering, blending, complex 

multiply, sum of squares, square of sum, 2x2 determinant, 8x4x2 term exclusive-not-

or-add. All have 3 cycles of latency. 

6.2.3.1 Extended Precision  

The vector unit executes up to 2 vector operations per clock cycle. Various vector ALU 

instructions are available. A 32-entry 384-bit vector register file (VRF), a 32-entry 384-bit 

working register file (WRF) and a 32-entry 384-bit accumulator vector register file (ARF) 

supply the operands and store the outcomes.   

There is a 128-bit extension for the ARF to extend each entry to 512-bit wide. The 

extended accumulator register file (XARF) is accessible only from selected MAC 

operation, VXNorAdd8x4x2, VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW, and store 

operations.   

Each 384-bit entry in VRF/WRF/ARF is logically partitioned into 32 x 12-bit (extended 

byte), 16 x 24-bit (extended halfword), or 8 x 48-bit (extended word).  Each 512-bit entry 

in XARF is logically partitioned into 32 x 16-bit (short), or 16 x 32-bit (word). 

VPU vector math instructions operate on extended precisions. Extended byte is 12-bit, 

versus standard byte being 8-bit. Extended halfword is 24-bit, versus standard halfword. 

Extended word is 48-bit, versus standard word being 32-bit. 

The idea is that normally in C code, variables and arrays are declared with standard 

element type of char/uchar (8-bit), short/ushort (16-bit), and int/uint (32-bit). VPU 

compute kernels use signed or unsigned loads to load data from VMEM and sign-extend 

or zero-extend the values to place into destination vector registers. Processing occurs in 

the vector datapath via vector math instructions, reading from and writing back into 

vector register files. Eventually when a suitable chunk of the compute kernel is 

completed, results are written back to VMEM in standard precision. 

It is possible for VPU programs to store the intermediate outcome in extended precision 

and load them back into vector register file. This can be through an extended-type 

load/store in the code or can be through the compiler automatically spilling vector 
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variables onto the stack, when size of variables involved in a compute kernel exceeds size 

of the vector register files (VRF/WRF/ARF/XARF).  

In general, we would like to avoid spilling vector variables into the stack, as it generally 

degrades performance and consumes higher power consumption. Programmer should 

reduce size of variables involved in the computation by breaking up the computation in a 

loop into multiple loops, or by reducing the unrolling factor in the unroll_loop pragma. 

Note that lane partitioning does not involve any conversion instruction but is 

accomplished via each vector math instruction specifying what precision it operates on. 

Vector math instructions are either type-agnostic – for example, bitwise operations – or 

have a type designation that can be: 

> W: 48-bit word 

> H: 24-bit half-word  

> B: 12-bit byte  

> W: 32-bit standard word in VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW 

For example, in VAddH, single vector addition half-word, the ‘H’ specifies that it operates 

on extended halfword precision and thus treats each source and destination vector 

register entry as 16 lane x 24-bit. Some instructions involve operands with multiple 

precisions. For example, VFilt4x2x2BBW involves extended byte (12-bit) source operands 

as well as word (32-bit) accumulator operand (which is both source and destination). 

Many vector math instructions support one of the source operands coming from a 

scalar register, depending on the operation type, appropriate number of lower bits 

(number of bits specified in the operation) are extracted, or entire 32-bit value is signed-

extended, then broadcast to all lanes to participate in the vector operation specified.  

6.2.3.2 Signed/Unsigned Handling 
 

 

Note: There are no signed/unsigned designations in vector math instructions. All vector 

arithmetic operations where signed/unsigned make a difference, including comparison, 

min/max, right-shift, round, etc., are performed as signed operations. 

 
 

Signed and unsigned data may be stored in memory. Programmers are responsible for 

choosing signed/unsigned data type in the load instructions to read data into vector 

register file. Signed data type load (for example, VLDB) would cause the 8/16/32-bit data 

items in memory to be sign-extended to the 12/24/48-bit lanes in a vector register. 

Unsigned data type load (for example, VLDBU) would cause the 8/16/32-bit data items in 

memory to be zero-padded to the 12/24/48-bit lane in a vector register.    

For storing data back to memory, writing to memory itself is type-agnostic; however, if 

it’s an agen-based store, and rounding and/or saturation features are enabled, be aware 

that right-shift in store-path rounding is performed as signed right-shift, and 

comparisons in store-path saturation are performed as signed comparison. Thus, if a 

programmer intends to use full range of extended precision (12/24/48-bit) to store 

unsigned data, store-path rounding and saturation features should be disabled. 
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6.2.3.3 Data Types and Corresponding Bit Widths  

Unless otherwise noted, the following lane partitioning scheme is followed in vector 

register: 

> Word: 8 lanes x 48-bit, lane 0 in Vreg[47:0], lane 1 in Vreg[95:48], etc 

> Half-word: 16 lanes x 24-bit, lane 0 in Vreg[23:0], lane 1 in Vreg[47:24], etc 

> Byte: 32 lanes x 12-bit, lane 0 in Vreg[11:0], lane 1 in Vreg[23:12], etc 

> No type: bitwise operation on whole 384-bit  

> Standard Word: 16 lanes x 32-bit in XARF, lane 0 in XACreg[31:0], lane 1 in 

XACreg[63:32], etc. 

Where a scalar register is used as an operand (can be src2 or src3), the general scalar 

operand bit width usage behavior is  

> Word: whole 32-bit sign extended to 48-bit and broadcast to 8 x 48-bit lanes 

> Half-word: lowest 24-bit broadcast to 16 x 24-bit lanes 

> Byte: lowest 12-bit broadcast to 32 x 12-bit lanes 

> No type: not applicable, as no-type operations do not allow scalar as operand 

Exceptions to the above are stated in the specific instruction description. For example, 

for bitwise operations it makes more sense to zero-extend in case of Word type rather 

than sign-extend. As another example, VBitUnpk instruction uses its scalar operand one 

bit per lane, so it’s 8-bit for Word type, 16-bit for Halfword type, and 32-bit for Byte 

type.  

Some ALU instructions do not use the full lane, but just 8/16/32 or 9/17/33 LSBs of the 

lane, and they are specifically marked as such in the instruction table. Multiply and 

multiply-add/subtract and bit reverse are in this category. 

6.2.3.4 Internal Bit Widths and Overflow 

Arithmetic datapath implementing various instructions employ sufficient precision so 

that the functionality can be modeled as having infinite precision, but the final outcome 

is presented in the specified output width, so the hardware is not responsible for 

outcome overflow.  

This style of functionality specification does not pin down internal details, leaving 

implementation flexible, while clearly defining the end-to-end behavior. The 

implementation flexibility allows sharing logic among various data types. 

For example, VAdd adds 2 operands in each Byte/Half-word/Word lane. In case of Byte 

lane, inputs are 12-bit signed and output is 12-bit signed, and internal processing width 

can be any bit width greater than or equal to 12, so internally we can have  

> 32 x 12-bit adders + 16 x 24-bit adders + 8 x 48-bit adders, each data type operates 

in separate datapath,  

> 8 x 48-bit adders + 8 x 24-bit adders + 16 x 12-bit adders, carrying out half of half-

word addition in 48-bit datapath, and half of byte addition in 24-bit and 48-bit 

datapaths, or 
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> 32 x 12-bit adders with carry logic to conditionally string together 24-bit and 48-bit 

additions based on type designation of the instruction.   

For certain instructions, we do need internal bitwidth to be expanded to avoid internal 

overflow, but this does not mean the output would not overflow. VAbsDif and VSAD_CA 

are such instructions. Again, outcome is as if we use infinite arithmetic precision but 

only present the specified bit width to the output.   

There is no out-of-range or overflow detection in VPU, and there is no automatic 

saturation. There is, however, free (not costing extra cycle) saturation in Agen-based 

vector store. 

6.2.3.5 Application Vector Data Types  

Various data types are referred to in the intrinsic field.  
 

 

Note: Extended width types are all signed.  

 

> vint: 8 x 32-bit vector (in memory) 

> vuint: 8 x 32-bit vector (in memory, unsigned) 

> dvint: 16 x 32-bit vector (in memory) 

> dvuint: 16 x 32-bit vector (in memory, unsigned) 

> vintx: 8 x 48-bit vector (mapped to register) 

> dvintx: 16 x 48-bit vector (mapped to register) 

> vfloat: 8 x 32-bit FP32 vector (in memory) 

> dvfloat: 16 x 32-bit FP32 vector (in memory) 

> vfloatx: 8 x 48-bit FP32 vector (mapped to register, sign-extended from FP32) 

> dvfloatx: 16 x 48-bit FP32 vector (mapped to register, sign-extended from FP32) 

> vshort: 16 x 16-bit vector (in memory) 

> vushort: 16 x 16-bit vector (in memory, unsigned) 

> dvshort: 32 x 16-bit vector (in memory) 

> dvushort: 32 x 16-bit vector (in memory, unsigned) 

> vshortx: 16 x 24-bit vector (mapped to register) 

> dvshortx: 32 x 24-bit vector (mapped to register) 

> xvshortx: 16 x 32-bit vector (mapped only to XARF) 

> dxvshortx: 32 x 32-bit vector (mapped only to XARF) 

> vhfloat: 16 x 16-bit FP16 vector (in memory) 

> dvhfloat: 32 x 16-bit FP16 vector (in memory) 

> vhfloatx: 16 x 24-bit FP16 vector (mapped to register, sign-extended from FP16) 

> dvhfloatx: 32 x 24-bit FP16 vector (mapped to register, sign-extended from FP16) 

> vchar: 32 x 8-bit vector (in memory) 
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> vuchar: 32 x 8-bit vector (in memory, unsigned) 

> dvchar: 64 x 8-bit vector (in memory) 

> dvuchar: 64 x 8-bit vector (in memory, unsigned) 

> vcharx: 32 x 12-bit vector (mapped to register) 

> dvcharx: 64 x 12-bit vector (mapped to register) 

> xvcharx: 32 x 16-bit vector (mapped only to XARF) 

> dxvcharx: 64 x 16-bit vector (mapped only to XARF) 

There are two floating-point formats supported, FP32 and FP16. In vfloatx/dvfloatx, 

each 48-bit element contains one FP32 number with sign extended to fill the upper 16 

bits. In vhfloatx/dvhfloatx, each 24-bit lane element contains one FP16 number with sign 

extended to fill the upper 8 bits. 

For predication of lanes in vector stores, we use  

• int: 8/16/32 bits of predication, mapped to one predicate register 

• dpred: 64 bits of predication, mapped to two predicate registers 

6.2.3.6 Data Ordering in Single and Double Vector Registers 

Double vector data types have twice as many elements as the corresponding single 

vector data type.  In vector register allocation, compiler would allocate even/odd register 

pairs (for example V2:V3) for double vector data type variables. 

There are two schemes of element ordering in a double vector: 

> Sequential: take dvintx for example, ascending elements are stored in dv.lo[0], 

dv.lo[1], …, dv.lo[7], dv.hi[0], dv.hi[1], …, dv.hi[7] 

> Interleaved: take dvintx for example, ascending elements are stored in dv.lo[0], 

dv.hi[0], dv.lo[1], dv.hi[1], …, dv.lo[7], dv.hi[7] 

The interleaved format is the way physical design works, so it is supported throughout 

the instruction set. The sequential format is available only in load/store instructions and 

selected vector math operations. 

Vector math operations mixing single and double vectors, typically due to 2x width 

expansion like VMulHHW, use deinterleaved ordering: 
 

src1 a[0] a[1] a[2] a[3] … a[14] a[15] 

src2 b[0] b[1] b[2] b[3]  b[14] b[15] 

dst.lo a[0] * b[0] a[2] * b[2]  a[14] * b[14] 

dst.hi a[1] * b[1] a[3] * b[3]  a[15] * b[15] 

 

Vector demotion operations have both sequential (VDemote) and interleaving 

(VDemote_I) flavors, but promotion operation only has deinterleaving flavor 

(VPromote_DI). 

See Vector Load/Store Distribution Options for sequential vs interleaving/deinterleaving 

flavors in load/store operations involving double and quad vectors. 
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6.2.3.7 Endianness 

VPU adopts the Little Endian memory organization. In Little Endian, lower bytes are 

stored into lower addresses than upper bytes. For example, a vint vector {2, 3, 4, 5, 6, 7, 

8, 9} in memory would look the same as a vshort vector {2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 

9, 0} in memory, or as a vchar vector {2, 0, 0, 0, 3, 0, 0, 0, …, 9, 0, 0, 0} in memory.  

Table 5. Little Endian layout of various data types 

Word 0 1 2  7 

Content 2 3 4  9 

Halfword 0 1 2 3 4 5 … 14 15 

Content 2 0 3 0 4 0  9 0 

Byte 0 1 2 3 4 5 6 7 8 9 10 11 … 28 29 30 31 

Content 2 0 0 0 3 0 0 0 4 0 0 0  9 0 0 0 

The same Little Endianness is also observed in the lanes of vector registers. For example, 

a register holding vintx vector {2, 3, 4, 5, 6, 7, 8, 9} also has the same contents of another 

register holding vshortx vector {2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0}. More generally, 

word lane i would occupy the same 48-bit section of storage in a vector register as short 

lanes 2*i and 2*i+1, with lane 2*i taking the lower 24-bit of that 48-bit section.  

6.2.3.8 Intrinsic Functions/Operators Support 

Most vector math instructions support single vector operands and have intrinsic 

functions or operators with single vector data type operands, for example, VBitRev 

instruction has the following single vector intrinsic functions: 

vintx  vbitreverse(vintx  src); 
vshortx vbitreverse(vshortx src); 
vcharx vbitreverse(vcharx src); 

For such instructions, double vector pseudo intrinsic functions/operators are also 

available to map to a pair of instructions, for example: 

dvintx  dvbitreverse(dvintx  src); 
dvshortx dvbitreverse(dvshortx src); 
dvcharx dvbitreverse(dvcharx src); 

The convention is to prefix the intrinsic function names with “d” so that it reads 

dv<something>. 

Selected vector math instructions allow scalar operand to be broadcast to each lane 

before the operation takes place. Their intrinsic functions/operators support such 

operand type combinations as well. For example, for VAbsDif we support: 

vintx  vabsdif(vintx  src1, vintx  src2); 
vshortx vabsdif(vshortx src1, vshortx src2); 
vcharx vabsdif(vcharx src1, vcharx src2); 
vintx  vabsdif(vintx  src1, int   src2); 
vshortx vabsdif(vshortx src1, int   src2); 
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vcharx vabsdif(vcharx src1, int   src2); 

For such instructions, double vector pseudo intrinsics are also supported, for example: 

dvintx  dvabsdif(dvintx  src1, dvintx  src2); 
dvshortx dvabsdif(dvshortx src1, dvshortx src2); 
dvcharx dvabsdif(dvcharx src1, dvcharx src2); 
dvintx  dvabsdif(dvintx  src1, int   src2); 
dvshortx dvabsdif(dvshortx src1, int   src2); 
dvcharx dvabsdif(dvcharx src1, int   src2); 

Note that in each function, the same int-type scalar operand is shared between the two 

single vectors.  

A subset of vector math instructions has cross-lane dependency. For example, VMaxR 

does max reduction across 8 extended word lanes, 16 extended halfword lanes, or 32 

extended byte lanes. For such instructions there is no double vector pseudo intrinsic 

support to avoid confusion. 

Another subset of vector math instructions involved mixed size operands (between 

single and double vectors), for example, VMulBBH has two single vector vcharx type 

inputs, and its output is a double vector dvshortx type output. As we do not support 

quad vector data types, there is no double vector pseudo intrinsic support as well, and 

the intrinsics/operator field is similarly noted. 

We also support various re-interpret type intrinsic functions: 
 

Functionality Intrinsic 

Reinterpret as vcharx vcharx  as_vcharx (<vtype>); 

Reinterpret as vshortx vshortx as_vshortx (<vtype>); 

Reinterpret as vintx vintx  as_vintx  (<vtype>); 

Reinterpret as vfloatx vfloatx as_vfloatx (<vtype>); 

Reinterpret as vhfloatx vhfloatx as_vhfloatx(<vtype>); 

Reinterpret as dvcharx dvcharx as_dvcharx (<dvtype>); 

Reinterpret as dvshortx dvshortx as_dvshortx(<dvtype>); 

Reinterpret as dvintx dvintx  as_dvintx (<dvtype>); 

Reinterpret as dvfloatx dvfloatx as_dvfloatx(<dvtype>); 

Reinterpret as dvhfloatx dvhfloatx as_dvhfloatx(<dvtype>); 

  

With any of such re-interpret type intrinsics, there is no change in the variable value. The 

raw data is simply reinterpreted. For example, applying as_vshortx() on a vintx variable 

reinterpret each 48-bit lane i as a pair of 24-bit lanes 2*i and 2*i+1, lower 24-bit as the 

even lane, upper 24-bit as the odd lane. 

For instructions sharing the same register entries (VRF, WRF, ARF) as source and 

destination, also known as read-modify-write operands, we expose functionality to the 

compiler in the form of intrinsic functions with return values. 

For example, vector multiply-add of Byte type has this intrinsic function prototype: 
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  vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred); 

instead of 

  void vmaddb(vcharx src1, vcharx src2, vcharx & src3dst, u3imm rnd_opt, int pred); 

The rationale for this choice is that return-value functions are more readable in 

application code.  

Since such instructions normally have accumulator-like behavior, we expect 

programmers to use the same variable in the src2 fields as well as receiving return value 

of the function; for example: 

  acc = vmaddb(data, coef, acc, RND_R7, pred); 

When the intrinsic functions are used this way, compiler usually achieves efficient 

register allocation without incurring additional register movements. 

6.2.4 Scalar/Vector Floating-Point Math 

Instructions  

The following floating-point instructions are supported in scalar and vector slots: 

> FP16/FP32 add, subtract, multiply, multiply-add, multiply-subtract 

> FP16/FP32 compare LT/LE/GT/GE/EQ/NE 

> FP32 transcendental functions: square root, reciprocal, reciprocal of square root, 

log/exp base 2, sine, cosine, tanh 

> Conversion functions among FP16/FP32/INT16 and INT32. FP-to-INT conversions 

include rounding and truncation options, and FP16-to/from-INT conversion includes 

fraction bit width to support fixed-point processing. 

Scalar floating-point instructions have 2 latency cases. Scalar floating-point comparison 

instructions have 1 cycle of latency and remaining scalar floating-point instructions have 

4 cycles of latency.  

Vector floating-point has 3 latency cases. Vector floating-point comparison has 1 cycle 

of latency, conversion between FP16 and FP32 has 2 cycles of latency, and the 

remaining vector floating-point instructions have 3 cycles of latency. 

VPU is an embedded processor that does not support exceptions. As an alternative, the 

floating-point invalid flag can be polled and set/reset by code explicitly.  

The following features are also not supported: 

> errno macro 

> math_handling macro 

> MATH_ERRNO macro 

> MATH_ERREXCEPT macro 

> EDOM or domain error  

> ERANGE or poll error 
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6.2.4.1 FP Math Corner Cases 

FP math outcome for various corner cases, x being a non-zero regular FP number: 

Table 6. FP add/subtract/multiply corner cases  

FAdd: 

 

src1 

 

-x  

 

zero 

src2 

-zero 

 

inf 

 

-inf 

 

NaN 

x  zero x x inf -inf NaN 

zero -x zero zero inf -inf NaN 

-zero -x zero -zero inf -inf NaN 

inf inf inf inf inf NaN NaN 

-inf -inf -inf -inf NaN -inf NaN 

NaN NaN NaN NaN NaN NaN NaN 

 

FSub: 

 

src1 

 

x 

 

zero 

src2 

-zero 

 

inf 

 

-inf 

 

NaN 

x zero x x -inf inf NaN 

zero -x zero zero -inf inf NaN 

-zero -x -zero zero -inf inf NaN 

inf inf inf inf NaN inf NaN 

-inf -inf -inf -inf -inf NaN NaN 

NaN NaN NaN NaN NaN NaN NaN 

 

FMul: 

 

src1 

 

1 

 

-1 

 

zero 

src2 

-zero 

 

inf 

 

-inf 

 

NaN 

1 1 -1 zero -zero inf -inf NaN 

-1 -1 1 -zero zero -inf inf NaN 

zero zero -zero zero -zero NaN NaN NaN 

-zero -zero zero -zero zero NaN NaN NaN 

inf inf -inf NaN NaN inf -inf NaN 

-inf -inf inf NaN NaN -inf inf NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

 

The outcome of FMAdd(a, b, c) follows that of FAdd( FMul(a, b), c) for the above corner 

cases. Outcome of FMSub(a, b, c) follows that of FAdd( FMul(-a, b), c) for the corner 
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cases. For FMAdd, when multiplication a * b results in number too small to represent 

even as denormal, the product is represented as +zero or -zero, before the addition is 

performed. Similarly for FMSub with multiplication -a * b. 

For combination of src2/src3 being zero/-zero , FMAdd and FMSub outcomes are: 

Table 7. FP multiply-add/subtract corner cases  

src1 src2 src3 FMAdd FMSub 

pos zero zero zero zero 

pos zero -zero zero -zero 

pos -zero zero zero zero 

pos -zero -zero -zero zero 

neg zero zero zero zero 

neg zero -zero zero -zero 

neg -zero zero zero zero 

neg -zero -zero -zero zero 

 

 

Note: These corner cases apply to scalar and vector, hfloat (FP16) and float (FP32) types. 
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FP multiply corner cases:  

Table 8. FP multiply corner cases   

src1 src2 FMul 

zero -zero -zero 

-zero zero -zero 

zero neg -zero 

neg zero -zero 

-zero pos -zero 

pos -zero -zero 

 

6.2.4.2 FP MUFU Instruction Corner Cases 

Corner cases of reciprocal, square root, reciprocal square root, exp2, log2, sine, cosine 

and tanh functions are documented in the corresponding instruction details. 

6.2.4.3 FP Comparison Corner Cases 

FP comparison always returns integer 0 (false) or 1 (true), and works as if FP numbers 

are placed into these categories that have strict ordering: 

-inf < negative FP numbers < -0 == 0 < positive FP numbers < inf  

Negative FP numbers and positive FP numbers compare normally. 

Behavior of comparison involving inf or -inf is:  

> inf is equivalent to inf, thus inf cmp_op inf is true for {==, <=, >=} and false for others 

> -inf is equivalent to -inf, thus -inf cmp_op -inf is true for {==, <=, >=} and false for 

others 

Behavior of comparison involving NaN is 

> NaN cmp_op anything (including NaN itself) is false, for cmp_op = {<, <=, >, >=, ==}. 

> NaN != anything (including NaN itself) is true. 

Note that FP comparison produces an integer outcome, so it DOES NOT output NaN or 

set the sticky invalid status bit. 

Note that the above behavior and corner cases apply both to scalar and vector, hfloat 

(FP16) type and float (FP32) type.  
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6.2.4.4 FP Conversion Corner Cases 

FP conversion can produce +/- Inf in case of converting int24/int32/int48/fp32 into fp16 

and can produce NaN in case of conversion between fp32 and fp16. However, FP 

conversion DOES NOT set the sticky invalid status bit even when outcome is NaN. 

The following table shows scalar and vector floating-point conversion corner cases:  

Table 9. FP/INT conversion corner cases 

Conversion Function +/- Inf  NaN  

INT_FP 
VINT_FP 

Output +/- Inf not possible, as 

INT32_MIN / INT32_MAX can 

be presented in normal FP32 

numbers 

Output NaN is not possible 

INT_FP16 
VINT_FP16 

Output +/- Inf is possible from 

values not representable in 

FP16 

Output NaN is not possible 

VINTX_FP  Output +/- Inf not possible, as 

INT48_MIN / INT48_MAX can 

be presented in normal FP32 

numbers 

Output NaN is not possible 

VINT24_FP16 Output +/- Inf is possible from 

values not representable in 

FP16 

Output NaN is not possible 

FP_INT_Trunc/Round 
VFP_INT_Trunc/Round 

Input +/- Inf converts to output 

INT32_MIN / INT32_MAX 

Input NaN converts to output 

INT32_MIN / INT32_MAX 

FP16_INT_Trunc/Round 
VFP16_INT_Trunc/Round 

Input +/- Inf converts output 

INT32_MIN / INT32_MAX 

Input NaN converts to output 

INT32_MIN / INT32_MAX 

VFP_INTX_Trunc/Round Input +/- Inf converts to output 

INT48_MIN / INT48_MAX 

Input NaN converts to output 

INT48_MIN / INT48_MAX 

VFP16_INT24_Trunc/Round Input +/- Inf converts to output 

INT24_MIN / INT24_MAX 

Input NaN converts to output 

INT24_MIN / INT24_MAX 

FP_FP16 
VFP_FP16 

Output +/- Inf is possible from 

+/- Inf and values not 

representable in FP16 

Input NaN converts to output 

NaN 

FP16_FP 
VFP16_FP 

Input +/- Inf converts to output 

+/- Inf 

Input NaN converts to output 

NaN 
 

6.2.4.5 FP Conversion to/from Fixed-Point Formats 

Some of the VPU scalar/vector FP/Integer conversion instructions support fixed-point 

conversion by having an argument that conveys qbit of the fixed-point format. 

Fixed-point format is one that represents a number having fixed integer and fraction 

widths using integer representation. There is a qbit configuration parameter, sometimes 

referred to simply as Q, as in Q8, Q15, and so on, that programmer maintains in software 

to indicate width of the fraction portion. Qbit can be viewed as the bit position of an 

imaginary radix point, or boundary between integer bits and fraction bits.  

Normally, variables in the same block of computation share the same qbit, so that fixed-

point addition and subtraction are performed the same way as integer addition and 
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subtraction. Fixed-point multiplication is performed as integer multiplication followed by 

rounding to get back the same qbit configuration, or a different qbit configuration if 

desirable in the application. 

To convert a floating-point number to a fixed-point, we multiply the floating-point 

number by 2^qbit. To convert from fixed-point to floating-point, we divide the fixed-

point number by 2^qbit. 

For example, numbers 1.125 and 5.0625 are represented in fixed-point with qbit = 8 as 

1.125 * 2^8 = (1 + 1/8) * 256 = 256 + 32 = 288, and 5.0625 * 2^8 = (5 + 1/16) * 256 = 1280 

+ 16 = 1296. 

The sum of the two numbers, 1.125 + 5.0625 = 6.1875, can be carried out as 288 + 1296 

= 1584, and converted back to floating-point as 1584 / 256 = 6.1875. 

With qbit argument as part of the conversion, the multiplication or division by 2^qbit is 

performed in hardware as part of the conversion, expanding precision and dynamic 

range internally in the process, and bring some acceleration to the conversion process. 

Not all FP/INT conversions support the qbit argument though. Basically, only a 

conversion involving FP16 has this feature. FP16 format has relatively limited dynamic 

range, as its 5 bits of exponent gives +/- 14 range in the exponent in regular (not 

denormal) FP16 numbers.  There are cases where the multiplication or division by 2^qbit 

involved, if carried out in FP16 math would have caused the number to become +/- Inf in 

FP16, and if carried out in integer would have overflown the integer representation. 

Without a qbit argument as part of the conversion, the programmer would have to go 

through FP32, that is, FP16 → FP32 → multiply 2^qbit in FP32 → Integer, or Integer → 

FP32 → multiply by 2^-qbit in FP32 → FP16, and would have taken much longer.  

For example, the number 128.0 represented in Q8 fixed-point is integer 0x8000, or 2^15. 

It’s representable in INT32 or INT24 (vector extended short lane). If we convert this 

number from fixed-point to FP16 using standard (no-qbit) conversion and FP16 math, 

we will convert it first to FP16 then multiplying by 2^-8 in FP16. The first step of 

converting INT24 or INT32 0x8000 to FP16 would result in +Inf (positive infinity), then 

+Inf * 2^-8 = +Inf.  For this example, it seems we would want to first divide by 2^8 in 

INT24/INT32, before performing the standard INT24/INT32 to FP16 conversion. 

However, in general doing that would throw away fractional information that we work 

hard to obtain and would like to preserve as much and as long as possible in the 

computation. 

Conversely, if we convert 128.0 represented in FP16 to Q8 fixed-point with standard (no-

qbit) conversion and FP16 math, we see issues. 128.0 itself we can represent just fine in 

FP16. However, the multiplying by 2^qbit = 2^8 involved, if performed in FP16, we would 

see intermediate result becoming +Inf and cannot proceed to be accurately converted to 

Q8 fixed-point. For this example, it would work if we converted 128.0 in FP16 to 

INT24/INT32, then we left-shift by 8 bits in INT24/INT32. However, in this process we 

also throw away fractional portion of the input number, so it would not accurately 

convert, for example, 128.25, to fixed-point. 

Converting FP32 to/from fixed-point would not have the same issue, as FP32 with its 8-

bit exponent supports wider dynamic range, -126 ~ +126, much wider than integer side, 
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so inputs that cause intermediate outcome to become +/-Inf would cause the final 

converted outcome to be saturated to MAX/MIN integer value for that destination bit 

width, so there is no loss of information if the multiplying/dividing by 2^qbit is 

performed in FP32 before/after conversion to/from integer. 

6.3 Memory Operations  

6.3.1 Memory Coherency 

There is memory dependency detection logic to stall the processor pipeline to keep 

memory coherent.  

For this discussion, it is helpful to define coherent vs non-coherent memory operations. 

Non-coherent memory operations:  

> Transposing load/store  

> Table lookup (load) 

> Histogram (load and store)  

> Vector-addressed store  

Coherent memory operations: all other load/store. Each such load/store accesses 

consecutive memory contents whose size range from one byte to 64 bytes. 

The non-coherent accesses are non-consecutive and thus have a wide address range, so 

it is too expensive to comprehend in the memory dependency stalling logic. Memory 

access for load is in EX5 stage, whereas memory access for store is later in EX9 stage. 

Thus, there should be 5 execution packets of separation between storing an item to 

memory before the loading of that element should be scheduled. 

When a coherent store and the subsequent coherent load are detected by hardware to 

have “close enough” addresses and do not have enough execution packet separation in 

the code, processor will stall the load to create the separation, so that load would return 

memory contents after the store. The checking and stalling mechanism keeps the 

memory operations coherent, or consistent with sequential execution. 

To reduce timing pressure, the address checking is simplified (exact for scalar load/store 

but use just starting row address for vector load/store) and is conservative. Thus, 

sometimes, a load can be stalled unnecessarily until memory transaction from a previous 

store is completed. 

In case either or both memory operations are non-coherent, there is not enough 

execution packet separation, and even when there are overlaps in addresses, processors 

will not stall, causing RAW (read after write) and WAW (write after write) hazards. WAW 

does not happen between normal store and vector-addressed-store, but can happen 

between normal store and histogram update, as they occur on different pipeline stages. 

To help achieve this separation between non-coherent memory operations, in Orin we 

have added a memory fence instruction (MemFence) that can be used to avoid memory 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  60 

coherency issues. The MemFence instruction would inject stalls until all preceding 

memory store operations are committed. It is a broad (works on all memory operations) 

and blind (not based on address) fence, so should be used judiciously, otherwise 

performance may degrade too much. 

Note that there is also available a compiler pragma chess_memory_fence() that works 

similarly as the MemFence instruction. With chess_memory_fence(), compiler inserts as 

many NOPs as necessary to ensure that memory store operations before the fence are 

committed before memory operations after the fence can start. One advantage over 

MemFence instructions is that each MemFence instruction simply inserts stall cycles, 

and with chess_memory_fence(), the compiler is supposed to schedule useful work when 

it’s possible, so that some useful work may be accomplished while memory operations 

after the fence are delayed. 

Histogram read/write has its own per-bank bypass mechanism (covering only histogram 

read/write) to implement correct histogram operation despite VMEM latency. 

There is RAW hazard detection and handling built-in for the histogram functionality to 

ensure memory coherency among histogram updates. Note that there is no hazard 

detection between histogram read/write versus any other load/store accesses, thus the 

“non-coherent” memory operation designation for histogram.   

6.3.2 Memory Address Alignment  

Various scalar/vector load/store shall comply with the address alignment constraint and 

misalignment handling.  

In the case of demoting/promoting load/store, we determine alignment based on the 

data type in memory, versus the data type in register file. For example, QVSTHB, quad 

vector demoting store from Halfword to Byte, is considered Byte-type store regarding to 

address alignment. 

> Byte-type load/store:  

• Scalar load/store LDB, STB (based-offset, post-modify, agen-based) are 8-bit 

aligned. 

• Single vector (32 x 8-bit) load/store VLDB, VSTB (based-offset, post-modify, agen-

based) are 8-bit aligned. 

• Double vector (64 x 8-bit) load/store DVLDB, DVSTB (post-modify, agen-based) 

are 16-bit aligned. 

• Promoting/demoting load/store resulting in 32 x 8-bit memory access, VLDBH, 

VLDBW, DVSTHB, are 8-bit aligned. 

• Demoting store resulting in 64 x 8-bit memory access, QVSTHB, are 16-bit 

aligned. 

> Halfword-type scalar/vector load/store shall be 16-bit aligned. 

> Word-type scalar/vector load/store shall be 32-bit aligned. 

> Extended-word type vector load/store can be leveraged for extended 

Byte/Halfword/Word types (12/24/48-bit), shall be 16-bit aligned.  
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> Table lookup, histogram, vector-addressed store base address should be 512-bit 

aligned, so each 8-bit element is 8-bit aligned, 16-bit element 16-bit aligned, and 32-

bit element 32-bit aligned. 

• VLUT_*, DVLUT_* 

• VHIST_*, DVHIST_* 

• DVAST_* 

> Agen configuration (512-bit) load/store should be 32-bit aligned. 

> AgenCfgLD, AgenCfgST 

> Lane predicated vector stores would behave, in terms of address alignment, as 

unpredicated vector stores.  

> Unsigned load would behave as the corresponding signed load (keeping all other 

attributes the same), in terms of address alignment. 

The hardware enforces the alignment constraint by forcing the lowest {1, 2, 6} bits of 

the byte address to zero, based on the alignment requirement being 16-bit, 32-bit, or 

256-bit. For 8-bit address alignment, the byte address is not altered.  

6.3.3 Memory Address Range Constraints 

Load/store addresses should be in valid range consistent with the address map: 

> Superbank A: 0x00000 ~ 0x1FFFF 

> Superbank B: 0x40000 ~ 0x5FFFF 

> Superbank C: 0x80000 ~ 0x9FFFF 

Any single-item load/store should have base address inside the valid range. Any multiple-

item load/store should have base address sufficiently away from the end of each 

superbank range, such that no data item would fall out of the valid range. For example, 

software should avoid issuing a load or store starting 0x1FFE0 and spanning more than 

32 bytes. An exception is lane-predicated store, if prediction is off for the part of store 

data going outside the valid range. 

In case a multiple-item load/store falls partially or fully outside the valid range, hardware 

wraps around the access so that the part of load/store falling outside the valid range is 

mapped back in, to the superbank indicated by the base address.  

In case the base address goes outside the valid range, hardware determines the 

superbank by: 

> Address bits 19:18 == “00” → Superbank A 

> Address bits 19:18 == “01” → Superbank B 

> Address bits 19:18 == “10” or “11” → Superbank C 

However, software should not take advantage of such a wrap-around, as address map 

changes in future generations can change the address wrap-around and make the 

software not work. 
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6.3.4 Scalar Data Types 

Byte, half-word and word types are supported. Signed/unsigned flavors of load for byte 

and half-word are supported to properly sign or zero-extend into 32-bit scalar register 

entry. Store operations are signed/unsigned agnostic so there is just one flavor. 

Table 10. Scalar load/store data types 

Element type  
Size in 

memory 

Size in scalar 

register 

Memory 

alignment 

B/BU: signed/unsigned byte 8-bit 32-bit 8-bit 

H/HU: signed/unsigned half-word 16-bit 32-bit 16-bit 

W/WU: signed/unsigned word 32-bit 32-bit 32-bit  
 

Note that hardware does not tag each scalar register carrying signed or unsigned data, 

where behavior is different, signed and unsigned flavors of scalar math operations are 

offered, so programmer should choose signed/unsigned flavors in scalar load and scalar 

math operations appropriately. 

6.3.5 Vector Data Types and Promotion/Demotion  

Scalar-based load/store can have immediate offset (10-bit) or can be post-modified with 

a second scalar register. Only parallel distribution mode is available, loading 256-bit or 

512-bit from memory to write into single or double vector register, or storing single or 

double vector register into 256-bit or 512-bit in memory. The WX type allows storing the 

raw bits tightly packed as 384-bit, and can be used to load/store B, H, or W-type vector 

registers.  

Data types supported for scalar-based vector load/store: 
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Table 11. Scalar-based vector load/store data types 

Element type  
Vector 

size 
Size in memory 

Size in vector 

register 

Memory 

alignment 

B/BU: 

signed/unsigned byte 

single 32 x 8-bit 

vchar/vuchar 

32 x 12-bit 

vcharx 

8-bit 

double 2 x 32 x 8-bit 

dvchar/dvuchar 

2 x 32 x 12-bit 

dvcharx 

16-bit  

H/HU: 

signed/unsigned half-

word 

single 16 x 16-bit 

vshort/vushort 

16 x 24-bit 

vshortx 

16-bit 

double 2 x 16 x 16-bit 

dvshort/dvushort 

2 x 16 x 24-bit 

dvshortx 

16-bit  

W/WU: 

signed/unsigned 

word 

single 8 x 32-bit 

vint/vuint 

8 x 48-bit 

vintx 

32-bit  

double 2 x 8 x 32-bit 

dvint/dvuint 

2 x 8 x 48-bit 

dvintx 

32-bit  

WX: extended 

precision (VRF, WRF) 

single 8 x 48-bit  

vintx 

8 x 48-bit 

vintx 

32-bit 

Agen-based load/store offers more flexibility in data types. In addition to standard data 

bytes, some types of promotion and demotion cases are supported.  

Note that Load-Permute instruction type designations DVLDPermHB/HBU are not 

included, as these type designations refer to data types in processing steps, permute as 

Halfword and zero/sign extend as Byte, and are not indicating type demotion 

functionality. 

 

Table 12 Agen-based vector load/store data types 

Type name Size in memory 
Size in vector 

register 

Memory 

alignment 

B/BU: signed/unsigned byte load 

B:    signed byte store 

single: 32 x 8-bit 

vchar/vuchar 

double: 64 x 8-bit 

dvchar/dvuchar 

32 x 12-bit 

vcharx 

2x 32 x 12-bit 

dvcharx 

single: 8-bit 

double: 16-bit  

H/HU: signed/unsigned half-word 

load 

H:    signed half-word store 

single: 16 x 16-bit 

vshort/vushrot 

vhfloat 

double: 32 x 16-bit 

dvshort/dvushort 

dvhfloat 

16 x 24-bit 

vshortx 

vhfloatx 

2x 16 x 24-bit 

dvshortx 

dvhfloatx 

16-bit 

W/WU: signed/unsigned word load 

W:    signed word store 

single: 8 x 32-bit 

vint/vuint 

8 x 48-bit 

vintx 

32-bit 
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Type name Size in memory 
Size in vector 

register 

Memory 

alignment 

vfloat 

double: 16 x 32-bit 

dvint/dvuint 

dvfloat 

vfloatx 

2x 8 x 48-bit 

dvintx 

dvfloatx 

BH/BHU: byte to half-word 

promoting load 

double: 32 x 8-bit 

vchar/vuchar 

2x 16 x 24-bit 

dvshortx 

8-bit 

BW/BWU: byte to word promoting 

load 

double: 16 x 8-bit 

n/a (half of vchar/vuchar) 

2x 8 x 48-bit 

dvintx 

8-bit 

HW/HWU: half-word to word 

promoting load 

double: 16 x 16-bit 

vshort/vushort 

2x 8 x 48-bit 

dvintx 

16-bit 

BH: extended byte to half-word 

promoting store 

single: 32 x 16-bit 

dvshort 

32 x 12-bit 

vcharx 

16-bit 

HW: extended half-word to word 

promoting store 

single: 16 x 32-bit 

dvint 

16 x 24-bit 

vshortx 

32-bit 

HB: half-word to byte demoting 

store 

quad: 64 x 8-bit  

dvchar 

double: 32 x 8-bit 

vchar 

4 x 16 x 24-bit 

2 x dvshortx 

2 x 16 x 24-bit 

dvshortx 

16-bit 

WH: word to half word demoting 

store 

quad: 32 x 16-bit 

dvshort 

double: 16 x 16-bit 

vshort 

4 x 8 x 48-bit 

2x dvintx 

2 x 8 x 48-bit 

dvintx 

16-bit 

WH: word to half word demoting 

store from DXAC 

double: 32 x 16-bit dvshort 2 x 16 x 32-bit 

dxvshortx 

16-bit 

WX: single vector register full 384-

bit load/store 

(no rounding and saturation 

support) 

single: 8 x 48-bit 

vintx 

8 x 48-bit 

vintx 

16-bit 

W: single XARF full 512-bit store  single: 16 x 32-bit 

xvshortx 

16 x 32-bit 

xvshortx 

32-bit 

While in scalar/vector math we use “F” and “HF” type designation to denote float and 

hfloat data types, in memory operations, float and hfloat are treated like int and short 

respectively and are thus mapped to “W” and “H” type designations. 

6.3.6 Vector Load/Store Distribution Options  

Various data distribution options are supported for vector load/store: 

> S: scalar (load 1 element and broadcast to all lanes, store first lane), single register 

(storing first lane of vector register) or double register (storing first lane of .lo single 

vector and first lane of .hi single vector) 
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> P: parallel (1-to-1), single or double register 

> T: transposing, having constant offset between elements, single or double register 

> PDI: parallel double register deinterleaving (load-only) 

> PI: parallel double register interleaving (store-only) 

•    parallel quad register 4-way interleaving (store-only) 

> TDI: transposing double register deinterleaving (load-only) 

> TI: transposing double register interleaving (store-only) 

> PI2: alternate form of quad register interleaving (store-only) 

> C2: circulate between 2 data points, single register (load only) 

> T2: transposing after every pair of elements (double Word vector load/store) 

> T2DI/T2I: T2 with deinterleaving load or with interleaving store (double Word vector 

load/store, double Halfword vector load) 

> T4: transpose every 4 data elements 

> T8: transpose every 8 data elements 

> T16: transpose every 16 data elements 

> T32: transpose every 32 data elements 

Interleaving/deinterleaving is to offer data access flexibility as well as to deal with MAC 

datapath interleaving in the lane-expanding cases. For double-register deinterleaving 

load, we take memory items and interleave (deal) into the two vector registers. For 

double-register interleaving store, we interleave (shuffle) data from two vector registers 

to sequential items in the memory. For quad-register interleaving store, we interleave 

each pair, then between the two pairs. 

For example, “QVSTWH_P V0:V1, V2:V3, *A0++” would store out (indexing word lanes of 

each register): 

V0[0], V0[1], …, V0[7], V1[0], V1[1], …, V1[7],  
V2[0], V2[1], …, V2[7], V3[0], V3[1], …, V3[7] 

The 4-way interleaving version, QVSTWH_PI V0:V1_V2:V3 would store out: 

V0[0], V2[0], V1[0], V3[0], V0[1], V2[1], V1[1], V3[1], …, V0[7], V2[7], V1[7], V3[7] 

where the lowest 16-bit of each word lane is stored out in half-word spacing. 

The 4-way interleaving QVSTHB_PI V0:V1, V2:V3 has a similar data pattern, with input 

elements pulled from half-word (24-bit) lanes and stored out as bytes.  

V0[0], V2[0], V1[0], V3[0], V0[1], V2[1], V1[1], V3[1], …, V0[15], V2[15], V1[15], V3[15] 

Alternative interleaving pattern in QVSTWH_PI2 V0:V1, V2:V3, each element being 48-bit 

input from register, 16-bit output in memory: 

V0[0], V1[0], V0[1], V1[1], … , V0[7], V1[7], V2[0], V3[0], V2[1], V3[1], … , V2[7], V3[7] 

Alternative interleaving pattern in QVSTHB_PI2 V0:V1, V2:V3, each element being 24-bit 

input from register, 8-bit output in memory: 

V0[0], V1[0], V0[1], V1[1], … , V0[15], V1[15], V2[0], V3[0], V2[1], V3[1], … , V2[15], V3[15] 
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Another way to compare with the “_P” distribution option is to look at V0, V1, V2, V3 

each as an 8 (in case of WH type) or 16 (in case of HB type) -element array.  

> QVST*_P stores out V0 + V1 + V2 + V3, “+” being concatenation. 

> QVST*_PI stores out interleave(interleave(V0, V1), interleave(V2, V3)). 

> QVST*_PI2 stores out interleave(V0, V1) + interleave(V2, V3). 

A load with “C2” distribution, for example, “VLDW_C2 *A0++, V0” would read the first 2 

32-bit words from the location pointed by agen A0, say x[0] and x[1], and distribute 

them such that 

V0 = {x[0], x[1], x[0], x[1], x[0], x[1], x[0], x[1]}, seen as word (48-bit) lanes. 

6.3.7 Transposing Load/Store  

Transposing load/store accesses array elements vertically when the memory contents is 

viewed with the configured line pitch. Here, line pitch is defined by number of elements. 

Six transposition modes are supported, designated as T, T2, T4, T8, T16 and T32. T is the 

normal transposition mode, and is supported broadly, for all Byte/Halfword/Word types 

and various promotion/demotion types, single and double vector load/store. T<n> 

transposition, n being a power of 2 from 2 to 32, reads/writes n consecutive data points 

before applying the line pitch address offset.   

Not all line pitch values are possible. Constraints on the line pitch are dependent on the 

data type and the transposition mode, as shown in the following table.  
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Table 13. Line pitch constraint for various transposition modes  

Trans-

position 

mode 

Single/double vector - type - load/store Line pitch 

constraint 

 

Programmed 

into 

lane_ofst 

(12-bit 

unsigned) 

T Single/double Word load (32-bit → 48-bit) 

Single/double Word store (48-bit → 32-bit) 

Single HW promoting store (24-bit → 32-bit) 

16k + 1 

 

k 

 Single/double Halfword load (16-bit → 24-bit) 

Single/double Halfword store (24-bit → 16-bit)  

Double HW promoting load (16-bit → 24-bit) 

Double BH promoting store (12-bit → 16-bit) 

Double/quad WH demoting store (48-bit → 16-bit) 

32k + 1 

 

k 

 Single Byte load (8-bit → 12-bit) 

Single Byte store (12-bit → 8-bit) 

Double BH promoting load (8-bit → 24-bit) 

Double BW promoting load (8-bit → 48-bit) 

Double/quad HB demoting store (24-bit → 8-bit) 

64k + 2 

 

k 

T2 Double Word load (32-bit → 48-bit) 

Double Word store (48-bit → 32-bit) 

16k + 2 

 

k 

Double Halfword load (16-bit → 24-bit) 

Double Halfword store (24-bit → 16-bit) 

32k + 2 k 

T4 Double Halfword load (16-bit → 24-bit) 

Double Halfword store (24-bit → 16-bit) 

32k + 4 k 

T8 Double Word load (32-bit → 48-bit) 

Double Word store (48-bit → 32-bit) 

16k + 8 

 

k  

Double Halfword load (16-bit → 24-bit) 

Double Halfword store (24-bit → 16-bit) 

32k + 8 k 

T16 Double Halfword load (16-bit → 24-bit) 

Double Halfword store (24-bit → 16-bit) 

32k + 16 

 

k  

T32 Double Byte load (8-bit → 12-bit) 

Double Byte store (12-bit → 8-bit) 

64k + 32 

 

k  

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like 

normal (consecutive) load/store in address calculation. Behavior is still different than 

normal (consecutive) load/store, in the sense that degenerate transposing memory 

transactions are still noncoherent and can be used intentionally to avoid unnecessary 

memory stalls. Please see Memory Coherency for details. 

In case there is a type promotion or demotion in transposing load/store, it’s the data 

type in memory that dictates which line pitch constraint to use. 
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For Byte type we only support single vector T transposition load/store. For Halfword and 

Word types, both single vector and double vector T transposition load/store are 

supported.  

In general, transposing load/store calculates byte addresses for each element as follows 

for the normal transposition (T): 

M = data size in bytes, 1, 2 or 4 for Byte/Halfword/Word type 
P = (M == 1) ? (64*K + 2) : (64*K + M) // line pitch in bytes, K provided by agen lane_ofst 
byte_address[i] = (base & SUPERBANK_SELECT)  
                + alias_within_superbank((base + i*P), i = 0 .. num_lanes – 1 

With this address calculation, adjacent lanes are P (pitch in bytes) apart in memory. 

The first term of byte address is for superbank selection, which is affected only by the 

base address, not by any index. As each superbank occupies 256KB of space (256K = 

2^18), including aliased region, and we have 4 superbanks, we look at bits 19 and 18 of 

byte address to select superbank:  

SUPERBANK_SELECT = 0xC0000 

For the T2 element-pair transposition, we carry out the following address calculation:  

M = 2 for Halfword type, 4 for Word type 
P = 64*K + 2*M // line pitch in bytes, K provided by agen lane_ofst 
byte_address[2*i] = (base & SUPERBANK_SELECT)  
                  + alias_within_superbank ((base & BASE_MASK) + i*P)  
byte_address[2*i+1] = (base & SUPERBANK_SELECT)  
                    + alias_within_superbank ((base & BASE_MASK) + i*P + M)  
                    i = 0 .. num_lanes/2 – 1, where BASE_MASK = 0x1FFC0. 

With this address calculation, adjacent lanes are alternately M and 64*K+M apart in 

memory.  

The following diagram shows examples of T and T2 transposition access patterns. Note 

that for Byte type, we write either all even bytes of every halfword or all odd bytes of 

every halfword, depending on the LSB of byte address. 
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Figure 9. Access patterns of transposition modes T and T2 

 
 

T4, T8, T16, and T32 transposition modes are supported in selective load/store 

instructions. Halfword type is more heavily used than the other types in computer vision, 

and double vector load/store leverages full throughput of VMEM, so double vector 

Halfword load/store supports all the transposition modes. Other type-transposition 

combinations are supported where there is demand among use cases.  

In general, line pitch in bytes for T<n> transposition is derived as 

 P = 64 * lane_offset + n * sizeof_data_type 

The access pattern is that we would access consecutively n data elements before taking 

the line pitch address offset to move down to the next line.  

The following diagram shows H_T4, H_T8, H_T16, B_T32 transposition access pattern.   
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Figure 10. Access patterns of transposition modes T4, T8, T16 and T32 

 
 

The unsigned 12-bit lane offset is applied up to 31 times among the transposition 

options of a load/store instruction, and line pitch is 64 bytes times the lane offset, so 

the full range of unsigned 12-bit lane offset value can lead the raw address to map far 

outside the superbank the base address is pointed to.  The extreme case is with single-

vector byte-type T transpose, 31 * (64 * 4095 + 2), almost 8 Mega Bytes (with Mega 

being 1024^2). 

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like 

normal (consecutive) load/store in address calculation in all cases except for byte-type T 

transposing load/store. Because we have 16-bit memory banks, byte-type T transposing 

load/store with zero lane offset would be reading/writing every-other byte instead of 

consecutive bytes. 

In cases where address patterns of degenerate transposing load/store are identical with 

that of normal/consecutive load/store, the exact behavior is still different, in the sense 

that degenerate transposing memory transactions are still non-coherent transactions 

from memory coherence stall logic point of view, meaning there is no address proximity 

checks to stall memory transactions automatically. In certain cases, the degenerate 

transposing load/store can be used intentionally to avoid memory coherency stalls, but 

programmers should be extremely careful with its use.  

The alias_within_superbank function in address calculation keeps subsequent accesses 

within one superbank. Only in B_T32/H_T16/W_T8 distribution options, where the line 

pitch is applied only once, would we make use of almost-full range of lane offset. It’s also 

for future extension of VMEM capacity. Programmers are strongly discouraged to 

intentionally allow address to go outside physical memory and rely on address aliasing in 

the hardware. Such code may not work in the future when address map changes. 
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6.3.8 Parallel Lookup, Histogram and Vector-

Addressed Store 

PVA supports parallel table lookup and histogram through table/bin replication, taking 

advantage of the memory banking organization in VMEM superbanks.    

Vector-addressed store, also called reverse parallel lookup, takes a scalar base address 

(512-bit = 64-byte aligned), a vector of indices, a vector of data values, and writes the 

data values into the indexed entries. Often, per-lane predication is required to perform 

store on selected lanes. 

Table lookup:  

> 1/2/4/8/16 x W/WU       word index, word table entry 

> 1/2/4/8/16/32 x H/HU     halfword index, halfword table entry  

> 1/2/4/8/16/32 x B/BU      byte index, byte table entry 

> 1/2/4/8/16/32 x HB/HBU   halfword index, byte table entry 

Histogram:  

> 1/2/4/8/16 W             word index, word histogram bin 

> 1/2/4/8/16/32 H           halfword index, halfword histogram bin 

Vector-addressed store: 

> 16W                     word index, word store data 

> 32H                      halfword index, halfword store data 

Note that only memory slot 0, M0, supports lookup, histogram, and vector-addressed 

store features. 

6.3.8.1 Data Organization in Memory 

Table/histogram/VAST data organization is as follows: 

Figure 11. Parallel lookup, histogram and VAST data organization for various 

types and parallelism 

16-parallel Word-type: 

T0[0] T1[0] …    T15[0] 

T0[1] T1[1] …    T15[1] 

… 

8-parallel Word-type: 
T0[0..1] T1[0..1] … T7[0..1] 

T0[2..3] T1[2..3] … T7[2..3] 

… 

4-parallel Word-type: 

T0[0..3] T1[0..3] … T3[0..3] 

T0[4..7] T1[4..7] … T3[4..7] 

… 
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2-parallel Word-type: 
T0[0..7] T1[0..7] 

T0[8..15] T1[8..15] 

… 

1-parallel Word-type: 

T0[0..15] 

T0[16..31] 

… 

32-parallel Half-word-type: 
T0[0] T1[0] T2[0] …        T31[0] 

T0[1] T1[1] T2[1] …        T31[1] 

… 

16-parallel Half-word-type: 

T0[0..1] T1[0..1] …    T15[0..1] 

T0[2..3] T1[2..3] …    T15[2..3] 

… 

8-parallel Half-word -type: 
T0[0..3] T1[0..3] … T7[0..3] 

T0[4..7] T1[4..7] … T7[4..7] 

… 

 

4-parallel Half-word -type: 
T0[0..7] T1[0..7] … T3[0..7] 

T0[8..15] T1[8..15] … T3[8..15] 

… 

2-parallel Half-word -type: 

T0[0..15] T1[0..15] 

T0[16..31] T1[16..31] 

… 

1-parallel Half-word -type: 
T0[0..31] 

T0[32..63] 

… 

32-parallel Byte-type: 

T0[0..1] T1[0..1] T2[0..1] …        T31[0..1] 

T0[2..3] T1[2..3] T2[2..3] …        T31[2..3] 

… 

16-parallel Byte -type: 
T0[0..3] T1[0..3] … T15[0..3] 

T0[4..7] T1[4..7] … T15[4..7] 

… 

8-parallel Byte -type: 

 
T0[0..7] T1[0..7] … T7[0..7] 

T0[8..15] T1[8..15] … T7[8..15] 

… 

4-parallel Byte -type: 
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T0[0..15] T1[0..15] … T3[0..15] 

T0[16..31] T1[16..31] … T3[16..31] 

… 

2-parallel Byte -type: 
T0[0..31] T1[0..31] 

T0[32..63] T1[32..63] 

… 

1-parallel Byte -type: 

T0[0..63] 

T0[64..127] 

… 
 

6.3.8.2 Table Lookup  

VMEM Superbanks support parallel table lookup with the following data element size 

and parallelism combinations: 

> For byte element size, 1/2/4/8/16/32 ways of parallelism 

> For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism 

> For word (32-bit) element size, 1/2/4/8/16 ways of parallelism 

The VPU sends a table base address (512-bit or 64-byte aligned) and an index vector to 

the VMEM interface (VMEM I/F). The VPU also sends along addressing mode (to convey 

that it’s a table lookup transaction), element size and parallelism as sideband signals. The 

first K elements of the index vector are consumed for K-way lookup; the rest are 

ignored. 

The VMEM I/F decodes the upper bits of the base address and forwards all signals 

pertaining to the lookup access to the addressed superbank. 

The superbank carries out the lookup, extracts the K table entries from memory 

according to the base address and the index vector, and sends an outcome vector 

through the VMEM I/F back to the VPU. The first K elements of the outcome vector are 

consumed by the VPU; the rest are ignored. 

The 32 16-bit memory banks are divided evenly to support the various lookup 

parallelisms. For example, for 4-way word-size lookup, the 32 memory banks are evenly 

divided into 4 parallel tables, with each table residing in 8 16-bit memory banks. Please 

see Section 6.3.8.1 for table data organization for various data type and parallelism 

combinations. 

In Gen-2 VPU we have added 2-point lookup and 2x2-point lookup. 

Table 14. Table lookup 2-point and 2x2-point support  

Instruction Memory object  Index vector Outcome vector 

VLUT_*B 

VLUT_2pt_*B 

VLUT_2x2pt_*B 

signed byte (8-bit) sign-extended from byte 

lane (12-bit) 

 

signed byte (12-bit) 
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Instruction Memory object  Index vector Outcome vector 

VLUT_*BU 

VLUT_2pt_*BU 

VLUT_2x2pt_*BU 

unsigned byte (8-bit) sign-extended from byte 

lane (12-bit) 

 

signed byte (12-bit) 

[D]VLUT_*H 

[D]VLUT_2pt_*H 

[D]VLUT_2x2pt_*H 

signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit) 

 

signed half-word (24-bit) 

[D]VLUT_*HU 

[D]VLUT_2pt_*HU 

[D]VLUT_2x2pt_*HU 

unsigned half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit) 

 

signed half-word (24-bit) 

[D]VLUT_*W 

[D]VLUT_2pt_*W 

[D]VLUT_2x2pt_*W 

signed word (32-bit) Up to 15 LSBs from word 

lane (48-bit) 

 

signed word (48-bit) 

[D]VLUT_*WU 

[D]VLUT_2pt_*WU 

[D]VLUT_2x2pt_*WU 

unsigned word (32-bit) Up to 15 LSBs from word 

lane (48-bit) 

 

signed word (48-bit) 

VLUT_*HB 

VLUT_2pt_*HB 

VLUT_2x2pt_*HB 

signed byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit) 

 

signed byte (12-bit) 

VLUT_*HBU 

VLUT_2pt_*HBU 

VLUT_2x2pt_*HBU 

unsigned byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit) 

 

signed byte (12-bit) 

 

6.3.8.3 Histogram  

VMEM Superbanks support parallel histogram with the following data element size and 

parallelism combinations: 

> There is no byte element size support  

> For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism 

> For word (32-bit) element size, 1/2/4/8/16 ways of parallelism 

Since each superbank supports one read transaction and one write transaction per 

cycle, histogram reads and writes are pipelined, to achieve up to 32 histogram updates 

per cycle, in case of 32-way half-word case. 

The VPU sends a histogram base address (512-bit or 64-byte aligned), an index vector 

and an update vector to the VMEM interface (VMEM I/F). The VPU also sends along 

addressing mode (to convey that it’s a histogram transaction), element size and 

parallelism as sideband signals. The first K elements of the index vector and the update 

vector respectively are consumed for K-way histogram; the rest are ignored. 

The VMEM I/F decodes the upper bits of the base address and forwards all signals 

pertaining to the histogram access to the addressed superbank. 
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The superbank carries out the histogram update, reads the K histogram bins from 

memory according to the base address and the index vector, adds the update vector to 

the bins, writes the updated bins back to memory (where each bin came from), and 

sends the before-update bins as an outcome vector through the VMEM I/F back to the 

VPU. The first K elements of the outcome vector are consumed by the VPU; the rest are 

ignored. 

The 32 16-bit memory banks are divided evenly to support the various histogram 

parallelisms. For example, for 4-way word-size histogram, the 32 memory banks are 

evenly divided into 4 parallel histograms, with each histogram residing in 8 16-bit 

memory banks. See Data Organization in Memory for histogram data organization for 

various data type and parallelism combinations. 

Compared to conventional/normal histogram, VPU parallel histogram feature 

implements weighted histogram (by allowing an update vector to be added instead of 

only incrementing by one), and supports bin value read-back, which is useful in sorting 

and decision tree applications to bin records or features for further processing. 

Table 15. Histogram support  

Instruction 
Memory object (input & 

outcome) 
Index & weight vectors Outcome vector 

[D]VHIST_*H signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit) 

signed half-word (24-bit) 

[D]VHIST_*W signed word (32-bit) Up to 15 LSBs from word 

lane (48-bit) 

signed word (48-bit) 

[D]VHIST_OR_*H signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit) 

signed half-word (24-bit) 

[D]VHIST_OR_*W signed word (32-bit) Up to 15 LSBs from word 

lane (48-bit) 

signed word (48-bit) 

6.3.8.4 Vector Addressed Store  

VMEM Superbanks support vector addressed store, which is also called reverse lookup, 

since instead of reading back indexed entries, data is written to the indexed entries.  We 

support the maximal parallelism, 32 half-word and 16-word configurations. 

Table 16. Vector addressed store support  

Instruction Memory object 

(outcome) 

Index & data vectors Outcome 

vector 

DVAST_32H signed half-word (16-bit) 11 LSBs from half-word 

lane (24-bit) 

n/a 

DVAST_16W signed word (32-bit) 11 LSBs from word lane 

(48-bit) 

n/a 

Basically, each index lane is sign-extended where insufficient to cover a whole 

superbank, otherwise appropriate number of LSBs taken to cover a whole superbank. 
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When we are extending, it’s always sign-extended, as opposed to complying with 

signed/unsigned designation in the lookup instruction (which is used to sign/zero-extend 

table/histogram entry). 

In the case of byte indices (which is normally for byte entries), since a superbank has 

128KB, 17 bits are needed for 1-way lookup, 16 bits for 2-way lookup (each way 

containing 64KB), and so on, to 12 bits needed for 32-way lookup (each way containing 

4KB). We would sign-extend from 12-bit byte lane.  

For the conventional lookup providing starting address of the table as the base, byte-

indexed lookup can only cover 2KB for 1-way, 4KB for 2-way, and so on, to 64KB for 32-

way. Due to the limited table size coverage, we also support using halfword indices for 

byte-entry table lookup. 

In the case of halfword and word entry (which is only possible to go with halfword and 

word indices), we have more than sufficient bit width in each index lane to cover a full 

superbank, so only an appropriate number of LSBs are used. The address calculation is 

signed/unsigned agnostic (except when we need to sign/zero-extend for the case of 

byte indices), so it’s safe to treat indices as unsigned, which is how table lookup is 

naturally implemented.  

In case of VAST, only maximal parallelism is supported for each type (32H and 16W), so 

the index is used to point to each 64-byte-aligned wide memory word. Thus, there is just 

one bit width used, 11-bit, as superbank size 128KB is 2K x 64B. 

The superbank to access is determined solely by the base address. There is no out-of-

bound memory access detection; large index values can cause the resulting address to 

land outside the intended table or histogram object in the same superbank in VMEM.  

Also, taking some LSBs of the indices, ignoring upper bits, is essentially performing 

index wrap-around in the same superbank, but not in the table/histogram/VAST-object, 

as there is no way to indicate size of the table/histogram/VAS-object to the processor. It 

is the programmer’s responsibility to ensure that lookup/histogram/VAST operations do 

not index outside the intended memory range or suffer the consequences. 

For example, a 4KB 32-way H-type lookup table has only 4KB/2/32 = 64 entries in each 

sub-table. If/when the base address is the starting address of the table, in conventional 

non-negative indexing, only [0, 63] in index range makes sense. If the base address is 

right in the middle of the table (starting address + 2KB), for a symmetrical signed 

indexing, only [-32, 31] range makes sense.  A whole superbank can be reached by the 

lookup, with up to 128KB/2/32 = 2K entries. An index value of 2048 would behave the 

same as 0, and full range of index values in 24-bit vector lane would wrap 8192 times 

(ignoring upper 14 bits) around the superbank and can access data outside the allocated 

4KB table. 

Address Calculation 

Parallel lookup, histogram, and vector address store addressing involves taking the 

prescribed number of indices, separating the indices into vertical and horizontal 

components, and accessing the table entry with the vertical/horizontal indices in the 

appropriate sub-table.  
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For example, 4-way parallel lookup of byte type would organize the table memory as 4 

banks of 16 entries wide sub-tables, using the 4 LSBs of index horizontally within the 

row of 16 entries fetched for a sub-table, and the upper bits vertically to pick the row.  

Address calculation for the parallel lookup can be expressed as: 

 lut_out[i] = table[ (index[i] & 0xF) + i*16 + (index[i]>>4)*64 ], for i = 0..3 

In general, for M bytes-per-point data type, N-way parallel lookup, we calculate stride K = 

(64/M)/N = 64/(M*N) = number of entries per table on the same memory line (512 bits = 

64 bytes per line). Hardware accesses table entries at byte addresses 

 byte_offset[i] = ((index[i] modulo K) + i*K) * M + floor(index[i] / K)*64, for i = 0..N-1 

Essentially, the table index is partitioned into two pieces, the modulo K piece for 

indexing consecutive entries in a memory line, and the quotient divided by K piece for 

addressing memory lines. As K is a power of two (since parallelism N, data size M and 64 

are all powers of two), the modulo and the divide operations are implemented as bitwise 

AND and right shift. 

 byte_address[i] = (base & SUPERBANK_SELECT)  
                    + ((base & BASE_MASK) + byte_offset[i] ) & SUPERBANK_MASK 

The first term of byte address is for superbank selection, which is affected only by the 

base address, not by any index. For the first generation, we have 

SUPERBANK_SELECT = 0xC0000 
BASE_MASK = 0x1FFC0, 
SUPEBANK_MASK = 0x1FFFF. 

For two-point lookup, DVLUT_2pt, up to 16 indices (consistent with the parallelism 

designation) are used to calculate byte_offset and byte_address described above. Then, 

same number of additional indices, index[i] + 1, go through the same calculation to 

perform up to 32 lookups per DVLUT_2pt instruction. See 9.9.6.4 DVLUT_2pt instruction 

description for details. 

For 2x2-point lookup, DVLUT_2x2pt, up to 8 indices (consistent with the parallelism 

designation) are used to calculate byte_offset and byte_address described above. Then, 

3 times the number of additional indices, index[i] + 1, index[i] + LP, index[i] + LP + 1, go 

through the same calculation to perform up to 32 lookups per DVLUT_2pt instruction.  

LP here is line pitch and is derived from the PL register. See 9.9.6.5 DVLUT_2x2pt 

instruction description for details. 

Vector addressed store is also called reverse lookup, as instead of retrieving indexed 

entries from memory, write values are to be written to the indexed locations. It is useful 

for list-based processing.  

6.4 Address Generator Features 
Address generator, or agen, is a unique feature in VPU instruction set architecture. Agen 

moves much of the multi-dimensional address calculation prominent in image and vision 

processing to the background and carried out by hardware, improving performance and 

power in common image and vision processing. 
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6.4.1 Multi-Dimensional Address Calculation 

Agen configuration includes address generator and various other load/store parameters 

to accelerate regular load/store operations. 

Each address generator supports up to 6-dimensional address calculation with its own 

set of n1..n6 number of iteration parameters, amod1..amod6 address modifiers, and loop 

variables i1..i6. Agen can be viewed as supporting 6-level nested for loop, with level 1 is 

being the inner-most loop, and level 6 being the outer-most loop.  

For cases when we do not need all 6 dimensions, the convention is to use the lower-

numbered variables and set the higher-numbered variables to default values. For 

example, 2D agen should have 

 n3 = n4 = n5 = n6 = 1 
 amod3 = amod4 = amod5 = amod6 = 0 

The Agen supports 6-dimensional address calculation by realizing this function:  

address(i1, i2, i3, i4, i5, i6) = base + item_size * (i1*w1 + i2*w2 + i3*w3 + i4*w4 + i5*w5 + 
i6*w6), 

In this example, w1..w6 are the weights we place on the loop variables i1..i6. We can also 

visualize w1..w6 as the step amount, in data elements, for each dimension.  

Instead of the programmer providing the weights and hardware computing the address 

via the sum of products expression, the programmer should provide the address 

modifiers (amod1~amod6), which is the delta of one address to the next address as the 

6-dimensional iterator is advanced. 

The address modifiers should be calculated as follows: 

> Inside i1 loop: amod1 = w1. 

> When i1 is reset and i2 is incremented: amod2 = w2 – (n1 – 1)*w1. 

> When i1 and i2 are reset and i3 is incremented: amod3 = w3 – (n2 – 1) * w2 – (n1 – 

1)*w1. 

> When i1, i2 and i3 are reset and i4 is incremented: amod4 = w4 – (n3 – 1)*w3 – (n2 – 1) 

* w2 – (n1 – 1)*w1. 

> When i1, i2, i3 and i4 are reset and i5 is incremented: amod5 = w5 – (n4 – 1)*w4 – (n3 – 

1)*w3 – (n2 – 1) * w2 – (n1 – 1)*w1. 

> When i1, i2, i3, i4 and i5 are reset and i6 is incremented: amod6 = w6 – (n5 – 1)*w5 – 

(n4 – 1)*w4 – (n3 – 1)*w3 – (n2 – 1) * w2 – (n1 – 1)*w1. 

As the above expressions are tedious to program, there is a set of agen wrapper macros 

to translate from n1..n6 and w1..w6 into amod1..amod6. Example of programming with 

agen wrapper will be given in Optimization 2: Leveraging Agen to Collapse Nested Loops. 

Agen data structure includes address modifiers as 18-bit fields, and CfgAgen Mod 

instruction reads 32-bit from the source scalar register and stores only 18 LSBs, 

dropping the upper 14 bits. Addresses generated from each agen is supposed to be 

confined within a superbank (128KB = 2^17), so address calculation does not require 

upper 14 bits.  
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Behavior of agen-based load/store is post-increment. Data is accessed from the current 

address and type, distribution option, etc., configuration. Then the address and loop 

variables i1..i6 are advanced, and address modifier chosen, according to following 

pseudo code: 

  lpend1 = (i1 == (n1 - 1)) || (n1 == 0); 
  lpend2 = (i2 == (n2 - 1)) || (n2 == 0); 
  lpend3 = (i3 == (n3 - 1)) || (n3 == 0); 
  lpend4 = (i4 == (n4 - 1)) || (n4 == 0); 
  lpend5 = (i5 == (n5 - 1)) || (n5 == 0); 
  lpend6 = (i6 == (n6 - 1)) || (n6 == 0); 
 
if (lpend1 && lpend2 && lpend3 && lpend4 && lpend5 && lpend6) { 
 amod = 0; // stay at last data point 
} else if (lpend1 && lpend2 && lpend3 && lpend4 && lpend5) { 
 i1 = i2 = i3 = i4 = i5 = 0;  
 i6 = i6+1;  
 amod = amod6; 
} else if (lpend1 && lpend2 && lpend3 && lpend4) { 
 i1 = i2 = i3 = i4 = 0;  
 i5 = i5+1; 
 amod = amod5;  
} else if (lpend1 && lpend2 && lpend3) { 
 i1 = i2 = i3 = 0;  
 i4 = i4+1;  
 amod = amod4;  
} else if (lpend1 && lpend2) { 
 i1 = i2 = 0;  
 i3 = i3+1; 
 amod = amod3;  
} else if (lpend1) { 
 i1 = 0;  
 i2 = i2+1;  
 amod = amod2;  
} else { 
 i1 = i1 + 1; 
 amod = amod1;  
} 

If the agen functionality is implemented in scalar operations, it would take potentially 

many instructions.  

Agen address calculation is post-modify. When executing an agen-based load/store 

operation, the lower 20-bit of Agen address field is used to address the load/store, amod 

is calculated as described above, address (unsigned 20-bit) is added with amod (signed 

18-bit).  

Consider the VMEM address map (see 5.3). In agen address update, it is NOT possible to 

jump from one superbank’s primary region into another superbank’s primary region, 

since the gap is 128KB, 2^17 bytes, thus minimal distance 2^17 + 1, while signed 18-bit 

of amod can encode a range of -2^17 ~ (2^17 – 1). It IS possible, however, for an agen 
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address to walk from one primary region to an aliased region, then onward into another 

superbank primary region. This is, however, strongly discouraged, as it may break 

software compatibility in the future.  

See Circular Buffer Addressing for additional address calculation steps when circular 

buffer is configured. 

With the reset default values of Addr = 0, amodi = 0, Ni = 1 and Ii = 0, uninitialized agen 

would have address fixed at 0 when it’s used in agen-based load/store. 

Additionally, Ni = 0 is treated like Ni = 1 with the way end-of-loop is detected, and 

maximal iteration count for any loop level is 65535. 

Agen configuration also includes an optional lane_offset field for transposing load/store. 

For the basic T transposition mode, the lane_offset field provides a row offset scaled by 

the lane number. For lane i, relative to linear/consecutive access, the address offset is i * 

lane_offset * 64 Bytes. 

See Transposing Load/Store for use of lane_offset in address calculation across various 

transposition modes.  

6.4.2 Automatic Predication 

When all loop variables reach their ending count, meaning the agen has executed the 

prescribed number of load/stores, all loop variables are stuck at the ending count. Any 

subsequent load with that Agen would repeat reading at the ending address. Any 

subsequent store with that Agen will be predicated off.   

For example, for an Agen with N1 = 4, N2 = N3 = N4 = N5 = N6 = 1, its loop variable and 

predicate off status with respect to execution of the relevant load/store is as follows: 

   I1 I2 I3 I4 I5 I6 auto_pred_off 

Initial state  0 0 0 0 0 0 0  

after 1 execution 1 0 0 0 0 0 0 (1st store allowed) 

after 2 executions 2 0 0 0 0 0 0 (2nd store allowed) 

after 3 executions 3 0 0 0 0 0 0 (3rd store allowed) 

after 4 executions 3 0 0 0 0 0 1 (4th store allowed) 

after 5 executions 3 0 0 0 0 0 1 (5th store blocked) 

We can think of the auto_pred_off as an overflow bit of the Agen loop variables updated 

after the execution (like Agen loop variables), but its predication effect applies on the 

next memory store transaction. 

This agen automatic predication works as an override of programmer-specified 

predication on vector or scalar store via predicate register or vector register. When 

auto_pred_off is 0, programmer-specified predication mechanism applies. When 

auto_pred_off is 1, entire memory write transaction is blocked. 
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The agen automatic predication does not affect loads. Any scalar or vector load using an 

Agen with exceeded iteration count (thus auto_pred_off = 1) will still have its memory 

transaction carried out and destination register write occurred, albeit with address stuck 

at the last valid address so memory read-back value should remain the same (except 

if/when there’s another party, VPU, DLUT or DMA, writing to that address). 

The use case for this feature is loop unrolling. Often VPU code uses pragma 

chess_unroll_loop(K) to indicate to compiler that the loop is to be unroll K times, for 

software pipelining.  
 

 for (i=0; i<niter; i++) chess_unroll_loop(K) 
   { 
   // loop body 
   } 

It is not required that iteration count (niter in the above example) be a multiple of K.  

Compiler generates code to check, and break up the loop into a “multiple” loop and a 

“remainder” loop to ensure that the generated code executes correctly. 

If/when the programmer is certain that the iteration count is indeed a multiple of K, 

another pragma, chess_unroll_loop_assuming_multiple(K), can be used.  This 

pragma instructs compiler not to generate code to compute/check niter modulo K, and 

to not to generate the “remainder” loop. 

The automatically predicate-off feature may allow 

chess_unroll_loop_assuming_multiple(K) to be used whether niter is a multiple 

of K, resulting in smaller code size and lower loop overhead. 

 quotient_ceil = (niter + K – 1) / K; // ceiling (niter / K) 
 for (i=0; i< quotient_ceil * K; i++) chess_unroll_loop_assuming_multiple(K) 
   { 
   // loop body 
   } 

This technique works for most common loops where outcomes are stored out in the 

loop, so extra iterations, as long as stores are predicated off, do not affect the outcome. 

When there is accumulation over loop iterations using vector or scalar register, the Agen 

automatic predication feature does not quite work, as the predication applies only to 

stores, not to register writes. Also, the store must be driven by Agen, as there’s no way 

to specify an ending iteration count using scalar-based (base + offset or post-modify) 

stores. 

6.4.3 Rounding and Saturation 

Agen-based store includes rounding and saturation features. Values from register file 

are first rounded, then saturated. 

There are corresponding Agen configuration fields to convey the parameters: 

> Rounding field includes 1-bit for round/truncation option and 7-bit for number of bits 

to round/truncate 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  82 

> Saturation low/highs limit and values 

> Saturation option field indicates whether saturation is enabled, and whether 

saturation limits are treated as signed or unsigned 

When the number of bits to round/truncate exceeds source lane width (B=12, H=24, 

W=48), rounding leads to zero for all inputs, and truncation leads to zero for 

zero/positive inputs, and to -1 for negative inputs. 

Rounding is performed by adding 1 to the bit position one bit lower than the bit count. 

For example, if we are rounding off 3 bits, we add (1 << 2) then right-shift by 3 bits. 

Truncation is performed by right-shift alone. Examples: 

> round(6, 1) = (6 + (1 << 0)) >> 1 = 7 >> 1 = 3 

> round(6, 2) = (6 + (1 << 1)) >> 2 = 8 >> 2 = 2 

> round(-6, 3) = (-6 + (1 << 2)) >> 3 = -2 >> 3 = -1 

> truncate(6, 1) = 6 >> 1 = 3 

> truncate(6, 2) = 6 >> 2 = 1 

> truncate(-6, 3) = -6 >> 3 = -1 

For saturation, we support 4-parameter saturation. When enabled, hardware carries out 

the following:  

store_val = (reg_val < SatLimLo) ? SatValLo : ((reg_val > SatLimHi) ? SatValHi : reg_val); 

In this case, reg_val is 12/24/48-bit signed. SatLimLo and SatLimHi are sign/zero-

extended from 32-bit values in Agen configuration. We have a 2-bit saturation option 

SatOpt to indicate whether to sign or zero extend the 32-bit configuration values. Note 

that vector lane values are always read as signed. 

Rounding and saturation steps are performed with bit width accommodating both the 

data source bit width (12/24/48-bit lane width in vector registers) and comparison values 

(signed/unsigned 32-bit). Consequently, 

> For promoting stores (12-bit into 16-bit, 24-bit into 32-bit), the source data values 

are in representation range of signed 12-bit or 24-bit.  

> In the case of comparison values, SatLimLo and/or SatLimHi, exceed the source data 

representation range, reg_val < SatLimLo would never happen, so the source data is 

unchanged for that saturation bound. For example, SatLimLo (signed) = -

0x8000_0000 when source data is 12-bit, having representation range [-0x800, 

0x7FF], reg_val < SatLimLo is always false. 

For extended word type source data (48-bit), and when saturation is enabled, the 

comparison is carried out correctly as if it’s carried out in signed 48-bit. For example, 

when reg_val = -0x8000_0000_0000 (min value in signed 48-bit) and SatLimLo 

(signed) = -0x8000_0000 (min value in signed 32-bit), reg_val < SatLimLo is true and 

the replacement occurs.  

The saturation replacement values SatValLo and SatValHi are configured as 32-bit 

numbers. When the memory store type is 8-bit or 16-bit, and the replacement occurs, 

only the 8 or 16 LSBs of SatValLo or SatValHi are written out to memory; the upper 24 or 

16 bits are ignored. 
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Rounding and saturation features are not available for these cases: 

> WX type: can be 8 x 48-bit, 16 x 24-bit, or 32 x 12-bit 

> W type on single vector XARF: 16 x 32-bit 

Double-vector XARF store does include rounding and saturation. 

Rounding and saturation operations are performed as integer operations, so if enabled 

on floating-point (FP32 or FP16) type store, they would interpret floating-point binary 

values as 48-bit/24-bit integer values, so the resulting values being stored may not make 

sense. 

6.4.4 Min and Max Value Collection 

There is a min and max value collection feature in agen-based scalar/vector stores. 

Min/max collection occurs after rounding/saturation and is predicated upon the lane 

being stored to the memory. 

There is a 2-bit min/max option to encode  

> 0: disable (default) 

> 1: disable 

> 2: enable for signed min/max 

> 3: enable for unsigned min/max 

This includes a 32-bit MinVal (min value) and a 32-bit MaxVal (max value) in the Agen 

register file. 

Upon agen initialization, min/max option is initialized to 0 (disabled), and min/max values 

are initialized to 0.  

Upon configuring the min/max option to 2 (enabled for signed min/max), the min value is 

initialized to MAX_INT32 = 0x7FFF_FFFF. The max value is initialized to MIN_INT32 = 

0x8000_0000. 

Upon configuring the min/max option to 3 (enabled for unsigned min/max), the min value 

is initialized to MAX_UINT32 = 0xFFFF_FFFF. The max value is initialized to MIN_UINT32 = 

0. 

Upon configuring the min/max option to 0 or 1 (disabled), the min/max values are reset 

to 0.  

The min/max option is in the first 512-bit part of the Agen config, so is saved with 

AgenCfgST, and restored with AgenCfgLD. Upon AgenCfgLD, min/max values are 

initialized according to min/max option. 

The min/max values are in the second part of the Agen config, so is saved with 

AgenCfgST_p2 and restored with AgenCfgLD_p2.  

Note that with AgenCfgLD_p2, min/max values are loaded as-is from memory without 

checking to see if they make sense: 

1. Min value can be larger than Max value according to the signed/unsigned option 

designated in MinMaxOpt.  
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2. Min value and/or Max value may fall outside the valid range of signed/unsigned 

option designated in MinMaxOpt and data type previously used agen-based store 

associated with the specific Agen.  

3. Max/Max values can be non-zero, though MinMaxOpt indicates min/max collection is 

disabled. 

(1) and (2) are because:  

> The initialized values for Min/Max values are type-blind, and in fact fall out of valid 

char and short ranges in 3 of the 4 possible values (INT32MAX, INT32MIN, 

UINT32MAX). 

> Agen data structure is type-neutral and does not record type of data being stored. 

Because we cannot guarantee that min/max values make sense when min/max collection 

feature is enabled, we don’t attempt to correct min/max values when the feature is 

disabled, presumably min/max values are not useful to the application in such cases.  

Upon every Agen-based store (scalar or vector), if min/max feature is enabled, signed or 

unsigned min and max operations are carried out, so that the MinVal and MaxVal fields 

maintain the min and max values across all stored data. They can be read out after 

processing to query min and max values.  

The min/max collection excludes WX type stores, and that if enabled on floating-point 

(FP32 or FP16) type store, would interpret floating-point binary values as 32-bit/24-bit 

integer values, so the resulting min/max values may not make sense. This is with 

rounding/saturation steps before min/max collection being disabled. If either rounding 

or saturation is enabled, input to min/max collection may not make sense. 

6.4.5 Save and Restore to/from Memory 

Once individual parameters in an agen are configured, the collection of all parameters 

can be saved to memory via AgenCfgST and restored back via AgenCfgLD. This allows 

calculation of parameters to be carried out during application initialization and be quickly 

restored to configure the agens during regular tile processing. 

Reserved fields are written as zeros initialized to zero in InitAgen. They are not 

modifiable via any CfgAgen instructions and not utilized in any Agen functionality. 

Through CfgAgenLD, if corresponding contents in memory are non-zero, zero will be 

loaded into Agen data structure instead. When CfgAgenST is used to store out the 

whole Agen data structure, corresponding bits in memory will show zeros.  

Consult Instruction Execution Ordering for various execution order exceptions regarding 

various instructions accessing Agen. 

6.4.6 Circular Buffer Addressing  

PVA supports circular buffer addressing to facilitate data reuse. Circular buffer 

addressing is available in agen-based load/store instructions by configuring optional 
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circular buffer starting address (cbuf_sa) and circular buffer size (cbuf_sz) parameters in 

the unit. Circular buffer is enabled when cbuf_sz is configured to be a nonzero value. 

There’s alignment constraint (consistent between DMA and VPU) that circular buffer 

should be 64-byte aligned. We allocate 16-bit for the starting address and the size 

parameters. We apply 6-bit up-shift before interpreting the parameters as a byte 

addressed to enforce the alignment.  

Address is folded into the circular buffer via the following pseudo-code: 

  CB_start = cbuf_sa << 6; 
  CB_size = cbuf_sz << 6;    
address = CB_start + ((address – CB_start) % CB_size);  
// % = modulo operator, returns 0..CB_size-1 

The circular buffer address calculation above is applied whenever agen-based load/store 

updates its address when each instance of such instruction is executed. The sequence 

of operations is as follows: 

1. Prescribed load/store using the current address. 

2. Address update using address modifiers, loop iteration count, and loop variables (see 

Multi-Dimensional Address Calculation). 

3. When circular buffer is enabled, address is folded back to [CB_start, 

CB_start+CB_size-1] if it falls out of the range. 

With circular buffer enabled (size > 0), address parameters should be constrained as 

follows: 

> Base address and circular buffer should be inside a superbank. 

> Base address should be within the buffer, i.e., CB_start <= base_addr < CB_start + 

CB_size. 

Any address modifier must not have magnitude (absolute value) larger than the circular 

buffer size; i.e., |AMOD[i]| <= CB_size. 

When circular buffer is enabled, every AGEN address update would be checked to see if 

it falls out of the circular buffer. If it falls under (addr < CB_start), it is adjusted with + 

CB_size. If it falls over (addr >= CB_start + CB_size), it is adjusted with – CB_size. If 

afterward it still falls out of the circular buffer, no error is reported. Note that when 

Agen parameters are properly constrained, this should not happen.  

Details of circular buffer address calculation are as follows (this information is intended 

for verification, where parameters outside normal programming constraints may be 

used): 

> Lower 20 bits of the AGEN address field is read as an unsigned number, addr 

> addr is added with amod, lower 18 bits of one of the 6 address modifiers selected for 

this address increment. The addition outcome is kept as a signed 21-bit number, 

addr1, as the normally updated address without circular buffering 

> Lower 14 bits of cbuf_start (Agen field) is left-shifted 6 bits to become CB_start (20-

bit) 
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> Lower 14 bits of cbuf_size (Agen field) is left-shifted 6 bits to become CB_size (20-

bit) 

> addr2 = addr1 + CB_size, which is addr1 wrapped forward, kept as signed 21-bit 

number 

> addr3 = addr1 – CB_size, which is addr1 wrapped backward, kept as signed 21-bit 

number 

> If amod is negative: 

• If addr1 is less than CB_start, meaning the negative address update makes it fall 

before circular buffer’s start address, wrapped_addr is assigned addr2 (addr1 

wrapped forward) 

• Otherwise, wrapped_addr is assigned addr1 

> Otherwise: 

• If addr1 is greater than or equal to CB_size + CB_start, meaning the positive 

address update makes it fall after circular buffer’s end address, wrapped_addr is 

assigned addr3 (addr1 wrapped backward) 

• Otherwise, wrapped_addr is assigned addr1 

> Lower 20 bits of wrapped_addr is read as an unsigned number and written back zero-

extended to the 32-bit AGEN address field. 

Circular buffer addressing is NOT applied inside a single memory transaction of 

single/double vector load/store. Thus, either vector load/store should avoid crossing the 

circular buffer boundary, or there should be software workaround. 

One software workaround scheme where DMA supplies data to the circular buffer, and 

VPU consumes the data, is to allocate additional 64 bytes after the circular buffer as 

work-around areas. Before VPU starts consuming data in the circular buffer, the first 64 

bytes of circular buffer data should be copied to fill the 64 bytes work-around area. This 

work-around only covers linear (consecutive) accesses though, not transposing 

load/store, table lookup, or histogram. 

There is no easy workaround when VPU supplies data into the circular buffer, and DMA 

consumes it. Misaligned data access generally comes from spatial dependency and is 

only in reading data. It is usually feasible to size output block dimension so that data 

writes are compliant with reasonable alignment constraints. Thus, there is usually no 

need for such a workaround. 
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Figure 12. Workaround for vector accesses across circular buffer boundary 

Superbanks are not consecutive in the data memory space (128KB in 256KB space). In 

normal application, circular buffer should not go out of any superbank. When it does, the 

address is wrapped around and mapped back to one of the VMEM superbanks without 

any error interrupt being raised. 
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Chapter 7. Decoupled Lookup Unit 

(DLUT) 

In this chapter, an overview of the Decoupled Lookup Unit (DLUT) is provided. For a 

programming example, refer to Leveraging DLUT. 

7.1 Overview 
For Orin VPU, we extended VPU instruction set functionality in various areas within the 

scope of an embedded vector SIMD machine. There is one area that we cannot extend in 

this scope, that is resolving memory bank conflict in parallel lookup operations.   

In the VPU instruction set, we do have various parallel lookup instructions (2/4/8/16/32-

way parallelism), but these instructions require that we have correspondingly that many 

tables so that there is inherently no memory bank conflict. These tables are sometimes a 

replication of one table, and sometimes different tables, depending on the application.  

For example, in image warping we transform one image tile at a time, and parallel lookup 

is only possible if we replicate it from that one image tile. For example, in the feature 

tracker, we perform gradient descent on many patches of an image, and parallel lookup 

can be performed on the many patches in parallel, if the patches are reformatted into 

parallel table organization. Either way, table lookup parallelism is constrained by memory 

footprint taken up by the parallel tables. 

In applications involving table lookup, we often wish to perform parallel lookup with 

certain throughput, while we cannot afford memory footprint to replicate one table that 

many times, or load that many parallel tables into memory. Ideally, we want the 

processor to allow parallel lookup with just one copy of the table as part of the 

instruction set. However, such memory operations would result in data-dependent 

memory bank conflicts in execution. For example, 32-way parallel halfword lookup with 

one copy of the take may take up to 32 cycles just to carry out reading the table entries, 

if all 32 lanes happen to go to the same memory bank. VPU can handle some degree of 

data-dependent memory conflict, naming at superbank level. Handling memory bank 

level conflicts is simply too difficult to accomplish in an embedded processor pipeline 

with limited pipeline depth.  

The decoupled lookup unit (DLUT) is architected to provide this functionality outside the 

processor pipeline and can operate concurrently and independently with the processor 
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pipeline, thus the term “decoupled unit”. The DLUT carries out parallel lookup with one 

common table by executing as many lookups in a cycle as it can in a decoupled pipeline.   

Besides parallel lookup with one common table, DLUT also supports one configuration of 

contention free lookup/interpolation, which is most helpful in accelerating target 

workload in the Orin SOC plan. Although the functionality is supported in the VPU 

processor, but by adding this to DLUT, we offload VPU processing cycles so there are 

advantages in performance and power. 

DLUT also supports table reformatting needed to bridge between DMA and DLUT or VPU 

lookup operations. Again, the table reformatting can be accomplished at the same 

throughput by the VPU processor, but by adding this to DLUT, we offload VPU 

processing cycles so there is advantages in performance and power, and the 

functionality in DLUT leverages datapath we need to have anyway for the main lookup 

functionality, so does not pose much area or power increase, just minor engineering 

effort. 

7.2 DLUT Features 
The DLUT provides these operation modes: 

> 1D lookup 

> 2D lookup 

> 1D lookup and linear interpolation 

> 2D lookup and bilinear interpolation 

> Table reformatting 

> Conflict free 2D lookup and bilinear interpolation (from parallel copies of table) 

> 2D lookup and bilinear interpolation with auto-indexing, where the index data need 

not be supplied; indices are generated by DLUT from a few parameters 

Other DLUT features:  

> 1D/2D lookup from one common table, with conflict detection/resolution 

> Optional integer only or fixed-point integer + fraction indices, via configurable 

number of fractional bits 

> Out-of-range sentinel return value 

> Out-of-range predicate off output write 

> Configurable X/Y offset to translate between global coordinates and local 

coordinates  

> Indices can be unsigned 16-bit, or 32-bit (each X or Y in case of 2D lookup) 

> Table entries (and output) can be 8-bit, 16-bit, or 32-bit, signed or unsigned, and 

entry data type is independent of index data type 
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7.3 Task Structure and Operation Modes 
We define a DLUT task as producing N2 * N1 outputs through lookup and optional post-

lookup interpolation. A trimmed down agen (address generator) drives addressing of 

index read, and another agen drives output write. The table pointer can step linearly in 

the outer dimension of N2, so one task can be regarded as N2 rounds of lookup, with 

one table producing N1 outputs per round. These N2 rounds of lookup of one task share 

the same parameter block that specifies index/output data type, index read agen, 

output write agen, and so on. 

Besides table lookup and post-lookup interpolation, DLUT also supports conflict-free 2D 

lookup with bilinear interpolation, and various table reformatting as separate tasks.   

DLUT supports the following operation modes: 

> 1D lookup: from linear indices, optionally perform rounding or truncation to convert 

to integer indices and 1D table lookup. 

> 2D lookup: from 2D indices, optionally perform rounding or truncation to convert to 

integer indices and 2D table lookup 

> 1D lookup with linear interpolation 

> 2D lookup with bilinear interpolation 

> 2D conflict-free lookup with bilinear interpolation, 32-bit index and 16-bit entry only 

> Table reformatting 

> 2D lookup and bilinear interpolation, with automatic index generation that supports 

starting X/Y and scaling step per round of lookup 

DLUT in operation utilizes 3 memory streams, index read stream, lookup read stream, 

and output write stream. To simplify hardware design/verification, encourage efficient 

operation, and simplify DLUT/VPU/DMA interaction, each stream is tied to the superbank 

each task is configured with. Thus, address modification due to agen update and/or 

table address offset is performed in bits 17:0 of the respective address pointers, leaving 

bits 19:18 that identifies the superbank unchanged from the task-configured addresses.  

Tor better DLUT performance, index and lookup should not be in the same superbank. 

However, such an allocation does not affect the correctness of the outcome.  

We define DLUT group size being the number of outputs per clock the hardware can 

achieve ideally, when there is no conflict. The group size is basically set by either index 

read throughput or lookup throughput, as output write throughput is never lower than 

lookup throughput.  

Group size for various modes is as follows: 

> 1D/2D lookup (without interpolation): 32 for Byte/Halfword entries, 16 for Word 

entries. 

> 1D lookup with interpolation: 16 for Byte/Halfword entries, 8 for Word entries. 

> 2D lookup with interpolation: 8 for Byte/Halfword entries, 4 for Word entries. 

> 2D conflict-free lookup with interpolation: 8 (since only Halfword entry type is 

supported). 
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> Table reformatting: 32 (since Halfword type is assumed). 

Note that it is NOT required that the inner-loop output size, N1, should be a multiple of 

group size. Hardware handles optional partial-group operation in the last inner iteration 

by invalidating various index read, lookup, and output write lanes not being utilized.  Note 

that even when task length N1 is a multiple of group size, we can still have partial 

transactions in index read and/or output write. 

7.4 Task Sequencing and VPU/DLUT 

Interaction 
DLUT execution time is dependent on bank conflict within the indices, so it is not 

constant. While it is possible to establish the average execution time given random 

number distribution of the indices, the actual execution time can be drastically different. 

For example, a task of 32 Halfword lookups can take between 1 and 32 cycles to 

execute, excluding any control and pipelining overhead.   

In applications there can be multiple dependent or independent lookup tasks that we 

would like DLUT to execute sequentially, while VPU is executing some other compute 

tasks. Since DLUT execution time is data dependent and can be drastically different, it is 

not convenient for VPU to “check on” DLUT between compute tasks and kick off the 

next DLUT task one at a time. To facilitate parallel execution, we architect the DLUT 

interface to facilitate task sequencing. 

VPU software prepares task parameters, allocate input/output regions, for multiple 

tasks at a time, and go through one interaction with DLUT. Parameters for each task is a 

fixed-sized data structure that links to the next task. 

DLUT carries out the configured tasks sequentially without overlap. Each task is 

processed to completion (last output written) before the next task is started (first index 

read) to simplify hardware implementation. 
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Chapter 8. Programming Examples 

In this chapter, we show a few relatively simple programming examples. The profiling 

instruction reports were generated at the time of the writing, and may not be accurate 

later, as the performance is subject to processor model revisions and ASIP tool updates.  

8.1 Typical Test Case Organization  
A recommended way to organize test source files for a typical algorithm/application VPU 

standalone test case, for example, array_add, is to have these source files: 

> array_add.prx  project file listing source files, header include paths, 

compiler settings, etc. 

> array_add_test.c:  containing main function and global input/output arrays 

> array_add_ref.c  reference function, typically written in plain/scalar C code 

> array_add_ref.h  reference function header 

> array_add_opt.c  optimized function  

> array_add_opt.h  optimized function header 

The VPU standalone test case typically used to develop/optimize compute kernels. For 

developing a PVA application including DMA, one should follow the cuPVA development 

flow.  

A sample testbench code in array_add_test.c follows: 

#include "stdio.h" 
#include "string.h" 
 
#define TEST_SZ 4096 
 
int chess_storage(RAM_Ab:chess_segment(A)) in1[TEST_SZ]; 
int chess_storage(RAM_Bb:chess_segment(B)) in2[TEST_SZ]; 
int chess_storage(RAM_Cb:chess_segment(C)) out_ref[TEST_SZ]; 
int chess_storage(RAM_Cb:chess_segment(C)) out_opt[TEST_SZ]; 
 
int main()  
{ 
  test_mem_fill_int(in1, TEST_SZ, 0x80000000, 0x7FFFFFFF); 
  test_mem_fill_int(in2, TEST_SZ, 0x80000000, 0x7FFFFFFF); 
  memset(out_opt, 0, sizeof(out_opt)); 
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  array_add_ref(in1, in2, out_ref, TEST_SZ); 
  array_add_opt(in1, in2, out_opt, TEST_SZ); 

 
  int fail = memcmp(out_ref, out_opt, sizeof(out_ref)); 
  return fail; 
} 
 

The arrays are allocated with chess_storage() pragma. In a VPU programming 

environment, the VMEM L1 data memory, which consists of 3 superbanks each 128KB, is 

a precious resource, so typically programmers would allocate manually into the 3 

superbanks in a matter that minimize bank conflict during VPU compute kernel 

execution. See Memory Allocation among VMEM Superbanks about details in VMEM 

superbanks and storage specifiers. 

For this specific compute kernel, array addition, we need 2 inputs being in different 

superbanks. The output array must be in a third superbank in Gen-1 VPU, since in Gen-1 

VMEM, each superbank has one memory port that can support read or write, but not 

both. In Gen-2 VPU, the output array can be in any superbank since each VMEM 

superbank has one read port and one write port. 

DMA and DLUT share VMEM superbanks as well, so can potentially conflict with VPU 

compute kernel accessing VMEM superbanks. In Gen-2 VPU, one can take advantage of 

the one-read-one-write ports of VMEM superbank to reduce conflicts. This is because 

typically we have the producer/consumer relationship between each pair of masters 

transmitting one array of data. 

Typically, in the main program, input arrays are initialized with random values, and 

optimized outcome array is initialized to zero. Then, the reference function is called to 

produce expected outcome array, the optimized function is called to produce optimized 

outcome. Finally, the two arrays are matched to verify that optimized function carries 

out the intended functionality, and because of the matching, the convention being zero 

indicates pass, non-zero indicates fail, is returns from main(). 

8.2 1D Array Addition 
We shall use a one-dimension array addition function to illustrate the process of taking 

some plain C code, and revise it step by step to achieve full performance. 

8.2.1 Scalar Code 

We start with the same code as the one shown in Hardware Looping to showcase the 

hardware looping feature. We often call this the scalar code, as the code is written 

without using vector data type, vector operation intrinsic functions, or vector load/store 

intrinsic functions. The code is translated into scalar math and scalar load/store 

instructions. 
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//********************************************************************* 
// Function implemented with normal/scalar C code 
//********************************************************************* 
void array_add_ref(int * A, int * B, int * C, int len) 
{ 
  for (int i=0 ; i<len; i++) 
  { 
    C[i] = A[i] + B[i]; 
  } 
} 

Instead of assembly listing, the profiling instruction report is shown next. The report has 

performance information annotated besides the assembly listing, so it is a lot more 

convenient to assess performance with, than assembly listing. There is also function-

level PC range, code size, and cycle/instruction count information that are quite useful. 

Some manual editing is done on the generated report to shorten labels and various 

fields so that the report can easily fit the page width for readability. Somehow tool 

generated instruction reports omit labels, and they are manually added back to make 

better sense of the control flow.  

Function detail: array_add_ref void_array_add_ref___P__sint___P__sint___P__sint___sint 
 
  Low PC        : 56 
  High PC        : 71 
  Size in program memory: 16 
  Cycle-count      : 14352 (15.31%) 
  Instruction-count   : 6154 ( 7.63%)  
  Instruction Coverage : 100.00% 
 
 PC   Assembly                                                                Exe-cnt  Cycs 
---- ------------------------------------------------------------------------ ------- -------  
 56 CMPLEI R7,#0,R2                                                                1       5  
 57 BNEZ R2,#TGT_Fvoid_array_add_ref_12                                            1       1 
 58 NOP                                                                            1       1 
 59 NOP                                                                            1       1 
 60 RPT R7,#LE_Fvoid_array_add_ref_11                                              1       1 
 61 ORI R0,#4,R2                                                                   1       1 
 62 NOP || NOP                                                                     1       1 
 64 LDW *R4+=R2,R8 || LDW *R5+=R2,R3                                            2048   10240  
 66 ADD R3,R8,R9                                                                2048    2048  
.label LE_Fvoid_array_add_ref_11                       
 67 STW R9,*R6+=R2                                                              2048    2048   
.label TGT_Fvoid_array_add_ref_12                     
 68 JR R15                                                                         1       1 
 69 NOP                                                                            1       1  
 70 NOP || NOP                                                                     1       3 
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The number in the ‘Exe-Cnt’ column is execution count, or how many times that specific 

packet was executed, and number in the ‘Cycles’ column is the cycle count. Where the 

two numbers differ, usually the cycle count is an integer multiple of the execution count, 

with the ratio being the number of cycles each instance of the packet takes to execute, 

usually due to stalling in the execution. 

By looking at either number, one can quickly tell the loop body from the rest of the code, 

as the loop body is iterated many times. In this example, the loop is iterated 2048 times, 

so each execution packet in the loop body is executed 2048 times.  

The loop body consists of 4 instructions in 3 execution packets, performing, 

respectively, 2 loads, 1 operation, and 1 store, exactly as implied in the source code. In 

general, plain C code compiles cleanly into scalar instructions. 

The first packet of the loop body is taking 10240 cycles to execute 2048 times, so 5 

cycles each time. Note that the stalled execution packet is executing 2 parallel loads, and 

the very next packet is adding up the 2 destination registers of the loads. The stalling is 

due to the load-to-use latency of 5 cycles.  

Also, the code has conditional branches, BNEZ, although the branch is not taken 

(otherwise the loop is completely bypassed and would get zero execution and cycle 

counts). The conditional branch is there in the assembly to guard against the case when 

the len (length) argument is zero, to truly implement the correct behavior of the C-

language for loop. 

Performance from this plain C code is quite poor, taking 5+1+1 = 7 cycles per iteration, 

with exactly one addition operation achieved per iteration.  The whole function execution 

takes 14,352 cycles. In subsequent sections we will show how performance can be 

drastically improved. 

8.2.2 Optimization 1: Vectorized Code 

We make our first optimization revision by replacing scalar processing with vector 

processing, as shown in the following code: 

//********************************************************************* 
// Optimization 1: vectorization 
//********************************************************************* 
void array_add_opt1(int * A, int * B, int * C, int len) 
{ 
  int  vecw = chess_elementsof(dvintx); 
  dvint * vptrA = (dvint *) A; 
  dvint * vptrB = (dvint *) B; 
  dvint * vptrC = (dvint *) C; 
  dvintx vA, vB, vC; 
 
  for (int i=0 ; i<len/vecw; i++) 
  { 
    vA = sign_extend(*vptrA++); 
    vB = sign_extend(*vptrB++); 
    vC = vA + vB; 
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    *vptrC++ = extract(vC); 
  } 
} 

We use a pragma chess_elementsof(dvintx) to acquire the vector width, as the number 

of elements in the dvintx type. Since source/destination arrays are of int type, we would 

use dvint as the vector data type in memory, and dvintx as the vector data type in 

register file.  The two data types have the same number of elements, so it’s just as valid 

to code vecw = chess_elementsof(dvint). 

We cast each source and destination array points to dvint pointers, and declare vector 

variables vA, vB, vC, of dvintx type.  

In the loop body, we perform signed vector loads via sign_extend() intrinsic function with 

vector pointer dereferencing with post-increment. Sign_extend is thus named to 

indicate that we are sign-extending from standard int (32-bit) type into extended word 

(48-bit) type for each element of the array.  

We load the two source operands vA and vB, we add them up into vC, and we store out 

vC. The store is coded as vector pointer dereferencing and the extract() intrinsic 

function. Exact is thus names to indicate that we are extracting part of the extended 

word (48-bit) in each vector lane into a standard int type (32-bit) before storing into 

memory. 

The generated (and cosmetically, manually edited) profiling instruction report that 

shows compiled assembly with execution count and cycle count information is as 

follows: 

Function detail: array_add_opt1 void_array_add_opt1___P__sint___P__sint___P__sint___sint 
 
  Low PC        : 72 
  High PC        : 95 
  Size in program memory: 24 
  Cycle-count      : 1044 ( 1.11%) 
  Instruction-count   : 398 ( 0.49%) 
  Instruction Coverage : 100.00% 
 
 PC   Assembly                                                              Exe-cnt     Cycs 
---- --------------------------------------------------------------------- ----------- ------- 
 72 SRAI R7,#31,R2                                                                 1        1 
 73 ANDI R2,#15,R2                                                                 1        1 
 74 ADD R2,R7,R7                                                                   1        1 
 75 SRAI R7,#4,R2                                                                  1        1 
 76 CMPLEI R2,#0,R7                                                                1        5 
 77 BNEZ R7,#TGT_Fvoid_array_add_opt1_15                                           1        1 
 78 NOP                                                                            1        1 
 79 NOP                                                                            1        1 
 80 RPT R2,#LE_Fvoid_array_add_opt1_14                                             1        1 
 81 ORI R0,#64,R7                                                                  1        1 
 82 NOP                                                                            1        1 
 83 DVLDW_P *R4+=R7,V2:V3|| DVLDW_P *R5+=R7,V0:V1                                128      768 
 85 VAddW V2:V3,V0:V1,V4:V5                                                      128      128 
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.label LE_Fvoid_array_add_opt1_14 
 86 DVSTW_P V4:V5,*R6+=R7                                                        128      128 
.label TGT_Fvoid_array_add_opt1_15 
 87 JR R15                                                                         1       1 
 88 NOP                                                                            1       1 
 89 NOP || NOP || NOP || NOP || NOP || NOP || NOP                                  1       3 
 

The vectorized function takes 1044 cycles to execute and is about 13.7x the 

performance of the scalar code. Essentially, we gain a speedup of 16x by processing a 

dvint, 16 elements of 32-bit, per iteration, but the loop executes 6+1+1 = 8 cycles per 

iteration, versus 7 cycles per iteration in the scalar loop, so we give back some of the 

speedup from vectorization. 

The compiled assembly is still relatively clean, and the loop body still has 4 instructions in 

3 execution packets. The 4 instructions are respectively 2 vector loads, one vector 

addition, and one vector store. Here the de-reference of pointer with post-increment in 

the C code maps perfectly to the vector load/store instructions.   

The higher stall count in the first execution packet of the loop body, 6 cycles in the 

vectorized loop, versus 5 cycles in the scalar loop, is due to processor pipelining. Vector 

addition happens to have its source operands forwarded from the load unit one cycle 

later than scalar addition can forward its source operands, so load-to-use latency for 

vector operations is one cycle longer. 

8.2.3 Optimization 2: Unroll and Pipeline the Loop  

Next, we tackle the inefficiency caused by load-to-use latency, as shown in the following 

optimized code: 

//********************************************************************* 
// Optimization 2: pipelining & unrolling 
//********************************************************************* 
void array_add_opt2(int * A, int * B, int * restrict C, int len) 
{ 
  int  vecw = chess_elementsof(dvintx); 
  dvint * vptrA = (dvint *) A; 
  dvint * vptrB = (dvint *) B; 
  dvint * restrict vptrC = (dvint *) C; 
  dvintx vA, vB, vC; 
 
  for (int i=0 ; i<len/vecw; i++) chess_unroll_loop(8)    

       chess_prepare_for_pipelining chess_loop_range(16,) 
  { 
    vA = sign_extend(*vptrA++); 
    vB = sign_extend(*vptrB++); 
    vC = vA + vB; 
    *vptrC++ = extract(vC); 
  } 
} 
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We cannot significantly reduce the latency. What we can do is to fill the pipeline with 

useful work while the latency is played out. Technique to do that is called software 

pipelining, and is enabled by the 3 pragma annotated on the for statement: 

> chess_unroll_loop(8) tells the compiler to replicate the loop body 8 times and adjust 

the loop iteration count accordingly, by dividing it by 8.   

> chess_prepare_for_pipelining tells the compiler to software pipeline this loop, 

causing the loop body code (which could be the original loop contents or already 

replicated through loop unrolling) to be folded and scheduled into multiple iterations, 

and consequently there will be a prolog of the loop and an epilog of the loop.   

Often, chess_unroll_loop() and chess_prepare_for_pipelining pragmas go hand-in-

hand. Most loops would need both pragmas to achieve the best performance. 

> chess_loop_range(16,) tells the compiler that this loop is guaranteed (by the 

programmer) to run at least 16 iterations. This pragma causes generated code to do 

without the “what if len is zero” checking and conditional branch, resulting in a more 

streamlined control flow in the compiled assembly. 

One other thing to point out is the keyword restrict on address pointers C and vC that 

we use to write back to memory. This restrict keyword is telling the compiler that it is 

safe to perform these writes in any order relative to other memory reads and/or writes. 

Without the restrict keyword, compiler cannot overlap multiple instances of the original 

load/store operations to software-pipeline the loop effectively.  

The corresponding profiling instruction report is shown next.  

Function detail: array_add_opt2 void_array_add_opt2___P__sint___P__sint___P__sint___sint 
 
  Low PC        : 96 
  High PC        : 167 
  Size in program memory: 72 
  Cycle-count      : 141 ( 0.15%) 
  Instruction-count   : 139 ( 0.17%) 
  Instruction Coverage : 100.00% 
 
 PC   Assembly                                                                        Exe-cnt Cycs 
---- ---------- --------------------------------------------------------------------- ------- ----- 
 96 SRAI R7,#31,R2                                                                         1     1 
 97 ORI R0,#64,R2 || ANDI R2,#15,R3                                                        1     1 
 99 ADD R3,R7,R7                                                                           1     1 
 100 SRAI R7,#7,R7 || DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27                    1     1 
 103 ADDI R7,#-1,R7 || DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19                   1     1 
 106 DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11                                     1     1 
 108 DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3                                         1     1 
 110 DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1                                         1     1 
 112 DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9                                       1     1 
 114 RPT R7,#LE_Fvoid_array_add_opt2_54                                                    1     1 
 115 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17     1     1 
 118 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2||  
     DVLDW_P *R5+=R2,V24:V25                                                               1     1  
 122 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27||  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  99 

     DVSTW_P V18:V19,*R6+=R2                                                               15   15 
 126 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19||  
     DVSTW_P V10:V11,*R6+=R2                                                               15   15 
 130 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11||  
     DVSTW_P V2:V3,*R6+=R2                                                                 15   15 
 134 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3||  
     DVSTW_P V0:V1,*R6+=R2                                                                 15   15 
 138 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1||  
     DVSTW_P V8:V9,*R6+=R2                                                                 15   15 
 142 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9||  
     DVSTW_P V16:V17,*R6+=R2                                                               15   15 
 146 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17||  
     DVSTW_P V28:V29,*R6+=R2                                                               15   15 
 150 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2||  
     DVLDW_P *R5+=R2,V24:V25                                                               15   15 
 154 VAddW V14:V15,V10:V11,V10:V11|| DVSTW_P V18:V19,*R6+=R2                                1    1 
 156 VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11,*R6+=R2                                      1    1 
 158 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R6+=R2                                        1    1 
 160 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R6+=R2                                      1    1 
 162 JR R15 || VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R6+=R2                        1    1 
 165 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R6+=R2                                1    1 
 167 DVSTW_P V28:V29,*R6+=R2                                                                1    3 

This optimized function takes just 141 cycles to execute and achieves 7.4 times the 

performance of the previous code, which is vectorized but not yet software pipelined. If 

we compare it to the original plain C code, the speedup is 101.8 times. 

This loop has a theoretical max throughput of one dvint vector addition, 16 lanes x 32-

bit, per clock cycle. It’s bounded by each dvint vector operation needing 2 loads and 1 

store for input/output, saturating the 3 superbanks x 512-bit of VMEM bandwidth. 

Vector math throughout for addition is one dvintx addition per vector slot, so in this 

loop, vector math is only 50% utilized.  Each execution packet in the loop body is packed 

with one VAddW (double vector addition), 2 DVLDW (double vector load word type), and 

one DVSTW (double vector store word type), confirming the math and memory 

utilization. 

In terms of efficiency, 128/141 = 91%. Overhead comes from 13 cycles spent setting up 

the local frame on the stack, extracting arguments from the stack, setting up the loop, 

and finally for 2 cycles of pipeline bubble from executing a return instruction (JR R15) to 

the caller.  

In reference to the loop unrolling factor: performance-wise, it’s not necessary to unroll 8 

times. It is convenient to constrain a compute function to limit loop iteration count to a 

power of 2, thus unrolling by 2, 4, 8, is more convenient than unrolling by 5, 6, 7, etc. The 

minimal number of times to unroll a loop depends on how much vacancy there is in a 

single iteration due to load to use latency and sometimes also vector math operation 

latency.  With compiler and ISS (instruction set simulator), one can just experiment with 

different unrolling factors and find a factor that works.  

For a simple, single-operation loop like in the array addition example, we need to unroll 6 

times to achieve optimal performance. If unrolling by K times achieves the optimal 
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performance, unrolling more than K times should achieve the same performance, but 

would cause the compiled code size to grow. VPU Instruction Cache has a set capacity, 

16K Bytes for the Orin generation, so we should not unnecessarily increase the code 

size. 

8.3 2D Array Addition 
Next, we shall use a two-dimension array addition function to illustrate how we leverage 

the multi-dimensional address calculation feature of agens to collapse nested for loops 

to minimize looping overhead and achieve optimal performance.   

8.3.1 Scalar Code 

The following code implements a two-dimension array addition.  

//********************************************************************* 
// Function implemented with normal/scalar C code 
//********************************************************************* 
void array2d_add_ref(int * A, int * B, int * C, 
           int blkw, int blkh, 
           int lofst_A, int lofst_B, int lofst_C) 
{ 
  for (int i=0 ; i<blkh; i++) 
    for (int j=0 ; j<blkw; j++) 
    { 
      C[i * lofst_C + j] = A[i * lofst_A + j] + B[i * lofst_B + j]; 
    } 
} 

As each source and operand array is two dimensional, in the function’s arguments we 

convey block width and block height of the computation, and line offset for each 

operand array. This function uses two levels of nested for loops to iterate through rows 

and columns. In the loop body, the statement carrying out the addition operation 

indexes into each operand array with two-dimensional indexing to acquire each input 

data element and to store each output data element. 

Compiled assembly, along with execution count and cycle count is shown next: 

Function detail: array2d_add_ref 
void_array2d_add_ref___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint 
 
  Low PC        : 168  
  High PC        : 199  
  Size in program memory: 32  
  Cycle-count      : 14438 (13.01%) 
  Instruction-count   : 6218 ( 7.16%) 
  Instruction Coverage : 100.00% 
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PC    Assembly                                                                Exe-cnt  Cycs 
---- ------------------------------------------------------------------------ ------- ------ 
 168 CMPLE R7,R0,R2 || CMPLE R8,R0,R3                                              1      5 
 170 BNEZ R3,#TGT_Fvoid_array2d_add_ref_23                                         1      1 
 171 NOP                                                                           1      1 
 172 NOP                                                                           1      1 
 173 RPT R8,#LE_Fvoid_array2d_add_ref_22                                           1      1 
 174 ORI R0,#4,R3                                                                  1      1 
 175 NOP                                                                           1      1 
 176 BNEZ R2,#TGT_Fvoid_array2d_add_ref_20                                         8      8 
 177 NOP                                                                           8      8 
 178 NOP                                                                           8     22 
 179 RPT R7,#LE_Fvoid_array2d_add_ref_19                                           8      8 
 180 ORI R6,#0,R13                                                                 8      8 
 181 MOV R5,R8 || MOV R4,R12 || NOP                                                8     16 
 184 LDW *R12+=R3,R17 || LDW *R8+=R3,R14                                        2048  10240 
 186 ADD R14,R17,R18                                                            2048   2048 
.label #LE_Fvoid_array2d_add_ref_19 
 187 STW R18,*R13+=R3                                                           2048   2048 
.label TGT_Fvoid_array2d_add_ref_20 
 188 SLLIADD R10,#2,R5,R5|| SLLIADD R9,#2,R4,R4                                    8      8 
.label LE_Fvoid_array2d_add_ref_22 
 190 SLLIADD R11,#2,R6,R6                                                          8      8 
.label TGT_Fvoid_array2d_add_ref_23 
 191 JR R15                                                                        1      1 
 192 NOP                                                                           1      1 
 193 NOP || NOP || NOP || NOP || NOP || NOP || NOP                                 1      3 
 

The block width and height are configured as 256 and 8 respectively. The execution 

count numbers show execution packets that are outside the loops (those with execution 

count of 1), between the loops (those with execution count of 8), and inside the inner-

most loop (those with execution count of 2048).   

Compared to the one-dimensional array addition with the same number of element-wise 

additions, this function takes 14438 – 14352 = 86 cycles longer, or 0.6% slower. We can 

look at these additional number cycles as the cost of performing two-dimensional 

addressing. This cost strongly depends on the block width and height.  

The additional number of cycles (86) depends only on the block height, as the compiled 

code has a fixed number of instructions between loop levels, and they are executed 8 

times in this case because the outer loop is iterated 8 times.  

The proportion of cycles (0.6%) spent between the loops roughly depends only on the 

block width. The compiled code has a fixed number of instructions in the innermost loop 

body as well, which is executed block_width * block_height = 2048 times. Thus, 

proportion of time spent between loop levels is some (K1 * block_height) / (K2 * 

block_width * block_height) = K1 / (K2 * block_width) = K3 / block_width. The wider the 

block width, the smaller proportion of time spent between loop levels. 
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In this code example, we do not see a large proportion of time spent handling two-

dimensional addressing, but this is due to the block width being large enough for the 

inner loop to be unrolled 8 times and with sufficient iteration count to support the 

unrolling, as 16 * 16 = 256. If the block width is less than 256, we would see a larger 

proportion of processing time spent on two-dimensional addressing. Later in 

Performance Across 2D Array Dimensions, we will show cycle counts across different 

block dimension configurations. 

8.3.2 Optimization 1: Vectorized, Unrolled and 

Pipelined Loop 

Here we apply the vectorization and unrolling/pipelining techniques shown in 

Optimization 1: Vectorized Code and Optimization 2: Unroll and Pipeline the Loop 

respectively on the two-dimensional addition function.   

//********************************************************************* 
// Optimization 1: vectorized, unrolled and pipelined 
//********************************************************************* 
void array2d_add_opt1(int * A, int * B, int * restrict C, 
           int blkw, int blkh, 
           int lofst_A, int lofst_B, int lofst_C) 
{ 
  dvintx vA, vB, vC;  
  int idx_A, idx_B, idx_C; 
  int vecw = chess_elementsof(dvint); 
  dvint * vptrA = (dvint *) A; 
  dvint * vptrB = (dvint *) B; 
  dvint * restrict vptrC = (dvint *) C; 
 
  for (int i=0 ; i<blkh; i++) 
  {   
    for (int j=0 ; j<blkw/vecw; j++) chess_loop_range(16,)  
        chess_unroll_loop(8) chess_prepare_for_pipelining 
    {   
      vA = sign_extend(*vptrA++); 
      vB = sign_extend(*vptrB++); 
      vC = vA + vB; 
      *vptrC++ = extract(vC); 
    }  
    A += lofst_A; 
    B += lofst_B; 
    C += lofst_C; 
    vptrA = (dvint *) A; 
    vptrB = (dvint *) B; 
    vptrC = (dvint *) C; 
  } 
} 
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We still need nested for loops to iterate horizontally and vertically.  After the inner loop, 

between loop levels, there is an update of pointers to adjust for the line offset so we can 

start the next row coming back to the inner loop. 

The chess_loop_range, chess_unroll_loop, and chess_prepare_for_pipelining pragmas are 

applied only to the inner loop, as it is generally not improving performance to apply them 

on the outer loop as well. 

The profiling instruction report is shown next: 

Function detail: array2d_add_opt1 
void_array2d_add_opt1___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint 
 
  Low PC        : 200 
  High PC        : 287 
  Size in program memory: 88 
  Cycle-count      : 226 ( 0.20%) 
  Instruction-count   : 204 ( 0.23%) 
  Instruction Coverage : 100.00% 
 
 PC   Assembly                                                                     Exe-cnt  Cycs 
---- ----------------------------------------------------------------------------- ------- ------ 
200 CMPLEI R8,#0,R2                                                                      1     5 
 201 BNEZ R2,#TGT_Fvoid_array2d_add_opt1_82                                              1     1 
 202 NOP                                                                                 1     1 
 203 NOP                                                                                 1     1 
 204 SRAI R7,#31,R3                                                                      1     1 
 205 ANDI R3,#15,R3                                                                      1     1 
 206 RPT R8,#LE_Fvoid_array2d_add_opt1_81 || ADD R3,R7,R7                                1     1 
 208 SRAI R7,#7,R7                                                                       1     1 
 209 ORI R0,#64,R2 || ADDI R7,#-1,R7                                                     1     1 
 211 MOV R5,R3 || MOV R4,R12                                                             8    16 
 213 DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27                                  8     8 
 215 DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19                                  8     8 
 217 DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11                                  8     8 
 219 DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3                                      8     8 
 221 DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1                                      8     8 
 223 RPT R7,#LE_Fvoid_array2d_add_opt1_62 || DVLDW_P *R12+=R2                            8     8 
 226 ORI R6,#0,R8 || VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21||  
     DVLDW_P *R3+=R2,V16:V17                                                             8    16 
 230 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2|| 
     DVLDW_P *R3+=R2,V24:V25                                                             8     8 
 234 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27|| 
     DVSTW_P V18:V19,*R8+=R2                                                             8     8 
 238 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19||  
     DVSTW_P V10:V11,*R8+=R2                                                             8     8 
 242 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11||  
     DVSTW_P V2:V3,*R8+=R2                                                               8     8 
 246 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3||  
     DVSTW_P V0:V1,*R8+=R2                                                               8     8 
 250 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1||  
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     DVSTW_P V8:V9,*R8+=R2                                                               8     8 
 254 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R12+=R2,V12:V13|| DVLDW_P *R3+=R2,V8:V9|| 
     DVSTW_P V16:V17,*R8+=R2                                                             8     8 
 258 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21|| DVLDW_P *R3+=R2,V16:V17|| 
     DVSTW_P V28:V29,*R8+=R2                                                             8     8 
.label LE_Fvoid_array2d_add_opt1_62 
 262 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2|| 
     DVLDW_P *R3+=R2,V24:V25                                                             8     8 
 
 266 SLLIADD R9,#2,R4,R4|| SLLIADD R10,#2,R5,R5|| VAddW V14:V15,V10:V11,V10:V11||  
     DVSTW_P V18:V19,*R8+=R2                                                             8     8 
 270 SLLIADD R11,#2,R6,R6|| VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11,*R8+=R2            8     8 
 273 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R8+=R2                                     8     8 
 275 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R8+=R2                                   8     8 
 277 VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R8+=R2                               8     8 
 279 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R8+=R2                             8     8 
.label LE_Fvoid_array2d_add_opt1_81 
 281 DVSTW_P V28:V29,*R8+=R2                                                             8     8 
.label TGT_Fvoid_array2d_add_opt1_82 
 282 JR R15                                                                              1     1 
 283 NOP                                                                                 1     1 
 284 NOP || NOP || NOP || NOP                                                            1     3 

It is not easy to spot the inner loop from the report, as the execution counts are 8 for 

both between-loop packets and inner loop packets.  This is because of the inner-loop is 

unrolled 8 times, and with prolog and epilog together executing unrolled loop once, the 

actual inner loop body is executed just once, as 256 / (8 * chess_elementsof(dvint)) – 1 = 

256 / 128 – 1 = 1.  Blank lines are manually inserted to better visualize the innermost 

loop. 

There is still a significant speedup from the scalar code, 14438/226 = 64.9 times. The 

inner loop is still packed with 1 VAddW, 2 DVLDW, and 1 DVSTW per execution packet, in 

all 8 execution packets. 

The use of nested for loops and clock cycles spent between loop levels does add to the 

overhead. Compared to the ideal time spent, which is (256 * 8) / 16 = 128 cycles, the 

function execution time is only 128/226 = 57% efficient. There is relatively high overhead 

to handle 2D addressing, versus 91% efficient in the 1D array addition case.  

As argued in the previous section, on scalar code performance, proportion of time spent 

between loop levels is mostly a function of the inner-loop iteration count. In the 

configuration where profiling instruction report is generated, we operate on 8 tall x 256 

wide arrays. If it’s not as “short-and-wide” in aspect ratio, say it’s 16 tall x 128 wide or 32 

tall x 64 wide, we don’t have sufficient number of iterations for the inner-most loop to 

fully unroll and pipeline, and we have smaller iteration count on the inner loop, and both 

would contribute to reducing the overall efficiency of the code.  

In Performance Across 2D Array Dimensions we will present function cycle count across 

various 2D array dimensions. 
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8.3.3 Optimization 2: Leveraging Agen to Collapse 

Nested Loops 

In this section, we tackle the performance degradation from two-dimensional 

addressing.  

In image and vision processing, we often need an even higher dimension of address 

calculation. For example, in 2D convolution, we have 2 dimensions from producing some 

block-width x block-height of output block, and we have kernel-width x kernel-height 

looping to perform convolution between points in the 2D convolution kernel and 2D 

neighborhood around each output pixel. The address generator, or agen, feature is there 

to support up to 6 dimensions of address calculation. 

The following optimized code shows how agens are configured and utilized for the 2D 

array addition function: 

//********************************************************************* 
// Optimization 2: leverage agen, initialization 
//********************************************************************* 
void array2d_add_opt2_init(int * A, int * B, int * C, 
              int blkw, int blkh, 
              int lofst_A, int lofst_B, int lofst_C, 
              int * niter, AgenCFG * agen_ptr) 
{ 
  int vecw = chess_elementsof(dvint); 
  dvintx vA, vB, vC; 
  agen in0, in1, out; 
  short niter1 = blkw/vecw; 
  short niter2 = blkh; 
  * niter = niter1 * niter2; 
  agen_wrapper_t wrapper; 
 
  in0 = init(A); 
  wrapper.size = sizeof(int); 
  wrapper.n1 = niter1; 
  wrapper.n2 = niter2; 
  wrapper.s1 = vecw; 
  wrapper.s2 = lofst_A; 
  INIT_AGEN2(in0, wrapper); 
 
  in1 = init(B); 
  wrapper.size = sizeof(int); 
  wrapper.n1 = niter1; 
  wrapper.n2 = niter2; 
  wrapper.s1 = vecw; 
  wrapper.s2 = lofst_B; 
  INIT_AGEN2(in1, wrapper); 
 
  out = init(C); 
  wrapper.size = sizeof(int); 
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  wrapper.n1 = niter1; 
  wrapper.n2 = niter2; 
  wrapper.s1 = vecw; 
  wrapper.s2 = lofst_C; 
  INIT_AGEN2(out, wrapper); 
 
  chess_separator_scheduler(); 
 
  *agen_ptr++ = extract_agen_cfg(in0); 
  *agen_ptr++ = extract_agen_cfg(in1); 
  *agen_ptr++ = extract_agen_cfg(out); 
} 
 
//********************************************************************* 
// Optimization 2: leverage agen 
//********************************************************************* 
void array2d_add_opt2(int niter, AgenCFG * agen_ptr) 
{ 
  agen_A in0 = init_agen_A_from_cfg(*agen_ptr++); 
  agen_B in1 = init_agen_B_from_cfg(*agen_ptr++); 
  agen_C out = init_agen_C_from_cfg(*agen_ptr++); 
  dvintx vA, vB, vC; 
 
  for (int i=0 ; i<niter; i++) chess_loop_range(16,)   

         chess_unroll_loop(8) chess_prepare_for_pipelining 
  { 
    vA = dvint_load(in0); 
    vB = dvint_load(in1); 
    vC = vA + vB; 
    vstore(vC, out); 
  } 
} 

There are 2 functions, array2d_add_opt2_init() and array2d_add_opt2(). Agen parameter 

calculation and configuration is placed in an “init” function meant to be called just once 

or twice per application. By separating out the agen parameter calculation and 

configuration portion, we reduce the per-tile computation time. 

The configured agens are saved to memory via the AgenCfgST instruction (see 

AgenCfgST) one at a time, and are restored from memory via AgenCfgLD instruction 

(see AgenCfgLD) one at a time before the compute loop.   

In the init function, we still must calculate inner loop number of iterations, niter1, and 

outer loop number of iterations, niter2, but they are not used to iterate nested for loops. 

Instead, they are used in agen programming, as it’s agen that needs to know about 

these iteration counts to carry out the 2D addressing. Product of niter1 and niter2, niter, 

is returned to the main function, to supply to the compute function to iterate the 

collapsed for loop. 

In the init function, we declare wrapper variable of agen_wrapper_t type. Using agen 

wrapper allows the programmer to specify the step size of various dimensions and use 
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macros like INIT_AGEN2 to carry out the complex expressions (see 6.4.1) to calculate the 

address modifiers, instead of coding the complex expressions directly. In general, we 

pre-determine dimension needed in the agens, say K dimensions, we program wrapper 

n1..nk, s1..sk, and then call INIT_AGENk to complete the agen programming. 

There is a straightforward producess to convert the indexing expression in the scalar 

code into the step parameters s1..sk for the wrapper. For example, array A is indexed in 

the scalar code as: 

 A[i * lofst_A + j] 

We map the inner loop variable j into loop level 1 of agen, and outer loop variable i into 

loop level 2.  

Furthermore, in the process of vectorizing the 2D array addition, we process one dvint at 

a time, so the original indexing should be converted into loading from 

 A + i2 * lofst_A + i1 * vecw 

with vecw = chess_elementsof(dvint). We take the vectorized indexing expression and 

basically fill step parameters s1..sk with whatever scaling factor is being multiplied with 

the corresponding loop variable i1..ik. Thus, we program them as 

  wrapper.s1 = vecw; 
  wrapper.s2 = lofst_A; 

In the loop body, loading through agen-based load is performed via intrinsic function 

dvint_load(agen), and storing through agen-based store is performed via intrinsic 

function vstore(variable, agen). vstore() function is type-overloaded to handle various 

vector data types. 

The 2 agens for load, in0 and in1, and the one agen for store, out, are declared as 

variables of agen_A/B/C types respectively. These _A/B/C suffixes are to denote 

superbank A/B/C. They do not really need to match the actual pointer values being in 

superbank A/B/C, but are there to guide compiler scheduling, so that we don’t load from 

the same superbank to store to the same superbank multiple times in an execution 

packet and cause unnecessary performance degradation. 

With the agen taking up the 2D address calculation, we can collapse the 2 levels of 

nested for loops into just one level and run it niter = niter1 * niter2 times. This also helps 

with unrolling and software pipelining, as the number of iterations being a multiple of 8 

and being at least 16 are now constraints on the overall loop iteration count, and can 

apply to more array dimension cases. 

The profiling instruction report is shown next: 

Function detail: array2d_add_opt2 void_array2d_add_opt2___sint___Pdvuint 
 
  Low PC        : 344 
  High PC        : 415 
  Size in program memory: 72 
  Cycle-count      : 146 ( 0.13%) 
  Instruction-count   : 141 ( 0.16%) 
  Instruction Coverage : 100.00% 
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 PC   Assembly                                                                       Exe-cnt  Cycs 
---- ------------------------------------------------------------------------------- ------- ----- 
 344 ORI R0,#64,R4 || SRAI R4,#3,R2                                                       1     1 
 346 ADDI R2,#-1,R2                                                                       1     1 
 347 AgenCfgLD *R5+=R4,A0                                                                 1     1 
 348 AgenCfgLD *(R5+0),A2                                                                 1     1 
 349 AgenCfgLD *(R5+64),A1                                                                1     4 
 350 DVLDW_P *A0++,W12:W13                                                                1     1 
 351 DVLDW_P *A0++,V10:V11|| DVLDW_P *A2++,V14:V15                                        1     1 
 353 DVLDW_P *A0++,V6:V7|| DVLDW_P *A2++,W8:W9                                            1     1 
 355 DVLDW_P *A0++,V2:V3|| DVLDW_P *A2++,W4:W5                                            1     1 
 357 DVLDW_P *A0++,V0:V1|| DVLDW_P *A2++,W0:W1                                            1     1 
 359 DVLDW_P *A0++,V4:V5|| DVLDW_P *A2++,W2:W3                                            1     1 
 361 RPT R2,#LE_Fvoid_array2d_add_opt2_54|| DVLDW_P *A2++,W6:W7                           1     1 
 363 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A0++,V8:V9|| DVLDW_P *A2++,W10:W11          1     1 
 366 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A0++,V12:V13|| DVLDW_P *A2++,W14:W15||  
     DVSTW_P V16:V17,*A1++                                                                1     1 
 370 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19,*A1++|| DVLDW_P *A0++,W12:W13||  
     DVLDW_P *A2++,V14:V15                                                               15    15 
 374 VAddW V2:V3,W0:W1,V22:V23|| DVLDW_P *A0++,V10:V11|| DVLDW_P *A2++,W8:W9||  
     DVSTW_P V20:V21,*A1++                                                               15    15 
 378 VAddW V0:V1,W2:W3,V24:V25|| DVLDW_P *A0++,V6:V7|| DVLDW_P *A2++,W4:W5||  
     DVSTW_P V22:V23,*A1++                                                               15    15 
 382 VAddW V4:V5,W6:W7,V26:V27|| DVLDW_P *A0++,V2:V3|| DVLDW_P *A2++,W0:W1||  
     DVSTW_P V24:V25,*A1++                                                               15    15 
 386 VAddW V8:V9,W10:W11,V28:V29|| DVLDW_P *A0++,V0:V1|| DVLDW_P *A2++,W2:W3||  
     DVSTW_P V26:V27,*A1++                                                               15    15 
 390 VAddW V12:V13,W14:W15,V30:V31|| DVLDW_P *A0++,V4:V5|| DVLDW_P *A2++,W6:W7|| 
     DVSTW_P V28:V29,*A1++                                                               15    15 
 394 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A0++,V8:V9|| DVLDW_P *A2++,W10:W11||  
     DVSTW_P V30:V31,*A1++                                                               15    15 
.label LE_Fvoid_array2d_add_opt2_54 
 398 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A0++,V12:V13|| DVLDW_P *A2++,W14:W15||  
     DVSTW_P V16:V17,*A1++                                                               15    15 
 402 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19,*A1++                                    1     1 
 404 VAddW V2:V3,W0:W1,V22:V23|| DVSTW_P V20:V21,*A1++                                    1     1 
 406 VAddW V0:V1,W2:W3,V24:V25|| DVSTW_P V22:V23,*A1++                                    1     1 
 408 VAddW V4:V5,W6:W7,V26:V27|| DVSTW_P V24:V25,*A1++                                    1     1 
 410 JR R15 || VAddW V8:V9,W10:W11,V28:V29|| DVSTW_P V26:V27,*A1++                        1     1 
 413 VAddW V12:V13,W14:W15,V30:V31|| DVSTW_P V28:V29,*A1++                                1     1 
 415 DVSTW_P V30:V31,*A1++                                                                1     3 

Now the loop body stands out, as there is just one loop level. Scalar code before the loop 

is relatively terse, as agen parameter calculation and configuration is moved to the init 

function, which takes 51 cycles (not shown here). We don’t add these cycles to the tile 

compute function cycle count, as the init function is run just once per application. 

It takes just 146 cycles to run the per-tile compute function, compared to 226 cycles in 

the vectorized and unrolled/pipelined version that still needs to deal with 2D address 

calculation. In this version, agen hardware takes care of 2D address calculation in the 
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background, so we are not spending any clock cycle. The efficiency of this code is 

128/146 = 88%. 

8.3.4 Performance Across 2D Array Dimensions 

We vary the array dimension and collect cycle count, as follows. For optimization 1 and 2, 

efficiency ratios vs ideal cycle counts are also shown in parenthesis.   

Table 17. Performance optimization across array dimensions  

Array 

Height 

Array 

Width 

Scalar code 

cycles 

Optimization 1 

(vector, 

unroll/pipeline) cycles 

(efficiency %)  

Optimization 2 (vector, 

unroll/pipeline, agen) 

cycles (efficiency %) 

4 512 14,394 186 (69%) 146 (88%) 

8 256 14,438 226 (57%) 146 (88%) 

16 128 14,526 322 (40%) 146 (88%) 

16 512 57,534 690 (74%) 530 (97%) 

32 256 57,710 850 (60%) 530 (97%) 

64 128 58,062 1,234 (41%) 530 (97%) 
 

We can see that optimization 2 code’s performance is not at all sensitive to block width 

versus height changes, only to the total number of data points, and efficiency is good. 

Scalar code performance is a weak function of the block width, wider blocks perform 

slightly better. Optimization 1 code’s performance is better than scalar code, but is 

worse than optimization 2 code’s performance, and the narrower the block width, the 

worse off it gets.  

8.4 2D Convolution 
Next, we see how 2D convolution, a common image processing step, is accelerated by 

leveraging the multi-dimension address calculation feature of agens, along with store-

path rounding and predicated vector math instructions.  

8.4.1 Scalar Code 

A straightforward implementation of 2D convolution is as follows. 

//********************************************************************* 
// Filter implemented with natural C code to do 2D addressing 
//********************************************************************* 
void filter_short_ref(short *data, short *coef, short *out, 
           int kw, int kh, int qbits, int blkw, int blkh, 
           int lofst_data, int lofst_out) 
{ 
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  short sdata; 
  short scoef; 
  int  prod; 
  long long acc; 
 
  int rnd_add = (qbits == 0) ? 0 : (1 << (qbits-1)); 
 
  for (int i4=0 ; i4<blkh; i4++)  
  for (int i3=0 ; i3<blkw; i3++) { 
    acc = 0;  
    for (int i2=0 ; i2<kh; i2++)  
    for (int i1=0 ; i1<kw; i1++) { 
      sdata = data[(i4 + i2)*lofst_data + i3 + i1]; 
      scoef = coef[i2*kw + i1]; 
      prod = sdata * scoef; 
      acc += prod; 
    } 
    acc = (acc + rnd_add) >> qbits; 
    out[i4*lofst_out + i3] = acc; 
  } 
} 

The function carries out 2D convolution with 4 levels of nested for loop. The 4 levels of 

looping are needed to drive indexing of data and coefficient arrays and output array. 

Data indexing has 4 dimensions, horizontally and vertically to traverse in the kw x kh 

neighborhood to perform dot-product with the coefficient array, and then horizontally 

one vector width at a time, vertically one row at a time, to produce the 2D array output. 

Coefficient and output each have 2 dimensions of indexing. 

There are statements between the outer 2 loop levels and the inner 8 loop levels. Before 

entering the inner 2 loop levels, we clear the accumulator. After exiting the inner 2 loop 

levels, having already accumulated kw * kh products to the accumulator, we perform 

rounding on the accumulated sum then store the rounded outcome to the output array.   

The profiling instruction report of this scalar code is as follows: 

Function detail: filter_short_ref void_filter_short_ref_ ... 
 
  Low PC        :     56 
  High PC        :    143 
  Size in program memory:     88 
  Cycle-count      :   285663 (71.77%) 
  Instruction-count   :   191024 (73.10%) 
  Instruction Coverage : 94.92% 
 
 PC   Assembly                                                                    Exe-cnt  Cycs 
 --- ---------------------------------------------------------------------------- ------- ------ 
 56 ADDI R9,#-1,R2 || ADDI R1,#20,R1                                                   1      1 
 58 CMPEQ R9,R0,R19 || ORI R0,#1,R3                                                    1      1 
 60 SLL R3,R2,R2 || CMPLTI R9,#32,R13|| STW R13,*(R1+2036)                             1      1 
 63 ADDI R9,#-32,R18 || CMPLEI R7,#0,R14|| STW R10,*(R1+2028)                          1      1 
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 66 ORI R0,#2,R20 || ORI R0,#32,R3                                                     1      1 
 68 J #__ll4_void_filter_short_ref || ORI R0,#0,R23                                    1      1 
 70 SUB R3,R9,R2 || MUX R19,R0,R2,R17|| STW R11,*(R1+2032)                             1      1 
 73 SRAI R17,#31,R15 || CMPLEI R8,#0,R3|| STW R15,*(R1+2040)                           1      3 
 76 J #__ll3_void_filter_short_ref                                                    32     32 
 77 SLLIADD R10,#1,R6,R10                                                             32     32 
 78 ORI R0,#0,R22 || MOV R6,R11                                                       32     96 
 80 BNEZ R3,#TGT_J_Fvoid_filter_short_ref_81                                        2048   2048 
 81 ADD R4,R22,R24                                                                  2048   2048 
 82 NOP                                                                             2048   2048 
 83 RPT R8,#TGT_Fvoid_filter_short_ref_48                                           2048   2048 
 84 LHI #0,R28                                                                      2048   2048 
 85 ORI R0,#0,R23 || MOV R5,R25                                                     2048   2048 
 87 BNEZ R14,#TGT_Fvoid_filter_short_ref_48                                         6144   6144 
 88 NOP                                                                             6144   6144 
 89 NOP                                                                             6144  14336 
 90 RPT R7,#LE_Fvoid_filter_short_ref_46                                            6144   6144 
 91 MOV R24,R27 || MOV R25,R26                                                      6144   6144 
 93 NOP                                                                             6144   6144 
 94 LDH *R27+=R20,R30 || LDH *R26+=R20,R29                                         18432  92160 
 96 MUL R29,R30,R30                                                                18432  18432 
 97 ADD R23,R30,R30 || SRAI R30,#31,R31                                            18432  18432 
 99 ORI R30,#0,R21                                                                 18432  18432 
 100 ADD R28,R31,R30 || CMPLTU R30,R23,R31                                         18432  18432 
 102 MOV R21,R23 || ADD R30,R31,R28                                                18432  18432 
 104 SLLIADD R12,#1,R24,R24|| SLLIADD R7,#1,R25,R25                                 6144   6144 
 106 ADD R15,R28,R25 || ADD R17,R23,R24                                             2048   2048 
 108 SRL R24,R9,R23 || CMPLTU R24,R23,R26                                           2048   2048 
 110 ADDI R22,#2,R22 || ADD R25,R26,R25                                             2048   2048 
 112 SRA R25,R18,R25 || SLL R25,R2,R26                                              2048   2048 
 114 OR R23,R26,R23                                                                 2048   2048 
 115 MUX R13,R23,R25,R23                                                            2048   2048 
 116 MUX R19,R24,R23,R23                                                            2048   2048 
 117 STH R23,*R11+=R20                                                              2048   2048 
 118 CMPLTU R11,R10,R23                                                             2080  10400 
 119 BNEZ R23,#TGT_Fvoid_filter_short_ref_24                                        2080   2080 
 120 NOP                                                                            2080   2080 
 121 NOP                                                                            2080   6176 
 122 SLLIADD R12,#1,R4,R4|| LDW *(R1+2044),R23                                        32     32 
 124 LDW *(R1+2036),R22                                                               32     32 
 125 LDW *(R1+2032),R11                                                               32     32 
 126 LDW *(R1+2028),R10                                                               32     64 
 127 ADDI R23,#1,R23                                                                  32     32 
 128 SLLIADD R22,#1,R6,R6                                                             32     32 
 129 CMPLT R23,R11,R11                                                                33    165 
 130 BNEZ R11,#TGT_Fvoid_filter_short_ref_20                                          33     33 
 131 STW R23,*(R1+2044)                                                               33     33 
 132 NOP                                                                              33     97 
 133 LDW *(R1+2040),R4                                                                 1      8 
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 134 JR R4                                                                             1      1 
 135 ADDI R1,#-20,R1                                                                   1      1 
 136 NOP                                                                               1      3 
 137 J #TGT_Fvoid_filter_short_ref_50                                                  0      0 
 138 ORI R0,#0,R28 || ORI R0,#0,R23                                                    0      0 
 140 NOP || NOP || NOP || NOP                                                          0      0 
 

The function takes 285,663 cycles to compute a 64 wide x 32 tall outputs worth of 2D 

convolution, about 140 cycles per output, or about 15 cycles per data-coefficient 

product. From the rising then falling numbers in the execution count and cycle count, we 

can tell where the boundaries of 4 levels of for loop are.  

In the innermost loop with execution count of 18432 (which is 64 * 32 * 9), we have a 10 

cycle loop, as (92160 + 5*18432) / 18432 = 10.  These 10 cycles are from 5 cycles of load 

and latency, multiply, add, then a few cycles to perform array indexing needed for the 

inner-most loop. 

Later in the optimized code, we will see how various VPU instructions and agen features 

are leveraged, so that we perform all these, loading data/coefficient, multiply-add, index 

update, and in vectorized form so doing a double short vector worth thus 32 sets of 

these, in one cycle. Moreover, the 4 nested for loops are collapsed into one single loop, 

with periodic accumulator initialization and rounding and storing of output all absorbed 

into the loop body. 

8.4.2 Optimization 1: Vectorized and Agen 

Optimized Loop 

As we have learned in Optimization 2: Leveraging Agen to Collapse Nested Loops, 

besides vectorization and loop unrolling, software pipelining, we can leverage multi-

dimensional addressing capability of agens to collapse nested for loops. The following 

example code includes two functions. There’s an initialization function to 

calculate/configure agen parameters and save the agen configurations to memory. Then 

there is a run-time compute function to restore the agens and run the filtering loop. 

 

 

//********************************************************************* 
// Filter optimized, initialization function  
//********************************************************************* 
void filter_short_opt1_init(short *data, short *coef, short* restrict out, 
         int kw, int kh, int qbits, int blkw, int blkh, 
         int lofst_data, int lofst_out, int * niter_ptr,  
         AgenCFG * cfg_ptr) 
{ 
  int  vecw = chess_elementsof(dvshort);  
  short niter1 = kw; 
  short niter2 = kh; 
  short niter3 = blkw/vecw; 
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  short niter4 = blkh; 
  * niter_ptr++ = niter1 * niter2 * niter3 * niter4; 
  * niter_ptr  = niter1 * niter2; 
  agen data_agen, coef_agen, out_agen; 
  agen_wrapper_t wrapper; 
 
  data_agen = init((vshort*) data); 
  wrapper.size = sizeof(short); 
  wrapper.n1 = kw; 
  wrapper.n2 = kh; 
  wrapper.n3 = blkw/vecw; 
  wrapper.n4 = blkh; 
  wrapper.s1 = 1; 
  wrapper.s2 = lofst_data; 
  wrapper.s3 = vecw; 
  wrapper.s4 = lofst_data; 
  INIT_AGEN4(data_agen, wrapper); 
 
  coef_agen = init((vshort*)coef); 
  wrapper.size = sizeof(short); 
  wrapper.n1 = kw * kh; 
  wrapper.n2 = (blkw/vecw) * blkh; 
  wrapper.s1 = 1; 
  wrapper.s2 = 0; 
  INIT_AGEN2(coef_agen, wrapper); 
 
  out_agen = init((vshort*)out); 
  wrapper.size = sizeof(short); 
  wrapper.n1 = kw * kh; 
  wrapper.n2 = blkw/vecw; 
  wrapper.n3 = blkh; 
  wrapper.s1 = 0; 
  wrapper.s2 = vecw; 
  wrapper.s3 = lofst_out; 
  INIT_AGEN3(out_agen, wrapper); 
  out_agen.round = qbits; 
 
  chess_separator_scheduler(); 
 
  *cfg_ptr++ = extract_agen_cfg(data_agen); 
  *cfg_ptr++ = extract_agen_cfg(coef_agen); 
  *cfg_ptr++ = extract_agen_cfg(out_agen); 
} 
 
//********************************************************************* 
// Filter optimized, run-time compute function  
//********************************************************************* 
void filter_short_opt1(int * niter_ptr, AgenCFG * cfg_ptr) 
{ 
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  int  count_madd = 0; 
  int  count_store = 1; 
  int  pred_madd = 0; 
  int  pred_store = 0; 
  int  niter = * niter_ptr++; 
  int  niter_in = * niter_ptr; 
  dvshortx dvdata; 
  int   coef; 
  dvintx dvacc0, dvacc1; 
   
  agen_A data_agen = init_agen_A_from_cfg(*cfg_ptr++); 
  agen_B coef_agen = init_agen_B_from_cfg(*cfg_ptr++); 
  agen_C out_agen = init_agen_C_from_cfg(*cfg_ptr++); 
 
  chess_separator_scheduler(); 
 
  for (int i=0; i<niter; i++) chess_prepare_for_pipelining  
            chess_unroll_loop(8) chess_loop_range(16,) { 
 
    dvdata = dvshort_load_di(data_agen); 
 
    coef = short_load(coef_agen); 
 
    dvacc0 = vmaddhw(dvdata.lo, coef, dvacc0, VPU_ROUND_0, pred_madd); 
    dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_0, pred_madd); 
 
    vstore_i(dvacc0, dvacc1, out_agen, pred_store); 
 
    count_madd = (count_madd == niter_in-1) ? 0 : (count_madd + 1); 
    pred_madd  = (count_madd!=0) ? (int)0xFFFFFFFF : 0;  
    count_store = (count_store == niter_in-1) ? 0 :(count_store + 1); 
    pred_store = (count_store==0) ? (int)0xFFFFFFFF : 0;  
  } 
} 

 

Agen programming for data, coefficients and outputs follow the nested loop iteration 

counts and data, coefficient, and output indexing in the scalar code.   

Nested for loops in the scalar code: 

  for (int i4=0 ; i4<blkh; i4++)  
  for (int i3=0 ; i3<blkw; i3++) { 
    ...  
    for (int i2=0 ; i2<kh; i2++)  
    for (int i1=0 ; i1<kw; i1++) { 
  ... 
  } 
  ... 
  } 
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Let’s compare the data indexing in the scalar code: 

  sdata = data[(i4 + i2)*lofst_data + i3 + i1]; 

with data agen programming: 

  data_agen = init((vshort*) data); 
  wrapper.size = sizeof(short); 
  wrapper.n1 = kw; 
  wrapper.n2 = kh; 
  wrapper.n3 = blkw/vecw; 
  wrapper.n4 = blkh; 
  wrapper.s1 = 1; 
  wrapper.s2 = lofst_data; 
  wrapper.s3 = vecw; 
  wrapper.s4 = lofst_data; 
  INIT_AGEN4(data_agen, wrapper); 

The iteration counts are translated directly to the iteration counts in data agen 

programming, except that in i3 loop, we run for blkw/vecw iterations instead of blkw, 

due to computing vecw elements of the output array in parallel through the 

vectorization process. The step amount is adjusted accordingly to vecw elements 

instead of one. 

Coefficient indexing in the scalar code: 

  scoef = coef[i2*kw + i1]; 

Coefficient agen programming: 

  coef_agen = init((vshort*)coef); 
  wrapper.size = sizeof(short); 
  wrapper.n1 = kw * kh; 
  wrapper.n2 = (blkw/vecw) * blkh; 
  wrapper.s1 = 1; 
  wrapper.s2 = 0; 
  INIT_AGEN2(coef_agen, wrapper); 

In this instance, we lump the scalar for loops i1 and i2 into just one dimension in 

coefficient agen. This is because coefficient indexing just advance by one element per 

iteration in the inner 2 loop levels. In coefficient agen programming we can just use one 

loop level with the combined number of iterations kw * kh to comprehend the inner 2 

loop levels in the scalar code. 

In the scalar code, coefficient indexing has no i3 or i4 components, the two outer loop 

variables. Consequently, coefficient addressing just repeats the same pattern when we 

iterate the outer loops. In agen programming, we accomplish this repeating pattern by 

configuring an outer dimension n2 parameter to the combined iteration count of the 

two outer loops, (blkw/vecw) * blkh, and with step amount s2 configured to 0.  

Output indexing in the scalar code: 

    out[i4*lofst_out + i3] = acc; 

Output agen programming: 

  out_agen = init((vshort*)out); 
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  wrapper.size = sizeof(short); 
  wrapper.n1 = kw * kh; 
  wrapper.n2 = blkw/vecw; 
  wrapper.n3 = blkh; 
  wrapper.s1 = 0; 
  wrapper.s2 = vecw; 
  wrapper.s3 = lofst_out; 
  INIT_AGEN3(out_agen, wrapper); 
  out_agen.round = qbits; 

In the scalar code, output is stored out between the inner 2 loops and outer 2 loops, as 

in the inner 2 loops we are accumulating the products between data points and 

coefficients, and only when we are out of the inner 2 loops, we are ready to store the 

outcome to memory.   

In the optimized code, the store is placed in the loop body instead of in an outer loop. Of 

course, it is functionally correct to move the store to the outer loop. but doing that 

would introduce much loop prolog/epilog time between loop levels and slow down the 

processing significantly. It is possible to avoid more of the loop prolog/epilog overhead if 

we fully unroll by kw * kh iterations so that the revised code has again single loop level, 

but doing that would hard-wire the code to a fixed convolution kernel size (if not kw x kh, 

at least the product kw * kh), which will have impact in code size if an application 

requires more than one convolution kernel size. 

By moving the store inside the loop, we need to make two changes in the code. One is 

that the store should be predicated to execute periodically, once per kw * kh iterations. 

The other is that we need to change the output agen programming. 

Store predication is accomplished through calculation of the predicate flag pred_store in 

the optimized code: 

   count_store = (count_store == niter_in-1) ? 0 : (count_store + 1); 
   pred_store = (count_store==0) ? (int)0xFFFFFFFF : 0;  

The count_store is initialized to 1, and pred_store to 0, outside the loop. Inside the loop, 

count_store is modularly incremented, meaning it is incremented by 1 each time, until it 

reaches niter_in – 1, whereas it is reset to 0. pred_store flag is set -1 when count_store 

is zero and otherwise is set 0. With these statements, we implement a periodic 

pred_store with the following pattern:  

 0 0 … 0 1 0 0 … 1 … 

Here, the period is niter_in, which is calculated in the initialization function to be kw * kh 

and stored to memory and restored in the run-time function. This achieves the objective 

of storing out once at the end of each period of kw * kh executions of the store. 

These two lines of code involve many scalar operations, so it seems time-consuming to 

execute. To avoid predication becoming the bottleneck in compute loops, we have 

architected our predicate instructions to implement common periodic predication 

patterns, so these 2 lines of code map to just one predicate instruction, MODINC_NOTP. 

The “NOT” comes from the predication being derived negatively from the counter (true 

when counter is zero). 
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The output agen programming is also adjusted to account for placing the store inside 

the loop. An inner dimension n1 is inserted before the outer 2 dimensions iterating over 

output horizontally one vector width at a time, and vertically one row at a time. The inner 

dimension n1 is iterated kw * kh times with zero stepping, to implement a pattern that 

keeps the address static for kw * kh executions of the store before each advancement 

of the address.  

The outer 2 dimensions of the output agen follow that of the scalar code, except that 

horizontally we are advancing by vector width at a time, due to vectorization, and 

vertically one row at a time. 

The fact that we need an inner dimension for the output agen has to do with how 

predicated store is executed in the pipeline. In the processor pipeline, we need all 

memory operation to have address calculation early in the pipeline to deal with memory 

latency. Agen update is part of address calculation and thus is executed early and 

unconditionally even when there is predication on the store. The store predicate that 

controls whether a memory write is taking place is evaluated later in the pipeline, just in 

time to drive out to the VMEM interface along with data to be stored.  

Similar predication is needed to implement accumulator initialization, which is also 

executed between loop levels. Through these 2 statements we implement another 

periodic predicate signal, pred_madd: 

    count_madd = (count_madd == niter_in-1) ? 0 : (count_madd + 1); 
    pred_madd  = (count_madd!=0) ? (int)0xFFFFFFFF : 0;  

Both count_madd and pred_madd are initialized to 0 outside the loop. The pred_madd 

signal implemented has this pattern: 

 0 1 1 … 1 0 1 1 … 1 … 

Here, the period being also niter_in = kw * kh, matching the period of pred_store. 

pred_madd goes into the argument of vmaddhw, which is mapped to the predicated 

vector multiply-add instruction VMAddHHW_CA. When predicate is 0, the instruction 

does just multiplication, and when the predicate is non-zero, the instruction does 

multiply-add. Thus, the pred_madd pattern drives the MAC instruction to clear the 

accumulators for the first iteration in a period of kw * kh iterations. 

These two lines of optimized code producing the pred_madd signal, although looking 

expensive, are mapped into just one predicate instruction, MODINCP.  

Optimized code has loop body as follows: 

    dvdata = dvshort_load_di(data_agen); 
    coef = short_load(coef_agen); 
    dvacc0 = vmaddhw(dvdata.lo, coef, dvacc0, VPU_ROUND_0, pred_madd); 
    dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_0, pred_madd); 
    vstore_i(dvacc0, dvacc1, out_agen, pred_store); 

Note the use of deinterleaving load, dvshort_load_di(), and interleaving store, vstore_i(). 

They are a matched pair to deal with data ordering when we use expanding MAC 

instructions, in this case VMAddHHW_CA, to produce outcome.   
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The expanding MAC instruction VMAddHHW_CA performs 17-bit x 17-bit multiplications 

(rather than 16-bit, so we can handle both signed 16-bit and unsigned 16-bit 

multiplication) and accumulates in 48-bit accumulators, to account for both product bit 

width and room for dynamic range growth in accumulating multiple products. 

Here coefficients are loaded to a scalar variable/register, one at a time, and the scalar 

register is fed directly to the VMAddHHW_CA instruction and broadcast to all vector 

lanes performing the mutiply-add. In most vector math instructions, we support scalar 

source 2 operand optionally. 

The profiling instruction report is as follows: 

Function detail: filter_short_opt1 void_filter_short_opt1___P__sint___Pdvuint 
 
  Low PC        :    232 
  High PC        :    359 
  Size in program memory:    128 
  Cycle-count      :    597 ( 0.15%) 
  Instruction-count   :    593 ( 0.23%) 
  Instruction Coverage : 100.00% 
 
 
 PC   Assembly                                                                     Exe-cnt  Cycs 
 --- ----------------------------------------------------------------------------- ------- ----- 
 232 ORI R0,#64,R3 || LDW *(R4+4),R2 || LDW *(R4+0),R4                                  1  2 
 235 AgenCfgLD *R5+=R3,A0                                                               1  1 
 236 AgenCfgLD *(R5+64),A2                                                              1  2 
 237 AgenCfgLD *(R5+0),A1                                                               1  1 
 238 ORI R0,#0,R5 || SRAI R4,#3,R4                                                      1  1 
 240 ADDI R2,#-1,R2 || ADDI R4,#-1,R13                                                  1  1 
 242 ORI R0,#1,R4 || MOVSP R5,P2                                                        1  1 
 244 MOVP P2,P9 || DVLDH_PDI *A0++,V12:V13                                              1  1 
 246 DVLDH_PDI *A0++,V8:V9                                                              1  1 
 247 LDH *A1++, R11 || DVLDH_PDI *A0++,V4:V5                                            1  1 
 249 LDH *A1++, R9 || DVLDH_PDI *A0++,V0:V1                                             1  1 
 251 LDH *A1++, R7 || DVLDH_PDI *A0++,V2:V3                                             1  1 
 253 LDH *A1++, R3 || DVLDH_PDI *A0++,V6:V7                                             1  1 
 255 LDH *A1++, R6                                                                      1  1 
 256 RPT R13,#LE_Fvoid_filter_short_opt1___P__sint___Pdvuint_89|| LDH *A1++, R8 ||      1  1 
 258 MODINCP R2,R5,P10 || NOP || [P9] VMAddHHW_CA V13,R11,AC0:AC1||  
     [P9] VMAddHHW_CA V12,R11,AC2:AC3 || DVLDH_PDI *A0++,V10:V11|| LDH *A1++, R10       1  1 
 265 MODINC_NOTP R2,R4,P4||MODINCP R2,R5,P3||[P10] VMAddHHW_CA V9,R9,AC0:AC1|| 
     [P10] VMAddHHW_CA V8,R9,AC2:AC3||[P2] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     LDH *A1++, R12||DVLDH_PDI *A0++,V14:V15                                            1  1 
 272 MODINCP R2,R5,P14 ||MODINC_NOTP R2,R4,P5||[P3] VMAddHHW_CA V4,R7,AC2:AC3|| 
     [P3] VMAddHHW_CA V5,R7,AC0:AC1||[P4] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V12:V13||LDH *A1++,R11                                            71  71 
 279 MODINCP R2,R5,P5 ||MODINC_NOTP R2,R4,P6||[P14] VMAddHHW_CA V0,R3,AC2:AC3|| 
     [P14] VMAddHHW_CA V1,R3,AC0:AC1||[P5] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V8:V9||LDH *A1++,R9                                               71  71 
 286 MODINCP R2,R5,P13 ||MODINC_NOTP R2,R4,P7||[P5] VMAddHHW_CA V2,R6,AC2:AC3|| 
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     [P5] VMAddHHW_CA V3,R6,AC0:AC1||[P6] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V4:V5||LDH *A1++,R7                                               71  71 
 293 MODINCP R2,R5,P7 ||MODINC_NOTP R2,R4,P15||[P13] VMAddHHW_CA V6,R8,AC2:AC3|| 
     [P13] VMAddHHW_CA V7,R8,AC0:AC1||[P7] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V0:V1||LDH *A1++,R3                                               71  71 
 300 MODINCP R2,R5,P11 ||MODINC_NOTP R2,R4,P8||[P7] VMAddHHW_CA V10,R10,AC2:AC3|| 
     [P7] VMAddHHW_CA V11,R10,AC0:AC1||[P15] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V2:V3||LDH *A1++,R6                                               71  71 
 307 MODINC_NOTP R2,R4,P12||MODINCP R2,R5,P9||[P11] VMAddHHW_CA V14,R12,AC2:AC3|| 
     [P11] VMAddHHW_CA V15,R12,AC0:AC1||[P8] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V6:V7||LDH *A1++,8                                                71  71 
 314 MODINCP R2,R5,P10 ||MODINC_NOTP R2,R4,P2||[P9] VMAddHHW_CA V13,R11,AC0:AC1|| 
     [P9] VMAddHHW_CA V12,R11,AC2:AC3||[P12] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V10:V11||LDH *A1++,R10                                            71  71 
 321 MODINCP R2,R5,P3 ||MODINC_NOTP R2,R4,P4||[P10] VMAddHHW_CA V8,R9,AC2:AC3|| 
     [P10] VMAddHHW_CA V9,R9,AC0:AC1||[P2] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++|| 
     DVLDH_PDI *A0++,V14:V15||LDH *A1++,R12                                            71  71 
 328 MODINCP R2,R5,P14 || MODINC_NOTP R2,R4,P5|| [P3] VMAddHHW_CA V4,R7,AC2:AC3|| 
     [P3] VMAddHHW_CA V5,R7,AC0:AC1|| [P4] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++              1   1 
 333 MODINC_NOTP R2,R4,P6|| MODINCP R2,R5,P5|| [P14] VMAddHHW_CA V1,R3,AC0:AC1||  
     [P14] VMAddHHW_CA V0,R3,AC2:AC3|| [P5] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++             1   1 
 338 MODINC_NOTP R2,R4,P7|| MODINCP R2,R5,P13|| [P5] VMAddHHW_CA V3,R6,AC0:AC1|| 
     [P5] VMAddHHW_CA V2,R6,AC2:AC3|| [P6] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++              1   1 
 343 MODINC_NOTP R2,R4,P15|| MODINCP R2,R5,P7|| [P13] VMAddHHW_CA V7,R8,AC0:AC1|| 
     [P13] VMAddHHW_CA V6,R8,AC2:AC3|| [P7] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++             1   1 
 348 MODINC_NOTP R2,R4,P8|| MODINCP R2,R5,P11|| [P7] VMAddHHW_CA V11,R10,AC0:AC1|| 
     [P7] VMAddHHW_CA V10,R10,AC2:AC3|| [P15] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++           1   1 
 353 JR R15                                                                             1   1 
 354 MODINC_NOTP R2,R4,P12|| [P11] VMAddHHW_CA V14,R12,AC2:AC3||  
     [P11] VMAddHHW_CA V15,R12,AC0:AC1|| [P8] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++           1   1 
 358 NOP || [P12] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++                                       1   3 
 

The loop body is scheduled optimally into 8 cycles, packing 2 scalar predicate 

instructions, 2 vector math instructions, and 3 memory operations (2 loads and 1 store) 

in every execution packet. 

The loop prolog starting well ahead of the loop body, and the loop epilog ending well 

after the loop body, as the loop is unrolled 8 times and software pipelined. 

The optimized function completes the same 64 wide x 32 tall output convolution task in 

597 cycles. There is an almost 480x speedup compared to 285,663 cycles by the scalar 

code.  

Next, we will see how we leverage a denser MAC instruction, VFilt4x2HHW_CA, to 

achieve further speedup. 
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8.4.3 Optimization 2: Leveraging Denser MAC 

Instruction 

In VPU instruction set, besides vector multiply-add, we have denser MAC instructions. 

For 16-bit data, we have: 

> VDotP2HHW_CA  2-term dot-product 

> VDotP4 _CA  4-term dot-product 

> VDotP4x2_CA  2 sets of 4-term dot-product 

> VFilt4HHW_CA  4-tap filtering 

> VFilt4x2HHW_CA  2 sets of 4-tap filtering 

Of these, VDotP* instructions are suitable for dot-product. VFilt4HHW_CA delivers 4 

MACs per halfword lane is very useful for 2D convolution.  

We do have VFilt4x2HHW_CA that delivers 8 MACs per halfword lane so it has 2x raw 

MAC throughput of VFilt4HHW_CA. However, VFilt4x2HHW is more suitable for CNN or 

filter banks, where multiple output planes are produced. It is possible to leverage it for 

2D convolution where a single output plane is produced, but there is some 

preprocessing and postprocessing steps involved to reformat data and output, and to 

avoid spending VPU cycles on pre- and post-processing, we will have to configure DMA 

to perform the reformatting while transferring data in and out of VMEM, so 

construction of the test case is much more involved. 

VFilt4HHW_CA performs horizontal 4-tap filtering on 16 lanes of 16-bit 

data/coefficients and accumulates sum of products in 16 lanes of 48-bit accumulators. 

To leverage VFilt4HHW_CA, we need to zero-pad the coefficients horizontally into 

multiple of 4 kernel width. 

Compared to VMAddHHW_CA that performs one MAC per halfword lane, VFilt4HHW_CA 

performs 4 MACs per halfword lane, so we need to feed 4 data points and 4 coefficient 

points to each lane to feed the MACs.  The way we accomplish this, on the data feed, is 

to leverage the sliding-window dependency and provide 2 single vectors of data loaded 

with overlapping data. On the coefficient feed, we take advantage of the fact that in 

convolution we use the same filter kernel for all output data points to share coefficients 

within each group of lanes.  

From instruction details in  VFILT4_CA, we see that the intrinsic for VFilt4HHW_CA: 

dvshortx vfilt4_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx src3dst, int pred); 

This requires that data, coefficients, accumulators within each group of 4 lanes being 

laid out as: 

 

src1a D[0] D[1] D[2] D[3] 

src1b D[4] D[5] D[6] D[7] 

src2 C[0] C[1] C[2] C[3] 

src3dst.lo ACC[0] ACC[2] 
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src3dst.hi ACC[1] ACC[3] 

 

In each group of 4 lanes, the instructions are carried out:  

 

ACC[0] += D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3]; 

ACC[1] += D[1] * C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3]; 

ACC[2] += D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3]; 

ACC[3] += D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3]; 
 

Like the other examples, we want to double-up vector math to take advantage of the 

double vector load/store throughput. Thus to feed 2 VFilt4HHW_CA instructions placed 

on both vector slots of the same execution packet, we would load from the data array 2 

double vectors with 4 element offset for data, and either use VLDPerm to load from the 

coefficient array 4 elements and create the 4-term repeating pattern in the coefficient 

single vector, or we reformat the coefficients outside the compute kernel function to 

create this pattern. 

However, if we use 2 loads for data, 1 load for coefficient, to feed the MACs, and 

together with predicated store to write outcome to VMEM when all product terms are 

accumulated, we spend 4 memory operations to feed 2 vector math operations, and 

would not be able to execute optimally as it would become memory-bound. To reduce 

the memory-to-vector-math ratio, we reuse data between 2 output rows; essentially 

working on 2 double vectors worth of output at a time, and the 2 double vectors are 

mapped to even and odd rows of the output array. By working on 2 rows of output at a 

time, we will also to zero-pad coefficients vertically and perform the 3x3 FIR filtering as 

4x4 FIR filtering. 

Derivation for number of iterations and step parameters for the agen is similar to the 

other examples, so here we shall just show program listings and profiling instruction 

report. 

The filter_16b_filt4_init() function: 

void filter_16b_filt4_init(short *data, short *coef, short* restrict out, 
             int kw, int kh, int qbits, int blkw, int blkh, 
             int lofst_data, int lofst_out, 
             AGEN_PTR * agen_cfg, int * niter, int * niter_in) 
{ 
  int  vecw = chess_elementsof(dvshort);  
  short niter1 = (kw+3)/4; 
  short niter2 = kh+1; 
  short niter3 = blkw/vecw; 
  short niter4 = blkh/2; 
  agen_wrapper_t wrapper0, wrapper1, wrapper2; 
 
  *niter  = niter1 * niter2 * niter3 * niter4; 
  *niter_in = niter1 * niter2; 
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  agen a0 = init((dvshort*)data); 
  wrapper0.size = sizeof(short); 
  wrapper0.n1 = 2; 
  wrapper0.n2 = niter1; 
  wrapper0.n3 = niter2; 
  wrapper0.n4 = niter3; 
  wrapper0.n5 = niter4; 
  wrapper0.s1 = 4; 
  wrapper0.s2 = 4; 
  wrapper0.s3 = lofst_data; 
  wrapper0.s4 = vecw; 
  wrapper0.s5 = 2 * lofst_data; 
  INIT_AGEN5(a0, wrapper0); 
 
  agen a1 = init((vshort*) coef); 
  wrapper1.size = sizeof(vshort); 
  wrapper1.n1 = 2 * niter1 * niter2; 
  wrapper1.n2 = niter3 * niter4; 
  wrapper1.s1 = 1; 
  wrapper1.s2 = 0; 
  INIT_AGEN2(a1, wrapper1); 
 
  agen a2 = init((dvshort* restrict ) out); 
  wrapper2.size = sizeof(short); 
  wrapper2.n1 = niter1 * niter2; 
  wrapper2.n2 = niter3; 
  wrapper2.n3 = niter4; 
  wrapper2.s1 = 0; 
  wrapper2.s2 = vecw; 
  wrapper2.s3 = 2 * lofst_out; 
  INIT_AGEN3(a2, wrapper2); 
  a2.round = qbits; 
 
  agen a3 = a2; 
  a3.a = (vint * restrict) (out + lofst_out); 
 
  *agen_cfg++ = a0.get_cfg(); 
  *agen_cfg++ = a1.get_cfg(); 
  *agen_cfg++ = a2.get_cfg(); 
  *agen_cfg++ = a3.get_cfg(); 
} 

The filter_16b_filter_exec() function, noting how the pair of double vectors for data are 

reused for 2 sets of accumulators. 

void filter_16b_filt4_exec(AGEN_PTR * agen_cfg, int niter, int niter_in) 
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{ 
  dvshortx vdata0, vdata1; 
  vshortx  vcoef0, vcoef1; 
  dvintx vacc0, vacc1; 
  dvintx vacc2, vacc3; 
  int  count_madd = 0; 
  int  count_store = 1; 
  int  pred_madd  = 0; 
  int  pred_store = 0; 
  agen a0 = a0.expand_cfg(*agen_cfg++); 
  agen a1 = a1.expand_cfg(*agen_cfg++); 
  agen a2 = a2.expand_cfg(*agen_cfg++); 
  agen a3 = a3.expand_cfg(*agen_cfg++); 
 
  chess_separator_scheduler(); 
 
  for (int i=0; i<niter; i++) chess_prepare_for_pipelining  
             chess_unroll_loop(4) chess_loop_range(12,) 
  { 
    vdata0 = dvshort_load(a0); 
    vdata1 = dvshort_load(a0); 
    vcoef0 = vshort_load(a1); 
    vcoef1 = vshort_load(a1); 
 
    vacc0 = vfilt4_hhw(vdata0.lo, vdata1.lo, vcoef0, vacc0, pred_madd); 
    vacc1 = vfilt4_hhw(vdata0.hi, vdata1.hi, vcoef0, vacc1, pred_madd); 
 
    vacc2 = vfilt4_hhw(vdata0.lo, vdata1.lo, vcoef1, vacc2, pred_madd); 
    vacc3 = vfilt4_hhw(vdata0.hi, vdata1.hi, vcoef1, vacc3, pred_madd); 
 
    vstore_i2(vacc0, vacc1, a2, pred_store); 
    vstore_i2(vacc2, vacc3, a3, pred_store); 
 
  } 
} 

The profiling instruction report of the _exec function is as follows.  

Function detail: filter_16b_filt4_exec void_filter_16b_filt4_exec___Pdvuint___sint___sint 
 
Low PC        :    168 
High PC        :    279 
Size in program memory:    112 
Cycle-count      :    279 ( 5.41%) 
Instruction-count   :    276 ( 9.98%) 
Instruction Coverage :    100.00% 
 
PC   Assembly                                                                     Exe-cnt Cycs 
--- ----------------------------------------------------------------------------- ------- ---- 
168 ORI R0,#64,R7                                                                      1    2 
169 AgenCfgLD *R4+=R7,A0                                                               1    1 
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170 AgenCfgLD *R4+=R7,A1                                                               1    1 
171 AgenCfgLD *(R4+64),A2                                                              1    1 
172 AgenCfgLD *(R4+0),A3                                                               1    1 
173 GPO_SETLI #1                                                                       1    1 
174 ORI R0,#0,R7  || SRAI R5,#2,R5                                                     1    1 
176 ADDI R5,#-1,R4 || DVLDH_P *A0++,V10:V11                                            1    1 
178 VLDH_P *A1++,W6 || DVLDH_P *A0++,V12:V13                                           1    1 
180 VLDH_P *A1++,W4 || DVLDH_P *A0++,V2:V3                                             1    1 
182 VLDH_P *A1++,W2 || DVLDH_P *A0++,V4:V5                                             1    1 
184 VLDH_P *A1++,W1 || DVLDH_P *A0++,V0:V1                                             1    1 
186 VLDH_P *A1++,W0 || DVLDH_P *A0++,V6:V7                                             1    1 
188 RPT R4,#LE_Fvoid_filter_16b_filt4_exec || VLDH_P *A1++,W3                          1    1 
190 MOVSP R7,P6 || ADDI R6,#-1,R6 || DVLDH_P *A0++,V8:V9|| VLDH_P *A1++,W5             1    1 
194 MOVP P6,P2 || ORI R0,#1,R5 || [P6] VFilt4HHW_CA V11,V13,W6,AC0:AC1|| 
    [P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3 || DVLDH_P *A0++,V14:V15|| VLDH_P *A1++,W7    1    1 
200 MODINCP R6,R7,P7 || [P6] VFilt4HHW_CA V11,V13,W4,AC4:AC5|| 
    [P6] VFilt4HHW_CA V10,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| 
    DVLDH_P *A0++,V10:V11|| VLDH_P *A1++,W6                                           31   31 
206 MODINC_NOTP R6,R5,P4|| [P7] VFilt4HHW_CA V3,V5,W2,AC0:AC1|| 
    [P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| 
    DVLDH_P *A0++,V12:V13|| VLDH_P *A1++,W4                                           31   31 
212 MODINCP R6,R7,P8 || [P7] VFilt4HHW_CA V3,V5,W1,AC4:AC5|| 
    [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7 || [P4] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| 
    DVLDH_P *A0++,V2:V3|| VLDH_P *A1++,W2                                             31   31 
218 MODINC_NOTP R6,R5,P5|| [P8] VFilt4HHW_CA V1,V7,W0,AC0:AC1|| 
    [P8] VFilt4HHW_CA V0,V6,W0,AC2:AC3 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| 
    DVLDH_P *A0++,V4:V5|| VLDH_P *A1++,W1                                             31   31 
224 MODINCP R6,R7,P9 || MODINC_NOTP R6,R5,P3|| [P8]VFilt4HHW_CA V1,V7,W3,AC4:AC5|| 
    [P8] VFilt4HHW_CA V0,V6,W3,AC6:AC7 || [P5] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| 
    DVLDH_P *A0++,V0:V1|| VLDH_P *A1++,W0                                             31   31 
231 MODINC_NOTP R6,R5,P2|| MODINCP R6,R7,P6|| [P9]VFilt4HHW_CA V9,V15,W5,AC0:AC1|| 
    [P9] VFilt4HHW_CA V8,V14,W5,AC2:AC3 || [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| 
    DVLDH_P *A0++,V6:V7|| VLDH_P *A1++,W3                                             31   31 
238 [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5|| [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7 || 
    [P3] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| DVLDH_P *A0++,V8:V9|| VLDH_P *A1++,W5     31   31 
243 [P6] VFilt4HHW_CA V11,V13,W6,AC0:AC1|| [P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3|| 
    [P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH_P *A0++,V14:V15|| VLDH_P *A1++,W7   31   31 
248 MODINCP R6,R7,P7|| MODINC_NOTP R6,R5,P4||[P6]VFilt4HHW_CA V11,V13,W4,AC4:AC5|| 
    [P6]VFilt4HHW_CA V10,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++       1    1 
253 MODINC_NOTP R6,R5,P5|| MODINCP R6,R7,P8|| [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7|| 
    [P7]VFilt4HHW_CA V3,V5,W1,AC4:AC5 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++         1    1 
258 MODINC_NOTP R6,R5,P3|| MODINCP R6,R7,P9|| [P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3|| 
    [P7]VFilt4HHW_CA V3,V5,W2,AC0:AC1 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++         1    1 
263 [P8] VFilt4HHW_CA V0,V6,W3,AC6:AC7|| [P8] VFilt4HHW_CA V1,V7,W3,AC4:AC5|| 
    [P4] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++                                              1    1 
266 [P8] VFilt4HHW_CA V0,V6,W0,AC2:AC3|| [P8] VFilt4HHW_CA V1,V7,W0,AC0:AC1|| 
    [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++                                              1    1 
269 [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7|| [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5|| 
    [P5] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++                                              1    1 
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272 [P9] VFilt4HHW_CA V8,V14,W5,AC2:AC3|| [P9] VFilt4HHW_CA V9,V15,W5,AC0:AC1|| 
    [P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++                                              1    1 
275 [P3] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++                                              1    1 
276 GPO_CLRLI #1                                                                       1    1 
277 JR R15                                                                             1    1 
278 NOP                                                                                1    1 
279 NOP                                                                                1    3 

The vector slots are fully utilized in the loop body, executing a pair of MAC instructions 

(VFilt4HHW) in every execution packet. Also, the 3 memory slots are also packed with 

one double vector load for data, one single vector load for coefficients, and one quad 

vector store. We could have loaded coefficients with a double vector load and left the 

memory slots less utilized. The key is that, if possible, we want to saturate the vector 

math slots to achieve the best performance. If to achieve full vector math utilization, we 

need to saturate memory slots as well, that’s OK; however, if possible, if we can achieve 

full vector math utilization with less memory slots utilization, we would achieve better 

power efficiency as well. 

The loop body portion executes for 8 * 31 = 248 cycles, compared with 8*71 = 568 cycles 

in the VMAdd implementation. The 4x MAC density is diluted somewhat from 

implementing 3x3 FIR filter as 4x4 FIR; 4 * 9 / 16 = 2.25x speedup. For larger FIR kernel, 

the diluting would not be as bad. 

8.4.4 Further Optimization for Power 

The proceeding programming examples are about techniques in performance 

optimization. While reducing processing time often leads to reduction in the energy 

exerted to implement specific functions, there are additional techniques one can follow 

to further optimize for power.  

VPU has load data cache features that can help reduce power when used correctly. Load 

data cache reduces power consumption by bypassing VMEM superbank read for the 

memory banks that are read with the same row address. In a 2D convolution, both data 

and coefficient read may be implemented to have such address patterns and can 

leverage load data cache feature. In the 2D convolution optimization 1 and optimization 

2 examples, we already have data read address pattern that works for load data cache. 

Optimization 1 data agen initialization: 

  wrapper0.size = sizeof(short); 
  wrapper.n1 = kw; 
  wrapper.n2 = kh; 
  ... 
  wrapper.s1 = 1; 
  wrapper.s2 = lofst_data; 

For data read in optimization 1 agen innermost i1 loop, we move the read pointer 1 pixel 

at a time for kw reads from the agen, and each read is a double vector read. Enabling 

load data cache for data agen can save (kw-1)*31 out of every kw*32 memory bank read 

transactions for data read. In the next i2 loop, we move data pointer by one row of data, 
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which is usually greater than 64 bytes (as we vectorize processing we should process 

minimally the vector width). 

Optimization 2 data agen initialization: 

  wrapper0.size = sizeof(short); 
  wrapper0.n1 = 2; 
  wrapper0.n2 = niter1; // (kw+3)/4 
  wrapper0.n3 = niter2; // kh+1 
  ... 
  wrapper0.s1 = 4; 
  wrapper0.s2 = 4; 
  wrapper0.s3 = lofst_data; 

For data read in optimization 2 agen innermost i1 loop, we move the read pointer 4 pixels 

at a time for 2 reads from the agen, and again each read is a double vector read. 

Enabling load data cache can save 1*28 out of every 2*32 memory bank read 

transactions.  In case kw > 4, the pointer moves by 4 pixels, and there is further power 

saving. 

For coefficients read in optimization 1, coefficients are read one element at a time into a 

scalar register. Scalar reads are not cached (see Load Data Cache), so optimization 1 

coefficient read does not work for load cache. 

Optimization 2 coefficient agen initialization: 

  wrapper1.size = sizeof(vshort); 
  wrapper1.n1 = 2 * niter1 * niter2; 
  wrapper1.n2 = niter3 * niter4; 
  wrapper1.s1 = 1; 
  wrapper1.s2 = 0; 

For coefficient read in optimization 2, coefficients are reformatted outside the filtering 

loop so that in the filtering loop coefficients are read one single vector at a time (vshort) 

without repetition, so the pattern does not work for load cache. 

It is possible to leverage load cache, but we will have to change the coefficient 

reformatting loop. To simplify the filtering loop in the example, we have the coefficient 

reformatting loop create the 2-output-rows-at-a-time zero-padded coefficient array 

AND repeated 4 times, as there are 4 4-lane groups in a single vector of halfwords. If we 

revise the coefficient reformatting loop to not repeat the coefficient data 4 times and 

revise the filtering loop to use VLDPerm to load and permute the coefficients with 

appropriate permutation pattern, we can leverage load data cache for coefficient reads 

as well, and further reduce power consumption for 2D convolution. 

For example, if we have 3x3 filtering (kw = kh = 3), current optimization 2 code 

coefficient reformatting loop would produce: 

coef[] = {C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, // out 0 row 0 
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,             // out 1 row 0 
     C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, // out 0 row 1 
     C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, // out 1 row 1 
     C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, // out 0 row 2 
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     C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, // out 1 row 2 
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,             // out 0 row 3 
     C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0};// out 1 row 3 

To leverage load data cache for coefficients, we would skip the 4-time repetition, so that 

the reformatted coefficients would be: 

coef[] = {C0, C1, C2, 0, // out 0 row 0 
     0, 0, 0, 0,    // out 1 row 0 
     C3, C4, C5, 0, // out 0 row 1 
     C0, C1, C2, 0, // out 1 row 1 
     C6, C7, C8, 0, // out 0 row 2 
     C3, C4, C5, 0, // out 1 row 2 
     0, 0, 0, 0,    // out 0 row 3 
     C6, C7, C8, 0};// out 1 row 3 

Load data cache is enabled on a per VMEM superbank basis, so to have effective 

caching, we would need data and coefficient arrays be allocated in different VMEM 

superbanks. Otherwise, the load cache would be threshing from data, and coefficient 

reads giving different row addresses to the same memory banks, and the cache would 

have poor hit rate. When load data cache is enabled and when the read data pattern has 

few repeated read to the memory banks, we may end up consuming higher power, from 

additional activity in recording/matching the memory bank row addresses. 

8.5 Interpolated 2D Lookup 
In computer vision, we sometimes need to perform interpolated 2D lookup, typically to 

resize an image, to undistort an image, or to warp an image patch for object tracking. 

Most common interpolation scheme is bilinear interpolation. VPU instruction set 

includes instructions that accelerate interpolated 2D lookup. 

In this example, we shall look at scalar/reference code, VPU optimized code, and code 

leveraging the DLUT (decoupled lookup table unit) to perform interpolated 2D lookup. 

Here we skip the profiling instruction report.  

8.5.1 Scalar Code 

The following is the scalar/reference function performing interpolated 2D lookup: 

//********************************************************************* 
// interpolate_lookup2d_ref 
// 2D table tblw wide 
// index X/Y interleaved 
//********************************************************************* 
void interpolated_lookup2d_ref(int tblw, int len_out, int frac_bits, 
                short * tbl, short * idx, short * out) 
{ 
  int x, y, int_x, int_y, frac_x, frac_y; 
  int lu_idx, entry0, entry1, entry2, entry3; 
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  int out01, out23, out0123; 
  int frac_mask = (1 << frac_bits) - 1; 
  int rnd_add  = 1 << (frac_bits - 1); 
 
  for (int i = 0; i < len_out; i++) { 
    x = *idx++; 
    y = *idx++; 
    int_x = x >> frac_bits; 
    int_y = y >> frac_bits; 
    frac_x = x & frac_mask; 
    frac_y = y & frac_mask; 
    lu_idx = int_y * tblw + int_x; 
    entry0 = tbl[lu_idx]; 
    entry1 = tbl[lu_idx + 1]; 
    entry2 = tbl[lu_idx + tblw]; 
    entry3 = tbl[lu_idx + tblw + 1]; 
    out01 = entry0 + (((entry1 - entry0) * frac_x + rnd_add) >> frac_bits); 
    out23 = entry2 + (((entry3 - entry2) * frac_x + rnd_add) >> frac_bits); 
    out0123 = out01 + (((out23 - out01) * frac_y + rnd_add) >> frac_bits); 
    *out++ = out0123; 
  } 
} 
 

The index data is X/Y interleaved. Each element (carrying either X or Y) is a fixed-point 

number with number of fraction bits being frac_bits.  

The reference code reads X & Y indices, separates out integer and fraction components, 

calculates a linear index using the integer X & Y components, performs the 2x2 lookup, 

then uses the fraction X & Y components to perform bilinear interpolation to produce 

one output value. Notice how we perform horizontal interpolation to blend entry0 with 

entry1 to produce out01, and entry2 with entry3 to produce out23. Then we perform 

vertical interpolation to blend out01 and out23 to produce the final output. 

This scalar/reference function takes 63,504 cycles to produce 2048 outputs 

interpolating from a 66 x 34 image patch, averaging 31 cycles per output. 

8.5.2 VPU Parallel Lookup  

VPU has parallel lookup instructions to perform 2x2 lookup, up to a parallelism of 8. To 

leverage such instructions, we will need to replicate the original table containing the 

image patch 8 times. 

Given the replicated lookup table, VPU optimized function performing interpolated 2D 

lookup is as follows: 

void interpolated_lookup2d_opt(int tblw, int len_out, int frac_bits, 
                short * tbl, short * idx, short * restrict out) 
{ 
  dvshortx vidx; 
  dvshortx bitpos;  
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  bitpos.lo = replicateh(frac_bits); 
  bitpos.hi = replicateh(frac_bits); 
  dvshortx xy_int, xy_frac, xy_frac_norm; 
  vshortx lu_idx, lu_idx_even, lu_idx_odd;  
  dvshortx entry_even, entry_odd; 
  vshortx out01, out23, out0123;  
  int lsh_bits = 15 - frac_bits; 
  int lp_k = tblw/4; 
  short even_arr[] = {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1}; 
  short odd_arr[] = {1, 3, 5, 7, 9, 11, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1}; 
  vshortx pat_even = zero_extend(*((vushort *) even_arr)); 
  vshortx pat_odd = zero_extend(*((vushort *) odd_arr)); 
  int niter = len_out/16; 
  agen_A aidx = init_A(idx); 
  aidx.n1 = niter; 
  aidx.mod1 = sizeof(dvshort); 
  agen_C aout = init_C(out); // write 16 at a time 
  aout.n1 = niter;  
  aout.mod1 = sizeof(vshort); 
  short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =  
           (short chess_storage(DMb%64:chess_segment(B)) *) tbl;  
#define UNROLL1 7 
  // round up to multiple of unrolling factor  
  niter = ((niter + UNROLL1 - 1)/UNROLL1) * UNROLL1;  
 
  for (int i = 0; i < niter; i++) chess_prepare_for_pipelining 
          chess_unroll_loop(UNROLL1) chess_loop_range(3 * UNROLL1,) 
  { 
    vidx = dvshort_load_di(aidx);                 // x/y intrlv -> lo/hi 
    dvsplitbits(vidx, bitpos, xy_int, xy_frac);   // lo=x, hi=y 
    lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);  
                                                  // int_y * tblw + int_x 
    xy_frac_norm = xy_frac << lsh_bits;        
    lu_idx_even = vpermute(lu_idx, pat_even);     // 0, 2, 4, ..., 14 
    lu_idx_odd = vpermute(lu_idx, pat_odd);       // 1, 3, 5, ..., 15 
    entry_even = vlookup_2x2pt_8h(tbl_ptr, lu_idx_even, lp_k); 
    entry_odd  = vlookup_2x2pt_8h(tbl_ptr, lu_idx_odd, lp_k); 
    out01    = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo); 
    out23    = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo); 
    out0123   = vblend(out01, out23, xy_frac_norm.hi); 
    vstore(out0123, aout); 
  } 
} 
 

The use of vpermute() to reorganize elements in lu_idx vector to separate even and odd 

data points. Unfortunately, this is needed to work with vlookup_2x2pt_8h, as only 8 data 

points are needed in each index vector of vshortx type (which holds 16 lanes). After the 

8 even/odd data points, rest of the lanes are zero-filled, by padding -1 in the even_arr[] 

and odd_arr[] arrays. 
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The loop has the following vector math operations: 

> 2x vsplitbits 

> vmaddh 

> 2x vsla  

> 2x vpermute 

> 2x vhblend_i 

> vblend  

That’s 10 operations, so we would say the SOL (speed of light/ideal) performance is 5 

cycles per iteration.  

Unrolling factors from 4 to 8 are tried, and with 7x loop unrolling, we found the best 

performance at 39 cycles per iteration, or 5. 57 cycles per original iteration.  

The compiler often, but not always, achieves SOL performance. The loop body has 

relatively long latency due to cascading of long math and lookup latencies (vmaddh → 

vpermute → vlookup) and would need to unroll more to allow compiler to pack the vector 

math slots but unrolling more leads to more challenging register allocation.  

The optimized function executes for 805 cycles for the same test configuration (2048 

outputs, 66 x 34 image patch). This translates to 0.393 cycle per output, and roughly 

78.9x speedup over scalar/reference function. 

8.5.3 VPU Parallel Lookup in Two Loops 

One optimization strategy we can try when we have a long string of math operations in 

the loop is to break it into 2 loops. For the VPU parallel lookup code 1 in the previous 

section, there is another advantage in breaking up the loop into two, in that the 

permutation operation in vector math we can get for free (of vector math operations) by 

leveraging the load with permute instruction. The resulting code is as follows: 

void interpolated_lookup2d_opt2(int tblw, int len_out, int frac_bits, 
              short * tbl, short * idx, short * temp_buf_idx, 
              short * temp_buf_frac, short * out) 
{ 
  dvshortx vidx; 
  dvshortx bitpos; 
  bitpos.lo = replicateh(frac_bits); 
  bitpos.hi = replicateh(frac_bits); 
  dvshortx xy_int, xy_frac, xy_frac_norm; 
  vshortx lu_idx; 
  dvshortx dv_lu_idx; 
  dvshortx entry_even, entry_odd; 
  vshortx out01, out23, out0123; 
  int lp_k = tblw/4; 
  char perm_pat_arr[] = {0, 2, 4, 6, 8, 10, 12, 14, -1,-1,-1,-1,-1,-1,-1,-1, 
                         1, 3, 5, 7, 9, 11, 13, 15, -1,-1,-1,-1,-1,-1,-1,-1}; 
  vcharx perm_pat = sign_extend(*((vchar *) perm_pat_arr)); 
  short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr = 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  131 

           (short chess_storage(DMb%64:chess_segment(B)) *) tbl; 
 
  int niter = len_out/16; 
  agen_A aidx = init_A(idx);                // read 16 X + 16 Y at a time 
  aidx.n1 = niter; 
  aidx.mod1 = sizeof(dvshort); 
  agen_C atemp_idxw = init_C(temp_buf_idx); // write 16 indices at a time 
  atemp_idxw.n1 = niter; 
  atemp_idxw.mod1 = sizeof(vshort); 
  agen_C atemp_fracw = init_C(temp_buf_frac);// write 16 dX + 16 dY at a time 
  atemp_fracw.n1 = niter; 
  atemp_fracw.mod1 = sizeof(dvshort); 
  agen_C atemp_idxr = init_C(temp_buf_idx); // read 16 indices at a time 
  atemp_idxr.n1 = niter; 
  atemp_idxr.mod1 = sizeof(vshort); 
  agen_C atemp_fracr = init_C(temp_buf_frac);// read 16 dX + 16 dY at a time  
  atemp_fracr.n1 = niter; 
  atemp_fracr.mod1 = sizeof(dvshort); 
  agen_C aout = init_C(out);                 // write 16 outputs at a time 
  aout.n1 = niter; 
  aout.mod1 = sizeof(vshort); 
  chess_separator_scheduler(); 
 
#define UNROLL2 6 
#define UNROLL3 5 
  // round up to multiple of unrolling factor 
  int niter1 = ((niter + UNROLL2 - 1)/UNROLL2) * UNROLL2; 
  int niter2 = ((niter + UNROLL3 - 1)/UNROLL3) * UNROLL3; 
 
  for (int i = 0; i < niter1; i++) chess_prepare_for_pipelining 
          chess_unroll_loop(UNROLL2) chess_loop_range(3 * UNROLL2,) 
  { 
    vidx = dvshort_load_di(aidx);               // x/y intrlv -> lo/hi 
    dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y 
    xy_frac_norm = xy_frac << (15 - frac_bits); // lo=x, hi=y 
    lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);  
                                                // int_y * tblw + int_x 
    vstore(xy_frac_norm, atemp_fracw);          // 16 dX + 16 dY 
    vstore(lu_idx, atemp_idxw);                 // 16 IDX 
  } 
 
  chess_separator_scheduler(); 
 
  for (int i = 0; i < niter2; i++) chess_prepare_for_pipelining  
          chess_unroll_loop(UNROLL3) chess_loop_range(3 * UNROLL3,) 
  { 
    dv_lu_idx = dvshort_load_perm(atemp_idxr, perm_pat); // 8 even + 8 odd  
    xy_frac_norm = dvshort_load(atemp_fracr);            // 16 dX + 16 dY  
    entry_even = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.lo, lp_k); 
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    entry_odd = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.hi, lp_k); 
    out01  = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo); 
    out23  = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo); 
    out0123 = vblend(out01, out23, xy_frac_norm.hi); 
    vstore(out0123, aout); 
  } 
}   

The two inner loops the following vector math operations, respectively: 

> 2x vsplitbits 

> vmaddh 

> 2x vsla  

 

> 2x vhblend_i 

> vblend  

After adding loads and stores to both loops to make them work, the resulting first loop 

is still vector math-bound at SOL of 2.5 cycles per iteration. The second loop becomes 

M0-slot and lookup-bound, at SOL of 2 cycles per iteration.  

Again, unrolling factors from 4 to 8 are tried, and with 6x loop unrolling, we found the 

best performance at 17 cycles per iteration, or 2.83 cycles per original iteration. The 

second loop is 5x unrolled at 10 cycles per iteration, or 2 cycles per original iteration, 

meeting SOL.  

The optimized function executes for 748 cycles for the same test configuration (2048 

outputs, 66 x 34 image patch). The difference in inner-loop performance, 2.83 + 2 = 4.83 

cycles per iteration versus 5.57 cycles per iteration, can lead to a bigger gap in cycle 

count if there is a bigger workload. 

In breaking up the long sequence math into two loops, we achieve slightly faster 

compute function, but we also incur greater power consumption by having more VMEM 

read/write for the same application. The two-loop solution is also likely to have larger 

code size, which can lead to higher I-cache misses in an application. There are pros and 

cons in this implementation. 

8.5.4 Leveraging DLUT 

Interpolated 2D lookup is one of the operation modes supported by DLUT. To leverage 

DLUT, we need to leverage Sampler APIs in PVA SDK.  For this particular problem, we 

configure the DLUT task with: 

#include <cupva_device.h> 
 
void dlut_setup_interp2D(CupvaSampler *restrict sampler,  
                int tblw, int tblh, int len_out, int frac_bits,  
                short * tbl, short * idx, short * out) 
{ 
    CupvaSamplerInput2D const sampler_tbl = { 
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        .data           = tbl, 
        .type           = SAMPLER_INPUT_TYPE_S16, 
        .width          = tblw, 
        .height         = tblh,  
        .linePitch      = tblw, 
        .outOfRangeMode = SAMPLER_OUT_OF_RANGE_CONSTANT, 
        .outOfRangeVal  = 0, // don’t care, not using on OOR feature 
        .flags          = 0, // don’t care, linePitch is specified 
    }; 
 
    CupvaSamplerIndices2D const sampler_idx = { 
        .data               = idx, 
        .type               = SAMPLER_INDEX_TYPE_U16, 
        .width              = len_out,  // idx & out are 1D 
        .height             = 1, 
        .linePitch          = 0, 
        .fractionalBits     = frac_bits, 
        .fractionalHandling = SAMPLER_FRAC_HANDLING_INTERPOLATE, 
        .offsetX            = 0,  
        .offsetY            = 0, 
        .interleaving       = SAMPLER_INTERLEAVING_ELEMENTS, 
    }; 
 
    CupvaSamplerOutput const sample_out = { 
        .data      = out, 
        .pitch     = 0,  // output 1D 
        .transMode = TRANS_MODE_NONE, 
    }; 
 
    cupvaSamplerSetup(sampler, &sampler_tbl, &sampler_idx, &sample_out); 
} 
 

This is setting up the DLUT task as 2D interpolation task mode and providing relevant 

parameters to the DLUT task. 

In the main() function of this test case, DLUT is configured then invoked by this 

sequence of steps: 

 
    CupvaSampler sampler_interp2D; 
 
    // set up DLUT task via Sampler APIs 
    dlut_setup_interp2D(&sampler_interp2D, tblw, tblh, len_out, frac_bits,  
                        tbl, idx, out); 
 
    // trigger DLUT to start 
    cupvaSamplerStart(&config.z_reorder_sampler); 
 
    // VPU can perform other processing in parallel with DLUT  
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    // wait for sampler to be done 
    cupvaSamplerWait(); 
 

For common image processing tasks that process a constant-sized tile at a time, DLUT 

setup should ideally be performed in the application initialization time, perhaps with 

multiple sets of input, index, and output buffers for double-buffering.   

Not counting the setup time, per-tile DLUT execution time is about 60 cycles of latency 

plus about len_out/4 cycles (for 16-bit 2D interpolated lookup), around 60 + 2048/4 = 

572 cycles. 

Besides faster processing speed than VPU, leveraging DLUT has the following 

advantages: 

> The table does not need to be replicated, and this saves VMEM footprint, processing 

time and power consumption.  

> While DLUT is busy performing the interpolated lookup, VPU can be potentially doing 

some useful work. 

> DLUT generally consumes much less energy compared to VPU doing the same lookup 

or interpolated lookup workload. 

> DLUT configuration and interaction code, in general, takes up less VPU code size than 

VPU doing the same lookup or interpolated lookup workload. 

> DLUT provides table access out-of-bound handling without performance penalty.  

 

Please see the PVA SDK documentation for full list of Sampler API functions. 

 

 

 
  

https://docs.nvidia.com/pva/sdk/index.html
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Chapter 9. Instruction Set Reference  

9.1 VPU Changes from Xavier to Orin 
Changes in VPU from Xavier (Gen-1) to Orin (Gen-2) are as follows; throughput numbers 

are for one VPU: 

> Doubled I-cache capacity from 8KB to 16KB 

> Doubled VMEM capacity from 3 x 64KB to 3 x 128KB 

> Double VMEM bandwidth from one read-or-write to one read and one write per 

superbank memory, from 3 x 512-bit per cycle to 3 x 2 x 512-bit per cycle in terms of 

max possible read/write transactions 

> Additional vector register files: 32 x 384-bit WRF and 32 x 384-bit ARF, with ARF 

extended to 32 x 512-bit in select MAC and vector store instructions 

> Doubled Predicate register file from 8 x 32-bit to 16 x 32-bit, from P0..P7 to P0..P15 

> Integer MAC throughput boosted (see 9.2.1 for MAC instructions in Xavier/Orin) 

• 8-bit x 8-bit, from 128 MACs per cycle to 1024 MACs per cycle, 8x speedup  

• 16-bit x 16-bit, from 64 MACs per cycle to 256 MACs per cycle, 4x speedup 

• 32-bit x 16-bit, from 32 MACs per cycle to 64 MACs per cycle, 2x speedup 

• 32-bit x 32-bit, from 16 MACs per cycle to 64 MACs per cycle, 4x speedup 

> Accelerated FFT (see 9.2.2 for FFT instructions in Xavier/Orin) 

• 16-bit x 16-bit complex multiply, from 16 per cycle to 32 per cycle, 2x speedup 

• 32-bit x 16-bit complex multiply, from 8 per cycle to 16 per cycle, 2x speedup 

• 32-bit x 32-bit complex multiply, from 4 per cycle to 16 per cycle, 4x speedup 

• 32-bit and 16-bit 4 x 2 add/sub 

> Double throughput commonly vector operations (see 9.2.1 and 9.2.3 for such 

instructions) 

• Add, Sub, Compares, Min, Max, AbsDif 

• And, Or, Xor, BitCnt 

• Multiply, Multiply-add, Multiply-subtract 

> Vector Blending  

• VBlend extended to cover Word type 

• New VHBlend_I to blend between even/odd lanes to work seamlessly with 2-point 

and 2x2-point lookup 
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> Enhance vector bitwise operations  

• Add scalar source 2 option and distinguish B/H/W types for bitwise And, Or, Xor 

> Reduction operations going directly to scalar register destination 

• VSumR, VMinR, VMaxR, VAndR, VOrR, VXorR, VBitCmp 

> Additional vector integer math instructions 

• VMinLT, VMaxLT, producing 2-input min/max and less-than/greater-than flag, to 

maintain min/max and index where min/max comes from 

• VSort2PL, sorting with payload, treating even lanes as keys and odd lanes as 

accompanying payload 

• VCollateIdx_Bits, fusing VCollateIdx (collate index) and bit-packing into scalar 

destination 

• VNormIdxFrac, fusing VNorm (normalization) and 2 VExtrBits (bit extraction) to 

produce table index and post-lookup interpolation fraction bits 

• VCmp*_AndL, VCmp*_OrL, using compare with logical and/or operations 

• VApplySign, apply positive/negative sign 

• VSelectLane, select a lane to write to scalar destination 

• VSplitBits, splitting a source into 2-bit sections 

• VXShiftL, VXShiftR, to work with an extra vector load to implement cross-lane 

left/right shift, for bit manipulation. 

• VHMin2ID, VHMax2ID, VMinSkip2RID, VMaxSkip2RID, Word type only, basically 

decomposition of VMinRID/VMaxRID Word type with vector destination into 2 

instructions to avoid critical timing path. 

• VShuffle, shuffle permutation 

> Vector floating-point support (see 9.2.3 for list of vector instructions added in Orin) 

• Vector FP16/FP32 FMA  

• Vector FP32/FP16 compare  

• Vector FP32 reciprocal, square root, reciprocal square root, sin, cos, log2, exp2, 

tanh 

• Vector FP32/FP16/INT48/INT32/INT24 conversions 

> Scalar floating-point enhancement (see 9.2.4 for list of instructions) 

• In Xavier VPU there was just scalar FP32 FMA 

• All vector FP32/FP16 math instructions also offer scalar variation, except for 

conversion to/from IN48/INT24  

> Agen features 

• Automatically predicate off stores when executed over configured number of 

iterations  

• Min/Max collection 

• Advance agen base 

> Memory features 

• Load cache (see 5.5) 
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• Transpose modes T2/T4/T8/T16/T32 (see 6.3.7) 

• Memory Fence (see 9.6.18) 

• Load + permute (see 9.9.4.7 and 9.9.4.8) 

• Per-lane rounding (see 9.9.4.9) 

• 2-point and 2x2-point lookup (see 9.9.6.4 and 9.9.6.5) 

• Histogram double throughput from VMEM upgrading to dual port memory 

• OR-histogram (see 9.9.6.8 and 9.9.6.9) 

> Decoupled coprocessor 

• Coprocessors register interface (CPLD/CPST) 

• Additional VMEM read/write ports to support coprocessors 

• Decoupled lookup unit (DLUT) 

9.2 VPU Math Operation Throughput  
Math throughput is an important performance metric for a processor. The most 

important math operation for throughput comparison is multiply-add, especially for DSP 

processors. Multiplication is expensive in power, so it’s useful to have a summary of 

various multiplication and MAC instructions to correlate performance and power 

consumption. Throughput numbers for a wider range of operations are also tabulated. 

9.2.1 Multiply/MAC Instructions 

Multiply/multiply-accumulate instructions, per instruction throughput, and per VPU MAC 

throughput are as follows. Instructions added in Orin are denoted in the “Added in Orin” 

column in the table below:   

Table 18. Multiply/MAC instructions 

Instruction Function 

Added 

in 

Orin 

Thruput 

per slot 

Mul / MAC 

Thruput 

per VPU (1) 

VMulB 

VMulBBH  

VMulH 

VMulHHW 

VMulWHW 

VMulWWL 

Multiply round_trunc(9b x 9b) = 12b 

Multiply round_trunc(9b x 9b) = 24b 

Multiply round_trunc(17b x 17b) = 24b 

Multiply round_trunc(17b x 17b) = 48b 

Multiply round_trunc(33b x 17b) = 48b 

Multiply 33b x 33b = 48b : 32b 

 32 

32 

16 

16 

8 

8 

64 x 8b 

64 x 8b 

32 x 16b 

32 x 16b 

64 x 16b 

16 x 32b 

VMulBBH   (2x) 

VMulHHW 

VMulWHW 

VMulW 

Multiply 9b x 9b = 24b 

Multiply 17b x 17b = 48b 

Multiply 33b x 17b = 48b 

Multiply trunc_16b(33b x 33b) = 48b 

Y 

Y 

Y 

Y 

64 

32 

16 

16 

128 x 8b 

64 x 16b 

64 x 16b 

32 x 32b 
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Instruction Function 

Added 

in 

Orin 

Thruput 

per slot 

Mul / MAC 

Thruput 

per VPU (1) 

VMul2B 

VMul2H 

VMul2WHW 

Multiply round_trunc(9b x 9b) = 12b 

Multiply round_trunc(17b x 17b) = 24b 

Multiply round_trunc(33b x 17b) = 48b 

 64 

32 

16 

128 x 8b 

64 x 16b 

64 x 16b 

VMAddB_CA      

VMAddBBH_CA 

VMAddH_CA 

VMAddHHW_CA 

VMAddWHW_CA 

Multiply-add 12b + round_trunc(9b x 9b) = 12b 

Multiply-add 24b + round_trunc(9b x 9b) = 24b 

Multiply-add 24b + round_trunc(17b x 17b) = 24b 

Multiply-add 48b + round_trunc(17b x 17b) = 48b 

Multiply-add 48b + round_trunc(33b x 17b) = 48b 

 32 

32 

16 

16 

8 

64 x 8b 

64 x 8b 

32 x 16b 

32 x 16b 

32 x 16b 

VMAddB_CA    (2x)  

VMAddBBH_CA    

VMAddH_CA 

VMAddHHW_CA 

VMAddWHW_CA 

VMAddW_CA 

Multiply-add 12b + 9b x 9b = 12b 

Multiply-add 24b + 9b x 9b = 24b 

Multiply-add 24b + 17b x 17b = 24b 

Multiply-add 48b + 17b x 17b = 48b 

Multiply-add 48b + 33b x 17b = 48b 

Multiply-add 48b + trunc_16b(33b x 33b) = 48b 

Y 

Y 

Y 

Y 

64 

64 

32 

32 

16 

16 

128 x 8n 

128 x 8b 

64 x 16b 

64 x 16b 

64 x 16b 

32 x 32b 

VDotP2BBH_CA 

VDotP2HHW_CA 

VDotP2WHW_CA 

VDotP2W_CA 

2-term dot product 24b + 9b x 9b + 9b x 9b = 24b 

2-term dot product 48b + 17b x 17b + 17b x 17b = 48b 

2-term dot product 48b + 33b x 17b + 33b x 17b = 48b 

2-term dot product 48b + trunc_16b(33b x 33b)  

                   + trunc_16b(33b x 33b) = 48b 

 32 

16 

8 

8 

128 x 8b 

64 x 16b 

32 x 16b 

32 x 32b 

VDotP2x2W_CA  (2x) 2-term dot product 48b + trunc_16b(33b x 33b)  

                   + trunc_16b(33b x 33b) = 48b 

Y 16 

 

64 x 32b 

VDotP4BBH_CA  (2x) 

VDotP4BBW_CA 

VDotP4HHW_CA 

VDotP4WHW_CA 

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 24b 

4-term dot product 32b + 9b x 9b + … + 9b x 9b = 32b 

4-term dot product 48b + 17b x 17b + … + 17b x 17b = 48b 

4-term dot product 48b + 33b x 17b + … + 33b x 17b = 48b 

Y 

Y 

Y 

Y 

32 

32 

16 

8 

256 x 8b 

256 x 8b 

128 x 16b 

128 x 16b 

VDotP4x2BBH_CA (4x) 

VDotP4x2BBW_CA 

VDotP4x2HHW_CA 

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 24b 

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 32b 

4-term dot product 48b + 17b x 17b + … + 17b x 17b = 48b 

Y 

Y 

Y 

64 

64 

32 

512 x 8b 

512 x 8b 

256 x 16b 

VFilt4BBH_CA    (2x) 

VFilt4HHW_CA 

4-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b 

4-term filter 48b + 17b x 17b + … + 17b x 17b = 48b 

Y 

Y 

32 

16 

256 x 8b 

128 x 16b 

VFilt4x2BBH_CA  (4x) 

VFilt4x2HHW_CA 

4-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b 

4-term filter 48b + 17b x 17b + … + 17b x 17b = 48b 

Y 

Y 

64 

32 

512 x 8b 

256 x 16b 

VFilt4x2x2BBH_CA (8x) 

VFilt4x2x2BBW_CA 

4x2-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b 

4x2-term filter 32b + 24b + 9b x 9b + … + 9b x 9b = 32b 

Y 

Y 

64 

64 

1024 x 8b 

1024 x 8b 
 

 

Note: Count conventional 8b/16b/32b multiplications or multiply-accumulates. 33b x 17b 

counted as 2 16b MACs. 
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9.2.2 MAC-Related Instructions 

Additional instructions that leverage multiply-add or multiply-accumulate datapath: 

Instruction Function 

Added 

in 

Orin 

Thruput 

per slot 

Mul / MAC 

Thruput 

per VPU (1) 

VCMulH 

VCMulHHW 

Complex multiply round_trunc(17b x 17b) = 24b  

Complex multiply round_trunc(17b x 17b) = 48b 

 8 

8 

64 x 16b 

64 x 16b 

VCMulHHW     (2x) Complex multiply 17b x 17b = 48b Y 16 128 x 16b 

VCMulWHW     (2x) 

VCMulW 

Complex multiply 33b x 17b = 48b 

Complex multiply trunc_16b(33b x 33b) = 48b 

Y 

Y 

8 

8 

128 x 16b 

64 x 32b 

VMSubB_CA      

VMSubBBH_CA 

VMSubH_CA 

VMSubHHW_CA 

VMSubWHW_CA 

VMSubW_CA 

Multiply-subtract 12b + round_trunc(9b x 9b) = 12b 

Multiply-subtract 24b + round_trunc(9b x 9b) = 24b 

Multiply-subtract 24b + round_trunc(17b x 17b) = 24b 

Multiply-subtract 48b + round_trunc(17b x 17b) = 48b 

Multiply-subtract 48b + round_trunc(33b x 17b) = 48b 

Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b 

 32 

32 

16 

16 

8 

8 

64 x 8b 

64 x 8b 

32 x 16b 

32 x 16b 

32 x 16b 

16 x 32b 

VMSubB_CA     (2x) 

VMSubBBH_CA   

VMSubH_CA 

VMSubHHW_CA 

VMSubWHW_CA 

VMSubW_CA 

Multiply-subtract 12b + 9b x 9b = 12b 

Multiply-subtract 24b + 9b x 9b = 24b 

Multiply-subtract 24b + 17b x 17b = 24b 

Multiply-subtract 48b + 17b x 17b = 48b 

Multiply-subtract 48b + 33b x 17b = 48b 

Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b 

Y 

Y 

Y 

Y 

Y 

Y 

64 

64 

32 

32 

16 

16 

128 x 8b 

128 x 8b 

64 x 16b 

64 x 16b 

64 x 16b 

32 x 32b 

VBlendB 

VBlendH 

VBlendW 

Blend 12b + round(9b x 8b – 9b x 8b) = 12b 

Blend 24b + round(17b x 16b – 17bb x 16b) = 24b 

Blend (48b << 16) + trunc_16b(33b x 32b)  

               – trunc_16b(33b x 32b) = 48b 

 

 

Y (W) 

32 

16 

8 

128 x 8b 

64 x 16b 

32 x 32b 

VHBlend_IB 

VHBlend_IH 

VHBlend_IW 

 

VHBlend_IBHB 

Blend 12b + round(9b x 8b – 9b x 8b) = 12b 

Blend 24b + round(17b x 16b – 17bb x 16b) = 24b 

Blend (48b << 16) + trunc_16b(33b x 32b)  

               – trunc_16b(33b x 32b) = 48b 

Blend 12b + round(9b x 8b – 9b x 8b) = 12b 

Y 

Y 

Y 

 

Y 

32 

16 

8 

 

32 

128 x 8b 

64 x 16b 

32 x 32b 

 

128 x 8b 

VXNorAdd8x4x2_CA 8x4-term XNorAdd 16b + 1b ^ 1b + … + 1b ^ 1b = 16b Y 128 8192 x 1b 

VSumSqBBH 

VSumSqHHW 

VSumSqW 

Sum of square 9b x 9b + 9b x 9b = 24b 

Sum of square 17b x 17b + 17b x 17b = 48b 

Sum of square trunc_16b(33b x 33b)  

            + trunc_16b(33b x 33b) = 48b 

Y 

Y 

Y 

32 

16 

8 

128 x 8b 

64 x 16b 

32 x 32b 

VSqSumBBH 

VSqSumHHW 

Square of sum (9b + 9b) x (9b + 9b) = 24b 

Square of sum (17b + 17b) x (17b + 17b) = 48b 

Y 

Y 

32 

16 

192 x 8b 

96 x 16b 

VDet2x2HHW 

VDet2x2W 

Determinant 2x2 17b x 17b + 17b x 17b = 48b  

Determinant 2x2 trunc_16b(33b x 33b)  

           – trunc_16b(33b x 33b) = 48b 

Y 

Y 

16 

8 

64 x 16b 

32 x 32b 
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9.2.3 Other Accelerated Vector Math Instructions 

Selected math operations are accelerated over baseline 32 x 12-bit, 16 x 24-bit, or 8 x 

48-bit per vector slot. 

See Removed/Emulated Instructions for list of Xavier vector math instructions that we 

removed in Orin, where there is slowdown instead of speedup. We retain intrinsic 

functions to maintain source code compatibility through emulating the functionality 

with other instructions. 
 

Instruction Function 

Added 

in 

Orin 

Thruput 

per slot 

Operation 

Thruput 

per VPU  

VAddB/H/W  

VSubB/H/W 

VAndB/H/W 

VOrB/H/W 

VXorB/H/W 

VMinB/H/W 

VMaxB/H/W 

VCmpLTB/H/W 

VCmpLEB/H/W 

VCmpGTB/H/W 

VCmpGEB/H/W 

VCmpEQB/H/W 

VCmpNEB/H/W 

VBitCntB/H/W 

VAbsDifB/H/W 

 

 

Addition 

Subtraction 

Bitwise and 

Bitwise or 

Bitwise exclusive-or 

Min 

Max 

Compare less than 

Compare less than or equal to 

Compare greater than 

Compare greater than or equal to 

Compare equal 

Compare not equal 

Bit count 

Absolute difference 

 

12-bit operation 

24-bit operation 

48-bit operation 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 

16 

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 x 12-bit 

32 x 24-bit 

16 x 48-bit 

2x perf of above 12-bit operation 

24-bit operation 

48-bit operation 

Y 

Y 

Y 

64 

32 

16 

128 x 12-bit 

64 x 24-bit 

32 x 48-bit 

VAdd2SubB 

VAdd2SubH 

VAdd2SubW 

12-bit A + B – C 

24-bit A + B – C 

48-bit A + B – C 

 32 

16 

8 

128 x 12-bit 

64 x 24-bit 

32 x 48-bit 

 

VAddSub4x2B (3x) 

VAddSub4x2H 

VAddSub4x2W 

4-input-2-output add/subtract for radix-4 FFT 

12-bit 

24-bit 

48-bit 

 

Y 

Y 

Y 

 

32 

16 

8  

 

192 x 12-bit 

96 x 24-bit 

48 x 48-bit 

 

VCfgAddSub4x2B (3x) 

4-input-2-output configurable add/subtract 

12-bit 

 

Y 

 

32 

 

192 x 12-bit 
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Instruction Function 

Added 

in 

Orin 

Thruput 

per slot 

Operation 

Thruput 

per VPU  

VCfgAddSub4x2H 

VCfgAddSub4x2W 

24-bit 

48-bit 

Y 

Y 

16 

8 

96 x 24-bit 

48 x 48-bit 

9.2.4 Scalar/Vector Floating-point Instructions 

In Xavier VPU we support only scalar FP32 instructions. In Orin VPU to extend floating 

support to both scalar and vector, and both FP32 and FP16. 

Instruction Function 
Added 

in Orin 

Thruput 

per slot 

Operation 

Thruput 

per VPU  

VAddF 

VSubF 

VMulF 

VMAddF 

VMSubF 

VCmp*F 

VRCPF 

VSQRTF 

VRSQF 

VEXP2F 

VLOG2F 

VSINF 

VCOSF 

VTANHF 

FP32 addition 

FP32 subtraction 

FP32 multiplication 

FP32 multiply-add 

FP32 multiply-subtract 

FP32 comparison LT/LE/GT/GE/EQ/NE 

FP32 reciprocal 

FP32 square root 

FP32 reciprocal of square root 

FP32 exponent based 2 

FP32 log based 2 

FP32 sine 

FP32 cosine 

FP32 hyperbolic tangent 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

8 16 x 32-bit 

VAddHF 

VSubHF 

VMulHF 

VMAddHF 

VMSubHF 

VCmp*HF 

FP16 addition 

FP16 subtraction 

FP16 multiplication 

FP16 multiply-add 

FP16 multiply-subtract 

FP16 comparison LT/LE/GT/GE/EQ/NE 

Y 

Y 

Y 

Y 

Y 

Y 

16 32 x 16-bit 

VINT_FP 

VFP_INT_Trunc 

VFP_INT_Round 

VINTX_FP 

VFP_INTX_Trunc 

VFP_INTX_Round 

INT32 to FP32 conversion 

FP32 to INT32 conversion with truncation 

FP32 to INT32 conversion with rounding 

INT48 to FP32 conversion 

FP32 to INT48 conversion with truncation 

FP32 to INT48 conversion with rounding 

Y 

Y 

Y 

Y 

Y 

Y 

8 16 x 32/48-

bit 

VINT_FP16 

VFP16_INT_Trunc 

VFP16_INT_Round 

INT32 to FP16 conversion 

FP16 to INT32 conversion with truncation 

FP16 to INT32 conversion with rounding 

Y 

Y 

Y 

16 32 x 16/24-

bit 
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Instruction Function 
Added 

in Orin 

Thruput 

per slot 

Operation 

Thruput 

per VPU  

VINT24_FP16 

VFP16_INT24_Trunc 

VFP16_INT24_Round 

VFP16_FP 

VFP_FP16 

INT24 to FP16 conversion 

FP16 to INT24 conversion with truncation 

FP16 to INT24 conversion with rounding 

FP16 to FP32 conversion 

FP32 to FP16 conversion 

Y 

Y 

Y 

Y 

Y 

FAdd         (Scalar) 

FSub 

FMul 

FMAdd 

FMSub 

FCmp* 

FP32 addition 

FP32 subtraction 

FP32 multiplication 

FP32 multiply-add 

FP32 multiply-subtract 

FP32 comparison LT/LE/GT/GE/EQ/NE 

 

 

 

 

 

Y 

1 2 x 32-bit 

HFAdd       (Scalar) 

HFSub 

HFMul 

HFMAdd 

HFMSub 

HFCmp* 

FP16 addition 

FP16 subtraction 

FP16 multiplication 

FP16 multiply-add 

FP16 multiply-subtract 

FP16 comparison LT/LE/GT/GE/EQ/NE 

Y 

Y 

Y 

Y 

Y 

Y 

1 2 x 16-bit 

FRCP         (Scalar) 

FSQRT 

FRSQ 

FEXP2 

FLOG2 

FSIN 

FCOS 

FTANH 

FP32 reciprocal 

FP32 square root 

FP32 reciprocal of square root 

FP32 exponent based 2 

FP32 log based 2 

FP32 sine 

FP32 cosine 

FP32 hyperbolic tangent 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

1 2 x 32-bit 

INT_FP        (Scalar) 

FP_INT_Trunc 

FP_INT_Round 

INT_FP16 

FP16_INT_Trunc 

FP16_INT_Round 

FP16_FP 

FP_FP16 

INT32 to FP32 conversion 

FP32 to INT32 conversion with truncation 

FP32 to INT32 conversion with rounding 

INT32 to FP16 conversion 

FP16 to INT32 conversion with truncation 

FP16 to INT32 conversion with rounding 

FP16 to FP32 conversion 

FP32 to FP16 conversion 

 

Y 

 

Y 

Y 

Y 

Y 

Y 

1 2 x 32-bit 

 

9.2.5 Scalar Integer Math Instructions 

In the 2 scalar math slots, we support a variety of integer math instructions as well:  
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Instruction Function Added in Orin 

Add 

Sub 

And 

Or 

Xor 

SLL 

SRL 

SRA 

SXTD 

ZXTD 

CmpEQ 

CmpNE 

CmpGE (U) 

CmpGT (U) 

CmpLE (U) 

CmpLT (U) 

MIN (U) 

MAX (U) 

Addition 

Subtraction 

Bitwise and 

Bitwise or 

Bitwise exclusive-or 

Shift left logical 

Shift right logical/unsigned 

Shirt right arithmetic/signed 

Sign-extend 

Zero-extend 

Compare equal 

Compare not equal 

Compare greater than (unsigned) 

Compare greater than or equal to (unsigned) 

Compare less than (unsigned)  

Compare less than or equal to (unsigned) 

Minimal (unsigned) 

Maximal (unsigned) 

 

Mul 

LMulSS 

LMulSU 

LMulUU 

32-bit x 32-bit -> 32-bit multiply 

32-bit x 32-bit -> 64-bit multiply signed-signed 

32-bit x 32-bit -> 64-bit multiply signed-unsigned 

32-bit x 32-bit -> 64-bit multiply unsigned-unsigned 

 

Div Integer division (variable # cycles)  

MODINC 

MODINCP 

MODINC_NOTP 

DPMODINCP 

DPMODINC_NOTP 

MUXP 

MUX 

Modular increment 

Modular increment and predicate if not zero 

Modular increment and predicate if zero 

Modular increment and predicate double if not zero 

Modular increment and predicate double if zero 

Multiplex from predicate (C select operator) 

Multiplex from scalar register (C select operator) 

 

 

SLLIADD 

CMPWITHIN 

BITCNT 

Shift left immediately and add 

Compare within low/high bounds 

Bit count 

Y 

Y 

Y 
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9.3 VPU Compatibility  

9.3.1 Compatibility Exceptions 

We aim to maintain C source code backward compatibility with Xavier (Gen-1) VPU. We 

do not plan to support assembly code or binary compatibility. 

There are a few cases where we need to break C source code compatibility in Orin VPU. 

> Vector multiply-add rounding/truncating options, in Gen-1 we supported {.R0, .R7, 

.R15, .R16, .T0, .T7, .T15, .T16}. In Gen-2 we added .R4, taking up encoding space of 

.T0. Thus, hard-coded rounding/truncating option 4 in the application code, which 

was mapped to .T0, in Gen-2 will map to .R4. 

> Some VMEM storage classes involving Word and Halfword types need to be revised 

to the base classes involving Byte type. 

• RAM_Aw, RAM_Ah → RAM_Ab 

• RAM_Bw, RAM_Bh → RAM_Bb 

• RAM_Cw, RAM_Ch → RAM_Cb 

• DMw, DMh → DMb 

> CLRHWLP needs 3 instruction packets of gap to the Loop End instruction packet for 

the clear hardware loop (and exit loop) functionality to work. 

> Agen auto predication features would predicate off any agen-based scalar/vector 

store past the configured iteration counts. For example, if N1/N2/N3/N4/N5/N6 are 

left unchanged after initializing an agen (which would set them to default value of 1), 

in Gen-1 ISS/silicon, multiple stores to the same location (as address would stick to 

last valid address), but in Gen-2 ISS/silicon, only the first store would be carried out; 

subsequent stores are blocked and thus not carried out. 

> Address map difference and aliasing of address space means that code that 

addresses outside primary address regions would behave differently in Gen-1 

ISS/silicon versus Gen-2 ISS/silicon. For example, reading 0x10024 would be aliased 

back to physical memory at 0x24 in Gen-1, and would be reading physical memory at 

0x10024 in Gen-2. 

> Gen-1 VPU supports floating-point math in scalar slots only and FP32 only, and 

functionality was implemented with Synopsys DesignWare floating-point fused 

multiply-add unit, Gen-2 VPU extends floating-point support to scalar/vector and 

FP16/FP32, and functionality was provided by reusing NVIDIA GPU SM floating-point 

unit. There can be differences in various corner case behavior around +/- zero, +/- 

infinity, and denormal numbers. 

> vbool, vector Boolean type, was removed as it is ambiguous (as how many lanes of 

Boolean).  

> Intrinsic functions for VMinRID/VMaxRID in Gen-1 was vminr()/vmaxr(), which are 

easy to confuse with intrinsic functions for VMinR/VMaxR. They are corrected in Gen-

2 as vminrid()/vmaxrid(). 
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> Agen configuration load/store syntax was revised to better support Native 

compilation. See AgenCfgST and AgenCfgLD for details. 

9.3.2 Removed/Emulated Instructions 

The following instructions are removed from the Orin VPU instruction set due to timing 

pressure: 

> Removed VMinR, VMaxR with vector register destination, replaced with scalar 

destination 

> Removed VMinRID, VMaxRID with vector register destinations (dst1 & dst2), replaced 

with scalar destinations (dst1 & dst2) 

> Removed VPromote (without deinterleaving) 

The intrinsic functions are still supported by emulating the functionality with multiple 

instructions. We do not regard this as breaking backward compatibility, but it is worth 

noting, in case programmers see compute kernels utilizing these instructions 

performing slower in Orin ISS/silicon versus Xavier ISS/silicon. 

9.4 Instruction Execution Ordering 

9.4.1 Processor Pipeline 

Normally processor pipelining is behind the scenes, as execution packets appear to 

execute sequentially, and mostly one packet per cycle, with instructions in the same 

packet executed in parallel. However, to understand various conditions where the 

processor stalls, and the few exceptions to the sequential execution behavior better, we 

need to learn about the VPU processor pipeline stages:  

> IF1..IF3: Instruction fetch stages 

> ID: Instruction decode stage 

> EX1 .. EX9: execution stages 

> VPU pipeline diagram follows.   
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Figure 13. VPU processor pipeline 
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9.4.2 Default/General Behavior  

The VPU instructions execute in the following general order consistent with assembly 

encoding: 
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1. Scalar and vector instructions in the same VLIW execution packet are executed in 

parallel. 

2. Within the same VLIW execution packet, loads are executed before stores.  

3. Multiple stores are executed in parallel if they go to different memory superbanks. 

Multiple writes going to the same memory superbanks are executed in slot order.   

4. Reading the same register (scalar or vector) by multiple slots is supported. 

5. Writing to same register (scalar or vector) by multiple slots is NOT allowed (compiler 

does not schedule such code, and such code would cause assembler to fail). 

6. Same register (scalar or vector) can be read (multiple times) and written (only once) 

in the same execution packet, read preceding write. 

9.4.3 Delay Slots for Branch Instructions 

Branch and hardware loop instructions have delay slots, so they also appear as executing 

out of order; 2 packets after branch instruction are executed before taking the branch. 

SWRBK, CLR_HWLP, STW HWLP, WFE_GPI, and WFE_R5 should not be placed in a 

branch delay slot. 

Please see Control Instruction Summary for number of delay slots for each instruction. 

9.4.4 Exception for Instructions Accessing Address 

Generator 

Address Generator fields have the following read/write accesses: 

> MovAgen reads and writes Agen in EX2 

> Agen-based load/store reads and writes Agen in EX2 (reading most fields, writing 

base and loop variables) 

> Agen-based store reads and writes Agen in EX7 (updating MinVal, MaxVal) 

> InitAgen and CfgAgen write Agen in EX2 

> Store Agen Loopvar reads Agen in EX2 

> AgenCfgST/AgenCfgST_p2 reads Agen in EX7 

> AgenCfgLD/AgenCfgST_p2 writes Agen in EX7 

In the processor model we have, hardware stalls so that instructions appear to be 

executed sequentially. However, instructions from the same execution packet are 

executed or stalled together, except stalling for memory dependency. Thus, Agen 

read/write instructions that access Agen in different pipeline stages exhibit non-

sequential behavior. 

Write-EX2 + Read-EX7 in the same packet: would appear that write precedes read, 

violating rule #6. Possible combinations for this category are: 

> MovAgen with AgenCfgST in same packet: Moved Agen contents are stored to 

memory. 
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> Agen-based load/store with AgenCfgST in the same packet: Updated Agen contents 

are stored to memory. 

> InitAgen or CfgAgen with AgenCfgST in the same packet: Configured Agen contents 

are stored to memory.  

Write-EX2 + Write-EX7 in the same packet: allowed, with Write-EX2 occurring before 

Write-EX7, so the outcome from Write-EX7 stays. This is violating rule #5. Possible 

combinations for this category are: 

> MovAgen with AgenCfgLD in same packet: Moved Agen contents are lost, overridden 

by load outcome of AgenCfgLD.   

> Agen-based load with AgenCfgLD in same packet: Agen-based load is carried out 

with current address value (since agen-update is post-modifying). Agen address 

update is lost, overridden by load outcome of AgenCfgLD. 

> InitAgen or CfgAgen with AgenCfgLD in same packet: Configured Agen contents is 

lost, overridden by load outcome of AgenCfgLD. 

Note that Read-EX2 + Write-EX7, Read-EX2 + Write-EX2, and Read-EX7 + Write-EX7 in 

same packet would appear that read precedes write and thus conform to the general 

instruction ordering (rule #6).   

Agen-based load/store (reading agen configuration in EX2) and AgenCfgLD (writing agen 

configuration in EX7) in same packet: agen-based load/store uses configuration before 

AgenCfgLD 

MovAgen (reading source agen in EX2) and InitAgen/AgenCfg (writing agen 

configuration in EX2) in same packet: source agen of MovAgen is read first, before being 

updated by InitAgen/AgenCfg 

AgenCfgST_p2 (reading agen loop variables and min/max value in EX7) and agen-based 

store (reading/writing agen loop variables and min/max value in EX7, min/max value only 

when min/max collection is enabled) in same packet: AgenCfgST_p2 stores agen loop 

variables etc. before being updated by the agen-based store.   

Agen-based load with AgenCfgLD in the same packet is allowed in Xavier VPU but is 

disallowed in Orin VPU. In Orin, we have added min/max collection feature, and both 

instructions are written into MinVal/MaxVal agen fields in EX7. 

9.4.5 Exception for Instructions Accessing HW 

Loop Registers 

The hardware zero-overhead looping utilizes the following registers: 

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (which is encoded as binary “11”). 

> LS[0..1]: 32-bit loop start PC, reset to 0 

> LE[0..1]: 32-bit loop end PC, reset to 0 

> LC[0..1]: loop count, 32-bit, reset to 1 
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The hardware Loop instruction RPT accesses these registers (both read and write) in 

EX2 stage. 

The PCU, program control unit, accesses these registers (both read and write) upon end 

of the loop (PC matching LE[LF]) to implement looping behavior.  

These registers are written by CLR_HWLP instruction, to clear hardware loop context for 

a new algorithm task, and read by STW HWLP instruction, for debug. These instructions 

have placement restrictions with respect to hardware loop, to avoid hazards. 

CLR_HWLP should not be placed: 

> In two packets before RPT 

> In the same packet as RPT 

> In the two RPT delay slots 

> In the first 2 packets of loop body 

> In the last 2 packets of loop body 

> In the first 2 packets after the loop. 

Otherwise, hardware loop state is non-deterministic. 

STW HWLP should not be placed: 

> In two packets before RPT 

> In the same packet as RPT 

> In two RPT delay slots  

> In the first 3 packets of loop body 

> In the last 3 packets of loop body 

> In the first 2 packets after the loop. 

Otherwise, stored contents are non-deterministic. 

These restrictions do not affect instructions injected through debug in Debug State, 

since such instructions are executed one instruction at a time through all pipeline 

stages.  

9.4.6 Exception for Instructions Accessing FP 

Invalid Flag 

With the scalar and vector unit FP instructions, we have an invalid flag that FP 

operations can set, and a pair of move instructions moving between the flag and a scalar 

register that we can use to acquire and clear the flag.   

Interesting scenarios: 

> When there are multiple FP operations in the same packet, the invalid outcome from 

any operation can set the invalid flag, and since the flag is sticky, the flag update can 

be represented as follows:  

invalid_flag |= s0_invalid | s1_invalid | v0_invalid | v1_invalid 
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> When MOV R, INV instruction (only in S0 since it’s classified as a control instruction) 

and FP operation(s) (in S1/V0/V1 slots) are placed in the same packet, writing of the 

flag from MOV R, INV instruction is ignored, overridden by the FP operation(s).  

> When MOV INV, R instruction (in S0) and FP operation(s) (in S1/V0/V1 slots) are 

placed in the same packet, reading of the flag occurs before the FP operation(s) 

affect the flag.  This case is consistent with the “read before write” general ordering 

rule. 

9.4.7 Hardware Stalls to Comply with Sequential 

Execution Order 

There is RAW (read after write) and WAW (write after write) data hazard detection on all 

register files (scalar, predicate, agen, VRF, WRF, ARF, XARF) to ensure sequential 

execution regarding dependency through registers. 

Various control instructions interact with components external to the VPU processor in 

various pipeline stages: 

> GPO_SET/CLR/WR affect GPO pins in the EX2 stage. 

> GPI_RD reads GPI pins in the EX2 stage. 

> CPST writes to coprocessor space via APB write transaction in the EX4 stage 

(address/write-request/write-data driven in EX4, wait for peripheral to be ready in 

EX5). 

> CPLD reads from coprocessor space via APB read transaction in the EX5 stage 

(address/read-request driven in EX4, wait for peripheral to be ready and read-data in 

EX5). 

> SIG_R5 raises vpu_start_r5 control signal to R5 in the EX3 stage. 

> WFE_GPI and WFE_R5 waits for all proceeding instructions to exit pipeline before 

execution, so has their own mechanism to ensure sequential execution. 

SIG_R5 and WFE_R5 are involved in R5/VPU communication. As R5 and VPU are two 

separate processor cores, we are not relying on fine timing of individual signals, but on 

the interaction protocol, to ensure coherent behavior. 

Among the remaining external interface instructions, i.e. GPI/GPO/CPLD/CPST, GPI and 

CPLD are read actions, and GPO and CPST are write actions. We need to watch for 

potential RAW hazards: 

> GPI after GPO: both execute in EX2, so execution order is preserved. 

> GPI after CPST: CPST executes in EX4 and GPI in EX2, so potential RAW hazard. 

Hardware stalls GPI in EX2 (or earlier) until peripheral responds to readiness for the 

CPST transaction. 

> CPLD after GPO: GPO executes in EX2 and CPLD in EX4, so execution order is 

preserved. 

> CPLD after CPST: CPST executes in EX4 and CPLD in EX5, also APB bus is sequential, 

so execution order is preserved. 
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Potential WAW hazards: 

> GPO after CPST: CPST executes in EX4 and GPO in EX2, so potential WAW hazard. 

Hardware stalls GPO in EX1 (or earlier) until peripheral responds to readiness for the 

CPST transaction. 

> CPST after GPO: GPO executes in EX2 and CPST in EX4, so execution order is 

preserved. 

9.5 Instruction Predication 
The VPU has 14 32-bit predicate registers, P2… P15. P0 are P1 are reserved to indicate 

unpredicated (always-execute) instructions. In addition, the first half of the main vector 

register file, V0..V15, can be used for vector store lane predication. 

The following predication features are available:  

> Vector math instruction-level predication. 

> Vector load instruction-level predication. 

> Scalar store instruction-level predication. 

> Vector store lane predication.  

9.5.1 Instruction-Level Predication for Register 

Moves 

Scalar-to-scalar, scalar-to-vector, and vector-to-scalar are instruction-level predicated. 

When predication is on (nonzero), the register move is performed. When predication is 

off (zero), the register move is skipped.  

Predicated register move can be used for conditional execution to avoid conditional 

branches. 

9.5.2 Instruction-Level Predication for Vector Math 

Selected vector ALU instructions are predicated on or off identically across lanes, MOVS 

(scalar-to-vector move) and those with “_CA” suffix in mnemonic. It’s a common decision 

for all lanes to carry out one functionality or the other, with the predication-off 

functionality emulating clearing of the accumulator.  

For example: 

 [P2]  VMAddHHW_CA V0, V1, V2:V3   // if (P21==0), V2:V3 = V0*V1 
// otherwise V2:V3 += V0*V1 

Clearing of the accumulator typically happens periodically, once every K iterations, where 

K is number of items being accumulated, as in filtering. MODINCP can be used to 

implement a modulo K counter to control the periodic predication. 

Please consult the description of individual instructions for additional details.  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  152 

9.5.3 Predication for Load/Store 

Predication support for various addressing modes of scalar/vector load/store is shown 

as follows: 

Table 19. Scalar/vector load/store predication support  

Predication feature Base+offset Post-modify Agen-based 

Scalar load not available instruction-level not available 

Scalar store not available instruction-level instruction-level 

Vector load not available not available instruction-level 

Vector store not available not available per-lane 

9.5.3.1 Instruction-Level Predication for Post-Modify Scalar 

Load 

Scalar load with post-modify addressing mode is instruction-level predicated.  

When predication is on, memory read, address register update, and destination write are 

carried out. Otherwise, none of these are carried out. Of course, predicate register will 

always be read for the predication. 

Predicated scalar load/store is used to accelerate various conditional scalar processing.   

9.5.3.2 Instruction-Level Predication for Post-Modify and 

Agen-Based Scalar Store 

Scalar store, both post-modify and agen-based variations are instruction-level 

predicated.  

For the post-modify scalar store, predication drives both memory write and the register 

update (base += modifier). When predication is on, both memory write and register 

update are carried out, otherwise, both are not carried out. 

For the agen-based scalar store, predication drives only memory write. Agen update is 

always carried out.  When predication is on, memory write is carried out, otherwise, 

memory write is not carried out. 

In both kinds of scalar stores, source register read is carried out unconditionally, with 

any necessary hardware stalling to preserve source register dependency.  

Predicated scalar load/store is used to accelerate various conditional scalar processing.   
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9.5.3.3 Instruction-Level Predication for Agen-Based Vector 

Load 

Agen-based vector load instructions are instruction-level predicated. When predication 

is on, memory read and destination vector register write are performed. When 

predication is off, memory read and destination vector register write are skipped. 

Address update is carried out unconditionally. 

A use case for predicated vector load is for integral image, where predication is used to 

deal with boundary rows.  

9.5.3.4 Lane Predication for Agen-Based Vector Store 

Agen-based vector store instructions are predicated per lane. Predication-on lanes are 

written to memory, predication-off lanes are skipped. Address update is carried out 

unconditionally. 

Predication is conveyed via either predicate register(s) or a single vector register in VRF.  

In case of predication via predicate register(s), as many bits of predicate register are 

used as the number of lanes, and up to 64 lanes, or two predicate registers, are used. 

The predication bits are the least significant bit justified.  

For example, “[P2] DVSTW_PI V0, *A0++” stores 16-word lanes, with lane i predicated by 

bit i of the predicate register P2.  

In case of predication via a single vector register in VRF, predicates are evenly spaced 

starting from bit 0. The VRF entry is regarded as a 384-bit vector, and a single bit is used 

for each lane. Bit position for each lane is lane_index * (384/num_lanes).   

For vector store with scalar distribution, for example, VSTW_S, predication is supported 

only through predicate registers, and not through vector register. We are storing out 

just one or two values so there is little value in using vector register to convey 

predicates.  

The following table shows bits of VRF used across variations of vector store: 

Table 20. Vector register predicated vector store variations  

Vector store  Number 

of source 

lanes 

Bits used in 

predicate VRF entry 

As bit 0 of array 

elements 

VSTB_P/T 

VSTBH_P/T 

32 0, 12, 24, …, 372 arr_vcharx[0, 1, …, 31] 

VSTH_P/T 

VSTHW_P/T 

16 0, 24, 48, …, 360 arr_vshorx[0, 1, …, 15] 

VSTW_P/T 

VSTWX_P 

8 0, 48, 96, …, 336 arr_vintx[0, 1, …, 7] 

VSTB_S 1 Predication via VRF not supported  
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Vector store  Number 

of source 

lanes 

Bits used in 

predicate VRF entry 

As bit 0 of array 

elements 

VSTH_S 

VSTW_S 

DVSTB_P/PI 64 0, 6, 12, …, 378 as bit 0 and bit 6 of 

arr_vcharx[0, 1, …, 31] 

DVSTH_P/PI/T/TI 

DVSTHB_P/PI 

32 0, 12, 24, …, 372 arr_vcharx[0, 1, …, 31] 

DVSTW_P/PI/T/TI/T2/T2I 

DVSTWH_P/PI/T/TI 

16 0, 24, 48, …, 360 arr_vshortx[0, 1, …, 15] 

DVSTB_S 

DVSTH_S 

DVSTW_S 

2 Predication via VRF not supported  

QVSTHB_P/PI/PI2 64 Predication via VRF not supported  

QVSTWH_P/PI/PI2/T/TI2 32 Predication via VRF not supported  

For example, “[V2] DVSTW_PI V0, *A0++” stores 16 word lanes, with lane i predicated by 

bit i*24 of V2, or bit 0 of each element of a vshortx-type variable mapped to V2.  

There is a behavior difference between predicate register file and vector register file for 

predication. With predicate register file, in case all lanes are predicated off, the memory 

transaction is not issued, conserving power consumption. With vector register file, to 

shorten the latency the VRF entry is read late in the pipeline, same stage as the store 

data, too late to block the memory transaction, so the predicated memory transaction is 

always issued.  

Lane-predicated store via predicate register is supported in all types and distribution 

combinations of Agen-based scalar/vector stores as well as VAST, vector addressed 

stores, and in all memory slots. 

Lane-predicated store via VRF is supported in agen-based single/double vector store of 

VRF, non-scalar distribution, and in M0 slot only. 

9.6 Control Instructions 

9.6.1 Instruction Summary 

The following control instructions are supported. Most are available only in the S0 slot, 

except the following: 

> RD_TSC.L/H can be issued in both S0 and S1 slots. 

> CPLD, CPST, MemFence are available only in M0 slots. 

In the table, delay slots refer to execution packets (one slot is one packet) following the 

control instructions that are executed before the control instruction takes place. For 
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example, the JR instruction has 2 delay slots, so two execution packets following the JR 

instruction’s own packet are executed before the jump takes place.  

Table 21. Control instructions  

Function Assembly Format Comments 

Jump to immediate J imm20_addr Jump to relative immediate address, with 2 delay slots. 

Jump to register JR Raddr Jump to absolute address in register, with 2 delay slots. 

Jump and link (call) JAL imm20_addr Call (jump and link) relative immediate address., with 2 

delay slots. 

Jump and link 

register (call) 

JALR Raddr Call absolute address in register, with 2 delay slots. 

Branch if zero BEQZ Rsrc, imm14_addr Branch if Rsrc is zero to relative immediate address, 2 delay 

slots. 

Branch if nonzero BNEZ Rsrc, imm14_addr Branch if Rsrc is not zero to relative immediate address, 2 

delay slots. 

Software break 

point 

SWBRK Software break point. 

Hardware loop RPT Rsrc, imm16 Hardware zero-overhead loop, with the Rsrc specifying 

number of iterations, and the immediate encoding size of 

the loop, with 2 delay slots.  

Clear hardware loop 

registers 

CLR_HWLP Initialize hardware loop registers to default values 

GP out set low GPO_SETLI imm16 Set lower 16-bit of GPO according to immediate  

GP out set high GPO_SETHI imm16 Set higher 16-bit of GPO according to immediate  

GP out clear low GPO_CLRLI imm16 Clear lower 16-bit of GPO according to immediate  

GP out clear high GPO_CLRHI imm16 Clear higher 16-bit of GPO according to immediate  

GP out set GPO_SET Rsrc Set 32-bit of GPO according to Rsrc 

GP out clear GPO_CLR Rsrc Clear 32-bit of GPO according to Rsrc 

GP out write GPO_WR Rsrc Copy 32-bit Rsrc to 32-bit GPO 

GP out read GPO_RD Rdst Copy 32-bit GPO into Rdst 

GP in read GPI_RD Rdst Sample 32-bit GPI into Rdst 

Wait for GPI 

pattern 

WFE_GPI Rsrc1, Rsrc2 Wait until (GPI & Rsrc1) == Rsrc2 

Wait for R5 event WFE_R5 Transition into low-power WFE_R5 state until R5 writes 

R5_vpu_start to dispatch next task 

Signal R5 SIG_R5 Rsrc Send software interrupt to R5; Rsrc carries a software-

defined 32-bit data to write to a VPU config register, which 

R5 interrupt service routine can read. 

Enable timestamp 

counter 

ENABLE_TSC Enable performance counter 

Once enabled, timer increments in Active state (and not 

increment in Reset, Debug, WFE_R5, WFE_GPI, Halted, 

Error-Halted states). 
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Function Assembly Format Comments 

Read timestamp 

counter 

RD_TSCL Rdst 

RD_TSCH Rdst 

Copy performance counter lower/upper 32-bit to Rdst. 

S0 and S1 slots. 

Move FP invalid flag MOV INV-R 

MOV R-INV 

Move floating-point invalid flag to/from scalar register 

OCD load/store OCD_LD PC/GPO 

OCD_ST PC/GPI/GPO 

OCD (debug) load/store  

Configure VMEM 

Superbanks 

CFG_VMEM_SBA/B/C Rsrc 

RD_CFG_VMEM_SBA/B/C Rdst 

Write configuration 

Read configuration 

Coprocessor store CPST Rsrc, Rdaddr 

CPST Rsrc, #imm12 

 

Coprocessor load CPLD Rsaddr, Rdst 

CPLD #imm12, Rdst 

M0 slot only 

Memory fence  MemFence M0 slot only 
 

The VPU does not take interrupts, and thus there is no enable/disable interrupt, return 

from interrupt, etc., instructions available. 

The PC is internally modeled to count in 32-bit increments. For example, PC = 1 means 

byte address of 4. The 20-bit absolute immediate field for J, JAL, the 14-bit relative 

immediate fields for BEQZ, BNEZ, the 16-bit immediate field for RPT, conform to this 

convention (count in 32-bit increments). 

By default, the compiler aligns all branch targets to 256-bit = 32-byte = 8-word 

alignment, to avoid the instruction fetch interface spending an extra cycle to fetch a 

execution packet starting from target PC. 

9.6.2 Branch/Jump/Call Delay Slots 

For the processor pipeline to work, 2 execution packets after the branch/jump/call 

instructions are executed before taking the branch/jump/call. These 2 execution packets 

are called in the delay slots of the branch/jump/call instructions. Please see instruction 

summary or details in each branch/jump/call instruction for how many delay slots there 

are. 

Note that the branching action is delayed but register read/write is still executed 

sequentially.   

For example, case 1: 

1 LDHI R5, #0 

2 BEQZ R5, #42 

3 ADDI R5, #-1, R5 

4 NOP 

5 HALT 
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In this case, R5 for instruction #2 is sampled and branch decision made accordingly. 

Subsequent instruction #3 that changes R5 does not change the branch decision.  

For example, case 2: 

1 LDHI R15, #0 

2 JAL #42 

3 ADDI R15, #-1, R15 

4 NOP 

5 HALT 

In this case, R15, the link register, is changed in instruction #1, but JAL (jump and link) in 

instruction #2 would overwrite R15 with the return PC (after 2 delay slots, thus #5). R15 

is then revised again by instruction #3 before taking the branch. Thus, when the called 

function returns via JR R15, execution starts at #4, rather than the normal behavior, 2 

delay slots past the JAL, at #5. 

9.6.3 Jump and Link (JAL, JALR) 

Instruction name JAL 

Functionality Jump and link (call) 

Assembly format JAL imm20_addr 

Type and bit width  20-bit signed immediate 

Predication not available 

Source options not available 

Destination options not available (implicit: PC and LR) 

Additional options not available 

Intrinsics/operator not available 

Additional details Jump and link (call) relative immediate address. 

There’re 2 delay slots. 

Immediate value is calculated as the PC offset from the 2nd delay slot to the 

destination. 

PC after the delay slot is written to the link register R15. This is where a 

subsequent JR R15 should jump to when returning from the called function.  
 

Instruction name JALR 

Functionality Jump and link register (call) 

Assembly format JALR Raddr 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options not available (implicit: PC and LR) 

Additional options not available 
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Intrinsics/operator not available 

Additional details Jump and link (call) absolute address in register. 

There’re 2 delay slots. 

Immediate value is calculated as the PC offset from the 2nd delay slot to the 

destination. 

PC after the delay slots is written to the link register R15. This is where a 

subsequent JR R15 should jump to when returning from the called function.  

9.6.4 Jump (J, JR) 

Instruction name J 

Functionality Jump to immediate 

Assembly format J imm20_addr 

Type and bit width  20-bit signed immediate 

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator not available 

Additional details Jump to relative immediate address. 

There’re 2 delay slots; one execution packet immediately following the jump 

would be executed before the jump takes place. 

Immediate value is calculated as the PC offset from the 2nd delay slot to the 

destination. 

 

Instruction name JR 

Functionality Jump to register 

Assembly format JR Raddr 

Type and bit width  32-bit absolute address 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator not available 

Additional details Jump to absolute address in register. 

There are 2 delay slots. 
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9.6.5 Conditional Branch (BEQZ, BNEZ) 

Instruction name BEQZ 

Functionality Branch if zero 

Assembly format BEQZ Rsrc, imm14_addr 

Type and bit width  14-bit signed immediate 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator not available 

Additional details Branch if Rsrc is zero to relative immediate address. 

There are 2 delay slots. 

Immediate value is calculated as the PC offset from the 2nd delay slot to the 

destination. 
 

Instruction name BNEZ 

Functionality Branch if not zero 

Assembly format BNEZ Rsrc, imm14_addr 

Type and bit width  14-bit signed immediate 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator not available 

Additional details Branch if Rsrc is not zero to relative immediate address. 

There are 2 delay slots. 

Immediate value is calculated as the PC offset from the 2nd delay slot to the 

destination. 
 

9.6.6 Software Break Point (SWBRK) 

Instruction name SWBRK 

Functionality Software break point 

Assembly format SWBRK 

Type and bit width  not applicable 

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 
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Instruction name SWBRK 

Intrinsics/operator not available 

Additional details Upon executing this, VPU transitions into debug state. Only the debug 

controller can transition VPU back to active state. 

SWBRK should not be placed in any branch or hardware loop delay slots. 
 

9.6.7 Hardware Zero-Overhead Loop (RPT) 

Instruction name RPT 

Functionality Hardware loop 

Assembly format RPT Rsrc, imm16 

Type and bit width  Rsrc: 32-bit unsigned iteration count 

Imm16: 16-bit unsigned PC offset 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator not available 

Additional details Hardware zero-overhead loop, with Rsrc indicating number of iterations. 

There are 2 delay slots.  

The immediate field encodes loop size, which is the PC difference between 

the 2nd delay slot packet (very next packet is beginning of loop) and the last 

packet of the loop.  

Rsrc is checked at the end of the loop body, so loop is iterated at least one 

time. Loop with Rsrc = 0 will be executed one time (same behavior as Rsrc = 

1). 
 

Instruction name CLR_HWLP 

Functionality Clear hardware loop registers 

Assembly format CLR_HWLP 

Type and bit width  not applicable 

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void clr_hwlp(); 

Additional details Initialize LF = -1 (2-bit binary 11), LC[0..1] = 1, LS[0..1] = 0, LE[0..1] = 0. 

Should be included in each task starting code to clear hardware loop 

registers for the new task.  

Should not be placed: 

> in the same packet as RPT 

> in RPT delay slots 
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Instruction name CLR_HWLP 

> in first 2 packets of loop body 

> in last 2 packets of loop body 
 

9.6.8 General Purpose Output (GPO_*) 

The following instructions are available for GPO feature: 

> GPO_SETLI 

> GPO_SETHI 

> GPO_CLRLI 

> GPO_CLRHI 

> GPO_SET 

> GPO_CLR 

> GPO_RD 

> GPO_WR 

GPO set/clear low/high immediate are used to set or clear a number of GPO bits at the 

same time, all in the lower 16 bits or upper 16 bits and known at compile time. For 

example, gpo_clrh(5) would map to “GPO_CLRHI #5” to clear GPO[18] and GPO[16], while 

leaving all other GPO pins unchanged. 

GPO set/clear are used to set or clear a number of GPO bits at the same time, either not 

all in lower/upper 16 bits or unknown at compile time. The set/clear bit mask value is 

supplied by a scalar register. For example, gpo_set(val) would map to “GPO_SET R4” 

(assuming variable val is allocated to R4), to set GPO pins where bits of val are one, 

leaving all other GPO pins unchanged. 

GPO read/write are used to replace (or not replace) a number of GPO bits at the same 

time, allowing any binary transition (0 → 0, 0 → 1, 1 → 0, 1 → 1) in each bit. For example, 

to replace GPO[7:4] with a 4-bit value in val, one would code: 

 temp = gpo_rd(); 
 temp &= 0xFFFF_FF0F; 
 temp |= val << 4; 
 gpo_wr(temp); 

which would map to (assuming val is allocated to R6): 

 GPO_RD R4 
 LHI #0xFFFF, R5 
 ORI R5, #0xFF0F, R5 
 AND R4, R5, R4 
 SLLI R6, #4, R5 
 OR R4, R5, R4 
 GPO_WR R4 
 

Instruction name GPO_SETLI 

Functionality General purpose output set low immediate 
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Instruction name GPO_SETLI 

Assembly format GPO_SETLI imm16 

Type and bit width  16-bit unsigned immediate  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_setl(unsigned short imm); 

Additional details Set lower 16-bit of GPO according to immediate. When a bit of the 

immediate is on, the corresponding bit of GPO is set. The remaining GPO bits 

are left unchanged.  

For example, GPO_SETLI #0x11 would set bits 4 and 0 of GPO.  
 

Instruction name GPO_SETHI 

Functionality General purpose output set high immediate 

Assembly format GPO_SETHI imm16 

Type and bit width  16-bit unsigned immediate  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_seth(unsigned short imm); 

Additional details Set upper 16-bit of GPO according to immediate. When a bit of the 

immediate is on, the corresponding bit in upper 16 bits of GPO is set. The 

remaining GPO bits are left unchanged.  

For example, GPO_SETHI #0x11 would set bits 20 and 16 of GPO. 
 

Instruction name GPO_CLRLI 

Functionality General purpose output clear low immediate 

Assembly format GPO_CLRLI imm16 

Type and bit width  16-bit unsigned immediate  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_clrl(unsigned short imm); 

Additional details Clear lower 16-bit of GPO according to immediate. When a bit of the 

immediate is on, the corresponding bit of GPO is cleared. The remaining GPO 

bits are left unchanged.  

For example, GPO_CLRLI #0x11 would clear bits 4 and 0 of GPO. 
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Instruction name GPO_CLRHI 

Functionality General purpose output clear high immediate 

Assembly format GPO_CLRHI imm16 

Type and bit width  16-bit unsigned immediate  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_clrh(unsigned short imm); 

Additional details Clear upper 16-bit of GPO according to immediate. When a bit of the 

immediate is on, the corresponding bit in upper 16 bits of GPO is cleared. The 

remaining GPO bits are left unchanged.  

For example, GPO_CLRHI #0x11 would clear bits 20 and 16 of GPO. 
 

Instruction name GPO_SET 

Functionality General purpose output set register 

Assembly format GPO_SET Rsrc 

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_set(unsigned int); 

Additional details Set 32-bit GPO according to register source. When a bit of the scalar register 

is on, the corresponding bit of GPO is set. The remaining GPO bits are left 

unchanged.  

For example, GPO_SET R1 with R1 = 0x11 would set bits 4 and 0 of GPO. 
 

Instruction name GPO_CLR 

Functionality General purpose output clear register 

Assembly format GPO_CLR Rsrc 

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_clr(unsigned int); 

Additional details Clear 32-bit GPO according to register source. When a bit of the scalar 

register is on, the corresponding bit of GPO is cleared. The remaining GPO 

bits are left unchanged.  

For example, GPO_CLR R1 with R1 = 0x11 would clear bits 4 and 0 of GPO. 
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Instruction name GPO_RD 

Functionality General purpose output read 

Assembly format GPO_RD Rdst 

Type and bit width  32-bit unsigned  

Predication not available 

Source options not available 

Destination options scalar register 

Additional options not available 

Intrinsics/operator unsigned int gpo_rd(); 

Additional details Copy 32-bit GPO to destination register Rdst. 
 

Instruction name GPO_WR 

Functionality General purpose output write 

Assembly format GPO_WR Rsrc 

Type and bit width  32-bit unsigned  

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator void gpo_wr(unsigned int var); 

Additional details Copy 32-bit source register Rsrc to GPO. 
 

9.6.9 General Purpose Input (GPI_RD) 

Instruction name GPI_RD 

Functionality General purpose input read 

Assembly format GPI_RD Rdst 

Type and bit width  32-bit unsigned  

Predication not available 

Source options not available 

Destination options scalar register 

Additional options not available 

Intrinsics/operator unsigned int gpi_rd(); 

Additional details Sample 32-bit GPI into destination register Rdst. 
 

9.6.10 Wait for GPI Event (WFE_GPI) 

Instruction name WFE_GPI 

Functionality Wait for GPI pattern 
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Instruction name WFE_GPI 

Assembly format WFE_GPI Rsrc1, Rsrc2 

Type and bit width  32-bit unsigned  

Predication not available 

Source options Two scalar registers 

Destination options not available 

Additional options not available 

Intrinsics/operator void wfe_gpi(unsigned int mask, unsigned int match); 

Additional details Wait until (GPI & Rsrc1) == Rsrc2, Rsrc1 being the bit mask and Rsrc2 being 

the match pattern. 

For example, WFE_GPI R1, R2, with R1 = 3 and R2 = 1 would wait for GPI[0] = 

1 and GPI[1] = 0 before proceeding to the next execution packet. 

Should not be placed in a branch delay slot. 
 

9.6.11 Wait for R5 Event (WFE_R5) 

Instruction name WFE_R5 

Functionality Wait for R5 event 

Assembly format WFE_R5 

Type and bit width  not applicable  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void wfe_r5();  

Additional details Transition into low-power WFE_R5 state until R5 writes R5_vpu_start to 

dispatch next task. 

Should be included as the last statement in every task’s exit code. Should not 

be placed in a loop. 

Should not be placed in a branch delay slot. 
 

9.6.12 Signal R5 (SIG_R5) 

Instruction name SIG_R5 

Functionality Signal R5 

Assembly format SIG_R5 Rsrc 

Type and bit width  not applicable  

Predication not available 

Source options scalar register 

Destination options not available 
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Instruction name SIG_R5 

Additional options not available 

Intrinsics/operator void sig_r5(unsigned int data);  

Additional details Send software interrupt to R5; Rsrc carries a software-defined 32-bit data to 

write to a VPU config register, which R5 interrupt service routine can read. 

 

9.6.13 Performance Counter (ENABLE/RD_TSC) 

Instruction name ENABLE_TSC 

Functionality Enable performance counter 

Assembly format ENABLE_TSC 

Type and bit width  not applicable  

Predication not available 

Source options not available 

Destination options not available 

Additional options not available 

Intrinsics/operator void enable_TSC();  

Additional details Once enabled, the 64-bit counter increments in Active state (and not 

increment in Reset, Debug, WFE_R5, WFE_GPI, Halted, Error-Halted states). 

Once enabled, subsequent ENABLE TSC would be ignored. 

Though the counter is called TSC, it does not count in real-time scale, but in 

VPU clock cycles. 
 

Instruction name RD_TSC 

Functionality Read performance counter 

Assembly format RD_TSCL Rdst 

RD_TSCH Rdst 

Type and bit width  not applicable  

Predication not available 

Source options not available 

Destination options scalar register 

Additional options not available 

Intrinsics/operator unsigned long long read_TSC();//read lower/upper parts together 
unsigned int read_TSCL();      // read just lower part  
unsigned int read_TSCH();      // read just upper part 

Additional details Copy TSC lower/upper 32-bit to Rdst. 

It’s available on both S0 and S1 slots, and ideally should be schedule in both 

S0 and S1 to copy lower/upper parts to avoid skewed copy introducing 

inconsistency. 

Intrinsic functions are supported to read just lower or upper part, or both 

parts. Intrinsic function reading both parts are implemented such that, 
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Instruction name RD_TSC 

RD_TSCL and RD_TSCH are executed in the same execution packet and 

with no other fused operations to avoid potential inconsistency.  

unsigned long long start_time = read_TSC(); 
 
// loop code 
 
unsigned long long end_time = read_TSC(); 
printf(“Loop XXX cycle count = %ld \n”, end_time – start_time); 

 

9.6.14 Floating-Point Invalid Flag 

Instruction name MOV INV-R 

Functionality Move floating-point invalid flag to register 

Assembly format MOV INV, Rdst 

Type and bit width  1-bit  

Predication not available 

Source options not available 

Destination options scalar register 

Additional options not available 

Intrinsics/operator int invalid_flag(); 

Additional details Move floating-point invalid flag to scalar register. After the move, the scalar 

register becomes either 0 or 1. 

The invalid flag is set when any input or output floating-point value is NaN 

(not a number). 
 

Instruction name MOV R-INV 

Functionality Move register to floating-point invalid flag 

Assembly format MOV Rsrc, INV 

Type and bit width  not applicable  

Predication not available 

Source options scalar register 

Destination options not available 

Additional options not available 

Intrinsics/operator void set_invalid_flag(int var); 

Additional details Move scalar register to floating-point invalid flag. Invalid flag is cleared if the 

scalar register is zero and set if the scalar register is non-zero.  
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9.6.15 OCD Load/Store 

Instruction name OCD_LD 

Functionality OCD (on-chip debug) load 

Assembly format OCD_LD PC 

OCD_LD GPO 

OCD_LD SES (shadow execution state) 

Type and bit width  32-bit unsigned  

Predication not available 

Source options dedicated ocd_data register 

Destination options PC or GPO 

Additional options not available 

Intrinsics/operator not available 

Additional details Copy from ocd_data dedicated debug register to PC, GPO, or SES, for debug. 

 

Only take effect in debug mode; treated like NOP otherwise. 
 

Instruction name OCD_ST 

Functionality OCD (on-chip debug) store 

Assembly format OCD_ST PC 

OCD_ST GPI 

OCD_ST GPO 

OCD_ST SES (shadow execution state) 

Type and bit width  32-bit unsigned  

Predication not available 

Source options PC, GPI or GPO 

Destination options dedicated ocd_data register 

Additional options not available 

Intrinsics/operator not available 

Additional details Copy from PC, GPI, GPO, SES to ocd_data dedicated debug register. 
 

9.6.16 Configure VMEM Superbanks 

(CFG_VMEM_SBA/B/C) 

Instruction name CFG_VMEM_SBA/B/C 

Functionality Cofigure VMEM Superbanks 

Assembly format CFG_VMEM_SBA/B/C Rsrc 

Type and bit width  not applicable  

Predication not available 

Source options 32-bit scalar register 
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Instruction name CFG_VMEM_SBA/B/C 

Destination options not available 

Additional options not available 

Intrinsics/operator void cfg_vmem_sba(int data);  
void cfg_vmem_sbb(int data);  
void cfg_vmem_sbc(int data);  

Additional details Write VMEM superbank A/B/C configuration data, 32-bit for each superbank. 

Bit 0: Load cache enable (0 = disable, 1 = enable) 

Bits 1 ~ 31: Reserved 

Reset value = 0 

For example, cfg_vmem_sba(0) disables load cache in Superbank A, and 

cfg_vmem_sbb(1) enables load cache in Superbank B. 
 

Instruction name RD_CFG_VMEM_SBA/B/C 

Functionality Read cofiguration of VMEM Superbanks 

Assembly format RD_CFG_VMEM_SBA/B/C Rdst 

Type and bit width  not applicable  

Predication not available 

Source options not available 

Destination options 32-bit scalar register 

Additional options not available 

Intrinsics/operator int rd_cfg_vmem_sba();  
int rd_cfg_vmem_sbb();  
int rd_cfg_vmem_sbc();  

Additional details Read VMEM superbank A/B/C configuration data, 32-bit for each superbank 

and return in destination register. 

Bit 0: Load cache enable (0 = disable, 1 = enable) 

Bits 1 ~ 31: Reserved 

Reset value = 0 
 

9.6.17 Coprocessor Control/Status Register 

Load/Store  

Instruction name CPST  

Functionality Coprocessor store 

Assembly format CPST Rsrc, Rdaddr 

CPST Rsrc, #imm12 

Type and bit width  32-bit  

Predication not available 

Source options 32-bit scalar register 
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Instruction name CPST  

Destination options Coprocessor address supplied by bits 13:2 of Rdaddr 

or 12-bit immediate word address 

Additional options not available 

Intrinsics/operator void cp_store(unsigned int src, int daddr);   

Additional details Available in M0 slot 
 

Instruction name CPLD  

Functionality Coprocessor load 

Assembly format CPLD Rsaddr, Rdst 

CPLD #imm12, Rdst 

Type and bit width  32-bit  

Predication not available 

Source options Coprocessor address supplied by bits 13:2 of Rdaddr 

or 12-bit immediate word address 

Destination options 32-bit scalar register 

Additional options not available 

Intrinsics/operator unsigned int cp_load(int saddr);   

Additional details Available in M0 slot 
 

9.6.18 Memory Fence  

Instruction name MemFence  

Functionality Memory fence 

Assembly format MemFence 

Type and bit width  none 

Predication not available 

Source options none 

Destination options none 

Additional options not available 

Intrinsics/operator void mem_fence();   

Additional details Available in M0 slot 

Stall appropriately for any preceding memory write (scalar/vector store, 

histogram, VAST) to commit to memory before the execution packet where 

MemFence resides can execute, to ensure memory coherency and prevent 

RAW data hazards. 

See Memory Coherency for comparison between MemFence instruction and 

chess_memory_fence() pragma. 
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9.7 Scalar ALU Instructions  
The scalar unit supports various common scalar arithmetic and logic operations in the 

S0 and S1 slots. 

9.7.1 ALU RRR Instructions  

9.7.1.1 Instruction Summary 

These RRR (register-register-register) instructions have two source registers and one 

destination register. Unless otherwise noted, these are 32-bit operations. 

Table 22. Scalar ALU RRR instructions  

Function Assembly Format Comments 

Add ADD Rsrc1, Rsrc2, Rdst  

Subtract SUB Rsrc1, Rsrc2, Rdst  

Multiply MUL Rsrc1, Rsrc2, Rdst   

And AND Rsrc1, Rsrc2, Rdst Bitwise and 

Or OR Rsrc1, Rsrc2, Rdst Bitwise or 

Exclusive or XOR Rsrc1, Rsrc2, Rdst Bitwise exclusive or 

Shift left logical SLL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count, also works for shift left 

arithmetic. 

6 LSBs of Rsrc2 are read as unsigned bit count; other 

bits are ignored. 

Shift right logical SRL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count. 

6 LSBs of Rsrc2 are read as unsigned bit count; other 

bits are ignored. 

Shift right 

arithmetic 

SRA Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count. 

6 LSBs of Rsrc2 are read as unsigned bit count; other 

bits are ignored. 

Sign extend SXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to sign 

extend from. 6 LSBs of Rsrc2 are read as unsigned bit 

width; other bits are ignored. 

When Rsrc2[5:0] is between 1 and 32, VPU does 

sh = 32 – Rsrc2[5:0]; 

Rdst = (Rsrc1 << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0.  

Zero extend ZXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to zero 

extend from. 6 LSBs of Rsrc2 are read as unsigned bit 

width; other bits are ignored. 

When Rsrc2[5:0] is between 1 and 32, VPU does 

sh = 32 – Rsrc2[5:0]; 
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Function Assembly Format Comments 

Rdst = (((unsigned) Rsrc1) << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 

Compare equal CMPEQ Rsrc1, Rsrc2, Rdst  

Compare not equal CMPNE Rsrc1, Rsrc2, Rdst  

Compare greater 

than or equal 

CMPGE Rsrc1, Rsrc2, Rdst  

Compare greater 

than or equal 

unsigned 

CMPGEU Rsrc1, Rsrc2, Rdst  

Compare greater 

than  

CMPGT Rsrc1, Rsrc2, Rdst  

Compare greater 

than unsigned 

CMPGTU Rsrc1, Rsrc2, Rdst  

Compare less than 

or equal 

CMPLE Rsrc1, Rsrc2, Rdst  

Compare less than 

or equal unsigned 

CMPLEU Rsrc1, Rsrc2, Rdst  

Compare less than  CMPLT Rsrc1, Rsrc2, Rdst  

Compare less than 

unsigned 

CMPLTU Rsrc1, Rsrc2, Rdst  

Modular increment MODINC Rsrc1, Rsrc2, Rdst Modular increment: 

Rdst = (Rsrc2 == Rsrc1) ? 0 : (Rsrc2 + 1); 

 

For example, with R4 = 3, R5 = 0, repeated execution 

of MODINC R4, R5, R5 results in R5 = 1, 2, 3, 0, 1, … 

Min MIN Rsrc1, Rsrc2, Rdst  

Min unsigned  MINU Rsrc1, Rsrc2, Rdst  

Max  MAX Rsrc1, Rsrc2, Rdst  

Max unsigned MAXU Rsrc1, Rsrc2, Rdst  

9.7.1.2 ADD  

Instruction name ADD 

Functionality Add 

Assembly format ADD Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator+(int src1, int src2); 
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Instruction name ADD 

Additional details  
 

9.7.1.3 SUB 

Instruction name SUB 

Functionality Subtract 

Assembly format SUB Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator-(int src1, int src2); 

Additional details  
 

9.7.1.4 MUL 

Instruction name MUL 

Functionality Multiply 

Assembly format MUL Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator*(int src1, int src2); 

Additional details  
 

9.7.1.5 AND  

Instruction name AND 

Functionality Bitwise and 

Assembly format AND Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 
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Instruction name AND 

Additional options  

Intrinsics/operator int operator&(int src1, int src2); 

Additional details  
 

9.7.1.6 OR  

Instruction name OR 

Functionality Bitwise or 

Assembly format OR Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator|(int src1, int src2); 

Additional details  
 

9.7.1.7 XOR 

Instruction name XOR 

Functionality Bitwise exclusive or 

Assembly format XOR Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator^(int src1, int src2); 

Additional details  
 

9.7.1.8 SLL 

Instruction name SLL 

Functionality Shift left 

Assembly format SLL Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 
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Instruction name SLL 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator<<(int src1, int src2); 
unsigned int operator<<(unsigned int src1, int src2); 

Additional details Rsrc2 carries the shift count, also works for shift left arithmetic. 

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored. 
 

9.7.1.9 SRL 

Instruction name SRL 

Functionality Shift right logical 

Assembly format SRL Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int operator>>(unsigned int src1, int src2); 

Additional details Rsrc2 carries the shift count. 

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored. 

Zeroes are shifted into the most significant bits (logical vs arithmetic).  
 

9.7.1.10 SRA 

Instruction name SRA 

Functionality Shift right arithmetic 

Assembly format SRA Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator>>(int src1, int src2); 

Additional details Rsrc2 carries the shift count. 

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored. 

Source 1 sign bit is into the most significant bits (arithmetic vs logic). 
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9.7.1.11 SXTD 

Instruction name SXTD 

Functionality Sign extend 

Assembly format SXTD Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int ext(int src1, int src2);  

Additional details Rsrc2 carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs of 

Rsrc2 are read as unsigned bit width; other bits are ignored. 

When Rsrc2[5:0] is between 1 and 32, VPU does: 

sh = 32 – Rsrc2[5:0]; 

Rdst = (Rsrc1 << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 

Examples:  

src1 = 0xF0 with src2 = 6 would take the lower 6 bits of src1, 0x30, sign-

extend it to 0xFFFF_FFF0, and copy to dst. 

src1 = 0xF0 with src2 = 4 would take the lower 4 bits of src1, 0, sign-extend it 

to 0 and copy to dst. 
 

9.7.1.12 ZXTD 

Instruction name ZXTD 

Functionality Zero extend 

Assembly format ZXTD Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int extu(int src1, int src2); 

Additional details Rsrc2 carries the bit width of Rsrc1 we want to zero extend from. 6 LSBs of 

Rsrc2 are read as unsigned bit width; other bits are ignored. 

When Rsrc2[5:0] is between 1 and 32, VPU does: 

sh = 32 – Rsrc2[5:0]; 

Rdst = (((unsigned) Rsrc1) << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 

Examples:  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  177 

Instruction name ZXTD 

src1 = 0xF0 with src2 = 6 would take the lower 6 bits of src1, 0x30, zero-

extend it to 0x30, and copy to dst. 

src1 = 0xF0 with src2 = 4 would take the lower 4 bits of src1, 0, zero-extend it 

to 0 and copy to dst. 
 

9.7.1.13 CMPEQ 

Instruction name CMPEQ 

Functionality Compare equal 

Assembly format CMPEQ Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator==(int src1, int src2); 

Additional details  
 

9.7.1.14 CMPNE 

Instruction name CMPNE 

Functionality Compare not equal 

Assembly format CMPNE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator!=(int src1, int src2); 

Additional details  
 

9.7.1.15 CMPGE 

Instruction name CMPGE 

Functionality Compare greater or equal 

Assembly format CMPGE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  178 

Instruction name CMPGE 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(int src1, int src2); 

Additional details  
 

9.7.1.16 CMPGEU 

Instruction name CMPGEU 

Functionality Compare greater or equal unsigned 

Assembly format CMPGEU Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(unsigned int src1, unsigned int src2); 

Additional details  
 

9.7.1.17 CMPGT 

Instruction name CMPGT 

Functionality Compare greater than 

Assembly format CMPGT Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(int src1, int src2); 

Additional details  
 

9.7.1.18 CMPGTU 

Instruction name CMPGTU 

Functionality Compare greater than unsigned 

Assembly format CMPGTU Rsrc1, Rsrc2, Rdst  
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Instruction name CMPGTU 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(unsigned int src1, unsigned int src2); 

Additional details  
 

9.7.1.19 CMPLE 

Instruction name CMPLE 

Functionality Compare less or equal 

Assembly format CMPLE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<=(int src1, int src2); 

Additional details  
 

9.7.1.20 CMPLEU 

Instruction name CMPLEU 

Functionality Compare less or equal unsigned 

Assembly format CMPLEU Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<=(unsigned int src1, unsigned int src2); 

Additional details  
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9.7.1.21 CMPLT 

Instruction name CMPLT 

Functionality Compare less than  

Assembly format CMPLT Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(int src1, int src2); 

Additional details  
 

9.7.1.22 CMPLTU 

Instruction name CMPLTU 

Functionality Compare less than unsigned 

Assembly format CMPLTU Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(unsigned int src1, unsigned int src2); 

Additional details  
 

9.7.1.23 MODINC 

Instruction name MODINC 

Functionality Modular increment 

Assembly format MODINC Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int dst = mod_inc(int src2, int src1);  
unsigned int dst = mod_inc(unsigned int src2, unsigned int src1); 
// note change in order vs assembly, src2 is the counter,  
// src1 is the max value 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  181 

Instruction name MODINC 

Additional details Modular increment: 

Rdst = (Rsrc2 == Rsrc1) ? 0 : (Rsrc2 + 1); 

For example, with R4 = 3, R5 = 0, repeated execution of  

       MODINC R4, R5, R5  

results in R5 = 1, 2, 3, 0, 1, … 
 

9.7.1.24 MIN 

Instruction name MIN 

Functionality Minimal 

Assembly format MIN Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int min(int src1, int src2);  

Additional details  
 

9.7.1.25 MINU 

Instruction name MINU 

Functionality Minimal unsigned 

Assembly format MINU Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int min(unsigned int src1, unsigned int src2);  

Additional details  
 

9.7.1.26 MAX 

Instruction name MAX 

Functionality Maximal 

Assembly format MAX Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 
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Instruction name MAX 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int max(int src1, int src2); 

Additional details  
 

9.7.1.27 MAXU 

Instruction name MAXU 

Functionality Maximal unsigned 

Assembly format MAXU Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int max(unsigned int src1, unsigned int src2); 

Additional details  
 

9.7.2 ALU RIR Instructions  

9.7.2.1 Instruction Summary 

These RIR (register-immediate-register) instructions have one source register, one 12-bit 

immediate, and one destination register.  The immediate operand can be sign-extended 

(where designated as Imm12) or zero-padded (where designated as UImm12). 

Table 23. Scalar ALU RIR instructions  

Function Assembly Format Comments 

Add ADDI Rsrc1, Imm12, Rdst  

Add ADDUI Rsrc1, UImm12, Rdst  

Subtract SUBI Rsrc1, Imm12, Rdst  

Subtract SUBUI Rsrc1, UImm12, Rdst  

And ANDI Rsrc1, UImm12, Rdst  

Exclusive or XORI Rsrc1, UImm12, Rdst  
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Function Assembly Format Comments 

Shift left logical SLLI Rsrc1, UImm12, Rdst Immediate carries the shift count, also works for shift 

left arithmetic. 6 LSBs of immediate are read as 

unsigned bit count; other bits are ignored. 

Shift right logical SRLI Rsrc1, UImm12, Rdst Immediate carries the shift count. 

6 LSBs of immediate are read as unsigned bit count; 

other bits are ignored. 

Shift right 

arithmetic 

SRAI Rsrc1, UImm12, Rdst Immediate carries the shift count. 

6 LSBs of immediate are read as unsigned bit count; 

other bits are ignored. 

Sign extend SXTDI Rsrc1, UImm12, Rdst Immediate carries the bit width of Rsrc1 we want to 

sign extend from. 6 LSBs of Immediate are read as 

unsigned bit width; other bits are ignored. 

When Imm[5:0] is between 1 and 32, VPU does: 

sh = 32 – Imm[5:0]; 

Rdst = (Rsrc1 << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0.  

Zero extend ZXTDI Rsrc1, UImm12, Rdst Immediate carries the bit width of Rsrc1 we want to 

zero extend from. 6 LSBs of Rsrc2 are read as 

unsigned bit width; other bits are ignored. 

When Imm[5:0] is between 1 and 32, VPU does: 

sh = 32 – Imm[5:0]; 

Rdst = (((unsigned) Rsrc1) << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 

Compare equal CMPEQI Rsrc1, Imm12, Rdst  

Compare not equal CMPNEI Rsrc1, Imm12, Rdst  

Compare greater 

than or equal 

CMPGEI Rsrc1, Imm12, Rdst  

Compare greater 

than or equal 

unsigned 

CMPGEUI Rsrc1,UImm12, Rdst  

Compare greater 

than  

CMPGTI Rsrc1, Imm12, Rdst  

Compare greater 

than unsigned 

CMPGTUI Rsrc1, UImm12, Rdst  

Compare less than 

or equal 

CMPLEI Rsrc1, Imm12, Rdst  

Compare less than 

or equal unsigned 

CMPLEU Rsrc1, UImm12, Rdst  

Compare less than  CMPLTI Rsrc1, Imm12, Rdst  

Compare less than 

unsigned 

CMPLTUI Rsrc1, UImm12, Rdst  

Min  MINI Rsrc1, Imm12, Rdst  

Min unsigned  MINUI Rsrc1, UImm12, Rdst  
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Function Assembly Format Comments 

Max  MAXI Rsrc1, Imm12, Rdst  

Max unsigned  MAXUI Rsrc1, UImm12, Rdst  

9.7.2.2 ADDI  

Instruction name ADDI 

Functionality Add immediate 

Assembly format ADDI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator+(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.3 ADDUI  

Instruction name ADDUI 

Functionality Add unsigned immediate 

Assembly format ADDUI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator+(int src1, int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.4 SUBI 

Instruction name SUBI 

Functionality Subtract immediate 

Assembly format SUBI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 
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Instruction name SUBI 

Additional options  

Intrinsics/operator // Intrinsic functions are not needed for this instruction. 
// Compiler has freedom to leverage this and/or other 
// instructions to correctly implement expressions  
// involving scalar subtraction operation.  

Additional details Imm12 is sign-extended before the operation. 
 

9.7.2.5 SUBUI 

Instruction name SUBUI 

Functionality Subtract unsigned immediate 

Assembly format SUBUI Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator // Intrinsic functions are not needed for this instruction. 
// Compiler has freedom to leverage this and/or other 
// instructions to correctly implement expressions  
// involving scalar subtraction operation.  

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.6 ANDI 

Instruction name ANDI 

Functionality Bitwise and immediate 

Assembly format ANDI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator&(int src1, int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
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9.7.2.7 XORI 

Instruction name XORI 

Functionality Bitwise exclusive or immediate 

Assembly format XORI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator^(int src1, int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.8 SLLI 

Instruction name SLLI 

Functionality Shift left immediate 

Assembly format SLLI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator<<(int src1, int uimm12); 
unsigned int operator<<(unsigned int src1, int src2); 

Additional details Immediate carries the shift count, also works for shift left arithmetic. 6 LSBs 

of immediate are read as unsigned bit count; other bits are ignored. 
 

9.7.2.9 SRLI 

Instruction name SRLI 

Functionality Shift right logical immediate 

Assembly format SRLI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int operator>>(unsigned int src1, int uimm12); 

Additional details Immediate carries the shift count. 
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Instruction name SRLI 

6 LSBs of immediate are read as unsigned bit count; other bits are ignored. 
 

9.7.2.10 SRAI 

Instruction name SRAI 

Functionality Shift right arithmetic immediate 

Assembly format SRAI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int operator>>(int src1, int uimm12); 

Additional details Immediate carries the shift count. 

6 LSBs of immediate are read as unsigned bit count; other bits are ignored. 
 

9.7.2.11 SXTDI 

Instruction name SXTDI 

Functionality Sign extend immediate 

Assembly format SXTDI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int ext(int src1, int uimm12); 

Additional details Immediate carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs 

of Immediate are read as unsigned bit width; other bits are ignored. 

When Imm[5:0] is between 1 and 32, VPU does: 

sh = 32 – Imm[5:0]; 
Rdst = (Rsrc1 << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 
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9.7.2.12 ZXTDI 

Instruction name ZXTDI 

Functionality Zero extend immediate 

Assembly format ZXTDI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int extu(int src1, int uimm12); 

Additional details Immediate carries the bit width of Rsrc1 we want to zero extend from. 6 

LSBs of Rsrc2 are read as unsigned bit width; other bits are ignored. 

When Imm[5:0] is between 1 and 32, VPU does: 

sh = 32 – Imm[5:0]; 
Rdst = (((unsigned) Rsrc1) << sh) >> sh; 

Otherwise (0 or > 32), Rdst = 0. 
 

9.7.2.13 CMPEQI 

Instruction name CMPEQI 

Functionality Compare equal immediate 

Assembly format CMPEQI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator==(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.14 CMPNEI 

Instruction name CMPNEI 

Functionality Compare not equal immediate 

Assembly format CMPNE Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 
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Instruction name CMPNEI 

Additional options  

Intrinsics/operator bool operator!=(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 

9.7.2.15 CMPGEI 

Instruction name CMPGEI 

Functionality Compare greater or equal immediate 

Assembly format CMPGEI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.16 CMPGEUI 

Instruction name CMPGEUI 

Functionality Compare greater or equal unsigned immediate 

Assembly format CMPGEUI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(unsigned int src1, unsigned int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.17 CMPGTI 

Instruction name CMPGTI 

Functionality Compare greater than immediate 

Assembly format CMPGTI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 
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Instruction name CMPGTI 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.18 CMPGTUI 

Instruction name CMPGTUI 

Functionality Compare greater than unsigned immediate 

Assembly format CMPGTUI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(unsigned int src1, unsigned int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.19 CMPLEI 

Instruction name CMPLEI 

Functionality Compare less or equal immediate 

Assembly format CMPLEI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<=(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.20 CMPLEUI 

Instruction name CMPLEUI 

Functionality Compare less or equal unsigned immediate 

Assembly format CMPLEUI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 
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Instruction name CMPLEUI 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<=(unsigned int src1, unsigned int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
 

9.7.2.21 CMPLTI 

Instruction name CMPLTI 

Functionality Compare less than immediate 

Assembly format CMPLTI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(int src1, int imm12); 

Additional details Imm12 is signed-extended before the operation. 
 

9.7.2.22 CMPLTUI 

Instruction name CMPLTUI 

Functionality Compare less than unsigned immediate 

Assembly format CMPLTUI Rsrc1, UImm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(unsigned int src1, unsigned int uimm12); 

Additional details UImm12 is zero-extended before the operation. 
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9.7.2.23 MINI 

Instruction name MINI  

Functionality Minimal immediate 

Assembly format MINI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int min(int src1, int imm12);  

Additional details  
 

9.7.2.24 MINUI 

Instruction name MINUI  

Functionality Minimal unsigned immediate 

Assembly format MINUI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int min(unsigned int src1, unsigned int uimm12);  

Additional details  
 

9.7.2.25 MAXI 

Instruction name MAXI  

Functionality Maximal Immediate 

Assembly format MAXI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int max(int src1, int imm12); 

Additional details  

 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  193 

9.7.2.26 MAXUI 

Instruction name MAXUI  

Functionality Maximal unsigned immediate 

Assembly format MAXUI Rsrc1, Imm12, Rdst  

Type and bit width  32-bit unsigned 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned int max(unsigned int src1, unsigned int uimm12); 

Additional details  
 

9.7.3 Long Multiplication Instructions  

9.7.3.1 Instruction Summary 

The scalar ALU also supports long multiply, multiplication between two signed/unsigned 

32-bit operands. Outcome is placed in the PL/PH special register pair. 

Table 24. Scalar ALU long multiply instructions  

Function Assembly Format Comments 

Long multiply 

signed-signed 

LMULSS Rsrc1, Rsrc2  Multiply into 64-bit product in PL:PH (dedicated 

product low/high registers) 

Long multiply 

signed-unsigned 

LMULSU Rsrc1, Rsrc2  Multiply into 64-bit product in PL:PH (dedicated 

product low/high registers) 

Long multiply 

unsigned-unsigned 

LMULUU Rsrc1, Rsrc2  Multiply into 64-bit product in PL:PH (dedicated 

product low/high registers) 
 

9.7.3.2 LMULSS 

Instruction name LMULSS 

Functionality Long multiply signed-signed 

Assembly format LMULSS Rsrc1, Rsc2  

Type and bit width  signed 32-bit x signed 32-bit → signed 64-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  
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Instruction name LMULSS 

Intrinsics/operator long long mulwl_s(int src1, int src2); 

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit). 
 

9.7.3.3 LMULSU 

Instruction name LMULSU 

Functionality Long multiply signed-unsigned 

Assembly format LMULSU Rsrc1, Rsc2  

Type and bit width  signed 32-bit x unsigned 32-bit → signed 64-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator long long mulwl_su(int src1, unsigned int src2); 

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit). 
 

9.7.3.4 LMULUU 

Instruction name LMULUU 

Functionality Long multiply unsigned-unsigned 

Assembly format LMULUU Rsrc1, Rsc2  

Type and bit width  unsigned 32-bit x unsigned 32-bit → unsigned 64-bit 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator unsigned long long mulwl_u(unsigned int src1, unsigned int src2);  

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit). 
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9.7.4 Predicate Instructions  

9.7.4.1 Instruction Summary 

Moving between scalar register and predicate register, and modular 

increment/decrement on predicate register is also supported. These are used for 

periodic predication that enable loop collapsing. 

Function Assembly Format Comments 

Move scalar to 

predicate 

MOVSP Rsrc, Pdst 

 

Move scalar register to predicate register 

Negate scalar to 

predicate  

NOTSP Rsrc, Pdst Negate scalar register to predicate register 

Move predicate to 

scalar 

MOVPS Psrc, Rdst Move predicate register to scalar register  

Move predicate  MOVP Psrc, Pdst 

MOVP DPsrc, DPdst 

Move single/double predicate register 

Modular increment MODINC Rsrc1, Ps2d Modular increment predicate register Ps2d. Rsrc1 

conveys the max value. 

Modular increment 

 

MODINCP Rsrc1, Rs2d, Pdst Modular increment scalar register Rs2d. Rsrc1 conveys 

the max value, and Pdst is set all 0 or all 1 based on 

Rs2d outcome being zero/non-zero  

Modular increment 

NOT 

 

MODINC_NOTP Rsrc1, Rs2d, 

Pdst 

Modular increment scalar register Rs2d. Rsrc1 conveys 

the max value, and Pdst is set all 0 or all 1 based on 

Rs2d outcome being non-zero/zero, inversed w.r.t. 

MODINCP 

Modular increment, 

double predicate 

 

DPMODINCP Rsrc1, Rs2d, 

DPdst 

Modular increment scalar register Rs2d. Rsrc1 conveys 

the max value, and DPdst is set all 0 or all 1 based on 

Rs2d outcome being zero/non-zero. Both destination 

predicate registers are set identically. 

Modular increment 

NOT, double 

predicate 

 

DPMODINC_NOTP Rsrc1, Rs2d, 

DPdst 

Modular increment scalar register Rs2d. Rsrc1 conveys 

the max value, and DPdst is set all 0 or all 1 based on 

Rs2d outcome being non-zero/zero, inversed w.r.t. 

DPMODINCP. Both destination predicate registers are 

set identically. 

Predicated Move [Preg] MOV Rsrc, Rdst Predicated scalar register move 

Multiplex to predicate MUXP Rsrc1, Rsrc2, Rsrc3, 

Pdst 

Multiplex to predicate destination. 

For example, with Rsrc1 = 1, Rsrc2 = 2, Rsrc3 = 3, Pdst = 

(Rsrc1 != 0) ? Rsrc2 : Rsrc3, so would set Pdst to Rsrc2 = 

2. 
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Table 25. Scalar predicate instructions  

See Instruction Predication for use cases of instruction predication. 

9.7.4.2 MOVSP 

Instruction name MOVSP 

Functionality Move scalar to predicate 

Assembly format MOVSP Rsrc, Pdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options predicate register 

Additional options  

Intrinsics/operator // not needed, instantiated from an assignment statement  
// with destination variable mapped to a predicate register 
// example: int dst_predicate = int src; 

Additional details P0 and P1 contain constant -1, and should not be a destination of MOVSP 
 

9.7.4.3 NOTSP 

Instruction name NOTSP 

Functionality Negate (bitwise not) scalar to predicate 

Assembly format NOTSP Rsrc, Pdst  

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options predicate register 

Additional options  

Intrinsics/operator // Intrinsic functions are not needed for this instruction. 
// Compiler has freedom to leverage this and/or other  
// bitwise logic instructions to correctly implement  
// expressions involving bitwise not operations. NOTSP,  
// specifically, may be used when the outcome is mapped to  
// a predicate register. 

Additional details P0 and P1 contain constant -1, and should not be a destination of NOTSP 
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9.7.4.4 MOVPS 

Instruction name MOVPS 

Functionality Move predicate to scalar  

Assembly format MOVPS Psrc, Rdst  

Type and bit width  32-bit 

Predication not available 

Source options predicate register 

Destination options scalar register 

Additional options  

Intrinsics/operator // not needed, instantiated from an assignment statement  
// with source variable mapped to a predicate register and  
// destination variable mapped to a scalar register 
// example: int dst = int src_predicate; 

Additional details  
 

9.7.4.5 MOVP 

Instruction name MOVP  

Functionality Move predicate register 

Assembly format MOVP Psrc, Pdst 

MOVP DPsrc, DPdst 

Type and bit width  32-bit 

Predication not available 

Source options single or double predicate register 

Destination options single or double predicate register 

Additional options  

Intrinsics/operator // not needed, instantiated from an assignment statement  
// with source and destination variables mapped to predicate  
// registers 
// example: int dst_predicate = int src_predicate; 

Additional details P0 and P1 contain constant -1, and should not be a destination of MOVP 
 

9.7.4.6 MODINC 

Instruction name MODINC 

Functionality Modular increment 

Assembly format MODINC Rsrc1, Ps2d  

Type and bit width  32-bit 

Predication not available 

Source options scalar register and predicate register 
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Instruction name MODINC 

Destination options predicate register 

Additional options  

Intrinsics/operator int mod_inc(int s2d, int src1);  
unsigned int mod_inc(unsigned int s2d, unsigned int src1); 
// note the change in operand order vs assembly 
// s2d is the counter, src1 is the max value 

Additional details Modular increment predicate register: 

Ps2d = (Ps2d == Rsrc1) ? 0 : (Ps2d + 1); 

For example, with R1 = 4, P2 = 0, a sequence of  

       MODINC R1, P2  

results in P2 = 1, 2, 3, 4, 0, 1, … 

This is useful for VMadd_CA to occasionally clear the accumulator. 
 

9.7.4.7 MODINCP 

Instruction name MODINCP 

Functionality Modular increment predicate 

Assembly format MODINCP Rsrc1, Rs2d, Pdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register and predicate register 

Additional options  

Intrinsics/operator int mod_inc_pred_nz(int s2d, int src1, int & pdst);  
unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, int & 
pdst); 
// Note the change in operand order compared to assembly 
// First argument is the modular counter input 
// Second argument src1 is the max counter value input 
// Third argument pdst is a reference argument output, and 
// is set -1 if the modular counter after the modular  
// increment is non-zero, otherwise is set 0 
// Return modular counter value after the increment 
// Typical usage: 
// count = mod_inc_pred_nz(count, period_mns_1, count_nz); 

Additional details Modular increment scalar register Rs2d : 

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1); 

Pdst = Rs2d ? -1 : 0; // set 0 or all 1s (-1) 

For example, with R1 = 4, initial R2 = 0, a sequence of  

       MODINCP R1, R2, P2 

results in R2 = 1, 2, 3, 4, 0, 1, … 

        P2 = -1, -1, -1, -1, 0, -1, … 
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9.7.4.8 MODINC_NOTP 

Instruction name MODINC_NOTP 

Functionality Modular increment not predicate 

Assembly format MODINC_NOTP Rsrc1, Rs2d, Pdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register and predicate register 

Additional options  

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, int & pdst); 
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, int & 
pdst);  
// Note the change in operand order compared to assembly 
// First argument is the modular counter input 
// Second argument src1 is the max counter value input 
// Third argument pdst is a reference argument output, and 
// is set -1 if the modular counter after the modular  
// increment is 0, otherwise is set 0  
// Return modular counter value after the increment 
// Typical usage: 
// count = mod_inc_pred_nz(count, period_mns_1, count_z); 

Additional details Modular increment scalar register Rs2d : 

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1); 

Pdst = (Rs2d==0) ? -1 : 0; // set 0 or all 1s (-1) 

For example, with R1 = 4, initial R2 = 0, a sequence of  

       MODINC_NOTP R1, R2, P2 

results in R2 = 1, 2, 3, 4, 0, 1, … 

        P2 = 0, 0, 0, 0, -1, 0, … 
 

9.7.4.9 DPMODINCP 

Instruction name DPMODINCP 

Functionality Modular increment predicate, double predicate 

Assembly format DPMODINCP Rsrc1, Rs2d, DPdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register and double predicate register 

Additional options  

Intrinsics/operator int mod_inc_pred_nz(int s2d, int src1, dpred & pdst);  
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Instruction name DPMODINCP 

unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, dpred 
& pdst); 
// note the change in operand order 
// s2d is the counter, src1 is the max value, pdst is 
// set depending on counter value after modular increment 

Additional details Modular increment scalar register Rs2d : 

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1); 

Pdst = Rs2d ? -1 : 0; // set 0 or all 1s (-1) 

For example, with R1 = 4, initial R2 = 0, a sequence of  

       DPMODINCP R1, R2, P2:P3 

results in R2 = 1, 2, 3, 4, 0, 1, … 

        P2 = P3 = -1, -1, -1, -1, 0, -1, … 

 

9.7.4.10 DPMODINC_NOTP 

Instruction name DPMODINC_NOTP 

Functionality Modular increment not predicate, double predicate 

Assembly format DPMODINC_NOTP Rsrc1, Rs2d, DPdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register 

Destination options scalar register and double predicate register 

Additional options  

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, dpred & pdst);  
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, dpred & 
pdst); 
// note the change in operand order 
// s2d is the counter, src1 is the max value, pdst is 
// set depending on counter value after modular increment 

Additional details Modular increment scalar register Rs2d : 

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1); 

Pdst = (Rs2d==0) ? -1 : 0; // set 0 or all 1s (-1) 

 

For example, with R1 = 4, initial R2 = 0, a sequence of  

       DPMODINC_NOTP R1, R2, P2:P3 

results in R2 = 1, 2, 3, 4, 0, 1, … 

        P2 = P3 = 0, 0, 0, 0, -1, 0, … 
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9.7.4.11 Predicated MOV 

Instruction name Predicated MOV 

Functionality Predicated scalar register move 

Assembly format [Preg] MOV Rsrc, Rdst 

Type and bit width  32-bit 

Predication Instruction-level predication 

Source options scalar register and predicate register 

Destination options scalar register 

Additional options  

Intrinsics/operator // not needed, instantiated from the following code 
// if (preg) chess_guard { 
//  int dst = int src; 
// } 

Additional details   
 

9.7.4.12 MUXP 

Instruction name Multiplex to predicate 

Functionality Multiplexing with scalar sources and predicate destination 

Assembly format MUXP Rsrc1, Rsrc2, Rsrc3, Pdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options predicate register 

Additional options  

Intrinsics/operator // Intrinsic functions are not needed for this instruction.  
// Compiler may leverage MUXP to implement a ternary  
// conditional operator when the outcome variable is mapped  
// to a predicate register. For example,  
//  int chess_storage(PA2) dst = (a0 != 0) ? a1 : a2; 

Additional details Multiplex to predicate destination. 

    Pdst = (Rsrc1 != 0) ? Rsrc2 : Rsrc3; 

For example, with R1 = 1, R2 = 2, R3 = 3, 

   MUXP R1, R2, R3, P4 

would set P4 to R2, which is 2. 
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9.7.5 Scalar Floating-point Instructions  

9.7.5.1 Instruction Summary 

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float 

conversion instructions are available in the S0 and S1 instruction slots. Scalar registers 

supply the sources and destination of FP instructions. 

FP multiply-add is implemented with a fused multiply-add datapath that preserves full 

product precision and has higher precision than separate FP multiply and FP add 

operations.   

A sticky invalid status bit, INV, is available, for software to read, set, or clear by moving 

between INV and a scalar register. We have (detailed in 9.3.14): 

> MOV INV-R: moving from the invalid flag to a scalar register 

> MOV R-INV: moving from a scalar register to the invalid flag 

It’s sticky in the sense that once a floating-point instruction produces an invalid (NaN) 

outcome, the flag is set if it’s previously clear and remains set until a MOV R-INV 

instruction moves zero value to the flag.  

The flag can also be set by software, by a MOV R-INV instruction moving a software-

calculated invalid value to the flag. This is useful for software emulation of floating-point 

functions (reciprocal, square root, etc.). 

R5 software can configure VPU to go to error-halted mode upon the flag being set, or to 

just continue execution.   

FP instructions output a fixed NaN encoding value of 0x7FC0_0000, which is a quiet NaN 

(as opposed to a signaling NaN), as invalid output. Note that this is different behavior 

from X86 FP NaN output, going with some NaN propagation rule with priority among 

inputs to propagate input NaN value to the output.   

Note that there is just one invalid status bit to indicate floating-point outcome being 

NaN.  

Table 26. Scalar floating-point instructions  

Function Assembly Format Comments 

FP add FAdd Rsrc1, Rsrc2, Rdst  

FP subtract FSub Rsrc1, Rsrc2, Rdst  

FP multiply FMul Rsrc1, Rsrc2, Rdst  

FP multiply-add FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst  

FP multiply-subtract FMSub Rsrc1, Rsrc2, Rsrc3, Rdst   

FP16 add HFAdd Rsrc1, Rsrc2, Rdst   

FP16 subtract HFSub Rsrc1, Rsrc2, Rdst   

FP16 multiply HFMul Rsrc1, Rsrc2, Rdst   
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Function Assembly Format Comments 

FP16 multiply-add HFMAdd Rsrc1, Rsrc2, Rsrc3, 

Rdst  

 

FP16 multiply-subtract HFMSub Rsrc1, Rsrc2, Rsrc3, 

Rdst  

 

INT to FP conversion INT_FP Rsrc, Rdst Integer to floating-point conversion 

FP to INT conversion with 

truncation 

FP_INT_Trunc Rsrc, Rdst Floating-point to integer conversion with 

truncation (consistent with C float-to-int 

type casting) 

FP to INT conversion with 

rounding 

FP_INT_Round Rsrc, Rdst Floating-point to integer conversion with 

rounding 

INT to FP16 conversion INT_FP16 Rsrc1, Rsrc2, Rdst Rsrc2 conveys qbit for fixed-point 

representation. 

FP16 to INT conversion 

wth truncation 

FP16_INT_Trunc Rsrc1, Rsrc2, 

Rdst 

Rsrc2 conveys qbit for fixed-point 

representation. 

FP16 to INT conversion 

wth rounding 

FP16_INT_Round Rsrc1, Rsrc2, 

Rdst 

Rsrc2 conveys qbit for fixed-point 

representation. 

FP16 to FP32 conversion FP16_FP Rsrc, Rdst   

FP32 to FP16 conversion FP_FP16 Rsrc, Rdst   

FP compare LT FCmpLT Rsrc1, Rsrc2, Rdst  

FP compare LE FCmpLE Rsrc1, Rsrc2, Rdst  

FP compare GT FCmpGT Rsrc1, Rsrc2, Rdst  

FP compare GE FCmpGE Rsrc1, Rsrc2, Rdst  

FP compare EQ FCmpEQ Rsrc1, Rsrc2, Rdst  

FP compare NE FCmpNE Rsrc1, Rsrc2, Rdst  

FP16 compare LT HFCmpLT Rsrc1, Rsrc2, Rdst  

FP16 compare LE HFCmpLE Rsrc1, Rsrc2, Rdst  

FP16 compare GT HFCmpGT Rsrc1, Rsrc2, Rdst  

FP16 compare GE HFCmpGE Rsrc1, Rsrc2, Rdst  

FP16 compare EQ HFCmpEQ Rsrc1, Rsrc2, Rdst  

FP16 compare NE HFCmpNE Rsrc1, Rsrc2, Rdst  

FP reciprocal FRCP Vsrc, Vdst  

FP square root FSQRT Vsrc, Vdst  

FP reciprocal square root FRSQ Vsrc, Vdst  

FP exponential base-2 FEXP2 Vsrc, Vdst  

FP logarithm base-2 FLOG2 Vsrc, Vdst  

FP sine FSIN Vsrc, Vdst  

FP cosine FCOS Vsrc, Vdst  

FP hyperbolic tangent FTANH Rsrc, Rdst  
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9.7.5.2 FAdd 

Instruction name FAdd 

Functionality Floating-point add 

Assembly format FAdd Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fadd(float src1, float src2); //bit-exact between ISS & Native 
float operator+(float src1, float src2); // NOT bit-exact between   
                     // ISS and Native 

Additional details IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

9.7.5.3 FSub 

Instruction name FSub 

Functionality Floating-point subtract 

Assembly format FSub Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fsub(float src1, float src2); //bit-exact between ISS & Native 
float operator-(float src1, float src2); // NOT bit-exact between   
                     // ISS and Native 

Additional details IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.7.5.4 FMul 

Instruction name FMul 

Functionality Floating-point multiply 

Assembly format FMul Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fmul(float src1, float src2); //bit-exact between ISS & Native 
float operator*(float src1, float src2); // NOT bit-exact between   
                     // ISS and Native 

Additional details IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.7.5.5 FMAdd 

Instruction name FMAdd 

Functionality Floating-point multiply-add 

Assembly format FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst  

Type and bit width  32-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fmadd(float src1, float src2, float src3);  

Additional details Performing multiply-add with IEEE compliant floating-point multiply and add. 

Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Example: 

FMAdd R1, R2, R3, R4 

would perform R4 = R1 * R2 + R3, reading the source registers R1, R2, R3 as 

32-bit floating-point numbers, and producing 32-bit floating-point outcome 

in R4. 
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9.7.5.6 FMSub 

Instruction name FMSub 

Functionality Floating-point multiply-subtract 

Assembly format FMSub Rsrc1, Rsrc2, Rsrc3, Rdst  

Type and bit width  32-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fmsub(float src1, float src2, float src3); 

Additional details Performing IEEE compliant floating-point multiply-subtract, src3 – src1 * 

src2. Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Example: 

  FMSub R1, R2, R3, R4 

would perform R4 = R3 – R1 * R2, reading the source registers R1, R2, R3 as 

32-bit floating-point numbers, and producing 32-bit floating-point outcome 

in R4. 
 

9.7.5.7 HFAdd 

Instruction name HFAdd 

Functionality FP16 add 

Assembly format HFAdd Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat hfadd(hfloat src1, hfloat src2);  
hfloat operator+(hfloat src1, hfloat src2); 

Additional details Least significant 16 bits of sources registers are read as FP16 numbers, 

FP16 addition performed, and FP16 outcome is sign-extended to 32-bit in 

the destination register. 

IEEE compliant half-precision floating-point add. Handles denormal, zero, 

infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.7.5.8 HFSub 

Instruction name HFSub 

Functionality FP16 subtract 

Assembly format HFSub Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat hfsub(hfloat src1, hfloat src2);  
hfloat operator-(hfloat src1, hfloat src2); 

Additional details Least significant 16 bits of sources registers are read as FP16 numbers, 

FP16 subtraction performed, and FP16 outcome is sign-extended to 32-bit in 

the destination register. 

IEEE compliant half-precision floating-point subtract. Handles denormal, 

zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.7.5.9 HFMul 

Instruction name HFMul 

Functionality FP16 multiply 

Assembly format HFMul Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat hfmul(hfloat src1, hfloat src2);  
hfloat operator*(hfloat src1, hfloat src2); 

Additional details Least significant 16 bits of sources registers are read as FP16 numbers, 

FP16 multiplication performed, and FP16 outcome is sign-extended to 32-bit 

in the destination register. 

IEEE compliant half-precision floating-point multiply. Handles denormal, zero, 

infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.7.5.10 HFMAdd 

Instruction name HFMAdd 

Functionality FP16 multiply-add 

Assembly format HFMAdd Rsrc1, Rsrc2, Rsrc3, Rdst  

Type and bit width  16-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat hfmadd(hfloat src1, hfloat src2, hfloat src3); 

Additional details Least significant 16 bits of sources registers are read as FP16 numbers, 

FP16 multiply-add src1 * src2 + src3 performed, and FP16 outcome is sign-

extended to 32-bit in the destination register. 

Fused multiply-add is performed, preserving intermediate precision as much 

as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.7.5.11 HFMSub 

Instruction name HFMSub 

Functionality FP16 multiply-subtract 

Assembly format HFMSub Rsrc1, Rsrc2, Rsrc3, Rdst  

Type and bit width  16-bit float 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat hfmsub(hfloat src1, hfloat src2, hfloat src3); 

Additional details Least significant 16 bits of sources registers are read as FP16 numbers, 

FP16 multiply-subtract src3 - src1 * src2 performed, and FP16 outcome is 

sign-extended to 32-bit in the destination register. 

Fused multiply-subtract is performed, preserving intermediate precision as 

much as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.7.5.12 INT_FP 

Instruction name INT_FP 

Functionality Integer to floating-point conversion 

Assembly format INT_FP Rsrc, Rdst  

Type and bit width  32-bit signed integer input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float int_fp(int src); //bit-exact between ISS & Native float  
 
// Type casting int into float also compiles into INT_FP,  
// but it’s not bit-exact between ISS and Native. For example, 
float_var = (float) int_var; 

Additional details Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 
 

9.7.5.13 FP_INT_Trunc 

Instruction name FP_INT_Trunc 

Functionality Floating-point to integer conversion 

Assembly format FP_INT_Trunc Rsrc, Rdst  

Type and bit width  32-bit float input, 32-bit signed integer output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int fp_int_trunc(float src); //bit-exact between ISS & Native float 
 
// Type casting float into int also compiles into FP_INT_Trunc,  
// but it’s not bit-exact between ISS and Native. For example, 
int_var = (int) float_var; 

Additional details FP32 to integer conversion with truncation. 

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is trunc(1.5) = 1  

Note that  

- truncation is used during the conversion, consistent with C float-to-int type 

casting. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 
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Instruction name FP_INT_Trunc 

- When output value exceeds 32-bit int representation range, output is 

saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 
 

9.7.5.14 FP_INT_Round 

Instruction name FP_INT_Round 

Functionality Floating-point to integer conversion 

Assembly format FP_INT_Round Rsrc, Rdst  

Type and bit width  32-bit float input, 32-bit signed integer output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int fp_int_round(float src); 
int f32_to_i32_rte(float src); // Gen-1 legacy 

Additional details FP32 to integer conversion with rounding. 

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is round(1.5) = 2, 

as 1.5 is tied between 1 and 2, so we round to 2 (even).  

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value exceeds 32-bit int representation range, output is 

saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements 

rounding implicitly, programmers are strongly encouraged to switch to Gen-2 

intrinsic function fp_int_round() to avoid confusion. 
 

9.7.5.15 INT_FP16 

Instruction name INT_FP16 

Functionality Integer to 16-bit floating-point conversion 

Assembly format INT_FP16 Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit int input, 16-bit float output 

Predication not available 
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Instruction name INT_FP16 

Source options src1: scalar register 

src2: scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat int_fp16(int src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in source 

fixed-point representation. dst = src1 / 2^src2. 

Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 

16-bit floating-point output is sign-extended into the 32-bit container. 

Where output absolute value falls below normal FP16 range, denormal FP16 

output is generated. 
 

9.7.5.16 FP16_INT_Trunc 

Instruction name FP16_INT_Trunc 

Functionality Floating-point to integer conversion with truncation 

Assembly format FP16_INT_Trunc Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options src1: scalar register 

src2: scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int fp16_int_trunc(hfloat src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in 

destination fixed-point representation. dst = trunc(src1 * 2^src2). 

16-bit floating-point input is read from 16 LSBs of the 32-bit input. 

Note that  

- truncation is used during the conversion. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value trunc(src1 * 2^src2) exceeds 32-bit int representation 

range, output is saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

- Denormal FP16 input value is supported.  
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9.7.5.17 FP16_INT_Round 

Instruction name FP16_INT_Round 

Functionality Floating-point to integer conversion with rounding 

Assembly format FP16_INT_Round Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options src1: scalar register 

src2: scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator int fp16_int_round(hfloat src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in 

destination fixed-point representation. dst = round(src1 * 2^src2). 

16-bit floating-point input is read from 16 LSBs of the 32-bit input. 

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value round(src1 * 2^src2) exceeds 32-bit int representation 

range, output is saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

- Denormal FP16 input value is supported. 
 

9.7.5.18 FP16_FP 

Instruction name FP16_FP 

Functionality Floating-point FP16 to floating-point FP32 conversion  

Assembly format FP16_FP Rsrc, Rdst  

Type and bit width  16-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fp16_fp(hfloat src); 

Additional details FP16 floating-point input is read from 16 LSBs of the 32-bit source, 

converted to FP32 floating-point outcome, and written to 32-bit destination. 

Note that the invalid status flag is NOT set when input is NaN. 
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9.7.5.19 FP_FP16 

Instruction name FP_FP16 

Functionality Floating-point FP32 to floating-point FP16 conversion  

Assembly format FP_FP16 Rsrc, Rdst  

Type and bit width  32-bit float input, 16-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator hfloat fp_fp16(float src); 

Additional details FP32 floating-point input is read from 32-bit source, converted to FP16 

floating-point outcome, sign-extended and written to 32-bit destination. 

Note that the invalid status flag is NOT set when input is NaN. 
 

9.7.5.20 FCmpLT 

Instruction name FCmpLT 

Functionality Floating-point compare less than 

Assembly format FCmpLT Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(float src1, float src2);  

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.21 FCmpLE 

Instruction name FCmpLE 

Functionality Floating-point compare less than or equal to 

Assembly format FCmpLE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  
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Instruction name FCmpLE 

Intrinsics/operator bool operator<=(float src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.22 FCmpGT 

Instruction name FCmpGT 

Functionality Floating-point compare greater than 

Assembly format FCmpGT Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(float src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.23 FCmpGE 

Instruction name FCmpGE 

Functionality Floating-point compare greater than or equal to 

Assembly format FCmpGE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(float src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
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9.7.5.24 FCmpEQ 

Instruction name FCmpEQ 

Functionality Floating-point compare equal  

Assembly format FCmpEQ Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator==(float src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.25 FCmpNE 

Instruction name FCmpNE 

Functionality Floating-point compare not equal  

Assembly format FCmpNE Rsrc1, Rsrc2, Rdst  

Type and bit width  32-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator!=(float src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.26 HFCmpLT 

Instruction name HFCmpLT 

Functionality FP16 compare less than 

Assembly format HFCmpLT Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<(hfloat src1, hfloat src2); 
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Instruction name HFCmpLT 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.27 HFCmpLE 

Instruction name HFCmpLE 

Functionality FP16 compare less than or equal 

Assembly format HFCmpLE Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator<=(hfloat src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.28 HFCmpGT 

Instruction name HFCmpGT 

Functionality FP16 compare greater than 

Assembly format HFCmpGT Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>(hfloat src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
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9.7.5.29 HFCmpGE 

Instruction name HFCmpGE 

Functionality FP16 compare greater than or equal 

Assembly format HFCmpGE Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator>=(hfloat src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.30 HFCmpEQ 

Instruction name HFCmpEQ 

Functionality FP16 compare equal 

Assembly format HFCmpEQ Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator==(hfloat src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
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9.7.5.31 HFCmpNE 

Instruction name HFCmpNE 

Functionality FP16 compare not equal 

Assembly format HFCmpNE Rsrc1, Rsrc2, Rdst  

Type and bit width  16-bit float input, 32-bit int output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator bool operator!=(hfloat src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See 6.2.4.3 for corner cases. 
 

9.7.5.32 FRCP 

Instruction name FRCP 

Functionality Floating-point reciprocal 

Assembly format FRCP Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float frcp(float src);  

Additional details Performing FP32-input, FP32-output reciprocal. Set invalid status flag when 

output is NaN. 

Corner cases: 

 RCP(+denorm) gives +Inf 

 RCP(-denorm) gives -Inf 

 RCP(+0.0)    gives +Inf 

 RCP(-0.0)     gives -Inf 

 RCP(+1.0)    gives +1.0 

 RCP(-1.0)     gives -1.0 

 RCP(+Inf)     gives +0.0 

 RCP(-Inf)     gives -0.0 

 RCP(NaN)    gives NaN 

 

Max relative error is 2^-23 over entire normal floating-point range. 
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9.7.5.33 FSQRT 

Instruction name FSQRT 

Functionality Floating-point square root 

Assembly format FSQRT Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fsqrt(float src);  

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag 

when output is NaN. 

Corner cases: 

 SQRT(+denorm) gives +0.0 

 SQRT(-denorm) gives -0.0 

 SQRT(+0.0)    gives +0.0 

 SQRT(-0.0)     gives -0.0 

 SQRT(+1.0)    gives +1.0 

 SQRT(-1.0)     gives NaN 

 SQRT(+Inf)     gives +Inf 

 SQRT(-Inf)     gives NaN 

 SQRT(NaN)    gives NaN 

 SQRT(negative) gives NaN (other than for -denorm or -0) 

 

Max relative error is 2^-23 over entire normal floating-point range. 
 

9.7.5.34 FRSQ 

Instruction name FRSQ 

Functionality Floating-point reciprocal square root 

Assembly format FRSQ Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float frsq(float src);  

Additional details Performing FP32-input, FP32-output reciprocal square root. Set invalid 

status flag when output is NaN. 

Corner cases: 
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Instruction name FRSQ 

 RSQ(+denorm) gives +Inf 

 RSQ(-denorm) gives -Inf 

 RSQ(+0.0)    gives +Inf 

 RSQ(-0.0)     gives -Inf 

 RSQ(+1.0)    gives +1.0 

 RSQ(-1.0)     gives NaN 

 RSQ(+Inf)     gives +0.0 

 RSQ(-Inf)     gives NaN 

 RSQ(NaN)    gives NaN 

 RSQ(negative) gives NaN (other than for -denorm or -0) 

 

Max relative error is 2^-22.4 over entire normal floating-point range. 
 

9.7.5.35 FEXP2 

Instruction name FEXP2 

Functionality Floating-point exponential base-2 

Assembly format FEXP2 Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fexp2(float src);  

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid 

status flag when output is NaN. 

Corner cases: 

 EXP2(+denorm) gives +1.0 

 EXP2(-denorm) gives +1.0 

 EXP2(+0.0)    gives +1.0 

 EXP2(-0.0)     gives +1.0 

 EXP2(+Inf)     gives +Inf 

 EXP2(-Inf)     gives +0.0 

 EXP2(NaN)    gives NaN 

 

Max relative error is 2^-22.5 over entire normal floating-point range. 
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9.7.5.36 FLOG2 

Instruction name FLOG2 

Functionality Floating-point logarithm base-2 

Assembly format FLOG2 Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float flog2(float src);  

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid 

status flag when output is NaN. 

Corner cases: 

 LOG2(+denorm) gives -Inf 

 LOG2(-denorm) gives -Inf 

 LOG2(+0.0)    gives -Inf 

 LOG2(-0.0)     gives -Inf 

 LOG2(+Inf)     gives +Inf 

 LOG2(-Inf)     gives NaN 

 LOG2(NaN)    gives NaN 

 LOG2(negative) gives NaN (other than for -denorm or -0) 

  

Max absolute error is 2^-22 in range (0.5, 2.0). 

Max relative error can be as large as 0.9 in range (0.5, 2.0). 

Max relative error is 2^-22.5 in range [0, 0.5] and [2.0, +Inf]. 
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9.7.5.37 FSIN 

Instruction name FSIN 

Functionality Floating-point sine 

Assembly format FSIN Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fsin(float src);  

Additional details Performing FP32-input, FP32-output sine function. Input in radians should be 

pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN. 

Corner cases: 

 SIN(+denorm) gives +0.0 

 SIN(-denorm) gives -0.0 

 SIN(+0.0)    gives +0.0 

 SIN(-0.0)     gives -0.0 

 SIN(+Inf)     gives NaN 

 SIN(-Inf)     gives NaN 

 SIN(NaN)    gives NaN 

 SIN(normal) is always in the range [-1, +1] 

 

Max absolute error is 2^-20.5 in range -2*pi ~ 2*pi. 

Max absolute error is 2^-14.7 in range -100*pi ~ 100*pi. 

The max error includes cumulative error of performing the required pre-

normalization.  

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no 

defined error guarantees. 
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9.7.5.38 FCOS 

Instruction name FCOS 

Functionality Floating-point cosine 

Assembly format FCOS Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float fcos(float src);  

Additional details Performing FP32-input, FP32-output cosine function. Input in radians should 

be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN. 

Corner cases: 

 COS(+denorm) gives +1.0 

 COS(-denorm) gives +1.0 

 COS(+0.0)    gives +1.0 

 COS(-0.0)     gives +1.0 

 COS(+Inf)     gives NaN 

 COS(-Inf)     gives NaN 

 COS(NaN)    gives NaN 

 COS(normal) is always in the range [-1, +1] 

 

Max absolute error is 2^-20.9 in range -2*pi ~ 2*pi. 

Max absolute error is 2^-15.3 in range -100*pi ~ 100*pi. 

The max error includes cumulative error of performing the required pre-

normalization.  

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no 

defined error guarantees. 
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9.7.5.39 FTANH 

Instruction name FTANH 

Functionality Floating-point hyperbolic tangent 

Assembly format FTANH Rsrc, Rdst 

Type and bit width  32-bit float input, 32-bit float output 

Predication not available 

Source options scalar register 

Destination options scalar register 

Additional options  

Intrinsics/operator float ftanh(float src);  

Additional details Performing FP32-input, FP32-output hyperbolic function. Set invalid status 

flag when output is NaN. 

Corner cases: 

 TANH(-denorm) gives -0.0 

 TANH(-0.0)    gives -0.0 

 TANH(+0.0)    gives +0.0 

 TANH(+denorm) gives +0.0 

 TANH(-Inf)     gives -1.0 

 TANH(+Inf)    gives 1.0 

 TANH(NaN)    gives NaN 

 TANH(normal)  is always in the range [-1.0 .. +1.0] 

 

Max relative error is 2^-11 over the entire normal floating-point range. 

Max absolute error is 2^-12 over the entire normal floating-point range. 
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9.7.6 Other Scalar ALU Instructions  

9.7.6.1 Instruction Summary 

Table 27. Other scalar ALU instructions  

Function Assembly Format Comments 

Count leading bits CLB Rsrc, Rdst If bit 31 is zero, count leading 0 bits, otherwise, count 

leading 1 bits 

Load high LHI imm16, Rdst Set destination to (immediate << 16) 

Or immediate ORI Rsrc1, imm16, Rdst Set destination to Rsrc1 OR immediate. 

LHI/ORI sequence is used to load a 32-bit immediate 

value into a scalar register. 

Mux MUX Rsrc1, Rsrc2, Rsrc3, Rdst Select between 2 items 

Rdst = Rsrc1 ? Rsrc2 : Rsrc3 

Divide DIV Rsrc1, Rsrc2 Divide Rsrc1 by Rsrc2, resulting quotient into PL and 

remainder into PH, takes multiple cycles. 

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit 

number. 

When Rsrc2 is zero, return quotient = 0xFFFF_FFFF 

(max value of unsigned 32-bit), and return remainder 

= Rsrc1. 

Divide-by-zero would generate error interrupt to R5. 

Only available in S0 slot. 

Logical left shift 

and add 

SLLIADD Rsrc1, UImm4, Rsrc2, 

Rdst 

dst = (src1 << imm) + src2; 

Compare within CMPWITHIN Rsrc1, Rsrc2, 

Rsrc3, Rdst 

dst = (src1 <= src2) && (src2 < src3); 

Bit count BITCNT Rsrc, Rdst Count number of bits set to one 
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9.7.6.2 CLB 

Instruction name CLB  

Functionality Count leading bits 

Assembly format CLB Rsrc, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator int clb(int src);  

Additional details If bit 31 of the source is 0, count number of consecutive 0 bits from bit 31 

down. Otherwise, count number of consecutive 1 bits from bit 31 down. 

 

Examples: 

clb(0) = 32 

clb(0x1000_0000) = 3 

clb(0x6000_0000) = 1 

clb(0x8000_0000) = 1 

clb(0xE000_0000) = 3 

clb(0xFFF0_0000) = 12 
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9.7.6.3 LHI 

Instruction name LHI  

Functionality Load high. Load (immediate << 16) into scalar destination, and thus not just 

loading high, but clearing low at the same time. 

Assembly format LHI imm16, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options not available 

Destination options scalar register 

Additional options  

Intrinsics/operator // not available, instantiated automatically when assigning 
// a value exceeding 12-bit to variable mapped to a scalar  
// register, for example, 
//   int var1 = 0x654321; 
// is compiled into  
//   LHI 0x65, R4 
//   ORI 0x4321, R4 
// when var1 is mapped to R4. When the value fits 12-bit, 
// compiler instantiates ADDI, for example, 
//   ADDI R0, #321, R4 

Additional details Set destination to (immediate << 16) 
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9.7.6.4 ORI 

Instruction name ORI  

Functionality Bitwise OR with 16-bit immediate  

Assembly format ORI Rsrc1, imm16, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options not available 

Destination options scalar register 

Additional options  

Intrinsics/operator // not available, instantiated automatically when assigning // values 
exceeding 16-bit to variable mapped to a scalar  
// register, for example, 
//   int var1 = 0x654321; 
// is compiled into  
//   LHI 0x65, R4 
//   ORI 0x4321, R4 
// when var1 is mapped to R4. When the value fits 12-bit, 
// compiler instantiates ADDI, for example, 
//   ADDI R0, #321, R4  

Additional details Set destination to Rsrc1 OR immediate. 

LHI/ORI sequence is used to load a 32-bit immediate value into a scalar 

register. 
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9.7.6.5 MUX 

Instruction name MUX  

Functionality Scalar multiplexing  

Assembly format MUX Rsrc1, Rsrc2, Rsrc3, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator char  mux(int src1, char  src2, char  src3);  
short mux(int src1, short src2, short src3);  
int  mux(int src1, int  src2, int  src3);  
hfloat mux(int src1, hfloat src2, hfloat src3); 
float mux(int src1, float src2, float src3); 
char  mux(bool src1, char  src2, char  src3);  
short mux(bool src1, short src2, short src3);  
int  mux(bool src1, int  src2, int  src3);  
hfloat mux(bool src1, hfloat src2, hfloat src3); 
float mux(bool src1, float src2, float src3); 

Additional details Select between 2 data items, 

Rdst = Rsrc1 ? Rsrc2 : Rsrc3 
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9.7.6.6 DIV 

Instruction name DIV  

Functionality Scalar divide  

Assembly format DIV Rsrc1, Rsrc2 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator void udiv(unsigned int src1, unsigned int src2, unsigned int & dst1, 
unsigned int & dst2); 
unsigned int operator/( unsigned int src1, unsigned int src2); 
unsigned int operator%( unsigned int src1, unsigned int src2); 

Additional details Divide Rsrc1 by Rsrc2, resulting quotient into PL and remainder into PH, takes 

multiple cycles. 

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit number. 

When Rsrc2 is zero, return quotient = 0xFFFF_FFFF (max value of unsigned 32-

bit), and return remainder = Rsrc1. 

Divide-by-zero would generate error interrupt to R5. 

This is a multi-cycle instruction, taking up to 33 cycles to complete. Subsequent 

instructions using PL/PH as source or destination shall be stalled until DIV 

completes. Also, to avoid task switch before PL/PH are written, subsequent 

HALT, WFE_R5, and GPO writes are stalled until DIV completes. 

Note that DIV is only available in the S0 slot. 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  231 

9.7.6.7 SLLIADD 

This is an instruction added in Gen-2 VPU to accelerate address calculation. 

Instruction name SLLIADD  

Functionality Scalar shift and add 

Assembly format SLLIADD Rsrc1, UImm4, Rsrc2, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator int slladd(int src1, int shift_uimm4, int src2);  

Additional details Unsigned 4-bit immediate value is used as left shift bit count, to shift left by 

up to 15 bits. 

int dst = ((int src1) << imm) + (int src2); 
 

Why just 4-bit? The intention of this instruction is to support address calculation of 

base[index], byte_addr(base) + index * sizeof(base), when the size of the data type is a 

power of 2. 4-bit left shift would cover up to size of 2^15 = 32768 bytes, and is more 

than commonly needed. 

9.7.6.8 CMPWITHIN 

This is an instruction added in Gen-2 VPU to accelerate range checking. 

Instruction name CMPWITHIN  

Functionality Compare within  

Assembly format CMPWITHIN Rsrc1, Rsrc2, Rsrc3, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator int cmpwithin(int src1, int src2, int src3);  

Additional details Returns (src1 <= src2) && (src2 < src3);  

Note that signed comparison is carried out. 
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9.7.6.9 BITCNT 

Instruction name BITCNT  

Functionality Bit count 

Assembly format BITCNT Rsrc, Rdst 

Type and bit width  32-bit 

Predication not available 

Source options scalar register  

Destination options scalar register 

Additional options  

Intrinsics/operator int bitcount(int src);  

Additional details Count number of bits set to one; a scalar version of VBitCnt. 

For example, bitcount(13) = 3, as the binary representation of 13 is “1101” 

and contains 3 ones. 

9.8 Vector ALU Instructions  

9.8.1 Move Instructions 

9.8.1.1 Instruction Summary 

Table 28 Scalar/vector move instructions  

Function Assembly Format Comments 

Vector move VMov  Vsrc/Wsrc, Vdst/Wdst 

VMov  Vsrc, ACdst 

VMov  ACsrc, Vdst 

VMov  ACsrc, ACdst 

VMov  XACsrc, XACdst 

Move vector register 

Move scalar to 

vector 

<pred> VMovS<W/WU/H/B> Rsrc,  

           Vdst/Wdst/ACdst 

Broadcast scalar register to all 

W/H/B lanes of vector register 

Vector move double  <pred> DVMov DVsrc/DWsrc, DVdst/DWdst 

<pred> DVMov DACsrc, DACdst  

<pred> DVMov DXACsrc, DXACdst  

DVMov DVsrc, DACdst 

DVMov DACsrc, DVdst 

Move double vector register 

Vector move pair  VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2 Move 2 vector registers 

Move from vector 

to scalar  

<pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst Move vector lane 0 to scalar 

register 
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Table 29 vector register move support matrix  

 

  

Destination 

VRF WRF ARF XARF 

 

 

 

 

 

Source 

VRF single/double single/double single/double demote_i 

double-to-single 

WRF single/double single/double 
  

ARF single/double 
 

single/double 
 

XARF promote_di 

single-to-double  

  
single/double 

 

9.8.1.2 VMOV 

Instruction name VMOV 

Functionality Vector move 

Assembly format VMov Vsrc/Wsrc, Vdst/Wsrc 

VMov  Vsrc, ACdst 

VMov  ACsrc, Vdst 

VMov  ACsrc, ACdst 

VMov  XACsrc, XACdst 

Type and bit width  n/a: 384-bit 

Predication not available 

Source options Single vector register in VRF, WRF, ARF, XARF 

Destination options Single vector register in VRF, WRF, ARF, XARF 

Additional options  

Intrinsics/operator // not needed; instantiated from assignment statement  
// between source and destination of same single vector  
// type, for example, 
// vintx dst = vintx src; 
// vshortx dst = vshortx src; 
// vcharx dst = vcharx src; 
// xvshortx dst = xvshortx src; 
// xvcharx dst = xvcharx src; 
// vfloatx dst = vfloatx src; 
// vhfloatx dst = vhfloatx src; 

Additional details  
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9.8.1.3 VMOVS 

Instruction name VMOVS 

Functionality Move scalar to vector  

Assembly format <pred> VMovS<type> Rsrc, Vdst/Wdst/ACdst  

pred = none, [P2..P15] 

Type and bit width  W: 32-bit sign-extended to 48-bit and broadcast to 8 x 48-bit 

WU: 32-bit zero-extended to 48-bit and broadcast to 8 x 48-bit 

H: lowest 24-bit broadcast to 16 x 24-bit 

B: lowest 12-bit broadcast to 32 x 12-bit 

 

Note that float/vfloatx type intrinsic function is mapped to W type 

instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H 

type instruction. 

Predication Instruction-level predication 

Source options Scalar register 

Destination options Single vector register in VRF, WRF, ARF 

Additional options  

Intrinsics/operator vintx  replicatew(int src); 
vintx  replicatew(unsigned int src); 
vshortx replicateh(int src); 
vcharx replicateb(int src); 
vfloatx replicatef(float src); // W type, float value  
                // sign-extended to 48-bit 
vhfloatx replicatehf(hfloat src); // H type, hfloat value 
                // sign-extended to 24-bit 

Additional details Example: 

   [P2] VMovSH R2, V3  

When P2 is non-zero, this would copy R2[23:0] to all 16 half-word lanes of V3. 

Otherwise, V3 is unchanged. 

 

The predication feature is not exposed through intrinsic functions, but with 

code pattern: 

  if (condition) chess_guard { 

    vector_var = replicatew(scalar_value); 

  }  
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9.8.1.4 DVMOV 

Instruction name DVMOV 

Functionality Move double vector  

Assembly format <pred> DVMov DVsrc/DWsrc, DVdst/DWdst 

<pred> DVMov DACsrc, DACdst  

<pred> DVMov DXACsrc, DXACdst  

DVMov DVsrc, DACdst 

DVMov DACsrc, DVdst 

pred = none, [P2..P15] 

Type and bit width  n/a: 768-bit  

Predication Instruction-level predication on DV/DW moves 

Source options Double vector register in VRF, WRF, ARF, XARF 

Destination options Double vector register in VRF, WRF, ARF, XARF 

Additional options  

Intrinsics/operator // not needed; instantiated from assignment statement  
// between source and destination of same single vector  
// type, for example, 
// dvintx dst = dvintx src; 
// dvshortx dst = dvshortx src; 
// dvcharx dst = dvcharx src; 
// dxvshortx dst = dxvshortx src; 
// dxvcharx dst = dxvcharx src; 
// dvfloatx dst = dvfloatx src; 
// dvhfloatx dst = dvhfloatx src; 

Additional details  
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9.8.1.5 VMOV2 

Instruction name VMOV2 

Functionality Move vector pair 

Assembly format VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2  

Type and bit width  n/a: 384-bit  

Predication not available 

Source options Two vector registers in VRF 

Destination options Two vector registers in VRF 

Additional options  

Intrinsics/operator // Optional; instantiated from two assignments of the  
// same single vector data type, or one assignment of the  
// same double vector data type, for example, 
// vintx dst = vintx src; 
// vshortx dst = vshortx src; 
// vcharx dst = vcharx src; 
// vfloatx dst = vfloatx src; 
// vhfloatx dst = vhfloatx src; 
void dvmov(vfloatx src1, vfloatx src2, vfloatx &dst1, vfloatx &dst2); 
void dvmov(vhfloatx src1,vhfloatx src2,vhfloatx &dst1,vhfloatx &dst2); 
void dvmov(vintx src1, vintx src2, vintx &dst1, vintx &dst2); 
void dvmov(vshortx src1, vshortx src2, vshortx &dst1, vshortx &dst2); 
void dvmov(vcharx src1, vcharx src2, vcharx &dst1, vcharx &dst2); 

Additional details  
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9.8.1.6 MOVVS 

Instruction name MOVVS  

Functionality Move vector lane 0 to scalar  

Assembly format <pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst 

pred = none, [P2..P15] 

Type and bit width  W: 32-bit 

H: 24-bit sign-extend to 32-bit 

B: 12-bit sign-extend to 32-bit 

HU: 24-bit zero-pad to 32-bit 

BU: 12-bit zero-pad to 32-bit 

 

Note that float/vfloatx type intrinsic function is mapped to W type 

instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H 

type instruction. 

Predication Instruction-level predication 

Source options Vector register (lane 0) in VRF 

Destination options Scalar register 

Additional options n/a 

Intrinsics/operator int smovw (vintx src); 
int smovh (vshortx src); 
int smovb (vcharx src); 
int smovhu (vshortx src); 
int smovbu (vcharx src); 
float smovf (vfloatx src); 
hfloat smovhf (vhfloatx src); 

Additional details Available in memory slots. 

 

The predication feature is not exposed through intrinsic functions, but with 

code pattern: 

  if (condition) chess_guard { 

    scalar_var = smovw(vector_value); 

  } 
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9.8.2 Vector OP11 Instructions 

These are one-source, one-destination operation vector instructions. 

The double vector flavor is supported for selected operators.  

9.8.2.1 Instruction Summary 

Table 30. Vector OP11 instructions  

Function Assembly Format Comments 

Vector not bitwise VNot  Vsrc/Wsrc, Vdst/Wsrc   

Vector not logical VNotL<W/H/B> Vsrc/Wsrc, Vdst/Wdst   

Vector bit reverse VBitRev<W/H/B> Vsrc/Wsrc, Vdst/Wdst  Use standard (32/16/8) bit width 

Vector negate VNeg<W/H/B> Vsrc/Wsrc, Vdst/Wdst   

Vector sum 

reduction 

VSumR<type> Vsrc/Wsrc, 

Vdst/Wdst/Rdst  

type = {BW, HW, W} 

Sum of all lanes. 

Result stored across all lanes of Vdst 

Vector min 

reduction 

VMinR<W/H/B> Vsrc/Wsrc, Rdst  Min of all lanes. 

Scalar destination only 

Vector max 

reduction 

VMaxR<W/H/B> Vsrc/Wsrc, Rdst  Max of all lanes. 

Scalar destination only 

Vector AND 

reduction  

VAndR<W/H/B> Vsrc/Wsrc, 

Vdst/Wdst/Rdst  

Bitwise AND across all lanes. 

Result stored across all lanes of Vdst 

Vector OR 

reduction 

VOrR<W/H/B> Vsrc/Wsrc, 

Vdst/Wdst/Rdst  

Bitwise OR across all lanes. 

Result stored across all lanes of Vdst 

Vector XOR 

reduction  

VXorR<W/H/B> Vsrc/Wsrc, 

Vdst/Wdst/Rdst  

Bitwise XOR across all lanes. 

Result stored across all lanes of Vdst 

Vector bitunpack VBitUnpk<W/H/B> Rsrc, Vdst/Wdst  Bit unpack from scalar 

Vector bit-

transpose 

VBitTranspH Vsrc/Wsrc, Vdst/Wdst  Transpose 16-bit across 16 lanes. 

Used in LBP encode, speedup ~ 2x 

Vector most-

significant bit 

detect 

VMSBD<W/H/B> Vsrc/Wsrc, Vdst/Wdst  Return most significant bit position, input 

must be non-negative, return -1 for zero 

input 

Vector bit count VBitCnt<W/H/B> Vsrc/Wsrc, Vdst/Wdst  

 

VBitCnt<W/H/B> DVsrc/DWsrc, 

DVdst/DWdst  

Count number of 1 bits 

Vector collate 

indices 

VCollateIdx<W/H> Vsrc/Wsrc, Vdst/Wdst  Compute indices to nonzero lanes  

Vector expand 

indices  

VExpandIdx<W/H> Vsrc/Wsrc/Rsrc, 

Vdst/Wdst  

Compute indices to expand collated data  
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Function Assembly Format Comments 

Vector horizontal 2-

term min-ID 

VHMin2IDW Vsrc/Wsrc, Vdst/Wdst  Computer min & ID in each lane pair 

Vector horizontal 2-

term max-ID 

VHMax2IDW Vsrc/Wsrc, Vdst/Wdst  Computer max & ID in each lane pair 

Vector shuffle 

permutation 

VShuffle<type> Vsrc/Wsrc, Vdst/Wdst   

 

9.8.2.2 VNOT 

Instruction name VNOT  

Functionality Vector inversion bitwise 

Assembly format VNot  Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  no type: 384-bit (bitwise) 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator~(vintx src);   
vshortx operator~(vshortx src);   
vcharx operator~(vcharx src);   
// double vector pseudo intrinsics 
dvintx  operator~(dvintx src);   
dvshortx operator~(dvshortx src);   
dvcharx operator~(dvcharx src); 

Additional details  
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9.8.2.3 VNOTL 

Instruction name VNOTL  

Functionality Vector inversion logical 

Assembly format VNotL<type> Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator!(vintx src);   
vshortx operator!(vshortx src);   
vcharx operator!(vcharx src);   
// double vector pseudo intrinsics 
dvintx  operator!(dvintx src);   
dvshortx operator!(dvshortx src);   
dvcharx operator!(dvcharx src);   

Additional details Example: 

VNotLB V1, V2 

This would detect zero/non-zero of V1 byte lanes, and set a byte lane of V2 to 

0 if the corresponding lane in V1 is non-zero, and 1 if the corresponding lane 

in V1 is zero. 
 

9.8.2.4 VBITREV 

Instruction name VBITREV  

Functionality Vector bit reverse 

Assembly format VBitRev<type> Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vbitreverse(vintx  src); 
vshortx vbitreverse(vshortx src); 
vcharx vbitreverse(vcharx src); 
// double vector pseudo intrinsics 
dvintx  dvbitreverse(dvintx  src); 
dvshortx dvbitreverse(dvshortx src); 
dvcharx dvbitreverse(dvcharx src); 

Additional details Reverse lower 8/16/32 bits of each lane; upper bits are dropped. 

Output lower 8/16/32 bits of each lane bit-reversed; upper bits are zero, and 

appear unsigned (or non-negative). 
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Instruction name VBITREV  

Example: 

vintx src = {0, 0x100, 0x200, 0x300, 0, 0, 0, 0}; 
vintx dst = vbitreverse(src); 

Expected dst = {0, 0x80_0000, 0x40_0000, 0xC0_0000, 0, 0, 0, 0} 
 

9.8.2.5 VNEG 

Instruction name VNEG  

Functionality Vector negate 

Assembly format VNeg<type> Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator-(vintx src); 
vshortx operator-(vshortx src); 
vcharx operator-(vcharx src); 
// double vector pseudo intrinsics 
dvintx operator-(dvintx src); 
dvshortx operator-(dvshortx src); 
dvcharx operator-(dvcharx src); 

Additional details  
 

9.8.2.6 VSUMR 

Instruction name VSUMR 

Functionality Vector sum reduction 

Assembly format VSumR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst  

Type and bit width  W: 8 x 48-bit → 8 x 48-bit  

HW: 16 x 24-bit → 8 x 48-bit  

BW: 32 x 12-bit → 8 x 48-bit 

Note that sign extension is applied for HW and BW cases. 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF, or scalar register 

Additional options  

Intrinsics/operator vintx vsumr(vintx  src); 
vintx vsumr(vshortx src); 
vintx vsumr(vcharx src); 
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Instruction name VSUMR 

int vsumr_s(vintx  src); 
int vsumr_s(vshortx src); 
int vsumr_s(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Sum across all lanes of source is broadcast to all lanes of destination. 

Destination is of W-type to reduce chance of overflow.  

Note that number of lanes reduces for HW and BW variations. 

Programmer should be aware of possibility of overflow in the VSumRW case, 

and code accordingly. 

For scalar destination, in W-type, 32 LSBs of the sum is returned. 

Programmer should be aware of potential overflow in the outcome. In H-type 

and B-type, the sum is sign-extended to 32-bit. 
 

9.8.2.7 VMINR 

Instruction name VMINR 

Functionality Vector min reduction 

Assembly format VMinR<type> Vsrc/Wsrc, Rdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single register in scalar register file 

Additional options  

Intrinsics/operator int vminr_s(vintx  src); 
int vminr_s(vshortx src); 
int vminr_s(vcharx src); 
// Following gen-1 legacy intrinsics shall be emulated with multiple 
instructions 
vintx  vminr(vintx  src); 
vshortx vminr(vshortx src); 
vcharx vminr(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Min across all lanes of source is stored in the scalar destination. 

For W-type, 32 LSBs of the min value is returned. Programmer should be 

aware of potential overflow in the outcome. In H-type and B-type, the min 

value is sign-extended to 32-bit. 

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination 

register. For W-type 48-bit min value is output in each lane of the vector 

destination. 

For Halfword and Byte types, the emulation uses vminr_s() and replicateh/b().  

For Word type, using just vminr_s() and replicatew() will not compute bits 

47..32 of the extended word lane properly. Instead, the emulation uses 

vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details. 
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Instruction name VMINR 

Examples: 

 

VMinRB V1, V2 is emulated as VMinRB V1, R2; VMovSB R2, V2.  
vminr(vcharx_src) as { replicateb(vminr_s(vcharx_src)); } 
 
VMinRH V1, V2 is emulated as VMinRH V1, R2; VMovSH R2, V2.  
vminr(vshortx_src) as { replicateh(vminr_s(vshortx_src)); }  
 
VMinRW V1, V2 is emulated as  
VHMin2IDW V1, V3; VMinSkip2RIDW V3, V2, R2. 
vminr(vintx_src) as {  
  vhmin2id(vintx_src, temp);  
  vminskip2rid(temp, vintx_dst1, id_dst2);  
  return vintx_dst1; 
} 

 

9.8.2.8 VMAXR 

Instruction name VMAXR  

Functionality Vector max reduction 

Assembly format VMaxR<type> Vsrc/Wsrc, Rdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single register in scalar register file 

Additional options  

Intrinsics/operator int vmaxr_s(vintx  src); 
int vmaxr_s(vshortx src); 
int vmaxr_s(vcharx src); 
// Following gen-1 legacy intrinsics shall be emulated with multiple 
instructions 
vintx  vmaxr(vintx  src); 
vshortx vmaxr(vshortx src); 
vcharx vmaxr(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Max across all lanes of source is stored in the scalar destination. 

For W-type, 32 LSBs of the max value is returned. Programmer should be 

aware of potential overflow in the outcome. In H-type and B-type, the max 

value is sign-extended to 32-bit. 

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination 

register. For W-type 48-bit max value is output in each lane of the vector 

destination. 

For Halfword and Byte types, the emulation uses vmaxr_s() and replicateh/b().  
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Instruction name VMAXR  

For Word type, using just vmaxr_s() and replicatew() will not compute bits 

47..32 of the extended word lane properly. Instead, the emulation uses 

vhmax2id() and vmaxskip2rid(). See 9.8.2.18 and 9.8.3.10 for details. 

 

Examples: 

 

VMaxRB V1, V2 is emulated as VMaxRB V1, R2; VMovSB R2, V2.   
vmaxr(vcharx_src) as { replicateb(vmaxr_s(vcharx_src)); } 
 
VMaxRH V1, V2 is emulated as VMaxRH V1, R2; VMovSH R2, V2.  
vmaxr(vshortx_src) as { replicateh(vmaxr_s(vshortx_src)); } 
 
VMaxRW V1, V2 is emulated as  
VHMax2IDW V1, V3; VMaxSkip2RIDW V3, V2, R2.   
vmaxr(vintx_src) as {  
  vhmax2id(vintx_src, temp);  
  vmaxskip2rid(temp, vintx_dst1, id_dst2);  
  return vintx_dst1; 
} 

 

9.8.2.9 VANDR 

Instruction name VANDR  

Functionality Vector bitwise AND reduction 

Assembly format VAndR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst   

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF, or scalar register 

Additional options  

Intrinsics/operator vintx vandr(vintx src);   
vshortx vandr(vshortx src);  
vcharx vandr(vcharx src); 
int vandr_s(vintx  src); 
int vandr_s(vshortx src); 
int vandr_s(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Bitwise AND across all lanes of source is broadcast to all lanes of destination. 

dst[i] = src[0] & src[1] & … & src[nlanes – 1] 

For scalar destination, in W-type, 32 LSBs of the AND reduction value is 

returned. Programmer should be aware of potential overflow in the outcome. 

In H-type and B-type, the AND reduction value is zero-extended to 32-bit. 
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9.8.2.10 VORR 

Instruction name VORR  

Functionality Vector bitwise OR reduction 

Assembly format VOrR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF, or scalar register 

Additional options  

Intrinsics/operator vintx vorr(vintx src);   
vshortx vorr(vshortx src);  
vcharx vorr(vcharx src); 
int vorr_s(vintx  src); 
int vorr_s(vshortx src); 
int vorr_s(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Bitwise OR across all lanes of source is broadcast to all lanes of destination. 

dst[i] = src1[0] | src1[1] | … | src1[nlanes – 1] 

For scalar destination, in W-type, 32 LSBs of the OR reduction value is 

returned. Programmer should be aware of potential overflow in the outcome. 

In H-type and B-type, the OR reduction value is zero-extended to 32-bit. 
 

9.8.2.11 VXORR 

Instruction name VXORR 

Functionality Vector bitwise XOR reduction 

Assembly format VXorR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF, or scalar register 

Additional options  

Intrinsics/operator vintx  vxorr(vintx src);   
vshortx vxorr(vshortx src);  
vcharx vxorr(vcharx src); 
int vxorr_s(vintx  src); 
int vxorr_s(vshortx src); 
int vxorr_s(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details XOR across all lanes of source is broadcast to all lanes of destination. 

dst[i] = src[0] ^ src[1] ^ … ^ src[nlanes – 1] 
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Instruction name VXORR 

For scalar destination, in W-type, 32 LSBs of the XOR reduction value is 

returned. Programmers should be aware of potential overflow in the 

outcome. In H-type and B-type, the XOR reduction value is zero-extended to 

32-bit. 
 

9.8.2.12 VBITUNPK 

Instruction name VBITUNPK  

Functionality Vector unpack from scalar 

Assembly format VBitUnpk<type>  Rsrc, Vdst/Wdst  

Type and bit width  W: take Rsrc[7:0], unpack into 8 x 48-bit, each lane gets 0 or 1 

H: take Rsrc[15:0], unpack into 16 x 24-bit, each lane gets 0 or 1 

B: take Rsrc[31:0], unpack into 32 x 12-bit, each lane gets 0 or 1 

Predication not available 

Source options Scalar register 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vcharx vbitunpackb(int src); 
vshortx vbitunpackh(int src); 
vintx  vbitunpackw(int src); 
// double vector pseudo intrinsics unavailable 

Additional details Unpack lower 8/16/32-bit of source scalar register, one bit into each vector 

lane, bit i into lane i.  

For example, with R4 = 0xF0, “VBitUnpkW R4, V0” would result in 

V0 = {0, 0, 0, 0, 1, 1, 1, 1}  
 

9.8.2.13 VBITTRANSP 

Instruction name VBITTRANSP  

Functionality Vector bit transpose 

Assembly format VBitTranspH Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  H: 16 x 16-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx vbittranspose(vshortx src); 
// double vector pseudo intrinsics unavailable 

Additional details Transpose between bit dimension (16 bits) and lane dimension (16 lanes), 

useful for census transform and rank transform 
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Example for VBitTranspH: 

 

 
  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

11 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

14 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

15 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

43690 52428 61680 65280 0 0 0 0 0 0 0 0 0 0 0 0

AAAA CCCC F0F0 FF00 0 0 0 0 0 0 0 0 0 0 0 0

Value (dec)

Value (hex)

Value (hex)

B
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d

Bit

Lane

Bit
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Value (dec)



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  249 

9.8.2.14 VMSBD 

Instruction name VMSBD  

Functionality Vector most significant bit detect 

Assembly format VMSBD<type> Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vmsbd(vintx  src); 
vshortx vmsbd(vshortx src); 
vcharx vmsbd(vcharx src); 
// double vector pseudo intrinsics 
dvintx  dvmsbd(dvintx  src); 
dvshortx dvmsbd(dvshortx src); 
dvcharx dvmsbd(dvcharx src); 

Additional details Return most significant bit position, treat input as unsigned, return -1 for 

zero input. 

For example, value of 0x12 has leading bit in bit 4, thus MSBD would return 4.  
 

9.8.2.15 VBITCNT 

Instruction name VBITCNT  

Functionality Vector bit count 

Assembly format VBitCnt<type> Vsrc/Wsrc, Vdst/Wsrc  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vbitcount(vintx  src); 
vshortx vbitcount(vshortx src); 
vcharx vbitcount(vcharx src); 

Additional details Count input “1” bits. For example, input of 12 = 0x0C would lead to bit count 

of 2. 
 

 

Instruction name VBITCNT  

Functionality Double vector bit count 

Assembly format VBitCnt<type> DVsrc/DWsrc, DVdst/DWsrc  

Type and bit width  W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Predication not available 
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Instruction name VBITCNT  

Source options Double vector register in VRF or WRF 

Destination options Double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  dvbitcount(dvintx  src); 
dvshortx dvbitcount(dvshortx src); 
dvcharx dvbitcount(dvcharx src); 

Additional details Count input “1” bits. For example, input of 12 = 0x0C would lead to bit count 

of 2. 
 

9.8.2.16 VCOLLATEIDX 

Instruction name VCOLLATEIDX  

Functionality Vector collate  

Assembly format VCollateIdx<type> Vsrc/Wsrc, Vdst/Wdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit (no byte type support) 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector registers in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vcollate_idx(vintx  src); 
vshortx vcollate_idx(vshortx src); 
// double vector pseudo intrinsics unavailable 

Additional details Vdst/Wdst gets indices to nonzero lanes (sequentially from lane 0) of 

Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc.  

 For example, VCollateIdxW V0, V1, with V0 = {0, -1, 2, -3, 0, 0, 0, 4}. Non-zero 

lanes are lane 1, 2, 3, and 7. Expected outcome V1 = {1, 2, 3, 7, 0, 4, 5, 6}. The 

idea is that a subsequent VPermW would use V1 as indices to 

extract/compact V0 nonzero and zero lanes into {-1, 2, -3, 4, 0, 0, 0, 0}.  
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9.8.2.17 VEXPANDIDX 

Instruction name VEXPANDIDX 

Functionality Vector expand, the inverse operation of vector collate  

Assembly format VExpandIdx<type> Vsrc/Wsrc/Rsrc, Vdst/Wdst  

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit (no byte type support) 

Predication not available 

Source options Single vector register in VRF or WRF, or scalar register 

Destination options Single vector registers in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vexpand_idx(vintx  src); 
vshortx vexpand_idx(vshortx src); 
vintx  vexpand_idxw(int  src); 
vshortx vexpand_idxh(int  src); 
// double vector pseudo intrinsics unavailable 

Additional details Identify nonzero lanes of Vsrc/Wsrc (sequentially from lane 0) and replace 

these lanes with incrementing indices. Zero lanes continue the indexing from 

non-zero lanes.  

When scalar register source is used, extract zero/nonzero directly from the 

scalar, bit i = 1 indicating lane i is nonzero. 

The source contains a Boolean array. The expanded index can be used to 

expand, or uncollated, a collated array back to original data. 

 For example, VExpandIdxW V0, V1, with V0 = {0, 1, 1, 1, 0, 0, 0, 1}. Non-zero 

lanes are 1, 2, 3, and 7. Expected outcome V1 = {4, 0, 1, 2, 5, 6, 7, 3}. The idea 

is that a subsequent VPermW would use V1 as indices to expand collated 

data, for example, {-1, 2, -3, 4, 0, 0, 0, 0} to {0, -1, 2, -3, 0, 0, 0, 4}.   
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9.8.2.18 VHMIN2ID 

Instruction name VHMIN2ID 

Functionality Vector horizontal (between lane) min and ID 

Assembly format VHMin2ID<type> Vsrc/Wsrc, Vdst/Wdst  

Type and bit width  W: 8 x 48-bit signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx vhmin2id(vintx  src); 

Additional details Min-ID between even/odd lanes in each lane pair. even destination lane gets 

the minimal value, odd destination lane gets the lane ID (0 or 1) that has the 

minimal value, in case of tie, ID = 0.  

dst[2*i] = min(src[2*i], src[2*i+1]); 
dst[2*i+1] = (src[2*i] <= src[2*i+1]) ? 0 : 1; 

This operation is supported only for the Word type, to handle potential 

overflow of Word-type VMinRID with scalar register destinations. 
 

9.8.2.19 VHMAX2ID 

Instruction name VHMAX2ID 

Functionality Vector horizontal (between lane) max and ID 

Assembly format VHMax2ID<type> Vsrc/Wsrc, Vdst/Wdst  

Type and bit width  W: 8 x 48-bit signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx vhmax2id(vintx src); 

Additional details Min-ID between even/odd lanes in each lane pair. even destination lane gets 

the maximal value, odd destination lane gets the lane ID (0 or 1) that has the 

maximal value, in case of tie, ID = 0.  

dst[2*i] = max(src[2*i], src[2*i+1]); 
dst[2*i+1] = (src[2*i] >= src[2*i+1]) ? 0 : 1; 

This operation is supported only for the Word type, to handle potential 

overflow of Word-type VMaxRID with scalar register destinations. 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  253 

9.8.2.20 VSHUFFLE 

Instruction name VSHUFFLE 

Functionality Vector shuffle permutation 

Assembly format VShuffle<type> Vsrc/Wsrc, Vdst/Wdst  

Type and bit width  B: 32 x 12-bit 

H: 16 x 24-bit 

W: 8 x 48-bit  

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vcharx vshuffle(vcharx src); 
vshortx vshuffle(vshortx src); 
vintx vshuffle(vintx src); 

Additional details Perform shuffle permutation among byte/halfword/word lanes. Equivalent to 

VPerm with pattern: 

Byte: {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23, 

      8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31} 

Halfword: {0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15} 

Word: {0, 4, 1, 5, 2, 6, 3, 7} 
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9.8.3 Vector OP12 Instructions 

These are one-source, two-destination operation vector instructions. 

9.8.3.1 Instruction Summary 

Table 31. Vector OP12 instructions 

Function Assembly Format Comments 

Vector sign-

magnitude 

VSignMag<W/H/B>  

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

Vdst1/Wdst2 gets sign values.  

Vdst2/Wdst2 gets magnitude values. 

Vector min 

reduction & ID 

VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the min value. 

dst2 gets the min ID. 

Vector max 

reduction & ID 

VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the max value. 

dst2 gets the max ID. 

Vector type 

promotion  

VPromote_DI<type>  

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

 

VPromote_DI<type> XACsrc, Vdst1, Vdst2 

type = {H, W} 

With and without deinterleaving 

Vector bit 

deinterleaving 

VBitDeIntrlvW  

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

VBitDeIntrlv21W  

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

1:1 and 2:1 deinterleaving 

Collate index and 

bits 

VCollateIdx_Bits<type> Vsrc/Wsrc, 

Vdst1/Wdst1, Rdst2 

 

Vector min skip2 

reduction-ID 

VMinSkip2RIDW Vsrc/Wsrc,  

             Vdst1/Wdst1, Rdst2  

Complete min reduction-ID, assuming src 

is outcome from VHMin2ID 

Vector max skip2 

reduction-ID 

VMaxSkip2RIDW Vsrc/Wsrc,  

             Vdst1/Wdst1, Rdst2  

Complete max reduction-ID, assuming src 

is outcome from VHMax2ID 
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9.8.3.2 VSIGNMAG 

Instruction name VSIGNMAG  

Functionality Vector sign magnitude 

Assembly format VSignMag<type>  Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vsignmag(vintx  src, vintx  & dst1, vintx  & dst2); 
void vsignmag(vshortx src, vshortx & dst1, vshortx & dst2); 
void vsignmag(vcharx src, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvsignmag(dvintx  src, dvintx  & dst1, dvintx  & dst2); 
void dvsignmag(dvshortx src, dvshortx & dst1, dvshortx & dst2); 
void dvsignmag(dvcharx src, dvcharx & dst1, dvcharx & dst2); 

Additional details dst1 gets the sign, 0 for zero/positive and 1 for negative. dst2 gets the 

magnitude (absolute value). 
 

9.8.3.3 VMINRID 

Instruction name VMINRID 

Functionality Vector min reduction with ID 

Assembly format VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1, dst2: scalar registers  

Additional options  

Intrinsics/operator void vminrid_s(vintx  src, int  & dst1, int   & dst2); 
void vminrid_s(vshortx src, int  & dst1, int   & dst2); 
void vminrid_s(vcharx src, int  & dst1, int   & dst2); 
// Following gen-1 legacy intrinsics shall be emulated with multiple 
instructions 
void vminrid(vintx  src, vintx  & dst1, vintx  & dst2); 
void vminrid(vshortx src, vshortx & dst1, vshortx & dst2); 
void vminrid(vcharx src, vcharx & dst1, vcharx & dst2); 

Additional details dst1 gets the min value among lanes, 12-bit/24-bit outcome is sign-extended 

to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with 

upper 16 bits dropped. 

dst2 gets lane ID (0 ~ 7/15/31) where the min value is found, lowest lane when 

there’s a tie.   
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Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination 

registers. For W-type 48-bit min value is output in each lane of the first vector 

destination. 

For Halfword and Byte types, the emulation uses vminrid_s() and 

replicateh/b().  

For Word type, using just vminrid_s() and replicatew() will not compute bits 

47..32 of the extended word lane properly. Instead, the emulation uses 

vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details. 

 

Examples: 

VMinRIDB V1, V2, V3 is emulated as  
VMinRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3. 
vminrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {  
  vminrid_s(vcharx_src, min_dst, id_dst); 
  vcharx_dst1 = replicateb(min_dst); 
  vcharx_dst2 = replicateb(id_idst); 
} 
 

VMinRIDH V1, V2, V3 is emulated as  
VMinRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3.  
vminrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {  
  vminrid_s(vshortx_src, min_dst, id_dst); 
  vshortx_dst1 = replicateh(min_dst); 
  vshortx_dst2 = replicateh(id_idst); 
} 
 

VMinRIDW V1, V2, V3 is emulated as  
VHMin2IDW V1, V4; VMinSkip2RIDW V4, V2, R2; VMovS R2, V3. 
vminrid(vintx_src, vintx_dst1, vintx_dst2) as {  
  vhmin2id(vintx_src, temp);  
  vminskip2rid(temp, vintx_dst1, id_dst2);  
  vintx_dst2 = replicatew(id_dst2); 
} 

 

9.8.3.4 VMAXRID 

Instruction name VMAXRID 

Functionality Vector max reduction with ID 

Assembly format VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1, dst2: scalar registers 

Additional options  

Intrinsics/operator void vmaxrid_s(vintx  src, int  & dst1, int   & dst2); 
void vmaxrid_s(vshortx src, int  & dst1, int   & dst2); 
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Instruction name VMAXRID 

void vmaxrid_s(vcharx src, int  & dst1, int   & dst2); 
// Following gen-1 legacy intrinsics shall be emulated with multiple 
instructions 
void vmaxrid(vintx  src, vintx  & dst1, vintx  & dst2); 
void vmaxrid(vshortx src, vshortx & dst1, vshortx & dst2); 
void vmaxrid(vcharx src, vcharx & dst1, vcharx & dst2); 

Additional details dst1 gets the max value among lanes, 12-bit/24-bit outcome is sign-extended 

to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with 

upper 16 bits dropped. 

dst2 gets lane ID (0 ~ 7/15/31) where the max value is found, lowest lane when 

there’s a tie.   

Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination 

registers. For W-type 48-bit min value is output in each lane of the first vector 

destination. 

For Halfword and Byte types, the emulation uses vmaxrid_s() and 

replicateh/b().  

For Word type, using just vmaxrid_s() and replicatew() will not compute bits 

47..32 of the extended word lane properly. Instead, the emulation uses 

vhmax2id() and vmaxskip2rid(). See 9.8.2.19 and 9.8.3.10 for details. 

 

Examples: 

 

VMaxRIDB V1, V2, V3 is emulated as  
VMaxRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3. 
vmaxrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {  
  vmaxrid_s(vcharx_src, max_dst, id_dst); 
  vcharx_dst1 = replicateb(max_dst); 
  vcharx_dst2 = replicateb(id_idst); 
} 

 

VMaxRIDH V1, V2, V3 is emulated as  
VMaxRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3. 
vmaxrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {  
  vmaxrid_s(vshortx_src, max_dst, id_dst); 
  vshortx_dst1 = replicateh(max_dst); 
  vshortx_dst2 = replicateh(id_idst); 
} 

 

VMaxRIDW V1, V2, V3 is emulated as  
VHMax2IDW V1, V4; VMaxSkip2RIDW V4, V2, R2; VMovS R2, V3. 
vmaxrid(vintx_src, vintx_dst1, vintx_dst2) as {  
  vhmax2id(vintx_src, temp);  
  vmaxskip2rid(temp, vintx_dst1, id_dst2);  
  vintx_dst2 = replicatew(id_dst2); 
} 
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9.8.3.5 VPROMOTE_DI 

Instruction name VPROMOTE_DI  

Functionality Vector type promotion with deinterleaving 

Assembly format VPromote_DI<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

Type and bit width  BH: 32 x 12-bit → 2 x 16 x 24-bit, HW: 16 x 24-bit → 2 x 8 x 48-bit, with sign 

extension 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vpromote_di(vcharx src, vshortx & dst1, vshortx & dst2); 
void vpromote_di(vshortx src, vintx  & dst1, vintx  & dst2); 
dvshortx vpromote_di(vcharx src); 
dvintx vpromote_di(vshortx src); 
// double vector pseudo intrinsics unavailable 

Additional details Expand byte to half-word or half-word to word, with 2 single registers as 

destination and with deinterleaving. 

Example: 

VPromote_DIHW V1, V2, V3 

with V1 = {0, 1, 2, …, 15} would copy V1’s contents to V2 and V3 

deinterleavingly, so that 

V2 = {0, 2, 4, …, 14} and 

V3 = {1, 3, 5, …, 15} 
 

Instruction name VPROMOTE_DI (Gen-2 from XARF to VRF) 

Functionality Vector type promotion with deinterleaving 

Assembly format VPromote_DI<type> XACsrc, Vdst1, Vdst2 

Type and bit width  H: 32 x 16-bit → 2 x 16 x 24-bit, W: 16 x 32-bit → 2 x 8 x 48-bit 

Predication not available 

Source options Single vector register in XARF 

Destination options dst1: Single vector register in VRF  

dst2: single vector register in VRF  

Additional options  

Intrinsics/operator void vpromote_di(xvcharx src, vshortx& dst1, vshortx& dst2); 
void vpromote_di(xvshortx src, vintx&  dst1, vintx&  dst2); 
dvshortx vpromote_di(xvcharx src); 
dvintx vpromote_di(xvshortx src); 
// double vector pseudo intrinsics unavailable 

Additional details Expand halfword to extended halfword or word to extended word. 

Example: 

VPromote_DIH XAC0, V2, V3 
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Instruction name VPROMOTE_DI (Gen-2 from XARF to VRF) 

with XAC0 = {0, 1, 2, …, 31} would copy XAC0 contents to V2 and V3 

deinterleavingly, so that 

V2 = {0, 2, 4, …, 30} and 

V3 = {1, 3, 5, …, 31} 
 

9.8.3.6 VPROMOTE (Emulated) 

Instruction name VPROMOTE (Emulated) 

Functionality Vector type promotion (without deinterleaving) 

Assembly format VPromote<type> Vsrc, Vdst1, Vdst2  

Type and bit width  BH: 32 x 12-bit → 2 x 16 x 24-bit, HW: 16 x 24-bit → 2 x 8 x 48-bit, with sign 

extension 

Predication not available 

Source options Single vector register 

Destination options Single vector register 

Additional options  

Intrinsics/operator void vpromote(vshortx src, vintx  & dst1, vintx  & dst2); 
void vpromote(vcharx src, vshortx & dst1, vshortx & dst2); 
dvintx vpromote(vshortx src); 
dvshortx vpromote(vcharx src); 
// double vector pseudo intrinsics unavailable 

Additional details Expand byte to half-word or half-word to word, with 2 single registers as 

destination and without deinterleaving. 

It’s an instruction in Gen-1 VPU only. In Gen-2, it was removed to reduce 

timing pressure in cross-lane unit. The intrinsic is supported by implementing 

the same functionality using multiple instructions.  

The emulation uses vshuffle() and vpromote_di() intrinsic functions. See 

9.8.2.20 and 9.8.3.5 for details. 

 

Examples: 
 

VPromoteBH V1, V2, V3 is emulated as  
VShuffleB V1, V4; VPromote_DIBH V4, V2, V3. 
vpromote(vcharx_src, vshortx_dst1, vshortx_dst2) as { 
vpromote_di(vshuffle(vcharx_src), vshortx_dst1, vshortx_dst2); } 
 

VPromoteHW V1, V2, V3 is emulated as  
VShuffleH V1, V4; VPromote_DIHW V4, V2, V3. 
vpromote(vcharx_src, vintx_dst1, vintx_dst2) as { 
vpromote_di(vshuffle(vshortx_src), vintx_dst1, vintx_dst2); } 
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9.8.3.7 VBITDEINTRLV 

Instruction name VBITDEINTRLV  

Functionality Vector bit deinterleave 

Assembly format VBitDeintrlv<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

Type and bit width  W: 8 x 32-bit → 8 x 16-bit + 8 x 16-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vbit_deinterleave(vintx src, vintx & dst1, vintx & dst2); 
// double vector pseudo intrinsics 
void dvbit_deinterleave(dvintx src, dvintx & dst1, dvintx & dst2); 

Additional details In each 48-bit W lane, bit-deinterleave src[31:0] into dst1[15:0] and dst2[15:0] 

dst1[15] = src[31], dst2[15] = src[30],  

dst1[14] = src[29], dst2[14] = src[28], and so on.  

dst1[47:16] = dst2[47:16] = 0 
 

Instruction name VBITDEINTRLV21  

Functionality Vector bit deinterleave 2:1 

Assembly format VBitDeIntrlv21<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2 

Type and bit width  W: 8 x 48-bit → 8 x 32-bit + 8 x 16-bit 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vbit_deinterleave_21(vintx src, vintx & dst1, vintx & dst2); 
// double vector pseudo intrinsics 
void dvbit_deinterleave_21(dvintx src, dvintx & dst1, dvintx & dst2); 

Additional details In each 48-bit W lane, bit-deinterleave src[47:0] into dst1[31:0] and dst2[15:0] 

dst1[31:30] = src[47:46], dst2[15] = src[45],  

dst1[29:28] = src[44:43], dst2[14] = src[42], and so on.  

dst1[47:32] = dst2[47:16] = 0 
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9.8.3.8 VCOLLATEIDX_BITS 

Instruction name VCOLLATEIDX_BITS  

Functionality Vector collate index and bits 

Assembly format VCollateIdx_Bits<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit (no byte type support) 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options Single vector registers in VRF or WRF 

Scalar register 

Additional options  

Intrinsics/operator void vcollate_idx_bits(vintx src, vintx& dst1, int& dst2); 
void vcollate_idx_bits(vshortx src, vshortx& dst1, int& dst2); 
// double vector pseudo intrinsics unavailable 

Additional details Vdst1/Wdst1 gets indices to nonzero lanes (sequentially from lane 0) of 

Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc. Rdst2 gets bit-

packed Boolean vector indicating nonzero lanes of Vsrc/Wsrc. 

For example, VCollateIdxW V0, V1, R2, with V0 = {0, -1, 2, -3, 0, 0, 0, 4}. Non-

zero lanes are lane 1, 2, 3, and 7. Expected outcome V1 = {1, 2, 3, 7, 0, 4, 5, 6}, 

R2 = 0x8E (bits 1, 2, 3, 7 are ones). 

The idea is that a subsequent VPermW would use V1 as indices to 

extract/compact V0 nonzero and zero lanes into {-1, 2, -3, 4, 0, 0, 0, 0}. R2 is 

saved for later-on expanding the nonzeros back to original data array. 
 

9.8.3.9 VMINSkip2RID 

Instruction name VMINSKIP2RID 

Functionality Vector every-other-lane horizontal min reduction and ID 

Assembly format VMinSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2  

Type and bit width  W: 8 x 48-bit signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: scalar register 

Additional options  

Intrinsics/operator void vminskip2rid(vintx src, vintx& dst1, int& dst2); 
// double vector pseudo intrinsics unavailable 

Additional details Complete min reduction-ID functionality cross lanes, assuming the source is 

outcome of VHMin2ID, with even lanes containing min values and LSB of odd 

lanes containing 1-bit min-ID (between lanes 2*I and 2*I+1). 

min_val = min(src[0], src[2], src[4], src[6]);  
id_val = (src[0] == min_val) ? src[1][0] :  
       ((src[2] == min_val) ? (2 + src[3][0]) : 
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Instruction name VMINSKIP2RID 

       ((src[4] == min_val) ? (4 + src[5][0]) : (6 + src[7][0]))); 
dst1[0..7] = min_val; 
dst2 = id_val; 

 

src[i][0] means bit 0 of src[i]. 

This operation is supported only for the Word type, to handle potential 

overflow of Word-type VMinRID with scalar register destinations. 

For example, start with V0 = {3, 1, 4, 0, 2, 5, 9, 1}, holding 8 int48 values. 

After VHMin2IDW V0, V1, we shall have 

V1 = {1, 1, 0, 1, 2, 0, 1, 1}, this is because 

min(3, 1) = 1 from odd lane, min(4, 0) = 0 from odd lane, and so on. 

While executing VMinSkip2RID V1, V2, R3, we have 

min_val = min(1, 0, 2, 1) = 0, 

and we have src1[2] == min_val, so id_val = 2 + src[3][0] = 2+1 = 3. 

We return  

V2 = {0, 0, 0, 0, 0, 0, 0, 0} and R3 = 3 
 

9.8.3.10 VMAXSkip2RID 

Instruction name VMAXSKIP2RID 

Functionality Vector every-other-lane horizontal max reduction and ID 

Assembly format VMaxSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2  

Type and bit width  W: 8 x 48-bit signed 

Predication not available 

Source options Single vector register in VRF or WRF 

Destination options dst1: Single vector register in VRF or WRF 

dst2: scalar register 

Additional options  

Intrinsics/operator void vmaxskip2rid(vintx src, vintx& dst1, int& dst2); 
// double vector pseudo intrinsics unavailable 

Additional details Complete max reduction-ID functionality cross lanes, assuming the source is 

outcome of VHMax2ID, with even lanes containing max values and LSB of 

odd lanes containing 1-bit max-ID (between lanes 2*I and 2*I+1).   

max_val = max(src[0], src[2], src[4], src[6]);  
id_val = (src[0] == max_val) ? src[1] :  
       ((src[2] == max_val) ? (2 + src[3]) : 
       ((src[4] == max_val) ? (4 + src[5]) : (6 + src[7]))); 
dst1[0..7] = max_val; 
dst2 = id_val; 

This operation is supported only for the Word type, to handle potential 

overflow of Word-type MaxRID with scalar register destinations. 

See example in VMinSkip2RID instruction description. 
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9.8.4 Vector OP21 Instructions 

These are two-source, one-destination operation vector instructions. 

9.8.4.1 Instruction Summary 

For some of these two-source, one-destination instructions, source 2 can be vector 

register or scalar register. In case of scalar register, its value is broadcast to all lanes 

before the operation, depending on the type:  

> For Byte-type operations, bits 11:0 of scalar register is broadcast to all extended 

byte lanes (12-bit each).  

> For Halfword-type operations, bits 23:0 of scalar register is broadcast to all extended 

halfword lanes (24-bit each).  

> For Word-type operations, the 32-bit scalar register is sign-extended to extended 

word lanes (48-bit each).  

Double vector flavor is supported for selected operators.  

Table 32 Vector OP21 instructions 

Function Assembly Format Comments 

Vector and bitwise VAnd<W/H/B> 

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, 

DVdst/DWdst 

VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

 

Vector and logical VAndL<W/H/B>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

 

Vector or bitwise VOr<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, 

DVdst/DWdst 

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

 

Vector or logical VOrL<W/H/B>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

 

Vector exclusive or VXor<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, 

DVdst/DWdst 

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

 

Vector add VAdd<W/H/B>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 
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Function Assembly Format Comments 

VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, 

DVdst/DWdst 

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

Vector subtract VSub<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, 

DVdst/DWdst 

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

 

Vector absolute 

difference 

VAbsDif<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VAbsDif<W/H/B> DVsrc1, 

DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2, 

DVdst/DWdst 

 

Vector min VMin<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VMin<W/H/B>  DVsrc1/Wsrc1,        

         DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst 

 

Vector max VMax<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VMax<W/H/B>  DVsrc1/Wsrc1,        

         DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst 

 

Vector shift VShift<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

src1 carries data. 

src2 carries bit counts, when 

positive shift left, when negative 

shift right. Bit counts are saturated 

to [-12, 12], [-24, 24] or [-48, 48] 

range before applying the shift. 

Vector shift left VSLA<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

src1 carries data. 

src2 carries bit counts, saturated to 

[0, 12], [0, 24], [0, 48] before 

applying the left shift. 

Vector shift right  VSRA<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

src1 carries data. 

src2 carries bit counts, saturated to 

[0, 12], [0, 24], [0, 48] range before 

applying the right shift. 

Vector round VRound<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

src1 carries data. 

src2 carries bit counts, saturated to 

[0, 12], [0, 24], [0, 48] range before 

applying the right shift. 

Vector permute VPerm<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

src1 carries data. 
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Function Assembly Format Comments 

src2 carries permute pattern in 

corresponding lane, value i for lane i. 

Only 5/4/3 LSBs are read as 

unsigned indices for W/H/B type. 

Vector compare GT VCmpGT<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpGT<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpGT<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

 

Vector compare GE VCmpGE<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpGE<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpGE<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

 

Vector compare LT VCmpLT<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpLT<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpLT<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst  

 

Vector compare LE VCmpLE<W/H/B>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpLE<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpLE<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

 

Vector compare EQ VCmpEQ<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpEQ<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpEQ<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

 

Vector compare NE VCmpNE<W/H/B>   

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

VCmpNE<W/H/B>   

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpNE<W/H/B>   

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 
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Function Assembly Format Comments 

Vector compare 

and bit-pack 

VBitCmp<type>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, 

Vdst/Wdst/Rdst  

type = {BBW, H, WWB} 

Compare src1 >= src2, bit-pack 

outcome, then broadcast to all lanes 

Vector normalize VNorm<W/H/B>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Normalize src1 data with most-

significant bit position src2 

Vector octant 

detect  

VOctDetH  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

src1 = Y values, src2 = X values, 

detect octant of (X, Y) vectors. 

Vector type 

demotion  

VDemote_I<type>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

VDemote<type>  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst  

type = {HB, WH} 

VDemote_I<type> Vsrc1, Vsrc2, XACdst 

type = {H, W} 

Type demotion with and without 

interleaving 

Vector bit 

interleaving 

VBitIntrlvW  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

VBitIntrlv21W  

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Bit interleaving, 1:1 and 2:1 

Vector apply sign VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, 

Vdst/Wdst 

Inverse operation of VSignMag, 

treating src1 as sign (0 for 

zero/positive and 1 for negative), 

and src2 as magnitude. 

Vector select lane VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst  
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9.8.4.2 VAND 

Instruction name VAND  

Functionality Vector bitwise AND 

Assembly format VAnd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes.  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator&(vintx  src1, vintx src2);  
vshortx operator&(vshortx src1, vshortx src2);  
vcharx operator&(vcharx src1, vcharx src2);  
vintx  operator&(vintx  src1, unsigned int src2);  
vshortx operator&(vshortx src1, unsigned int src2);  
vcharx operator&(vcharx src1, unsigned int src2);  

Additional details   
 

Instruction name VAND 

Functionality Double vector bitwise AND 

Assembly format VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator&(dvintx  src1, dvintx src2);  
dvshortx operator&(dvshortx src1, dvshortx src2);  
dvcharx operator&(dvcharx src1, dvcharx src2);  
dvintx  operator&(dvintx  src1, unsigned int src2);  
dvshortx operator&(dvshortx src1, unsigned int src2);  
dvcharx operator&(dvcharx src1, unsigned int src2);  

Additional details   
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9.8.4.3 VANDL 

Instruction name VANDL 

Functionality Vector logical AND  

Assembly format VAndL<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all 

vector lanes.  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator&&(vintx  src1, vintx src2);  
vshortx operator&&(vshortx src1, vshortx src2);  
vcharx operator&&(vcharx src1, vcharx src2);  
vintx  operator&&(vintx  src1, unsigned int src2);  
vshortx operator&&(vshortx src1, unsigned int src2);  
vcharx operator&&(vcharx src1, unsigned int src2);  
// double vector pseudo intrinsics 
dvintx  operator&&(dvintx  src1, dvintx src2);  
dvshortx operator&&(dvshortx src1, dvshortx src2);  
dvcharx operator&&(dvcharx src1, dvcharx src2); 
dvintx  operator&&(dvintx  src1, unsigned int src2);  
dvshortx operator&&(dvshortx src1, unsigned int src2);  
dvcharx operator&&(dvcharx src1, unsigned int src2); 

Additional details   
 

9.8.4.4 VOR 

Instruction name VOR  

Functionality Vector bitwise OR 

Assembly format VOr<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes.  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator|(vintx  src1, vintx src2);  
vshortx operator|(vshortx src1, vshortx src2);  
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Instruction name VOR  

vcharx operator|(vcharx src1, vcharx src2);  
vintx  operator|(vintx  src1, unsigned int src2);  
vshortx operator|(vshortx src1, unsigned int src2);  
vcharx operator|(vcharx src1, unsigned int src2);  

Additional details   
 

Instruction name VOR 

Functionality Double vector bitwise OR 

Assembly format VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator|(dvintx  src1, dvintx src2);  
dvshortx operator|(dvshortx src1, dvshortx src2);  
dvcharx operator|(dvcharx src1, dvcharx src2);  
dvintx  operator|(dvintx  src1, unsigned int src2);  
dvshortx operator|(dvshortx src1, unsigned int src2);  
dvcharx operator|(dvcharx src1, unsigned int src2);  

Additional details   
 

9.8.4.5 VORL 

Instruction name VORL  

Functionality Vector logical OR 

Assembly format VOrL Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all 

vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator||(vintx  src1, vintx src2);  
vshortx operator||(vshortx src1, vshortx src2);  
vcharx operator||(vcharx src1, vcharx src2);  
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Instruction name VORL  

vintx  operator||(vintx  src1, unsigned int src2);  
vshortx operator||(vshortx src1, unsigned int src2);  
vcharx operator||(vcharx src1, unsigned int src2);  
// double vector pseudo intrinsics 
dvintx  operator||(dvintx  src1, dvintx src2);  
dvshortx operator||(dvshortx src1, dvshortx src2);  
dvcharx operator||(dvcharx src1, dvcharx src2); 
dvintx  operator||(dvintx  src1, unsigned int src2);  
dvshortx operator||(dvshortx src1, unsigned int src2);  
dvcharx operator||(dvcharx src1, unsigned int src2); 

Additional details   
 

9.8.4.6 VXOR 

Instruction name VXOR 

Functionality Vector bitwise exclusive or 

Assembly format VXor<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator^(vintx  src1, vintx src2);  
vshortx operator^(vshortx src1, vshortx src2);  
vcharx operator^(vcharx src1, vcharx src2);  
vintx  operator^(vintx  src1, unsigned int src2);  
vshortx operator^(vshortx src1, unsigned int src2);  
vcharx operator^(vcharx src1, unsigned int src2);  

Additional details   
 

Instruction name VXOR 

Functionality Double vector bitwise exclusive or 

Assembly format VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 
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Instruction name VXOR 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator^(dvintx  src1, dvintx src2);  
dvshortx operator^(dvshortx src1, dvshortx src2);  
dvcharx operator^(dvcharx src1, dvcharx src2);  
dvintx  operator^(dvintx  src1, unsigned int src2);  
dvshortx operator^(dvshortx src1, unsigned int src2);  
dvcharx operator^(dvcharx src1, unsigned int src2);  

Additional details   
 

9.8.4.7 VADD 

Instruction name VADD 

Functionality Vector add 

Assembly format VAdd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator+(vintx  src1, vintx src2);  
vshortx operator+(vshortx src1, vshortx src2);  
vcharx operator+(vcharx src1, vcharx src2);  
vintx  operator+(vintx  src1, int src2);  
vshortx operator+(vshortx src1, int src2);  
vcharx operator+(vcharx src1, int src2); 

Additional details   
 

Instruction name VADD 

Functionality Double vector add 

Assembly format VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 
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Instruction name VADD 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator+(dvintx  src1, dvintx src2);  
dvshortx operator+(dvshortx src1, dvshortx src2);  
dvcharx operator+(dvcharx src1, dvcharx src2); 
dvintx  operator+(dvintx  src1, int src2);  
dvshortx operator+(dvshortx src1, int src2);  
dvcharx operator+(dvcharx src1, int src2); 

Additional details   
 

9.8.4.8 VSUB 

Instruction name VSUB 

Functionality Vector subtract 

Assembly format VSub<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator-(vintx  src1, vintx src2);  
vshortx operator-(vshortx src1, vshortx src2);  
vcharx operator-(vcharx src1, vcharx src2);  
vintx  operator-(vintx  src1, int src2);  
vshortx operator-(vshortx src1, int src2);  
vcharx operator-(vcharx src1, int src2); 

Additional details   
 

Instruction name VSUB 

Functionality Double vector subtract 

Assembly format VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  273 

Instruction name VSUB 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator-(dvintx  src1, dvintx src2);  
dvshortx operator-(dvshortx src1, dvshortx src2);  
dvcharx operator-(dvcharx src1, dvcharx src2); 
dvintx  operator-(dvintx  src1, int src2);  
dvshortx operator-(dvshortx src1, int src2);  
dvcharx operator-(dvcharx src1, int src2); 

Additional details   
 

9.8.4.9 VABSDIF 

Instruction name VABSDIF 

Functionality Vector absolute difference 

Assembly format VAbsDif<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vabsdif(vintx  src1, vintx  src2); 
vshortx vabsdif(vshortx src1, vshortx src2); 
vcharx vabsdif(vcharx src1, vcharx src2); 
vintx  vabsdif(vintx  src1, int   src2); 
vshortx vabsdif(vshortx src1, int   src2); 
vcharx vabsdif(vcharx src1, int   src2); 

Additional details   
 

Instruction name VABSDIF 

Functionality Double vector absolute difference 

Assembly format VAbsDif<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 
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Instruction name VABSDIF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  dvabsdif(dvintx  src1, dvintx  src2); 
dvshortx dvabsdif(dvshortx src1, dvshortx src2); 
dvcharx dvabsdif(dvcharx src1, dvcharx src2); 
dvintx  dvabsdif(dvintx  src1, int   src2); 
dvshortx dvabsdif(dvshortx src1, int   src2); 
dvcharx dvabsdif(dvcharx src1, int   src2); 

Additional details   
 

9.8.4.10 VMIN 

Instruction name VMIN 

Functionality Vector min 

Assembly format VMin<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vmin(vintx  src1, vintx  src2); 
vshortx vmin(vshortx src1, vshortx src2); 
vcharx vmin(vcharx src1, vcharx src2); 
vintx  vmin(vintx  src1, int   src2); 
vshortx vmin(vshortx src1, int   src2); 
vcharx vmin(vcharx src1, int   src2); 

Additional details  Return minimal of 2 inputs 
 

Instruction name VMIN 

Functionality Double vector min 

Assembly format VMin<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VMin<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 
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Instruction name VMIN 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  dvmin(dvintx  src1, dvintx  src2); 
dvshortx dvmin(dvshortx src1, dvshortx src2); 
dvcharx dvmin(dvcharx src1, dvcharx src2); 
dvintx  dvmin(dvintx  src1, int   src2); 
dvshortx dvmin(dvshortx src1, int   src2); 
dvcharx dvmin(dvcharx src1, int   src2); 

Additional details  Return minimal of 2 inputs 
 

9.8.4.11 VMAX 

Instruction name VMAX 

Functionality Vector max 

Assembly format VMax<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vmax(vintx  src1, vintx  src2); 
vshortx vmax(vshortx src1, vshortx src2); 
vcharx vmax(vcharx src1, vcharx src2); 
vintx  vmax(vintx  src1, int   src2); 
vshortx vmax(vshortx src1, int   src2); 
vcharx vmax(vcharx src1, int   src2); 

Additional details  Return maximal of 2 inputs 
 

Instruction name VMAX 

Functionality Double vector max 

Assembly format VMax<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VMax<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 
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Instruction name VMAX 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  dvmax(dvintx  src1, dvintx  src2); 
dvshortx dvmax(dvshortx src1, dvshortx src2); 
dvcharx dvmax(dvcharx src1, dvcharx src2); 
dvintx  dvmax(dvintx  src1, int   src2); 
dvshortx dvmax(dvshortx src1, int   src2); 
dvcharx dvmax(dvcharx src1, int   src2); 

Additional details  Return minimal of 2 inputs 
 

9.8.4.12 VSHIFT 

Instruction name VSHIFT 

Functionality Vector shift 

Assembly format VShift<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vshift(vintx  src1, vintx  src2); 
vshortx vshift(vshortx src1, vshortx src2); 
vcharx vshift(vcharx src1, vcharx src2); 
vintx  vshift(vintx  src1, int   src2); 
vshortx vshift(vshortx src1, int   src2); 
vcharx vshift(vcharx src1, int   src2); 
// double vector pseudo intrinsics 
dvintx  dvshift(dvintx  src1, dvintx  src2); 
dvshortx dvshift(dvshortx src1, dvshortx src2); 
dvcharx dvshift(dvcharx src1, dvcharx src2); 
dvintx  dvshift(dvintx  src1, int   src2); 
dvshortx dvshift(dvshortx src1, int   src2); 
dvcharx dvshift(dvcharx src1, int   src2); 

Additional details When the lane value in src2 is positive, perform left shift, otherwise perform 

right shift, -k indicating >> k.  

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read 

as a signed number, and saturated to [-12, 12], [-24, 24], [-48, 48] range 

before detecting sign and applying the shift. 
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9.8.4.13 VSLA 

Instruction name VSLA 

Functionality Vector shift left  

Assembly format VSLA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator<<(vintx  src1, vintx  src2);  
vshortx operator<<(vshortx src1, vshortx src2);  
vcharx operator<<(vcharx src1, vcharx src2);  
vintx  operator<<(vintx  src1, int   src2);  
vshortx operator<<(vshortx src1, int   src2);  
vcharx operator<<(vcharx src1, int   src2);  
// double vector pseudo intrinsics 
dvintx  operator<<(dvintx  src1, dvintx  src2);  
dvshortx operator<<(dvshortx src1, dvshortx src2);  
dvcharx operator<<(dvcharx src1, dvcharx src2);  
dvintx  operator<<(dvintx  src1, int   src2);  
dvshortx operator<<(dvshortx src1, int   src2);  
dvcharx operator<<(dvcharx src1, int   src2); 

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read 

as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before 

applying the shift. 
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9.8.4.14 VSRA 

Instruction name VSRA 

Functionality Vector shift right 

Assembly format VSRA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator>>(vintx  src1, vintx  src2);  
vshortx operator>>(vshortx src1, vshortx src2);  
vcharx operator>>(vcharx src1, vcharx src2);  
vintx  operator>>(vintx  src1, int   src2);  
vshortx operator>>(vshortx src1, int   src2);  
vcharx operator>>(vcharx src1, int   src2);  
// double vector pseudo intrinsics 
dvintx  operator>>(dvintx  src1, dvintx  src2);  
dvshortx operator>>(dvshortx src1, dvshortx src2);  
dvcharx operator>>(dvcharx src1, dvcharx src2);  
dvintx  operator>>(dvintx  src1, int   src2);  
dvshortx operator>>(dvshortx src1, int   src2);  
dvcharx operator>>(dvcharx src1, int   src2); 

Additional details Shift right arithmetic (preserving sign). Unsigned data should be loaded with 

appropriate unsigned type of vector load, and zero-padded when loading into 

extended vector lanes.  

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read 

as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before 

applying the shift. 
   



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  279 

9.8.4.15 VROUND 

Instruction name VROUND  

Functionality Vector round 

Assembly format VRound<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vround(vintx  src1, vintx  src2); 
vshortx vround(vshortx src1, vshortx src2); 
vcharx vround(vcharx src1, vcharx src2); 
vintx  vround(vintx  src1, int   src2); 
vshortx vround(vshortx src1, int   src2); 
vcharx vround(vcharx src1, int   src2); 
// double vector pseudo intrinsics 
dvintx  dvround(dvintx  src1, dvintx  src2); 
dvshortx dvround(dvshortx src1, dvshortx src2); 
dvcharx dvround(dvcharx src1, dvcharx src2); 
dvintx  dvround(dvintx  src1, int   src2); 
dvshortx dvround(dvshortx src1, int   src2); 
dvcharx dvround(dvcharx src1, int   src2); 

Additional details In case of Vsrc2/Wsrc2, each lane gets an independent number of bits to 

round. In case of Rsrc2, lower 12/24/32 bits are broadcast so all lanes are 

rounded by the same number of bits. 

Number of bits to round is read as a signed number and saturated to [0, 12], 

[0, 24], or [0, 48] range before being applied to the rounding. 

Let rnd_bits be number of bits to round. Rounding is performed in each lane 

where rnd_bits >= 1, by  

temp1 = src1 >> (rnd_bits – 1); 
dst = (temp1 + 1) >> 1; 

In lanes where rnd_bits <= 0, dst = src1 (no rounding). 

Note that rounding by the lane width or more bits would result in 0 for both 

positive and negative inputs.  
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9.8.4.16 VPERM 

Instruction name VPERM 

Functionality Vector permute 

Assembly format VPerm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  vpermute(vintx  src1, vintx  src2); 
vshortx vpermute(vshortx src1, vshortx src2); 
vcharx vpermute(vcharx src1, vcharx src2); 
vfloatx vpermute(vfloatx src1, vintx  src2); 
vhfloatx vpermute(vhfloatx src1, vshortx  src2); 
 
vintx  vpermute(vintx  src1, int   src2); 
vshortx vpermute(vshortx src1, int   src2); 
vcharx vpermute(vcharx src1, int   src2); 
vfloatx vpermute(vfloatx src1,  int  src2); 
vhfloatx vpermute(vhfloatx src1, int  src2); 
 
// double vector pseudo intrinsics unavailable 

Additional details Treat src1 as lane data and src2 as lane indices. 

For each lane, return value of the lane pointed to by the index. 

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are 

ignored.  

For example, say if we start with 

V0 = {1, 3, 5, 7, 9, 11, 13, 15} in W lanes 

V1 = {4, 5, 6, 7, 0, 0, 1, 1} in W lanes 

VPermW V0, V1, V2 would result in 

V2 = {9, 11, 13, 15, 1, 1, 3, 3} in W lanes 

When using scalar register as src2, the value in 3/4/5 LSBs of the scalar 

register is used to select one of 8/16/32 W/H/B lanes of src1, and value in the 

selected lane is replicated in all lanes of the destination. 
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9.8.4.17 VCMPGT 

Instruction name VCMPGT 

Functionality Vector compare greater than 

Assembly format VCmpGT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator>(vintx  src1, vintx  src2);  
vshortx operator>(vshortx src1, vshortx src2);  
vcharx operator>(vcharx src1, vcharx src2);  
vintx  operator>(vintx  src1, int src2);  
vshortx operator>(vshortx src1, int src2);  
vcharx operator>(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPGT 

Functionality Double vector compare greater than 

Assembly format VCmpGT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpGT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator>(dvintx  src1, dvintx  src2);  
dvshortx operator>(dvshortx src1, dvshortx src2);  
dvcharx operator>(dvcharx src1, dvcharx src2);  
dvintx  operator>(dvintx  src1, int src2);  
dvshortx operator>(dvshortx src1, int src2);  
dvcharx operator>(dvcharx src1, int src2); 

Additional details   
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9.8.4.18 VCMPGE 

Instruction name VCMPGE 

Functionality Vector compare greater than or equal 

Assembly format VCmpGE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator>=(vintx  src1, vintx  src2);  
vshortx operator>=(vshortx src1, vshortx src2);  
vcharx operator>=(vcharx src1, vcharx src2);  
vintx  operator>=(vintx  src1, int src2);  
vshortx operator>=(vshortx src1, int src2);  
vcharx operator>=(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPGE 

Functionality Double vector compare greater than or equal 

Assembly format VCmpGE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpGE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator>=(dvintx  src1, dvintx  src2);  
dvshortx operator>=(dvshortx src1, dvshortx src2);  
dvcharx operator>=(dvcharx src1, dvcharx src2);  
dvintx  operator>=(dvintx  src1, int src2);  
dvshortx operator>=(dvshortx src1, int src2);  
dvcharx operator>=(dvcharx src1, int src2); 

Additional details   
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9.8.4.19 VCMPLT 

Instruction name VCMPLT 

Functionality Vector compare less than 

Assembly format VCmpLT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator<(vintx  src1, vintx  src2);  
vshortx operator<(vshortx src1, vshortx src2);  
vcharx operator<(vcharx src1, vcharx src2);  
vintx  operator<(vintx  src1, int src2);  
vshortx operator<(vshortx src1, int src2);  
vcharx operator<(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPLT 

Functionality Double vector compare less than 

Assembly format VCmpLT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpLT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator<(dvintx  src1, dvintx  src2);  
dvshortx operator<(dvshortx src1, dvshortx src2);  
dvcharx operator<(dvcharx src1, dvcharx src2);  
dvintx  operator<(dvintx  src1, int src2);  
dvshortx operator<(dvshortx src1, int src2);  
dvcharx operator<(dvcharx src1, int src2); 

Additional details   
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9.8.4.20 VCMPLE 

Instruction name VCMPLE 

Functionality Vector compare less than or equal 

Assembly format VCmpLE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator<=(vintx  src1, vintx  src2);  
vshortx operator<=(vshortx src1, vshortx src2);  
vcharx operator<=(vcharx src1, vcharx src2);  
vintx  operator<=(vintx  src1, int src2);  
vshortx operator<=(vshortx src1, int src2);  
vcharx operator<=(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPLE 

Functionality Double vector compare less than or equal 

Assembly format VCmpLE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpLE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator<=(dvintx  src1, dvintx  src2);  
dvshortx operator<=(dvshortx src1, dvshortx src2);  
dvcharx operator<=(dvcharx src1, dvcharx src2);  
dvintx  operator<=(dvintx  src1, int src2);  
dvshortx operator<=(dvshortx src1, int src2);  
dvcharx operator<=(dvcharx src1, int src2); 

Additional details   
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9.8.4.21 VCMPEQ 

Instruction name VCMPEQ 

Functionality Vector compare equal 

Assembly format VCmpEQ<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator==(vintx  src1, vintx  src2);  
vshortx operator==(vshortx src1, vshortx src2);  
vcharx operator==(vcharx src1, vcharx src2);  
vintx  operator==(vintx  src1, int src2);  
vshortx operator==(vshortx src1, int src2);  
vcharx operator==(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPEQ 

Functionality Double vector compare equal 

Assembly format VCmpEQ<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpEQ<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator==(dvintx  src1, dvintx  src2);  
dvshortx operator==(dvshortx src1, dvshortx src2);  
dvcharx operator==(dvcharx src1, dvcharx src2);  
dvintx  operator==(dvintx  src1, int src2);  
dvshortx operator==(dvshortx src1, int src2);  
dvcharx operator==(dvcharx src1, int src2); 

Additional details   
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9.8.4.22 VCMPNE 

Instruction name VCMPNE 

Functionality Vector compare not equal 

Assembly format VCmpNE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx  operator!=(vintx  src1, vintx  src2);  
vshortx operator!=(vshortx src1, vshortx src2);  
vcharx operator!=(vcharx src1, vcharx src2);  
vintx  operator!=(vintx  src1, int src2);  
vshortx operator!=(vshortx src1, int src2);  
vcharx operator!=(vcharx src1, int src2); 

Additional details   
 

Instruction name VCMPNE 

Functionality Double vector compare not equal 

Assembly format VCmpNE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VCmpNE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst 

Type and bit width  Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF, or scalar register 

Destination options dst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvintx  operator!=(dvintx  src1, dvintx  src2);  
dvshortx operator!=(dvshortx src1, dvshortx src2);  
dvcharx operator!=(dvcharx src1, dvcharx src2);  
dvintx  operator!=(dvintx  src1, int src2);  
dvshortx operator!=(dvshortx src1, int src2);  
dvcharx operator!=(dvcharx src1, int src2); 

Additional details   
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9.8.4.23 VBITCMP 

Instruction name VBITCMP 

Functionality Vector compare and bit-pack 

Assembly format VBitCmp<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst/Rdst 

Type and bit width  Vector operand:  

WWB: 8 x 48-bit compare as signed → 8-bit → broadcast to B lanes. 

H: 16 x 24-bit compare as signed → 16-bit → broadcast to H lanes. 

BBW: 32 x 12-bit compare as signed → 32-bit → broadcast to W lanes. 

Scalar operand:  

WWB: full 32-bit sign-extended to 48-bit, H: 24 LSBs, BBW: 12 LSBs, 

compare as signed.  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF, or scalar register 

Destination options dst: Single vector register in VRF or WRF, or scalar register 

Additional options  

Intrinsics/operator vintx  vbitcmp(vcharx vsrc1, vcharx vsrc2); 
vshortx vbitcmp(vshortx vsrc1, vshortx vsrc2); 
vcharx vbitcmp(vintx  vsrc1, vintx  vsrc2); 
vintx  vbitcmp(vcharx vsrc1, int   vsrc2); 
vshortx vbitcmp(vshortx vsrc1, int   vsrc2); 
vcharx vbitcmp(vintx  vsrc1, int   vsrc2); 
int vbitcmp_s(vcharx vsrc1, vcharx vsrc2); 
int vbitcmp_s(vshortx vsrc1, vshortx vsrc2); 
int vbitcmp_s(vintx  vsrc1, vintx  vsrc2); 
int vbitcmp_s(vcharx vsrc1, int   vsrc2); 
int vbitcmp_s(vshortx vsrc1, int   vsrc2); 
int vbitcmp_s(vintx  vsrc1, int   vsrc2); 
// double vector pseudo intrinsics unavailable 

Additional details Compare src1 >= src2 in each W/H/B lane, compact to 8/16/32-bit scalar, 

broadcast to all destination B/H/W lanes. 

For example, say if we start with 

V0 = {1, 3, 5, 7, 9, 11, 13, 15} in W lanes 

V1 = {5, 5, 5, 5, 10, 10, 10, 10} in W lanes 

VBitCmpWWB V0, V1, V2 would result in {0,0,1,1,0,1,1,1} = 0xEC,  

V2 = {0xEC, 0xEC, …, 0xEC} in B lanes 

For scalar destination, in WWB-type, the 8-bit scalar is zero-extended to 32-

bit and returned. In H-type, the 16-bit scalar is zero-extended to 32-bit and 

returned. In BBW-type, the 32-bit scalar is returned. 
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9.8.4.24 VNORM 

Instruction name VNORM  

Functionality Vector normalize 

Assembly format VNorm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 

LSBs broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vcharx vnorm(vcharx vsrc1, vcharx vsrc2); 
vshortx vnorm(vshortx vsrc1, vshortx vsrc2); 
vintx  vnorm(vintx  vsrc1, vintx  vsrc2); 
// double vector pseudo intrinsics 
dvintx  dvnorm(dvintx  vsrc1, dvintx  vsrc2); 
dvshortx dvnorm(dvshortx vsrc1, dvshortx vsrc2); 
dvcharx dvnorm(dvcharx vsrc1, dvcharx vsrc2); 

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 is read as an signed number, 7 – 

src2, 15 – src2, or 31 – src2 is performed, outcome saturated to [-12, 12], [-

24, 24], [-48, 48] range, then src1 is shifted by this many bits. Arithmetic 

shift is performed to preserve sign bit when shifting right. 

The intention is to precede VNorm with VMSBD, so that src2 holds the 

most significant bit position of src1. VNorm would then shift the most 

significant bit (left or right) to bit 7 for B, bit 15 for H, bit 31 for W. 

For example, when src2 = 11, the shift amount is 7 – 11 = -4, to shift src1 

right by 4 bits. When src2 = 5, the shift amount is 7 – 5 = 2, to shift src1 left 

by 2 bits.  
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9.8.4.25 VOCTDET 

Instruction name VOCTDET 

Functionality Vector octant detection for atan2(Y, X) 

Assembly format VOctDetH Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  H: 16 x 24-bit, signed 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx voct_detect(vshortx vsrc1, vshortx vsrc2); 
// double vector pseudo intrinsics 
dvshortx dvoct_detect(dvshortx vsrc1, dvshortx vsrc2); 

Additional details Treat Vsrc1/Wsrc1 as Y, Vsrc2/Wsrc2 as X, return octant of (X, Y) in 2D 

plane, 0 ~ 7. 

First (0th) octant from 0 to 44.999 degree, second (1th) from 45 to 89.999 

degree, etc, 0 degree being the X axis. 

 

Condition             Octant and angle range    

X>=0, Y>=0, |Y|<=|X|    0: [0 ~ 0.25 pi]           

X>=0, Y>=0, |Y|>|X|     1: (0.25 pi ~ 0.5 pi)       

X<0, Y>=0, |Y|>|X|      2: (0.5 pi ~ 0.75 pi)       

X<0, Y>=0, |Y|<=|X|     3: [0.75 pi ~ pi]          

X<0, Y<0, |Y|<=|X|      4: (pi ~ 1.25 pi)          

X<0, Y<0, |Y|>|X|      5: (1.25 pi ~ 1.5 pi)        

X>=0,Y<0, |Y|>|X|     6: [1.5 pi ~ 1.75 pi]        

X>=0,Y<0, |Y|<=|X|    7: [1.75 pi ~ 2 pi]         
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9.8.4.26 VDEMOTE_I 

Instruction name VDEMOTE_I  

Functionality Vector type demotion with interleaving 

Assembly format VDemote_I<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  HB: 2 x 16 x 24-bit → 32 x 12-bit, WH: 2 x 8 x 48-bit → 16 x 24-bit 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vdemote_i(vshortx src1, vshortx src2, vcharx & dst); 
void vdemote_i(vintx  src1, vintx  src2, vshortx & dst); 
vcharx vdemote_i(dvshortx src); 
vshortx vdemote_i(dvintx src); 
// double vector pseudo intrinsics unavailable 

Additional details Compress half-word to byte or word to half-word, with 2 single registers as 

source and with interleaving. 

For HB, lower 12 bits of the source lane is copied to the destination. For WH, 

lower 24 bits. Programmer should be aware of the possibility of overflow. 

Example: 

VDemote_IWH V1, V2, V3 

with V1 = {0, 1, 2, …, 7} and V2 = {8, 9, …, 15} would copy V1 and V2 contents 

to V3 interleavingly, such that 

V3 = {0, 8, 1, 9, …, 7, 15} 
 

Instruction name VDEMOTE_I (Gen-2 from VRF to XARF) 

Functionality Vector type demotion with interleaving 

Assembly format VDemote_I<type> Vsrc1, Vsrc2, XACdst 

Type and bit width  H: 2 x 16 x 24-bit → 32 x 16-bit, W: 2 x 8 x 48-bit → 16 x 32-bit  

Predication not available 

Source options src1: Single vector register in VRF  

src2: single vector register in VRF  

Destination options Single vector register in XARF 

Additional options  

Intrinsics/operator void vdemote_i(vshortx src1, vshortx src2, xvcharx &dst); 
void vdemote_i(vintx  src1, vintx  src2, xvshortx &dst); 
// double vector pseudo intrinsics unavailable 

Additional details Compress extended halfword to halfword or extended word to word. 

Example: 

VDemote_IH V0, V1, XAC2 

with V0 = {0, 1, 2, …, 15} and V1 = {16, 17, …, 31} would copy V0 and V1 

contents to V3 interleavingly, such that 
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Instruction name VDEMOTE_I (Gen-2 from VRF to XARF) 

XAC2 = {0, 16, 1, 17, …, 15, 31}. 
 

9.8.4.27 VDEMOTE 

Instruction name VDEMOTE 

Functionality Vector type demotion 

Assembly format VDemote<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  HB: 2 x 16 x 24-bit → 32 x 12-bit, WH: 2 x 8 x 48-bit → 16 x 24-bit 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator void vdemote(vintx src1,  vintx src2, vshortx & dst); 
void vdemote(vshortx src1, vshortx src2, vcharx & dst); 
vcharx vdemote(dvshortx src); 
vshortx vdemote(dvintx src); 
// double vector pseudo intrinsics unavailable 

Additional details Compress half-word to byte or word to half-word, with 2 single registers as 

source and without interleaving. 

For HB, lower 12 bits of the source lane is copied to the destination. For WH, 

lower 24 bits. Programmer should be aware of the possibility of overflow. 

Example: 

VDemoteWH V1, V2, V3 

with V1 = {0, 1, 2, …, 7} and V2 = {8, 9, …, 15} would copy V1 and V2 contents 

to V3 sequentially, such that 

V3 = {0, 1, 2, …, 15} 
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9.8.4.28 VBITINTRLV 

Instruction name VBITINTRLV  

Functionality Vector bit interleave 

Assembly format VBitIntrlv<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  W: 8 x 16-bit + 8 x 16-bit → 8 x 32-bit 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx vbit_interleave(vintx src1, vintx src2); 
// double vector pseudo intrinsics 
dvintx dvbit_interleave(dvintx src1, dvintx src2); 

Additional details In each 48-bit W lane, bit-interleave src1[15:0] and src2[15:0] into dst 

dst[31] = src1[15], dst[30] = src2[15],  

dst[29] = src1[14], dst[28] = src2[14], and so on.  

dst[47:32] = 0. 
 

Instruction name VBITINTRLV21  

Functionality Vector bit interleave 2:1 

Assembly format VBitIntrlv21<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  W: 8 x 32-bit + 8 x 16-bit → 8 x 48-bit 

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx vbit_interleave_21(vintx src1, vintx src2); 
// double vector pseudo intrinsics 
dvintx dvbit_interleave_21(dvintx src1, dvintx src2); 

Additional details In each 48-bit W lane, bit-interleave src1[31:0] and src2[15:0] into dst in 2-

bit, 1-bit pattern. 

dst[47:46] = src1[31:30], dst[45] = src2[15],  

dst[44:43] = src1[29:28], dst[42] = src2[14], and so on. 
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9.8.4.29 VAPPLYSIGN 

Instruction name VAPPLYSIGN  

Functionality Vector apply sign 

Assembly format VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

Type and bit width  B: 32 x 12-bit 

H: 16 x 24-bit 

W: 8 x 48-bit  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

Destination options dst: Single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vcharx vapply_sign(vcharx src1, vcharx src2); 
vshortx vapply_sign(vshortx src1, vshortx src2); 
vintx vapply_sign(vintx src1, vintx src2); 
// double vector pseudo intrinsics  
dvcharx dvapply_sign(dvcharx src1, dvcharx src2); 
dvshortx dvapply_sign(dvshortx src1, dvshortx src2); 
dvintx dvapply_sign(dvintx src1, dvintx src2); 

Additional details Inverse operation of VSignMag (vector sign-magnitude). The intention is that 

in each vector lane (width depending on data type), we treat src1 as a 

Boolean carrying the sign bit that we want to apply on src2 that carries the 

magnitude.  

The hardware performs  

   dst = src1 ? –src2 : src2  

so that output gets negated src2 when src1 is true (non-zero), and src2 as-is 

when src1 is false (zero).  

Thus, in addition to applying a sign to a magnitude, it can be used to 

conditionally flip the sign of any number. 

Note that this instruction does not perform absolute value function on src2 

before applying the sign.  
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9.8.4.30 VSelectLane 

Instruction name VSelectLane 

Functionality Vector select lane 

Assembly format VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst 

Type and bit width  Vector operand:  

  W: 32-bit 

  H: 24-bit sign-extend to 32-bit 

  B: 12-bit sign-extend to 32-bit 

Scalar operand: W: 3 LSBs, H: 4 LSBs, B: 5 LSBs  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: scalar register 

Destination options dst: destination register 

Additional options  

Intrinsics/operator int vselectlane(vintx  src1, int src2); 
int vselectlane(vshortx src1, int src2);  
int vselectlane(vcharx src1, int src2); 
float vselectlane(vfloatx src1, int src2); 
hfloat vselectlane(vhfloatx src1,int src2);  
// double vector pseudo intrinsics unavailable 

Additional details Treat src1 as lane data and src2 as lane index. 

For W-type, 32 LSBs of the selected 48-bit lane is returned in the destination 

scalar register. Programmer should be aware of potential overflow in the 

outcome. For H/B-type, selected 12-bit/24-bit is sign-extend to 32-bit in the 

destination register. 

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are 

ignored.  
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9.8.5 Vector OP22 Instructions 

These are two-source, two-destination operation vector instructions. 

9.8.5.1 Instruction Summary 

Table 33. Vector OP22 instructions 

Function Assembly Format Comments 

Non-overwriting 

Vector 2-item sort VSort2<W/H/B>  Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = min(Vsrc1, Vsrc2); 

Vdst2 = max(Vsrc1, Vsrc2); 

Vector 

add/subtract 

VAddSub<W/H/B>  Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = Vsrc1 + Vsrc2; 

Vdst2 = Vsrc1 – Vsrc2; 

Vector complex 

add/sub 

VCAddSubH  Vsrc1, Vsrc2, Vdst1, Vdst2 Like VAddSub but swap 

even/odd lanes of Vsrc2 and 

add/subtract, see details 

Vector min-LT-flag VMinLT<W/H/B>  Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = min(Vsrc1, Vsrc2); 

Vdst2 = Vsrc1 < Vsrc2; 

Vector max-GT-flag VMaxGT<W/H/B>  Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = max(Vsrc1, Vsrc2); 

Vdst2 = Vsrc1 > Vsrc2; 

Vector 2-item sort 

with payload 

VSort2PL<W/H/B>  Vsrc1, Vsrc2, Vdst1, Vdst2 Key and payload interleaved in 

each source and destination 

vector register 

Vector split bits VSplitBits Vsrc1, Vsrc2, Vdst1, Vdst2 Split src1 into two right-

justified bit fields 
 

9.8.5.2 VSORT2 

Instruction name VSORT2 

Functionality Vector 2-point sort 

Assembly format VSort2<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vsort2(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vsort2(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vsort2(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
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Instruction name VSORT2 

// double vector pseudo intrinsics 
void dvsort2(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvsort2(dvshortx src1, dvshortx src2, dvshortx & dst1,dvshortx & dst2); 
void dvsort2(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details For each lane, dst1 = min(src1, src2), dst2 = max(src1, src2) 
 

9.8.5.3 VADDSUB 

Instruction name VADDSUB 

Functionality Vector add-subtract 

Assembly format VAddSub<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vaddsub(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vaddsub(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvaddsub(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1,dvshortx & dst2); 
void dvaddsub(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details For each lane, dst1 = src1 + src2, dst2 = src1 – src2. 
 

9.8.5.4 VCADDSUB 

Instruction name VCADDSUB  

Functionality Vector add-subtract 

Assembly format VCAddSub<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  H: 16 x 24-bit 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vcaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
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Instruction name VCADDSUB  

// double vector pseudo intrinsics 
void dvcaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2); 

Additional details Even lanes, dst1[2*i] = src1[2*i] + src2[2*i+1] 

          dst2[2*i] = src1[2*i] – src2[2*i+1] 

Odd lanes, , dst1[2*i+1] = src1[2*i+1] – src2[2*i] 

          dst2[2*i+1] = src1[2*i+1] + src2[2*i] 

This is for 16-bit FFT acceleration, where real and imaginary components are 

interleaved, even lanes being real, odd lanes being imaginary. 

We are implementing rotating complex number src2 by +/- 90 degree and adding 

to src1: 

dst1 = src1 – j*src2; 
dst2 = src1 + j*src2; 

Thus,  

    dst1[2*i] (R)  = src1[2*i] (R) + src2[2*i+1] (I) 
    dst1[2*i+1] (I) = src1[2*i+1] (I) – src2[2*i] (R) 
    dst2[2*i] (R)  = src1[2*i] (R) – src2[2*i+1] (I) 
    dst2[2*i+1] (I) = src1[2*i+1] (I) + src2[2*i] (R) 

 

9.8.5.5 VMINLT 

Instruction name VMINLT  

Functionality Vector min-less-than-flag 

Assembly format VMinLT<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vminLT(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vminLT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vminLT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvminLT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvminLT(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2); 
void dvminLT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details For each lane, dst1 = min(src1, src2), dst2 = (src1 < src2), so that flag = 1 

indicating src1 being the min, and 0 indicating src2 being the min.  
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9.8.5.6 VMAXGT 

Instruction name VMAXGT  

Functionality Vector max-greater-than-flag 

Assembly format VMaxGT<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vmaxGT(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vmaxGT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vmaxGT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvmaxGT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvmaxGT(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2); 
void dvmaxGT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details For each lane, dst1 = max(src1, src2), dst2 = (src1 > src2), so that flag = 1 

indicating src1 being the max, and 0 indicating src2 being the max. 
 

9.8.5.7 VSORT2PL 

Instruction name VSORT2PL 

Functionality Vector 2-item sort with payload 

Assembly format VSort2PL<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vsort2pl(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vsort2pl(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vsort2pl(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvsort2pl(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvsort2pl(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2); 
void dvsort2pl(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details Key and payload are lane-interleaved; even lanes carry key, odd lanes carry 

payload. 
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Instruction name VSORT2PL 

For each pair of lanes 2*i and 2*i+1: 

  if (src1[2*i] <= src2]2*i]) { 
    dst1[2*i] = src1[2*i]; 
    dst2[2*i] = src2[2*i]; 
    dst1[2*i+1] = src1[2*i+1]; 
    dst2[2*i+1] = src2[2*i+1]; 
  }  
  else { 
    dst1[2*i] = src2[2*i]; 
    dst2[2*i] = src1[2*i]; 
    dst1[2*i+1] = src2[2*i+1]; 
    dst2[2*i+1] = src1[2*i+1]; 
  }  

 

9.8.5.8 VSPLITBITS 

Instruction name VSPLITBITS 

Functionality Vector split bit fields and right-justify 

Assembly format VSplitBits<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vsplitbits(vintx src1, vintx src2, vintx & dst1, vintx & dst2); 
void vsplitbits(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2); 
void vsplitbits(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2); 
// double vector pseudo intrinsics 
void dvsplitbits(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2); 
void dvsplitbits(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2); 
void dvsplitbits(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2); 

Additional details Each lane of src2 is read as a signed number and saturated to [0, 48], [0, 24], [0, 12] 

to obtain the bit position T. Each lane of src1 is read as a signed number. dst1 

(signed) gets right-justified upper bits of src1, from bit T and up. dst2 (unsigned) 

gets lower bits of src1, from bit T-1 down. 

Pseudo-code for the Halfword case: 

  T = (src2 < 0) ? 0 : ((src2 > 24) ? 24 : src2); 
  mask = (1 << T) – 1; 
  dst1 = src1 >> T; 
  dst2 = src1 & mask; 
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9.8.6 Vector OP31 Instructions 

These are three-source, one-destination operation vector instructions. 

9.8.6.1 Instruction Summary 

The subset of three-source, one-destination instructions with “_CA” suffix support the 

“clear-accumulator” feature. They are optionally predicated but not predicated in the 

conventional sense of being executed or skipped. They are predicated to execute one of 

two different functionalities, and one being a subset of the other to clear the 

accumulators. 

For example, [P2] VMin3W_CA V0, V1, V2 does 

 V2 = min(V0, V1, V2) when P2 != 0 

 V2 = min(V0, V1) otherwise 

This is used to carry out cumulative minimum operation, with V2 being the accumulator. 

When the predicate is off, the minimum is carried out without V2, effectively clearing 

the accumulator.   

The _CA suffix is also used in a few vector multiply-add, multiply-subtract instructions in 

the Vector Multiply-Add Instruction section. 

The _CA predicated instructions are overwriting using the 3rd operand as both the 3rd 

source and the destination. This is so there’s room in the encoding for the additional 

predication field.  

The non-CA instructions in the Vector OP31 group are non-overwriting, with destination 

being a separate field. Compiler can opt to assign the same register as the 3rd source 

and destination, to accomplish overwriting.  

Note that valid predicate registers are P2...P15 for predication. P0 and P1 are reserved 

for unpredicated execution of the full functionality (min of 3 items in case of VMin3, for 

example), and in assembly listing, the leading [P0] or [P1] would be omitted to indicate 

unpredicated execution.  

Table 34 Vector OP31 instructions 

Function Assembly Format Comments 

Vector multiplexor  VMux<W/H/B>  Vsrc1, Vsrc2, Vsrc3, Vdst 

VMux<W/H/B>  Wsrc1, Vsrc2, Vsrc3, Vdst 

VMux<W/H/B>  Vsrc1, Wsrc2, Vsrc3, Vdst 

VMux<W/H/B>  Vsrc1, Vsrc2, Wsrc3, Vdst 

Vdst = (src1 != 0) ? src2 : src3 

Vector multiplexor 

with scalar src2  

VMux<W/H/B> Vsrc1, Rsrc2, Vsrc3, Vdst Vdst = (Vsrc1 != 0) ? Rsrc2 : 

Vsrc3 

Double vector 

multiplexor 

VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1 

VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1 

VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1 

Vdst = (src1 != 0) ? src2 : src3 
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Function Assembly Format Comments 

Vector mid of 3 VMid3<W/H/B>  Vsrc1, Vsrc2, Vsrc3, Vdst 

VMid3<W/H/B>  Vsrc1, Vsrc2, Wsrc3, Vdst 

VMid3<W/H/B>  Vsrc1, Wsrc2, Wsrc3, Vdst 

Vdst = mid(src1, src2, src3) 

Vector A+B-C VAdd2Sub<W/H/B>  Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst Vdst = Vsrc1 + Vsrc2 – Vsrc3 

Vector shift-or VShiftOr<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst Vdst = VShift(Vsrc1, Vsrc2) | 

Vsrc3. 

Vector shift-add VShiftAdd<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst Vdst = Vshift(Vsrc1, Vsrc2) + 

Vsrc3. 

Vector extract bits VExtrBits<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst Extract low, high bits from 

src3, 8-bit each. 

Shift(Vsrc1, Vsrc2) then AND 

with bit mask between low 

and high bit positions.  

Vector atan2 post-

processing 

VAtan2PPH Vsrc1, Vsrc2, Vsrc3, Vdst Vsrc1 = Y, Vsrc2 = X, detect 

octant of (X, Y) vector then 

map Vsrc3 angle from first-

octan arctan angle to the 

appropriate octant. 

Vector min of 3 VMin3<W/H/B>  Vsrc1, Vsrc2, Vsrc3, Vdst 

VMin3<W/H/B>  Vsrc1, Vsrc2, Wsrc3, Vdst 

VMin3<W/H/B>  Vsrc1, Wsrc2, Wsrc3, Vdst 

Vdst = min(src1, src2, src3) 

Vector max of 3 VMax3<W/H/B>  Vsrc1, Vsrc2, Vsrc3, Vdst 

VMax3<W/H/B>  Vsrc1, Vsrc2, Wsrc3, Vdst 

VMax3<W/H/B>  Vsrc1, Wsrc2, Wsrc3, Vdst 

Vdst = max(src1, src2, src3) 

Vector add 3 VAdd3<W/H/B>  Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 + Vsrc2 + Vsrc3 

Vector bitwise-and 3 VAnd3 Vsrc1, Vsrc2/, Vsrc3, Vdst Vdst = Vsrc1 & Vsrc2 & Vsrc3 

Vector bitwise-or 3 VOr3 Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 | Vsrc2 | Vsrc3 

Vector bitwise-xor 3 VXor3 Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 ^ Vsrc2 ^ Vsrc3 

Vector min of 3, 

predicated 

<pred> VMin3<W/H/B>_CA  Vsrc1, Vsrc2, ACsrc3dst  

Vector max of 3, 

predicated 

<pred> VMax3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst  

Vector add 3, 

predicated 

<pred> VAdd3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst  

Vector bitwise-and 3, 

predicated 

<pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst  

Vector bitwise-or 3, 

predicated 

<pred> VOr3_CA Vsrc1, Vsrc2, Vsrc3dst  

Vector bitwise-xor 3, 

predicated 

<pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst  

Vector sum of 

absolute differences 

<pred> VSAD<W/H/B/BH/HW>_CA  Vsrc1, Vsrc2, 

ACsrc3dst/DACsrc3dst 
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Function Assembly Format Comments 

Vector sum of 

Hamming distance 

<pred> VSumHD<W/H/B>_CA Vsrc1, Vsrc2/Rsrc2, 

ACsrc3dst 

 

Vector compare LT 

and AndL 

VCmpLT_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare LE 

and AndL 

VCmpLE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare EQ 

and AndL 

VCmpEQ_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare NE 

and AndL 

VCmpNE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare LT 

and OrL 

VCmpLT_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare LE 

and OrL 

VCmpLE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare EQ 

and OrL 

VCmpEQ_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector compare NE 

and OrL 

VCmpNE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  

Vector cross-element 

shift right 

VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst  

Vector cross-element 

shift left 

VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst  
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9.8.6.2 VMUX 

Instruction name VMUX 

Functionality Vector multiplexor  

Assembly format VMux<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

VMux<type> Wsrc1, Vsrc2, Vsrc3, Vdst1 

VMux<type> Vsrc1, Wsrc2, Vsrc3, Vdst1 

VMux<type> Vsrc1, Vsrc2, Wsrc3, Vdst1 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options src1: single vector register in VRF or WRF 

src2: single vector register in VRF or WRF 

src3: single vector register in VRF or WRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vmux(vintx  src1, vintx  src2, vintx src3); 
vshortx vmux(vshortx src1, vshortx src2,vshortx src3); 
vcharx vmux(vcharx src1, vcharx src2, vcharx src3); 
vhfloatx vmux(vshortx src1,vhfloatx src2,vhfloatx src3); 
vfloatx vmux(vintx src1, vfloatx src2, vfloatx src3); 

Additional details For each lane, dst1 = src1 ? src2 : src3. 
 

9.8.6.3 VMUX (Rsrc2) 

Instruction name VMUX 

Functionality Vector multiplexor with scalar src2 

Assembly format VMux<type> Vsrc1, Rsrc2, Vsrc3, Vdst1 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF 

src2: scalar register 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vmux(vintx  src1, int src2, vintx  src3); 
vshortx vmux(vshortx src1, int src2, vshortx src3); 
vcharx vmux(vcharx src1, int src2, vcharx src3); 
vhfloatx vmux(vshortx src1, hfloat src2,vhfloatx src3); 
vfloatx vmux(vintx  src1, float src2, vfloatx src3); 

Additional details For each lane, dst1 = src1 ? src2 : src3. 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  304 

Instruction name VMUX 

src2 is from a scalar register, its lower 12/24/32-bit is broadcast to all vector 

lanes as the “true” data input. 
 

9.8.6.4 VMUX (Double Vector) 

Instruction name VMUX (Gen-2 double vector/double throughput) 

Functionality Vector multiplexor  

Assembly format VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1 

VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1 

VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1 

Type and bit width  W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit  

Predication not available 

Source options src1: double vector register in VRF  

src2: double vector register in VRF or WRF, or scalar register 

src3: double vector register in VRF or WRF 

Destination options dst1: double vector register in VRF 

Additional options  

Intrinsics/operator dvintx  dvmux(dvintx  src1, dvintx  src2, dvintx src3); 
dvshortx dvmux(dvshortx src1, dvshortx src2,dvshortx src3); 
dvcharx dvmux(dvcharx src1, dvcharx src2, dvcharx src3); 
dvhfloatx dvmux(dvshortx src1, dvhfloatx src2,dvhfloatx src3); 
dvfloatx dvmux(dvintx  src1, dvfloatx src2, dvfloatx src3); 
dvintx  dvmux(dvintx  src1, int src2, dvintx src3); 
dvshortx dvmux(dvshortx src1, int src2, dvshortx src3); 
dvcharx  dvmux(dvcharx src1, int src2, dvcharx src3); 
dvhfloatx dvmux(dvshortx src1, hfloat src2, dvhfloatx src3); 
dvfloatx dvmux(dvintx  src1, float src2, dvfloatx src3); 

Additional details For each lane, dst1 = src1 ? src2 : src3. 
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9.8.6.5 VMID3 

Instruction name VMID3 

Functionality Vector median3  

Assembly format VMid3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

VMid3<type> Vsrc1, Vsrc2, Wsrc3, Vdst 

VMid3<type> Vsrc1, Wsrc2, Wsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or WRF 

src3: single vector register in VRF or WRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vmid3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vmid3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vmid3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvmid3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvmid3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvmid3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details For each lane, return median of 3 sources. 
 

9.8.6.6 VADD2SUB 

Instruction name VADD2SUB (to change intrinsic to +/- operators) 

Functionality Vector add then subtract 

Assembly format VAdd2Sub<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst1 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF or scalar register 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vadd2sub(vintx  src1, vintx  src2, vintx  sc3); 
vshortx vadd2sub(vshortx src1, vshortx src2, vshortx sc3); 
vcharx vadd2sub(vcharx src1, vcharx src2, vcharx sc3); 
vintx  vadd2sub(vintx  src1, vintx  src2, int sc3); 
vshortx vadd2sub(vshortx src1, vshortx src2, int sc3); 
vcharx vadd2sub(vcharx src1, vcharx src2, int sc3);  
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Instruction name VADD2SUB (to change intrinsic to +/- operators) 

// double vector pseudo intrinsics 
dvintx  dvadd2sub(dvintx  src1, dvintx  src2, dvintx  sc3); 
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, dvshortx sc3); 
dvcharx dvadd2sub(dvcharx src1, dvcharx src2, dvcharx sc3); 
dvintx  dvadd2sub(dvintx  src1, dvintx  src2, int sc3); 
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, int sc3); 
dvcharx dvadd2sub(dvcharx src1, dvcharx src2, int sc3); 

Additional details For each lane, dst1 = src1 + src2 – src3. 
 

9.8.6.7 VSHIFTOR 

Instruction name VSHIFTOR 

Functionality Vector shift-or  

Assembly format VShiftOr<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes, as signed. 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or scalar register 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vshiftor(vintx  src1, vintx  src2, vintx  src3); 
vshortx vshiftor(vshortx src1, vshortx src2, vshortx src3); 
vcharx vshiftor(vcharx src1, vcharx src2, vcharx src3); 
vintx  vshiftor(vintx  src1, int src2, vintx  src3); 
vshortx vshiftor(vshortx src1, int src2, vshortx src3); 
vcharx vshiftor(vcharx src1, int src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvshiftor(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvshiftor(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvshiftor(dvcharx src1, dvcharx src2, dvcharx src3); 
dvintx  dvshiftor(dvintx  src1, int src2, dvintx  src3); 
dvshortx dvshiftor(dvshortx src1, int src2, dvshortx src3); 
dvcharx dvshiftor(dvcharx src1, int src2, dvcharx src3); 

Additional details For each lane, dst1 = shift(src1, src2) | src3. 

 Shift left or right based on sign of src2. src2 is read as a signed number and 

saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the 

shift. Positive bit count shifts left, and negative bit count shifts right. 
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9.8.6.8 VSHIFTADD 

Instruction name VSHIFTADD  

Functionality Vector shift-add  

Assembly format VShiftAdd<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes, as signed. 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or scalar register 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vshiftadd(vintx  src1, vintx  src2, vintx  src3); 
vshortx vshiftadd(vshortx src1, vshortx src2, vshortx src3); 
vcharx vshiftadd(vcharx src1, vcharx src2, vcharx src3); 
vintx  vshiftadd(vintx  src1, int src2, vintx  src3); 
vshortx vshiftadd(vshortx src1, int src2, vshortx src3); 
vcharx vshiftadd(vcharx src1, int src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvshiftadd(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvshiftadd(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvshiftadd(dvcharx src1, dvcharx src2, dvcharx src3); 
dvintx  dvshiftadd(dvintx  src1, int src2, dvintx  src3); 
dvshortx dvshiftadd(dvshortx src1, int src2, dvshortx src3); 
dvcharx dvshiftadd(dvcharx src1, int src2, dvcharx src3); 

Additional details For each lane, dst1 = shift(src1, src2) + src3. 

Shift left or right based on sign of src2. src2 is read as a signed number and 

saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the 

shift. Positive bit count shifts left, and negative bit count shifts right. 
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9.8.6.9 VEXTRBITS 

Instruction name VEXTRBITS  

Functionality Vector extract bits 

Assembly format VExtrBits<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes. 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF or scalar register 

Destination options dst: Single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vextract_bits(vintx  src1, vintx  src2, vintx  src3); 
vshortx vextract_bits(vshortx src1, vshortx src2, vshortx src3); 
vcharx vextract_bits(vcharx src1, vcharx src2, vcharx src3); 
vintx  vextract_bits(vintx  src1, vintx  src2, int src3); 
vshortx vextract_bits(vshortx src1, vshortx src2, int src3); 
vcharx vextract_bits(vcharx src1, vcharx src2, int src3); 
// double vector pseudo intrinsics 
dvintx  dvextract_bits(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, dvcharx src3); 
dvintx  dvextract_bits(dvintx  src1, dvintx  src2, int src3); 
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, int src3); 
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, int src3); 

Additional details Shift input then AND with bitmask between low and high bit positions.  

 

low = src3[7:0];  // Unsigned bit position 
high = src3[15:8] // Unsigned bit position, Rsrc3 or Vsrc3  
          // in H/W types  
high = src3[11:8]; // Unsigned bit position, Vsrc3 in B type 
temp1 = shift(src1, src2); // up or down based on src2 sign  
temp2 = ~((1 << low)-1); 
temp3 = (1 << high+1) – 1; 
dst = temp1 & temp2 & temp3 

 

If low > high or if low >= BITWIDTH, 0 is returned. Otherwise, high is saturated to 

top bit position of the lane. 

For example, with byte lane input src1 = 0x12, src2 = 4, low = 4, high = 7, 

temp1 = shift(0x12, 4) = 0x120 

temp2 = 0xFF0 (enable bits 4 and higher) 

temp3 = 0x0FF (enable bits 7 and lower) 

return 0x120 & 0xFF0 & 0x0FF = 0x20 
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9.8.6.10 VATAN2PP 

Instruction name VATAN2PP  

Functionality Vector atan2 post-processing 

Assembly format VAtan2PP<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

Type and bit width  H: 16 x 24-bit 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vshortx vatan2_postp(vshortx src1, vshortx src2, vshortx src3); 
// double vector pseudo intrinsics 
dvshortx dvatan2_postp(dvshortx src1, dvshortx src2, dvshortx src3); 

Additional details Treat Vsrc1 as Y, Vsrc2 as X, detect octant of (X, Y) in 2D plane, 0 ~ 7 (see 

9.8.4.25 VOctDetH). Treat Vsrc3 as first-octant outcome of atan, A, and return: 

Condition             Octant and ang range Return angle 

X>=0, Y>=0, |Y|<=|X|    0: [0 ~ 0.25 pi]       A & 0x7FFF 

X>=0, Y>=0, |Y|>|X|     1: (0.25 pi ~ 0.5 pi)   (0x2000 – A) & 0x7FFF 

X<0, Y>=0, |Y|>|X|      2: (0.5 pi ~ 0.75 pi)   (0x2000 + A) & 0x7FFF 

X<0, Y>=0, |Y|<=|X|     3: [0.75 pi ~ pi]      (0x4000 – A) & 0x7FFF  

X<0, Y<0, |Y|<=|X|      4: (pi ~ 1.25 pi)      (0x4000 + A) & 0x7FFF 

X<0, Y<0, |Y|>|X|       5: (1.25 pi ~ 1.5 pi)   (0x6000 – A) & 0x7FFF 

X>=0,Y<0, |Y|>|X|      6: [1.5 pi ~ 1.75 pi]   (0x6000 + A) & 0x7FFF 

X>=0,Y<0, |Y|<=|X|     7: [1.75 pi ~ 2 pi]     (0x8000 – A) & 0x7FFF 

For example, in a particular lane, say we have src1 = X = 100, src2 = Y = -200, 

src3 = A = 0x972.  It’s in the 6th octant, as X is positive, Y is negative, and |Y| > 

|X|. Return value is 0x6000 + 0x972 = 0x6972. 

The atan2(y, x) function is implemented with table lookup. In order to compress the 

table, we take the absolute value of y, x, and sort (|y|, |x|) so that |y| <= |x|. This folds the 

whole 2*pi range of output to 1/8 of the range, 0 ~ pi/4.  
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After doing lookup and post-lookup interpolation with the sorted (|y|, |x|), we use the 

VAtan2PPH with the first-octant angle and (y, x) as inputs to map the angle back to the 

full range, as shown in the following diagram: 

 

 

 

 

 

 

 

 

 

 

Note that the 2*pi full range is quantized to 15-bit, 0 ~ 0x7FFF. Thus, 90-degree is 

0x2000, 180-degree 0x4000, and 270-degree 0x6000. 
 

9.8.6.11 VMIN3 

Instruction name VMIN3 

Functionality Vector min3 

Assembly format VMin3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

VMin3<type> Vsrc1, Vsrc2, Wsrc3, Vdst 

VMin3<type> Vsrc1, Wsrc2, Wsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options src1: single vector register in VRF  

src2: single vector register in VRF or WRF 

src3: single vector register in VRF or WRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vmin3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vmin3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vmin3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvmin3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvmin3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvmin3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details For each lane, return minimal of 3 sources. 
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9.8.6.12 VMIN3_CA 

Instruction name VMIN3_CA 

Functionality Vector min3 

Assembly format <pred> VMin3<type>_CA Vsrc1, Vsrc2, ACsrc3dst 

 

pred = none, [P2..P15] 

 [P0] is omitted 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vintx  vmin3_ca(vintx  src1, vintx  src2, vintx src3, int pred); 
vshortx vmin3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vmin3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvmin3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvmin3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred); 
dvcharx dvmin3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details Vsrc3dst = pred ? min(Vsrc1, Vsrc2, Vsrc3dst)  
        : min(Vsrc1, Vsrc2); 

When predicate is off, the operation becomes min of first 2 sources, allowing 

min accumulation to start fresh. 
 

9.8.6.13 VMAX3 

Instruction name VMAX3 

Functionality Vector max3 

Assembly format VMax3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

VMax3<type> Vsrc1, Vsrc2, Wsrc3, Vdst 

VMax3<type> Vsrc1, Wsrc2, Wsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options src1: single vector register in VRF  

src2: single vector register in VRF or WRF 

src3: single vector register in VRF or WRF 

Destination options dst1: single vector register 

Additional options  

Intrinsics/operator vintx  vmax3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vmax3(vshortx src1, vshortx src2, vshortx src3); 
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Instruction name VMAX3 

vcharx vmax3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvmax3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvmax3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvmax3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details For each lane, return maximal of 3 sources. 
 

9.8.6.14 VMAX3_CA 

Instruction name VMAX3_CA 

Functionality Vector max3 

Assembly format <pred> VMax3<type>_CA Vsrc1, Vsrc2, ACsrc3dst 

 

pred = none, [P2.. P15] 

 [P0] is omitted 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vintx  vmax3_ca(vintx  src1, vintx  src2, vintx src3, int pred); 
vshortx vmax3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vmax3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvmax3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvmax3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred); 
dvcharx dvmax3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details Vsrc3dst = preg ? max(Vsrc1, Vsrc2, Vsrc3dst)  
        : max(Vsrc1, Vsrc2); 

When predicate is off, the operation becomes max of first 2 sources, allowing 

max accumulation to start fresh. 
 

9.8.6.15 VADD3 

Instruction name VADD3  

Functionality Vector add3  

Assembly format VAdd3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

Predication not available 

Source options src1: single vector register in VRF 
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src2: single vector register in VRF 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vadd3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vadd3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vadd3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvadd3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvadd3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvadd3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details  
 

9.8.6.16 VADD3_CA 

Instruction name VADD3_CA  

Functionality Vector add3  

Assembly format <pred> VAdd3B/H/W_CA Vsrc1, Vsrc2, ACsrc3dst 

 

pred = none, [P2.. P15] 

 [P0] is omitted 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: B/H/W: single vector register in ARF 

Additional options  

Intrinsics/operator vintx  vadd3_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vadd3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vadd3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvadd3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvadd3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
dvcharx dvadd3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details Vsrc3dst = preg ? (Vsrc1 + Vsrc2 + Vsrc3dst)  
        : (Vsrc1 + Vsrc2); 

When predicate is off, the operation becomes sum of first 2 sources, allowing 

accumulation to start fresh. 
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9.8.6.17 VAND3 

Instruction name VAND3  

Functionality Vector and 3  

Assembly format VAnd3 Vsrc1, Vsrc2, Vsrc3, Vdst1 

Type and bit width  no type, full 384 bits 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vand3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vand3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vand3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvand3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvand3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvand3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details Bitwise AND in each vector lane 
 

9.8.6.18 VAND3_CA 

Instruction name VAND3_CA  

Functionality Vector and 3  

Assembly format <pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst 

 

pred = none, [P2.. P15] 

 [P0] is omitted 

Type and bit width  no type, full 384 bits 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vand3_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vand3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vand3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvand3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvand3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
dvcharx dvand3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 
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Instruction name VAND3_CA  

Additional details Bitwise AND in each vector lane  

Vsrc3dst = preg ? (Vsrc1 & Vsrc2 & Vsrc3dst)  
        : (Vsrc1 & Vsrc2); 

When predicate is off, the operation becomes AND of first 2 sources, allowing 

AND accumulation to start fresh. 
 

9.8.6.19 VOR3 

Instruction name VOR3  

Functionality Vector or 3  

Assembly format VOr3 Vsrc1, Vsrc2, Vsrc3, Vdst1 

Type and bit width  no type, full 384 bits 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vor3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vor3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vor3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvor3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvor3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvor3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details Bitwise OR in each vector lane 
 

9.8.6.20 VOR3_CA 

Instruction name VOR3_CA  

Functionality Vector or 3  

Assembly format <pred> VOr3_CA Vsrc1, Vsrc2, Vsrc3dst 

 

pred = none, [P2.. P15] 

 [P0] is omitted 

Type and bit width  no type, full 384 bits 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in VRF 
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Instruction name VOR3_CA  

Additional options  

Intrinsics/operator vintx  vor3_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvor3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
dvcharx dvor3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details Bitwise OR in each vector lane  

Vsrc3dst = preg ? (Vsrc1 | Vsrc2 | Vsrc3dst)  
        : (Vsrc1 | Vsrc2); 

When predicate is off, the operation becomes OR of first 2 sources, allowing OR 

accumulation to start fresh. 
 

9.8.6.21 VXOR3 

Instruction name VXOR3  

Functionality Vector exclusive-or 3  

Assembly format VXor3 Vsrc1, Vsrc2, Vsrc3, Vdst1 

Type and bit width  no type, full 384 bits 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

src3: single vector register in VRF 

Destination options dst1: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vxor3(vintx  src1, vintx  src2, vintx  src3); 
vshortx vxor3(vshortx src1, vshortx src2, vshortx src3); 
vcharx vxor3(vcharx src1, vcharx src2, vcharx src3); 
// double vector pseudo intrinsics 
dvintx  dvxor3(dvintx  src1, dvintx  src2, dvintx  src3); 
dvshortx dvxor3(dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvxor3(dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details Bitwise exclusive OR in each vector lane 
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9.8.6.22 VXOR3_CA 

Instruction name VXOR3_CA  

Functionality Vector exclusive-or 3 

Assembly format <pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst 

 

pred = none, [P2.. P15] 

 [P0] is omitted 

Type and bit width  no type, full 384 bits 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in VRF 

Additional options  

Intrinsics/operator vintx  vxor3_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vxor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vxor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvxor3_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvxor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
dvcharx dvxor3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details Bitwise exclusive-OR in each vector lane  

Vsrc3dst = preg ? (Vsrc1 ^ Vsrc2 ^ Vsrc3dst)  
        : (Vsrc1 ^ Vsrc2); 

When predicate is off, the operation becomes XOR of first 2 sources, allowing 

XOR accumulation to start fresh. 
 

9.8.6.23 VSAD_CA 

Instruction name VSAD_CA  

Functionality Vector sum of absolute differences  

Assembly format <pred> VSad<type>_CA Vsrc1, Vsrc2, ACsrc3dst/DACsrc3dst 

 

pred = none, [P2.. P15] 

[P0] is omitted 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit  

HW: 16 x ( |24-bit – 24-bit| + 48-bit ) 

BH: 32 x ( |12-bit – 12-bit| + 24-bit ) 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register for W in ARF 
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Instruction name VSAD_CA  

src3dst: double vector register for HW, BH in ARF 

Additional options  

Intrinsics/operator vintx  vSAD_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vSAD_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vSAD_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
dvintx vSAD_ca(vshortx src1, vshortx src2, dvintx src3, int pred); 
dvshortx vSAD_ca(vcharx src1, vcharx src2, dvshortx src3, int pred); 
// double vector pseudo intrinsics 
dvintx  dvSAD_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvSAD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
dvcharx dvSAD_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 

Additional details For each lane, src3dst += |src1 - src2| when predicate is on. Otherwise, src3dst = 

|src1 - src2|. 

For HW and BH types, destination is a double vector register. Lane 2*i from |src1 

- src2| is added/stored to lane i of the lower register of the pair. Lane 2*i+1 from 

|src1 – src2| is added/stored to lane i of the upper register. 
 

9.8.6.24 VSUMHD_CA 

Instruction name VSumHD_CA  

Functionality Vector sum of Hamming distance  

Assembly format <pred> VSumHD<type>_CA Vsrc1, Vsrc2/Rsrc2, ACsrc3dst 

 

pred = none, [P2.. P15] 

[P0] is omitted 

Type and bit width  Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned 

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs 

broadcast to all vector lanes, as unsigned. 

Predication Available across lanes to clear accumulator 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or scalar register 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vintx  vSumHD_ca(vintx  src1, vintx  src2, vintx  src3, int pred); 
vshortx vSumHD_ca(vshortx src1, vshortx src2, vshortx src3, int pred); 
vcharx vSumHD_ca(vcharx src1, vcharx src2, vcharx src3, int pred); 
vintx  vSumHD_ca(vintx  src1, unsigned int src2, vintx  src3, int pred); 
vshortx vSumHD_ca(vshortx src1, unsigned int src2, vshortx src3, int pred); 
vcharx vSumHD_ca(vcharx src1, unsigned int src2, vcharx src3, int pred); 
 
// double vector pseudo intrinsics 
dvintx  dvSumHD_ca(dvintx  src1, dvintx  src2, dvintx  src3, int pred); 
dvshortx dvSumHD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred); 
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Instruction name VSumHD_CA  

dvcharx dvSumHD_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred); 
dvintx  dvSumHD_ca(dvintx  src1, unsigned int src2, dvintx  src3, int pred); 
dvshortx dvSumHD_ca(dvshortx src1, unsigned int src2, dvshortx src3, int pred); 
dvcharx dvSumHD_ca(dvcharx src1, unsigned int src2, dvcharx src3, int pred); 

Additional details For each lane, src3dst += bit_count(src1 ^ src2) when predicate is on, otherwise, 

src3dst = bit_count(src1 ^ src2). 

“^” is the bit-wise XOR operation. 
 

9.8.6.25 VCMPLT_ANDL 

Instruction name VCMPLT_ANDL 

Functionality Vector compare less than and logical AND 

Assembly format VCmpLT_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpLT_andL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpLT_andL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpLT_andL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 < vintx  src2) && src3;  
// vshortx dst = (vshortx src1 < vshortx src2) && src3;  
// vcharx dst = (vcharx src1 < vcharx src2) && src3;  
 
// double vector pseudo intrinsics 
dvcharx dvCmpLT_andL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpLT_andL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpLT_andL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
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9.8.6.26 VCMPLE_ANDL 

Instruction name VCMPLE_ANDL 

Functionality Vector compare less than or equal and logical AND 

Assembly format VCmpLE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpLE_andL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpLE_andL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpLE_andL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 <= vintx  src2) && src3;  
// vshortx dst = (vshortx src1 <= vshortx src2) && src3;  
// vcharx dst = (vcharx src1 <= vcharx src2) && src3; 
 
// double vector pseudo intrinsics 
dvcharx dvCmpLE_andL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpLE_andL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpLE_andL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.27 VCMPEQ_ANDL 

Instruction name VCMPEQ_ANDL 

Functionality Vector compare equal and logical AND 

Assembly format VCmpEQ_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpEQ_andL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpEQ_andL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpEQ_andL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 == vintx  src2) && src3;  
// vshortx dst = (vshortx src1 == vshortx src2) && src3;  
// vcharx dst = (vcharx src1 == vcharx src2) && src3; 
 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  321 

Instruction name VCMPEQ_ANDL 

// double vector pseudo intrinsics 
dvcharx dvCmpEQ_andL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpEQ_andL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpEQ_andL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.28 VCMPNE_ANDL 

Instruction name VCMPNE_ANDL 

Functionality Vector compare not equal and logical AND 

Assembly format VCmpNE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpNE_andL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpNE_andL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpNE_andL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 != vintx  src2) && src3;  
// vshortx dst = (vshortx src1 != vshortx src2) && src3;  
// vcharx dst = (vcharx src1 != vcharx src2) && src3; 
 
// double vector pseudo intrinsics 
dvcharx dvCmpNE_andL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpNE_andL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpNE_andL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.29 VCMPLT_ORL 

Instruction name VCMPLT_ORL 

Functionality Vector compare less than and logical OR 

Assembly format VCmpLT_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  
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Instruction name VCMPLT_ORL 

Intrinsics/operator vcharx vCmpLT_orL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpLT_orL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpLT_orL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 < vintx  src2) || src3;  
// vshortx dst = (vshortx src1 < vshortx src2) || src3;  
// vcharx dst = (vcharx src1 < vcharx src2) || src3; 
 
// double vector pseudo intrinsics 
dvcharx dvCmpLT_orL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpLT_orL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpLT_orL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.30 VCMPLE_ORL 

Instruction name VCMPLE_ORL 

Functionality Vector compare less than or equal and logical OR 

Assembly format VCmpLE_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpLE_orL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpLE_orL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpLE_orL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 <= vintx  src2) || src3;  
// vshortx dst = (vshortx src1 <= vshortx src2) || src3;  
// vcharx dst = (vcharx src1 <= vcharx src2) || src3; 
 
// double vector pseudo intrinsics 
dvcharx dvCmpLE_orL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpLE_orL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpLE_orL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
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9.8.6.31 VCMPEQ_ORL 

Instruction name VCMPEQ_ORL 

Functionality Vector compare equal and logical OR 

Assembly format VCmpEQ_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpEQ_orL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpEQ_orL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpEQ_orL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 == vintx  src2) || src3;  
// vshortx dst = (vshortx src1 == vshortx src2) || src3;  
// vcharx dst = (vcharx src1 == vcharx src2) || src3; 
 
// double vector pseudo intrinsics 
dvcharx dvCmpEQ_orL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpEQ_orL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpEQ_orL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.32 VCMPNE_ORL 

Instruction name VCMPNE_ORL 

Functionality Vector compare not equal and logical OR 

Assembly format VCmpNE_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed  

Predication not available 

Source options src1, src2, src3: single vector register in VRF  

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vCmpNE_orL(vcharx src1, vcharx src2, vcharx src3);  
vshortx vCmpNE_orL(vshortx src1, vshortx src2, vshortx src3);  
vintx vCmpNE_orL(vintx src1, vintx src2, vintx src3);  
 
// compiler also instantiates from, e.g., 
// vintx  dst = (vintx  src1 != vintx  src2) || src3;  
// vshortx dst = (vshortx src1 != vshortx src2) || src3;  
// vcharx dst = (vcharx src1 != vcharx src2) || src3; 
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Instruction name VCMPNE_ORL 

// double vector pseudo intrinsics 
dvcharx dvCmpNE_orL(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvCmpNE_orL(dvshortx src1, dvshortx src2, dvshortx src3);  
dvintx dvCmpNE_orL(dvintx src1, dvintx src2, dvintx src3); 

Additional details   
 

9.8.6.33 VXSHIFTR 

Instruction name VXShiftR 

Functionality Vector cross element shift right 

Assembly format VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst 

Type and bit width  Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned  

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector 

lanes as unsigned. 

Predication not available 

Source options src1, src2: single vector register in VRF  

src3: single vector in VRF or scalar register 

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vxshiftr(vcharx src1, vcharx src2, vcharx src3);  
vshortx vxshiftr(vshortx src1, vshortx src2, vshortx src3); 
vintx vxshiftr(vintx src1, vintx src2, vintx src3);  
vcharx vxshiftr(vcharx src1, vcharx src2, unsigned int src3);  
vshortx vxshiftr(vshortx src1, vshortx src2, unsigned int src3); 
vintx vxshiftr(vintx src1, vintx src2, unsigned int src3);  
// double vector pseudo intrinsics 
dvcharx dvxshiftr(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, dvshortx src3); 
dvintx dvxshiftr(dvintx src1, dvintx src2, dvintx src3);  
dvcharx dvxshiftr(dvcharx src1, dvcharx src2, unsigned int src3);  
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, unsigned int src3); 
dvintx dvxshiftr(dvintx src1, dvintx src2, unsigned int src3);  
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Instruction name VXShiftR 

Additional details Src1 carries current lane data. Src2 carries next lane data (from another load 

from memory). Src3[7:0] carries number of LSBs of src1 we want to shift 

right and throw out, and refill upper bits from LSBs of src2. 

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned 

number.  Src3[7:0] is treated as an unsigned number and saturated to 

8/16/32 before being used in the subsequent operations. 

In each lane we compute 

    nbits = src3[7:0]; 

    nbits = (nbits > bitwidth) ? bitwidth : nbits;  

    dst = ((src1 >> nbits) | (src2 << (bitwidth – nbits))) & mask; 

where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) – 1. 

MSB                    LSB  MSB                LSB  

      src2       src1 

        dst      src3   → 
 

 

9.8.6.34 VXSHIFTL 

Instruction name VXShiftL 

Functionality Vector cross element shift left 

Assembly format VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst 

Type and bit width  Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned  

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector 

lanes as unsigned. 

Predication not available 

Source options src1, src2: single vector register in VRF  

src3: single vector in VRF or scalar register 

Destination options dst: Single vector register in VRF  

Additional options  

Intrinsics/operator vcharx vxshiftl(vcharx src1, vcharx src2, vcharx src3);  
vshortx vxshiftl(vshortx src1, vshortx src2, vshortx src3); 
vintx vxshiftl(vintx src1, vintx src2, vintx src3);  
vcharx vxshiftl(vcharx src1, vcharx src2, unsigned int src3);  
vshortx vxshiftl(vshortx src1, vshortx src2, unsigned int src3); 
vintx vxshiftl(vintx src1, vintx src2, unsigned int src3);  
// double vector pseudo intrinsics 
dvcharx dvxshiftl(dvcharx src1, dvcharx src2, dvcharx src3);  
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, dvshortx src3); 
dvintx dvxshiftl(dvintx src1, dvintx src2, dvintx src3);  
dvcharx dvxshiftl(dvcharx src1, dvcharx src2, unsigned int src3);  
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, unsigned int src3); 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  326 

Instruction name VXShiftL 

dvintx dvxshiftl(dvintx src1, dvintx src2, unsigned int src3); 

Additional details Src1 carries current lane data. Src2 carries previous lane data (from another 

load from memory). Src3[7:0] carries number of MSBs of src1 we want to 

shift left and throw out, and refill lower bits from MSBs of src2. 

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned 

number.  Src3[7:0] is treated as an unsigned number and saturated to 

8/16/32 before being used in the subsequent operations. 

In each lane we compute 

    nbits = src3[7:0]; 

    nbits = (nbits > bitwidth) ? bitwidth : nbits;  

    dst = ((src1 << nbits) | (src2 >> (bitwidth – nbits))) & mask; 

where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) – 1. 

MSB                    LSB  MSB                LSB  

      src1       src2 

<- src3 ->        dst 
 

  
 

9.8.7 Vector Multiply-Add Instructions 

9.8.7.1 Types and Data Widths 

Multiplication has higher area cost per bit, so instead of extended precision of B=12-bit, 

H=24-bit, W=48-bit, VPU supports B=9-bit, H=17-bit, W=33-bit of multiplication input. 

The 1 extra bits compared with standard bit width allows support of both signed and 

unsigned data of standard bit widths.  

For src1 and src2, the B/H/W types correspond to 9/17/33 bits, as opposed to 12/24/48 

bits for most other vector ALU operations.   

For multiply-add/subtract and various dot-product/filtering operations, src3 is the 

operand to be added/subtracted from, and extended bit width of 12/24/48 bits of src3 

are used. 12/24/48-bit results are calculated and written to the destination.  

There is optional rounding/truncation after multiplication (and before add or subtract for 

VMAdd, VMSub). Rounding is not by arbitrary bit counts but with a few selected options. 

There are two encoding schemes: 

For Word type (33-bit by 33-bit) multiply/multiply-add/multiply-subtract resulting in 48-

bit outcome, VPU supports: 

> .R0/.T0/omitted: no rounding (encoded as 0) 

> .T4: rounding down 4 bits (encoded as 5)  

> .T8: truncate down 7 bits (encoded as 6) 

> .T16: truncate down 16 bits (encoded as 7) 
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There is an instruction (VMulWWL) that carries out 33-bit x 33-bit multiply without 

rounding/truncation and produces 66-bit outcome in two register entries. 

For all other type combinations (B, BBH, H, HHW, WHW): 

> .R0/.T0/omitted: no rounding (encoded as 0) 

> .R7: rounding down 7 bits (encoded as 1) 

> .R15: rounding down 15 bits (encoded as 2) 

> .R16: rounding down 16 bits (encoded as 3) 

> .R4: rounding down 4 bits (encoded as 4)  

> .T7: truncate down 7 bits (encoded as 5) 

> .T15: truncate down 15 bits (encoded as 6) 

> .T16: truncate down 16 bits (encoded as 7) 

Note that in Gen-1 VPU MAC instructions, there is just one set of encoding for non-Word 

type: 

> .R0/omitted: no rounding (encoded as 0) 

> .R7: rounding down 7 bits (encoded as 1) 

> .R15: rounding down 15 bits (encoded as 2) 

> .R16: rounding down 16 bits (encoded as 3) 

> .T0: truncating 0 bits, same as no rounding (encoded as 4)  

> .T7: truncate down 7 bits (encoded as 5) 

> .T15: truncate down 15 bits (encoded as 6) 

> .T16: truncate down 16 bits (encoded as 7) 

and for Word-type MAC, the only available rounding option is .T16, except for VMulWWL. 

Note that not all options are supported in all VMul/VMAdd/VMSub instructions for all 

types. Please see individual MAC instruction for details. 

VPU supports the following type combinations of multiply/multiply-add/multiply-

subtract: 

> B: 9-bit by 9-bit multiplication with 12-bit accumulator or product 

> BBH: 9-bit by 9-bit multiplication with 24-bit accumulator or product 

> BBW: 9-bit by 9-bit multiplication with 32-bit accumulator  

> H: 17-bit by 17-bit multiplication with 24-bit accumulator or product 

> HHW: 17-bit by 17-bit multiplication with 48-bit accumulator or product 

> WHW: 33-bit by 17-bit multiplication with 48-bit accumulator or product, src2 is in 

half-word lanes, but only even-numbered lanes are used, lining up with W lanes  

> W: 33-bit by 33-bit multiplication with truncation of 0/4/8/16 bits, keeping 48 LSBs 

of product. 

> WWL: 33-bit by 33-bit multiplication with 66-bit product 

B, H, WHW, W are lane-parallel operations, in the sense that we have src1[i] * src2[i] → 

dst[i]. The others, BBH, BBW, HHW, WWH, WWL, are lane-expansion operations, with 
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single vector as src1, single vector as src2, but double vector as src3/destination to 

receive the 2x wider output. In lane-expansion operations, outcome elements are 

deinterleaved to the two src3/destination registers to avoid long routes.  

A few expanding operations (VDotP4x2BBH/HHW, VFilt4x2BBH/HHW, 

VFilt4x2x2BBH/BBW) produce two sets of products and accumulate into two sets of 

accumulators, requiring a quad vector for the accumulator operand.  

For example, VMAddBBH.R15 V0, V1, V2:V3 would result in: 

V2[0] += round(V0[0] * V1[0], 15); 
V3[0] += round(V0[1] * V1[1], 15); 
V2[1] += round(V0[2] * V1[2], 15); 
V3[1] += round(V0[3] * V1[3], 15); 
… 
V2[15] += round(V0[30] * V1[30], 15); 
V3[15] += round(V0[31] * V1[31], 15); 

VMulWWL long multiplication (33-bit-by-33-bit multiplication producing 66-bit outcome) 

does not offer rounding option, and there’s no multiply-add/subtract variations, just 

multiplication. The L in destination type indicates 66-bit width, and is split into a pair of 

destination registers, lower unsigned 32-bit stored in the low (even) register, and upper 

33-bit signed extended in the high (odd) register. 

For example, VMulWWL V0, V1, V2:V3 would result in: 

V2[0] = low_32b(V0[0] * V1[0]); 
V3[0] = high_33b(V0[0] * V1[0]); 
V2[1] = low_32b(V0[1] * V1[1]); 
V3[1] = high_33b(V0[1] * V1[1]); 
… 
V2[7] = low_32b(V0[7] * V1[7]); 
V3[7] = high_33b(V0[7] * V1[7]); 

VDotP2HHW carries out 2 taps x 16 outputs per instruction. We have two src1 (src1a 

and src1b) to supply data for first and second taps. We share src2 between each pair of 

output to supply the two taps per lane. 

For example, VDotP2HHW V0, V1, V2, V4:V5 would treat V0, V1, V2 each as Half-word 

vectors (16H each), V4:V5 together as a Word vector (16W), and perform: 

 V4[0] += V0[0]*V2[0] + V1[0]*V2[1]; 
 V5[0] += V0[1]*V2[0] + V1[1]*V2[1]; 
 V4[1] += V0[2]*V2[2] + V1[2]*V2[3]; 
 V5[1] += V0[3]*V2[2] + V1[3]*V2[3]; 
 … 
 V4[7] += V0[14]*V2[14] + V1[14]*V2[15]; 
 V5[7] += V0[15]*V2[14] + V1[15]*V2[15]; 

In this case, conceptual data V4 and V5 are first interleaved into one stream to supply 

added to the multiply-add operation, then deinterleaved back to the two registers.  

VBlend performs alpha blending between Vsrc1a and Vsrc1b, using Vsrc2 as the 

blending factor. There is no rounding option, as rounding is tied to the supported data 

type, 7 bits for Byte type, and 15 bits for Half-word type. 
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For example, in VBlendH V0, V1, V2, V3, we treat each vector as 16 Half-words, say V0 = 

A, V1 = B, V2 = alpha, V3 = Y, and perform 

 Y[0] = A[0] + round(B[0] * alpha[0] – A[0] * alpha[0], 15); 
 Y[1] = A[1] + round(B[1] * alpha[1] – A[1] * alpha[1], 15); 
 … 
 Y[15] = A[15] + round(B[15] * alpha[15] – A[15] * alpha[15], 15); 

VCMulH and VCMulHHW complex multiplication is supported with rounding/truncation 

but no 3rd source input. Real and imaginary parts are interleaved in lanes. 

For example, say we have VCMulH V0, V1, V2 instructions. V0, V1 each holds a vector of 

8 complex numbers (16 real + imaginary components), and outcome V2 is another vector 

of 8 complex numbers. VPU calculates:  

V2[0] = V0[0] * V1[0] – V0[1] * V1[1];    // C0.R = A0.R * B0.R – A0.I * B0.I 
V2[1] = V0[0] * V1[1] + V0[1] * V1[0];    // C0.I  = A0.R * B0.I + A0.I * B0.R 
… 
V2[14] = V0[14] * V1[14] – V0[15] * V1[15]; // C7.R = A7.R * B7.R – A7.I * B7.I 
V2[15] = V0[14] * V1[15] + V0[15] * V1[14]; // C7.I  = A7.R * B7.I + A7.I * B7.R 

For VCMulHHW, outputs are deinterleaved between the two vector registers. For 

example, VCMulHHW V0, V1, V2:V3 would lead to: 

V2[0] = V0[0] * V1[0] – V0[1] * V1[1];   // C0.R = A0.R * B0.R – A0.I * B0.I 
V3[0] = V0[0] * V1[1] + V0[1] * V1[0];   // C0.I = A0.R * B0.I + A0.I * B0.R 
 … 
V2[7] = V0[14] * V1[14] – V0[15] * V1[15];  // C7.R = A7.R * B7.R – A7.I * B7.I 
V3[7] = V0[14] * V1[15] + V0[15] * V1[14];  // C7.I = A7.R * B7.I + A7.I * B7.R 
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9.8.7.2 Instruction Summary 

Table 35. Vector multiply-add instructions 

Function Assembly Format Comments 

Vector multiply  VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,  

                    Vdst/ACdst 

VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,     

                    DVdst/DACdst 

type = B, H, BBH, HHW, WHW, W 

W type does not allow Rsrc2.  

 

VMulWHW DVsrc1/DWsrc1, DVsrc2, DVdst/DWdst 

VMulWHW DVsrc1, DWsrc2, DVdst/DWdst 

VMulW.T<bits> DVsrc1/DWsrc1, DVsrc2, 

DVdst/DWdst 

VMulW.T<bits> DVsrc1, DWsrc2, DVdst/DWdst 

.R0/T4/T8/T16 for W 

Vdst = round/trunc(Vsrc1 * Vsrc2, 

bits) 

Vector multiply-

add/sub 

<pred> VMAdd<type>_CA . R/T<bits>    

   Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst 

VMAdd<type>.R/T<bits>  

   Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst        

pred> VMSub<type>_CA . R/T<bits>    

   Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst 

VMSub<type>.R/T<bits>  

   Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst        

 

type = B, H, BBH, HHW, WHW, W 

W type does not allow Rsrc2.  

Vdst = -Vdst +/- round/trunc(Vsrc1 * 

Vsrc2, nbits)  

DV multiply-add/sub <pred> VMAdd<type>_CA.R/T<bits> DVsrc1, 

DVsrc2/DWsrc2/Rsrc2, DACsrc3dst/QACsrc3dst 

<pred> VMSub<type>_CA.R/T<bits> DVsrc1, 

DVsrc2/DWsrc2/Rsrc2, DACsrc3dst / QACsrc3dst 

 

type = {B, BBH, H, HHW, WHW, W} 

W type does not allow Rsrc2.  

.R0 only for B, BBH, H, HHW, WHW 

.R0/T4/T8/T16 for W 

 

Vector long multiply VMulWWL Vsrc1, Vsrc2, DVdst/DACdst Perform signed 33-bit x signed 33-bit 

multiplication producing 66-bit 

product, lower 32-bit unsigned in 

Vdst.lo and upper 34-bit sign-

extended in Vdst.hi, no rounding  
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Function Assembly Format Comments 

Vector complex 

multiply   

VCMulHHW Vsrc1, Vsrc2, DACdst (Gen-1) 

VCMulHHW DVsrc1, DWsrc2, QACdst 

VCMulWHW DVsrc1, Wsrc2, DACdst 

 

Vector dot product, 2-

term 

<pred> VDotP2BBH/HHW_CA Vsrc1a, Vsrc1b, Vsrc2, 

DACsrc3dst 

<pred> VDotP2WHW_CA Vsrc1a, Vsrc1b, Vsrc2, 

ACsrc3dst 

<pred> VDotP2W_CA.T16 Vsrc1a, Vsrc1b, Vsrc2, 

ACsrc3dst 

Perform 2-term dot product, Vdst += 

Vsrc1a * Vsrc2_even + Vsrc1b * 

Vsrc2_odd 

Vector dot product 2-

term with negation 

<pred> VDotPN2<type>_CA 

   Vsrc1a, Vsrc1b, Vsrc2, Vsrc3dst 

type = WHW 

Perform a variation of 2-term dot 

product, Vdst += Vsrc1a * Vsrc2_even 

– Vsrc1b * Vsrc2_odd 

Vector blend VBlend<type>  

   Vsrc1a, Vsrc1b, Vsrc2/Rsrc2, Vdst 

VBlend<type>  

   Wsrc1a, Wsrc1b, Vsrc2/Rsrc2, Vdst 

type = B, H, W 

Vsrc1a = X0, Vsrc1b = X1, Vsrc2 = 

alpha. 

Vdst = round(X1*alpha – X0*alpha, 

nbits) + X0 

Vector blend 

horizontal 

VHBlend_I<type> Vsrc1a, Vsrc1b, Vsrc2, Vdst 

type = B, H, W, BHB 

 

Vector double multiply VMul2<type> . R/T<bits> DVsrc1, Vsrc2/Rsrc2,  

                     DVdst/DACdst 

type = B, H, WHW 

Rsrc2 option available for B/H types only 

WHW type requires .T16 

Vsrc1 and Vdst are double vector. 

Double multiplication sharing Vsrc2 

Vector 4-tap filter <pred> VFilt4<type>_CA Vsrc1a, Vsrc1b, Wsrc2, 

DACsrc3dst 

type = BBH, HHW 

Vsrc1a, Vsrc1b supplies overlapping 

data vector offset by 4 entries 

Vector 4-tap x 2 filter <pred> VFilt4x2<type>_CA Vsrc1a, Vsrc1b, DWsrc2, 

DACsrc3dst 

type = BBH, HHW 

Vsrc1a, Vsrc1b supplies overlapping 

data vector offset by 4 entries 

Vector 4x2-tap x 2 

filter 

<pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b, 

DWsrc2, QACsrc3dst 

<pred> VFilt4x2x2BBW_CA DVsrc1a, DVsrc1b, 

DWsrc2, QXACsrc3dst 

For BBH/BBW, DVsrc1a, DVsrc1b 

each supplies overlapping data vector 

offset by 8 entries. 

 

Vector XNor add 

8x4x2 

<pred> VXNorAdd8x4x2_CA DVsrc1a, DVsrc1b, 

DWsrc2, QXACsrc3dst 

Convolution between binary data & 

coefficients, 8 horizontal x 4 vertical 

taps x 2 sets per byte lane 

Vector 4-term dot 

product 

<pred> VDotP4HHW_CA DVsrc1a, DVsrc1b, Wsrc2, 

DACsrc2dst 

<pred> VDotP4WHW_CA DVsrc1a, DVsrc1b, Wsrc2, 

ACsrc2dst 

<pred> VDotP4BBW_CA DVsrc1a, DVsrc1b, Wsrc2, 

DXACsrc3dst 

DVsrc1a, DVsrc1b together supplies 4 

independent data terms 
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Function Assembly Format Comments 

Vector 4-term x 2 dot 

product 

<pred> VDotP4x2BBH_CA DVsrc1a, DVsrc1b, 

DWsrc2, QACsrc3dst 

<pred> VDotP4x2HHW_CA DVsrc1a, DVsrc1b, 

DWsrc2, QACsrc3dst 

<pred> VDotP4x2BBW_CA DVsrc1a, DVsrc1b, 

DWsrc2, QXACsrc3dst 

DVsrc1a, DVsrc1b together supplies 4 

independent data terms 

Vector 2-term x 2 dot 

product 

<pred> VDotP2x2W_CA.T16 Vsrc1a, Vsrc1b, DWsrc2, 

DACsrc3dst 

Vsrc1a, Vsrc1b together supplies 2 

independent data terms 

Vector sum of squares  VSumSq<type> Vsrc1, Vsrc2, Vdst/DVdst 

type = BBH, HHW, W.T16 

dst = src1^2 + src2^2 

Truncate each term by 16 bits for W 

type 

Vector square of sum VSqSum<type> Vsrc1, Vsrc2, DVdst 

type = BBH, HHW 

dst = src1^2 + src2^2 + 2*src1*src2 

Vector 2x2 matrix 

determinant 

VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst 

VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst 

VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst 

type = HHW, W.T16 

dst = src1.lo * src2.hi – src1.hi * src2.lo 

  

9.8.7.3 VMUL 

Instruction name VMUL 

Functionality Vector multiply 

Assembly format VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vdst/ACdst 

VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVdst/DACdst 

   

Rounding 0 bits (.R0) is omitted. For example, 

VMulH.R7  V2, V3, V4 

VMulBBH  V2, V3, V4:V5 

VMulBBH  V2, R3, V4:V5 

VMulHHW  V2, V3, AC0:AC1 

Type and bit width  B: 32 x (9-bit src1/src2 → 12-bit dst)   

H: 16 x (17-bit src1/src2 → 24-bit dst) 

BBH: 32 x (9-bit src1/src2 → 24-bit dst) 

HHW: 16 x (17-bit src1/src2 → 48-bit dst) 

WHW: 8 x (33-bit src1, 17-bit src2 → 48-bit dst)  

W: 8 x (33-bit src1/src2 → 48-bit dst) 

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no 

support for Rsrc2. 

All other types support full set of rounding/truncation options and Rsrc2. 

Predication not available 
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Instruction name VMUL 

Source options src1: single vector register in VRF 

src2: single vector register in VRF, scalar register (except W type)  

Destination options B/H/WHW/W:  dst: single vector register in VRF or ARF  

BBH/HHW:    dst: double vector register in VRF or ARF 

Additional options  

Intrinsics/operator vcharx vmulb(vcharx src1, vcharx src2, u3imm rnd_opt);   
vshortx vmulh(vshortx src1, vshortx src2, u3imm rnd_opt);  
dvshortx vmulbh(vcharx src1, vcharx src2, u3imm rnd_opt);  
dvintx vmulhw(vshortx src1, vshortx src2, u3imm rnd_opt);  
vintx vmulwhw(vintx src1, vintx src2, u3imm rnd_opt);    
vintx vmulw(vintx src1, vintx src2, u3imm rnd_opt);  
vintx vmulw_t16(vintx src1, vintx src2); // Gen-1 legacy 
     
vcharx vmulb(vcharx src1, int src2, u3imm rnd_opt);   
vshortx vmulh(vshortx src1, int src2, u3imm rnd_opt);  
dvshortx vmulbh(vcharx src1, int src2, u3imm rnd_opt);  
dvintx vmulhw(vshortx src1, int src2, u3imm rnd_opt);  
vintx vmulwhw(vintx src1, int src2, u3imm rnd_opt);  
 
// Double vector pseudo intrinsics    
dvcharx dvmulb(dvcharx src1, dvcharx src2, u3imm rnd_opt); 
dvshortx dvmulh(dvshortx src1, dvshortx src2, u3imm rnd_opt); 
dvintx dvmulwhw(dvintx src1, dvintx src2, u3imm rnd_opt); 
 
dvcharx dvmulb(dvcharx src1, int src2, u3imm rnd_opt); 
dvshortx dvmulh(dvshortx src1, int src2, u3imm rnd_opt); 
dvintx dvmulwhw(dvintx src1, int src2, u3imm rnd_opt); 

Additional details For each lane, dst = round(src1 * src2, rnd_opt), using the specified B/H/W lane, 

and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take 

lower 17-bit of each W lane. 

For BBH/HHW, destination double vector is deinterleaved between the two 

vector registers. See 6.2.3.6 for data ordering in single/double vector registers. 

See 9.8.7.1 for rounding/truncation options. 

For example, VMulB.R7 V1, V2, V3 has the following data layout and behavior: 

 

V1: D[0] D[1] D[2] D[3] … D[30] D[31] 

V2: C[0] C[1] C[2] C[3] … C[30] C[31] 

V3: P[0] P[1] P[2] P[3] … P[30] P[31] 

P[i] = round(D[i] * C[i], 7); // C[i], D[i] taken from 9 LSBs of each lane 
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While VMulHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior: 

 

V1: D[0] D[1] D[2] D[3] … D[14] D[15] 

V2: C[0] C[1] C[2] C[3] … C[14] C[15] 

AC2: P[0] P[2] … P[14] 

AC3: P[1] P[3]  P[15] 

P[i] = truncate(D[i] * C[i], 16); // C[i], D[i] taken from 17 LSBs of each lane 

The outcome from input lane 1 is deposited in AC3 lane 0, which is DAC1 (viewing AC2 

and AC3 as a double vector) lane 8, outcome from input lane 3 is deposited in AC3 lane 1, 

which is DAC1 lane 9, and so on. 
 

Instruction name VMUL (Gen-2 double throughput) 

Functionality Vector multiply 

Assembly format VMulWHW DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst 

VMulWHW DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst  

VMulW.T<bits> DVsrc1, DVsrc2/DWsrc2, DVdst/DWdst 

VMulW.T<bits> DWsrc1, DVsrc2, DVdst/DWdst 

 

For Word type, truncating by 0 bit is omitted. 

Type and bit width  WHW: 2 x 8 x (33-bit src1, 17-bit src2 → 48-bit dst)  

W: 2 x 8 x (33-bit src1/src2 → 48-bit dst)  

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no 

support for Rsrc2. 

For WHW type, only no rounding/truncation (R0) is supported, and there is 

support for Rsrc2. 

Predication not available 

Source options src1: double vector register in VRF/WRF 

src2: double vector register in VRF/WRF or scalar register 

excluding both src1 and src2 from WRF  

Destination options Double vector register in VRF/WRF 

Additional options  

Intrinsics/operator dvintx dvmulwhw(dvintx src1, dvintx src2);  

dvintx dvmulwhw(dvintx src1, int src2);  

dvintx dvmulw(dvintx src1, dvintx src2, u3imm rnd_opt); 

dvintx dvmulw_t16(dvintx src1, dvintx src2); // Gen-1 legacy     

Additional details For each lane, dst = src1 * src2, or (src1 * src2) >> trunc_bits. 

 

No rounding is supported for VMulWHW. Truncation by 0/4/8/16 bits is 

supported for VMulW. 
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For example, VMulWHW V0:V1, V2:V3, V4:V5 has the following data layout and behavior: 

V0: D[0] D[1] D[2] D[3] … D[7] 

V2: C[0] C[1] C[2] C[3] … C[7] 

V4: P[0] P[1] P[2] P[3] … P[7] 

 

V1: D[8] D[9] D[10] D[11] … D[15] 

V3: C[8] C[9] C[10] C[11] … C[15] 

V5: P[8] P[9] P[10] P[11] … P[15] 

P[i] = D[i] * C[i];  // D[i] taken from 33 LSBs of each lane,  

    // C[i] taken from 17 LSBs of each lane 

There is nothing wrong with drawing the layout as a single row per operand, showing 

lane 0, 1, …, 15. The above style of drawing it as two rows matches with micro-

architecture of the SIMD units inside the processor, and is more consistent across 

various MAC instructions.  

9.8.7.4  VMADD_CA 

Instruction name VMADD_CA 

Functionality Vector multiply-add 

Assembly format <pred> VMAdd<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst 

 

pred = none, [P2..P15] 

type = {B, H, BBH, HHW, WHW, W} 

.R0 omitted 

 

VMAdd<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst   

      

type = {B, BBH, H, HHW, WHW, W} 

.R0 omitted 

Type and bit width  B: 32 x (9-bit src1/src2, 12-bit src3dst) 

H: 16 x (17-bit src1/src2, 24-bit src3dst) 

BBH: 32 x (9-bit src1/src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1/src2, 48-bit src3dst) 

WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )  

W: 8 x (33-bit src1/src2, 48-bit src3dst)  

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support 

for Rsrc2. 

All other types support full set of rounding/truncation options and Rsrc2. 

Predication Available across lanes to clear accumulator 
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Instruction name VMADD_CA 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or scalar register (except W type) 

Destination 

options 

B/H/WHW/W: src3dst: single vector register in ARF or VRF 

BBH/HHW:   src3dst: double vector register in ARF or VRF 

Additional options  

Intrinsics/ operator // predicated 
vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred); 
vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred); 
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt,int pred); 
dvintx vmaddhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred); 
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred); 
vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred); 
vintx vmaddw_t16(vintx src1, vintx src2, vintx src3, int pred); 
 
vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred); 
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred); 
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx vmaddhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt, int pred); 
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);  
 
// unpredicated 
vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt); 
vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt); 
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt); 
dvintx vmaddhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt); 
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt); 
vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt); 
vintx vmaddw_t16(vintx src1, vintx src2, vintx src3); 
 
vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt); 
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt); 
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt); 
dvintx vmaddhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt); 
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);  
 
// Double vector pseudo intrinsics, when (rnd_opt != 0) 
dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt,int pred); 
dvshortx dvmaddh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt,  
int pred); 
dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
 
void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src30, dvshortx src31, u3imm  
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1); 
 
void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src30, dvintx src31, u3imm  
rnd_opt, int pred, dvintx & dst0, dvintx & dst1); 
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Instruction name VMADD_CA 

dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmaddh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);  
 
void dvmaddbh(dvcharx src1, int src2, dvshortx src30, dvshortx src31, u3imm rnd_opt, 
int pred, dvshortx & dst0, dvshortx & dst1); 
 
void dvmaddhw(dvshortx src1, int src2, dvintx src30, dvintx src31, u3imm rnd_opt,  
int pred, dvintx & dst0, dvintx & dst1); 

Additional details For each lane, src3dst += round/trunc(src1 * src2, rnd_opt), using the specified B/H/W lane, 

and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-

bit of each W lane. 

When predicate is off, only multiply-round is performed, src3dst = round/trunc(src1 * src2, 

rnd_opt), effectively clearing the accumulator. 

For BBH/HHW, destination double vector registers are deinterleaved between the two 

vector registers. See 6.2.3.6 for data ordering in single/double vector registers. 

See 9.8.7.1 for rounding/truncating options. For W,.R0/T4/T8/T16 options are supported. 

Note that we do not support scalar source 2 when source 2 is of the Word type. This is 

because for Word type we would like to use 33 bits so we can support both signed 32-bit 

and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits, and 

we do not want to create variation of behavior between source 2 being from a vector or a 

scalar, nor do we want to have Signed/Unsigned designation in the instruction itself (like 

scalar having LMULSS/SU/UU), so we just don’t support scalar source 2. 

 

For example, VMAddB.R7 V1, V2, V3 has the following data layout and behavior: 

V1: D[0] D[1] D[2] D[3] … D[30] D[31] 

V2: C[0] C[1] C[2] C[3] … C[30] C[31] 

V3: A[0] A[1] A[2] A[3] … A[30] A[31] 

A[i] = A[i] + round(D[i] * C[i], 7); // C[i], D[i] taken from 9 LSBs of each lane 

 

While [P2] VMAddHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior: 

V1: D[0] D[1] D[2] D[3] … D[14] D[15] 

V2: C[0] C[1] C[2] C[3] … C[14] C[15] 

AC2: A[0] A[2] … A[14] 

AC3: A[1] A[3]  A[15] 

A[i] = P2 ? (A[i] + truncate(D[i] * C[i], 16)) : truncate(D[i] * C[i], 16)  

// C[i], D[i] taken from 17 LSBs of each lane 
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The accumulator for input lane 1 is mapped to AC3 lane 0, which is DAC1 (viewing AC2 

and AC3 as a double vector) lane 8, accumulator for input lane 3 is mapped to AC3 lane 

1, which is DAC1 lane 9, and so on. 
 

Instruction name VMADD_CA (Gen-2 double vector/throughput) 

Functionality Vector multiply-add 

Assembly format <pred> VMAdd<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,  

                               DACsrc3dst /QACsrc3dst 

 

pred = none, [P2..P15] 

 

type = {B, BBH, H, HHW, WHW, W} 

.R0 only for B, BBH, H, HHW, WHW 

.R0/T4/T8/T16 for W 

Type and bit width  B:    2 x 32 x (9-bit src1/src2, 12-bit src3dst) 

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst) 

H:    2 x 16 x (17-bit src1/src2, 24-bit src3dst) 

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst) 

WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )  

W: 2 x 8 x (33-bit src1/src2, 48-bit src3dst) 

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support 

for Rsrc2. 

All other types support no rounding/truncation option (R0) and Rsrc2.  

Predication Available across lanes to clear accumulator 

Source options src1: double vector register in VRF 

src2: double vector register in VRF/WRF (all types) or scalar register (all except W type) 

Destination options B/H/WHW/W: src3dst: double vector register in ARF 

BBH/HHW:   src3dst: quad vector register in ARF  

Additional options  

Intrinsics/ operator // Note that some of the following intrinsic function names are the same as double vector  
// pseudo intrinsic functions in the non-double vector/throughput variations of VMAdd_CA.  
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double  
// vector/throughput instructions when (rnd_opt == 0). Otherwise, each intrinsic function  
// maps to 2 instances of the single vector instructions. For w type, the double  
// vector intrinsic function always maps to a double vector/throughput instruction. 
 
dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmaddh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
dvintx dvmaddw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
dvintx dvmaddw_t16(dvintx src1, dvintx src2, dvintx src3, int pred); 
 
void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src3_0, dvintx src3_1, u3imm  
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Instruction name VMADD_CA (Gen-2 double vector/throughput) 

rnd_opt, int pred, dvintx & dst_0, dvintx & dst_1); 
 
void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src3_0, dvshortx src3_1, u3imm 
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmaddh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred); 
 
void dvmaddbh(dvcharx src1, int src2, dvshortx src3_0, dvshortx src3_1, u3imm  
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
void dvmaddhw(dvshortx src1, int src2, dvintx src3_0, dvintx src3_1, u3imm rnd_opt, 
int pred, dvintx & dst_0, dvintx & dst_1); 

Additional details  
 

For example, [P3] VMAddHHW V0:V1, V2:V3, AC0:AC3 has the following data layout and 

behavior:  

V0: D[0] D[2] D[4] D[6] … D[28] D[30] 

V1: D[1] D[3] D[5] D[7] … D[29] D[31] 

V2: C[0] C[2] C[4] C[6] … C[28] C[30] 

V3: C[1] C[3] C[5] C[7] … C[29] C[31] 

AC0: ACC[0] ACC[4] … ACC[28] 

AC1: ACC[2] ACC[6] … ACC[30] 

AC2: ACC[1] ACC[5] … ACC[29] 

AC3: ACC[3] ACC[7] … ACC[31] 

  ACC[i] = P3 ? (ACC[i] + D[i] * C[i]) : (D[i] * C[i]); 
 

9.8.7.5 VMSUB_CA 

Instruction name VMSUB_CA 

Functionality Vector multiply-subtract 

Assembly format <pred> VMSub<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst   

       

pred = none, [P2..P15] 

type = {B, H, BBH, HHW, WHW, W} 

.R0 omitted 

 

VMSub<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVsrc3dst        

 

type = {B, BBH, H, HHW, WHW, W} 
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Instruction name VMSUB_CA 

.R0 omitted 

Type and bit width  B: 32 x (9-bit src1/src2, 12-bit src3dst) 

H: 16 x (17-bit src1/src2, 24-bit src3dst) 

BBH: 32 x (9-bit src1/src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1/src2, 48-bit src3dst) 

WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )  

W: 8 x (33-bit src1/src2, 48-bit src3dst) 

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no 

support for Rsrc2. 

All other types support full set of rounding/truncation options and Rsrc2. 

Predication Available across lanes to clear accumulator (except W type) 

Source options src1: single vector register in VRF 

src2: single vector register in VRF or scalar register 

Destination options B/H/WHW:  src3dst: single vector register in ARF or VRF 

BBH/HHW: src3dst: double vector register in ARF or VRF 

Additional options  

Intrinsics/ operator // predicated 
vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred); 
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred); 
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred); 
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred); 
vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred); 
vintx vmsubw_t16(vintx src1, vintx src2, vintx src3, int pred); 
 
vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred); 
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred); 
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt, int pred); 
vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);  
 
// unpredicated 
vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt); 
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt); 
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt); 
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt); 
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt); 
vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt); 
vintx vmsubw_t16(vintx src1, vintx src2, vintx src3); 
 
vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt); 
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt); 
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt); 
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt); 
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Instruction name VMSUB_CA 

vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);  
 
// Double vector pseudo intrinsics, when (rnd_opt != 0) 
dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmsubh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
 
void dvmsubbh(dvcharx src1, dvcharx src2, dvshortx src30, dvshortx src31, u3imm 
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1); 
 
void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src30, dvintx src31, u3imm  
rnd_opt, int pred, dvintx & dst0, dvintx & dst1); 
 
dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmsubh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);  
 
void dvmsubbh(dvcharx src1, int src2, dvshortx src30, dvshortx src31, u3imm  
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1); 
 
void dvmsubhw(dvshortx src1, int src2, dvintx src30, dvintx src31, u3imm rnd_opt,  
int pred, dvintx & dst0, dvintx & dst1); 

Additional details For each lane, src3dst –= round(src1 * src2, rnd_opt), using the specified B/H/W lane, and 

taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-bit 

of each W lane. 

When predicate is off, only multiply-round is performed, src3dst = round(src1 * src2, 

rnd_opt), effectively clearing the accumulator. 

For BBH/HHW, destination double vector registers are deinterleaved between the two 

vector registers. See Data Ordering in Single and Double Vector Registers for data 

ordering in single/double vector registers. 

See Types and Data Widths for rounding/truncating options. For W,.R0/T4/T8/T16 

options are supported. 

Note that we do not support scalar source 2 when source 2 is of the Word type. This is 

because for Word type we would like to use 33 bits so we can support both signed 32-bit 

and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits, 

and we do not want to create variation of behavior between source 2 being from a vector 

or a scalar, nor do we want to have Signed/Unsigned designation in the instruction itself 

(like scalar having LMULSS/SU/UU), so we just don’t support scalar source 2. 

See VMAdd_CA for data layout and behavior examples. 
 

Instruction name VMSUB_CA (Gen-2 double vector/throughput) 

Functionality Vector multiply-subtract 

Assembly format <pred> VMSub<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,  

                               DACsrc3dst /QACsrc3dst 

 

pred = none, [P2..P15] 
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Instruction name VMSUB_CA (Gen-2 double vector/throughput) 

 

type = {B, BBH, H, HHW, WHW, W} 

.R0 only for BBH, HHW, WHW 

.R0/T4/T8/T16 for W 

Type and bit width  B:    2 x 32 x (9-bit src1/src2, 12-bit src3dst) 

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst) 

H:    2 x 16 x (17-bit src1/src2, 24-bit src3dst) 

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst) 

WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )  

W:    2 x 8 x (33-bit src1/src2, 48-bit src3dst)  

 

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support 

for Rsrc2. 

All other types support no rounding/truncation option (R0) and Rsrc2.  

Predication Available across lanes to clear accumulator 

Source options src1: double vector register in VRF 

src2: double vector register in VRF/WRF (all types) or scalar register (all except W type) 

Destination 

options 

B/H/WHW/W:   src3dst: double vector register in ARF 

BBH/HHW: src3dst: quad vector register in ARF  

Additional options  

Intrinsics/ operator // Note that some of the following intrinsic function names are the same as double vector  
// pseudo intrinsic functions in the non-double vector/throughput variations of VMSub_CA.  
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double  
// vector/throughput instructions when (rnd_opt == 0). Otherwise, each intrinsic function  
// maps to 2 instances of the single vector instructions. For w type, the double  
// vector intrinsic function always maps to a double vector/throughput instruction. 
 
dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmsubh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubw_t16(dvintx src1, dvintx src2, dvintx src3, int pred); 
 
void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src3_0, dvintx src3_1, u3imm  
rnd_opt, int pred, dvintx & dst_0, dvintx & dst_1); 
 
void dvmsubbh(dvcharx src1, dvcharx src2, dvshortx src3_0, dvshortx src3_1, u3imm 
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred); 
dvshortx dvmsubh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred); 
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred); 
 
void dvmsubbh(dvcharx src1, int src2, dvshortx src3_0, dvshortx src3_1, u3imm  
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Instruction name VMSUB_CA (Gen-2 double vector/throughput) 

rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
void dvmsubhw(dvshortx src1, int src2, dvintx src3_0, dvintx src3_1, u3imm rnd_opt, 
int pred, dvintx & dst_0, dvintx & dst_1); 

Additional details  

See VMAdd_CA for data layout and behavior examples. 

9.8.7.6 VMULWWL 

Instruction name VMULWWL 

Functionality Vector long multiply 

Assembly format VMul<type> Vsrc1, Vsrc2, DVdst/DACdst  

Type and bit width  WWL: 8 x (33-bit src1/src2 → 66-bit → 2 x 48-bit)  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options dst: double vector register in VRF or ARF, lower 32-bit zero-extended in the low 

register, upper 34-bit sign-extended in the high register 

Additional options  

Intrinsics/operator dvintx vmulwl(vintx src1, vintx src2); 

Additional details For each lane, dst = src1 * src2. 

Destination double vector registers are low/high deinterleaved between the two 

vector registers. See 6.2.3.6 for data ordering in single/double vector registers. 

 

While VMulWWL V1, V2, V4:V5 has the following data layout and behavior: 

V1: D[0] D[1] … D[7] 

V2: C[0] C[1] … C[7] 

V4: P[0].lo P[1].lo … P[7].lo 

V5: P[0].hi P[1].hi … P[7].hi 
 

P[i] = D[i] * C[i];   // C[i], D[i] taken from 33 LSBs of each lane 

P[i].lo = P[i] & ((1 << 32) – 1); 

P[i].hi = P[i] >> 32; 
 

9.8.7.7 VCMUL 

Instruction name VCMUL (Gen-1) 

Functionality Vector complex multiply 
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Instruction name VCMUL (Gen-1) 

Assembly format VCMul<type>.R/T<bits> Vsrc1, Vsrc2, Vdst 

 

.R0 is omitted 

Type and bit width  H: 8 x (complex 17-bit src1/src2 → 24-bit dst)  

HHW: 8 x (complex 17-bit src1/src2 → 48-bit dst) 

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 

Destination options H dst: single vector register in VRF 

HHW dst: double vector register in VRF 

Additional options  

Intrinsics/operator vshortx vcmulh(vshortx src1, vshortx src2, u3imm rnd_opt); 
dvintx vcmulhw(vshortx src1, vshortx src2, u3imm rnd_opt); 
// double vector pseudo intrinsics 
dvshortx dvcmulh(dvshortx src1, dvshortx src2, u3imm rnd_opt); 

Additional details Real/imaginary lane interleaved (even lane = real, odd lane = imaginary). 

Vdst.r = round(Vsrc1.r * Vsrc2.r, nbits) – round(Vsrc1.i * Vsrc2.i, nbits) 

Vdst.i = round(Vsrc1.r * Vsrc2.i, nbits) + round(Vsrc1.i * Vsrc2.r, nbits) 

or 

Vdst.r = trunc(Vsrc1.r * Vsrc2.r, nbits) – trunc(Vsrc1.i * Vsrc2.i, nbits) 

Vdst.i = trunc(Vsrc1.r * Vsrc2.i, nbits) + trunc(Vsrc1.i * Vsrc2.r, nbits) 

 
 

For example, VCMulH.R7 V1, V2, V3 has the following data layout and behavior: 
 

V1: DR[0] DI[0] DR[1] DI[1] … DR[7] DI[7] 

V2: CR[0] CI[0] CR[1] CI[1] … CR[7] CI[7] 

V3: PR[0] PI[0] PR[1] PI[1] … PR[7] PI[7] 
 

PR[i] = round(DR[i] * CR[i] , 7) – round(DI[i] * CI[i], 7);  

PI[i] = round(DR[i] * CI[i] , 7) + round(DI[i] * CR[i], 7);  

// C*[i], D*[i] taken from 17 LSBs of each lane 
 

While VCMulHHW.T16 V1, V2, V4:V5 has the following data layout and behavior: 
 

V1: DR[0] DI[0] DR[1] DI[1] … DR[7] DI[7] 

V2: CR[0] CI[0] CR[1] CI[1] … CR[7] CI[7] 

V4: PR[0] PR[1] … PR[7] 

V5: PI[0] PI[1]  PI[7] 

 

PR[i] = truncate(DR[i] * CR[i] , 16) – truncate (DI[i] * CI[i], 16);  
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PI[i] = truncate (DR[i] * CI[i] , 16) + truncate (DI[i] * CR[i], 16);  

// C*[i], D*[i] taken from 17 LSBs of each lane 
 

The following instruction is added in Gen-2 VPU to accelerate 16-bit x 16-bit and 32-bit x 

16-bit FFT by 2x. 
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Instruction name VCMUL (added in Gen-2) 

Functionality Vector complex multiply 

Assembly format VCMulHHW DVsrc1, DWsrc2, QACdst 

VCMulWHW DVsrc1, Wsrc2, DACdst 

VCMulW.T16 DVsrc1, DWsrc2, DACdst 

Type and bit width  HHW: 16 x (complex 17-bit src1/src2 → 48-bit dst) 

WHW: 8 x (complex 33-bit src1, 17-bit src2 → 48-bit dst) 

W: 8 x (complex 33-bit src1/src2 → 48-bit dst) 

Predication not available 

Source options src1: double vector register real in .lo, imaginary in .hi, in VRF 

src2: HHW/W: double vector register real in .lo, imaginary in .hi, in WRF  

     WHW: single vector register real/imaginary interleaved in WRF 

 

NOTE THAT storage format is different from single-vector VCMul instructions. In 

single-vector instructions real/imaginary are interleaved in a single vector, whereas 

in double-vector instructions real/imaginary are store in .lo and .hi single vector 

respectively. 

Destination options HHW: quad vector register with even real in .q0, odd real in .q1, even imaginary in 

.q2, odd imaginary in .q3, in ARF  

WHW/W: double vector register with real in .lo, imaginary in .hi, in ARF 

Additional options  

Intrinsics/operator void dvcmulhw(dvshortx src1, dvshortx src2, dvintx &outr, dvintx &outi); 
dvintx dvcmulwhw(dvintx src1, vshortx src2); 
dvintx dvcmulw_t16(dvintx src1, dvintx src2); 

Additional details For HHW/WHW: 

dst.r = src1.r * src2.r – src1.i * src2.i 

dst.i = src1.r * src2.i + src1.i * src2.r 

 

For W: 

dst.r = (src1.r * src2.r >> 16) – (src1.i * src2.i >> 16) 

dst.i = (src1.r * src2.i >> 16) + (src1.i * src2.r >> 16) 
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For example, VCMulHHW V0:V1, W2:W3, AC4:AC7 has the following data layout and 

behavior: 

V0: DR[0] DR[1] … DR[14] DR[15] 

V1: DI[0] DI[1] … DI[14] DI[15] 

W2: CR[0] CR[1] … CR[14] CR[15] 

W3: CI[0] CI[1] … CI[14] CI[15] 

AC4: PR[0] … PR[14] 

AC5: PR[1] … PR[15] 

AC6: PI[0] … PI[14] 

AC7: PI[1] … PI[15] 

PR[i] = DR[i] * CR[i] – DI[i] * CI[i];  

PI[i] = DR[i] * CI[i] + DI[i] * CR[i];  

// C*[i], D*[i] taken from 17 LSBs of each lane 
 

For example, VCMulWHW V0:V1, W2, AC4:AC5 has the following data layout and 

behavior: 

V0: DR[0] DR[1] … DR[6] DR[7] 

V1: DI[0] DI[1] … DI[6] DI[7] 

W2: CR[0] CI[0] CR[1] CI[1] … CR[6] CI[6] CR[7] CI[7] 

AC4: PR[0] PR[1] … PR[6] PR[7] 

AC5: PI[0] PI[1] … PI[6] PI[7] 
 

PR[i] = DR[i] * CR[i] – DI[i] * CI[i];  // D*[i] taken from 33 LSBs of each lane,  

PI[i] = DR[i] * CI[i] + DI[i] * CR[i];  // C*[i] taken from 17 LSBs of each lane 
 

For example, VCMulW.T16 V0:V1, W2:W3, AC4:AC5 has the following data layout and 

behavior: 

V0: DR[0] DR[1] … DR[7] 

V1: DI[0] DI[1] … DI[7] 

W2: CR[0] CR[1] … CR[7] 

W3: CI[0] CI[1] … CI[7] 

AC4: PR[0] PR[1] … PR[7] 

AC5: PI[0] PI[1] … PI[7] 
 

PR[i] = truncate(DR[i] * CR[i], 16) – truncate(DI[i] * CI[i] , 16);  // C*[i], D*[i] taken 

from  

PI[i] = truncate(DR[i] * CI[i] , 16) + truncate(DI[i] * CR[i] , 16);  // 33 LSBs of each 

lane 
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9.8.7.8 VDOTP2_CA 

Instruction name VDOTP2_CA 

Functionality Vector 2-term dot product 

Assembly format <pred> VDotP2BBH/HHW_CA Vsrc1a, Vsrc1b, Vsrc2, DACsrc3dst 

<pred> VDotP2WHW_CA Vsrc1a, Vsrc1b, Vsrc2, ACsrc3dst 

<pred> VDotP2W_CA.T16 Vsrc1a, Vsrc1b, Vsrc2, ACsrc3dst 

 

pred = none, [P2..P15] 

.T16 is available only for W type and is always applied with W type. 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst) 

WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)  

W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: single vector register in VRF 

src1b: single vector register in VRF 

src2: single vector register in VRF  

Destination options src3dst: double vector register (BBH, HHW types) in ARF 

src3dst: single vector register (WHW, W type) in ARF 

Additional options  

Intrinsics/operator dvshortx vdotp2_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx 
src3dst, int pred); 
 
dvintx vdotp2_hhw(vshortx src1a, vshortx src1b, vshortx src2, dvintx 
src3dst, int pred); 
 
vintx vdotp2_whw(vintx src1a, vintx src1b, vshortx src2, vintx src3dst, 
int pred); 
 
vintx vdotp2_w_t16(vintx src1a, vintx src1b, vintx src2, vintx src3dst, 
int pred); 

Additional details When predicate is off, destination is replaced with the sum of 2 products,  

    Vsrc3dst = Vsrc1a * Vsrc2_even + Vsrc1b * Vsrc2_odd,  

effectively clearing the accumulator.  

Otherwise, the sum of 2 products is added to the accumulator 

    Vsrc3dst += Vsrc1a * Vsrc2_even + Vsrc1b * Vsrc2_odd  

 

BBH: Treat coefficient vector as byte vector (32 x 9-bit), but share a pair of 

coefficients between a pair of accumulators.  

for i = 0..15: 

Vsrc3dst[2*i]   += Vsrc1a[2*i]  * Vsrc2[2*i] + Vsrc1b[2*i]  * Vsrc2[2*i+1] 

Vsrc3dst[2*i+1] += Vsrc1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1] 
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Instruction name VDOTP2_CA 

HHW: Treat coefficient vector as half-word vector (16 x 17-bit), but share a pair of 

coefficients between a pair of accumulators.  

for i = 0..7: 

Vsrc3dst[2*i]   += Vsrc1a[2*i]   * Vsrc2[2*i] + Vsrc1b[2*i]  * Vsrc2[2*i+1] 

Vsrc3dst[2*i+1] += Vsrc1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1] 

 

WHW: Treat coefficient vector as half-word vector (16 x 17-bit).  

for i = 0..7: 

Vsrc3dst[i] += Vsrc1a[i] * Vsrc2[2*i] + Vsrc1b[i] * Vsrc2[2*i+1] 

 

W: Treat coefficient vector as word vector (8 x 48-bit) and each pair of W lanes 

share 2 coefficients. Each product is truncated by 16 bits.  

for i = 0..3: 

Vsrc3dst[2*i]  += (Vsrc1a[2*i] * Vsrc2[2*i]>>16) + (Vsrc1b[2*i] * Vsrc2[2*i+1]>>16) 

Vsrc3dst[2*i+1] += (Vsrc1a[2*i+1] * Vsrc2[2*i]>>16) + (Vsrc1b[2*i+1] * 

Vsrc2[2*i+1]>>16) 

 

See 6.2.3.6 for data ordering in single/double vector registers. 
 

For example, VDotP2BBH_CA V1, V2, V3, AC2:AC3 has the following data layout and 

behavior: 

V1: D[0] D[1] D[2] D[3] … D[30] D[31] 

V2: E[0] E[1] E[2] E[3] … E[30] E[31] 

V3: C[0][0] C[1][0] C[0][1] C[1][1] … C[0][15] C[1][15] 

AC2: A[0] A[2] … A[30] 

AC3: A[1] A[3] … A[31] 

A[2*i]    = A[2*i]    + C[0][i] * D[2*i]    + C[1][i] * E[2*i];  

A[2*i + 1] = A[2*I + 1] + C[0][i] * D[2*i + 1] + C[1][i] * E[2*i + 1];  
 

While VDotP2W.T16 V1, V2, V3, AC2 has the following data layout and behavior: 

V1: D[0] D[1] D[2] D[3] … D[6] D[7] 

V2: E[0] E[1] E[2] E[3] … E[6] E[7] 

V3: C[0][0] C[1][0] C[0][1] C[1][1] … C[0][3] C[1][3] 

AC2: A[0] A[1] A[2] A[3] … A[6] A[7] 

A[2*i]    = A[2*i]    + truncate(C[0][i] * D[2*i], 16)    + truncate(C[1][i] * E[2*i], 16);  

A[2*i + 1] = A[2*I + 1] + truncate(C[0][i] * D[2*i + 1], 16) + truncate( C[1][i] * E[2*i + 1], 

16);  
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9.8.7.9 VDOTPN2_CA 

Instruction name VDOTPN2_CA  

Functionality Vector 2-term dot product variation  

Assembly format <pred> VDotPN2<type>_CA Vsrc1a, Vsrc1b, Vsrc2, Vsrc3dst 

pred = none, [P2..P15] 

Type and bit width  WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)  

Predication Available across lanes to clear accumulator 

Source options src1a: single vector register in VRF 

src1b: single vector register in VRF 

src2: single vector register in VRF 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vintx vdotpn2_whw(vintx src1a, vintx src1b, vshortx src2, vintx src3dst, 
int pred); 

Additional details Perform multiply add/sub, Vsrc3dst += Vsrc1a * Vsrc2_even – Vsrc1b * Vsrc2_odd 

when predicate is on. 

When predicate is off, destination is replaced with the difference of products, 

Vsrc3dst = Vsrc1a * Vsrc2_even – Vsrc1b * Vsrc2_odd, effectively clearing the 

accumulator. 

Treat coefficient vector as half-word vector. 

for i = 0..7: 

Vsrc3dst[i] += Vsrc1a[i]*Vsrc2[2*i] – Vsrc1b[i]*Vsrc2[2*i+1] 

See VDotP2_CA for data layout and behavior. 
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9.8.7.10 VBLEND 

Instruction name VBLEND 

Functionality Vector blend 

Assembly format VBlend<type> Vsrc1a, Vsrc1b, Vsrc2/Rsrc2, Vdst 

VBlend<type> Wsrc1a, Wsrc1b, Vsrc2/Rsrc2, Vdst 

Type and bit width  B: 32 x ( 9-bit signed src1a/src1b, 8-bit unsigned src2 → 12-bit dst)  

H: 16 x ( 17-bit signed src1a/src1b, 16-bit unsigned src2 → 24-bit dst) 

W: 8 x ( 33-bit signed src1a/src1b, 32-bit unsigned src2 → 48-bit dst) 

Predication not available 

Source options src1a: single vector register in VRF or WRF 

src1b: single vector register in VRF or WRF 

src2: single vector register in VRF or scalar register 

Destination options dst: single vector register in VRF 

Additional options  

Intrinsics/operator vcharx vblend(vcharx src1a, vcharx src1b, vcharx src2); 
vshortx vblend(vshortx src1a, vshortx src1b, vshortx src2); 
vintx vblendw_q15(vintx src1a, vintx src1b, vintx src2); 
vcharx vblend(vcharx src1a, vcharx src1b, unsigned int src2); 
vshortx vblend(vshortx src1a, vshortx src1b, unsigned int src2); 
vintx vblendw_q15(vintx src1a, vintx src1b, unsigned int src2); 
 
// double vector pseudo intrinsics 
dvcharx dvblend(dvcharx src1a, dvcharx src1b, dvcharx src2); 
dvshortx dvblend(dvshortx src1a, dvshortx src1b, dvshortx src2); 
dvintx dvblendw_q15(dvintx src1a, dvintx src1b, dvintx src2); 
dvcharx dvblend(dvcharx src1a, dvcharx src1b, unsigned int src2); 
dvshortx dvblend(dvshortx src1a, dvshortx src1b, unsigned int src2); 
dvintx dvblendw_q15(dvintx src1a, dvintx src1b, unsigned int src2); 

Additional details Treat Vsrc1a lower 9/17/33 bits as X0, Vsrc1b lower 9/17/33 bits as X1, Vsrc2 lower 

8/16/32 bits as unsigned alpha blending factor with Q7/Q15/Q31 fixed-point 

representation. 

B/H: Vdst = X0 + round(X1*alpha – X0*alpha, nbits); 

W:   Vdst = (X0 << 15) + (X1*alpha >> 16) – (X0*alpha >> 16); 

nrbits = 7 for type B, 15 for type H (hard-wired, not as .R<nbits> option) 

 

Note that we do support scalar source 2 when source 2 is of the Word type, as 

opposed to VMAdd/VMSub not supporting scalar source 2. This is because this 

instruction supports only unsigned type for source 2, and indeed we can get 

unsigned 32-bit value from a scalar register. 
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9.8.7.11 VHBLEND_I 

Instruction name VHBLEND_I  

Functionality Vector blend horizontal interleaved 

Assembly format VHBlend_I<type> Vsrc1a, Vsrc1b, Vsrc2, Vdst 

Type and bit width  B: 32 x ( 9-bit signed src1a/src1b, 8-bit unsigned src2 → 12-bit dst)  

H: 16 x ( 17-bit signed src1a/src1b, 16-bit unsigned src2 → 24-bit dst) 

W: 8 x ( 33-bit signed src1a/src1b, 32-bit unsigned src2 → 48-bit dst) 

BHB: like B but with each lane pair sharing blending factor in Halfword lanes 

Predication not available 

Source options src1a: single vector register in VRF  

src1b: single vector register in VRF  

src2: single vector register in VRF  

Destination options dst: single vector register in VRF 

Additional options  

Intrinsics/operator vcharx vhblend_i(vcharx src1a, vcharx src1b, vcharx src2); 
vshortx vhblend_i(vshortx src1a, vshortx src1b, vshortx src2); 
vintx  vhblend_iw_q15(vintx src1a, vintx src1b, vintx src2); 
vcharx vhblend_i(vcharx src1a, vcharx src1b, vshortx src2); // BHB 
 
// double vector pseudo intrinsics 
dvcharx dvhblend_i(dvcharx src1a, dvcharx src1b, dvcharx src2); 
dvshortx dvhblend_i(dvshortx src1a, dvshortx src1b, dvshortx src2); 
dvintx  dvhblend_iw_q15(dvintx src1a, dvintx src1b, dvintx src2); 

Additional details Perform blending within each pair of lanes in src1a, src1b and interleave outcome. 

In each even/odd pair of extended Byte/Halfword/Word lanes, extract 9/17/33 LSBs 

as signed src1a/src1b for X0/X1, extract 8/16/32 LSBs of src2 for as unsigned 

blending factor, according to this pattern for B/H/W types 

src1a A[0] B[0] 

src1b A[1] B[1] 

src2 alpha[0] alpha[1]  

dst Y[0] Y[1] 

 

For BHB type, both lanes share the same blending factor:  

src1a A[0] B[0] 

src1b A[1] B[1] 

src2 alpha[0] = alpha[1] 

dst Y[0] Y[1] 

 

The datapath carries out: 

B/H/BHB: Y[i] = A[i] + round(B[i] * alpha[i] – A[i] *alpha[i], nbits); 

         i = {0, 1}, nrbits = 7 for type B/BHB, 15 for type H  

W: Y[i] = (A[i] << 15) + (B[i]*alpha[i] >> 16) – (A[i]*alpha[i] >> 16); 
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Instruction name VHBLEND_I  

Note that the BHB variation still support Byte-type blending factor (unsigned 8 bits 

in Q7 fixed-point), just that the lane position of blending factors are in even Byte 

lanes, as if it’s a Halfword type vector. 
 

VHBlend_I is intended to use with DVLUT_2x2pt to achieve bilinear interpolation with 

maximal throughput bottlenecked by the lookup. 

As DVLUT_2x2pt for B/H/W type fetch up to 8/8/4 sets of 2x2 table entries, after 

interpolation the yield is half a single vector worth of outcome. To maximize throughput, 

at a minimum we would bundle up two DVLUT_2x2pt instructions and subsequent 3 

blending instructions. Then we will need to unroll the loop to compensate for load-to-use 

latency. 

The intended code loop is as follows for halfword (short) type: 

for (...) { 
  idx = dvshort_load_di(...);   // .lo: 0, 2, ...    .hi: 1, 3, ... 
  x_frac = dvshort_load_perm(...); // .lo: 0, 0, 2, 2, ... .hi: 1, 1, 3, 3, ... 
  y_frac = vshort_load(...);     
  entries1 = dvlut_2x2pt_8h(table, idx.lo); 
  entries2 = dvlut_2x2pt_8h(table, idx.hi); 
  y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation 
  y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation 
  out = vhblend_i(y_intrp1, y_intrp2, y_frac);        // vert interpolation 
  vstore(out); 
} 
 

Similarly for word (int) type: 
 

for (...) { 
  idx = dvint_load_di(...);   // .lo: 0, 2, ...    .hi: 1, 3, ... 
  x_frac = dvint_load_perm(...); // .lo: 0, 0, 2, 2, ... .hi: 1, 1, 3, 3, ... 
  y_frac = vint_load(...);     
  entries1 = dvlut_2x2pt_4w(table, idx.lo); 
  entries2 = dvlut_2x2pt_4w(table, idx.hi); 
  y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation 
  y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation 
  out = vhblend_i(y_intrp1, y_intrp2, y_frac);        // vert interpolation 
  vstore(out); 
} 
 

For byte (char) type, there is no load-permute feature, so we will have to use byte-to-

halfword promoting load and the BHB type variation of VHBlend: 
 

for (...) { 
  idx = dvchar_load_di(...);            // .lo: 0, 2, ...       .hi: 1, 3, ... 
  x_frac = vchar_dvshortx_load_di(...); // .lo: 0, -, 2, -, ... .hi: 1, -, 3, -, ... 
  y_frac = vchar_load(...); 
  entries1 = dvlut_2x2pt_8b(table, idx.lo); 
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  entries2 = dvlut_2x2pt_8b(table, idx.hi); 
  y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation 
  y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation 
  out = vhblend_i(y_intrp1, y_intrp2, y_frac);               // vert interpolation 
  vstore(out); 
} 
 

9.8.7.12 VMUL2 

Instruction name VMUL2  

Functionality Vector double multiply 

Assembly format VMul2<type>.R/T<bits> DVsrc1, Vsrc2/Rsrc2, DVdst/DACdst 

Rsrc2 option is available for B and H types only. 

WHW type requires .T16 

.R0 is omitted 

Type and bit width  B: 32 x (9-bit src1/src2 → 12-bit dst)   

H: 16 x (17-bit src1/src2 → 24-bit dst) 

WHW: 8 x (33-bit src1 x 17-bit src2 → 48-bit dst) only with .T16 

Predication not available  

Source options src1: double vector register in VRF 

src2: single vector register in VRF or single scalar register (B and H types) 

Destination options dst: double vector register in VRF or ARF 

Additional options  

Intrinsics/operator dvcharx dvmulb(dvcharx src1, vcharx src2, u3imm rnd_opt); 
dvshortx dvmulh(dvshortx src1, vshortx src2, u3imm rnd_opt); 
dvintx  dvmulwhw_t16(dvintx  src1, vintx  src2); 
dvcharx dvmulb(dvcharx src1, int src2,   u3imm rnd_opt); 
dvshortx dvmulh(dvshortx src1, int src2,   u3imm rnd_opt); 

Additional details Perform 2 sets of multiplication, sharing src2 

dst.lo = round(src1.lo * src2, rnd_opt) 

dst.hi = round(src1.hi * src2, rnd_opt) 

 

See 9.8.7.1 for rounding/truncating options.  
 

For example, VMu2lH.R7 V0:V1, V2, AC4:AC5 has the following data layout and behavior: 

V0: D[0] D[1] … D[15] 

V1: E[0] E[1] … E[15] 

V2: C[0] C[1] … C[15] 

AC4: P[0] P[1] … P[15] 

AC5: Q[0] Q[1] … Q[15] 

P[i] = round(C[i] * D[i], 7); // C[i], D[i], E[i] taken from 17 LSBs of each lane 

Q[i] = round(C[i] * E[i], 7);   
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9.8.7.13 VFILT4_CA 

This is an instruction added in Gen-2 VPU to accelerate filtering and CNN applications by 

2x.  

Instruction name VFILT4_CA 

Functionality Vector 4-term filter 

Assembly format <pred> VFilt4<type>_CA Vsrc1a, Vsrc1b, Wsrc2, DACsrc3dst 

 

pred = none, [P2..P15] 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: single vector register in VRF 

src1b: single vector register in VRF 

src2: single vector register in WRF 

Destination options src3dst: double vector register in ARF 

Additional options  

Intrinsics/operator dvshortx vfilt4_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx 
src3dst, int pred); 
 
dvintx vfilt4_hhw(vshortx src1a, vshortx src1b, vshortx src2, dvintx 
src3dst, int pred); 

Additional details When predicate is off, destination is replaced with the sum of 4 products,  

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to 

the accumulator. 

Data entries for the products are formed with 4-tap filtering pattern, treating 

src1a and src1b as two data vectors offset by 4 elements. Coefficient entries are 

shared among 4 outputs. Accumulators are double vector registers to 

accommodate type promotion. 

BBH data, coefficient, accumulator layout per 48-bit and 

HHW data, coefficient, accumulator layout per 96-bit: 

 

src1a D[0] D[1] D[2] D[3] 

src1b D[4] D[5] D[6] D[7] 

src2 C[0] C[1] C[2] C[3] 

src3dst.lo ACC[0] ACC[2] 

src3dst.hi ACC[1] ACC[3] 

 

ACC[0] += D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3]; 

ACC[1] += D[1] * C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3]; 

ACC[2] += D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3]; 

ACC[3] += D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3]; 
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Instruction name VFILT4_CA 

See Data Ordering in Single and Double Vector Registers for data ordering in 

single/double vector registers. 
 

9.8.7.14 VFILT4x2_CA 

This is an instruction added in Gen-2 VPU to accelerate 8-bit/16-bit filtering and CNN 

applications by 4x. It’s doing twice the amount of work compared to VFilt4_CA by 

accepting two sets of coefficients (src2) and accumulating onto two sets of 

accumulators.  

Instruction name VFILT4x2_CA 

Functionality Vector 4-term filter 

Assembly format <pred> VFilt4x2<type>_CA Vsrc1a, Vsrc1b, DWsrc2, QACsrc3dst 

 

pred = none, [P2..P15] 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: single vector register in VRF 

src1b: single vector register in VRF 

src2: double vector register in WRF 

Destination options src3dst: quad vector register in ARF 

Additional options  

Intrinsics/operator void vfilt4x2_bbh(vcharx src1a, vcharx src1b, dvcharx src2, dvshortx src3_0, 
dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
void vfilt4x2_hhw(vshortx src1a, vshortx src1b, dvshortx src2, dvintx 
src3_0, dvintx src3_1, int pred, dvintx & dst_0, dvintx & dst_1); 

Additional details When predicate is off, destination is replaced with the sum of 4 products,  

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to 

the accumulator. 

Data entries for the products are formed with horizontal 4-tap filtering pattern, 

treating src1a and src1b as two data vectors offset by 4 elements. Coefficient 

entries are shared among 4 outputs. There are two sets of coefficients and two 

sets of accumulators. Accumulators are quad vector registers to accommodate 

type promotion. 

 

BBH data, coefficient, accumulator layout per 48-bit and 

HHW data, coefficient, accumulator layout per 96-bit: 

 

src1a D[0] D[1] D[2] D[3] 

src1b D[4] D[5] D[6] D[7] 

src2.lo C[0][0] C[0][1] C[0][2] C[0][3] 
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Instruction name VFILT4x2_CA 

src2.hi C[1][0] C[1][1] C[1][2] C[1][3] 

src3dst.q0 ACC[0][0] ACC[0][2] 

src3dst.q1 ACC[0][1] ACC[0][3] 

src3dst.q2 ACC[1][0] ACC[1][2] 

src3dst.q3 ACC[1][1] ACC[1][3] 

 

ACC[0][0] += D[0] * C[0][0] + D[1] * C[0][1] + D[2] * C[0][2] + D[3] * C[0][3]; 

ACC[0][1] += D[1] * C[0][0] + D[2] * C[0][1] + D[3] * C[0][2] + D[4] * C[0][3]; 

ACC[0][2] += D[2] * C[0][0] + D[3] * C[0][1] + D[4] * C[0][2] + D[5] * C[0][3]; 

ACC[0][3] += D[3] * C[0][0] + D[4] * C[0][1] + D[5] * C[0][2] + D[6] * C[0][3]; 

 

ACC[1][0] += D[0] * C[1][0] + D[1] * C[1][1] + D[2] * C[1][2] + D[3] * C[1][3]; 

ACC[1][1] += D[1] * C[1][0] + D[2] * C[1][1] + D[3] * C[1][2] + D[4] * C[1][3]; 

ACC[1][2] += D[2] * C[1][0] + D[3] * C[1][1] + D[4] * C[1][2] + D[5] * C[1][3]; 

ACC[1][3] += D[3] * C[1][0] + D[4] * C[1][1] + D[5] * C[1][2] + D[6] * C[1][3]; 

 
 

9.8.7.15 VFILT4x2x2_CA 

This is an instruction added in Gen-2 VPU to further accelerate 8-bit CNN applications by 

2x (compared to VFilt4x2). Source 1a and 1b are double vectors each, and accumulator 

bit width is extended from 24-bit to 32-bit in VFilt4x2x2BBW_CA.  This instruction 

delivers 4 horizontal taps x 2 deep/vertical taps x 2 sets of accumulators x 32 lanes = 

512 INT8 MACs per instruction. Per VPU we have 1K INT8 MACs, and per PVA we have 

2K INT8 MACs. This is 8X of Gen-1 PVA INT8 MAC performance.  
 

Instruction name VFILT4x2x2_CA 

Functionality Vector 4x2-term filter x 2 sets 

Assembly format <pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b, DWsrc2, QACsrc3dst 

<pred> VFilt4x2x2BBW_CA DVsrc1a, DVsrc1b, DWsrc2, QXACsrc3dst 

 

pred = none, [P2..P15] 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: double vector register in VRF 

src1b: double vector register in VRF 

src2: double vector register in WRF 

Destination options src3dst: BBH: quad vector register in ARF 

       BBW: quad vector register in XARF  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  358 

Instruction name VFILT4x2x2_CA 

Additional options  

Intrinsics/operator void vfilt4x2x2_bbh(dvcharx src1a, dvcharx src1b, dvcharx src2, dvshortx 
src3_0, dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
void vfilt4x2x2_bbw(dvcharx src1a, dvcharx src1b, dvcharx src2, dxvshortx 
src3_0, dxvshortx src3_1, int pred, dxvshortx & dst_0, dxvshortx & dst_1); 

Additional details When predicate is off, destination is replaced with the sum of 2x4 products,  

effectively clearing the accumulator. Otherwise, the sum of 2x4 products is added 

to the accumulator. 

Data entries for the products are formed with 4 (horizontal) x 2 (vertical or deep) 

tap filtering pattern, treating src1a and src1b as two sets of two data vectors 

offset by 8 elements. Coefficient entries are shared among 8 outputs in a slice. 

There are two sets of coefficients and two sets of accumulators.  

For BBH, each accumulator is 24-bit wide and mapped to quad vector in ARF. 

For BBW, each accumulator is 32-bit wide and mapped to quad vector in ARF as 

well as quad vector in XRF. Lower 24-bit comes from ARF and upper 8-bit comes 

from XRF.  
 

Data layout per group of 8 byte lanes for VFilt4x2x2BBH & VFilt4x2x2BBW: 
 

src1a.lo D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] 

src1a.hi D[8] D[9] D[10] D[11] D[12] D[13] D[14] D[15] 

src1b.lo E[0] E[1] E[2] E[3] E[4] E[5] E[6] E[7] 

src1b.hi E[8] E[9] E[10] E[11] E[12] E[13] E[14] E[15] 

src2.lo C[0][0][0] C[0][0][1] C[0][0][2] C[0][0][3] C[0][1][0] C[0][1][1] C[0][1][2] C[0][1][3] 

src2.hi C[1][0][0] C[1][0][1] C[1][0][2] C[1][0][3] C[1][1][0] C[1][1][1] C[1][1][2] C[1][1][3] 

src3dst.q0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] 

src3dst.q1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] 

src3dst.q2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] 

src3dst.q3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] 

 

For VFilt4x2x2BBW, XRF provides 8 upper bits for each accumulator:  
 

src3dst.x0  ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] 

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] 

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] 

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][1] ACC[1][7] 
 

ACC[0][0] += D[0] * C[0][0][0] + D[1] * C[0][0][1] + D[2] * C[0][0][2] + D[3] * C[0][0][3]  

         + E[0] * C[0][1][0] + E[1] * C[0][1][1] + E[2] * C[0][1][2] + E[3] * C[0][1][3]; 

ACC[0][1] += D[1] * C[0][0][0] + D[2] * C[0][0][1] + D[3] * C[0][0][2] + D[4] * C[0][0][3]  

         + E[1] * C[0][1][0] + E[2] * C[0][1][1] + E[3] * C[0][1][2] + E[4] * C[0][1][3]; 

ACC[0][2] += D[2] * C[0][0][0] + D[3] * C[0][0][1] + D[4] * C[0][0][2] + D[5] * C[0][0][3]  
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         + E[2] * C[0][1][0] + E[3] * C[0][1][1] + E[4] * C[0][1][2] + E[5] * C[0][1][3]; 

... 

ACC[0][7] += D[7] * C[0][0][0] + D[8] * C[0][0][1] + D[9] * C[0][0][2] + D[10] * C[0][0][3]  

         + E[7] * C[0][1][0] + E[8] * C[0][1][1] + E[9] * C[0][1][2] + E[10] * C[0][1][3]; 

 

ACC[1][0] += D[0] * C[1][0][0] + D[1] * C[1][0][1] + D[2] * C[1][0][2] + D[3] * C[1][0][3]  

         + E[0] * C[1][1][0] + E[1] * C[1][1][1] + E[2] * C[1][1][2] + E[3] * C[1][1][3]; 

 

ACC[1][1] += D[1] * C[1][0][0] + D[2] * C[1][0][1] + D[3] * C[1][0][2] + D[4] * C[1][0][3]  

         + E[1] * C[1][1][0] + E[2] * C[1][1][1] + E[3] * C[1][1][2] + E[4] * C[1][1][3]; 

ACC[1][2] += D[2] * C[1][0][0] + D[3] * C[1][0][1] + D[4] * C[1][0][2] + D[5] * C[1][0][3]  

         + E[2] * C[1][1][0] + E[3] * C[1][1][1] + E[4] * C[1][1][2] + E[5] * C[1][1][3]; 

... 

ACC[1][7] += D[7] * C[1][0][0] + D[8] * C[1][0][1] + D[9] * C[1][0][2] + D[10] * C[1][0][3]  

         + E[7] * C[1][1][0] + E[8] * C[1][1][1] + E[9] * C[1][1][2] + E[10] * C[1][1][3]; 
 

9.8.7.16 VXNORADD8x4x2_CA 

This is an instruction added in Gen-2 VPU to accelerate binary CNN convolution layers, by 

operating on 1-bit data/coefficients, and computing 8 horizontal taps x 4 deep taps x 2 

sets of accumulators x 64 lanes = 4K XNor-accumulate per instruction. This is equivalent 

to 4K binary MACs (one XNor-Add translating to 1 binary Multiply-Accumulate). Per VPU 

we have 8K binary MACs, and per PVA we have 16K binary MACs. This is 4X of INT8 MAC 

performance.  

Instruction name VXNorAdd8x4x2_CA 

Functionality Vector exclusive NOR 8x4 filter x 2 sets 

Assembly format <pred> VXNorAdd8x4x2_CA DVsrc1a, DVsrc1b, Wsrc2, QXACsrc3dst 

pred = none, [P2..P15] 

Type and bit width  Binary data/coefficients, extended charx (16-bit) accumulators 

Predication Available across lanes to clear accumulator 

Source options src1a: double vector register in VRF 

src1b: double vector register in VRF 

src2: single vector register in WRF 

Implicit PL scalar register 

Destination options src3dst:quad vector ARF + quad vector XRF 

Additional options  

Intrinsics/operator void vxnor_add8x4x2(dvcharx src1a, dvcharx src1b, vcharx src2, dxvcharx 
src3_0, dxvcharx src3_1, int pred, unsigned int mask, dxvcharx & dst_0, 
dxvcharx & dst_1); 

Additional details This instruction accelerates binary CNN 3D convolution. Per group of 8 byte lanes, 

this instruction delivers 1024 XNor-accumulate throughput per instruction via 8 

horizontal taps (S) x 4 deep taps (C) x 2 sets x 16 lanes of accumulator of XNOR-

add throughput. Each instruction delivers 8 x 4 x 2 x 64 = 4096 binary XNOR-

accumulate throughput. 
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Instruction name VXNorAdd8x4x2_CA 

Data is read from src1a and src1b (together 4 single registers supplying 4 rows of 

data). In each group of 8 byte lanes, each single vector source supplies 16 + 8 – 1 = 

23 bits from the first 3 extended byte lanes.  

Coefficients are read from src2. For 2 sets of 8x4 binary coefficients, we need 

2*8*4 = 64 bits, and they are read from 8 extended byte lanes of src2.  

Accumulators are read from and written back to src3dst, which is a quad 

extended ARF (XARF) register.  In each slice, we need 2 sets x 16 horizontal lanes x 

16-bit accumulator = 512 bits of accumulators, provided by 4 registers x 8 lanes x 

(12 + 4) bits from twice extended byte type = 512 bits of src3dst.  

A 32-bit mask is read from scalar register PL to enable/disable each XNor 

contribution to the accumulation. This is needed to trim the horizontal 8 taps 

and/or vertical 4 taps as needed to implement arbitrary weight tensor dimension 

through looping. For example, when S = 13 and C = 3, we would accumulate 

throughput looping, first 8 x 3 then 5 x 3 weight data, and would need to feed PL 

with correct mask values for these 2 sets of weight data.  

In a non-binary CNN, weights can be zero-padded as needed to trim the weight 

set. However, in binary CNN, we are matching activation binary with weight binary, 

and there is no room in the weight binary to encode a neutral weight value needed 

to trim down the weight tensor dimension. It’s technically possible to use 2 bits 

per tap of weight to encode “don’t care”, but this would double the weight storage 

and traffic so is less efficient. The weight mask provides a mechanism to trim the 

weight dimension. 

Horizontally overlapped 8x4 data bits are XNORed with 2 sets of horizontally 

shared 8x4 coefficient bits, then ANDed with the 8x4 mask bits. When predicate is 

off, the destination is replaced with the masked sum of XNOR terms, effectively 

clearing the accumulator. Otherwise, the masked sum of XNOR terms is added to 

the accumulator.  
 

Data layout per 96-bit: 

Lowest byte lane                                                    Highest byte lane 

src1a.lo D[0][0..7] D[0][8..15] D[0][16..23] D.C. D.C. D.C. D.C. D.C. 

src1a.hi D[1][0..7] D[1][8..15] D[2][16..23] D.C. D.C. D.C. D.C. D.C. 

src1b.lo D[2][0..7] D[2][8..15] D[2][16..23] D.C. D.C. D.C. D.C. D.C. 

src1b.hi D[3][0..7] D[3][8..15] D[3][16..23] D.C. D.C. D.C. D.C. D.C. 

src2 C[0][0][0..7] C[0][1][0..7] C[0][2][0..7] C[0][3][0..7] C[1][0][0..7] C[1][1][0..7] C[1][2][0..7] C[1][3][0..7] 

src3dst.q0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] ACC[0][8] ACC[0][10] ACC[0][12] ACC[0][14] 

src3dst.q1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] ACC[0][9] ACC[0][11] ACC[0][13] ACC[0][15] 

src3dst.q2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] ACC[1][8] ACC[1][10] ACC[1][12] ACC[1][14] 

src3dst.q3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] ACC[1][9] ACC[1][11] ACC[1][13] ACC[1][15] 
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XRF and ARF together provides the 16-bit accumulator as src3 and destination; XRF 

provides 4 upper bits and ARF provides the lower 12 bits for each accumulator:  
 

src3dst.x0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] ACC[0][8] ACC[0][10] ACC[0][12] ACC[0][14] 

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] ACC[0][9] ACC[0][11] ACC[0][13] ACC[0][15] 

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] ACC[1][8] ACC[1][10] ACC[1][12] ACC[1][14] 

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] ACC[1][9] ACC[1][11] ACC[1][13] ACC[1][15] 

In the data layout diagram, each column represents a 12-bit extended byte lane. Each 

“D.C.” entry represents a 12-bit don’t care value.  Each entry in the src1a/src1b/src2 

rows having 8 bits of activation/weight data also includes 4 upper don’t care bits. 

Activation inputs involved are indexed as D[C][W], C being input depth and W being 

horizontal index. Coefficients (or weights) are indexed as C[K][C][S], K being output 

depth, C being input depth, and S being kernel horizontal index. Accumulators are 

indexed as ACC[K][Q], K being output depth and Q being output horizontal index. Mask 

bits are indexed as mask[C][S], C being input depth and S being kernel horizontal index. 

The instructions carry out this nested for loop in each group of 8 byte lanes of vector 

math to add to the accumulators when predicate is true: 

for (k = 0..1) // output depth (K) 
  for (q=0..15) // output horizontal (Q) 
   for (s=0..7) // kernel horizontal (S) 
     ACC[k][q] += (mask[0][s] & ~(C[k][0][s] ^ D[0][q+s]))  
          + (mask[1][s] & ~(C[k][1][s] ^ D[1][q+s]))  
          + (mask[2][s] & ~(C[k][2][s] ^ D[2][q+s]))  
          + (mask[3][s] & ~(C[k][3][s] ^ D[3][q+s])); 

Otherwise (when predicate is false), we write bit counts of XNor between binary 

activation and weights to the accumulators, resulting in this behavior: 

for (k = 0..1) // output depth (K) 
  for (q=0..15) // output horizontal (Q) 
   ACC[k][q] = 0; 
   for (s=0..7) // kernel horizontal (S) 
     ACC[k][q] += (mask[0][s] & ~(C[k][0][s] ^ D[0][q+s]))  
          + (mask[1][s] & ~(C[k][1][s] ^ D[1][q+s]))  
          + (mask[2][s] & ~(C[k][2][s] ^ D[2][q+s]))  
          + (mask[3][s] & ~(C[k][3][s] ^ D[3][q+s])); 

For intended binary CNN mapping, the 4 slices are supplied with activation data with 16 

bits of offset between slices. It’s 16 bits because each slice produces 2 planes x 16 

horizontal outputs. We intend to use VLDPermHBU_P with permute indices {0, 1, 1, 1,  1, 

2, 2, 2,  2, 3, 3, 3,  3, 4, 4, 4} to permute bit-packed activation data in memory as 

Halfwords, then take the 16 permuted halfwords and zero-extend each 8-bit into 12-bit 

extended byte lane in each single vector register in src1a/src1b. 

The same 2 * 8 * 4 = 64 bits of weight data is replicated among slices, so we can use 

VLDPermHBU_P with permute indices {0, 1, 2, 3,  0, 1, 2, 3,  0, 1, 2, 3,  0, 1, 2, 3} to 

permute bit-packed weight data in memory as Halfwords, then take the 16 permuted 
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halfwords and zero-extend each 8-bit into 12-bit extended byte lane in the single vector 

register src2. 
 

9.8.7.17 VDOTP4_CA 

This is an instruction added in Gen-2 VPU to accelerate matrix multiplication by 2x.  

One use case is bilinear interpolation. Another use case is fully connected convolution 

layer. 

Instruction name VDotP4_CA 

Functionality Vector 4-term dot product 

Assembly format <pred> VDotP4HHW/BBH_CA DVsrc1a, DVsrc1b, Wsrc2, DACsrc3dst 

<pred> VDotP4WHW_CA DVsrc1a, DVsrc1b, Wsrc2, ACsrc3dst 

<pred> VDotP4BBW_CA DVsrc1a, DVsrc1b, Wsrc2, DXACsrc3dst 

 

pred = none, [P2..P15] 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst) 

WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)  

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: double vector register in VRF 

src1b: double vector register in VRF 

src2:: single vector register in WRF 

Destination options src3dst: BBH/HHW: double vector register in ARF 

       WHW: single vector register in ARF 

       BBW: double vector register in XARF 

Additional options  

Intrinsics/operator dvshortx vdotp4_bbh(dvcharx src1a, dvcharx src1b, vcharx src2, dvshortx 
src3dst, int pred); 
 
dvintx vdotp4_hhw(dvshortx src1a, dvshortx src1b, vshortx src2, dvintx 
src3dst, int pred); 
 
vintx vdotp4_whw(dvintx src1a, dvintx src1b, vshortx src2, vintx  
src3dst, int pred); 
 
dxvshortx vdotp4_bbw(dvcharx src1a, dvcharx src1b, vcharx src2,  
dxvshortx src3dst, int pred); 

Additional details When predicate is off, destination is replaced with the sum of 4 products,  

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to 

the accumulator. 

There are 4 independent data vectors. Coefficients are shared, within each group 

of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW. 
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Instruction name VDotP4_CA 

Accumulators for HHW are in a double vector register to accommodate type 

promotion.  Accumulators for W are in a single vetor register. 

BBH data, coefficient, accumulator layout per group of 4 byte lanes: 

HHW data, coefficient, accumulator layout per group of 4 halfword lanes: 

 

src1a.lo D[0][0] D[0][1] D[0][2] D[0][3] 

src1a.hi D[1][0] D[1][1] D[1][2] D[1][3] 

src1b.lo D[2][0] D[2][1] D[2][2] D[2][3] 

src1b.hi D[3][0] D[3][1] D[3][2] D[3][3] 

src2 C[0] C[1] C[2] C[3] 

src3dst.lo ACC[0] ACC[2] 

src3dst.hi ACC[1] ACC[3] 

 

ACC[0] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3]; 

ACC[1] += D[0][1] * C[0] + D[1][1] * C[1] + D[2][1] * C[2] + D[3][1] * C[3]; 

ACC[2] += D[0][2] * C[0] + D[1][2] * C[1] + D[2][2] * C[2] + D[3][2] * C[3]; 

ACC[3] += D[0][3] * C[0] + D[1][3] * C[1] + D[2][3] * C[2] + D[3][3] * C[3]; 

 

For VDotP4BBW, XRF provides 8 upper bits for each accumulator:  

src3dst.x0  ACC[0] ACC[2] 

src3dst.x1 ACC[1] ACC[3] 

 

WHW data, coefficient, accumulator layout per 96-bit: 

src1a.lo D[0][0] D[0][1] 

src1a.hi D[1][0] D[1][1] 

src1b.lo D[2][0] D[2][1] 

src1b.hi D[3][0] D[3][1] 

src2 C[0] C[1] C[2] C[3] 

src3dst ACC[0] ACC[1] 

 

ACC[0] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3]; 

ACC[1] += D[0][1] * C[0] + D[1][1] * C[1] + D[2][1] * C[2] + D[3][1] * C[3]; 

 

See 6.2.3.6 for data ordering in single/double vector registers. 
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9.8.7.18 VDOTP4x2_CA 

This is an instruction added in Gen-2 VPU to accelerate 16-bit matrix multiplication by 

4x. It’s doing twice the amount of work compared to VDotP4_CA by accepting two sets 

of coefficients (src2) and accumulating onto two sets of accumulators.  

Instruction name VDotP4x2_CA 

Functionality Vector 4-term dot product 

Assembly format <pred> VDotP4x2BBH/HHW_CA DVsrc1a, DVsrc1b, DWsrc2, QACsrc3dst 

<pred> VDotP4x2BBW_CA DVsrc1a, DVsrc1b, DWsrc2, QXACsrc3dst 

 

pred = none, [P2..P15] 

Type and bit width  BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst) 

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst) 

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: double vector register in VRF 

src1b: double vector register in VRF 

src2: double vector register in WRF 

Destination options src3dst: quad vector register in ARF (BBH/HHW) 

       quad vector register in XARF (BBW) 

Additional options  

Intrinsics/operator void vdotp4x2_bbh(dvcharx src1a, dvcharx src1b, dvcharx src2, dvshortx 
src3_0, dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1); 
 
void vdotp4x2_hhw(dvshortx src1a, dvshortx src1b, dvshortx src2, dvintx 
src3_0, dvintx src3_1, int pred, dvintx & dst_0, dvintx & dst_1); 
 
void vdotp4x2_bbw(dvcharx src1a, dvcharx src1b, dvcharx src2, dxvshortx 
src3_0, dxvshortx src3_1, int pred, dxvshortx &dst_0, dxvshortx &dst_1); 

Additional details When predicate is off, destination is replaced with the sum of 4 products, 

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to 

the accumulator. 

There are 4 independent data vectors. Coefficients are shared, within each group 

of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW. 

Accumulators are in a quad vector register to accommodate type promotion.  

BBH data, coefficient, accumulator layout per 48-bit: 

Also, HHW data, coefficient, accumulator layout per 96-bit: 

src1a.lo D[0][0] D[0][1] D[0][2] D[0][3] 

src1a.hi D[1][0] D[1][1] D[1][2] D[1][3] 

src1b.lo D[2][0] D[2][1] D[2][2] D[2][3] 

src1b.hi D[3][0] D[3][1] D[3][2] D[3][3] 

src2.lo C[0][0] C[0][1] C[0][2] C[0][3] 

src2.hi C[1][0] C[1][1] C[1][2] C[1][3] 
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Instruction name VDotP4x2_CA 

src3dst.q0 ACC[0][0] ACC[0][2] 

src3dst.q1 ACC[0][1] ACC[0][3] 

src3dst.q2 ACC[1][0] ACC[1][2] 

src3dst.q3 ACC[1][1] ACC[1][3] 

 

ACC[0][0] += D[0][0] * C[0][0] + D[1][0] * C[0][1] + D[2][0] * C[0][2] + D[3][0] * C[0][3]; 

ACC[0][1] += D[0][1] * C[0][0] + D[1][1] * C[0][1] + D[2][1] * C[0][2] + D[3][1] * C[0][3]; 

ACC[0][2] += D[0][2] * C[0][0] + D[1][2] * C[0][1] + D[2][2] * C[0][2] + D[3][2] * C[0][3]; 

ACC[0][3] += D[0][3] * C[0][0] + D[1][3] * C[0][1] + D[2][3] * C[0][2] + D[3][3] * C[0][3]; 

 

ACC[1][0] += D[0][0] * C[1][0] + D[1][0] * C[1][1] + D[2][0] * C[1][2] + D[3][0] * C[1][3]; 

ACC[1][1] += D[0][1] * C[1][0] + D[1][1] * C[1][1] + D[2][1] * C[1][2] + D[3][1] * C[1][3]; 

ACC[1][2] += D[0][2] * C[1][0] + D[1][2] * C[1][1] + D[2][2] * C[1][2] + D[3][2] * C[1][3]; 

ACC[1][3] += D[0][3] * C[1][0] + D[1][3] * C[1][1] + D[2][3] * C[1][2] + D[3][3] * C[1][3]; 

 

BBW data, coefficient layout per 48-bit is the same as that of BBH. 

BBW accumulator is similar, with layout of lower 24-bit of each accumulator same 

as that of BBH, and upper 8-bit of each accumulator in the extension part of 

XARF: 

 src3dst.x0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] 

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] 

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] 

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] 
 

 

9.8.7.19 VDOTP2x2_CA 

Instruction name VDOTP2x2_CA 

Functionality Vector 2-term dot product 

Assembly format <pred> VDotP2x2W_CA.T16 Vsrc1a, Vsrc1b, DWsrc2, DACsrc3dst 

 

pred = none, [P2..P15] 

.T16 is always applied with W type. 

Type and bit width  W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst) 

Predication Available across lanes to clear accumulator 

Source options src1a: single vector register in VRF 

src1b: single vector register in VRF 

src2: double vector register in WRF  

Destination options src3dst: single vector register in ARF 

Additional options  
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Instruction name VDOTP2x2_CA 

Intrinsics/operator dvintx vdotp2x2_w_t16(vintx src1a, vintx src1b, dvintx src2, dvintx src3dst, 
int pred); 

Additional details W: Treat src1a and src1b as data vector, each being 8 x 31-bit in a 8 x 48-bit 

container. Treat src2 as coefficient vector, 2 x 2 x 31-bit in a 2 x 2 x 48-bit 

container replicated per group of 2 word lanes. Each product is truncated by 16 

bits before being summed.  

Data, coefficient, accumulator layout per 96-bit: 

src1a D[0][0] D[0][1] 

src1b D[1][0] D[1][1] 

src2.lo C[0][0] C[0][1] 

src2.hi C[1][0] C[1][1] 

src3dst.lo ACC[0][0] ACC[0][1] 

src3dst.hi ACC[1][0] ACC[1][1] 

 

When predicate is true, do 

ACC[0][0] += (D[0][0] * C[0][0] >> 16) + (D[1][0] * C[0][1] >> 16); 

ACC[0][1] += (D[0][1] * C[0][0] >> 16) + (D[1][1] * C[0][1] >> 16); 

ACC[1][0] += (D[0][0] * C[1][0] >> 16) + (D[1][0] * C[1][1] >> 16); 

ACC[1][1] += (D[0][1] * C[1][0] >> 16) + (D[1][1] * C[1][1] >> 16); 

Otherwise 

ACC[0][0] = (D[0][0] * C[0][0] >> 16) + (D[1][0] * C[0][1] >> 16); 

ACC[0][1] = (D[0][1] * C[0][0] >> 16) + (D[1][1] * C[0][1] >> 16); 

ACC[1][0] = (D[0][0] * C[1][0] >> 16) + (D[1][0] * C[1][1] >> 16); 

ACC[1][1] = (D[0][1] * C[1][0] >> 16) + (D[1][1] * C[1][1] >> 16); 
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9.8.7.20 VSUMSQ 

Instruction name VSUMSQ 

Functionality Vector sum of squares 

Assembly format VSumSq<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, DVdst/DWdst 

type = BBH, HHW 

VSumSq<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst 

type = W.T16 

Type and bit width  BBH: 32 x (9-bit src1/src2 → 24-bit dst) 

HHW: 16 x (17-bit src1/src2 → 48-bit dst) 

W.T16: 8 x (33-bit src1/src2 → 48-bit dst) 

Predication not available  

Source options src1: single vector register in VRF/WRF 

src2: single vector register in VRF/WRF  

Destination options dst: double vector register in VRF/WRF for BBH/HHW 

    single vector register in VRF/WRF for W.T16 

Additional options  

Intrinsics/operator dvshortx vsumsq(vcharx src1, vcharx src2); 
dvintx  vsumsq(vshortx src1, vshortx src2); 
vintx  vsumsq_t16(vintx src1, vintx src2); 
 
// double vector pseudo intrinsics 
dvintx  dvsumsq_t16(dvintx src1, dvintx src2); 

Additional details Perform sum of squares operation in each lane, 

dst = src1 * src1 + src2 * src2               // BBH/HHW 

dst = ((src1 * src1)>>16) + ((src2 * src2)>>16) // W.T16 

9/17/33 LSBs of src1 and src2 are used and interpreted as signed numbers. 

See 6.2.3.6 for data ordering in single/double vector registers. 

VSumSQ can be used in calculation Euclidean distance, sqrt(x^2 + y^2), or 

magnitude of a complex number, sqrt(real^2 + imaginary^2). 

 

For example, VSumSqHHW V1, W2, V4:V5 has the following data layout and behavior: 

V1: X[0] X[1] X[2] X[3] … X[14] X[15] 

W2: Y[0] Y[1] Y[2] Y[3] … Y[14] Y[15] 

V4: S[0] S[2] … S[14] 

V5: S[1] S[3] … S[15] 

S[i] = X[i] * X[i] + Y[i] * Y[i];  // X[i], Y[i] taken from 17 LSBs from each lane 
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9.8.7.21 VSQSUM 

Instruction name VSQSUM 

Functionality Vector square of sum 

Assembly format VSqSum<type> Vsrc1, Vsrc2, Vdst/DVdst 

Type and bit width  BBH: 32 x (9-bit src1/src2 → 24-bit dst) 

HHW: 16 x (17-bit src1/src2 → 48-bit dst) 

Predication not available  

Source options src1: single vector register in VRF 

src2: single vector register in VRF  

Destination options dst: BBH/HHW: double vector register in VRF 

Additional options  

Intrinsics/operator dvshortx vsqsum(vcharx src1, vcharx src2); 
dvintx  vsqsum(vshortx src1, vshortx src2); 

Additional details Perform square of sum operation in each lane.  

   dst = (src1 + src2)^2 = src1^2 + src2^2 + 2 * src1 * src2 

9/17 LSBs of src1 and src2 are used and interpreted as signed numbers. 

See 6.2.3.6 for data ordering in single/double vector registers. 

VSqSum can be used to calculate trace-square of a 2x2 matrix, trace being the 

sum of two diagonal terms. Trace-sqare is used in the Harris Corner feature point 

detection algorithm. 

Note that VSqSumW.T16 was considered but deferred. For timing we would implement 

it as a^2 + b^2 + 2*a*b, but we would need to add another 32-bit multiplier per W lane to 

implement it. 

For example, VSqSumBBH V1, V2, V4:V5 has the following data layout and behavior: 
 

V1: X[0] X[1] X[2] X[3] … X[30] X[31] 

V2: Y[0] Y[1] Y[2] Y[3] … Y[30] Y[31] 

V4: S[0] S[2] … S[30] 

V5: S[1] S[3] … S[31] 

S[i] = (X[i] + Y[i]) * (X[i] + Y[i]);  // X[i], Y[i] taken from 9 LSBs from each lane 
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9.8.7.22 VDET2x2 

Instruction name VDET2x2 

Functionality Vector 2x2 matrix determinant 

Assembly format VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst 

VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst 

VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst 

Type and bit width  HHW: 16 x (17-bit src1/src2 → 48-bit dst) 

W.T16: 8 x (33-bit src1/src2 → 48-bit dst) 

Predication Not available 

Source options src1: double vector register in VRF or WRF 

src2: double vector register in VRF or WRF 

Destination options dst: HHW: double vector register in VRF 

    W.T16: single vector register in VRF 

Additional options  

Intrinsics/operator dvintx vdet2x2_hhw(dvshortx src1, dvshortx src2);  
vintx vdet2x2_w_t16(dvintx src1, dvintx src2);  

Additional details Treat two double vector sources as 4 entries in a 2x2 matrix. 

Src1.lo contains A00, src1.hi contains A01, src2.lo contains A10, src2.hi contains 

A11, in each lane. 

For HHW return A00*A11 – A01*A10 in each lane, extending precision into a 

double vector. 

For W.T16 return ((A00*A11)>>16) – ((A01*A10)>>16) in each lane, keeping word 

precision in a single vector. 

See 6.2.3.6 for data ordering in single/double vector registers. 
 

For example, VDet2x2HHW V0:V1, V2:V3, V4:V5 has the following data layout and 

behavior: 
 

V0: X[0] X[1] X[2] X[3] … X[14] X[15] 

V1: Y[0] Y[1] Y[2] Y[3] … Y[14] Y[15] 

V2: Z[0] Z[1] Z[2] Z[3]  Z[14] Z[15] 

V3: W[0] W[1] W[2] W[3]  W[14] W[15] 

V4: S[0] S[2] … S[14] 

V5: S[1] S[3] … S[15] 
 

S[i] = det ([
X[i] Y[i]
Z[i] W[i]

]) = X[i] ∗ W[i] − Y[i] ∗ Z[i] 
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9.8.8 Vector Floating-point Instructions  

9.8.8.1 Instruction Summary 

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float 

conversion instructions are available in the vector math V0 and V1 instruction slots. The 

main vector register file VRF and working register file WRF supply the sources and 

destination of FP instructions. 

FP multiply-add is implemented with a fused multiply-add datapath that preserves full 

product precision and has higher precision than separate FP multiply and FP add 

operations.   

Invalid outcome is captured in the sticky invalid status bit, INV, as described in section 

9.4.5.  

Handling of NaN and various corner cases in vector FP math follows that of scalar FP 

math. FP comparison behavior of vector FP math follows that of scalar FP math. See FP 

Math Corner Cases, FP Comparison Corner Cases, and FP Conversion Corner Cases for 

corner case details. 

Table 36. Vector floating-point instructions 

Function Assembly Format Comments 

Vector FP add VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP subtract VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP multiply VMulF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP multiply-

add 

VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, 

Vsrc3dst 

 

Vector FP multiply-

subtract 

VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst  

Vector FP16 add VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP16 

subtract 

VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP16 

multiply 

VMulHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP16 

multiply-add 

VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

<pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, 

Vsrc3dst 

 

Vector FP16 

multiply-subtract 

VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst  

Vector INT to FP 

conversion 

VINT_FP Vsrc1, Vdst  
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Function Assembly Format Comments 

Vector FP to INT 

conversion with 

truncation 

VFP_INT_Trunc Vsrc, Vdst  

Vector FP to INT 

conversion with 

rounding 

VFP_INT_Round Vsrc, Vdst  

Vector INTX to FP 

conversion 

VINTX_FP Vsrc1, Vdst  

Vector FP to INTX 

conversion with 

truncation 

VFP_INTX_Trunc Vsrc, Vdst  

Vector FP to INTX 

conversion with 

rounding 

VFP_INTX_Round Vsrc, Vdst  

Vector INT to FP16 

conversion 

VINT_FP16 DVsrc1, Rsrc2, Vdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector FP16 to INT 

conversion wth 

truncation 

VFP16_INT_Trunc Vsrc1, Rsrc2, DVdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector FP16 to INT 

conversion wth 

rounding 

VFP16_INT_Round Vsrc1, Rsrc2, DVdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector INT24 to 

FP16 conversion 

VINT24_FP16 Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector FP16 to 

INT24 conversion 

wth truncation 

VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector FP16 to 

INT24 conversion 

wth rounding 

VFP16_INT24_Round Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit 

for fixed-point 

representation. 

Vector FP16 to FP32 

conversion 

VFP16_FP Vsrc, DVdst   

Vector FP32 to FP16 

conversion 

VFP_FP16 DVsrc, Vdst   

Vector FP compare 

LT 

VCmpLTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP compare 

LE 

VCmpLEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP compare 

GT 

VCmpGTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP compare 

GE 

VCmpGEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst   
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Function Assembly Format Comments 

Vector FP compare 

EQ 

VCmpEQF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst   

Vector FP compare 

NE 

VCmpNEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst   

Vector FP16 

compare LT 

VCmpLTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, 

Vdst/Wdst  

 

Vector FP16 

compare LE 

VCmpLEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, 

Vdst/Wdst  

 

Vector FP16 

compare GT 

VCmpGTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, 

Vdst/Wdst  

 

Vector FP16 

compare GE 

VCmpGEHF 

Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst  

 

Vector FP16 

compare EQ 

VCmpEQHF 

Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst  

 

Vector FP16 

compare NE 

VCmpNEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, 

Vdst/Wdst  

 

Vector FP reciprocal VRCPF Vsrc/Wsrc, Vdst/Wdst  

Vector FP square 

root 

VSQRTF Vsrc/Wsrc, Vdst/Wdst  

Vector FP reciprocal 

square root 

VRSQF Vsrc/Wsrc, Vdst/Wdst  

Vector FP 

exponential base-2 

VEXP2F Vsrc/Wsrc, Vdst/Wdst  

Vector FP logarithm 

base-2 

VLOG2F Vsrc/Wsrc, Vdst/Wdst  

Vector FP sine VSINF Vsrc/Wsrc, Vdst/Wdst  

Vector FP cosine VCOSF Vsrc/Wsrc, Vdst/Wdst  

Vector FP hyperbolic 

tangent 

VTANHF Vsrc/Wsrc, Vdst/Wdst  

 

9.8.8.2 VAddF 

Instruction name VAddF 

Functionality Floating-point add 

Assembly format VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 
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Instruction name VAddF 

Additional options  

Intrinsics/operator vfloatx operator+( vfloatx src1, vfloatx src2);  
vfloatx operator+( vfloatx src1, float src2);  
vfloatx vaddf(vfloatx src1, vfloatx src2);  
vfloatx vaddf(vfloatx src1, float  src2);  
 
// Double vector pseudo intrinsics 
dvfloatx operator+( dvfloatx src1, dvfloatx src2);  
dvfloatx operator+( dvfloatx src1, float src2);  
dvfloatx dvaddf(dvfloatx src1, dvfloatx src2);  
dvfloatx dvaddf(dvfloatx src1, float  src2);  

Additional details IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Outcome sign extended to fill bits 47 ~ 32. 

9.8.8.3 VSubF 

Instruction name VSubF 

Functionality Floating-point subtract 

Assembly format VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx operator-( vfloatx src1, vfloatx src2);  
vfloatx operator-( vfloatx src1, float src2);  
vfloatx vsubf(vfloatx src1, vfloatx src2);  
vfloatx vsubf(vfloatx src1, float  src2);  
 
// Double vector pseudo intrinsics 
dvfloatx operator-( dvfloatx src1, dvfloatx src2);  
dvfloatx operator-( dvfloatx src1, float src2);  
dvfloatx dvsubf(dvfloatx src1, dvfloatx src2);  
dvfloatx dvsubf(dvfloatx src1, float  src2);  

Additional details IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 
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Instruction name VSubF 

Set the invalid status flag when any input or output is NaN. 

Outcome sign extended to fill bits 47 ~ 32. 

9.8.8.4 VMulF 

Instruction name VMulF 

Functionality Floating-point multiply 

Assembly format VMulF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx operator*( vfloatx src1, vfloatx src2);  
vfloatx operator*( vfloatx src1, float src2);  
vfloatx vmulf(vfloatx src1, vfloatx src2);  
vfloatx vmulf(vfloatx src1, float  src2);  
 
// Double vector pseudo intrinsics 
dvfloatx operator*( dvfloatx src1, dvfloatx src2);  
dvfloatx operator*( dvfloatx src1, float src2);  
dvfloatx dvmulf(dvfloatx src1, dvfloatx src2);  
dvfloatx dvmulf(dvfloatx src1, float  src2);  

Additional details IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN. 

Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Outcome sign extended to fill bits 47 ~ 32. 
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9.8.8.5 VMAddF 

Instruction name VMAddF 

Functionality Floating-point multiply-add 

Assembly format VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst 

pred = none, [P2..P15] 

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication Available across lanes to clear accumulator (CA variation) 

Source options unpredicated: 

  src1/src3: vector register in VRF  

src2: vector register WRF or scalar register 

predicated (_CA): 

  src1/src3: vector register in VRF  

src2: vector register VRF/WRF or scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3);  
vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3);  
vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3, int pred);  
vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3, int pred); 
 
// Double vector pseudo intrinsics 
dvfloatx dvmaddf(dvfloatx src1, dvfloatx src2, dvfloatx src3);  
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3);  
dvfloatx dvmaddf(dvfloatx src1, dvfloatx src2, dvfloatx src3, int 
pred);  
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3, int  
pred); 

Additional details Performing multiply-add with IEEE compliant floating-point multiply and add. 

Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Outcome sign extended to fill bits 47 ~ 32. 

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise 

perform src1 * src2 + positive_zero, ignoring the src3 input. 

Note that for corner cases around positive/negative zeros, src1 * src2 and 

src1 * src2 + positive_zero produce different outcomes. 

Example: 

  VMAddF V1, V2, V3, V4 

would perform V4 = V1 * V2 + V3 in each Word lane. 
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9.8.8.6 VMSubF 

Instruction name VMSubF 

Functionality Floating-point multiply-subtract 

Assembly format VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication Not available 

Source options src1/src3: vector register in VRF 

src2: vector register in WRF or scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vfloatx vmsubf(vfloatx src1, vfloatx src2, vfloatx src3);  
vfloatx vmsubf(vfloatx src1, float src2, vfloatx src3);  
 
// Double vector pseudo intrinsics 
dvfloatx dvmsubf(dvfloatx src1, dvfloatx src2, dvfloatx src3);  
dvfloatx dvmsubf(dvfloatx src1, float src2, dvfloatx src3);  

Additional details Performing IEEE compliant floating-point multiply-sub, src3 – src1 * src2. 

Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 

Outcome sign extended to fill bits 47 ~ 32. 

Example: 

  VMSubF V1, W2, V3, V4 

would perform V4 = V3 – V1 * W2 in each Word lane. 
 

9.8.8.7 VAddHF 

Instruction name VAddHF 

Functionality FP16 add 

Assembly format VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit) 

Predication not available 

Source options src1: vector register in VRF/WRF 

src2: vector register VRF/WRF or scalar register 

Destination options vector register in VRF/WRF 

Additional options  

Intrinsics/operator vhfloatx operator+( vhfloatx src1, vhfloatx src2);  
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Instruction name VAddHF 

vhfloatx operator+( vhfloatx src1, hfloat src2);  
vhfloatx vaddhf(vhfloatx src1, vhfloatx src2);  
vhfloatx vaddhf(vhfloatx src1, hfloat  src2); 
  
// Double vector pseudo intrinsics 
dvhfloatx operator+( dvhfloatx src1, dvhfloatx src2);  
dvhfloatx operator+( dvhfloatx src1, hfloat src2);  
dvhfloatx dvaddhf(dvhfloatx src1, dvhfloatx src2);  
dvhfloatx dvaddhf(dvhfloatx src1, hfloat  src2); 

Additional details Least significant 16 bits of each Halfword lane in each source are read as 

FP16 numbers, FP16 addition performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register. 

IEEE compliant half-precision floating-point add. Handles denormal, zero, 

infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.8.8.8 VSubHF 

Instruction name VSubHF 

Functionality FP16 subtract 

Assembly format VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit) 

Predication not available 

Source options src1: vector register in VRF/WRF 

src2: vector register VRF/WRF or scalar register 

Destination options vector register in VRF/WRF 

Additional options  

Intrinsics/operator vhfloatx operator-( vhfloatx src1, vhfloatx src2);  
vhfloatx operator-( vhfloatx src1, hfloat src2);  
vhfloatx vsubhf(vhfloatx src1, vhfloatx src2);  
vhfloatx vsubhf(vhfloatx src1, hfloat  src2);  
 
// Double vector pseudo intrinsics 
dvhfloatx operator-( dvhfloatx src1, dvhfloatx src2);  
dvhfloatx operator-( dvhfloatx src1, hfloat src2);  
dvhfloatx dvsubhf(dvhfloatx src1, dvhfloatx src2);  
dvhfloatx dvsubhf(dvhfloatx src1, hfloat  src2); 

Additional details Least significant 16 bits of each Halfword lane in each source are read as 

FP16 numbers, FP16 subtraction performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register. 
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Instruction name VSubHF 

IEEE compliant half-precision floating-point add. Handles denormal, zero, 

infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.8.8.9 VMulHF 

Instruction name VMulHF 

Functionality FP16 multiply 

Assembly format VMulHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit) 

Predication not available 

Source options src1: vector register in VRF/WRF 

src2: vector register VRF/WRF or scalar register 

Destination options vector register in VRF/WRF 

Additional options  

Intrinsics/operator vhfloatx operator*( vhfloatx src1, vhfloatx src2);  
vhfloatx operator*( vhfloatx src1, hfloat src2);  
vhfloatx vmulhf(vhfloatx src1, vhfloatx src2);  
vhfloatx vmulhf(vhfloatx src1, hfloat  src2);  
 
// Double vector pseudo intrinsics 
dvhfloatx operator*( dvhfloatx src1, dvhfloatx src2);  
dvhfloatx operator*( dvhfloatx src1, hfloat src2);  
dvhfloatx dvmulhf(dvhfloatx src1, dvhfloatx src2);  
dvhfloatx dvmulhf(dvhfloatx src1, hfloat  src2); 

Additional details Least significant 16 bits of each Halfword lane in each source are read as 

FP16 numbers, FP16 multiplication performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register. 

IEEE compliant half-precision floating-point multiply. Handles denormal, zero, 

infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.8.8.10 VMAddHF 

Instruction name VMAddHF 

Functionality FP16 multiply-add 

Assembly format VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

<pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst 

pred = none, [P2..P15] 

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit) 

Predication Instruction level predication 

Source options unpredicated: 

  src1/src3: vector register in VRF  

src2: vector register WRF or scalar register 

predicated (_CA): 

  src1/src3: vector register in VRF  

src2: vector register VRF/WRF or scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);  
vhfloatx vmaddhf(vhfloatx src1, hfloat  src2, vhfloatx src3);  
vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3, int 
pred);  
vhfloatx vmaddhf(vhfloatx src1, hfloat src2, vhfloatx src3, int  
pred);  
 
// Double vector pseudo intrinsics 
dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);  
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat  src2, dvhfloatx src3);  
dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3,  
int pred);  
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat src2, dvhfloatx src3, int  
pred);  

Additional details Least significant 16 bits of each Halfword lane in each source are read as 

FP16 numbers, FP16 multiply-add performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register. 

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise 

perform src1 * src2 + positive_zero, ignoring the src3 input. 

Fused multiply-add is performed, preserving intermediate precision as much 

as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
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9.8.8.11 VMSubHF 

Instruction name VMSubHF 

Functionality FP16 multiply-subtract 

Assembly format VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst 

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit) 

Predication Not available 

Source options src1/src3: vector register in VRF  

src2: vector register in WRF or scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vhfloatx vmsubhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);  
vhfloatx vmsubhf(vhfloatx src1, hfloat src2, vhfloatx src3);  
 
// Double vector pseudo intrinsics 
dvhfloatx dvmsubhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);  
dvhfloatx dvmsubhf(dvhfloatx src1, hfloat  src2, dvhfloatx src3);  

Additional details Least significant 16 bits of each Halfword lane in each source are read as 

FP16 numbers, FP16 multiply-subtract performed, and FP16 outcome is 

sign-extended to 24-bit in each Halfword lane of the destination register. 

Fused multiply-subtract is performed, preserving intermediate precision as 

much as possible. Handles denormal, zero, infinity, NaN. Generates quiet 

NaN. 

Only rounding mode supported is round to nearest, ties to even. 

Set the invalid status flag when any input or output is NaN. 
 

9.8.8.12 VINT_FP 

Instruction name VINT_FP 

Functionality Integer to floating-point conversion 

Assembly format VINT_FP Vsrc, Vdst  

Type and bit width  Input: 8 x 48-bit integer 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vfloatx vint_vfp(vintx src); 
 
// Double vector pseudo intrinsics 
dvfloatx dvint_dvfp(dvintx src); 
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Instruction name VINT_FP 

Additional details Each Word-lane 48-bit integer input is first saturated to 32-bit integer range, 

[-2^31, 2^31-1], before converting to 32-bit floating-point. Each 32-bit 

floating-point outcome is sign-extended back into a 48-bit Word lane. 

The 32-bit integer to 32-bit floating-point conversion process is the same as 

in INT_FP scalar instruction. 

Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 
 

9.8.8.13 VFP_INT_Trunc 

Instruction name VFP_INT_Trunc 

Functionality Floating-point to integer conversion 

Assembly format VFP_INT_Trunc Vsrc, Vdst  

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit integer 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vintx vfp_vint_trunc(vfloatx src); 
 
// Double vector pseudo intrinsics 
dvintx dvfp_dvint_trunc(dvfloatx src); 

Additional details FP32 to integer conversion with truncation. 

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is trunc(1.5) = 1  

Note that  

- truncation is used during the conversion, consistent with C float-to-int type 

casting. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value exceeds 32-bit int representation range, output is 

saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 
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9.8.8.14 VFP_INT_Round 

Instruction name VFP_INT_Round 

Functionality Floating-point to integer conversion 

Assembly format VFP_INT_Round Vsrc, Vdst  

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit integer 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vintx vfp_vint_round(vfloatx src); 
 
// Double vector pseudo intrinsics 
dvintx dvfp_dvint_round(dvfloatx src); 

Additional details FP32 to integer conversion with rounding. 

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is round(1.5) = 2, 

as 1.5 is tied between 1 and 2, so we round to 2 (even).  

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value exceeds 32-bit int representation range, output is 

saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements 

rounding implicitly, programmers are strongly encouraged to switch to Gen-2 

intrinsic function fp_int_round() to avoid confusion. 
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9.8.8.15 VINTX_FP 

Instruction name VINTX_FP 

Functionality Extended integer to floating-point conversion 

Assembly format VINTX_FP Vsrc, Vdst  

Type and bit width  Input: 8 x 48-bit integer 

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vfloatx vintx_vfp(vintx src); 
 
// Double vector pseudo intrinsics 
dvfloatx dvintx_dvfp(dvintx src); 

Additional details Each Word-lane 48-bit integer input is converted to 32-bit floating-point. Each 

32-bit floating-point outcome is sign-extended back into a 48-bit Word lane. 

Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 
 

9.8.8.16 VFP_INTX_Trunc 

Instruction name VFP_INTX_Trunc 

Functionality Floating-point to extended integer conversion with truncation 

Assembly format VFP_INTX_Trunc Vsrc, Vdst  

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit integer 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vintx vfp_vintx_trunc(vfloatx src); 
 
// Double vector pseudo intrinsics 
dvintx dvfp_dvintx_trunc(dvfloatx src); 

Additional details FP32 to INT48 conversion with truncation. 

Note that  

- truncation is used during the conversion, consistent with C float-to-int type 

casting. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 48-bit int value (0x7FFF_FFFF_FFFF). 

- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000). 
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Instruction name VFP_INTX_Trunc 

- When output value exceeds 48-bit int representation range, output is 

saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF. 

- NaN maps to either 0x8000_0000_0000 or 0x7FFF_FFFF_FFFF, preserving 

the sign.  

- The invalid status flag is NOT set when input is NaN. 
 

9.8.8.17 VFP_INTX_Round 

Instruction name VFP_INTX_Round 

Functionality Floating-point to extended integer conversion with rounding 

Assembly format VFP_INTX_Round Vsrc, Vdst  

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit integer 

Predication not available 

Source options vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vintx vfp_vintx_round(vfloatx src); 
 
// Double vector pseudo intrinsics 
dvintx dvfp_dvintx_round(dvfloatx src); 

Additional details FP32 to INT48 conversion with rounding. 

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 48-bit int value (0x7FFF_FFFF_FFFF). 

- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000). 

- When output value exceeds 48-bit int representation range, output is 

saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF. 

- NaN maps to either 0x8000_0000_0000 or 0x7FFF_FFFF_FFFF, preserving 

the sign.  

- The invalid status flag is NOT set when input is NaN. 

 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  385 

9.8.8.18 VINT_FP16 

Instruction name VINT_FP16 

Functionality Integer to 16-bit floating-point conversion 

Assembly format VINT_FP16 DVsrc1, Rsrc2, Vdst  

Type and bit width  Input: 2 x 8 x 48-bit integer 

Output: 16 x 24-bit (FP16 sign-extend to 24-bit) 

Predication not available 

Source options src1: double vector register in VRF 

src2: scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vhfloatx dvint_vfp16(dvintx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in source 

fixed-point representation. dst = src1 / 2^src2. 

Each Word-lane 48-bit integer input is first saturated to 32-bit integer range, 

[-2^31, 2^31-1], before converting to 16-bit floating-point along with the 

qbit information. Each 16-bit floating-point outcome is sign-extended back 

into a 24-bit Halfword lane. 

The 32-bit integer to 16-bit floating-point conversion process is the same as 

in INT_FP16 scalar instruction. 

Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 

Where output absolute value falls below normal FP16 range, denormal FP16 

output is generated. 

Conversion inputs come interleaved from a double vector register. 
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9.8.8.19 VFP16_INT_Trunc 

Instruction name VFP16_INT_Trunc 

Functionality Floating-point to integer conversion with truncation 

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst  

Type and bit width  Input: 16 x 16-bit (16 LSBs of each 24-bit lane) 

Output: 2 x 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF 

src2: scalar register 

Destination options double vector register in VRF 

Additional options  

Intrinsics/operator dvintx vfp16_dvint_trunc(vhfloatx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in 

destination fixed-point representation. dst = trunc(src1 * 2^src2). 

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container). 

Note that  

- truncation is used during the conversion. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value trunc(src1 * 2^src2) exceeds 32-bit int representation 

range, output is saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

- Denormal FP16 input value is supported. 

- Conversion outputs are deinterleaved into a double vector register. 
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9.8.8.20 VFP16_INT_Round 

Instruction name VFP16_INT_Round 

Functionality Floating-point to integer conversion with rounding 

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst  

Type and bit width  Input: 16 x 16-bit (16 LSBs of each 24-bit lane) 

Output: 2 x 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF 

src2: scalar register 

Destination options double vector register in VRF 

Additional options  

Intrinsics/operator dvintx vfp16_dvint_round(vhfloatx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in 

destination fixed-point representation. dst = round(src1 * 2^src2). 

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container). 

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF). 

- Minus infinity maps to minimal 32-bit int value (0x8000_0000). 

- When output value round(src1 * 2^src2) exceeds 32-bit int representation 

range, output is saturated between 0x8000_0000 and x7FFF_FFFF. 

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

- Denormal FP16 input value is supported. 

- Conversion outputs are deinterleaved into a double vector register. 
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9.8.8.21 VINT24_FP16 

Instruction name VINT24_FP16 

Functionality 24-bit integer to 16-bit floating-point conversion 

Assembly format VINT24_FP16 Vsrc1, Rsrc2, Vdst  

Type and bit width  Input: 16 x 24-bit integer 

Output: 16 x 24-bit (FP16 sign-extend to 24-bit) 

Predication not available 

Source options src1: vector register in VRF 

src2: scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vhfloatx vint24_vfp16(vshortx src1, int src2); 
 
// Double vector pseudo intrinsics 
dvhfloatx dvint24_dvfp16(dvshortx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in source 

fixed-point representation. dst = src1 / 2^src2. 

Note that rounding is included in this instruction’s functionality. 

Only rounding mode supported is round to nearest, ties to even. 

Each 16-bit floating-point output is sign-extended into a Halfword lane (24-

bit container). 

Where output absolute value falls below normal FP16 range, denormal FP16 

output is generated. 
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9.8.8.22 VFP16_INT24_Trunc 

Instruction name VFP16_INT24_Trunc 

Functionality Floating-point to integer conversion with truncation 

Assembly format VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst  

Type and bit width  Input: 16 x 16-bit float (16 LSBs of each 24-bit lane) 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF 

src2: scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vshortx vfp16_vint24_trunc(vhfloatx src1, int src2); 
 
// Double vector pseudo intrinsics 
dvshortx dvfp16_dvint24_trunc(dvhfloatx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in destination 

fixed-point representation. dst = trunc(src1 * 2^src2). 

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container). 

Note that  

- truncation is used during the conversion. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 24-bit int value (0x7F_FFFF). 

- Minus infinity maps to minimal 24-bit int value (0x80_0000). 

- When output value trunc(src1 * 2^src2) exceeds 24-bit int representation 

range, output is saturated between 0x80_0000 and x7F_FFFF. 

- NaN maps to either 0x80_0000 or 0x7F_FFFF, preserving the sign.  

- Denormal FP16 input value is supported. 

- The invalid status flag is NOT set when input is NaN. 
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9.8.8.23 VFP16_INT24_Round 

Instruction name VFP16_INT24_Round 

Functionality Floating-point to integer conversion with rounding 

Assembly format VFP16_INT24_Round Vsrc1, Rsrc2, Vdst  

Type and bit width  Input: 16 x 16-bit float (16 LSBs of each 24-bit lane) 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF 

src2: scalar register 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vshortx vfp16_vint24_round(vhfloatx src1, int src2); 
 
// Double vector pseudo intrinsics 
dvshortx dvfp16_dvint24_round(dvhfloatx src1, int src2); 

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in 

destination fixed-point representation. dst = round(src1 * 2^src2). 

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container). 

Note that  

- Rounding is used during the conversion. The only rounding mode supported 

is round to nearest, ties to even. 

- Both zero and minus zero maps to zero. 

- Infinity maps to maximal 24-bit int value (0x7F_FFFF). 

- Minus infinity maps to minimal 24-bit int value (0x80_0000). 

- When output value round(src1 * 2^src2) exceeds 24-bit int representation 

range, output is saturated between 0x80_0000 and x7F_FFFF. 

- NaN maps to either 0x80_0000 or 0x7F_FFFF, preserving the sign.  

- The invalid status flag is NOT set when input is NaN. 

- Denormal FP16 input value is supported. 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  391 

9.8.8.24 VFP16_FP 

Instruction name VFP16_FP 

Functionality Vector floating-point FP16 to floating-point FP32 conversion  

Assembly format VFP16_FP Vsrc, DVdst  

Type and bit width  Input: 16 x 16-bit float (16 LSBs of each 24-bit lane) 

Output: 2 x 8 x 48-bit (FP32 sign-extend to 48-bit)  

Predication not available 

Source options vector register in VRF 

Destination options double vector register in VRF 

Additional options  

Intrinsics/operator dvfloatx vfp16_dvfp(vhfloatx src); 

Additional details FP16 floating-point input is read from 16 LSBs of each Halfword lane in the 

source, converted to FP32 floating-point outcome, sign-extended, and 

written to 48-bit Word lane in the destination. 

Note that the invalid status flag is NOT set when input is NaN. 

Conversion outputs are deinterleaved into a double vector register. 
 

9.8.8.25 VFP_FP16 

Instruction name VFP_FP16 

Functionality Vector floating-point FP32 to floating-point FP16 conversion  

Assembly format VFP_FP16 DVsrc, Vdst  

Type and bit width  Input: 2 x 8 x 32-bit (32 LSBs of each 48-bit lane)  

Output: 16 x 24-bit (FP16 sign-extend to 24-bit) 

Predication not available 

Source options double vector register in VRF 

Destination options vector register in VRF 

Additional options  

Intrinsics/operator vhfloatx dvfp_vfp16(dvfloatx src); 

Additional details FP32 floating-point input is read from 32 LSBs of each Word lane in the 

source, converted to FP16 floating-point outcome, sign-extended, and 

written to 24-bit Halfword lane in the destination. 

Note that the invalid status flag is NOT set when input is NaN. 

Conversion inputs come interleaved from a double vector register. 
 

9.8.8.26 VCmpLTF 

Instruction name VCmpLTF 

Functionality Floating-point compare less than 

Assembly format VCmpLTF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  
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Instruction name VCmpLTF 

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator<( vfloatx src1, vfloatx src2);  
vintx operator<( vfloatx src1, float src2);  
 
// Double vector pseudo intrinsics 
dvintx operator<( dvfloatx src1, dvfloatx src2);  
dvintx operator<( dvfloatx src1, float src2);  

Additional details Always return 0 or 1 and never set invalid status flag. 

See for FP comparison corner cases. 
 

9.8.8.27 VCmpLEF 

Instruction name VCmpLEF 

Functionality Floating-point compare less than or equal to 

Assembly format VCmpLEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator<=( vfloatx src1, vfloatx src2);  
vintx operator<=( vfloatx src1, float src2);  
 
// Double vector pseudo intrinsics 
dvintx operator<=( dvfloatx src1, dvfloatx src2);  
dvintx operator<=( dvfloatx src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
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9.8.8.28 VCmpGTF 

Instruction name VCmpGTF 

Functionality Floating-point compare greater than 

Assembly format VCmpGTF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator>( vfloatx src1, vfloatx src2);  
vintx operator>( vfloatx src1, float src2);  
 
// Double vector pseudo intrinsics 
dvintx operator>( dvfloatx src1, dvfloatx src2);  
dvintx operator>( dvfloatx src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.29 VCmpGEF 

Instruction name VCmpGEF 

Functionality Floating-point compare greater than or equal to 

Assembly format VCmpGEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator>=( vfloatx src1, vfloatx src2);  
vintx operator>=( vfloatx src1, float src2);  
 
// Double vector pseudo intrinsics 
dvintx operator>=( dvfloatx src1, dvfloatx src2);  
dvintx operator>=( dvfloatx src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 
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Instruction name VCmpGEF 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.30 VCmpEQF 

Instruction name VCmpEQF 

Functionality Floating-point compare equal 

Assembly format VCmpEQF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator==( vfloatx src1, vfloatx src2);  
vintx operator==( vfloatx src1, float src2);  
 
// Double vector pseudo intrinsics 
dvintx operator==( dvfloatx src1, dvfloatx src2);  
dvintx operator==( dvfloatx src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.31 VCmpNEF 

Instruction name VCmpNEF 

Functionality Floating-point compare not equal 

Assembly format VCmpNEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Scalar input: 32-bit scalar float broadcast to each lane 

Output: 8 x 48-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vintx operator!=( vfloatx src1, vfloatx src2);  
vintx operator!=( vfloatx src1, float src2);  
 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  395 

Instruction name VCmpNEF 

// Double vector pseudo intrinsics 
dvintx operator!=( dvfloatx src1, dvfloatx src2);  
dvintx operator!=( dvfloatx src1, float src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.32 VCmpLTHF 

Instruction name VCmpLTHF 

Functionality FP16 compare less than 

Assembly format VCmpLTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx operator<( vhfloatx src1, vhfloatx src2);  
vshortx operator<( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator<( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator<( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.33 VCmpLEHF 

Instruction name VCmpLEHF 

Functionality FP16 compare less than or equal 

Assembly format VCmpLEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 
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Instruction name VCmpLEHF 

Additional options  

Intrinsics/operator vshortx operator<=( vhfloatx src1, vhfloatx src2);  
vshortx operator<=( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator<=( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator<=( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.34 VCmpGTHF 

Instruction name VCmpGTHF 

Functionality FP16 compare greater than 

Assembly format VCmpGTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx operator>( vhfloatx src1, vhfloatx src2);  
vshortx operator>( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator>( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator>( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.35 VCmpGEHF 

Instruction name VCmpGEHF 

Functionality FP16 compare greater than or equal 

Assembly format VCmpGEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 
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Instruction name VCmpGEHF 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx operator>=( vhfloatx src1, vhfloatx src2);  
vshortx operator>=( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator>=( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator>=( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.36 VCmpEQHF 

Instruction name VCmpEQHF 

Functionality FP16 compare equal 

Assembly format VCmpEQHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx operator==( vhfloatx src1, vhfloatx src2);  
vshortx operator==( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator==( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator==( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
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9.8.8.37 VCmpNEHF 

Instruction name VCmpNEHF 

Functionality FP16 compare not equal 

Assembly format VCmpNEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst  

Type and bit width  Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)  

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane 

Output: 16 x 24-bit integer 

Predication not available 

Source options src1: vector register in VRF or WRF 

src2: vector register in VRF, WRF or scalar register 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vshortx operator!=( vhfloatx src1, vhfloatx src2);  
vshortx operator!=( vhfloatx src1, hfloat src2);  
 
// Double vector pseudo intrinsics 
dvshortx operator!=( dvhfloatx src1, dvhfloatx src2);  
dvshortx operator!=( dvhfloatx src1, hfloat src2); 

Additional details Always return 0 or 1 and never set invalid status flag. 

See FP Comparison Corner Cases for FP comparison corner cases. 
 

9.8.8.38 VRCPF 

Instruction name VRCPF 

Functionality Floating-point reciprocal 

Assembly format VRCPF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vfrcp(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfrcp(dvfloatx src);  

Additional details Performing FP32-input, FP32-output reciprocal. Set invalid status flag when 

output is NaN. 

Corner cases: 

 RCP(+denorm) gives +Inf 

 RCP(-denorm) gives -Inf 
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Instruction name VRCPF 

 RCP(+0.0)    gives +Inf 

 RCP(-0.0)     gives -Inf 

 RCP(+1.0)    gives +1.0 

 RCP(-1.0)     gives -1.0 

 RCP(+Inf)     gives +0.0 

 RCP(-Inf)     gives -0.0 

 RCP(NaN)    gives NaN 

 

Max relative error is 2^-23 over entire normal floating-point range. 
 

9.8.8.39 VSQRTF 

Instruction name VSQRTF 

Functionality Floating-point square root 

Assembly format VSQRTF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vfsqrt(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfsqrt(dvfloatx src);   

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag 

when output is NaN. 

Corner cases: 

 SQRT(+denorm) gives +0.0 

 SQRT(-denorm) gives -0.0 

 SQRT(+0.0)    gives +0.0 

 SQRT(-0.0)     gives -0.0 

 SQRT(+1.0)    gives +1.0 

 SQRT(-1.0)     gives NaN 

 SQRT(+Inf)     gives +Inf 

 SQRT(-Inf)     gives NaN 

 SQRT(NaN)     gives NaN 

 SQRT(negative) gives NaN (other than for -denorm or -0) 

 

Max relative error is 2^-23 over entire normal floating-point range. 
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9.8.8.40 VRSQF 

Instruction name VRSQF 

Functionality Floating-point reciprocal square root 

Assembly format VRSQF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vfrsq(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfrsq(dvfloatx src);  

Additional details Performing FP32-input, FP32-output reciprocal square root. Set invalid 

status flag when output is NaN. 

Corner cases: 

 RSQ(+denorm) gives +Inf 

 RSQ(-denorm) gives -Inf 

 RSQ(+0.0)    gives +Inf 

 RSQ(-0.0)     gives -Inf 

 RSQ(+1.0)    gives +1.0 

 RSQ(-1.0)     gives NaN 

 RSQ(+Inf)     gives +0.0 

 RSQ(-Inf)     gives NaN 

 RSQ(NaN)     gives NaN 

 RSQ(negative) gives NaN (other than for -denorm or -0) 

 

Max relative error is 2^-22.4 over entire normal floating-point range. 
 

9.8.8.41 VEXP2F 

Instruction name VEXP2F 

Functionality Floating-point exponential base-2  

Assembly format VEXP2F Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  401 

Instruction name VEXP2F 

Additional options  

Intrinsics/operator vfloatx vfexp2(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfexp2(dvfloatx src);  

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid 

status flag when output is NaN. 

Corner cases: 

 EXP2(+denorm) gives +1.0 

 EXP2(-denorm) gives +1.0 

 EXP2(+0.0)    gives +1.0 

 EXP2(-0.0)     gives +1.0 

 EXP2(+Inf)     gives +Inf 

 EXP2(-Inf)     gives +0.0 

 EXP2(NaN)    gives NaN 

 

Max relative error is 2^-22.5 over entire normal floating-point range. 
 

9.8.8.42 VLOG2F 

Instruction name VLOG2F 

Functionality Floating-point logarithm base-2 

Assembly format VLOG2F Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vflog2(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvflog2(dvfloatx src);  

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid 

status flag when output is NaN. 

Corner cases: 

 LOG2(+denorm) gives -Inf 

 LOG2(-denorm) gives -Inf 

 LOG2(+0.0)    gives -Inf 

 LOG2(-0.0)     gives -Inf 

 LOG2(+Inf)     gives +Inf 
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 LOG2(-Inf)     gives NaN 

 LOG2(NaN)    gives NaN 

 LOG2(negative) gives NaN (other than for -denorm or -0) 

  

Max absolute error is 2^-22 in range (0.5, 2.0). 

Max relative error can be as large as 0.9 in range (0.5, 2.0). 

Max relative error is 2^-22.5 in range [0, 0.5] and [2.0, +Inf]. 
 

9.8.8.43 VSINF 

Instruction name VSINF 

Functionality Floating-point sine 

Assembly format VSINF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vfsin(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfsin(dvfloatx src);  

Additional details Performing FP32-input, FP32-output sine function. Input in radians should be 

pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN. 

Corner cases: 

 SIN(+denorm) gives +0.0 

 SIN(-denorm) gives -0.0 

 SIN(+0.0)    gives +0.0 

 SIN(-0.0)     gives -0.0 

 SIN(+Inf)     gives NaN 

 SIN(-Inf)     gives NaN 

 SIN(NaN)    gives NaN 

 SIN(normal) is always in the range [-1, +1] 

 

Max absolute error is 2^-20.5 in range -2*pi ~ 2*pi. 

Max absolute error is 2^-14.7 in range -100*pi ~ 100*pi. 

The max error includes cumulative error of performing the required pre-

normalization.  
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Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no 

defined error guarantees. 
 

9.8.8.44 VCOSF 

Instruction name VCOSF 

Functionality Floating-point cosine 

Assembly format VCOSF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vfcos(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvfcos(dvfloatx src);   

Additional details Performing FP32-input, FP32-output cosine function. Input in radians should 

be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN. 

Corner cases: 

 COS(+denorm) gives +1.0 

 COS(-denorm) gives +1.0 

 COS(+0.0)    gives +1.0 

 COS(-0.0)     gives +1.0 

 COS(+Inf)     gives NaN 

 COS(-Inf)     gives NaN 

 COS(NaN)    gives NaN 

 COS(normal) is always in the range [-1, +1] 

 

Max absolute error is 2^-20.9 in range -2*pi ~ 2*pi. 

Max absolute error is 2^-15.3 in range -100*pi ~ 100*pi. 

The max error includes cumulative error of performing the required pre-

normalization.  

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no 

defined error guarantees. 
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9.8.8.45 VTANHF 

Instruction name VTANHF 

Functionality Vector floating-point hyperbolic tangent 

Assembly format VTANHF Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)  

Output: 8 x 48-bit (sign-extend FP32 to 48-bit) 

Predication not available 

Source options vector register in VRF or WRF 

Destination options vector register in VRF or WRF 

Additional options  

Intrinsics/operator vfloatx vftanh(vfloatx src);  
 
// Double vector pseudo intrinsics 
dvfloatx dvftanh(dvfloatx src);  

Additional details Performing FP32-input, FP32-output hyperbolic function. Set invalid status 

flag when output is NaN. 

Corner cases: 

 TANH(-denorm) gives -0.0 

 TANH(-0.0)    gives -0.0 

 TANH(+0.0)    gives +0.0 

 TANH(+denorm) gives +0.0 

 TANH(-Inf)     gives -1.0 

 TANH(+Inf)    gives 1.0 

 TANH(NaN)    gives NaN 

 TANH(normal)  is always in the range [-1.0 .. +1.0] 

 

Max relative error is 2^-11 over the entire normal floating-point range. 

Max absolute error is 2^-12 over the entire normal floating-point range. 
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9.8.9 Vector Misc Instructions 

9.8.9.1 Instruction Summary 

Table 37. Vector miscellaneous instructions 

Function Assembly Format Comments 

Vector min path cost VMinPathCost<H/B> Vsrc1, Vsrc2, Vsrc3, Vdst  For SGM, semi-global matching 

algorithm 

Vector Boolean map  VBMap31 Rsrc, Vsrc1, Vsrc2, Vsrc3, Vdst Arbitrary 3-input-1-output 

Boolean operation, use Rsrc1 

to encode the function 

Vector 4x2 add/sub VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3, 

Vsrc4, Vdst1, Vdst2 

4-input-2-output, various 

add/sub operations 

Vector configurable 4x2 

add/sub 

VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3, 

DVdst 

VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3, 

DVdst 

VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3, 

DVdst 

4-input-2-output, configurable 

add/sub operations 

Vector normalize and 

extract index and 

fraction 

VNormIdxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2 Normalize src1 into index and 

fraction fields 

Vector horizontal min4 

accumulate 

<pred> VHMin4<type>_CA DVsrc1, Wsrc2, 

ACsrc3dst 

Min across (up to) 4 data terms 

and accumulator 

Vector horizontal max4 

accumulate 

<pred> VHMax4<type>_CA DVsrc1, Wsrc2, 

ACsrc3dst 

Max across (up to) 4 data 

terms and accumulator 
 

9.8.9.2 VMIN_PATH_COST 

Instruction name VMIN_PATH_COST  

Functionality Vector min path cost 

Assembly format VMinPathCost1<type> Vsrc1, Vsrc2, Vsrc3, Vdst 

VMinPathCost2<type> Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  B: 32 x 12-bit signed Vsrc1/Vsrc2/Vsrc3, two 12-bit unsigned scalars packed in 

PL or PH 

H: 16 x 24-bit signed Vsrc1/Vsrc2/Vsrc3, 15-bit and 17-bit unsigned scalars 

packed in PL or PH 

Predication not available 

Source options src1, src2, src3: singe vector register  

Implicit source PL (R12, VMinPathCost1) or PH (R13, VMinPathCost2) 

Destination options dst: single vector register 

Additional options  
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Intrinsics/operator vshortx vminpathcost1(vshortx src1, vshortx src2, vshortx src3, int 
src4); // src4 in PL 
 
vshortx vminpathcost2(vshortx src1, vshortx src2, vshortx src3, int 
src4); // src4 in PH 
 
vcharx vminpathcost1(vcharx src1, vcharx src2, vcharx src3, int  
src4); // src4 in PL 
 
vcharx vminpathcost2(vcharx src1, vcharx src2, vcharx src3, int  
src4); // src4 in PH 
 
vshortx vminpathcost(vshortx src1, vshortx src2, vshortx src3, int  
src4); // same functionality as vminpathcost1 
 
vcharx vminpathcost(vcharx src1, vcharx src2, vcharx src3, int src4); 
// same functionality as vminpathcost1 

Additional details Perform SGM min path cost calculation, which involves neighboring lanes. 

Each lane i of output involves itself, previous (i-1) and next (i+1) lanes: dst[i] = 

min(cost[i], cost[i-1]+p, cost[i+1]+p, q).  

Implicit (in assembly, not in intrinsic calls) scalar register PL = R12 or PH = R13 

supplies p and q. VMinPathCost1 uses PL, and VMinPathCost2 uses PH. These 

2 variants are mapped to the “1” and “2” variants in the intrinsic functions. 

For Byte type, p = src4[27:16] (unsigned 12-bit) and q = src4[11:0] (unsigned 

12-bit). 

For Half-word type, p = src4[31:17] (unsigned 15-bit) and q = src4[16:0] 

(unsigned 17-bit). 

Treat Vsrc1, Vsrc2, Vsrc3 as 3 neighboring sections of a cost array, Vsrc2 

supplying the current section, Vsrc1 the previous section, and Vsrc3 the next 

section.  

For Byte type, a single vector register contains 32 12-bit lanes. For lanes 1..30 

of output, previous/current/next lanes are all available in Vsrc2. Lane 0 output 

shall use Vsrc1[31] to supply the previous lane, and lane 31 output shall use 

Vsrc3[0] to supply the next lane.  

For Half-word type, a single vector register contains 16 24-bit lanes. For lanes 

1..14 of output, previous/current/next lanes are all available in Vsrc2. Lane 0 

output shall use Vsrc1[15] to supply the previous lane, and lane 15 output 

shall use Vsrc3[0] to supply the next lane.  
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9.8.9.3 VBMap31 

Instruction name VBMap31  

Functionality Vector Boolean map 

Assembly format VBMap31 Rsrc, Vsrc1, Vsrc2, Vsrc3, Vdst 

Type and bit width  none (bit-wise) 

Predication not available 

Source options Rsrc: scalar register 

Vsrc1, Vsrc2, Vsrc3: single vector register  

Destination options Vdst: single vector register 

Additional options  

Intrinsics/operator vintx  vbmap31(int src, vintx src1, vintx src2, vintx src3); 
vshortx vbmap31(int src, vshortx src1, vshortx src2, vshortx src3); 
vcharx vbmap31(int src, vcharx src1, vcharx src2, vcharx src3); 
 
// Double vector pseudo intrinsics 
dvintx  dvbmap31(int src, dvintx src1, dvintx src2, dvintx src3); 
dvshortx dvbmap31(int src, dvshortx src1, dvshortx src2, dvshortx src3); 
dvcharx dvbmap31(int src, dvcharx src1, dvcharx src2, dvcharx src3); 

Additional details Perform an arbitrary 3-input-1-output Boolean function using bits 7..0 of the 

scalar register source. These 8 bits are read as a truth table, indicating 0/1 

outcome for the 8 combinations of 3 inputs, Vsrc1 contributing to bit 2 of the 

bit position, Vsrc2 contributing to bit 1, Vsrc3 contributing to bit 0. This is a 

bitwise operation across all 384 bits. 

For example, to implement the following Boolean function, 

   Vsrc1 Vsrc2 Vsrc3 Output 

   0   0  0   1 

   0   0  1   1 

   0   1  0   0 

   0   1  1   0 

   1   0  0   1 

   1   0  1   0 

   1   1  0   0 

   1   1  1   1 

bits 7..0 of Rsrc should contain 0x93. 
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9.8.9.4 VAddSub4x2 

Instruction name VAddSub4x2  

Functionality Vector 4x2 add/sub 

Assembly format VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3, Vsrc4, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit 

Predication not available 

Source options Vsrc1, Vsrc2, Vsrc3, Vsrc4: single vector register in VRF 

Only selected combination of VRF entries are allowed. 

Destination options Vdst1, Vdst2: single vector register in VRF 

Additional options op = 0 or 1, implementing one of two patterns 

Intrinsics/operator void vaddsub4x2_0(vintx src1, vintx src2, vintx src3, vintx src4,  
vintx &dst1, vintx &dst2); 
 
void vaddsub4x2_1(vintx src1, vintx src2, vintx src3, vintx src4,  
vintx &dst1, vintx &dst2); 
 
void vaddsub4x2_0(vshortx src1, vshortx src2, vshortx src3, vshortx  
src4, vshortx &dst1, vshortx &dst2); 
 
void vaddsub4x2_1(vshortx src1, vshortx src2, vshortx src3, vshortx  
src4, vshortx &dst1, vshortx &dst2); 
 
void vaddsub4x2_0(vcharx src1, vcharx src2, vcharx src3, vcharx src4, 
vcharx &dst1, vcharx &dst2); 
 
void vaddsub4x2_1(vcharx src1, vcharx src2, vcharx src3, vcharx src4, 
vcharx &dst1, vcharx &dst2); 

Additional details When op = 0, perform 

dst1 = src1 + src2 + src3 + src4 

dst2 = src1 – src2 + src3 – src4 

When op = 1, perform 

dst1 = src1 + src2 – src3 – src4 

dst2 = src1 – src2 – src3 + src4 
 

The VAddSub4x2 instruction is architected to accelerate FFT as well as Hadamard 

transform. Number of input/output operands makes it infeasible to allow arbitrary 

combination of operands, so the instruction is encoded so that only specific 

combinations of VRF entries are allowed: 

For radix-4 DIF (decimation in frequency) FFT, the add/sub network carries out 

z0.r = x0.r + x1.r + x2.r + x3.r         op = 0   

z2.r = x0.r - x1.r + x2.r - x3.r   

z0.i = x0.i + x1.i + x2.i + x3.i  op = 0 

z2.i = x0.i - x1.i + x2.i - x3.i   

z1.r = x0.r + x1.i - x2.r - x3.i  op = 1 
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z3.r = x0.r - x1.i - x2.r + x3.i   

z1.i = x0.i - x1.r - x2.i + x3.r  op = 1 

z3.i = x0.i + x1.r - x2.i - x3.r  

Multiple sets of register assignment are supported to allow loop unrolling:  

 x0.r x0.i x1.r x1.i x2.r x2.i x3.r x3.i 

RA 0 V0 V1 V2 V3 V4 V5 V6 V7 

RA 1 V8 V9 V10 V11 V12 V13 V14 V15 

RA 2 V16 V17 V18 V19 V20 V21 V22 V23 

RA 3 V24 V25 V26 V27 V28 V29 V30 V31 
 

There are 16 combinations of VRF input operands needed:  

Combo for op src1 src2 src3 src4 

0 RA 0 z0.r, z2.r 0 V0 V2 V4 V6 

1 RA 0 z0.i, z2.i 0 V1 V3 V5 V7 

2 RA 0 z1.r, z3.r 1 V0 V3 V4 V7 

3 RA 0 z3.i, z1.i 1 V1 V2 V5 V6 

4 RA 1 z0.r, z2.r 0 V8 V10 V12 V14 

5 RA 1 z0.i, z2.i 0 V9 V11 V13 V15 

6 RA 1 z1.r, z3.r 1 V8 V11 V12 V15 

7 RA 1 z3.i, z1.i 1 V9 V10 V13 V14 

8 RA 2 z0.r, z2.r 0 V16 V18 V20 V22 

9 RA 2 z0.i, z2.i 0 V17 V19 V21 V23 

10 RA 2 z1.r, z3.r 1 V16 V19 V20 V23 

11 RA 2 z3.i, z1.i 1 V17 V18 V21 V22 

12 RA 3 z0.r, z2.r 0 V24 V26 V28 V30 

13 RA 3 z0.i, z2.i 0 V25 V27 V29 V31 

14 RA 3 z1.r, z3.r 1 V24 V27 V28 V31 

15 RA 3 z3.i, z1.i 1 V25 V26 V29 V30 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  410 

9.8.9.5 VCfgAddSub4x2 

Instruction name VCfgAddSub4x2  

Functionality Vector configurable 4x2 add/sub 

Assembly format VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3, DVdst 

VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3, DVdst 

VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3, DVdst 

Type and bit width  B: 32 x 12-bit, H: 16 x 24-bit, W: 8 x 48-bit  

Predication not available 

Source options DVsrc1, DVsrc2: double vector register in VRF or WRF 

Rsrc3: scalar register 

Destination options DVdst: double vector register in VRF 

Additional options   

Intrinsics/operator dvcharx vcfg_addsub4x2(dvcharx src1, dvcharx src2, int src3); 
dvshortx vcfg_addsub4x2(dvshortx src1, dvshortx src2, int src3);  
dvintx vcfg_addsub4x2(dvintx src1, dvintx src2, int src3);  

Additional details Decode configuration from scalar Rsrc3 by extracting 8 2-bit parameters: 

m11 = Rsrc3[1:0], m12 = Rsrc3[3:2], m13 = Rsrc3[5:4], m14 = Rsrc3[7:6], 

m21 = Rsrc3[9:8], m22 = Rsrc3[11:10], m23 = Rsrc3[13:12], m24 = 

Rsrc3[15:14]. 

Each parameter is interpreted as  

“00”: 0 

“01”: 1 

“10”: -1 

“11”: -1 

Compute 

dst.lo = m11*src1.lo + m12*src1.hi + m13*src2.lo + m14*src2.hi 

dst.hi = m21*src1.lo + m22*src1.hi + m23*src2.lo + m24*src2.hi 

Note that .lo and .hi components are derived from double vector operands as 

described in 6.2.3.6, according to the interleaved format. 
 

9.8.9.6 VNormIdxFrac 

Instruction name VNormIdxFrac 

Functionality Vector normalize and extract index/fraction 

Assembly format VNormIdxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2 

Type and bit width  W: 8 x 48-bit, H: 16 x 24-bit 

(B type is omitted, as including it would increase bitwidth of shared shifter 

required to implement this feature)  

Predication not available 

Source options src1: single vector register in VRF 

src2: single vector register in VRF 
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Instruction name VNormIdxFrac 

src3 (implicit) PL scalar register 

Destination options dst1: single vector register in VRF 

dst2: single vector register in VRF 

Additional options  

Intrinsics/operator void vnorm_idx_frac(vintx src1, vintx src2, int src3, vintx & dst1,  
vintx & dst2); 
 
void vnorm_idx_frac(vshortx src1, vshortx src2, int src3, vshortx & 
dst1, vshortx & dst2); 
 
// Double vector pseudo intrinsic  
void dvnorm_idx_frac(dvintx src1, dvintx src2, int src3, dvintx &  
dst1, dvintx & dst2); 
 
void dvnorm_idx_frac(dvshortx src1, dvshortx src2, int src3, dvshortx 
& dst1, dvshortx & dst2); 

Additional details src1 carries the input data, src2[7:0] carries the MSB position previously 

detected via VMSBD on src1. src3[3:0] (implicit in PL scalar register) carries 

index_nbits, number of index bits in a subsequent table lookup. Dst1 returns 

the index, and dst2 returns the fraction. 

src2[7:0] is read as a signed 8-bit number to accommodate VMSBD return 

value in [-1, 23] for Halfword and [-1, 47] for Word.  

src3[3:0] conveys index_nbits, and has valid range of 6 ~ 9. In case src3[3:0] is 

below 6 or above 9, both dst1 and dst2 return 0. 

The lookup table should contain 2^index_nbits + 1 entries, so index_nbits being 

6 ~ 9 corresponds to 65 ~ 1025 entries, which is a reasonable table size of 

lookup table for a log table to get reasonable accuracy through linearly 

interpolated lookup. 

Index output is for a subsequent table lookup, so is extracted from src1 bits 

from msb_pos-1 downto msb_pos – index_nbits and right justified.  

Fraction output is for post-lookup linear interpolation, so is extracted from src1 

bits from msb_pos – index_nbits – 1 (following index bits) downto 0 and left 

justified. 

Pseudo-code for Halfword type, in lane i: 

  norm_pos = 15;  
  frac_mask = (1 << norm_pos) – 1; 
  index_nbits = PL[3:0]; // read as unsigned int4 
  idx_mask = (1 << index_nbits) – 1; 
  input = src1[i]; 
  msb_pos = src2[i][7:0]; // read as signed int8 
 
  if (index_nbits < 6 || index_nbits > 9)  
   dst[i] = 0; 
  else { 
   shiftVal = norm_pos – msb_pos + index_nbits; 
   shiftVal = (shiftVal < -24) ? -24 :  
        ((shiftVal > 24) ? 24 : ShiftVal); 
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Instruction name VNormIdxFrac 

   idx_frac = shift(input, shiftVal);  
       // shift left for positive shiftVal 
       // shift right for negative shiftVal 
   frac = idx_frac & frac_mask; 
   idx = (idx_frac >> norm_pos) & idx_mask; 
  } 
 

For Word type, norm_pos = 31, and shiftVal is saturated to [-48, 48] instead. 
 

9.8.9.7 VHMin4_CA 

Instruction name VHMin4_CA 

Functionality Vector horizontal min-4 accumulate 

Assembly format <pred> VHMin4<type>_CA DVsrc1, Wsrc2, ACsrc3dst 

pred = none, [P2..P15] 

Type and bit width  B: 32 x 12-bit, H: 16 x 24-bit 

Predication Available across lanes to clear accumulator 

Source options src1: double vector register in VRF 

src2: single vector register in WRF 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vcharx vhmin4_ca(dvcharx src1, vcharx src2, vcharx src3, int pred); 
 
vshortx vhmin4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred); 

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.  

Src2 carries control parameter to include/exclude input in bit 0 of each lane.  

Src3dst is the accumulator. 

The instruction carries out min operation among horizontally overlapping 4 data 

terms and the accumulator when the predicate is true. When the predicate is 

false, the accumulator input is ignored, effectively clearing the accumulator. 

 

Layout of data for each 4 lane group: 

src1.lo D[0] D[1] D[2] D[3] 

src1.hi D[4] D[5] D[6] D[7] 

src2 C[0] C[1] C[2] C[3] 

src3dst ACC[0] ACC[1] ACC[2] ACC[3] 

 

m0 = C[0][0] (bit 0 of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0] 

ACC[0] = min(mask(m0, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),  

        ACC[0]); 

ACC[1] = min(mask(m0, D[1]), mask(m1, D[2]), mask(m2, D[3]), mask(m3, D[4]),  
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        ACC[1]); 

ACC[2] = min(mask(m0, D[2]), mask(m1, D[3]), mask(m2, D[4]), mask(m3, D[5]),  

        ACC[2]); 

ACC[3] = min(mask(m0, D[3]), mask(m1, D[4]), mask(m2, D[5]), mask(m3, D[6]),  

        ACC[3]); 

mask(m, d) = (m == 0) ? INT_MAX : d 

 

INT_MAX is the maximal integer value for the type.  Basically, when the control 

parameter is 0, the data term is replaced with INT_MAX and thus excluded 

from the min operation.  
 

9.8.9.8 VHMax4_CA 

Instruction name VHMax4_CA 

Functionality Vector horizontal max-4 accumulate 

Assembly format <pred> VHMax4<type>_CA DVsrc1, Wsrc2, ACsrc3dst 

pred = none, [P2..P15] 

Type and bit width  B: 32 x 12-bit, H: 16 x 24-bit 

Predication Available across lanes to clear accumulator 

Source options src1: double vector register in VRF 

src2: single vector register in WRF 

Destination options src3dst: single vector register in ARF 

Additional options  

Intrinsics/operator vcharx vhmax4_ca(dvcharx src1, vcharx src2, vcharx src3, int pred); 
 
vshortx vhmax4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred); 

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.  

Src2 carries control parameter to include/exclude input in bit 0 of each lane.  

Src3dst is the accumulator. 

The instruction carries out max operation among horizontally overlapping 4 

data terms and the accumulator when the predicate is true. When the 

predicate is false, the accumulator input is ignored, effectively clearing the 

accumulator. 

Layout of data for each 4 lane group: 

src1.lo D[0] D[1] D[2] D[3] 

src1.hi D[4] D[5] D[6] D[7] 

src2 C[0] C[1] C[2] C[3] 

src3dst ACC[0] ACC[1] ACC[2] ACC[3] 

 

m0 = C[0][0] (bit 0 of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0] 

ACC[0] = max(mask(m0, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),  

        ACC[0]); 
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Instruction name VHMax4_CA 

ACC[1] = max(mask(m0, D[1]), mask(m1, D[2]), mask(m2, D[3]), mask(m3, D[4]),  

        ACC[1]); 

ACC[2] = max(mask(m0, D[2]), mask(m1, D[3]), mask(m2, D[4]), mask(m3, D[5]),  

        ACC[2]); 

ACC[3] = max(mask(m0, D[3]), mask(m1, D[4]), mask(m2, D[5]), mask(m3, D[6]),  

        ACC[3]); 

mask(m, d) = (m == 0) ? INT_MIN : d 

 

INT_MIN is the minimal integer value for the type.  Basically, when the control 

parameter is 0, the data term is replaced with INT_MIN and thus excluded from 

the max operation.  

9.9 Load/Store Instructions 

9.9.1 Scalar Load/Store  

9.9.1.1 Instruction Summary 

Scalar load/store are supported with signed/unsigned word/half-word/byte data types 

and the following address modes: 

> Indexed, with register base and 12-bit (singed) immediate offset 

> Post increment, with register base and register modifier value 

Table 38. Scalar load/store instructions  

Function Assembly Format Comments 

Load base-

offset 

LD<type>  *(Rbase+imm12), Rdst 

type = B, BU, H, HU, W 

Use Rbase + (signed) imm12 as byte address.  

Data is sign-extended or zero-padded. 

Load post-

modify 

 

<pred> LD<type>  *Rbase+=Rmod, Rdst 

pred = none, [P2.. P15] 

type = B, BU, H, HU, W 

Use Rbase as byte address, Rbase is post-modified. 

Data is sign-extended or zero-padded. 

Store base-

offset 

ST<type>  Rsrc, *(Rbase+imm12) 

type = B, H, W 

Use Rbase + (signed) imm12 as byte address.  

Store post-

modify 

 

<pred> ST<type>  Rsrc, *Rbase+=Rmod 

pred = none, [P2.. P15] 

type = B, H, W 

Use Rbase as byte address, Rbase is post-modified. 
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9.9.1.2 LD Base-Offset 

Instruction name LD  

Functionality Load 

Assembly format LD<type> *(Rbase+imm12), Rdst 

Type and bit width  B/BU: 8-bit (char, unsigned char) 

H/HU: 16-bit (short, unsigned short, hfloat) 

W: 32-bit (int, unsigned int, float) 

Predication Not available 

Source options Rbase: scalar register 

Destination options Rdst: scalar register 

Additional options  

Intrinsics/operator not needed 
// Instantiated to read from array or local frame, e.g., 
// a = array[10]; 

Additional details For example, 

    LDW *(R1+12), R4 

Use Rbase + (signed) imm12 as byte address, Rbase is not modified.  

Data is sign-extended or zero-padded, based on specified type being signed 

or unsigned. 
 

9.9.1.3 LD Post-Modify 

Instruction name LD  

Functionality Load post-modify 

Assembly format <pred> LD<type> *Rbase+=Rmod, Rdst 

pred = none, [P2.. P15] 

Type and bit width  B/BU: 8-bit (char, unsigned char) 

H/HU: 16-bit (short, unsigned short, hfloat) 

W: 32-bit (int, unsigned int, float) 

Predication Instruction-level predication 

Source options Rbase: scalar register 

Rmod: scalar register 

Destination options Rdst: scalar register 

Rbase: scalar register 

Additional options  

Intrinsics/operator not needed 
// Instantiated to read from array with pointer increment, e.g., 
// a = *ptr++; 

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod. 

Data is sign-extended or zero-padded, based on specified type being signed or 

unsigned.  
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Instruction name LD  

Predication: Execute (memory read into Rdst and Rbase post-modify) only if 

the referenced predicate register != 0.  
 

9.9.1.4 ST Base-Offset 

Instruction name ST  

Functionality Store 

Assembly format ST<type> Rsrc, *(Rbase+imm12) 

Type and bit width  B: 8-bit (char) 

H: 16-bit (short, hfloat) 

W: 32-bit (int, float) 

Predication not available 

Source options Rbase: scalar register 

Rsrc: scalar register 

Destination options  

Additional options  

Intrinsics/operator not needed 
// Instantiated to write into array or local frame, e.g., 
// array[10] = b; 

Additional details For example, 

    STW R4, *(R1+12) 

    STH R5, *(R1+16) 

Use Rbase + (signed) imm12 as byte address, Rbase is not modified.  
 

9.9.1.5 ST Post-Modify 

Instruction name ST  

Functionality Store post-modify 

Assembly format <pred> ST<type> Rsrc, *Rbase+=Rmod 

pred = none, [P2.. P15] 

Type and bit width  B: 8-bit (char) 

H: 16-bit (short, hfloat) 

W: 32-bit (int, float) 

Predication Instruction-level predication 

Source options Rbase: scalar register 

Rmod: scalar register 

Rsrc: scalar register 

Destination options Rbase: scalar register 

Additional options  

Intrinsics/operator not needed 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  417 

Instruction name ST  

// Instantiated to write into array with pointer increment, e.g., 
// *ptr++ = b; 

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod. 

Predication: Execute (memory write and Rbase modify) only if the referenced 

predicate register != 0.  
 

9.9.2 Scalar-Based Vector Load/Store 

9.9.2.1 Instruction Summary 

Table 39. Scalar-based vector load/store instructions  

Function Assembly Format Comments 

Vector load base 

plus offset 

VLD<type>_P  *(Rbase+Imm), Vdst 

type = B, BU, H, HU, W, WU, WX 

VLDWX_P  *(Rbase+Imm), Wdst 

Use Rbase + (4*imm10) as byte address.  

Data is sign-extended or zero-padded. 

Vector load post-

modify 

VLD<type>_P  *Rbase+=Rmod, Vdst 

type = B, BU, H, HU, W, WU, WX 

Use Rbase as byte address, Rbase is 

post-modified to Rbase+Rmod. 

Data is sign-extended or zero-padded. 

Double vector load 

post-modify 

DVLD<type>_P  *Rbase+=Rmod, Vdst 

type = B, BU, H, HU, W, WU 

Use Rbase as byte address, Rbase is 

post-modified to Rbase+Rmod. 

Data is sign-extended or zero-padded. 

Vector store base 

plus offset 

VST<type>_P  Vsrc, *(Rbase+Imm) 

type = B, H, W, WX 

VSTWX_P  Wsrc, *(Rbase+Imm) 

Use Rbase + (4*imm10) as byte address.  

Vector store post-

modify 

VST<type>_P  Vsrc, *Rbase+=Rmod 

type B, H, W, WX, BH, HW 

Use Rbase as byte address, Rbase is 

post-modified to Rbase+Rmod. 

Double vector store 

post-modify 

DVST<type>_P  Vsrc, *Rbase+=Rmod 

type B, H, W  

Use Rbase as byte address, Rbase is 

post-modified to Rbase+Rmod. 
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9.9.2.2 Base-Offset 

Instruction name VLD base-offset 

Functionality Vector load base plus offset 

Assembly format VLD<type>_P  *(Rbase+Imm), Vdst 

VLDWX_P  *(Rbase+Imm), Vdst/Wdst 

Type and bit width  B/BU: 32 x 8-bit → 32 x 12-bit (vchar/vuchar -> vcharx) 

H/HU: 16 x 16-bit → 16 x 24-bit (vshort/vushort -> vshortx,  

                          vhfloat -> vhfloatx) 

W/WU for VRF: 8 x 32-bit → 8 x 48-bit (vint/vuint -> vintx, 

                                vfloat -> vfloatx) 

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx) 

Predication Not available 

Source options Rbase: scalar register 

Destination options Single vector register in VRF, WRF 

Additional options  

Intrinsics/operator vcharx sign_extend(vchar src); 
vshortx sign_extend(vshort src); 
vintx sign_extend(vint src); 
vfloatx sign_extend(vfloat src); 
vhfloatx sign_extend(vhfloat src); 
 
vcharx zero_extend(vuchar src); 
vshortx zero_extend(vushort src); 
vintx zero_extend(vuint src); 
 
// Instantiated with memory read with sign/zero extension, e.g., 
// vcharx v1 = sign_extend(vchar_array[3]);  
// vcharx v1 = sign_extend(*((vchar *)(char_array + 10))); 
 
// WX load does not require intrinsic function. Instantiated with, 
// e.g., 
// vcharx v2 = vcharx_array[10];   

Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address. 

Rbase is not modified. 

Data is sign-extended or zero-padded, based on specified type being signed 

or unsigned. 
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9.9.2.3 VLD Post-Modify 

Instruction name VLD post-modify 

Functionality Vector load post-modify 

Assembly format VLD<type>_P  *Rbase+=Rmod, Vdst 

Type and bit width  B/BU: 32 x 8-bit → 32 x 12-bit (vchar/vuchar -> vcharx) 

H/HU: 16 x 16-bit → 16 x 24-bit (vshort/vushort -> vshortx,  

                          vhfloat -> vhfloatx) 

W/WU for VRF: 8 x 32-bit → 8 x 48-bit (vint/vuint -> vintx, 

                                vfloat -> vfloatx) 

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx) 

Predication Not available 

Source options Rbase: scalar register 

Destination options Vdst: single vector register 

Additional options  

Intrinsics/operator vcharx sign_extend(vchar src); 
vshortx sign_extend(vshort src); 
vintx sign_extend(vint src); 
vfloatx sign_extend(vfloat src); 
vhfloatx sign_extend(vhfloat src); 
 
vcharx zero_extend(vuchar src); 
vshortx zero_extend(vushort src); 
vintx zero_extend(vuint src); 
 
// Instantiated with post-increment memory read with  
// sign/zero extension, e.g., 
// vcharx v1 = sign_extend(*vchar_ptr++);  
 
// WX load does not require intrinsic function. Instantiated with, 
// e.g., 
// vcharx v2 = *vcharx_ptr++;   

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod. 

Data is sign-extended or zero-padded, based on specified type being signed 

or unsigned. 
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9.9.2.4 DVLD Post-Modify 

Instruction name DVLD post-modify 

Functionality Double vector load post-modify 

Assembly format DVLD<type>_P    *Rbase+=Rmod, DVdst 

Type and bit width  B/BU: 64 x 8-bit → 2 x 32 x 12-bit (dvchar/dvuchar -> dvcharx) 

H/HU: 32 x 16-bit → 2 x 16 x 24-bit (dvshort/dvushort -> dvshortx, 

                             dvhfloat -> dvhfloatx) 

W/WU: 16 x 32-bit → 2 x 8 x 48-bit (dvint/dvuint -> dvintx, 

                             dvfloat -> dvfloatx) 

Predication Not available 

Source options Rbase: scalar register 

Destination options Vdst: double vector register 

Additional options  

Intrinsics/operator dvcharx sign_extend(dvchar src); 
dvshortx sign_extend(dvshort src); 
dvintx sign_extend(dvint src); 
dvfloatx sign_extend(dvfloat src); 
dvhfloatx sign_extend(dvhfloat src); 
 
dvcharx zero_extend(dvuchar src); 
dvshortx zero_extend(dvushort src); 
dvintx zero_extend(dvuint src); 
 
// Instantiated with post-increment memory read with sign/zero  
// extension, e.g., 
// dvcharx v1 = sign_extend(*dvchar_ptr++);  

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod. 

Data is sign-extended or zero-padded, based on specified type being signed 

or unsigned. 
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9.9.2.5 VST Base-Offset 

Instruction name VST base-offset 

Functionality Vector store base plus offset 

Assembly format VST<type>_P  Vsrc, *(Rbase+Imm) 

VSTWX_P  Vsrc/Wsrc, *(Rbase+Imm) 

Type and bit width  B: 32 x 12-bit → 32 x 8-bit (vcharx -> vchar/vuchar) 

H: 16 x 24-bit → 16 x 16-bit (vshortx -> vshort/vushort, 

                       vhfloatx -> vhfloat) 

W for VRF: 8 x 48-bit → 8 x 32-bit (vintx -> vint/vuint, 

                            vfloatx -> vfloat) 

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx) 

Predication Not available 

Source options Rbase: scalar register 

Single vector register in VRF, WRF 

Destination options  

Additional options  

Intrinsics/operator vchar extract(vcharx src); 
vshort extract(vshortx src); 
vint extract(vintx src); 
vfloat extract(vfloatx src); 
vhfloat extract(vhfloatx src); 
 
// Instantiated with memory write with sign/zero extension,  
// e.g., 
// vchar_array[3] = extract(vcharx_var);  
// *((vchar *)(char_array + 10)) = extract(vcharx_var);  
 
// WX does not require intrinsic function. Instantiated  
// with, e.g., 
// vcharx_array[3] = vcharx_var; 

Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address. 

Rbase is not modified. 
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9.9.2.6 VST Post-Modify 

Instruction name VST post-modify  

Functionality Vector store post-modify 

Assembly format VST<type>_P  Vsrc, *Rbase+=Rmod 

Type and bit width  B: 32 x 12-bit → 32 x 8-bit (vcharx -> vchar/vuchar) 

H: 16 x 24-bit → 16 x 16-bit (vshortx -> vshort/vushort, 

                       vhfloatx -> vhfloat) 

W for VRF: 8 x 48-bit → 8 x 32-bit (vintx -> vint/vuint, 

                            vfloatx -> vfloat) 

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx) 

BH: 32 x 12-bit → 32 x 16-bit (vcharx -> dvshort) 

HW: 16 x 24-bit → 16 x 32-bit (vshortx -> dvint) 

Predication Not available 

Source options Rbase: scalar register 

Vsrc: single vector register 

Destination options Rbase: scalar register 

Additional options  

Intrinsics/operator vchar extract(vcharx src); 
vshort extract(vshortx src); 
vint extract(vintx src); 
vfloat extract(vfloatx src); 
vhfloat extract(vhfloatx src); 
 
// Instantiated with post-increment memory write with  
// sign/zero extension, e.g., 
// *vchar_ptr++ = extract(vcharx_var);  
 
// WX does not require intrinsic function. Instantiated  
// with, e.g., 
// *vcharx_ptr++ = vcharx_var; 

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod. 
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9.9.2.7 DVST Post-Modify 

Instruction name DVST post-modify 

Functionality Double vector store post-modify 

Assembly format DVST<type>_P  DVsrc, *Rbase+=Rmod 

Type and bit width  B: 2 x 32 x 12-bit → 64 x 8-bit (dvcharx -> dvchar/dvuchar) 

H: 2 x 16 x 24-bit → 32 x 16-bit (dvshortx -> dvshort/dvushort) 

W: 2 x 8 x 48-bit → 16 x 32-bit (dvintx -> dvint/dvuint) 

Predication Not available 

Source options Rbase: scalar register 

Vsrc: double vector register 

Destination options Rbase: scalar register 

Additional options  

Intrinsics/operator dvchar extract(dvcharx src); 
dvshort extract(dvshortx src); 
dvint extract(dvintx src); 
dvfloat extract(dvfloatx src); 
dvhfloat extract(dvhfloatx src); 
 
// Instantiated with post-increment memory write with  
// sign/zero extension, e.g., 
// *dvchar_ptr++ = extract(dvcharx_var); 

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod. 
 

9.9.3 Agen Configuration  

9.9.3.1 Instruction Summary 

In scalar slots we allow the following instructions to configure the agen. 

Table 40. Agen config instructions 

Function Assembly Format Comments 

Initialize agen InitAgen Rsrc, A<id>.Base  

id = 0..7 

Set base address and initialize all other 

parameters to default values, including 

resetting loop variables I1..I6 to 0 

Configure agen 

base  

<pred> CfgAgen Rsrc, A<id>.Base  

id = 0..7 

Set base address (predicated) 

Configure agen 

num Iterations  

CfgAgen Rsrc, A<id>.N<level> 

id = 0..7, level = 1..6 

Only lower 16 bits are used. 

Default = 1. 

Configure agen 

address modifier  

CfgAgen Rsrc, A<id>.Mod<level> 

id = 0..7, level = 1..6 

Address modifiers are signed. 
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Function Assembly Format Comments 

32 bits are stored, but only lower 17 bits 

are used in address calculation. 

Default = 0 

Configure rounding CfgAgen Rsrc, A<id>.Round Rounding applies to store only and is 

ignored for WX type store. 

Bit 7 specifies round (0) or truncate (1). 

Bits 6:0 specifies number of bits to 

round/truncate. 

Default = 0 (no rounding) 

Configure 

saturation option 

CfgAgen Rsrc, A<id>.SatOpt Only 2 LSBs of Rsrc are used. 

0 : no saturation (default) 

1 : no saturation 

2 : treat 32-bit comparison values as 

signed 

3 : treat 32-bit comparison values as 

unsigned 

Saturation option is ignored for WX type 

store. 

Configure lane 

offset 

CfgAgen Rsrc, A<id>.LaneOfst Lane offsets are unsigned. 

Default = 0 

Configure 

saturation  

CfgAgen Rsrc, A<id>.SatLimLo 

CfgAgen Rsrc, A<id>.SatLimHi 

CfgAgen Rsrc, A<id>.SatValLo 

CfgAgen Rsrc, A<id>.SatValHi 

Saturation applies to store only and is 

ignored for WX type store. 

 

Default = 0 

Configure circular 

buffer 

CfgAgen Rsrc, A<id>.CBStart 

CfgAgen Rsrc, A<id>.CBSize 

Configure starting address and size of 

circular buffer, Rsrc is read as byte 

address, and is right-shifted 6 bits before 

writing to the CBStart and CBSize fields 

to force 64-byte alignment.  

CBSize = 0 indicates circular buffer is 

disabled. 

Default = 0. 

Agen Config Move MovAgen A<src_id>, A<dst_id> Copy all agen parameters and loop 

variables (608-bit). 

Save agen config AgenCfgST A<id>, *Rptr += Rmod 

AgenCfgST_p2 A<id>, *Rptr += Rmod 

Save first/second 512-bit of agen data 

structure. 

Restore agen 

config 

AgenCfgLD *Rptr += Rmod, A<id> 

AgenCfgLD_p2 *Rptr += Rmod, A<id> 

Restore first/second 512-bit of agen data 

structure. 

Agen update AgenUpd A<id>++ Update agen without memory transaction 

Move agen base  MovAgen A<id>.Base, Rdst  Copy agen base address to scalar 

Advance agen base  AdvAgen A<id>.Base, Rsrc2 

 

Perform circular buffer wrap-around if 

configured 
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Function Assembly Format Comments 

Configure min/max 

option 

CfgAgen Rsrc, A<id>.MinMaxOpt  Configure minmax_opt, initialize min/max 

values accordingly 

Move agen 

min/max 

MovAgen A<id>.MinVal, Rdst  

MovAgen A<id>.MaxVal, Rdst 

Copy agen collected min/max value to 

scalar 

 

9.9.3.2 InitAgen 

Instruction name InitAgen  

Functionality Initialize agen with base address 

Assembly format InitAgen Rsrc, A<id>.Base  

id = 0..7 

Type and bit width  Base: 32-bit unsigned 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen config (all parameters including base) 

Additional options  

Intrinsics/operator agen init(vint * arr1);  

Additional details Set base address and initialize all other parameters to default values, 

including resetting loop variables I1..I6 to 0 
 

9.9.3.3 CfgAgen Base 

Instruction name CfgAgen base 

Functionality Configure agen base address 

Assembly format <pred> CfgAgen Rsrc, A<id>.Base  

id = 0..7 

pred = none, [P2.. P15] 

Type and bit width  32-bit unsigned 

Predication Instruction-level predication 

Source options Rsrc: scalar register 

Destination options Agen config base 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member a 
// For example, 
agen1.a = (vint *) array1; 

Additional details Set base address 
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9.9.3.4 CfgAgen NIter 

Instruction name CfgAgen Niter 

Functionality Configure number of iterations 

Assembly format CfgAgen Rsrc, A<id>.N<level> 

id = 0..7, level = 1..6 

Type and bit width  16-bit 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].N[level] 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member n1..n6 
// For example, 
agen1.n1 = niter1; 

Additional details Only lower 16 bits of Rsrc are used. Default = 1. 

Programming it to 0 would exhibit the same looping behavior as 

programming it to 1. 
 

9.9.3.5 CfgAgen Mod 

Instruction name CfgAgen Mod 

Functionality Configure agen address modifier 

Assembly format CfgAgen Rsrc, A<id>.Mod<level> 

id = 0..7, level = 1..6 

Type and bit width  Of the 32-bit value in Rsrc, only 18 LSBs stored in the designated Mod 

register. 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].Mod[level] 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member mod1..mod6 
// For example, 
agen1.mod1 = vector_width * sizeof(data); 

Additional details Default = 0. 

Note that address modiers are signed. 
 

9.9.3.6 CfgAgen Round 

Instruction name CfgAgen Round 

Functionality Configure agen rounding parameter 

Assembly format CfgAgen Rsrc, A<id>.Round 
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Instruction name CfgAgen Round 

id = 0..7 

Type and bit width  8-bit unsigned 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].Round 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member round 
// For example, 
agen1.round = qbits; 

Additional details Rounding applies to store only, and is ignored for WX-type store. 

Only bit 7 and bits 6:0 of Rsrc are used.  

Bits 7 specifies round (0), truncate (1)  

Bits 6:0 specifies number of bits to round/truncate. 

When number of bits exceeds source lane width (B=12, H=24, W=48), 

rounding leads to zero for all inputs, and truncation leads to zero for 

zero/positive inputs, and to -1 for negative inputs. 

Default = 0 (no rounding) 
 

9.9.3.7 CfgAgen SatOpt 

Instruction name CfgAgen SatOpt 

Functionality Configure agen saturation option 

Assembly format CfgAgen Rsrc, A<id>.SatOpt  

id = 0..7 

Type and bit width  8-bit unsigned (only 2 LSBs are used) 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].SatOpt 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member round 
// For example, 
agen1.sat_opt = 0; 

Additional details Only 2 LSBs of Rsrc are used. 

0 : no saturation (default) 

1 : no saturation 

2 : treat 32-bit comparison values as signed 

3 : treat 32-bit comparison values as unsigned 

This is ignored for WX-type store. 
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9.9.3.8 CfgAgen LaneOfst 

Instruction name CfgAgen LaneOfst 

Functionality Configure agen lane offset 

Assembly format CfgAgen Rsrc, A<id>.LaneOfst  

id = 0..7 

Type and bit width  12-bit unsigned 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].LaneOfst 

Additional options  

Intrinsics/operator // Not needed, just assign to agen member lane_ofst 
// For example, 
agen1.lane_ofst = num_columns/16; 

Additional details Only 12 LSBs of Rsrc are stored into the lane offset field. Default = 0. 

Note that lane offsets are unsigned. 

Used for transposing vector load/store. See 6.3.7 for details. 
 

9.9.3.9 CfgAgen Sat 

Instruction name CfgAgen Sat 

Functionality Configure agen saturation 

Assembly format CfgAgen Rsrc, A<id>.SatLimLo 

CfgAgen Rsrc, A<id>.SatLimHi 

CfgAgen Rsrc, A<id>.SatValLo 

CfgAgen Rsrc, A<id>.SatValHi 

id = 0..7 

Type and bit width  32-bit 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].SatLimLo/SatLimHi/SatValLo/SatValHi 

Additional options  

Intrinsics/operator // Not needed; just assign to corresponding agen struct members 
// For example, 
agen1.sat_lim_lo = low_bound; 
agen1.sat_val_lo = low_bound; 
agen1.sat_lim_hi = high_bound; 

Additional details Saturation applies to store only and is ignored for WX-type store. 

Default = 0 
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9.9.3.10 CfgAgen CB 

Instruction name CfgAgen CB 

Functionality Configure agen circular buffer 

Assembly format CfgAgen Rsrc, A<id>.CBStart 

CfgAgen Rsrc, A<id>.CBSize  

id = 0..7 

Type and bit width  16-bit (from 32-bit scalar register source, 6 LSBs are dropped, bits 21:6 are 

stored into agen cb_start or cb_size fields) 

Predication Not available 

Source options Rsrc: scalar register 

Destination options Agen[id].CBStart/CBSize 

Additional options  

Intrinsics/operator // Recommended syntax, works in ISS and Native 
short chess_storage(DMh%64: chess_segment(C)) cb_buf1[CB1_SIZE]; 
agen1 = update_agen_cb_start(agen1, (short *) cb_buf1);  
agen2 = update_agen_cb_size(agen2, CB1_SIZE * sizeof(short)); 
// Legacy syntax, works in ISS but not in Native 
agen agen1.cb_start = (short *) cb_buf1;  
agen agen2.cb_size = CB1_SIZE * sizeof(short); 

Additional details Configure starting address and size of circular buffer, Rsrc is read as byte 

address or size in bytes, and is right-shifted 6 bits before writing to the 

CBStart and CBSize fields to force 64-byte alignment.  

CBSize = 0 indicates circular buffer is disabled. 

Default = 0. 

Note that CBStart and CBSize are both unsigned. 
 

9.9.3.11 MovAgen  

Instruction name MovAgen 

Functionality Agen config move 

Assembly format MovAgen A<src_id>, A<dst_id>  

src_id/dst_id = 0..7 

Type and bit width  608-bit 

Predication Not available 

Source options Agen[src_id] 

Destination options Agen[dst_id] 

Additional options  

Intrinsics/operator // Not needed, just assign an agen to another agen 
// For example, 
agen2 = agen1; 

Additional details Copy all agen parameters and loop variables (608-bit). 
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9.9.3.12 AgenCfgST 

Instruction name AgenCfgST  

Functionality Save agen config 

Assembly format AgenCfgST A<id>, *Rptr += Rmod  

AgenCfgST_p2 A<id>, *Rptr += Rmod  

id = 0..7 

Type and bit width  512-bit or 192-bit 

Predication Not available 

Source options Agen[id] 

Rptr/Rmod: scalar register 

Destination options Rmod: scalar register 

Additional options  

Intrinsics/operator AgenCFG agen1.get_cfg(); // Legacy syntax also supported 
AgenCFG_p2 extract_agen_cfg_p2(agen src);   
// For example, 
AgenCFG * ptr = &cfg_arr[0]; 
AgenCFG_p2 ptr2 = &cfg2_arr[0]; 
*ptr++ = extract_agen_cfg(agen1);   
*ptr2++ = extract_agen_cfg_p2(agen1); 

Additional details AgenCfgST saves the first 512-bit of agen data structure 

AgenCfgST_p2 saves the remaining 192-bit of agen data structure 

Address should be 32-bit aligned. 

For readability each MOD1..MOD6 register is sign-extended to 32-bit in 

stored memory locations. 

Available only in the M0 slot. 
 

Instruction name AgenCfgST (base-offset) 

Functionality Save agen config 

Assembly format AgenCfgST A<id>, *(Rbase + Imm12) 

AgenCfgST_p2 A<id>, *(Rbase + Imm12) 

id = 0..7 

Type and bit width  512-bit or 192-bit 

Predication Not available 

Source options Agen[id] 

Rbase: scalar register 

Imm12: 12-bit immediate byte address offset 

Destination options n/a 

Additional options  

Intrinsics/operator AgenCFG extract_agen_cfg(agen src); // Recommended 
AgenCFG agen1.get_cfg(); // Legacy syntax also supported 
AgenCFG_p2 extract_agen_cfg_p2(agen src);   
// For example, 
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Instruction name AgenCfgST (base-offset) 

AgenCFG cfg_arr[3]; 
AgenCFG cfg2_arr[3]; 
cfg_arr[0] = extract_agen_cfg(agen1);   
cfg2_arr[0] = extract_agen_cfg_p2(agen1); 

Additional details AgenCfgST saves the first 512-bit of agen data structure 

AgenCfgST_p2 saves the remaining 192-bit of agen data structure 

Address should be 32-bit aligned. 

For readability each MOD1..MOD6 register is sign-extended to 32-bit in 

stored memory locations. 

Available only in the M0 slot. 
 

9.9.3.13 AgenCfgLD 

Instruction name AgenCfgLD 

Functionality Restore agen config 

Assembly format AgenCfgLD *Rptr += Rmod, A<id> 

AgenCfgLD_p2 *Rptr += Rmod, A<id> 

id = 0..7 

Type and bit width  512-bit or 192-bit 

Predication Not available 

Source options Rptr/Rmod: scalar register 

Destination options Agen[id] 

Rmod: scalar register 

Additional options  

Intrinsics/operator agen init_agen_from_cfg(AgenCFG src); // Recommended 
agen agen1.expand_cfg(AgenCFG src); // Legacy syntax also supported  
agen update_agen_p2(agen a1, AgenCFG_p2 data_p2);    
// For example, 
AgenCFG * ptr1 = &cfg_arr[0]; 
AgenCFG_p2 * ptr2 = &cfg2_arr[0]; 
agen a1 = init_agen_from_cfg(*ptr1++);  
a1 = update_agen_p2(a1, *ptr2++);  

Additional details AgenCfgLD restores the first 512-bit of agen data structure, and set the rest 

to “sensible” initial state ready to execute dependent agen-based load/store 

instructions 

All loop variables to 0 

auto_pred_off to 0 

MinVal/MaxVal to 0, INT32 MAX/MIN, UINT32 MAX/MIN, according to 

MinMaxOpt 

AgenCfgLD_p2 restores the remaining 192-bit of agen data structure from 

memory. 

Address in Rptr should be 32-bit aligned. 
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Instruction name AgenCfgLD 

Each of MOD1..MOD6 register will only take 18 LSBs in corresponding 32-bit 

memory locations. 

Available only in the M0 slot. 
 

Instruction name AgenCfgLD (base-offset) 

Functionality Restore agen config 

Assembly format AgenCfgLD *(Rbase + Imm12), A<id> 

AgenCfgLD_p2 *(Rbase + Imm12), A<id> 

id = 0..7 

Type and bit width  512-bit or 192-bit 

Predication Not available 

Source options Rbase: scalar register 

Imm12: 12-bit immediate byte address offset 

Destination options Agen[id] 

Additional options  

Intrinsics/operator agen init_agen_from_cfg(AgenCFG src); // Recommended 
agen agen1.expand_cfg(AgenCFG src); // Legacy syntax also supported  
agen update_agen_p2(agen a1, AgenCFG_p2 data_p2);    
// For example, 
AgenCFG cfg_arr[4]; 
AgenCFG_p2 cfg2_arr[4]; 
agen a1 = init_agen_from_cfg(cfg_arr[0]);  
a1 = update_agen_p2(a1, cfg2_arr[0]);     

Additional details AgenCfgLD restores the first 512-bit of agen data structure, and set the rest 

to “sensible” initial state ready to execute dependent agen-based load/store 

instructions 

All loop variables to 0 

auto_pred_off to 0 

MinVal/MaxVal to 0, INT32 MAX/MIN, UINT32 MAX/MIN, according to 

MinMaxOpt 

AgenCfgLD_p2 restores the remaining 192-bit of agen data structure from 

memory. 

Address in Rptr should be 32-bit aligned. 

Each of MOD1..MOD6 register will only take 18 LSBs in corresponding 32-bit 

memory locations. 

Available only in the M0 slot. 
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9.9.3.14 AgenUpd  

Instruction name AgenUpd  

Functionality Update agen loop variables and address without memory transaction 

Assembly format AgenUpd A<id>++ 

Type and bit width   

Predication Not available 

Source options  

Destination options  

Additional options  

Intrinsics/operator agen update_agen(agen a);  

Additional details Perform agen loop variables and address update as configured by agen 

parameters, without performing any memory load/store transaction. 

Note that this instruction is available in memory slots, as opposed to scalar 

slots for the other non-load/store agen configuration instructions. 
 

9.9.3.15 Move Agen Base  

Instruction name MovAgen Base  

Functionality Copy agen address to scalar 

Assembly format MovAgen A<id>.Base, Rdst  

id = 0..7 

Type and bit width  32-bit unsigned 

Predication Not available 

Source options Agen address 

Destination options scalar register 

Additional options  

Intrinsics/operator // not needed, just access agen member a 
int * ptr = (int *) agen.a; 

Additional details Move the current agen address (updated with each execution of agen-based 

load/store, rather than the starting address) to scalar register, mostly to 

facilitate debug. 

Note that this instruction is available in memory slots, as opposed to scalar 

slots for the other non-load/store agen configuration instructions. 
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9.9.3.16 Advance Agen Base  

Instruction name AdvAgenBase  

Functionality Advance agen base address by offset 

Assembly format AdvAgen A<id>.Base, Rsrc2 

id = 0..7 

Type and bit width  32-bit unsigned base + 18-bit signed offset 

Predication Not available 

Source options Agen address, scalar register supplying address offset 

Destination options Agen address 

Additional options  

Intrinsics/operator void adv_agen_base(agen& srcdst, int ofst); 

Additional details When circular buffer is configured (cb_size > 0), the base address is advanced 

by the offset (which can be positive or negative) with circular buffer wrap-

around. In this case, magnitude of offset must not exceed circular buffer 

size, otherwise, the circular buffer addressing logic may not correctly wrap 

the modified address back into the circular buffer. See 6.4.6 Circular Buffer 

Addressing for details. 

When circular buffer is not configured (cb_size = 0), the base address is 

simply advanced (positively or negatively) by the offset, i.e., base += offset.  

Only 18 LSBs of Rsrc2 providing the offset is used in the address calculation, 

so this feature should not be used to move the base address between one 

superbank to another superbank.  

FINE PRINT: Technically it’s possible, but leveraging the address wrapping 

behavior (see Memory Address Range Constraints) to place the base address 

at the edge of one superbank’s primary-or-alias address space, and to 

advance it by as little as one byte to fall into another superbank’s primary-or-

alias address space. However, the address wrapping behavior is not backward 

or forward compatible, so this practice is very dangerous. 

This instruction is available in memory slots, as opposed to scalar slots for 

the other non-load/store agen configuration instructions. 
 

9.9.3.17 CfgAgen MinMaxOpt 

Instruction name CfgAgen MinMaxOpt 

Functionality Configure min/max option  

Assembly format CfgAgen Rsrc, A<id>.MinMaxOpt 

id = 0..7 

Type and bit width  8-bit unsigned (only 2 LSBs are used) 

Predication Not available 

Source options Scalar register 

Destination options Agen[id].MinMaxOpt 

Additional options  
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Instruction name CfgAgen MinMaxOpt 

Intrinsics/operator // Not needed; just assign to agen member minmax_opt 
agen1.minmax_opt = value; 

Additional details Min/max option: 

0: disable (default) 

1: disable 

2: enable for signed min/max 

3: enable for unsigned min/max 

Upon configuring the min/max option to 2 (enabled for signed min/max), the 

min value is initialized to MAX_INT32 = 0x7FFF_FFFF. The max value is 

initialized to MIN_INT32 = 0x8000_0000. 

Upon configurating the min/max option to 3 (enabled for unsigned min/max), 

the min value is initialized to MAX_UINT32 = 0xFFFF_FFFF. The max value is 

initialized to MIN_UINT32 = 0. 

Upon configurating the min/max option to 0 or 1, the min/max values are 

reset to 0. 

Resetting min/max values as a consequence of configurating min/max option 

happens not just by this instruction, but also by InitAgen (setting min/max 

option to default 0 and min/max values to 0) and AgenCfgLD (restoring 

min/max option to whatever value saved in memory, and initializing min/max 

values according to the option).  
 

9.9.3.18 Move Agen Min/Max 

Instruction name MovAgen Min/Max 

Functionality Copy agen collected min or max value to scalar 

Assembly format MovAgen A<id>.MinVal, Rdst  

MovAgen A<id>.MaxVal, Rdst 

id = 0..7 

Type and bit width  32-bit signed 

Predication Not available 

Source options Agen min or max value 

Destination options scalar register 

Additional options  

Intrinsics/operator // Not needed; just access agen member min_val or max_vol 
int dst1 = agen.min_val; 
int dst2 = agen.max_val; 

Additional details   
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9.9.4 Agen-Based Vector Load/Store 

Agen-based load/store offers more flexibility, in expanding and contracting between 

memory and vector register, and with data distribution options. 

When double vector registers are used, it must be a consecutive V[2*i]:V[2*i+1] pair. 

A parallel quad vector register store is also offered and only in M0 slot, to store 4 vector 

registers with demotion into 512-bit memory space. This is needed for filtering with 16-

bit-by-16-bit multiply and 48-bit accumulator to achieve peak performance. 

9.9.4.1 Instruction Summary 

Vector load/store instructions: 

Table 41. Agen-based vector load/store instructions 

Function Assembly Format Comments 

Vector load agen-

based 

<pred> VLD<type>_distr  *A<id>++, Vdst/Wdst 

  

 

Double vector load 

agen-based 

<pred> DVLD<type>_distr  *A<id>++, DVdst/DWdst 

 

 

Vector store agen-

based 

<pred> VST<type>_distr  Vsrc/ACsrc/XACsrc, *A<id>++  

  

  

Double vector store 

agen-based 

<pred> DVST<type>_distr  DVsrc/DACsrc/DXACsrc, *A<id>++  

Quad vector store 

agen-based 

<pred> QVST<type>_distr  DVsrc1, DVsrc2, *A<id>++ 

<pred> QVST<type>_distr  DACsrc1, DACsrc2, *A<id>++  

 

Vector load + 

permute agen-

based 

VLDPerm<type>_<distr>  *A<id>++, Vsrc/Wsrc, Vdst/Wdst 

 

 

Double vector load 

+ permute agen-

based 

DVLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, 

DVdst/DWdst 

  

 

Vector store with 

per-land rounding 

DVST <type>_PLRound_distr  Vsrc1/Wsrc1, DVsrc2/DACsrc2, 

*A<id>++ 
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9.9.4.2 VLD Agen 

Instruction name VLD agen  

Functionality Vector load agen-based 

Assembly format <pred> VLD<type>_<distr>  *A<id>++, Vdst 

<pred> VLD<type>_<distr>  *A<id>++, Wdst 

pred = none, [P2.. P15] 

Type and bit width  Type/distribution supported: 

B_P, H_P, W_P, BU_P, HU_P, WU_P,  

B_T, H_T, W_T, BU_T, HU_T, WU_T,  

B_S, H_S, W_S, BU_S, HU_S, WU_S, 

B_C2, H_C2, W_C2, BU_C2, HU_C2, WU_C2,  

WX_P 

 

For example: 

    VLDB_P *A0++, V0 

[P1] VLDH_T, *A1++, V2 

Predication Instruction-level predication  

Source options  

Destination options Vdst: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator // unpredicated 
vcharx vchar_load( agen& a1); // B_P 
vshortx vshort_load( agen& a1); // H_P 
vintx  vint_load(  agen& a1); // W_P 
vcharx vuchar_load( agen& a1); // BU_P 
vshortx vushort_load(agen& a1); // HU_P 
vintx  vuint_load( agen& a1); // WU_P 
vcharx vchar_load_transp( agen& a1); // B_T 
vshortx vshort_load_transp( agen& a1); // H_T 
vintx  vint_load_transp(  agen& a1); // W_T 
vcharx vuchar_load_transp( agen& a1); // BU_T 
vshortx vushort_load_transp(agen& a1); // HU_T 
vintx  vuint_load_transp( agen& a1); // WU_T 
vcharx vchar_load_bs( agen& a1); // B_S 
vshortx vshort_load_hs( agen& a1); // H_S 
vintx  vint_load_ws(  agen& a1); // W_S 
vcharx vuchar_load_bs( agen& a1); // BU_S 
vshortx vushort_load_hs(agen& a1); // HU_S 
vintx  vuint_load_ws( agen& a1); // WU_S 
vcharx vchar_load_c2( agen& a1); // B_C2 
vshortx vshort_load_c2( agen& a1); // H_C2 
vintx  vint_load_c2(  agen& a1); // W_C2 
vcharx vuchar_load_c2( agen& a1); // BU_C2 
vshortx vushort_load_c2(agen& a1); // HU_C2 
vintx  vuint_load_c2( agen& a1); // WU_C2 
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Instruction name VLD agen  

vcharx vcharx_load(  agen& a1); // WX 
vshortx vshortx_load(  agen& a1); // WX 
vintx  vintx_load(   agen& a1); // WX 
 
// predicated 
void vchar_load( vcharx& dst, agen& a1, bool pred); // B_P 
void vshort_load( vshortx& dst, agen& a1, bool pred); // H_P 
void vint_load(  vintx&  dst, agen& a1, bool pred); // W_P 
void vuchar_load( vcharx& dst, agen& a1, bool pred); // BU_P 
void vushort_load(vshortx& dst, agen& a1, bool pred); // HU_P 
void vuint_load( vintx&  dst, agen& a1, bool pred); // WU_P 
void vchar_load_transp( vcharx& dst, agen& a1,bool pred);//B_T 
void vshort_load_transp( vshortx& dst, agen& a1,bool pred);//H_T 
void vint_load_transp(  vintx&  dst, agen& a1,bool pred);//W_T 
void vuchar_load_transp( vcharx& dst, agen& a1,bool pred);//BU_T 
void vushort_load_transp(vshortx& dst, agen& a1,bool pred);//HU_T 
void vuint_load_transp( vintx&  dst, agen& a1,bool pred);//WU_T 
void vchar_load_bs( vcharx&  dst, agen& a1, bool pred); //B_S 
void vshort_load_hs( vshortx& dst, agen& a1, bool pred); //H_S 
void vint_load_ws(  vintx&  dst, agen& a1, bool pred); //W_S 
void vuchar_load_bs( vcharx&  dst, agen& a1, bool pred); //BU_S 
void vushort_load_hs(vshortx& dst, agen& a1, bool pred); //HU_S 
void vuint_load_ws( vintx&  dst, agen& a1, bool pred); //WU_S 
void vchar_load_c2( vcharx&  dst, agen& a1, bool pred); //B_C2 
void vshort_load_c2( vshortx& dst, agen& a1, bool pred); //H_C2 
void vint_load_c2(  vintx&  dst, agen& a1, bool pred); //W_C2 
void vuchar_load_c2( vcharx&  dst, agen& a1, bool pred); //BU_C2 
void vushort_load_c2(vshortx& dst, agen& a1, bool pred); //HU_C2 
void vuint_load_c2( vintx&  dst, agen& a1, bool pred); //WU_C2 
void vcharx_load(  vcharx&  dst, agen& a1, bool pred); //WX 
void vshortx_load(  vshortx& dst, agen& a1, bool pred); //WX 
void vintx_load(   vintx&  dst, agen& a1, bool pred); //WX 
 
// Float 
vfloatx vfloat_load(    agen& a); // W_P 
vfloatx vfloat_load_transp(agen& a); // W_T 
vfloatx vfloat_load_ws(  agen& a); // W_S 
vfloatx vfloat_load_c2(  agen& a); // W_C2 
void vfloat_load(    vfloatx& dst, agen& a, bool pred);// W_P  
void vfloat_load_transp(vfloatx& dst, agen& a, bool pred);// W_T 
void vfloat_load_ws(  vfloatx& dst, agen& a, bool pred);// W_S 
void vfloat_load_c2(  vfloatx& dst, agen& a, bool pred);// W_C2 
vhfloatx vhfloat_load(    agen& a); // H_P 
vhfloatx vhfloat_load_transp(agen& a); // H_T 
vhfloatx vhfloat_load_hs(  agen& a); // H_S 
vhfloatx vhfloat_load_c2(  agen& a); // H_C2 
void vhfloat_load(    vhfloatx& dst, agen& a, bool pred);//H_P 
void vhfloat_load_transp(vhfloatx& dst, agen& a, bool pred);//H_T 
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Instruction name VLD agen  

void vhfloat_load_hs(  vhfloatx& dst, agen& a, bool pred);//H_S 
void vhfloat_load_c2(  vhfloatx& dst, agen& a, bool pred);//H_C2 
  

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

When predication is off, writing to Vdst is skipped. 

See Transposing Load/Store for address calculation and pattern for transpose 

distribution. 
 

9.9.4.3 DVLD Agen 

Instruction name DVLD agen  

Functionality Double vector load agen-based 

Assembly format <pred> DVLD<type>_<distr>  *A<id>++, DVdst 

<pred> DVLD<type>_<distr>  *A<id>++, DWdst 

pred = none, [P2.. P15] 

Type and bit width  Type/distribution supported: 

B_P, H_P, W_P, BU_P, HU_P, WU_P, H_T, W_T, HU_T, WU_T,  

B_PDI, H_PDI, W_PDI, BU_PDI, HU_PDI, WU_PDI,  

H_TDI, W_TDI, HU_TDI, WU_TDI,  

BH_P, BW_P, HW_P, BHU_P, BWU_P, HWU_P, 

BH_T, BW_T, HW_T, BHU_T, BWU_T, HWU_T 

BH_PDI, BW_PDI, HW_PDI,  

BHU_PDI, BWU_PDI, HWU_PDI, 

H_T2DI, HU_T2DI, W_T2DI, WU_T2DI, 

B_T32, BU_T32,  

H_T2, HU_T2, H_T4, HU_T4, H_T8, HU_T8, H_T16, HU_T16,  

W_T8, WU_T8 

 

For example: 

    DVLDB_P *A0++, V0:V1 

[P1] DVLDH_T, *A1++, V2:V3 

Predication Instruction-level predication  

Source options  

Destination options Vdst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator // unpredicated 
dvcharx dvchar_load( agen& a1); // B_P 
dvshortx dvshort_load( agen& a1); // H_P 
dvintx  dvint_load(  agen& a1); // W_P 
dvcharx dvuchar_load( agen& a1); // BU_P 
dvshortx dvushort_load(agen& a1); // HU_P 
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Instruction name DVLD agen  

dvintx  dvuint_load( agen& a1); // WU_P 
dvshortx dvshort_load_transp( agen& a1); // H_T 
dvintx  dvint_load_transp(  agen& a1); // W_T 
dvshortx dvushort_load_transp(agen& a1); // HU_T 
dvintx  dvuint_load_transp( agen& a1); // WU_T 
dvcharx dvchar_load_di( agen& a1);   // B_PDI 
dvshortx dvshort_load_di( agen& a1);   // H_PDI 
dvintx  dvint_load_di(  agen& a1);   // W_PDI 
dvcharx dvuchar_load_di( agen& a1);   // BU_PDI 
dvshortx dvushort_load_di(agen& a1);   // HU_PDI 
dvintx  dvuint_load_di( agen& a1);   // WU_PDI 
dvshortx dvshort_load_transp_di( agen& a1); // H_TDI 
dvintx  dvint_load_transp_di(  agen& a1); // W_TDI 
dvshortx dvushort_load_transp_di(agen& a1); // HU_TDI 
dvintx  dvuint_load_transp_di( agen& a1); // WU_TDI 
 
dvshortx vchar_dvshortx_load( agen& a1); // BH_P 
dvintx  vchar_dvintx_load(  agen& a1); // BW_P 
dvintx  vshort_dvintx_load(  agen& a1); // HW_P 
dvshortx vuchar_dvshortx_load( agen& a1); // BHU_P 
dvintx  vuchar_dvintx_load(  agen& a1); // BWU_P 
dvintx  vushort_dvintx_load( agen& a1); // HWU_P 
dvshortx vchar_dvshortx_load_transp( agen& a1); // BH_T 
dvintx  vchar_dvintx_load_transp(  agen& a1); // BW_T 
dvintx  vshort_dvintx_load_transp(  agen& a1); // HW_T 
dvshortx vuchar_dvshortx_load_transp( agen& a1); // BHU_T 
dvintx  vuchar_dvintx_load_transp(  agen& a1); // BWU_T 
dvintx  vushort_dvintx_load_transp( agen& a1); // HWU_T 
dvshortx vchar_dvshortx_load_di(  agen& a1); // BH_PDI 
dvintx  vchar_dvintx_load_di (  agen& a1); // BW_PDI 
dvintx  vshort_dvintx_load_di (  agen& a1); // HW_PDI 
dvshortx vuchar_dvshortx_load_di ( agen& a1); // BHU_PDI 
dvintx  vuchar_dvintx_load_di (  agen& a1); // BWU_PDI 
dvintx  vushort_dvintx_load_di ( agen& a1); // HWU_PDI 
 
dvshortx dvshort_load_transp2_di( agen& a1); // H_T2DI 
dvshortx dvushort_load_transp2_di(agen& a1); // HU_T2DI 
dvintx  dvint_load_transp2_di(  agen& a1); // W_T2DI 
dvintx  dvuint_load_transp2_di( agen& a1); // WU_T2DI 
dvcharx dvchar_load_transp32( agen& a1); // B_T32 
dvshortx dvshort_load_transp2( agen& a1); // H_T2 
dvshortx dvshort_load_transp4( agen& a1); // H_T4 
dvshortx dvshort_load_transp8( agen& a1); // H_T8 
dvshortx dvshort_load_transp16( agen& a1); // H_T16 
dvintx  dvint_load_transp8(  agen& a1); // W_T8 
dvcharx dvuchar_load_transp32( agen& a1); // BU_T32 
dvshortx dvushort_load_transp2( agen& a1); // HU_T2 
dvshortx dvushort_load_transp4( agen& a1); // HU_T4 
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Instruction name DVLD agen  

dvshortx dvushort_load_transp8( agen& a1); // HU_T8 
dvshortx dvushort_load_transp16(agen& a1); // HU_T16 
dvintx  dvuint_load_transp8(  agen& a1); // WU_T8 
 
// predicated  
void dvchar_load( dvcharx& dst, agen& a1, bool pred); // B_P 
void dvshort_load( dvshortx& dst, agen& a1, bool pred); // H_P 
void dvint_load(  dvintx& dst,  agen& a1, bool pred); // W_P 
void dvuchar_load( dvcharx& dst, agen& a1, bool pred); // BU_P 
void dvushort_load(dvshortx& dst, agen& a1, bool pred); // HU_P 
void dvuint_load( dvintx& dst,  agen& a1, bool pred); // WU_P 
void dvshort_load_transp(dvshortx& dst, agen& a1, bool pred); // H_T 
void dvint_load_transp( dvintx&  dst, agen& a1, bool pred); // W_T 
void dvushort_load_transp(dvshortx& dst, agen& a1, bool pred); // HU_T 
void dvuint_load_transp( dvintx&  dst, agen& a1, bool pred); // WU_T 
void dvchar_load_di( dvcharx& dst, agen& a1, bool pred); // B_PDI 
void dvshort_load_di( dvshortx& dst, agen& a1, bool pred); // H_PDI 
void dvint_load_di(  dvintx&  dst, agen& a1, bool pred); // W_PDI 
void dvuchar_load_di( dvcharx& dst, agen& a1, bool pred); // BU_PDI 
void dvushort_load_di(dvshortx& dst, agen& a1, bool pred); // HU_PDI 
void dvuint_load_di( dvintx&  dst, agen& a1, bool pred); // WU_PDI 
void dvshort_load_transp_di( dvshortx& dst, agen& a1,bool pred); // H_TDI 
void dvint_load_transp_di(  dvintx&  dst, agen& a1,bool pred); // W_TDI 
void dvushort_load_transp_di(dvshortx& dst, agen& a1,bool pred); // HU_TDI 
void dvuint_load_transp_di( dvintx&  dst, agen& a1,bool pred); // WU_TDI 
 
void vchar_dvshortx_load( dvshortx& dst, agen& a1, bool pred); // BH_P 
void vchar_dvintx_load(  dvintx&  dst, agen& a1, bool pred); // BW_P 
void vshort_dvintx_load( dvintx&  dst, agen& a1, bool pred); // HW_P 
void vuchar_dvshortx_load(dvshortx& dst, agen& a1, bool pred); // BHU_P 
void vuchar_dvintx_load( dvintx&  dst, agen& a1, bool pred); // BWU_P 
void vushort_dvintx_load( dvintx&  dst, agen& a1, bool pred); // HWU_P 
void vchar_dvshortx_load_transp( dvshortx& dst, agen& a, bool p); //BH_T 
void vchar_dvintx_load_transp(  dvintx&  dst, agen& a, bool p); //BW_T 
void vshort_dvintx_load_transp( dvintx&  dst, agen& a, bool p); //HW_T 
void vuchar_dvshortx_load_transp(dvshortx& dst, agen& a, bool p); //BHU_T 
void vuchar_dvintx_load_transp( dvintx&  dst, agen& a, bool p); //BWU_T 
void vushort_dvintx_load_transp( dvintx&  dst, agen& a, bool p); //HWU_T 
void vchar_dvshortx_load_di( dvshortx& dst,agen& a1,bool pred); //BH_PDI 
void vchar_dvintx_load_di(  dvintx&  dst,agen& a1,bool pred); //BW_PDI 
void vshort_dvintx_load_di( dvintx&  dst,agen& a1,bool pred); //HW_PDI 
void vuchar_dvshortx_load_di(dvshortx& dst,agen& a1,bool pred); //BHU_PDI 
void vuchar_dvintx_load_di( dvintx&  dst,agen& a1,bool pred); //BWU_PDI 
void vushort_dvintx_load_di( dvintx&  dst,agen& a1,bool pred); //HWU_PDI 
 
void dvshort_load_transp2_di( dvshortx& dst, agen& a, bool p); // H_T2DI 
void dvushort_load_transp2_di(dvshortx& dst, agen& a, bool p); // HU_T2DI 
void dvint_load_transp2_di(  dvintx& dst,  agen& a, bool p); // W_T2DI 
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Instruction name DVLD agen  

void dvuint_load_transp2_di( dvintx& dst,  agen& a, bool p); // WU_T2DI 
void dvchar_load_transp32( dvcharx& dst, agen& a1, bool pred); //B_T32 
void dvshort_load_transp2( dvshortx& dst, agen& a1, bool pred); //H_T2 
void dvshort_load_transp4( dvshortx& dst, agen& a1, bool pred); //H_T4 
void dvshort_load_transp8( dvshortx& dst, agen& a1, bool pred); //H_T8 
void dvshort_load_transp16( dvshortx& dst, agen& a1, bool pred); //H_T16 
void dvint_load_transp8(  dvintx&  dst, agen& a1, bool pred); //W_T8 
void dvuchar_load_transp32( dvcharx& dst, agen& a1, bool pred); //BU_T32 
void dvushort_load_transp2( dvshortx& dst, agen& a1, bool pred); //HU_T2 
void dvushort_load_transp4( dvshortx& dst, agen& a1, bool pred); //HU_T4 
void dvushort_load_transp8( dvshortx& dst, agen& a1, bool pred); //HU_T8 
void dvushort_load_transp16(dvshortx& dst, agen& a1, bool pred); //HU_T16 
void dvuint_load_transp8(  dvintx&  dst, agen& a1, bool pred); //WU_T8 
 
// Float & Hfloat 
dvfloatx dvfloat_load(      agen& a1); // W_P 
dvfloatx dvfloat_load_transp(  agen& a1); // W_T 
dvfloatx dvfloat_load_di(    agen& a1); // W_PDI 
dvfloatx dvfloat_load_transp_di( agen& a1); // W_TDI 
dvfloatx dvfloat_load_transp2_di(agen& a1); // W_T2DI 
dvfloatx dvfloat_load_transp8(  agen& a1); // W_T8 
 
void dvfloat_load(      dvfloatx& dst, agen& a, bool p); // W_P 
void dvfloat_load_transp(  dvfloatx& dst, agen& a, bool p); // W_T 
void dvfloat_load_di(    dvfloatx& dst, agen& a, bool p); // W_PDI 
void dvfloat_load_transp_di( dvfloatx& dst, agen& a, bool p); // W_TDI 
void dvfloat_load_transp2_di(dvfloatx& dst, agen& a, bool p); // W_T2DI 
void dvfloat_load_transp8(  dvfloatx& dst, agen& a, bool p); // W_T8 
  
dvhfloatx dvhfloat_load(      agen& a1); // H_P 
dvhfloatx dvhfloat_load_transp(  agen& a1); // H_T 
dvhfloatx dvhfloat_load_di(    agen& a1); // H_PDI 
dvhfloatx dvhfloat_load_transp_di( agen& a1); // H_TDI 
dvhfloatx dvhfloat_load_transp2(  agen& a1); // H_T2 
dvhfloatx dvhfloat_load_transp2_di(agen& a1); // H_T2DI 
dvhfloatx dvhfloat_load_transp4(  agen& a1); // H_T4 
dvhfloatx dvhfloat_load_transp8(  agen& a1); // H_T8 
dvhfloatx dvhfloat_load_transp16( agen& a1); // H_T16 
 
void dvhfloat_load(      dvhfloatx& dst, agen& a, bool p); // H_P 
void dvhfloat_load_transp(  dvhfloatx& dst, agen& a, bool p); // H_T 
void dvhfloat_load_di(    dvhfloatx& dst, agen& a, bool p); // H_PDI  
void dvhfloat_load_transp_di( dvhfloatx& dst, agen& a, bool p); // H_TDI 
void dvhfloat_load_transp2(  dvhfloatx& dst, agen& a, bool p); // H_T2 
void dvhfloat_load_transp2_di(dvhfloatx& dst, agen& a, bool p); // H_T2DI 
void dvhfloat_load_transp4(  dvhfloatx& dst, agen& a, bool p); // H_T4  
void dvhfloat_load_transp8(  dvhfloatx& dst, agen& a, bool p); // H_T8 
void dvhfloat_load_transp16( dvhfloatx& dst, agen& a, bool p); // H_T16 
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Instruction name DVLD agen  

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

When predication is off, writing to Vdst is skipped. 

Please see Transposing Load/Store for address calculation and pattern for 

transpose distributions. 

For Byte type loads, the starting address is aligned to 16-bit in order to access 64 

bytes of data with 32 memory banks. 
 

9.9.4.4 VST Agen 

Instruction name VST agen  

Functionality Vector store agen-based 

Assembly format <pred> VST<type>_<distr>  Vsrc, *A<id>++ 

pred = none, [P2.. P15], [V0..V15] 

 

<pred> VST<type>_<distr>  ACsrc, *A<id>++ 

<pred> VST<type>_<distr>  XACsrc, *A<id>++ 

pred = none, [P2..P15] 

Type and bit width  For VRF source, predicate register and VRF predication are supported for these 

type/distributions: 

B_P, H_P, W_P, B_T, H_T, W_T,  

BH_P, HW_P, BH_T, HW_T, WX_P  

 

For VRF source, only predicate register predication is supported for these 

type/distributions: 

B_S, H_S, W_S 

For ARF source, predication through predicate register is supported for these 

type/distributions: 

B_P, H_P, W_P, B_T, H_T, W_T, B_S, H_S, W_S,  

BH_P, HW_P, BH_T, HW_T, WX_P  

For XAC source, predication through predicate register is supported and only with 

W_P type/distribution. In addition, rounding/saturation operations are bypassed. 

Note that WX_P distribution is predicated as 8 lanes x 48-bit (versus 16 lanes x 

24-bit or 32 lanes x 12-bit). 

For example: 

    VSTB_P V0, *A0++ 

[P1] VSTH_T V2, *A1++ 

Predication Per-lane predication  

Source options Vsrc: single vector register in VRF, ARF, or XARF 

Destination options  

Additional options  

Intrinsics/operator // unpredicated 
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Instruction name VST agen  

void vstore(  vcharx vec1,  agen& a1); // B_P 
void vstore(  vshortx vec1, agen& a1); // H_P 
void vstore(  vintx vec1,  agen& a1); // W_P 
void vstore(  xvshortx vec1, agen& a1); // W_P for XAC 
void vstore_bh( vcharx vec1,  agen& a1); // BH_P 
void vstore_hw( vshortx vec1, agen& a1); // HW_P 
void vstore_transp(  vcharx vec1,  agen& a1); // B_T 
void vstore_transp(  vshortx vec1, agen& a1); // H_T 
void vstore_transp(  vintx vec1,  agen& a1); // W_T 
void vstore_transp_bh(vcharx vec1,  agen& a1); // BH_T 
void vstore_transp_hw(vshortx vec1, agen& a1); // HW_T 
void vstore_bs(    vcharx vec1,  agen& a1); // B_S 
void vstore_hs(    vshortx vec1, agen& a1); // H_S 
void vstore_ws(    vintx vec1,  agen& a1); // W_S 
void vstore_ext(   vcharx vec1, agen& a1); // WX_P 
void vstore_ext(   vshortx vec1, agen& a1); // WX_P 
void vstore_ext(   vintx  vec1, agen& a1); // WX_P 
 
// predicate register per-lane predicated 
void vstore(  vcharx  vec1, agen& a1, int pred); // B_P 
void vstore(  vshortx vec1, agen& a1, int pred); // H_P 
void vstore(  vintx  vec1, agen& a1, int pred); // W_P 
void vstore(  xvshortx vec1, agen& a1, int pred); // W_P for XAC 
void vstore_bh(vcharx  vec1, agen& a1, int pred); // BH_P 
void vstore_hw(vshortx vec1, agen& a1, int pred); // HW_P 
void vstore_transp(  vcharx vec1, agen& a1, int pred); // B_T 
void vstore_transp(  vshortx vec1, agen& a1, int pred); // H_T 
void vstore_transp(  vintx  vec1, agen& a1, int pred); // W_T 
void vstore_transp_bh(vcharx vec1, agen& a1, int pred); //BH_T 
void vstore_transp_hw(vshortx vec1, agen& a1, int pred); //HW_T 
void vstore_bs( vcharx vec1, agen& a1, int pred); // B_S 
void vstore_hs( vshortx vec1, agen& a1, int pred); // H_S 
void vstore_ws( vintx  vec1, agen& a1, int pred); // W_S 
 
void vstore_ext(vcharx vec1, agen& a1, int pred); // WX_P 
void vstore_ext(vshortx vec1, agen& a1, int pred); // WX_P 
void vstore_ext(vintx  vec1, agen& a1, int pred); // WX_P 
 
// Note that vstore_ext() for vcharx and vshortx are predicated  
// as 8 x 48-bit lanes, like for vintx, as opposed to 32 x 12- 
// bit lanes or 16 x 24-bit lanes. vstore_ext() for the 3  
// vector types are mapped to the same instruction. 
 
// VRF per-lane predicated 
void vstore(  vcharx vec1, agen& a1, vcharx pred); // B_P 
void vstore(  vshortx vec1, agen& a1, vshortx pred); // H_P 
void vstore(  vintx  vec1, agen& a1, vintx  pred); // W_P 
void vstore_bh(vcharx vec1, agen& a1, vcharx pred); // BH_P 
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Instruction name VST agen  

void vstore_hw(vshortx vec1, agen& a1, vshortx pred); //HW_P 
void vstore_transp(  vcharx v1, agen& a1, vcharx p);//B_T 
void vstore_transp(  vshortx v1, agen& a1, vshortx p);//H_T 
void vstore_transp(  vintx  v1, agen& a1, vintx  p);//W_T 
void vstore_transp_bh(vcharx v1, agen& a1, vcharx p);//BH_T 
void vstore_transp_hw(vshortx v1, agen& a1, vshortx p);//HW_T 
void vstore_ext(   vintx  v1, agen& a1, vintx  p);//WX_P 
 
// vstore_ext(vcharx v1, agen& a1, vcharx p) and 
// vstore_ext(vshortx v1, agen& a1, vshortx p) are not 
// supported as we cannot support appropriate predicate  
// datatype for per-lane predication.  
 
// Float 
void vstore(    vfloatx vec1, agen& a1); // W_P 
void vstore_transp(vfloatx vec1, agen& a1); // W_T 
void vstore_ws(  vfloatx vec1, agen& a1); // W_S 
void vstore(    vfloatx vec1, agen& a1, int  pred); // W_P 
void vstore_transp(vfloatx vec1, agen& a1, int  pred); // W_T 
void vstore_ws(  vfloatx vec1, agen& a1, int  pred); // W_S 
void vstore(    vfloatx vec1, agen& a1, vintx pred); // W_P 
void vstore_transp(vfloatx vec1, agen& a1, vintx pred); // W_T 
 
void vstore(    vhfloatx vec1, agen& a1); // H_P 
void vstore_transp(vhfloatx vec1, agen& a1); // H_T 
void vstore_hs(  vhfloatx vec1, agen& a1); // H_S 
void vstore(    vhfloatx vec1, agen& a1, int   pred);//H_P 
void vstore_transp(vhfloatx vec1, agen& a1, int   pred);//H_T 
void vstore_hs(  vhfloatx vec1, agen& a1, int   pred);//H_S 
void vstore(    vhfloatx vec1, agen& a1, vshortx pred);//H_P 
void vstore_transp(vhfloatx vec1, agen& a1, vshortx pred);//H_T 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

Per-lane predicated. When predication is off, writing to specific memory object is 

skipped. Address updates are always carried out. 

Consumes lower K bits of Preg or a single VRF for K-lane predication. See 9.5.3.4 

for details.  

Please see Transposing Load/Store for address calculation and pattern for 

transpose distribution. 

Per-lane predication via vector register is only available in the M0 slot, and is NOT 

supported for scalar distribution. 
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9.9.4.5 DVST Agen 

Instruction name DVST agen  

Functionality Double vector store agen-based 

Assembly format <pred> DVST<type>_<distr>  DVsrc, *A<id>++ 

pred = none, [P2.. P15], [V0..V15] 

 

<pred> DVST<type>_<distr>  DACsrc, *A<id>++ 

<pred> DVST<type>_<distr>  DXACsrc, *A<id>++ 

pred = none, [P2.. P15]  

Type and bit width  For double VRF source, predicate register and VRF predication are supported with 

type/distribution: 

B_P, H_P, W_P, H_T, W_T,  

B_PI, H_PI, W_PI, H_TI, W_TI,  

HB_P, WH_P, HB_T, WH_T, 

HB_PI, WH_PI, HB_TI, WH_TI, W_T2, W_T2I, 

 

In addition, for double VRF source, only predicate register is supported with 

type/distribution: 

B_S, H_S, W_S, B_T32, H_T2, H_T2I, H_T4, H_T8, H_T16, W_T8 

 

For double ARF source, predication through predicate register is supported with 

type/distribution: 

B_P, H_P, W_P, H_T, W_T, B_S, H_S, W_S, 

B_PI, H_PI, W_PI, H_TI, W_TI,  

HB_P, WH_P, HB_T, WH_T, 

HB_PI, WH_PI, HB_TI, WH_TI,  

B_T32, H_T2, H_T2I, H_T4, H_T8, H_T16, W_T2, W_T2I, W_T8 

 

For double XAC source, predication through predicate register is supported and 

only with WH_PI type/distribution. In addition, rounding/saturation operations are 

bypassed, and it’s available in the M0 slot. 

For example: 

    DVSTB_P V0:V1, *A0++ 

[P1] DVSTH_T V2:V3, *A1++ 

Predication Per-lane predication  

Source options DVsrc: double vector register in VRF, ARF, or ARF + XRF (together 32-bit per 

Halfword lane) 

Destination options  

Additional options  

Intrinsics/operator // unpredicated 
void vstore(  dvcharx vec1, agen& a1); // B_P 
void vstore(  dvshortx vec1, agen& a1); // H_P 
void vstore(  dvintx  vec1, agen& a1); // W_P 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  447 

Instruction name DVST agen  

void vstore_hb(dvshortx vec1, agen& a1); // HB_P 
void vstore_wh(dvintx  vec1, agen& a1); // WH_P 
void vstore_transp(  dvshortx vec1, agen& a1); // H_T 
void vstore_transp(  dvintx  vec1, agen& a1); // W_T 
void vstore_transp_hb(dvshortx vec1, agen& a1); // HB_T 
void vstore_transp_wh(dvintx  vec1, agen& a1); // WH_T 
 
void vstore_i(  dvcharx  vec1, agen& a1); // B_PI 
void vstore_i(  dvshortx vec1, agen& a1); // H_PI 
void vstore_i(  dvintx  vec1, agen& a1); // W_PI 
void vstore_i_hb(dvshortx vec1, agen& a1); // HB_PI 
void vstore_i_wh(dvintx  vec1, agen& a1); // WH_PI 
void vstore_i(  dxvshortx vec1, agen& a1); // WH_PI DXAC 
void vstore_transp_i(  dvshortx vec1, agen& a1); // H_TI 
void vstore_transp_i(  dvintx  vec1, agen& a1); // W_TI 
void vstore_transp_i_hb(dvshortx vec1, agen& a1); // HB_TI 
void vstore_transp_i_wh(dvintx  vec1, agen& a1); // WH_TI 
void vstore_bs(dvcharx vec1, agen& a1); // B_S 
void vstore_hs(dvshortx vec1, agen& a1); // H_S 
void vstore_ws(dvintx  vec1, agen& a1); // W_S 
 
void vstore_transp32( dvcharx vec1, agen& a1); // B_T32 
void vstore_transp2( dvshortx vec1, agen& a1); // H_T2 
void vstore_transp2_i(dvshortx vec1, agen& a1); // H_T2I 
void vstore_transp4( dvshortx vec1, agen& a1); // H_T4 
void vstore_transp8( dvshortx vec1, agen& a1); // H_T8 
void vstore_transp16( dvshortx vec1, agen& a1); // H_T16 
void vstore_transp2( dvintx  vec1, agen& a1); // W_T2 
void vstore_transp2_i(dvintx  vec1, agen& a1); // W_T2I 
void vstore_transp8( dvintx  vec1, agen& a1); // W_T8 
 
// per-lane predicated via predicate register 
void vstore( dvcharx  vec1, agen& a1, dpred pred); // B_P 
void vstore( dvshortx vec1, agen& a1, int  pred); // H_P 
void vstore( dvintx  vec1, agen& a1, int  pred); // W_P 
void vstore_hb(dvshortx vec1, agen& a1, int  pred); // HB_P 
void vstore_wh(dvintx  vec1, agen& a1, int  pred); // WH_P 
void vstore_transp(  dvshortx vec1, agen& a1, int pred);//H_T 
void vstore_transp(  dvintx  vec1, agen& a1, int pred);//W_T 
void vstore_transp_hb(dvshortx vec1, agen& a1, int pred);//HB_T 
void vstore_transp_wh(dvintx  vec1, agen& a1, int pred);//WH_T 
 
void vstore_i(dvcharx vec1, agen& a1, dpred pred); // B_PI 
void vstore_i(dvshortx vec1, agen& a1, int  pred); // H_PI 
void vstore_i(dvintx vec1,  agen& a1, int  pred); // W_PI 
void vstore_i_hb(dvshortx vec1, agen& a1, int pred); //HB_PI 
void vstore_i_wh(dvintx  vec1, agen& a1, int pred); //WH_PI 
void vstore_i(  dxvshortx vec1, agen& a1, int pred); //WH_PI DXAC 
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Instruction name DVST agen  

void vstore_transp_i(  dvshortx vec1, agen& a1, int pred); //H_TI 
void vstore_transp_i(  dvintx  vec1, agen& a1, int pred); //W_TI 
void vstore_transp_i_hb(dvshortx vec1, agen& a1, int pred); //HB_TI 
void vstore_transp_i_wh(dvintx  vec1, agen& a1, int pred); //WH_TI 
void vstore_bs(dvcharx vec1, agen& a1, int pred); // B_S 
void vstore_hs(dvshortx vec1, agen& a1, int pred); // H_S 
void vstore_ws(dvintx  vec1, agen& a1, int pred); // W_S 
void vstore_transp32( dvcharx vec1, agen& a1, dpred pred); //B_T32 
void vstore_transp2( dvshortx vec1, agen& a1, int  pred); //H_T2 
void vstore_transp2_i(dvshortx vec1, agen& a1, int  pred); //H_T2I 
void vstore_transp4( dvshortx vec1, agen& a1, int  pred); //H_T4 
void vstore_transp8( dvshortx vec1, agen& a1, int  pred); //H_T8 
void vstore_transp16( dvshortx vec1, agen& a1, int  pred); //H_T16 
void vstore_transp2( dvintx  vec1, agen& a1, int  pred); //W_T2 
void vstore_transp2_i(dvintx  vec1, agen& a1, int  pred); //W_T2I 
void vstore_transp8( dvintx  vec1, agen& a1, int  pred); //W_T8 
 
// per-lane predicated via VRF 
void vstore(  dvcharx vec1, agen& a1, vcharx pred); // B_P 
void vstore(  dvshortx vec1, agen& a1, vcharx pred); // H_P 
void vstore(  dvintx  vec1, agen& a1, vshortx pred); // W_P 
void vstore_hb(dvshortx vec1, agen& a1, vcharx pred); // HB_P 
void vstore_wh(dvintx vec1,  agen& a1, vshortx pred); // WH_P 
void vstore_transp(  dvshortx vec1, agen& a1, vcharx pred);//H_T 
void vstore_transp(  dvintx  vec1, agen& a1, vshortx pred);//W_T 
void vstore_transp_hb(dvshortx vec1, agen& a1, vcharx pred);//HB_T 
void vstore_transp_wh(dvintx  vec1, agen& a1, vshortx pred);//WH_T 
void vstore_i(  dvcharx vec1, agen& a1, vcharx pred); // B_PI 
void vstore_i(  dvshortx vec1, agen& a1, vcharx pred); // H_PI 
void vstore_i(  dvintx  vec1, agen& a1, vshortx pred); // W_PI 
void vstore_i_hb(dvshortx vec1, agen& a1, vcharx pred); // HB_PI 
void vstore_i_wh(dvintx  vec1, agen& a1, vshortx pred); // WH_PI 
void vstore_transp_i(  dvshortx v1, agen& a1, vcharx p); // H_TI 
void vstore_transp_i(  dvintx  v1, agen& a1, vshortx p); // W_TI 
void vstore_transp_i_hb(dvshortx v1, agen& a1, vcharx p); // HB_TI 
void vstore_transp_i_wh(dvintx  v1, agen& a1, vshortx p); // WH_TI 
void vstore_transp2 ( dvintx  v1, agen& a1, vshortx p); //W_T2 
void vstore_transp2_i( dvintx  v1, agen& a1, vshortx p); //W_T2I 
 
// Float (basically leveraging H and W type stores) 
void vstore(     dvhfloatx vec1, agen& a1); // H_P 
void vstore_transp(  dvhfloatx vec1, agen& a1); // H_T 
void vstore_i(    dvhfloatx vec1, agen& a1); // H_PI 
void vstore_transp_i( dvhfloatx vec1, agen& a1); // H_TI 
void vstore_hs(    dvhfloatx vec1, agen& a1); // H_S 
void vstore_transp2( dvhfloatx vec1, agen& a1); // H_T2 
void vstore_transp2_i(dvhfloatx vec1, agen& a1); // H_T2I 
void vstore_transp4( dvhfloatx vec1, agen& a1); // H_T4 
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Instruction name DVST agen  

void vstore_transp8( dvhfloatx vec1, agen& a1); // H_T8 
void vstore_transp16( dvhfloatx vec1, agen& a1); // H_T16 
void vstore(     dvhfloatx vec1, agen& a1, int pred); // H_P 
void vstore_transp(  dvhfloatx vec1, agen& a1, int pred); // H_T 
void vstore_i(    dvhfloatx vec1, agen& a1, int pred); // H_PI 
void vstore_transp_i( dvhfloatx vec1, agen& a1, int pred); // H_TI 
void vstore_hs(    dvhfloatx vec1, agen& a1, int pred); // H_S 
void vstore_transp2( dvhfloatx vec1, agen& a1, int pred); // H_T2 
void vstore_transp2_i(dvhfloatx vec1, agen& a1, int pred); // H_T2I 
void vstore_transp4( dvhfloatx vec1, agen& a1, int pred); // H_T4 
void vstore_transp8( dvhfloatx vec1, agen& a1, int pred); // H_T8 
void vstore_transp16( dvhfloatx vec1, agen& a1, int pred); // H_T16 
void vstore(     dvhfloatx vec1, agen& a1, vcharx p); // H_P 
void vstore_transp(  dvhfloatx vec1, agen& a1, vcharx p); // H_T 
void vstore_i(    dvhfloatx vec1, agen& a1, vcharx p); // H_PI 
void vstore_transp_i( dvhfloatx vec1, agen& a1, vcharx p); // H_TI 
 
void vstore(     dvfloatx vec1, agen& a1); // W_P 
void vstore_transp(  dvfloatx vec1, agen& a1); // W_T 
void vstore_i(    dvfloatx vec1, agen& a1); // W_PI 
void vstore_transp_i( dvfloatx vec1, agen& a1); // W_TI 
void vstore_ws(    dvfloatx vec1, agen& a1); // W_S 
void vstore_transp2( dvfloatx vec1, agen& a1);// W_T2 
void vstore_transp2_i(dvfloatx vec1, agen& a1);// W_T2I 
void vstore_transp8( dvfloatx vec1, agen& a1);// W_T8 
void vstore(     dvfloatx vec1, agen& a1, int pred); // W_P 
void vstore_transp(  dvfloatx vec1, agen& a1, int pred); // W_T 
void vstore_i(    dvfloatx vec1, agen& a1, int pred); // W_PI 
void vstore_transp_i( dvfloatx vec1, agen& a1, int pred); // W_TI 
void vstore_ws(    dvfloatx vec1, agen& a1, int pred); // W_S 
void vstore_transp2( dvfloatx vec1, agen& a1, int pred); // W_T2 
void vstore_transp2_i(dvfloatx vec1, agen& a1, int pred); // W_T2I 
void vstore_transp8( dvfloatx vec1, agen& a1, int pred); // W_T8 
void vstore(     dvfloatx vec1, agen& a1, vshortx p); // W_P 
void vstore_transp(  dvfloatx vec1, agen& a1, vshortx p); // W_T 
void vstore_i(    dvfloatx vec1, agen& a1, vshortx p); // W_PI 
void vstore_transp_i( dvfloatx vec1, agen& a1, vshortx p); // W_TI 
void vstore_transp2 ( dvfloatx vec1, agen& a1, vshortx p); // W_T2 
void vstore_transp2_i(dvfloatx vec1, agen& a1, vshortx p); // W_T2I 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

Per-lane predicated. When predication is off, writing to specific memory object is 

skipped. Address updates are always carried out. 

Consumes lower K bits of Preg or a single VRF for K-lane predication. For 

transposition distribution, each element is separately predicated, so that 

DVSTW_T2 requires 16 predication bits, just like DVSTW_P and DVSTW_T. See 

Lane Predication for Agen-Based Vector Store for additional details.  
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Instruction name DVST agen  

See Transposing Load/Store for address calculation and pattern for transpose 

distributions. 

Per-lane predication via vector register is only available in the M0 slot, and is NOT 

supported for scalar distribution. 
 

9.9.4.6 QVST Agen 

Instruction name QVST agen  

Functionality Quad vector store agen-based 

Assembly format <pred> QVST<type>_distr  DVsrc1, DVsrc2, *A<id>++ 

<pred> QVST<type>_distr  DACsrc1, DACsrc2, *A<id>++ 

pred = none, [P2.. P15] 

Type and bit width  Type/distribution supported for quad vector VRF and ARF source: 

HB_P, HB_PI, HB_PI2 

WH_P, WH_PI, WH_PI2, WH_T, WH_TI 

Predication Per-lane predication 

Source options two double vector registers all in VRF or ARF 

Destination options  

Additional options  

Intrinsics/operator // unpredicated 
void vstore(dvshortx v1, dvshortx v2, agen& a); // HB_P 
void vstore(dvintx  v1, dvintx  v2, agen& a); // WH_P 
void vstore_i(dvshortx v1, dvshortx v2, agen& a); // HB_PI 
void vstore_i(dvintx  v1, dvintx  v2, agen& a); // WH_PI 
void vstore_i2(dvshortx v1, dvshortx v2, agen& a); // HB_PI2 
void vstore_i2(dvintx  v1, dvintx  v2, agen& a); // WH_PI2 
void vstore_transp(dvintx v1, dvintx v2, agen& a); // WH_T 
void vstore_transp_i(dvintx v1, dvintx v2, agen& a); // WH_TI  
 
// per-lane predicated 
void vstore(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_P 
void vstore(dvintx  v1, dvintx  v2, agen& a, int p);  //WH_P 
void vstore_i(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_PI 
void vstore_i(dvintx  v1, dvintx  v2, agen& a, int p);  //WH_PI 
void vstore_i2(dvshortx v1, dvshortx v2, agen& a, dpred p);//HB_PI2 
void vstore_i2(dvintx  v1, dvintx  v2, agen& a, int p); //WH_PI2 
void vstore_transp( dvintx v1, dvintx v2, agen& a, int p); //WH_T 
void vstore_transp_i(dvintx v1, dvintx v2, agen& a, int p); //WH_TI 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

Per-lane predicated. When predication is off, writing to specific memory object is 

skipped. Consumes lower K bits of Preg for K-lane predication.  

Address update is always carried out. 
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Instruction name QVST agen  

See Transposing Load/Store for address calculation and pattern for T transpose 

distribution. 
 

9.9.4.7 VLDPerm Agen 

Instruction name VLDPerm agen  

Functionality Vector load + permute agen-based 

Assembly format VLDPerm<type>_<distr>  *A<id>++, Vsrc/Wsrc, Vdst/Wdst 

Type and bit width  Type/distribution available: 

HB_P, HBU_P, 

 

For example: 

    VLDPermHB_P *A0++, V2, V1 

Predication Not available  

Source options Vsrc: single vector register in VRF or WRF specifying permutation pattern 

Destination options Vdst/Wdst: single vector register in VRF or WRF 

Additional options  

Intrinsics/operator vcharx vchar_load_perm( agen& agen1, vshortx src);    // HB_P 
vcharx vuchar_load_perm(agen& agen1, vshortx src);    // HBU_P  

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

HB_P/HBU_P case: 

512-bit is read from memory and treated like a 32 entries x 16-bit table. From the 

single Halfword vector source, 5 LSBs of each of 16 Halfword lanes, bits 4:0, are 

used to index the table to return 16 x 16-bit permutation outcome. Next higher 

bit, bit 5, is used to conditionally replace outcome with zero when the bit is set.  

Then, the 16 x 16-bit data is repartitioned as 32 x 8-bit and expanded every 8-bit 

into 12-bit of space in the destination vector register, with sign-extension 

performed for HB_P case, and zero-extension performed for HBU_P case. 

For example, in case of VLDPermHBU_P (unsigned version), say memory location 

pointed by the agen address contains these halfwords: 

    0x0123, 0x4567, 0x89AB, 0xCDEF, …  

and Vsrc read as Halfword lanes contains: 

    0x1, 0x0, 0x2, 0x3, … 

First the memory word would be permuted into 

    0x4567, 0x0123, 0x89AB, 0xCDEF, … 

then byte by byte extended into  

 0x067, 0x045, 0x023, 0x001, 0x0AB, 0x089, 0x0EF, 0x0CD … 

in the destination vector register. 

The same memory and Vsrc contents with VLDPermHB_P (signed) would return 

  0x067, 0x045, 0x023, 0x001, 0xFAB, 0xF89, 0xFEF, 0xFCD … 

VLDPerm is supported in all 3 memory slots. 
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9.9.4.8 DVLDPerm Agen 

Instruction name DVLDPerm agen  

Functionality Double vector load + permute agen-based 

Assembly format DVLDPerm<type>_<distr>  *A<id>++, Vsrc/Wsrc, DVdst/DWdst 

Type and bit width  Type/distribution available: 

H_P, W_P, HU_P, WU_P,  

H_T, W_T, HU_T, WU_T, 

HB_P, HBU_P 

W_T2, WU_T2  

 

For example: 

    DVLDPermH_P *A0++, V2, V0:V1 

Predication Not available  

Source options Vsrc: single vector register in VRF or WRF specifying permutation pattern 

Destination options DVdst/DWdst: double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvshortx dvshort_load_perm( agen& agen1, vcharx src);   // H_P 
dvintx  dvint_load_perm(  agen& agen1, vshortx src);   // W_P 
dvshortx dvushort_load_perm(agen& agen1, vcharx src);   // HU_P 
dvintx  dvuint_load_perm( agen& agen1, vshortx src);   // WU_P 
 
dvshortx dvshort_load_perm_transp( agen& agen1, vcharx src);//H_T 
dvintx  dvint_load_perm_transp(  agen& agen1, vshortx src);//W_T 
dvshortx dvushort_load_perm_transp(agen& agen1, vcharx src);//HU_T 
dvintx  dvuint_load_perm_transp( agen& agen1, vshortx src);//WU_T 
 
dvcharx dvchar_load_perm( agen& agen1, vcharx src);  // HB_P 
dvcharx dvuchar_load_perm(agen& agen1, vcharx src);  // HBU_P 
 
dvintx  dvint_load_perm_transp2( agen& agen1, vshortx src);//W_T2 
dvintx  dvuint_load_perm_transp2(agen& agen1, vshortx src);//WU_T2 
 
//Float 
dvfloatx dvfloat_load_perm(    agen& agen1, vshortx src);  
dvfloatx dvfloat_load_perm_transp( agen& agen1, vshortx src);  
dvfloatx dvfloat_load_perm_transp2(agen& agen1, vshortx src); 
dvhfloatx dvhfloat_load_perm(    agen& agen1, vcharx src);  
dvhfloatx dvhfloat_load_perm_transp(agen& agen1, vcharx src);  
 

Additional details Use Agen to supply address; address is post-modified according to multi-dimensional 

(up to 6D) address modifier scheme. 

Since we are returning double vector destination using single vector lane selection 

source, we are using a smaller data type as lane selection than the destination. 

 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  453 

Instruction name DVLDPerm agen  

Word destination (W_P/WU_P/W_T/WU_T/W_T2/WU_T2): 

512-bit is read from memory (consecutively for P distribution, transposed from 16 x 

32-bit for T/T2 distribution) and treated like a 16 entries x 32-bit table. From the 

single vector source, 4 LSBs of each of 16 Halfword lanes, bits 3:0, are used to index 

the table to return 16 x 32-bit permutation outcome. Next higher bit, bit 4, is used to 

conditionally replace outcome with zero when the bit is set. 

The permutation outcome, 16 x 32-bit, is zero or sign extended to the Word type 

double vector destination according to signed (W_P/W_T) or unsigned (WU_P/WU_T) 

designation. 

 

Halfword destination (H_P/HU_P/H_T/HU_T): 

512-bit is read from memory (consecutively for P distribution, transposed from 32 x 

16-bit for T distribution) and treated like a 32 entries x 16-bit table. From the single 

vector source, 5 LSBs of each of 32 Byte lanes, bits 4:0, are used to index the table to 

return 32 x 16-bit permutation outcome. Next higher bit, bit 5, is used to 

conditionally replace outcome with zero when the bit is set. 

The permutation outcome, 32 x 16-bit, is zero or sign extended to the Halfword type 

double vector destination according to signed (H_P/H_T) or unsigned (HU_P/HU_T) 

designation. 

 

Permuted as Halfword into Byte destination (HB_P/HBU_P): 

512-bit is read from memory consecutively (as only P distribution is supported) and 

treated like a 32 entries x 16-bit table. From the single vector source, 5 LSBs of each 

of 32 Byte lanes, bits 4:0, are used to index the table to return 32 x 16-bit 

permutation outcome. Next higher bit, bit 5, is used to conditionally replace 

outcome with zero when the bit is set. 

The permutation outcome, 32 x 16-bit, is repartitioned as Byte lanes, 64 x 8-bit, and 

then zero or sign extended into the Byte type double vector destination according to 

signed (HB_P) or unsigned (HBU_P) designation. 

 

Ordering of lanes for destinations shall be .lo components first then .hi components. 

In other words, DVLDPermH_P with {0, 1, 2, …, 31} selection data shall behave like “_P” 

distributed double vector load, DVLDH_P. 

DVLDPerm is supported in all 3 memory slots. 

See Transposing Load/Store for address calculation and pattern for transpose 

distributions. 
 

9.9.4.9 DVST_PLROUND Agen 

Instruction name DVST_PLROUND agen  

Functionality Double vector store agen-based with per-lane rounding 

Assembly format DVST <type>_PLRound_distr  Vsrc1/Wsrc1, DVsrc2/DACsrc2, *A<id>++ 

Type and bit width  Type/distribution available: 

H_P, W_P, HB_P, WH_P, WB_P, 

H_PI, W_PI, HB_PI, WH_PI, WB_PI 
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Instruction name DVST_PLROUND agen  

 

For example: 

    DVSTH_PLRound_P W0, V0:V1, *A0++ 

Predication Not supported  

Source options src1: single vector register in VRF/WRF to carry rounding information 

src2: double vector register in VRF/ARF to carry data 

Destination options  

Additional options  

Intrinsics/operator void vstore_plround(  vcharx s1, dvshortx s2, agen& a1); // H_P 
void vstore_plround(  vshortx s1, dvintx  s2, agen& a1); // W_P 
void vstore_hb_plround(vcharx s1, dvshortx s2, agen& a1); // HB_P 
void vstore_wh_plround(vshortx s1, dvintx  s2, agen& a1); // WH_P 
void vstore_wb_plround(vshortx s1, dvintx  s2, agen& a1); // WB_P 
void vstore_i_plround( vcharx s1, dvshortx s2, agen& a1); // H_PI 
void vstore_i_plround( vshortx s1, dvintx  s2, agen& a1); // W_PI 
void vstore_hbi_plround(vcharx s1, dvshortx s2, agen& a1); // HB_PI 
void vstore_whi_plround(vshortx s1, dvintx  s2, agen& a1); // WH_PI 
void vstore_wbi_plround(vshortx s1, dvintx  s2, agen& a1); // WB_PI 

Additional details Use Agen to supply address; address is post-modified according to multi-dimensional 

(up to 6D) address modifier scheme. 

Because we use a single vector to provide rounding parameters for storing of a 

double vector, in the intrinsic functions, source 1 single vector data type is half the 

size of the source 2 double vector data type, so we can match number of lanes.  

Use 8 LSBs of source 1 to supply rounding/truncation parameters, overriding the 

rounding/truncation configuration from Agen. Bit 7 indicates rounding (0) vs 

truncation (1). Bits 6:0 specifies number of bits to round/truncate.  

When number of bits to round/truncate exceeds the data source (src2) lane bit width, 

outcome is 0 for rounding any value, truncating any non-negative value, and -1 for 

truncating any negative value. 

Note that rounding/truncation information in the single vector source 1 is ordered 

sequentially as stored data in memory. For example, for Word type, with the P 

distribution option, pairing of two sources are: 

src1[0] – src2.lo[0], src1[1] – src2.lo[1], …, src1[7] – src2.lo[7],  

src1[8] – src2.hi[0], src1[9] – src2.hi[1], …, src1[15] – src2.hi[7]. 

With the PI distribution option, pairing of two sources are: 

src1[0] – src2.lo[0], src1[1] – src2.hi[0], src1[2] – src2.lo[1], src1[3] – src2.hi[1],  

…, src1[14] – src2.lo[7], src1[15] – src2.hi[7]. 

Per-lane rounding vector store is only available in the M0 slot. 
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9.9.5 Agen-Based Scalar Load/Store 

9.9.5.1 Instruction Summary 

Scalar load/store instructions: 

Table 42. Agen-based scalar load/store instructions 

Function Assembly Format Comments 

Scalar load agen-

based 

LD<type> *A<id>++, Rdst 

Type available: 

B, BU, H, HU, W 

 

Dual scalar load 

agen-based 

DLD<type> *A<id>++, Rdst1, Rdst2 

Type available: 

B, BU, H, HU, W 

 

Scalar store agen-

based 

<pred> ST<type>  Rsrc, *A<id>++ 

pred = none, [P2.. P15], instruction level predication 

Type available: 

B, H, W 

 

Dual scalar store 

agen-based 

<pred> DST<type> Rsrc1, Rsrc2, *A<id>++ 

pred = none, [P2.. P15], instruction level predication 

Type available: 

B, H, W 

 

 

Agen features supported and not supported for scalar load/store: 

> Distribution: not supported; dual register accesses consecutive items in memory 

> Type promotion/demotion: not supported; only single data type 

> Multi-dimensional addressing: supported 

> Circular buffer addressing: supported 

> Lane offset/transposition: not supported 

> Rounding: not supported 

> Saturation: not supported 

9.9.5.2 LD Agen 

Instruction name LD agen  

Functionality Scalar load agen-based 

Assembly format LD<type>  *A<id>++, Rdst 

Type and bit width  Type available: 

B, BU, H, HU, W 

Predication not available  
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Instruction name LD agen  

Source options  

Destination options Single scalar register 

Additional options  

Intrinsics/operator int int_load(agen& agen1); 
unsigned int uint_load(agen& agen1); 
short short_load(agen& agen1); 
unsigned short ushort_load(agen& agen1); 
char char_load(agen& agen1); 
unsigned char uchar_load(agen& agen1); 
float float_load(agen& agen1); 
hfloat hfloat_load(agen& agen1); 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 
 

9.9.5.3 DLD Agen 

Instruction name DLD agen  

Functionality Dual scalar load agen-based 

Assembly format DLD<type>  *A<id>++, Rdst1, Rdst2 

Type and bit width  Type available: 

B, BU, H, HU, W 

Predication not available  

Source options  

Destination options Two scalar registers 

Additional options  

Intrinsics/operator void int_load(agen& agen1, int &dst1, int &dst2); 
void uint_load(agen& agen1, uint &dst1, uint &dst2); 
void short_load(agen& agen1, short &dst1, short &dst2); 
void ushort_load(agen& agen1, unsigned short &dst1, unsigned short &dst2); 
void char_load(agen& agen1, char &dst1, char &dst2); 
void uchar_load(agen& agen1, unsigned char &dst1, unsigned char &dst2); 
void float_load(agen& agen1, float &dst1, float &dst2); 
void hfloat_load(agen& agen1, hfloat &dst1, hfloat &dst2); 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.  

Two successive items in memory pointed by the Agen are loaded, the first item 

into Rdst1, the second item into Rdst2. 
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9.9.5.4 ST Agen 

Instruction name ST agen  

Functionality Scalar store agen-based 

Assembly format <pred> ST<type>  Rsrc, *A<id>++ 

Type and bit width  Type available: 

B, H, W 

Predication Instruction level predication 

Source options Single scalar register 

Destination options  

Additional options  

Intrinsics/operator // unpredicated 
void int_store(int src, agen& agen1); 
void short_store(short src, agen& agen1); 
void char_store(char src, agen& agen1); 
void uint_store(unsigned int src, agen& agen1); 
void ushort_store(unsigned short src, agen& agen1); 
void uchar_store(unsigned char src, agen& agen1); 
void float_store(float src, agen& agen1); 
void hfloat_store(hfloat src, agen& agen1); 
 
// predicated 
void int_store(int src, agen& agen1, bool pred); 
void short_store(short src, agen& agen1, bool pred); 
void char_store(char src, agen& agen1, bool pred); 
void uint_store(unsigned int src, agen& agen1, bool pred); 
void ushort_store(unsigned short src, agen& agen1, bool pred); 
void uchar_store(unsigned char src, agen& agen1, bool pred); 
void float_store(float src, agen& agen1, bool pred); 
void hfloat_store(hfloat src, agen& agen1, bool pred); 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

Note that when compile-time-constant 0 is used on the predicate argument, the 

intrinsic would be compiled into update_agen(), which is equivalent in 

functionality. 
 

9.9.5.5 DST Agen 

Instruction name DST agen  

Functionality Dual scalar store agen-based 

Assembly format <pred> ST<type>  Rsrc1, Rsrc2, *A<id>++ 

Type and bit width  Type available: 

B, H, W 

Predication Instruction level predication 
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Instruction name DST agen  

Source options Two scalar registers 

Destination options  

Additional options  

Intrinsics/operator // unpredicated 
void int_store(int src1, int src2, agen& agen1); 
void short_store(short src1, short src2, agen& agen1); 
void char_store(char src1, char src2, agen& agen1); 
void uint_store(unsigned int src1, unsigned int src2, agen& agen1); 
void ushort_store(unsigned short src1, unsigned short src2, agen&  
agen1); 
void uchar_store(unsigned char src1, unsigned char src2, agen& agen1); 
void float_store(float src1, float src2, agen& a1); 
void hfloat_store(hfloat src1, hfloat src2, agen& a1); 
 
// predicated 
void int_store(int src1, int src2, agen& agen1, bool pred); 
void short_store(short src1, short src2, agen& agen1, bool pred); 
void char_store(char src1, char src2, agen& agen1, bool pred); 
void uint_store(unsigned int src1, unsigned int src2, agen& agen1, bool 
pred); 
void ushort_store(unsigned short src1, unsigned short src2, agen& agen1, 
bool pred); 
void uchar_store(unsigned char src1, unsigned char src2, agen& agen1, 
bool pred); 
void float_store(float src1, float src2, agen& a1, bool pred); 
void hfloat_store(hfloat src1, hfloat src2, agen& a1, bool pred); 

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme. 

Two successive items are store to memory pointed by the Agen, the first item from 

Rsrc1, the second item from Rsrc2. 

Note that when compile-time-constant 0 is used on the predicate argument, the 

intrinsic would be compiled into update_agen(), which is equivalent in functionality. 

 

9.9.6 Parallel Lookup, Histogram, Vector Addressed 

Store 

9.9.6.1 Instruction Summary 

Instructions for lookup, histogram and vector addressed store are shown as follows. 
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Table 43 Parallel lookup, histogram, vector addressed store instructions 

Function Assembly Format Comments 

Parallel lookup DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc), 

DVdst/DWdst 

 

type-parallelism = {32H, 32HU, 16W, 16WU}  

Rbase should be 64-byte 

aligned, bits 5..0 are ignored. 

Use DVsrc as indices. 

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst 

type-parallelism = {32/16/8/4/2/1 B/BU, 16/8/4/2/1 

H/HU, 8/4/2/1 W/WU} 

 

VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst 

type-parallelism = {32HB, 32HBU} 

 

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst 

type-parallelism = {16/8/4/2/1HB, 16/8/4/2/1HBU} 

Rbase should be 64-byte 

aligned, bits 5..0 are ignored. 

Use Vsrc as indices. 

Parallel 2-point 

lookup 

DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), 

DVdst 

 

type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1 

H/HU, 8/4/2/1 W/WU, 16/8/4/2/1 HB/HBU} 

Lookup table[index] and 

table[index+1] and return a 

double vector 

Parallel 2x2-pt 

lookup 

DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), 

DVdst/DWdst 

 

type-parallelism =  

{8/4/2/1 B/BU, 8/4/2/1 H/HU, 4/2/1 W/WU, 8/4/2/1 

HB/HBU } 

Lookup table[index], 

table[index+1], table[line_pitch 

+ index], table[line_pitch + index 

+ 1] in a double vector 

Parallel histogram DVHist_<type-parallelism>  *(Rbase+DVsrc1), 

DVsrc2, DVdst 

DVHist_<type-parallelism>  *(Rbase+DVsrc1), 

DVsrc2 

 

type-parallelism = {32H, 16W} 

Rbase should be 64-byte 

aligned, bits 5..0 are ignored. 

Use DVsrc1 as indices, DVsrc2 

as update (additive) values. 

Optionally return bin value 

before the update in DVdst 

VHist_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2, 

Vdst 

VHist_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2 

 

type-parallelism = {16/8/4/2/1 H, 8/4/2/1 W} 

Use Vsrc1 as indices, Vsrc2 as 

update (additive) values. 

Optionally return bin value 

before the update in Vdst 

Parallel OR 

histogram 

DVHist_OR_<type-parallelism>  *(Rbase+DVsrc1), 

DVsrc2, DVdst 

DVHist_OR_<type-parallelism>  *(Rbase+DVsrc1), 

DVsrc2 

 

type-parallelism = {32H, 16W} 

Perform bitwise OR operation 

instead of addition 
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Function Assembly Format Comments 

VHist_OR_<type-parallelism>  *(Rbase+Vsrc1), 

Vsrc2, Vdst 

VHist_OR_<type-parallelism>  *(Rbase+Vsrc1), 

Vsrc2 

 

type-parallelism = {16/8/4/2/1H, 8/4/2/1W} 

Perform bitwise OR operation 

instead of addition 

Vector addressed 

store 

DVAST_<type-parallelism> DVsrc, *(Rbase+DVidx) 

 

type-parallelism = {32H, 16W} 

Rbase should be 64-byte 

aligned, bits 5..0 are ignored. 

Use DVidx as indices, DVsrc as 

data to write. 

 

9.9.6.2 DVLUT 

Instruction name DVLUT  

Functionality Double vector lookup 

Assembly format DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc), DVdst/DWdst 

Type and bit width  type-parallelism = {32H, 32HU, 16W, 16WU} 

Same type applies to indices and table entries, but indices are always signed 

even when unsigned type is used. Table entries are signed or unsigned 

indicated in the type. 

For example: 

    DVLUT_16W *(R4 + V0:V1), V2:V3 

Predication Not available  

Source options Base address: scalar register 

Index: double vector register in VRF or WRF 

Destination options Double vector register in VRF or WRF 

Additional options  

Intrinsics/operator dvshortx vlookup_32h( const short* tbl,    dvshortx idx); 
dvshortx vlookup_32hu(cont unsigned short* tbl, dvshortx idx); 
dvhfloatx vlookup_32hf(const hfloat* tbl,   dvshortx idx); 
dvintx  vlookup_16w( const int*  tbl,    dvintx idx); 
dvintx  vlookup_16wu(const unsigned int* tbl, dvintx idx); 
dvfloatx vlookup_16f( const float* tbl,    dvintx idx); 

Additional details Use double vector to supply indices to lookup parallel tables. Rbase is forced 

to be 64-byte aligned by ignoring its bits 5:0. 

Refer to Table Lookup for index bit width used in address calculation. 
 

9.9.6.3 VLUT 

Instruction name VLUT  

Functionality Single vector lookup 
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Instruction name VLUT  

Assembly format VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst 

Type and bit width  type-parallelism =  

{32/16/8/4/2/1B, 32/16/8/4/2/1BU, 16/8/4/2/1H, 16/8/4/2/1HU,  

 8/4/2/1W, 8/4/2/1WU} 

Same type applies to indices and table entries, but indices are always signed 

even when unsigned type is used. Table entries are signed or unsigned 

indicated in the type. 

For example: 

    VLUT_4W *(R4 + V0), V2 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register 

Destination options Vdst: single vector register 

Additional options  

Intrinsics/operator vcharx vlookup_32b( const     char* tbl, vcharx idx); 
vcharx vlookup_32bu(const unsigned char* tbl, vcharx idx); 
vcharx vlookup_16b( const     char* tbl, vcharx idx); 
vcharx vlookup_16bu(const unsigned char* tbl, vcharx idx); 
vcharx vlookup_8b( const     char* tbl, vcharx idx); 
vcharx vlookup_8bu( const unsigned char* tbl, vcharx idx); 
vcharx vlookup_4b( const     char* tbl, vcharx idx); 
vcharx vlookup_4bu( const unsigned char* tbl, vcharx idx); 
vcharx vlookup_2b( const     char* tbl, vcharx idx); 
vcharx vlookup_2bu( const unsigned char* tbl, vcharx idx); 
vcharx vlookup_1b( const     char* tbl, vcharx idx); 
vcharx vlookup_1bu( const unsigned char* tbl, vcharx idx); 
 
vshortx vlookup_16h(const     short* tbl, vshortx idx); 
vshortx vlookup_16hu(const unsigned short* tbl,vshortx idx); 
vshortx vlookup_8h(const      short* tbl, vshortx idx); 
vshortx vlookup_8hu(const unsigned short* tbl, vshortx idx); 
vshortx vlookup_4h(const      short* tbl, vshortx idx); 
vshortx vlookup_4hu(const unsigned short* tbl, vshortx idx); 
vshortx vlookup_2h(const      short* tbl, vshortx idx); 
vshortx vlookup_2hu(const unsigned short* tbl, vshortx idx); 
vshortx vlookup_1h(const      short* tbl, vshortx idx); 
vshortx vlookup_1hu(const unsigned short* tbl, vshortx idx); 
 
vintx vlookup_8w( const      int* tbl, vintx idx); 
vintx vlookup_8wu(const unsigned int* tbl, vintx idx); 
vintx vlookup_4w( const      int* tbl, vintx idx); 
vintx vlookup_4wu(const unsigned int* tbl, vintx idx); 
vintx vlookup_2w( const      int* tbl, vintx idx); 
vintx vlookup_2wu(const unsigned int* tbl, vintx idx); 
vintx vlookup_1w( const      int* tbl, vintx idx); 
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Instruction name VLUT  

vintx vlookup_1wu(const unsigned int* tbl, vintx idx); 
 
vfloatx vlookup_8f(const     float* tbl, vintx idx); 
vfloatx vlookup_4f(const     float* tbl, vintx idx); 
vfloatx vlookup_2f(const     float* tbl, vintx idx); 
vfloatx vlookup_1f(const     float* tbl, vintx idx); 
 
vhfloatx vlookup_16hf(const   hfloat* tbl, vshortx idx); 
vhfloatx vlookup_8hf( const   hfloat* tbl, vshortx idx); 
vhfloatx vlookup_4hf( const   hfloat* tbl, vshortx idx); 
vhfloatx vlookup_2hf( const   hfloat* tbl, vshortx idx); 
vhfloatx vlookup_1hf( const   hfloat* tbl, vshortx idx); 

Additional details Use first K lanes of a single vector to supply K indices to lookup K parallel 

tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 

Returned table entries are placed on the first K lanes of the destination 

vector register. Remaining lanes, if any, are returned 0. 

Refer to Table Lookup for index bit width used in address calculation. 
 

Instruction name VLUT (looking up bytes with halfword indices) 

Functionality Single vector lookup 

Assembly format VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst 

VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst 

Type and bit width  type-parallelism = {32/16/8/4/2/1HB, 32/16/8/4/2/1HBU} 

The first type letter indicates type of indices; indices are always signed. The 

second type letter indicates type of table entries including signed/unsigned  

In case of 32-way parallel lookup, 32 short indices require a double vector 

source. For other parallelism, a single vector source is used. 

For example: 

    VLUT_4HB *(R4 + V0), V2 

    VLUT_32HB *(R4 + V0:V1), V2 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register (1 ~ 16-way) 

DVsrc: double vector register (32-way) 

Destination options Vdst: single vector register 

Additional options  

Intrinsics/operator vcharx vlookup_32hb( const     char* tbl,dvshortx idx); 
vcharx vlookup_32hbu(const unsigned char* tbl,dvshortx idx); 
vcharx vlookup_16hb( const     char* tbl, vshortx idx); 
vcharx vlookup_16hbu(const unsigned char* tbl, vshortx idx); 
vcharx vlookup_8hb( const     char* tbl, vshortx idx); 
vcharx vlookup_8hbu( const unsigned char* tbl, vshortx idx); 
vcharx vlookup_4hb( const     char* tbl, vshortx idx); 
vcharx vlookup_4hbu( const unsigned char* tbl, vshortx idx); 
vcharx vlookup_2hb( const     char* tbl, vshortx idx); 
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Instruction name VLUT (looking up bytes with halfword indices) 

vcharx vlookup_2hbu( const unsigned char* tbl, vshortx idx); 
vcharx vlookup_1hb( const     char* tbl, vshortx idx); 
vcharx vlookup_1hbu( const unsigned char* tbl, vshortx idx); 

Additional details Use first K lanes of a single vector to supply K indices to lookup K parallel 

tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 

Returned table entries are placed on the first K lanes of the destination 

vector register. Remaining lanes, if any, are returned 0. 

In the case of 32-way parallel byte lookup with double short vector indices, 

the .lo component of double vector supplies the first 16 indices, the .hi 

component of double vector supplies the last 16 indices. 

Refer to Table Lookup for index bit width used in address calculation. 
 

9.9.6.4 DVLUT_2PT 

Instruction name DVLUT_2PT  

Functionality Double vector two-point lookup 

Assembly format DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst 

Type and bit width  type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1 H/HU, 8/4/2/1 W/WU} 

Same type applies to indices and table entries, but indices are always signed 

even when unsigned type is used. Table entries are signed or unsigned 

indicated in the type. 

For example: 

    DVLUT_2pt_16HU *(R4 + V0), V2:V3 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register 

Destination options DVdst: double vector register  

Additional options  

Intrinsics/operator dvcharx vlookup_2pt_16b( const     char* tbl, vcharx idx); 
dvcharx vlookup_2pt_16bu(const unsigned char* tbl, vcharx idx); 
dvcharx vlookup_2pt_8b( const      char* tbl, vcharx idx); 
dvcharx vlookup_2pt_8bu( const unsigned char* tbl, vcharx idx); 
dvcharx vlookup_2pt_4b( const     char* tbl, vcharx idx); 
dvcharx vlookup_2pt_4bu( const unsigned char* tbl, vcharx idx); 
dvcharx vlookup_2pt_2b( const     char* tbl, vcharx idx); 
dvcharx vlookup_2pt_2bu( const unsigned char* tbl, vcharx idx); 
dvcharx vlookup_2pt_1b( const     char* tbl, vcharx idx); 
dvcharx vlookup_2pt_1bu( const unsigned char* tbl, vcharx idx); 
 
dvshortx vlookup_2pt_16h( const     short* tbl, vshortx idx); 
dvshortx vlookup_2pt_16hu(const unsigned short* tbl, vshortx idx); 
dvshortx vlookup_2pt_8h( const     short* tbl, vshortx idx); 
dvshortx vlookup_2pt_8hu( const unsigned short* tbl, vshortx idx); 
dvshortx vlookup_2pt_4h( const     short* tbl, vshortx idx); 
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Instruction name DVLUT_2PT  

dvshortx vlookup_2pt_4hu( const unsigned short* tbl, vshortx idx); 
dvshortx vlookup_2pt_2h( const     short* tbl, vshortx idx); 
dvshortx vlookup_2pt_2hu( const unsigned short* tbl, vshortx idx); 
dvshortx vlookup_2pt_1h( const     short* tbl, vshortx idx); 
dvshortx vlookup_2pt_1hu( const unsigned short* tbl, vshortx idx); 
 
dvintx vlookup_2pt_8w( const     int* tbl, vintx idx); 
dvintx vlookup_2pt_8wu(const unsigned int* tbl, vintx idx); 
dvintx vlookup_2pt_4w( const     int* tbl, vintx idx); 
dvintx vlookup_2pt_4wu(const unsigned int* tbl, vintx idx); 
dvintx vlookup_2pt_2w( const     int* tbl, vintx idx); 
dvintx vlookup_2pt_2wu(const unsigned int* tbl, vintx idx); 
dvintx vlookup_2pt_1w( const     int* tbl, vintx idx); 
dvintx vlookup_2pt_1wu(const unsigned int* tbl, vintx idx); 

Additional details Use first P lanes of a single vector to supply indices to look up P parallel 

tables (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its 

bits 5:0. Table[index] and the next entry in the table per parallel table are 

returned in the low and high registers, respectively, in the first P lanes. 

Remaining lanes are returned as zero.  

Note that the parallelism indicates number of parallel sub-tables we have. 

Number of data points returned is twice as many, as we look up 2 data points 

from each subtable.  

Refer to Table Lookup for index bit width used in address calculation. 
 

For example, DVLUT_2pt_8W returns 2 data points from each of 8 subtables. Layout of 

an 8-way-parallel word-type table and picking up data points via index vector {0, 1, 2, 3, 

4, 5, 4, 3}: 

T0[0] T0[1] T1[0] T1[1] T2[0] T2[1] T3[0] T3[1] T4[0] T4[1] T5[0] T5[1] T6[0] T6[1] T7[0] T7[1] 

T0[2] T0[3] T1[2] T1[3] T2[2] T2[3] T3[2] T3[3] T4[2] T4[3] T5[2] T5[3] T6[2] T6[3] T7[2] T7[3] 

T0[4] T0[5] T1[4] T1[5] T2[4] T2[5] T3[4] T3[5] T4[4] T4[5] T5[4] T5[5] T6[4] T6[5] T7[4] T7[5] 

T0[6] T0[7] T1[6] T1[7] T2[6] T2[7] T3[6] T3[7] T4[6] T4[7] T5[6] T5[7] T6[6] T6[7] T7[6] T7[7] 
 

Instruction name DVLUT_2PT (looking up bytes with halfword indices) 

Functionality Double vector two-point lookup 

Assembly format DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst 

Type and bit width  type-parallelism = {16/8/4/2/1 HB/HBU} 

The first type letter indicates type of indices; indices are always signed. The 

second type letter indicates type of table entries including signed/unsigned  

For example: 

    DVLUT_2pt_4HB *(R4 + V0), V2:V3 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register 

Destination options DVdst: double vector register  
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Instruction name DVLUT_2PT (looking up bytes with halfword indices) 

Additional options  

Intrinsics/operator dvcharx vlookup_2pt_16hb( const     char* tbl, vshortx idx); 
dvcharx vlookup_2pt_16hbu( const unsigned char* tbl, vshortx idx); 
dvcharx vlookup_2pt_8hb(  const     char* tbl, vshortx idx); 
dvcharx vlookup_2pt_8hbu( const unsigned char* tbl, vshortx idx); 
dvcharx vlookup_2pt_4hb(  const     char* tbl, vshortx idx); 
dvcharx vlookup_2pt_4hbu( const unsigned char* tbl, vshortx idx); 
dvcharx vlookup_2pt_2hb(  const     char* tbl, vshortx idx); 
dvcharx vlookup_2pt_2hbu( const unsigned char* tbl, vshortx idx); 
dvcharx vlookup_2pt_1hb(  const     char* tbl, vshortx idx); 
dvcharx vlookup_2pt_1hbu( const unsigned char* tbl, vshortx idx); 

Additional details Use single vector to supply indices to lookup parallel tables in the first P 

lanes (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its 

bits 5:0. Table[index] and the next entry in the table per parallel table are 

returned in the first P lanes respectively in the low and high parts of 

destination double register. Remaining lanes are returned as zero. 

Note that the parallelism indicates number of parallel sub-tables we have. 

Number of data points returned is twice as many, as we look up 2 data points 

from each subtable.  

Refer to Table Lookup for index bit width used in address calculation. 
 

9.9.6.5 DVLUT_2X2PT 

Instruction name DVLUT_2X2PT  

Functionality Double vector two-by-two-point lookup 

Assembly format DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst/DWdst 

Type and bit width  type-parallelism =  

{8/4/2/1B/BU, 8/4/2/1H/HU, 4/2/1W/WU} 

Same type applies to indices and table entries, but indices are always signed 

even when unsigned type is used. Table entries are signed or unsigned indicated 

in the type. 

For example: 

    DVLUT_2x2pt_2W *(R4 + V0), V2:V3 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register 

Implicit PL scalar register to derive line pitch 

Destination options DVdst: double vector register 

Additional options  

Intrinsics/operator dvcharx vlookup_2x2pt_8b( const     char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_8bu(const unsigned char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_4b( const     char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_4bu(const unsigned char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_2b( const     char* tbl, vcharx idx, int k); 
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Instruction name DVLUT_2X2PT  

dvcharx vlookup_2x2pt_2bu(const unsigned char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_1b( const     char* tbl, vcharx idx, int k); 
dvcharx vlookup_2x2pt_1bu(const unsigned char* tbl, vcharx idx, int k); 
 
dvshortx vlookup_2x2pt_8h( const     short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_8hu(const unsigned short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_4h( const     short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_4hu(const unsigned short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_2h( const     short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_2hu(const unsigned short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_1h( const     short* tbl, vshortx idx, int k); 
dvshortx vlookup_2x2pt_1hu(const unsigned short* tbl, vshortx idx, int k); 
 
dvintx vlookup_2x2pt_4w( const     int* tbl, vintx idx, int k); 
dvintx vlookup_2x2pt_4wu(const unsigned int* tbl, vintx idx, int k); 
dvintx vlookup_2x2pt_2w( const     int* tbl, vintx idx, int k); 
dvintx vlookup_2x2pt_2wu(const unsigned int* tbl, vintx idx, int k); 
dvintx vlookup_2x2pt_1w(const      int* tbl, vintx idx, int k); 
dvintx vlookup_2x2pt_1wu(const unsigned int* tbl, vintx idx, int k); 

Additional details Use a single vector to supply indices to lookup parallel tables in the first P lanes 

(P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.  

Table[index], table[index+1], table[index + line_pitch], and table[index + 

line_pitch + 1] are returned for each parallel table.  

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low 

part of destination double register. Table[index+ line_pitch] and table[index + 

line_pitch + 1], are interleaved in the first 2*P lanes of the high part of 

destination double register. Remaining lanes are returned as zero. 

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, (32/P)*k+2 for 

Halfword-type table, and (16/P)*k+2 for Word-type table, k being an integer >= 0 

and P = parallelism. The restriction ensures that the 2x2 points being read in 

each subtable do not collide in memory banks (16-bit per bank). The integer k is 

conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.  

Note that the parallelism indicates number of parallel sub-tables we have. 

Number of data points returned is 4 times as many, as we look up 2 x 2 = 4 data 

points from each subtable.  

It IS allowed to have k = PL = 0. In this case, for H and W types, the lookup 

behaves like looking up 4 consecutive items from the indexed item. For B type, 

we would be fetching table[index], table[index+1], table[index+4], 

table[index+5] in each subtable. The access pattern is such that it’s not obvious 

how it might be used.  

Refer to Table Lookup for index bit width used in address calculation. 
 

For example, DVLUT_2x2pt_2W returns 4 data points from each of 2 subtables. Assume 

PL = 1, line pitch = 16/2*1 + 2 = 10. The following diagram shows the layout of an 2-way-

parallel word-type table with line pitch of 10 elements, and where data points are picked 

up from index vector {1, 13}. 
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A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7] B[0][0] B[0][1] B[0][2] B[0][3] B[0][4] B[0][5] B[0][6] B[0][7] 

A[0][8] A[0][9] A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] B[0][8] B[0][9] B[1][0] B[1][1] B[1][2] B[1][3] B[1][4] B[1][5] 

A[1][6] A[1][7] A[1][8] A[1][9] A[2][0] A[2][1] A[2][2] A[2][3] B[1][6] B[1][7] B[1][8] B[1][9] B[2][0] B[2][1] B[2][2] B[2][3] 

A[2][4] A[2][5] A[2][6] A[2][7] A[2][8] A[2][9] A[3][0] A[3][1] B[2][4] B[2][5] B[2][6] B[2][7] B[2][8] B[2][9] B[3][0] B[3][1] 

 

Returned destination low part = {A[0][1], A[0][2], B[1][3], B[1][4], 0, 0, 0, 0},  

and high part = {A[1][1], A[1][2], B[2][3], B[2][4], 0, 0, 0, 0}. 
 

Instruction name DVLUT_2X2PT (HB/HBU) 

Functionality Double vector two-by-two-point lookup 

Assembly format DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst 

Type and bit width  type-parallelism = {8/4/2/1 HB/HBU } 

The first type letter indicates type of indices; indices are always signed. The 

second type letter indicates type of table entries including signed/unsigned  

For example: 

    DVLUT_2x2pt_2HB *(R4 + V0), V2:V3 

Predication Not available  

Source options Rbase: scalar register 

Vsrc: single vector register 

Destination options DVdst: double vector register  

Additional options  

Intrinsics/operator dvcharx vlookup_2x2pt_8hb( const    char* tbl, vshortx idx, int k); 
dvcharx vlookup_2x2pt_8hbu(const unsigned char* tbl,vshortx idx,int k); 
dvcharx vlookup_2x2pt_4hb( const    char* tbl, vshortx idx, int k); 
dvcharx vlookup_2x2pt_4hbu(const unsigned char* tbl,vshortx idx,int k); 
dvcharx vlookup_2x2pt_2hb( const    char* tbl, vshortx idx, int k); 
dvcharx vlookup_2x2pt_2hbu(const unsigned char* tbl,vshortx idx,int k); 
dvcharx vlookup_2x2pt_1hb( const    char* tbl, vshortx idx, int k); 
dvcharx vlookup_2x2pt_1hbu(const unsigned char* tbl,vshortx idx,int k); 

Additional details Use single vector to supply indices to lookup parallel tables in the first P lanes (P 

= parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.  

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low 

part of destination double register. Table[index + line_pitch] and table[index + 

line_pitch + 1], are interleaved in the first 2*P lanes of the high part of 

destination double register.  Remaining lanes are returned as zero. 

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, k being an integer > 0 

and P = parallelism. The restriction ensures that the 2x2 points being read in 

each subtable do not collide in memory banks (16-bit per bank). The integer k is 

conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.  

Note that with 8-bit unsigned number we can represent line pitch more than 

16,000 8-bit data points, 8,000 16-bit data points, 4,000 32-bit data points, 

which are more than sufficient for normal applications. 

Note that the parallelism indicates number of sub-tables we have. Number of 

data points returned is 4 times as many, as we look up 2 x 2 = 4 data points 

from each subtable.  
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Instruction name DVLUT_2X2PT (HB/HBU) 

Refer to Table Lookup for index bit width used in address calculation. 
 

9.9.6.6 DVHist 

Instruction name DVHist  

Functionality Double vector histogram 

Assembly format DVHist_<type-parallelism>  *(Rbase+DVsrc1), DVsrc2, DVdst 

DVHist_<type-parallelism>  *(Rbase+DVsrc1), DVsrc2 

Type and bit width  type-parallelism = {32H, 16W} 

Same type applies to indices and table entries. Both indices and table entries are 

signed. 

Note that it is possible to maintain unsigned histogram, as histogram update 

operation (addition) behaves the same way for signed or unsigned data. Just 

that the pre-update bin read back data are always sign-extended in the 

destination registers. 

For example: 

    DVHist_16W *(R4 + V0:V1), V2:V3, V4:V5 

    DVHist_16W *(R4 + V0:V1), V2:V3 

Predication Not available  

Source options Rbase: scalar register 

DVsrc1: double vector register 

DVsrc2: double vector register 

Destination options DVdst: double vector register 

or none 

Additional options  

Intrinsics/operator dvshortx vhist_32h( short* hist, dvshortx idx, dvshortx upd); 
dvintx  vhist_16w( int*  hist, dvintx  idx, dvintx  upd); 
 
void vhist_simple_32h( short* hist, dvshortx idx, dvshortx upd); 
void vhist_simple_16w( int*  hist, dvintx  idx, dvintx  upd); 

Additional details Use DVsrc1 as indices and DVsrc2 as weights for weighted histogram. The 

indexed entries are updated by adding the corresponding weights. Pre-update 

entries are optionally returned in DVdst.  

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 
 

9.9.6.7 VHist 

Instruction name VHist  

Functionality Single vector histogram 

Assembly format VHist_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2, Vdst 

VHist_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2 
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Instruction name VHist  

Type and bit width  type-parallelism = {16/8/4/2/1H, 8/4/2/1W} 

Same type applies to indices and histogram entries. Both indices and histogram 

entries are signed. 

Note that it is possible to maintain unsigned histogram, as histogram update 

operation (addition) behaves the same way for signed vs unsigned data. Just 

that the pre-update bin read back data are always sign-extended in the 

destination register.  

For example: 

    VHist_4W *(R4 + V0), V1, V2 

    VHist_4W *(R4 + V0), V1 

Predication Not available  

Source options Rbase: scalar register 

Vsrc1: single vector register 

Vsrc2: single vector register 

Destination options Vdst: single vector register 

or none 

Additional options  

Intrinsics/operator vshortx vhist_16h(short* hist, vshortx idx, vshortx upd); 
vshortx vhist_8h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_4h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_2h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_1h( short* hist, vshortx idx, vshortx upd); 
 
vintx  vhist_8w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_4w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_2w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_1w( int*  hist, vintx  idx, vintx  upd); 
 
void vhist_simple_16h(short* hist, vshortx idx, vshortx upd); 
void vhist_simple_8h( short* hist, vshortx idx, vshortx upd); 
void vhist_simple_4h( short* hist, vshortx idx, vshortx upd); 
void vhist_simple_2h( short* hist, vshortx idx, vshortx upd); 
void vhist_simple_1h( short* hist, vshortx idx, vshortx upd); 
 
void vhist_simple_8w( int*  hist, vintx  idx, vintx  upd); 
void vhist_simple_4w( int*  hist, vintx  idx, vintx  upd); 
void vhist_simple_2w( int*  hist, vintx  idx, vintx  upd); 
void vhist_simple_1w( int*  hist, vintx  idx, vintx  upd); 

Additional details Use Vsrc1 as indices and Vsrc2 as weights for weighted histogram. The indexed 

entries are updated by adding the corresponding weights.  

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram. 

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 

Pre-update entries are optionally returned in the first K lanes of Vdst. The 

remaining lanes, if any, are returned 0. 
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9.9.6.8 DVHist_OR 

Instruction name DVHist_OR  

Functionality Double vector histogram with bitwise OR operation 

Assembly format DVHist_OR_<type-parallelism>  *(Rbase+DVsrc1), DVsrc2, DVdst 

DVHist_OR_<type-parallelism>  *(Rbase+DVsrc1), DVsrc2 

Type and bit width  type-parallelism = {32H, 16W} 

Same type applies to indices and histogram entries. Both indices and histogram 

entries are signed. 

Note that it is possible to maintain unsigned histogram, as histogram update 

operation (addition) behaves the same way for signed vs unsigned data. Just 

that the pre-update bin read back data are always sign-extended in the 

destination registers. 

For example: 

    DVHist_OR_16W *(R4 + V0:V1), V2:V3, V4:V5 

Predication Not available  

Source options Rbase: scalar register 

DVsrc1: double vector register 

DVsrc2: double vector register 

Destination options DVdst: double vector register 

or none (no-return/simple version) 

Additional options  

Intrinsics/operator dvshortx vhist_or_32h( short* hist, dvshortx idx, dvshortx upd); 
dvintx  vhist_or_16w( int*  hist, dvintx  idx, dvintx  upd); 
 
void vhist_or_simple_32h( short* hist, dvshortx idx, dvshortx upd); 
void vhist_or_simple_16w( int*  hist, dvintx  idx, dvintx  upd); 

Additional details Use DVsrc1 as indices and DVsrc2 as updates. The indexed entries are updated 

by bitwise-ORing the corresponding updates. Pre-update entries are optionally 

returned in DVdst.  

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 
 

9.9.6.9 VHist_OR 

Instruction name VHist_OR  

Functionality Single vector histogram with bitwise OR operation 

Assembly format VHist_OR_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2, Vdst 

VHist_OR_<type-parallelism>  *(Rbase+Vsrc1), Vsrc2 

Type and bit width  type-parallelism = {16/8/4/2/1H, 8/4/2/1W} 

Same type applies to indices and histogram entries. Both indices and histogram 

entries are signed.  

Note that it is possible to maintain unsigned histogram, as histogram update 

operation (bitwise OR) behaves the same way for signed vs unsigned data. Just 
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Instruction name VHist_OR  

that the pre-update bin read back data are always sign-extended in the 

destination register. 

For example: 

    VHist_OR_4W *(R4 + V0), V1, V2 

Predication Not available  

Source options Rbase: scalar register 

Vsrc1: single vector register 

Vsrc2: single vector register 

Destination options Vdst: single vector register 

or none (no-return/simple version) 

Additional options  

Intrinsics/operator vshortx vhist_or_16h(short* hist, vshortx idx, vshortx upd); 
vshortx vhist_or_8h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_or_4h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_or_2h( short* hist, vshortx idx, vshortx upd); 
vshortx vhist_or_1h( short* hist, vshortx idx, vshortx upd); 
 
vintx  vhist_or_8w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_or_4w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_or_2w( int*  hist, vintx  idx, vintx  upd); 
vintx  vhist_or_1w( int*  hist, vintx  idx, vintx  upd); 
 
void vhist_or_simple_16h(short* hist, vshortx idx, vshortx upd); 
void vhist_or_simple_8h( short* hist, vshortx idx, vshortx upd); 
void vhist_or_simple_4h( short* hist, vshortx idx, vshortx upd); 
void vhist_or_simple_2h( short* hist, vshortx idx, vshortx upd); 
void vhist_or_simple_1h( short* hist, vshortx idx, vshortx upd); 
 
void vhist_or_simple_8w( int*  hist, vintx  idx, vintx  upd); 
void vhist_or_simple_4w( int*  hist, vintx  idx, vintx  upd); 
void vhist_or_simple_2w( int*  hist, vintx  idx, vintx  upd); 
void vhist_or_simple_1w( int*  hist, vintx  idx, vintx  upd); 

Additional details Use Vsrc1 as indices and Vsrc2 as update. The indexed entries are updated by 

biwise-ORing the corresponding updates.  

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram. 

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 

Pre-update entries are optionally returned in the first K lanes of Vdst.  

Remaining lanes, if any, are returned 0. 

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  472 

9.9.6.10 DVAST 

Instruction name DVAST  

Functionality Double vector addressed store 

Assembly format <pred> DVAST_<type-parallelism>  DVsrc1, *(Rbase+DVsrc2) 

pred = none, [P2.. P15] 

Type and bit width  type-parallelism = {32H, 16W} 

Same type applies to indices and entries in memory. The indices are signed, 

whereas the entries in memory can be signed or unsigned, as memory store 

behaves the same way for signed vs unsigned data.  

For example: 

[P3] DVAST_16W V2:V3, *(R4 + V0:V1) 

Predication Per-lane predication  

Source options Rbase: scalar register 

DVsrc1: double vector register (as data) 

DVsrc2: double vector register (as indices) 

Destination options  

Additional options  

Intrinsics/operator void vast_32h(short* arr, dvshortx idx, dvshortx data,  
       int pred); 
void vast_32hf(hfloatx* arr, dvshortx idx, dvhfloatx data, int pred); 
void vast_16w(int*  arr, dvintx  idx, dvintx  data, int pred); 
void vast_16f(float* arr, dvintx  idx, dvfloatx data, int pred); 

Additional details Use DVsrc1 as data and DVsrc2 as indices, write each lane of DVsrc1 into 

memory object indexed by a corresponding lane of DVsrc2.  

Lowest K bits of pred argument is used to predicate K lanes. 

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0. 
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9.9.7 Misc Register Store 

9.9.7.1 Instruction Summary 

These instructions support debug functionality by storing out otherwise inaccessible 

architecture registers to memory, so that debug controller can read the contents from 

memory. 

Table 44 Miscellaneous register store instructions  

Function Assembly Format Comments 

Store hardware 

loop register 

STW HWLP.<reg>, *(Rbase+imm12) 

reg = LF, LS[0/1], LE[0/1], LC[0/1] 

Use Rbase + (signed) imm12 as byte 

address.  

Data zero-padded in case of LF (2 bits) 

Store Agen loop 

variable 

STH A<id>.I<level>, *(Rbase+imm12) Each variable is 16-bit 

 

9.9.7.2 STW HWLP 

Instruction name STW HWLP  

Functionality Store hardware loop register 

Assembly format STW HWLP.<reg>, *(Rbase+imm12) 

reg = LF, LS[0/1], LE[0/1], LC[0/1] 

Type and bit width  LF: 2-bit, zero-padded into 32-bit 

LS/LE/LC: 32-bit 

Predication Not available 

Source options Specific HWLP register 

Rbase: scalar register 

Destination options  

Additional options  

Intrinsics/operator not available 

Additional details This instruction is intended to be used in Debug State, injected through 

debug client to query hardware loop registers through VMEM. In normal (non-

debug) programming, placement of STW HWLP in the following packets lead 

to indefinite outcome: 

• In two packets before RPT 

• In the same packet as RPT 

• In two delay slots following RPT 

• In first 3 packets of loop body 

• In last 3 packets of loop body 

• In first 2 packets after the loop 

Note that debug-injection of STW HWLP is not hindered, as pipeline is 

flushed before and existing debug state. 
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9.9.7.3 AgenLpv ST 

Instruction name AgenLpv ST  

Functionality Store Agen loop variable 

Assembly format STH A<id>.I<level>, *(Rbase+imm12) 

id = 0..7, level = 1..6 

Type and bit width  16-bit 

Predication Not available 

Source options Specific Agen loop variable register 

Rbase: scalar register 

Destination options  

Additional options  

Intrinsics/operator not available 

Additional details   
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Chapter 10. Decoupled Lookup Unit 

(DLUT) Reference 

10.1 Index and Output Data Format 
To provide some degree of flexibility in data formatting without sacrificing 

area/performance/power efficiency, DLUT supports a subset of address calculation 

capability via a reduced set of agen, address generator, parameters. There is one set of 

agen parameters for index read, and another set of agen parameters for output write. 

Agen operation is similar to the agen in VPU instruction set, but some of the 

configuration parameters are derived from other DLUT parameters: 

> Indices are always unsigned. 

> Table entries can be treated as signed or unsigned in post-lookup interpolation. 

There is no bit width expansion from calculated output to memory, so the store itself 

is agnostic to signed/unsigned data types. 

> Number of inner-loop iterations N1 and size of partial memory transactions are 

derived from task length N1 and size of index/output as configured: 

INDEX_AGEN_N1 = ((TASK_LEN_N1 * idx_dim) + (64/sizeof_idx – 1))/ (64/sizeof_idx);  
INDEX_REMAINDER = (TASK_LEN_N1 * idx_dim) % (64/sizeof_idx); 
OUTPUT_AGEN_N1 = (TASK_LEN_N1 + (64/sizeof_entry – 1)) / (64/sizeof_entry);  
OUTPUT_REMAINDER = TASK_LEN_N1 % (64/sizeof_entry); 

idx_dim = 1 for 1D lookup/interpolation, and 2 for 2D lookup/interpolation. Note that 

zero remainder means all read/write transactions are full, 64-byte, transactions. 

> Number of outer-loop iterations N2 are simply copied from task length N2: 

INDEX_AGEN_N2 = OUTPUT_AGEN_N2 = TASK_LEN_N2; 

> Two-level address calculation capability is supported, so there are AMOD1 and 

AMOD2 parameters for each agen. 

> Transpose option is included to select among P (no transpose), T1, T2, T4, T8, T16, 

T32, along with lane_ofst parameter to specify transpose line pitch. 

> In case of 2D lookup (with or without interpolation), X/Y indices can be element-wise 

interleaved, or 32-byte interleaved (with 32 bytes of X then 32 bytes of Y). This is 

analogous of VPU double vector load having deinterleaving option, or VPU double 

vector store having interleaving option. 

> No rounding/saturation agen fields are supported.   
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Note that auto-indexing mode uses the index stream to load parameters that drive DLUT 

index generation, so it has a different data layout in the index stream. See 2D Lookup 

with Interpolation with Auto Index Generation for details. 

When INDEX_REMAINDER is non-zero, hardware handles partial index read memory 

transactions correctly. For example, if INDEX_REMAINDER = 10 while full memory read 

involves 16 indices (say idx_dim = 2 and index type = Halfword), the last 6 index lanes of 

the last inner-loop iteration will be discarded.  

When OUTPUT_REMAINDER is non-zero, hardware handles partial output write memory 

transactions correctly. For example, if OUTPUT_REMAINDER = 5 while full memory write 

involves 32 indies (say entry type = Halfword), the last 27 output lanes of last inner-loop 

iterations are predicated off and not write any garbage values. 

With element-wise interleaved X/Y format, the expected data layout for the first 

transaction is: 

  X[0] Y[0] X[1] Y[1] X[2] Y[2] … X[15] Y[15] 

The last transaction is:  

 X[80] Y[80] X[81] Y[81] X[82] Y[82] X[83] Y[83] DC0 DC1 … DC23 (DC = don’t care) 

With 32-byte interleaved X/Y format, the expected data layout for the first transaction 

is: 

 X[0] X[1] X[2] … X[15] Y[0] Y[1] Y[2] … Y[15] 

The last 32 indices is: 

 X[80] X[81] X[82] X[83] DC0 … DC11 Y[80] Y[81] X[82] X[83] DC12 … DC23  

Since index read and output write agen N1/N2 are derived from task length N1/N2, there 

cannot be inconsistency in index data stream, between production and consumption, 

and in output data stream, between production and consumption.  

With N1/N2 derived from task length N1/N2, additional parameters for index read agen 

are: 

> index_addr 

> index_amod1 

> index_amod2 

> index_transp_mode 

> index_lane_ofst 

> index_interleave_format 

Additional parameters for output write agen are:  

> output_addr 

> output_amod1 

> output_amod2 

> output_transp_mode 

> output_lane_ofst 
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Transposing mode can be P (no transpose), T1 (halfword or word only), T2, T4, T8, T16 

(byte or halfword only), or T32 (byte only). The “T” number (for example of 2 in T2) 

indicates number consecutive elements before applying line pitch to go down to the 

next row.   

Disallowed type and transpose combinations shall be detected as incorrect 

configuration. See Incorrect Task Configuration for handling. 

Like VPU transposed load/store, the line pitch (in data elements) must comply with the 

following constraint, with index/output_lane_ofst supplying the integer “k” in the line 

pitch constraint. 

Table 45 Index and output line pitch and transpose modes 

LINE PITCH Transpose mode 

Entry type T1 T2 T4 T8 T16 T32 

Byte n/a 64k + 2 64k + 4 64k + 8 64k + 16 64k + 32 

Halfword 32k + 1 32k + 2 32k + 4 32k + 8 32k + 16 n/a 

Word 16k + 1 16k + 2 16k + 4 16k + 8 n/a n/a 

With flexibility in the agen (even one trimmed down to 2 levels) together with various 

transpose modes, it is quite difficult to visualize all possible data layout for index and 

output. The following diagrams show two example layouts in P (no transpose) mode and 

T1 mode.  

Figure 14. DLUT index/output data layout 

 

In the un-transposed example layout above, parameter n1 specifies the width of the 

rectangle data region (grey box), and parameter n2 specifies the height. In the 

transposed example layout, parameter n1 specifies the height of width of the rectangle 

data region (grey box), and parameter n2 specifies the width. In both cases, parameters 

amod1/amod2 specify offset between address pointer updates (address pointers 

address  n1  

amod1 

n2 

amod2 

address  n2 

n1 

amod2 

amod1 

Index/output layout non-transposed Index/output layout T1 transposed 

Line pitch 
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expressed as dots in the diagram). Amod1 specifies the address offset between 

read/write memory transactions, and amod2 specifies the address offset at end of the 

inner loop (after index/output agen N1 transactions). 

Index and output addressing shall have consistent address alignment requirements as 

VPU load/store instructions. Byte/Halfword index/output shall be 16-bit aligned. Here we 

consider byte data to be access 64 bytes per transaction so Agen address pointers 

should be 16-bit aligned instead of being 8-bit aligned. Word index/output shall be 32-bit 

aligned.  

Address alignment is enforced by ignoring 1 or 2 LSBs of the agen address driving index 

reads and output writes. That is, address = base and address += AMOD1/AMOD2 steps 

are calculated without AND masking. AND masking is applied as address goes to VMEM 

for read/write, ignoring 1 LSB (aligned to halfword) for Byte/Halfword types and ignoring 

2 LSBs (aligned to word) for Word type. This is consistent with VPU agen addressing 

behavior when reading/writing Byte/Halfword/Word type double vector. 

For example, say INDEX_ADDR is configured as 0x1001 and INDEX_AGEN_AMOD1 is 

configured as 0x41 for a LOOKUP_2D task with Halfword index type. The first few 

iterations of index agen base address and address used to read indices are as follows: 

 Iteration Agen base Read address (aligned to Halfword) 

 0  0x1001  0x1000 

 1  0x1042  0x1042 

 2  0x1083  0x1082 

 3  0x10C4  0x10C4 

 4  0x1105  0x1104 

Index and output agen address calculation shall behave the same as in VPU agen 

address calculation (see 6.4.1) in that the selected AMOD is read as signed 18-bit 

number does not encode large enough jump to go from one superbank primary region 

into another superbank’s primary region. However, it is possible to walk through an 

aliased region into another superbank, though it is strongly discouraged to address an 

aliased region, as it may break software compatibility in the future. 

Agen address update process can be expressed as: 

lpend1 = (i1 == (agen_n1 - 1)) || (agen_n1 == 0); 
lpend2 = (i2 == (agen_n2 - 1)) || (agen_n2 == 0); 
  
if (lpend1 && lpend2) { 
 amod = 0; // stay at last data point 
} else if (lpend1) { 
 i1 = 0;  
 i2 = i2+1;  
 amod = amod2; 
} else { 
 i1 += 1; 
 amod = amod1;  
} 
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addr += amod; 

10.2 Table Data Format 
Table data, the target of table lookups, should be a single data type, Byte, Halfword, or 

Word, specified in the task configuration.  

Table data format is specified via these task configuration parameters: 

> Task mode: 1D or 2D table 

> Entry type can be signed/unsigned Byte/Halfword/Word 

> X integer limit: linear (for 1D table) or X dimension limit (for 2D table) 

> Y integer limit: Y dimension limit (for 2D table) 

> Line pitch: for 2D table 

> Table pointer: starting address of the table, 64 bytes aligned 

> Table address offset: address offset per outer iteration; there are N1 inner iterations 

and N2 outer iterations, 64 bytes aligned 

The following diagrams show table organization with various parameters.  

Figure 15. DLUT table data layout 

 

 

  

  

Single 1D table Single 2D table 

Table pointer 
Table pointer 

X integer limit 

Y integer limit 

X integer limit 

Line pitch 

  

N2 1D subtables 

Table pointer Table pointer 

N2 2D subtables 

…
 

Table addr  

offset 

…
 



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  480 

The table pointer can vary among task_N2 rounds of lookup, by adding the table offset 

after each round of task_N1 lookups.  

The table data address shall be 512-bit or 64-byte aligned, to be consistent with VPU 

lookup instructions. The alignment constraint applies to table base address and table 

address offset. 

Table size in any DLUT task is limited to one superbank, for the index calculation process 

includes steps to map lookup accesses into the superbank where the table data address 

resides. Note that this is different from index read and output write agen address 

update, where it is possible to walk from one superbank into another superbank. 

With the predicating off output write out-of-range handling option, the programmer can 

construct multiple DLUT tasks to implement table being allocated in 2 or even 3 

superbanks, by proper configuration of out-of-range option, X/Y offset and X/Y integer 

limit. 

For example, for a 2D lookup with interpolation with 150 rows x 400 columns of lookup 

table, say only 100 table rows of would fit one superbank. We would place the last 51 

table rows in the other superbank (to have 1 row of overlap between 2 subtables). We 

would construct DLUT tasks as: 

task1_param.out_of_range_hndl = OOR_EN_SENTINEL; 
task1_param.X_offset = 0; 
task1_param.Y_offset = 0; 
task1_param.X_int_limit = 399;  
task1_param.Y_int_limit = 99;  
task1_param.table_addr = subtable1; 
task1_param.next_task = &task2_param; 
task2_param.out_of_range_hndl = OOR_EN_PRED_OFF; 
task2_param.X_offset = 0; 
task2_param.Y_offset = -99;   // maps original row 99 to subtable2 row 0 
task2_param.X_int_limit = 399;  
task2_param.Y_int_limit = 50;  // since original row 149 is the last valid row 
task2_param.table_addr = subtable2; 
task2_param.next_task = NULL; 

Note that the same index buffer and output buffer are provided to both tasks, so there 

is no preprocessing or postprocessing needed to separate indices or combine outputs. 
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Figure 16. Example to leverage out-of-range handling to split a large table as 

two sub-table lookups 

 

With out-of-range handling configured as predicating off, potentially we can have every 

lane of a write transaction being predicated off, particularly at the last write 

transactions of the inner (task_length_N1) loop that can be partial transactions. The 

current implementation does not optimize out such NULL write transactions. The 

occurrence of such transactions is data dependent and should be infrequent if the use 

case is well optimized. 

10.3 Index Calculation  
Index and lookup address calculation for the first 4 modes are described in the following 

subsections. 

Input and parameter bit width common to these modes are as follows: 

> index[i]: U16 or U32, use worst case U32 

> x_offset, y_offset: S32 

> frac_bits: 0 ~ 16 

> frac_mask = (1 << frac_bits) -1; // U16 

> round_add = (frac_bits == 0) ? 0 : (1 << (frac_bits – 1)); // U16 

> tbl_addr: U20 

> line_pitch: U16 

10.3.1 1D Lookup  

In 1D lookup (without interpolation), DLUT shall perform for each data point iterated by 

task_i2 in the outer loop and task_i1 in the inner loop: 

x = index[task_i1] + x_offset;     // U32 + S32 = S34 
x_int = (round_trunc_mode == 0) ? (x >> frac_bits)  
   : ((x + round_add) >> frac_bits);       // S34 
x_in_range = (x_int >= 0) && (x_int <= x_int_limit); // Boolean 
out_of_range = out_of_range_enable && !x_in_range;  // Boolean 
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lu_idx = x_int;        // S32 

When out-of-range detection is enabled and index is detected to be out of range, lookup 

for that specific output is not performed, and either configured sentinel value is 

returned instead, or writing of that output is predicated off. 

When the task outer loop parameter task_length_N2 is greater than one, table pointer 

advances with each round of task_length_N1 outcomes.  The lookup index is scaled by 

entry size and added to the table pointer as well. Note that we never switch superbank 

(from the one configured in the task parameter) with the table pointer advancing or 

entry indexing, as they only affect the lower 17 bits of the byte address (covering 128KB 

inside a superbank). 

entry_addr = (tbl_ptr & 0xC0000) 
+ ((tbl_ptr + task_i2 * tbl_addr_offset 
       + lu_idx * sizeof_entry) & 0x1FFFF); // U20 

The entry address is decomposed into superbank ID, row address, bank ID, and byte ID 

(only for Byte-type entries):  

entry_superbank = entry_addr[19:18]; // 0 = superbank A, 1 = B, 2/3 = C 
entry_row_addr = entry_addr[16:6];  // 11 bits covering 2K rows 
entry_bank_id  = entry_addr[5:1];  // 5 bits covering 32 banks 
entry_byte_id  = entry_addr[0];   // 1 bit covering 2 bytes 

Although index data is unsigned, x_offset is signed, so index calculation involves signed 

arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can be 

negative or can exceed VMEM superbank address range. With the way entry address is 

calculated, the lookup would wrap address back into the same superbank as configured 

in the task parameter. This is consistent with VPU table lookup address wrapping 

described in 0.   

10.3.2 1D Lookup with interpolation 

Index calculation for 1D lookup with interpolation mode is the same as that of 1D lookup 

mode, except: 

> We need to calculate the fraction part of the index to perform interpolation, so the 

integer component is always calculated with truncation.  

> Out-of-range detection takes into account index value right on the last valid data 

point with zero fraction.  

x = index[task_i1] + x_offset;   // U32 + S32 = S34 
x_int = x >> frac_bits;     // S34 
x_frac = x & frac_mask;     // U16 
x_in_range = (x_int >= 0) && ((x_int < x_int_limit) ||  
       ((x_int == x_int_limit) && (x_frac == 0))); // Boolean 
out_of_range = out_of_range_enable && !x_in_range;   // Boolean 
lu_idx = x_int;         // S32 

When out-of-range detection is enabled and index is detected to be out of range, the 

two lookups for that specific output is not performed, and either configured sentinel 

value is returned instead or, writing of that output is predicated off. 
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Like the 1D lookup mode, we never switch superbank (from the one configured in the 

task parameter) with the table pointer advancing or entry indexing:  

entry_addr = (tbl_ptr & 0xC0000) 
+ ((tbl_ptr + task_i2 * tbl_addr_offset 
       + lu_idx * sizeof_entry) & 0x1FFFF); // U20 

In addition, the entry address for the next table entry is calculated in order to look up 

two items for interpolation. The next table entry shall be also in the same superbank: 

entry_addr2 = (tbl_ptr & 0xC0000) 
+ (entry_addr + sizeof_entry) & 0x1FFFF; // U20 

How each entry address is decomposed into superbank ID, row address, bank ID, and 

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details. 

Again, although index data is unsigned, x_offset is signed, so index calculation involves 

signed arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can 

be negative or can exceed VMEM superbank address range. With the way entry address 

is calculated, the lookup would wrap address back into the same superbank as 

configured in the task parameter. This is consistent with VPU table lookup address 

wrapping described in 0.   

10.3.3 2D Lookup  

In 2D lookup (without interpolation), DLUT shall perform for each data point: 

x = index[2*task_i1] + x_offset;    // U32 + S32 = S34 
y = index[2*task_i1+1] + y_offset;    // U32 + S32 = S34 
x_int = (round_trunc_mode == 0) ? (x >> frac_bits) // S34 
   : ((x + round_add) >> frac_bits);  
y_int = (round_trunc_mode == 0) ? (y >> frac_bits) // S34 
   : ((y + round_add) >> frac_bits);  
x_in_range = (x_int >= 0) && (x_int <= x_int_limit); // Boolean 
y_in_range = (y_int >= 0) && (y_int <= y_int_limit); // Boolean 
out_of_range = out_of_range_enable && (!x_in_range || !y_in_range); //Boolean 
lu_idx = y_int * line_pitch + x_int;   // S32 

When out-of-range is detected, lookup for that specific output is not performed, and 

either configured sentinel value is returned instead, or writing of that output is 

predicated off. 

Similar to the 1D lookup mode, we never switch superbank (from the one configured in 

the task parameter) with the table pointer advancing or entry indexing:  

entry_addr = (tbl_ptr & 0xC0000) 
+ ((tbl_ptr + task_i2 * tbl_addr_offset 
       + lu_idx * sizeof_entry) & 0x1FFFF); // U20 
 

How each entry address is decomposed into superbank ID, row address, bank ID, and 

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details. 
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Again, although index data is unsigned, x_offset and y_offset are signed, so index 

calculation involves signed arithmetic. When out-of-range detection is disabled, the 

lookup index lu_idx can be negative or can exceed VMEM superbank address range. With 

the way entry address is calculated, the lookup would wrap address back into the same 

superbank as configured in the task parameter. This is consistent with VPU table lookup 

address wrapping described in 0.   

10.3.4 2D Lookup with Interpolation 

Index calculation for 2D lookup with interpolation mode is the same as that of 2D lookup 

mode, except: 

> We need to calculate the X and Y fraction parts of the index to perform interpolation, 

so the integer component is always calculated with truncation.  

> Out-of-range detection takes into account index value right on the last row or last 

column of valid data region with zero fraction.   

x = index[2*task_i1] + x_offset;   // U32 + S32 = S34 
y = index[2*task_i1+1] + y_offset;   // U32 + S32 = S34 
x_int = x >> frac_bits;     // S34 
y_int = y >> frac_bits;     // S34 
x_frac = x & frac_mask;     // U16 
y_frac = y & frac_mask;     // U16 
x_in_range = (x_int >= 0) && ((x_int < x_int_limit) ||  
       ((x_int == x_int_limit) && (x_frac == 0))); // Boolean 
y_in_range = (y_int >= 0) && ((y_int < y_int_limit) ||  
       ((y_int == y_int_limit) && (y_frac == 0))); // Boolean 
out_of_range = out_of_range_enable && (!x_in_range || !y_in_range); //Boolean 
lu_idx = y_int * line_pitch + x_int;   // S32 

When out-of-range detection is enabled and index is detected to be out of range, the 4 

lookups for that specific output is not performed, and either configured sentinel value is 

returned instead, or writing of that output is predicated off. 

Similar to the 1D lookup mode, we never switch superbank (from the one configured in 

the task parameter) with the table pointer advancing or entry indexing:  

entry_addr = (tbl_ptr & 0xC0000) 
+ ((tbl_ptr + task_i2 * tbl_addr_offset 
       + lu_idx * sizeof_entry) & 0x1FFFF);    // U20 

In addition, address for 3 additional table entries is calculated to look up 2x2 = 4 items 

for interpolation. These additional table entries shall be also in the same superbank: 

entry_addr2 = (tbl_ptr & 0xC0000) 
  + (entry_addr + sizeof_entry) & 0x1FFFF;       // U20 
entry_addr3 = (tbl_ptr & 0xC0000) 
  + (entry_addr + line_pitch * sizeof_entry) & 0x1FFFF; // U20 
entry_addr4 = (tbl_ptr & 0xC0000) 
  + (entry_addr + line_pitch * sizeof_entry + sizeof_entry) & 0x1FFFF;//U20 

How each entry address is decomposed into superbank ID, row address, bank ID, and 

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details. 
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Again, although index data is unsigned, x_offset and y_offset are signed, so index 

calculation involves signed arithmetic. When out-of-range detection is disabled, the 

lookup index lu_idx can be negative or can exceed VMEM superbank address range. With 

the way entry address is calculated, the lookup would wrap address back into the same 

superbank as configured in the task parameter. This is consistent with VPU table lookup 

address wrapping described in 0.   

10.3.5 2D Lookup with Interpolation with Auto Index 

Generation 

The 2D lookup with interpolation with automatic index generation mode involves these 

additional parameters:  

> AUTO_IDX_MODE: specifies whether it’s translation-only mode (index stream loads 

x0/y0, 2 parameters per round of lookup/interpolation) or translation-scaling mode 

(index stream loads x0/y0/step_x/step_y, 4 parameters per round of 

lookup/interpolation) per round of lookup/interpolation.  

> AUTO_IDX_TRAVERSAL_DIR: specifies that index traversal going horizontally first 

(when it’s 0) or vertically first (when it’s 1). 

> AUTO_IDX_PATCH_WIDTH (U8): specifies patch width   

> AUTO_IDX_PATCH_HEIGHT (U8): specifies patch height  

Basically, DLUT in this mode instead of reading Task_len_N2 x Task_len_N1 pairs of 

indices from VMEM, would read just Task_len_N2 sets of (2 or 4) parameters and 

generate indices on the fly to drive lookup and interpolation.   

DLUT hardware shall carry out the following process to generate indices for task_len_N1 

outputs in the inner loop. task_len_N1 must match PATCH_WIDTH * PATCH_HEIGHT. 

Also, we need PATCH_WIDTH >= 8 when traversing horizontally first, and 

PATCH_HEIGHT >= 8 when traversing vertically first, to simplify index generation. 

This process is for group size of 8, which applies for IDX_W index type and U16/S16 

table entry type that we are supporting for auto-indexing mode.  

In the normal (horizontally first) mode, hardware follows this behavior: 

 
int xi[] = {0, 1, 2, 3, 4, 5, 6, 7}; 
int yi[] = {0, 0, 0, 0, 0, 0, 0, 0}; 
y = replicate(y0);    // all lanes initialized to y0 
x = x0 + xi * step_x; // lane i = x0 + i*step_x 
 
for (i1 = 0, i1 = 0; i1 < N1; i1 += group_size) { 
 
// proceed with address calculation with coordinate (x, y) 
  
// update x, y for next group 
  adv_mask = (xi+8) >= PATCH_WIDTH; // boolean vector 
 yi += adv_mask;          // add 0 or 1 
  y += adv_mask * step_y;     // add 0 or step_y 
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 valid_mask = yi < PATCH_HEIGHT;  // mask out lanes in last group 
 xi += adv_mask ? (8 - PATCH_WIDTH) : 8;  
  x += adv_mask ? ((8 – PATCH_WIDTH) * step_x) : (8 * step_x);   
} 

Otherwise (in the vertically first mode), hardware follows this behavior: 

int xi[] = {0, 0, 0, 0, 0, 0, 0, 0}; 
int yi[] = {0, 1, 2, 3, 4, 5, 6, 7}; 
x = replicate(x0);    // all lanes initialized to x0 
y = y0 + yi * step_y; // lane i = y0 + i*step_y 
 
for (i1 = 0, i1 = 0; i1 < N1; i1 += group_size) { 
 
// proceed with address calculation with coordinate (x, y) 
  
// update x, y for next group 
 adv_mask = (yi+8) >= PATCH_HEIGHT; // boolean vector 
 xi += adv_mask;          // add 0 or 1 
  x += adv_mask * step_x;      // add 0 or step_x 
 valid_mask = xi < PATCH_WIDTH;   // mask out lanes in last group 
 yi += adv_mask ? (8 - PATCH_HEIGHT) : 8; 
  y += adv_mask ? ((8 – PATCH_HEIGTH) * step_y) : (8 * step_y);  
} 

When AUTO_IDX_MODE specifies translation-only mode, only x0/y0 are loaded per round 

of task_len_N1 outputs, hardware would derive step X/Y from frac_bits: 

step_x = step_y = 1 << frac_bits 

X/Y update is expressed for index traversal going horizontally first. The vertically first 

option can be implemented by swapping the X/Y feeding rest of the address calculation.   

Rest of the address calculation process, duplicate detection, conflict resolution, post 

lookup interpolation, index/output agen (other than index agen N1/N2 derivation) all 

operate the same way as in the common table lookup with and without interpolation 

modes. 

Index agen parameters should be derived from Task_len_N1, Task_len_N2, differently 

than the normal lookup/interpolation modes: 

INDEX_AGEN_N1 = (TASK_LEN_N2 * [2 or 4] + 64/sizeof_idx – 1)/ (64/sizeof_idx);  
INDEX_REMAINDER = (TASK_LEN_N2 * [2 or 4]) % (64/sizeof_idx); 
INDEX_AGEN_N2 = 1; 

Note that x0/y0 or x0/y0/step_x/step_y data in memory shall be interpreted consistently 

with INDEX_DATA_TYPE (constrained to IDX_W for the auto-indexing mode), as 

unsigned 32-bit words. 

Other relevant parameters: 

> INDEX_ADDR specifies starting address of these parameters. 

> INDEX_AGEN_TRANSP_MODE should be 0 (no transposition). 

> INDEX_AGEN_LANE_OFST is not used. 

> INDEX_AGEN_AMOD2 is not used. 
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10.4 Duplicate Detection and 

Consolidation 
Before sending read/read-modify-write/write requests to VMEM, DLUT shall first detect 

duplicate requests. Duplicate requests are consolidated for performance and power, and 

the same return values are broadcast to the multiple return-value lanes as needed. 

Note that the hardware has a certain window where duplicate detection works; not all 

duplicates within a task are caught. The duplicate detection feature is for performance 

and has no effect on the final outcome.  

Duplicate detection logic does consume some power in operation. There is an enable bit 

in the task parameter block to enable/disable duplicate detection/consolidation on the 

task. Programmer should disable duplicate detection/consolidation only for DLUT tasks 

that are expected to have very few duplicates.  

10.5 Conflict Resolution and Lookup  
After duplicate requests are detected and consolidated by voiding redundant requests, 

the bank address of valid requests are compared, conflict detected, and DLUT hardware 

issues read requests to complete the lookup as needed to the table in VMEM.  

Not all individual lookups are performed due to out-of-range detection and duplicate 

detection. For the sake of functionality description, we can say that hardware performs 

1, 2, or 4 lookups as prescribed using the entry address(es) calculated for each output 

not deemed out-of-range:  

entry = * entry_addr;  // all modes, the anchor entry 
entry2 = * entry_addr2; // 1D or 2D interpolation, to the right of anchor 
entry3 = * entry_addr3; // 2D interpolation only, down from anchor 
entry4 = * entry_addr4; // 2D interpolation only, down-and-right from anchor 

10.6 Post Lookup Interpolation 
For 1D lookup with linear interpolation, DLUT performs for each output not deemed out-

of-range:  

y_out = entry + round((entry2 – entry) * x_frac, frac_bits); 

For 2D lookup with bilinear interpolation, DLUT performs for each output not deemed 

out-of-range: 

y0 = entry + round((entry2 – entry) * x_frac, frac_bits); 
y1 = entry3 + round((entry4 – entry3) * x_frac, frac_bits); 
y_out = y0 + round((y1 – y0) * y_frac, frac_bits); 
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Note that x_frac and y_frac are extracted from frac_bits LSBs of x and y, so for 

linear/bilinear interpolation to work correctly, round/trunc mode shall be set to 

truncation.  

In all lookup modes, when X or Y are out of range and out-of-range is enabled, either the 

configured sentinel value is returned instead of interpolated value, or output write is 

predicated off. Note that the out-of-range detection is performed in case of 

interpolated lookup such that when any dependent entry (out of 2 or 2x2 entries) is out-

of-range, it’s detected as out-of-range.  

It’s the programmer’s responsibility to set round/truncate mode and X/Y limit correctly 

for the mode of operation performed. DLUT hardware shall just carry out lookup and 

calculation with configuration parameters provided. 

10.7 2D Conflict-free Lookup with 

Interpolation 
The 2D conflict-free bilinear interpolation mode allows DLUT to offload 2D-to-linear 

index calculation, lookup, and post-lookup interpolation from VPU, reducing energy and 

improving performance as well.   

The following parameters are constrained for this 2D conflict-free lookup with 

interpolation: 

> Task mode: 0x04 (2D conflict-free lookup with interpolation) 

> Entry data type: must be signed or unsigned Halfword 

> Index data type: must be unsigned Halfword or unsigned Word 

> Line pitch: must be 4k + 2 (k being any integer) 

In this mode, table data is organized as 8-way parallel subtables with Halfword entries. It 

is the same table organization as for VPU DVLUT_8H and DVLUT_2x2pt_8H instructions, 

and is shown as follows with linear indexing for each subtable:  

Figure 17. Table layout for VPU lookup instructions 

 

T0[0..3] T1[0..3] … T7[0..3] 

T0[4..7] T1[4..7] … T7[4..7] 

T0[8..11] T1[8..11] … T7[8..11] 

…  

 

  

For example, if each subtable has width of 9 and height of 4, we would pick line pitch = 

4*2+2 = 10, and have the following table layout (p = pad, or don’t care value): 
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Figure 18. Table layout for DLUT 2D conflict-free lookup w/ interpolation 

T0[0][0] T0[0][1] T0[0][2] T0[0][3] T1[0][0] T1[0][1] … T7[0][3] 

T0[0][4] T0[0][5] T0[0][6] T0[0][7] T1[0][4] T1[0][5]  T7[0][7] 

T0[0][8] p T0[1][0] T0[1][1] T1[0][8] p  T7[1][1] 

T0[1][2] T0[1][3] T0[1][4] T0[1][5] T1[1][2] T1[1][3]  T7[1][5] 

T0[1][6] T0[1][7] T0[1][8] p T1[1][6] T1[1][7]  p 

T0[2][0] T0[2][1] T0[2][2] T0[2][3] T1[2][0] T1[2][1]  T7[2][3] 

T0[2][4] T0[2][5] T0[2][6] T0[2][7] T1[2][4] T1[2][5]  T7[2][7] 

T0[2][8] p T0[3][0] T0[3][1] T1[2][8] p  T7[3][1] 

… 

Note that the line pitch is inside each subtable, which is 4 elements wide, instead of line 

pitch in the full-width VMEM in the context of storing a 2D array in VMEM. In this case, 

each subtable contains a 2D table, and the line pitch is needed to translate 2D indices 

(x_int, y_int) into linear indices (lu_idx*) to perform lookups in each subtable. 

With such table organization and such line pitch, each set of 2x2 lookups go to its own 

set of 4 memory banks, and each of the 2x2 lookups goes to its own memory bank, so 

there is no conflict, and no replication either. 

Example:  

> line_pitch = 10. fraction_bits = 2. 

> At lane 0 of certain group, we get X index = 7, Y index = 5.  

> x_int = 1, x_frac = 3, y_int = 1, y_frac = 1. 

> lu_idx = 1 * 10 + 1 = 11. 

> lu_idx2 = 11 + 1 = 12. 

> lu_idx3 = 11 + 10 = 21. 

> lu_idx4 = 11 + 10 + 1 = 22. 

We use 8-way parallel, halfword variation of the parallel table address calculation (from 

0):  

byte_offset[i] = ((index modulo K) + i*K) * M + floor(index / K)*64, for i = 0..N-1 

where N = parallelism, K = stride, M = entry size in bytes. 

It’s clearer in this context to translate the above to a halfword offset: 

 halfword_offset = (index modulo K) + i*K + floor(index / K)*32 

In this case, parallelism N=8, data size M=2, stride K=4, and lane i = 0, so for the first of 

the 2x2 lookups we have 

halfword_offset = ((lu_idx modulo 4) + 0*4 + floor(lu_idx / 4) * 32  
= (11 modulo 4) + floor(11/4)*32 = 3 + 2*32 = 67 

For rest of the 2x2 lookups we have: 

 halfword_offset2 = (12 modulo 4) + floor(12/4)*32 = 0 + 3*32 = 96 
halfword_offset3 = (21 modulo 4) + floor(21/4)*32 = 1 + 5*32 = 161 
halfword_offset4 = (22 modulo 4) + floor(22/4)*32 = 2 + 5*32 = 162 
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We can see that the 2x2 lookups go to memory banks 3, 0, 1, 2 of the first subtable, due 

to the 4k + 2 line pitch. 

Index read agen should be configured appropriately to supply X/Y indices to perform 

address calculation and post-lookup interpolation. Since index read transactions are 

configured to read 64 bytes at a time, for Halfword indices, 16 pairs of X/Y indices are 

read at a time to feed 2 cycles of lookup. For Word indices, 8 pairs of X/Y indices are 

read at a time to feed one cycle of lookup. 

Output write agen should be configured appropriately to write outputs. Since output 

write transactions are configured to write 64 bytes or 32 halfwords at a time, the 

hardware accumulates 4 cycles of lookup/interpolation to issue each output write. 

Features supported in this mode are: 

> Out-of-range detection: supported. 

> Round mode: not relevant, as it only applies to lookup without interpolation. 

> Duplicate handling: not relevant, as subtables are separate so no duplicate lookups 

are possible.  

> Task length N1/N2 and table address stepping: supported.   

> Index agen transposition modes: supported. 

> Index X/Y interleaving modes: per element and per 32B both supported. 

> Output agen transposition modes: supported. 

Parameters involved and not involved for this mode of operation are summarized after 

the task parameters detailed.  

10.8 Table Reformatting 
Table reformatting feature allows DLUT to offload the reorganizing of data from VPU, 

reducing energy and sometimes improving performance as well.   

As the reformatting is simply data movement without involving any arithmetic 

processing on data, it is signed/unsigned and byte/halfword/word type agnostic. To 

simplify hardware verification, only Halfword type is supported. Index type must be 

unsigned Halfword, and entry type can be signed or unsigned Halfword. This is so the 

derivation from task_len_N1/N2 to index/output_agen_N1/N2 can be consistent. 

The following is the definition of a table reformatting task. 

> Input: accept N * P subtables, each is of length L and is stored in consecutive 

memory region, with each subtable being LP (line pitch) entries apart. P = 

2/4/8/16/32, referred to as the parallelism in VPU lookup instructions and DLUT task 

definition. N is any integer, and basically an optional outer-loop number of iterations 

and number of rows of parallel subtables. 

> DLUT is to reformat the table data and produce output: N blocks of P parallel 

subtables across 512-bit (or 32 halfowrds) VMEM superbank memory width. 
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Note that subtable length L does NOT have to be a multiple of (32/P). 32/P can be 

regarded as “stride” in parallel subtable organization, number of entries each subtable 

has in halfword-aligned 64 consecutive bytes. As hardware reads and writes P strides at 

a time, or P*L halfwords. L not being a multiple of 32/P means P*L halfwords not being 

32 halfwords = 64 byes aligned. Since partial index read and output write transactions 

are supported in the common table lookup/interpolation modes, table reformatting 

mode takes advantage of this to allow flexibility that may lead to memory footprint 

saving.   

The parallel subtable format is consistent with that of VPU 2/4/8/16/32-way parallel 

lookup/histogram instructions, as well as DLUT conflict-free lookup mode. Please consult 

Data Organization in Memory for VPU lookup/histogram data format. 

Common table reformatting input/output data format is as follows: 

Figure 19. Table reformatting input/output layout scheme 

 

Table reformatting is basically accomplished through various transpose mode 

configured in the index agen with appropriate N1, N2, AMOD1, AMOD2 programming in 

index and output agens.  

Line pitch (LP in the diagram) is constrained to 32*k + 32/P, with k configured as the 

transpose lane offset parameter. 

The following are the parameters involved in a table reformatting task: 

> task_mode = table reformatting 

> index_type = unsigned halfword 

> entry_type = signed or unsigned halfword 

> task_len_N1 = P*L (index_agen_N1 = output_agen_N1 = P*L/32)   

> task_len_N2 = N (index_agen_N2 = output_agen_N2 = N) 

> index_addr = starting address of input (data to be reformatted)  

L 

N*P 

P 

N 

Input to table reformatting Output of table reformatting 

LP 

…
 …

 

… 

… 

L 

32 
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> index_agen_amod1 = 64/P, advancing by one stride 

> index_agen_amod2 = P*LP*2 – (L/(32/P) – 1) *(32/P)*2 = P*LP*2 – L*2 + 64/P 

> index_agen_transp_mode = T<32/P>  

> index_agen_lane_ofst = (LP – 32/P) / 32, the “k” in 32*k + 32/P 

> index_interleave_format = don’t care 

> out_addr = starting address of output (reformatted data) 

> out_agen_amod1 = 64 

> out_agen_amod2 = 64 

> out_agen_transp_mode = None 

> out_agen_lane_ofst = don’t care 

> next_task: points to parameters of next task, 0 to terminate the task sequence 

Note that these are recommended values to accomplish the table reformatting task as 

stated. Hardware just carries out index/output agen update as configured and passes 

data from the load stream to the store stream without verifying various parameter 

values. 

For example, a table reformatting task with N = 2, P = 4, L = 32, line pitch = 32*k + 32/P = 

40 (thus k = 1) shall have the following input and output organization: 

Figure 20. Table reformatting input/output layout example 

Input: 

T0[0..31] 8 entry skipped 

T1[0..31] 8 entry skipped 

T2[0..31] 8 entry skipped 

T3[0..31] 8 entry skipped 

T4[0..31] 8 entry skipped 

T5[0..31] 8 entry skipped 

T6[0..31] 8 entry skipped 

T7[0..31] 8 entry skipped 

 

Output: 

T0[0..7] T1[0..7] T2[0..7] T3[0..7] 

T0[8..15] T1[8..15] T2[8..15] T3[8..15] 

T0[16..23] T1[16..23] T2[16..23] T3[16..23] 

T0[24..31] T1[24..31] T2[24..31] T3[24..31] 

T4[0..7] T5[0..7] T6[0..7] T7[0..7] 

T4[8..15] T5[8..15] T6[8..15] T7[8..15] 

T4[16..23] T5[16..23] T6[16..23] T7[16..23] 

T4[24..31] T5[24..31] T6[24..31] T7[24..31] 
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10.9 VPU/DLUT Interface 
VPU/DLUT interface consists of a set of coprocessor control/status registers similar to 

how R5 would launch a VPU task. In VPU task launch, R5 software programs VPU 

starting PC, programs DMA to supply/consume input/output data, then commands VPU 

and DMA to go.  In DLUT task launch, VPU software programs DLUT task parameter 

pointer (for first parameter block, which links to the next parameter blocks and so on) in 

the Coprocessor address space, allocates DLUT input/output regions in VMEM, then 

command DLUT to go by asserting a GPO signal.  

The following subsections describe task control/status registers in the coprocessor 

address space, task parameter block data structure, and GPIO signaling. 

10.9.1 Task Parameters  

Task configuration parameters are stored in VMEM and have the following data 

structure per task. Note that any unused encoding option (for example, task mode 6 ~ 

15) are reserved, and unused bit fields are ignored.  

Table 46. DLUT task parameter data structure  

Word/Field Byte 

offset 

Bits Description 

TASK_INFO 0x00  Task basic information 

  MODE  30:28 0x00: LOOKUP_1D, 1D lookup (one common table) 

0x01: LOOKUP_2D, 2D lookup (one common table) 

0x02: INTERP_1D, 1D lookup with linear interpolation (one 

common table) 

0x03: INTERP_2D, 2D lookup with bilinear interpolation 

(one common table) 

0x04: CONFLICT_FREE_2D_INTERP, conflict free 2D 

lookup with bilinear interpolation, (Halfword entry type 

only, 8 parallel tables) 

0x05: TABLE_REFORMAT, table reformatting 

0x06: INTERP_2D_AUTO_IDX, 2D lookup with 

interpolation by using automatically generated index data 

  INDEX_DATA_TYPE  25:24 0x1: IDX_H, Halfword 

0x2: IDX_W, Word 

  ENTRY_DATA_TYPE  22:20 0x0: S8, signed Byte 

0x1: S16, signed Halfword 

0x2: S32, signed Word 

0x4: U8, unsigned Byte 

0x5: U16, unsigned Halfword 
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Word/Field Byte 

offset 

Bits Description 

0x6: U32, unsigned Word 

  OUT_OF_RANGE_ HANDLING  19:18 0: disable 

1: enable, return sentinel value for OOR lookup 

2: enable, predicate off writing output for an OOR lookup 

  ROUND_MODE_NO_INTRP  17 0: truncate 

1: round 

Only applied to modes 0 & 1 (without interpolation) 

  DUPLICATE_HANDLING  16 Duplicate detection and consolidation 

0: disabled  

1: enabled 

  FRACTION_BITS   4:0 U5, number of fraction bits to round/truncate, 0 ~ 16. 

X_INT_LIMIT 0x04 17:0 U18, upper limit of X integer, or linear index for 1D 

lookup. 

For example, if there are 480 valid columns in a 2D table, 

or 480 valid entries in a 1D table, valid X integer range is 0 

~ 479, and this parameter should be configured as 479 

Y_INT_LIMIT 0x08 17:0 U18, upper limit of Y integer. 

For example, if there are 240 valid rows in a 2D table, 

valid Y integer range is 0 ~ 239, and this parameter 

should be configured as 239. 

X_OFFSET 0x0C 31:0 S32, number to add to X indices, with same number of 

fraction bits as input indices.  

This is to translate between global coordinates to 

local/tile coordinates. 

Y_OFFSET 0x10 31:0 S32, number to add to Y indices, with same number of 

fraction bits as input indices. This is to translate between 

global coordinates to local/tile coordinates. 

TASK_LEN 0x14   

  N2  31:16 U16, number of rounds 

  N1  15:0 U16, number of elements to output per round of lookup 

OOR_SENTINEL 0x18 31:0 Return value for out-of-range indices, use 8 LSBs (S8 or U8) 

for Byte entry type, 16 LSBs (S16 or U16) for Halfword entry 

type, all 32 bits (S32 or U32) for Word entry type. 

TABLE_ADDR  0x1C 19:6 U20, pointer to table, 64 bytes aligned 

TABLE_ADDR_OFFSET 0x20 17:6 S18, address update between rounds of lookup, 64 bytes 

aligned 

TABLE_LINE_PITCH   0x24 15:0 U16. Note that this is in terms of number of table entries, 

and it’s the line pitch itself, instead of providing k and line 

pitch being 32*k+n.  

For mode 4 (8 parallel table conflict-free lookup), line 

pitch must be 4k + 2, k being any integer. 

AUTO_IDX_CFG 0x28  Auto-indexing configuration  
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Word/Field Byte 

offset 

Bits Description 

  MODE  20 0: Index stream loads starting X/Y per round of task_len_N1 

outputs 

1: Index stream loads starting X/Y and step scale X/Y per 

round of task_len_N1 outputs 

  TRAVERSAL_DIR  16 0: Index traverses horizontally first, the raster-scan order,  

1: Index traverses vertically first. 

  PATCH_WIDTH  15:8 U8, patch width 

  PATCH_HEIGHT  7:0 U8, patch height 

INDEX_AGEN_CFG 0x2C   

  TRANSP_MODE  30:28 0: None, no transposition 

1: T1 

2: T2 

3: T4 

4: T8 

5: T16 

6: T32 

  INTERLEAVE_FORMAT  24 0 : element-wise interleaved 

1: 32B interleaved 

  LANE_OFST  11:0 U12, for transposed access, specify “k” in line pitch 

constraint 32k + t, t depending on transp_mode 

  TRANSP_MODE  30:28 0: None, no transposition 

1: T1 

2: T2 

3: T4 

4: T8 

5: T16 

6: T32 

  INTERLEAVE_FORMAT  24 0 : element-wise interleaved 

1: 32B interleaved 

  LANE_OFST  11:0 U12, for transposed access, specify “k” in line pitch 

constraint 32k + t, t depending on transp_mode 

OUTPUT_AGEN_CFG 0x30   

  TRANSP_MODE  30:28 0: no transposition 

1: T1 

2: T2 

3: T4 

4: T8 

5: T16 

6: T32 
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Word/Field Byte 

offset 

Bits Description 

  LANE_OFST  11:0 U12, for transposed access, specify “k” in line pitch 

constraint 32k + t, t depending on transp_mode 

Reserved_1 0x34   

Reserved_2 0x38   

Reserved_3 0x3C   

INDEX_ADDR  0x40 19:0 U20, pointer to index array 

INDEX_AGEN_AMOD1 0x44 17:0 S18, index address modifier for inner iterations 

INDEX_AGEN_AMOD2 0x48 17:0 S18, index address modifier for outer iterations 

OUTPUT_ADDR  0x4C 19:0 U20, pointer to output  

OUTPUT_AGEN_AMOD1 0x50 17:0 S18, output address modifier for inner iterations 

OUTPUT_AGEN_AMOD2 0x54 17:0 S18, output address modifier for outer iterations 

Reserved_4 0x58   

NEXT_TASK 0x5C 19:2 U20, pointer to next task configuration data, zero for last 

task, 4 bytes aligned 

Parameters relevant to various task modes are tabulated as follows. Blank entries are 

not used, and values are “don’t care.” Constrained values are also shown. 

Table 47. DLUT parameter usage and constraints  

Parameter LU_1D LU_2D INTRP 

_1D 

INTRP 

_2D 

CF_INTRP 

_2D 

TBL_ 

RFMT 

INTERP 

_2D_AUTO 

_IDX 

MODE 0 1 2 3 4 5 6 

INDEX_DATA_TYPE Yes Yes Yes Yes Yes IDX_H 

or 

IDX_W 

IDX_W 

ENTRY_DATA_TYPE Yes Yes Yes Yes S16/U16 S16/U16 S16/U16 

OUT_OF_RANGE_ HANDLING Yes Yes Yes Yes Yes disable Yes 

ROUND_MODE_NO_INTRP Yes Yes      

DUPLICATE_HANDLING Yes Yes Yes Yes   Yes 

FRACTION_BITS  Yes Yes Yes Yes Yes 0 Yes 

X_INT_LIMIT Yes Yes Yes Yes Yes  Yes 

Y_INT_LIMIT  Yes  Yes Yes  Yes 

X_OFFSET Yes Yes Yes Yes Yes 0 Yes 

Y_OFFSET  Yes  Yes Yes 0 Yes 

TASK_LEN N2 Yes Yes Yes Yes Yes Yes Yes 

TASK_LEN N1 Yes Yes Yes Yes Yes Yes must 

match 

PW*PH 

OOR_SENTINEL Yes Yes Yes Yes Yes  Yes 
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Parameter LU_1D LU_2D INTRP 

_1D 

INTRP 

_2D 

CF_INTRP 

_2D 

TBL_ 

RFMT 

INTERP 

_2D_AUTO 

_IDX 

TABLE_ADDR  Yes Yes Yes Yes Yes  Yes 

TABLE_ADDR_OFFSET Yes Yes Yes Yes Yes  Yes 

TABLE_LINE_PITCH    Yes  Yes Yes (4k+2)  Yes 

INDEX_ADDR  Yes Yes Yes Yes Yes Yes Yes 

INDEX_AGEN_TRANSP_MODE Yes Yes Yes Yes Yes Yes 0 

INDEX_INTERLEAVE_FORMAT  Yes  Yes Yes 0 0 

INDEX_AGEN_LANE_OFST Yes Yes Yes Yes Yes Yes  

INDEX_AGEN_AMOD1 Yes Yes Yes Yes Yes Yes Yes 

INDEX_AGEN_AMOD2 Yes Yes Yes Yes Yes Yes  

OUTPUT_ADDR  Yes Yes Yes Yes Yes Yes Yes 

OUTPUT_AGEN_TRANSP_MODE Yes Yes Yes Yes Yes Yes Yes 

OUTPUT_AGEN LANE_OFST Yes Yes Yes Yes Yes Yes Yes 

OUTPUT_AGEN_AMOD1 Yes Yes Yes Yes Yes Yes Yes 

OUTPUT_AGEN_AMOD2 Yes Yes Yes Yes Yes Yes Yes 

NEXT_TASK Yes Yes Yes Yes Yes Yes Yes 

AUTO_IDX_CFG       Yes 

10.9.2 Interaction Sequence  

VPU software is expected to interact with DLUT with the following sequence: 

> Prepare task parameters in VMEM. 

> Make sure previous task interaction is done, so that both VPU_DLUT_START 

(GPO[10]) and DLUT_VPU_DONE (GPI[10]) signals are low. 

> Write starting address of task parameters in VPU_DLUT_TASK register. 

> Assert VPU_DLUT_START  

> Go on to execute other tasks, and when DLUT outcome is needed (no more 

independent tasks to run), executes WFE_GPI to wait for DLUT task completion in 

low power mode 

> DLUT executes requested lookup tasks; there can be multiple tasks per interaction. 

> DLUT asserts DLUT_VPU_DONE. 

> VPU, upon sensing assertion of DLUT_VPU_DONE, resumes operations, de-asserts 

VPU_DLUT_START before go on to execute the next task. 

> DLUT, upon sensing de-assertion of VPU_DLUT_START, de-asserts DLUT_VPU_DONE 

to complete the current round of interaction. 

Two instances of typical VPU/DLUT interaction is shown in the following diagram: 
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Figure 21. VPU/DLUT interaction timing diagram 
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VPU is the master in the interaction. Before VPU_DLUT_START is asserted, software 

should ensure that: 

> Configuration parameters for the requested DLUT tasks are ready in VMEM for DLUT 

to consume. 

> Input index and table data for these tasks are either already in VMEM for DLUT to 

consume, or they will be ready when DLUT gets to the task that consumes the data 

by nature of task sequencing.  

> Space needed for DLUT to write lookup/interpolation outcome for these tasks, are 

either all available in VMEM for DLUT to write, or they will be available when DLUT 

gets to the task that writes the outcome by nature of task sequencing. 

DLUT executes requested tasks sequentially, so it is possible to have data and/or space 

dependency among DLUT tasks in the same sequence. Task i output can be safely 

consumed as task i+1 input, and task i input, if not dependent upon by subsequent 

tasks, can be overwritten by a subsequent task. 

For example, we can have one task performing table reformatting, and the very next 

lookup task using the reformatted table.  

If it also allowed to have space dependency within one task. For example, if the index 

and outcome group pitches are programmed appropriately, we can overwrite 

lookup/interpolation outcome onto the index array, if the index data is only consumed 

once and never needed again. 

In case VPU software does not follow the recommended protocol, and de-asserts 

VPU_DLUT_START before DLUT completed the task(s) and asserts DLUT_VPU_DONE, 

DLUT detects the issue and error-halt, as described in 10.9.4 

DLUT internally has multiple stages of processing. Processing of a sequence of two 

tasks is shown in the following diagram: 
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Figure 22. DLUT processing stages 
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10.9.3 Incorrect Task Configuration  

DLUT incorrect task configuration is defined as  

> Having a parameter value outside valid range.  

• For example, task mode is defined as a 3-bit field, with values 0 ~ 5 mapped to 

valid modes, and values 6 ~ 7 being reserved. A task configured with task mode 6 

~ 7 is deemed as having incorrect configuration. 

• As another example, a number of fraction bits is supposed to be 0 ~ 16 in the 5-

bit parameter, so values 17 ~ 31 are invalid. A task configured with number of 

fraction bits being 17 ~ 31 is deemed having incorrect configuration.  

> Having a parameter value not allowed for the operation mode.  

• In a 2D conflict-free lookup with interpolation task, index type not being unsigned 

Halfword or unsigned Word, or entry type not being signed or unsigned Halfword. 

• In a 2D conflict-free lookup with interpolation task, line pitch not being 4k + 2, k 

being any integer. 

• In a table reformatting task, index type not being unsigned Halfword, or entry 

type can be signed or unsigned Halfword. 

• In a table reformatting task, out-of-range handling not being disabled, 

fraction_bits, X offset, Y offset not being zero. 

• In a table reformatting task, index interleave format not being element-wise 

interleaved. 

• In auto-indexing mode, index type not being IDX_W, index TRANSP_MODE not 

being None, index interleave format not being element-wise interleaved. 

> Having disallowed index/entry type and transpose mode combination in agen: 

• Byte with T1 transpose is not allowed. 

• Halfword with T32 transpose is not allowed. 

• Word with T16 and T32 transpose is not allowed. 

> Having inconsistent/conflicting parameters: 

• In auto-indexing mode, task_len_N1 not matching PATCH_WIDTH * 

PATCH_HEIGHT. 

• In auto-indexing mode, when traversing horizontally first, PATCH_WIDTH < 8. 

• In auto-indexing mode, when traversing vertically first, PATCH_HEIGHT < 8. 
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Handling of incorrect configuration is described in the next subsection. 

The following cases of parameter configuration seem “strange”, but are NOT considered 

incorrect configuration, meaning hardware would carry out the task as configured, 

mostly because it would be cumbersome to detect:  

> Having nonzero value in an unused bit location. For example, parameter word 0 bit 3 

is not used (between task mode and index type), so a task configured with nonzero 

value there does not cause incorrect behavior, nor trigger configuration error. 

> Having nonzero value in an unused bit field for that operating mode. For example, Y-

related fields are not used for 1D lookup (with or without interpolation) modes. Such 

fields are simply ignored, so nonzero values there does not cause incorrect behavior, 

nor trigger configuration error. 

> Starting address for index/table/output or next task parameter block not aligned to 

required address alignment. Address alignment is forced by hardware ignoring 1, 2, 

or 6 LSBs of the byte address from agen base. This is consistent with address 

alignment handling in VPU load/store instructions (see Memory Address Alignment). 

> In a table reformatting task, normally we use None (no transposition) in one end and 

a transposition mode (T1/T2 etc) in the other end. If we have None-to-None or 

Transpose-to-Transpose combinations, the agen programming is likely to be 

incorrect.  However, hardware in table reformatting will just perform input read and 

output write as configured by the agen parameters, not checking for transpose 

combinations between read and write. 

> Infinite task sequence by task parameter blocks forming a cycle. It is most likely 

incorrectly programmed, but the hardware does not have an easy way to detect such 

a condition. In this case, DLUT would not terminate, and VPU software would wait 

forever in the WFE_GPI state. The R5 processor runs an RTOS and is able to detect 

and handle such error conditions. 

10.9.4 DLUT Execution States, Error Handling, Halt 

and Debug 

10.9.4.1 Normal Execution Behavior and Conceptual State 

Diagram 

Upon reset, DLUT execution state becomes idle. 

After VPU asserts VPU_DLUT_START to start DLUT operation, DLUT execution state 

becomes busy. 

After DLUT completes configured task sequence, DLUT asserts DLUT_VPU_DONE and 

execution state returns to being idle. DLUT_VPU_DONE is asserted until 

VPU_DLUT_START is deasserted. 
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DLUT execution state transition behavior can be described by the following conceptual 

state diagram. Transitions other than normal execution, between idle/done and busy, 

shall be explained in the following subsections. 

Figure 23. DLUT execution state conceptual state diagram 
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10.9.4.2 Error Handling  

In case of an incorrectly configured task, DLUT would execute (correctly configured) 

proceeding tasks to completion, change execution state from “1: busy” to “2: halted due 

to incorrect configuration”, show number of tasks completed successfully, say K, raise 

DLUT_VPU_DONE, and show pointer to task parameter for the incorrectly configured 

task, which is task K+1. 

In case of a missed event, defined as VPU_DLUT_START being asserted to start a DLUT 

task sequence, then deasserted prematurely, before DLUT asserts DLUT_VPU_DONE to 

convey that the sequence is completed. This is in violation of the protocol and can lead 

to race conditions in the VPU/DLUT interaction. DLUT records the issue, and after the 

currently executing task is completed, raises DLUT_VPU_DONE and goes to error-halted 

state, showing execution state being “3: halted due to missed event”. The number of 

tasks completed, and current task parameter pointer shown in status registers, shall be 

dependent on when the missed event was detected with respect to the tasks being 

executed. If number of tasks completed is shown as K, it’s possible for task parameter 

pointer to point to task K, in case missed event was detected when task K is being 

executed, and next task not yet parsed, of it can point to task K+1, in case missed event 
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was detected when task K is just finished, task K+1 parameters are parsed but task K+1 

execution not yet started. 

In both error cases, DLUT stays in the appropriate error-halted state until VPU software 

acknowledges the error by reading DLUT_STATUS0.EX_STATE and writing the same 

value (2 or 3) back to the same register address. Such write would clear DLUT execution 

state to (0: idle or done) and get DLUT ready for next task launch. Until such a write, 

DLUT status registers showing execution state, number of tasks completed and pointer 

to task parameter, as well as DLUT_VPU_DONE (having been raised to high) all remain 

unchanged.   

For an incorrectly configured task error, there is precise definition of which is the first 

task being incorrectly configured, so number of tasks completed and pointer to 

parameter of currently executing task shall be kept consistent. For example, if task 1 

(being starting task of the sequence) and 2 are fine and task 3 is incorrectly configured, 

DLUT shall complete the first 2 tasks, signals DLUT_VPU_DONE, show 2 tasks completed 

and points to parameter block of task 3.  

For missed event errors, hardware detects the error but runs current task to completion, 

so if it’s detected during execution of task 3, task 3 is completed, DLUT signals 

DLUT_VPU_DONE, and status registers show 3 tasks completed and points to parameter 

block of task 3, thereby keeping these two status registers consistent. However, there is 

no precise way to predict when hardware detects the error relative to task sequence 

execution, so it is not feasible to predict exactly how many tasks will be completed if a 

missed event occurs after a set time after kicking of a task sequence, even if the task 

sequence is fully known (parameters and index/table data). This is because DLUT can be 

stalled by VPU and DMA upon VMEM superbank contentions. 

DLUT incorrect configuration and DLUT missed event are among VPS error clauses, and 

in VPS error handling, each clause can be configured to error-halt both VPU and DLUT, or 

to continue with VPU execution.  

Both kinds of DLUT errors are recoverable through normal VPU software interaction, 

unlike VPU error-halt, which can only be recovered by VPS-level reset that resets both 

VPU and DLUT. Thus, if deemed appropriate by the programmer, VPU software can carry 

out quicker recovery from DLUT errors, as opposed to PVA-level reset which will take 

longer. 

10.9.4.3 R5 Halt/Unhalt 

We provide a mechanism for R5 processors to halt/unhalt VPU. Halting means 

suspension of operation, and unhalting means resume of operation. Halting and 

subsequent unhalting should not alter the eventual outcome. Both VPU and DLUT are 

NOT expected to suspend operation immediately, but to do so when it’s convenient to 

do so. VPU has a processor pipeline, so it would suspend after its pipeline is drained. 

DLUT is a decoupled engine with multiple stages pipelined together and configured to 

process a task at a time, each task producing task_len_N1 x task_len_N2 outputs, and 

it’s only convenient to suspend after the current task is done. 
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In case VPU is halted from R5 writing VPS Config register to halt VPU, VPU, after it has 

halted, forwards the halt request to DLUT. DLUT handling is as follows: 

> If DLUT is idle, it remains idle.  

> If DLUT has already error-halted from a previous task, it remains error-halted.  

> Otherwise (DLUT is processing a task), DLUT would attempt to run that task to 

completion.  

• After the task is completed without error, DLUT goes to Halted execution state.  

• In case an error occurs, DLUT goes to Error-Halted execution state 

When VPU is subsequently unhalted by R5, VPU requests DLUT to unhalt: 

> If DLUT is idle, it remains idle. 

> If DLUT is error-halted, it remains error-halted. 

> Otherwise (DLUT is in Halted state), it moves on to process the next task.  

• If there is no next task it becomes idle 

• Otherwise, it becomes busy processing the next task. 

The VPS config register VPS_STATUS.EXE_STATE showing halted when VPU has been 

halted, and it’s possible that DLUT would remain active/busy for a while, until current 

task is completed or terminated with error.  

10.9.4.4 Debug Mode 

In case VPU enters debug mode, DLUT continues to execute until configured task 

sequence is completed and raises DLUT_VPU_DONE. This is consistent with DMA’s 

handling of VPU entering debug mode. 

10.9.5 Other Control/Status Registers  

DLUT contributes one VPS error cause, DLUT incorrect task configuration. See 13.2 for 

details. 

DLUT contributes a few counters to the VPS performance monitor feature. See PVA VPS 

IAS VPS Register Spec for details. 

DLUT is part of VPS, and its clock gating behavior shall be consistent with VPS clock 

gating behavior. See PVA VPS IAS VPS Register Spec for details. 
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Chapter 11. Register Spec 

11.1 VPS Coprocessor Registers 
The VPS Coprocessor registers are, in general, accessible by VPU coprocessor read/write 

instruction. 

The Revision ID register is described in the following subsection. The DLUT 

control/status registers are described in DLUT Task Control/State Registers.  

11.1.1 Revision ID Register  

The revision ID register is read-only. The purpose of the revision ID is to allow VPU 

software to read and differentiate among versions. revisions and instances of VPU 

module when needed. 

Tie-in at PVA module boundary drives PVA_ID. Tie-in at VPS module boundary drives the 

VPU_ID.  PVA revision and release IDs are identical copies from PVA-top level PVA_CFG 

registers. 

Table 48. VPU revision ID register 

Register/Field RW Bits Reset Description 

REVISION_ID  

0x200 

   Revision ID register 

PVA_INST_ID  R 31:28 0/1 PVA instance ID 

0: PVA0 

1: PVA1 

VPU_INST_ID R 27:24 0/1 VPU instance ID 

0: VPU0 

1: VPU1 

REV_ID R 23:20 2 PVA revision ID, matching 

PVA_CFG_PVA_ID.PVAREVID 

1: T19x PVA 1.0 

2: T23x PVA 2.0 

REL_ID R 15:0 0x36 PVA release ID, matching 

PVA_CFG_PVAREL_ID.PVAREL_REV 
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11.1.2 DLUT Task Control/Status Registers  

There exists configuration and status registers on the VPU’s coprocessor space. VPU 

software can read/write these registers via the CP_LD and CP_ST instructions. 

Table 49. VPU DLUT task control/status registers 

Register/Field RW Bits Reset Description 

VPU_DLUT_TASK 

0x800 

   VPU-DLUT task configuration 

CFG_ADDR RW 19:2 0 Configuration byte address in VMEM for 

DLUT to execute for the next task.  

A byte address is to be written to the 

32-bit register. 2 LSBs are non-writable 

and thus dropped, enforcing the 32-bit 

alignment. 12 MSBs are non-writable, 

since VMEM has an address range of 1 

MB (20-bit byte address). 

DLUT_STATUS0 

0x804 

   DLUT execution status 0 

  EX_STATE RW 2:0 0 Execution state 

0: idle or done 

1: busy 

2: error-halted due to incorrect 

configuration 

3: error-halted due to missed event 

4: halted (by R5 halt, to resume later) 

Upon DLUT being in error-halted state (2 

or 3), before the next DLUT task can be 

started, VPU software should read this 

register and write the contents back to 

this register to return the status to 

idle/done. 

DLUT_STATUS1 

0x808 

   DLUT execution status 1 

NTASKS_CMPLTD R 7:0 0 Number of tasks completed in current 

task launch (writing of CFG_ADDR).  

This would clear upon task launch and 

increment by 1 at a time as DLUT 

completes tasks.  

This would stay at number of tasks 

configured when EX_STATE = done.  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  506 

Register/Field RW Bits Reset Description 

In case number of tasks configured 

exceeds 255, instead of rolling over to 0, 

the count would saturate to 255. 

DLUT_CURR_TASK 

0x80C 

    

PARAM_ADDR R 19:2 0 VMEM address of task parameter block 

that DLUT is executing 
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Chapter 12. General Purpose 

Input/Output 

12.1 VPU/DMA Control Interface 
VPU/DMA control interfaces include: 

> VPU-DMA start event signaling 

> DMA-VPU done event signaling 

VPU has 32-bit General Purpose Input (GPI) for DMA-VPU event signaling, and 32-bit 

General Purpose Output (GPO) for VPU-DMA event signaling. VPU/DMA event signaling 

is described in detail in the PVA DMA IAS, and is summarized here. 

The VPU signals DMA to start DMA transfer for read (reading from system memory to 

VMEM), store (writing from VMEM to system memory), and config (reading address/data 

pairs in VMEM to configure registers and descriptors), and DMA signals back when the 

transfer is completed. 

Table 50. VPU/DMA control signal list 

Signal Driver GPIO Notes 

vpu_dma_read_start[6:0] VPU GPO[22:16] Start DMA read from external mem into 

VMEM, action upon positive edge. VPU 

software asserts to send the request, 

and deasserts upon detecting the 

corresponding DONE signals. 

vpu_dma_store_start[6:0] VPU GPO[29:23] Start DMA store to external mem from 

VMEM, action upon positive edge.  VPU 

software asserts to send the request, 

and deasserts upon detecting the 

corresponding DONE signals. 

vpu_dma_config_start VPU GPO[4] Start DMA write config space from 

addr/data pairs in VMEM, action upon 

positive edge.  VPU software asserts to 

send the request, and deasserts upon 

detecting the corresponding DONE 

signals. 
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12.2 Summary of GPI/GPO Signals 
A few additional GPI/GPO signals are used for debug and performance monitoring. Full 

GPI/GPO allocation is as follows. 

Table 51. VPU GPI/GPO signal list 

Signal Driver GPIO Notes 

dma_vpu_read_done[6:0] DMA GPI[22:16] DMA read done, level, cleared upon 

corresponding read_start being 

deasserted 

dma_vpu_store_done[6:0] DMA GPI[29:23] DMA store done, level, cleared upon 

corresponding store_start being 

deasserted 

dma_vpu_config_done DMA GPI[4] DMA config done, level, cleared upon 

vpu_dma_config_start being deasserted 

dma_hwseqstart_vpu DMA GPI[15] DMA HWSeq start, DMA telling VPU to 

start processing a tile 

 DMA GPI[14]  

vpu_hwseqdone_dma VPU GPO[15] VPU HWSeq done, VPU telling DMA that 

processing is done for a tile 

 VPU GPO[14]  

GPIO Signal Driver Receiver Value 

after 

reset 

Notes 

GPI[29:23] dma_vpu_store_done[6:0] DMA VPU 0  

GPI[22:16] dma_vpu_read_done[6:0] DMA VPU 0  

GPI[15:14] dma_vpu_hwseqs DMA VPU 0  

GPI[10] dlut_vpu_done DLUT VPU 0 DLUT telling VPU it’s done 

GPI[9] icache2vpu_config 

_invalidate_rdy 

I-cache VPU 1  

GPI[8] vps_sw_event SEC VPU 0  

GPI[7] icache2vpu_gpio_invalidate_

all_rdy 

I-cache VPU 1  

GPI[6] icache_vpu_prefetch_done I-cache VPU 1  

GPI[5] icache_vpu_prefetch_rdy I-cache VPU 1  

GPI[4] dma_vpu_config_done DMA VPU 0  

GPI[0] vpu_cntlin_debug VPU 

GPO[30] 

VPU 0 Debug control in, loop back from 

vpu_cntlout_debug  
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Note that GPI reset values are driven by various driver modules outside VPU, so the reset 

values are applied when the corresponding module (DMA or SEC) is reset. I-cache and 

DLUT are reset with VPU. Unused GPIs are tied to 0. 

 

 
  

GPIO Signal Driver Receiver Value 

after 

reset 

Notes 

GPO[31] vpu_testfail_debug VPU n/a  0 Test done pass/fail signaling for 

simulation & debug, 0 = pass, 1 = 

fail, connected to testbench 

GPO[30] vpu_cntlout_debug VPU VPU 

GPI[0]  

0 Debug control out  

GPO[29:23] vpu_dma_store_start[6:0] VPU DMA 0  

GPO[22:16] vpu_dma_read_start[6:0] VPU DMA 0  

GPO[15:14] vpu_dma_hwseq VPU DMA 0  

GPO[10] vpu_dlut_start VPU DLUT 0 VPU telling DLUT to start 

GPO[4] vpu_dma_config_start VPU DMA 0  

GPO[3] vpu_perf_monitor_en VPU VPS 

config 

0 VPU software drives this pin to 1: 

enable or 0: disable performance 

monitor counters for optional 

kernel/loop level control  

GPO[2] vpu_start_r5 VPU SEC 0  

GPO[1] vpu2icache_gpio_invalidate_

all 

VPU I-cache 0  

GPO[0] vpu_stimwd_debug VPU n/a  0 STIM window, for power test 

case simulation & debug, 

connected to testbench 
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Chapter 13. Design for Test and Safety 

13.1 Debug Features 
The VPU has a CoreSight/APB-based debug interface that is hooked up to system-level 

JTAG interface and is accessible through JTAG or through CPU software. The VPU 

debug features are: 

> Enter/exit debug state. 

> Read program memory. 

> Invalidate I-cache. Debug writing program memory is implemented by writing to 

system memory then invalidate I-cache, which drives I-cache to refetch from system 

memory. 

> Read/write VMEM. 

> Directly feed the instruction word to be executed. 

> Read/write processor registers, including PC, scalar/vector register file, HW loop 

control registers, predicate register file, and agen config register file (through 

injection of instruction sequence to store the relevant register into VMEM then 

reading VMEM). 

> Read/write GPO, read GPI (through injection of instruction sequence). 

> Read/write PC (through injection of instruction sequence). 

> Read/write SES (shadow execution state) register. The VPU execution state (active, 

WFE_R5, WFE_GPI, error-halted, or halted) before transitioning into debug state is 

saved in this register. It is read/write accessible by debug software via 

OCD_LD/OCD_ST instructions and can be changed to drive VPU to a different state 

after exiting the debug state. 

> Read/write DLUT configuration/status registers via CPLD/CPST. 

> Single step execution. 

> 24 watch or break points (combined, for example we can configure them into 18 

watch points and 6 break points.  

• Hardware break points: when PC matches one of the configured break point PC 

values, VPU enters debug state. 

• Single watch points: when VMEM read or write (need to specify which direction) 

address from designated load/store slot matches with one of the configured 

addresses, VPU enters debug state. (Only starting address, not an address range 
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in case of vector load/store, so only matches starting/base address in case of 

transposition and histogram; table lookup is read-only access so is not covered)  

• Range watch points: Two single watch points can be configured as lower/upper 

bounds of an address range. Reading or writing with any base address in the 

range would trigger the request to enter VPU into debug state.  

• Each watch point is specified as a full 32-bit byte address, with designation of 

load/store and which memory slot (M0/M1/M2).  A single watch point on IDE does 

not specify memory slot and costs 3 watch point resources. A range watch point 

on IDE costs 6 watch point resources. 

• Note that watch point does not capture aliased accesses. For example, any binary 

address xxxx_xxxx_xxxx_00xx_0100_0000_0000_0000 maps to address 

0x4_0000, so a watch point on 0x4_0000 does not capture accesses to 

0x14_0000, which also maps to the same physical address. 

> SW break points (unlimited), program contents substituted with SWBRK instruction, 

upon execution of which, VPU is instructed to enter debug state. 

> SWBRK being executed when DBGEN = 1 will transition VPU to the debug state. 

> SWBRK being executed when DBGEN = 0 constitutes an illegal debug error and is 

captured in error logging (see Soft Error Cases and Handling), with the option to 

either continue execution (treating SWBRK as NOP) or error-halt. 

> Cross-trigger input/output, to optionally allow other processors enter/exit debug to 

cause VPU to enter/exit debug, and vice versa. 

> First 64 bytes of VMEM is reserved for debug software as staging area to query and 

save/restore registers or VMEM data.  

13.2 Soft Error Cases and Handling  
VPU has the following features to detect various “soft” errors, so named because most 

likely they occur during software development, so these features can be regarded as 

design-for-test and debug features:  

> Illegal instruction detection 

> Scalar divide by zero error  

> Floating-point invalid outcome 

> Illegal debug 

> Illegal instruction from alignment stage 

> DLUT task incorrect configuration 

> Coprocessor load/store access error 

> DLUT missed event 

Each error case is configurable whether to error-halt in the ERR_HNDL_CFG register. 

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in 

PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt 
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controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator. 

Error handling and context capture for each soft error follows. 

Table 52. VPU soft error cases and handling 

Error case Illegal instruction  

Where/when it is 

detected 

VPU instruction decode stages. 

The decode stage detects illegal instruction in each 32-bit instruction for scalar, vector, 

math units. 

Error handling The erroneous instruction is sent down the pipeline.  

VPU enters Error-halted state right after the erroneous instruction when configured so 

in ERR_HNDL_CFG.  

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

A dedicated interrupt, invalid_instruction_error, is always sent independently of the 

ERR_HNDL_CFG setting.  

Context captured PC and timestamp.    

SEC signal vpu_sec_illinstr_uncorrerr 

Additional details   
 

Error case Scalar divide by zero  

Where/when it is 

detected 

Scalar divider unit, when zero divisor is supplied for a divide operation. 

Error handling Max unsigned int value (0xFFFF_FFFF) is returned as the quotient.  

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  
 

Error case Floating-point invalid  

Where/when it is 

detected 

Scalar and vector FP unit, when invalid (NaN) outcome is generated.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  
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Error case Illegal debug  

Where/when it is 

detected 

VPU executing a SWBRK (software break point) instruction when debug is disabled on 

the debug interface.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG. Otherwise, 

VPU ignores the SWBRK instruction, treating it as an NOP instruction. 

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  
 

Error case Illegal instruction from alignment stage  

Where/when it is 

detected 

VPU alignment stage detects illegal instruction.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  
 

Error case DLUT task incorrect configuration  

Where/when it is 

detected 

DLUT executes a task that is incorrectly configured.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

DLUT terminates task sequence upon detection by asserting DLUT_VPU_DONE, and 

shows execution state as error-halted to incorrect configuration. 

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured Timestamp.    

SEC signal n/a 

Additional details  
 

Error case Coprocessor access error  

Where/when it is 

detected 

Coprocessor load/store instruction reading from a invalid/reserved address, or writing 

to a read-only or invalid/reserved address.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  

 
  



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF  |  514 

Error case DLUT missed event  

Where/when it is 

detected 

VPU_DLUT_START is de-asserted before DLUT_VPU_DONE (GPI) is asserted.  

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.  

DLUT terminates task sequence when current task is completed, by asserting 

DLUT_VPU_DONE, and shows execution state as error-halted to missed event. 

SEC, when properly configured, detects VPU execution transition into Error-Halted state 

and sends an interrupt to R5. 

Context captured PC and timestamp.    

SEC signal n/a 

Additional details  
 

13.3 Safety Features 
VPS has the following error handling as safety features. These errors most likely 

originated from some permanent or transient hardware fault: 

> Illegal instruction  

> I-cache ECC single-bit error (correctable) 

> I-cache ECC double-bit error (uncorrectable) 

> VMEM per-byte parity error 

Note that divide-by-0 and floating-point invalid detection are not safety features, but 

design-for-test/debug features. 

Illegal instruction error source is configurable whether to error-halt in the 

ERR_HNDL_CFG register.  

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in 

PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt 

controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator. 

Safety-related error handling and context capture for each error follows. 

Table 53. VPU safety error cases and handling 

Error case I-cache ECC single-bit error 

Where/when it is 

detected 

I-cache reading an entry upon request from VPU instruction fetch 

Error handling Erroneous instruction word is corrected on the fly before returning it to VPU instruction 

fetch/align unit.  

 

An error interrupt is sent by I-cache to SEC. R5 software can choose to either 

A) Respond to the interrupt, invalidate the cache line (hopefully before a 2nd error 

occurs), or 
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Error case I-cache ECC single-bit error 

B) Ignore the interrupt. 

 

Note that VPU continues execution in this case. 

Context captured None 

SEC signal icache_memr_sec_correrr 

Additional details ECC is applied on 32 bytes basis. 

The corrected data will arrive at the VPU fetch/align unit on cycle later. The VPU 

fetch/align unit would invalidate the erroneous instruction data and send one cycle of 

bubble down the pipeline. 
 

Error case I-cache ECC double-bit error 

Where/when it is 

detected 

I-cache reading an entry upon request from VPU instruction fetch 

Error handling An error interrupt is sent by I-cache to SEC. R5 software can choose to either 

A) Halt/reset VPU immediately, or  

B) Give VPU a chance (until watchdog timer expires) to run to task completion.  

 

VPU continues, decoding/executing returned instruction data from I-cache. 

Context captured None 

SEC signal icache_memr_sec_correrr 

Additional details ECC is applied on 32 bytes basis 
 

Error case VMEM parity error  

Where/when it is 

detected 

VMEM reading an entry upon request from VPU or external host (DMA, R5 or outside-

PVA host) 

Error handling Erroneous data is retuned to VPU or external host.  

VPU continues execution. 

An error interrupt is sent to SEC.  R5 software can choose to respond to the interrupt or 

ignore it.  

Context captured None 

SEC signal vmem_memr_sec_dperr 

Additional details Parity is applied per byte 
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