NVIDIA

Orin PVA VPU Programmer’s Guide

Programmer Reference

SWE-PVA-076-PGRF | May 2025



Review Status

Title Orin PVA VPU Programmers Guide-P
Author chingh

Revision May 29, 2025

Reviewers jsankaran, nshigihalli

Status Completed

Reviewed in NVIDIA CR #23918

Document History

SWE-PVA-076-PGRF

Version Date

0.5.1 May 15, 2025
0.5.2 May 22, 2025
0.5.3 May 22, 2025
054 May 23, 2025
0.5.5 May 28, 2025

Orin PVA VPU Programmer’s Guide

Authors

chingh

chingh

chingh

chingh

chingh

Description of Change

Branched from
Orin_PVA_VPU_Programmings_Guide.docx into
Orin_PVA_VPU_Programmers_Guide_pub.docx.

Restarted version number from 0.5.1, removed
Proprietary/NDA tagging and cleaned up documentation
control section.

Revised interpolated lookup example code to use PVA
SDK Sampler API functions, in 8.5.4.

Cindy Wilkinson imported into new template

Fixed footer and fixed some English mistakes in Chapters
1 through 4

Refined description of partitioning a task into sub-tasks
for concurrent prefetch and execution, in 4.1.2

Removed reference to VPU config DMA feature for
instruction cache invalidation for an address range, since
it's not supported by PVA SDK, in 4.1.3.

Revised DLUT programming example to one included in
Thor PVA VPU Programmer’s Guide, since the Thor version
has gone through review involving PVA SW team
members, in 8.5.4.

Propagated applicable revisions suggested from Thor PVA
VPU Programmer’s Guide review (#15825) to the Orin
version, various sections.

Added review table

Per CR comments, remove references to PVA User’s
Guide, in 2, 2.2

Per CR comments, fixed VPS block diagram, in 2.3

Per CR comments, removed references to shallow pipeline
& |A models, in 2.4

SWE-PVA-076-PGRF | ii




Version Date Authors Description of Change
Per CR comments, elaborated Superbanks A/B/C, in 5.3
Fixed code indentation issues, in chapter 8 sections.

Fixed instruction report white spaces so that execution
count and cycle count numbers line up vertically, in
chapter 8 sections.

Per CR comments, fixed instruction detail table
indentation and width, in chapter 9 sections

0.5.6 May 28, 2025 chingh Fixed typos and issues identified from Thor version
review, various sections

1.0 May 29, 2025 chingh CR completed, administrative update to fill review status
as Completed

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | iii



Table of Contents

Chapter 1. INTrOAUCTION ...t 12
1.1 [ Lo o1 U] 0 g =T o) Yot o] o 1= SR 12
1.2 RETEIENCES ...ttt bbbt n s e s 12

1.2.1 Related External DOCUMENTS ...ttt 12
1.2.2 Related NVIDIA-Internal DOCUMENTS ...ttt 12
1.3 GlOSSAry aNd ACITONYMS ....cucueiieeiriiieesieie ettt ssssse s s ssssssssessssessssssessssssesaes 12

Chapter 2.  ArchiteCture OVEINVIEW ...ttt 14
2.1 PV A ettt ettt bbbt b s et et b e e A bbbt st e ae ettt st nais 14
2.2 DIMA .ttt ettt bbb bbb s e A bbbttt e ae bbbt s e nas 14
2.3 VPSS ettt b bbbt e A bbbt s e a bbbt e e e s et b banas 15
2.4 VPU Processor Models and Differe@nCes ... 16

Chapter 3. VPU COIuccccsseseee ettt sttt bbb sttt aee 18
3.1 BIOCK DIaQram ...ttt 18
3.2 Processor FrONT ENG ...ttt 19
3.3 REGISTEN FIlES...eiiiieie e 19
34 SCAIAN UNIT ettt bbb e sttt b e es sttt bebanas 20
35 V4T (o T gl U1 1 SRR 21
3.6 L OAA/STONE UNIT ettt ettt et et et eaeee e et et et eeeeeeeeseesesessaeae st seneneneneesennanananaens 21

Chapter 4.  VPU Instruction Cache (I-Cache) ... 22
4.1 OVEBIVIBW ...ttt ettt ettt ettt b st bbbt et e se e e e e st bebebebese e as sttt bebebatas 22
4.2 FUNCHIONAIITY oo 22

4.2.1 L E=T=T 0 0] o) [ o PSR 23
422 PrETEICI e e 23
4.2.3 INVAHAATION ...t 24
4.2.4 ECC (Single-Bit-Error-Correct Double-Bit-Error-Detect).........cccoeveeverererennne. 24

Chapter 5. VPU Vector Memory (VMEM)......ieeeeese e 26
5.1 L@ Y7 VTR 26
5.2 VMEM INTERITACE (VIMEM 1/ ) ettt e et et et et eees e eeaeeeeenenenen 27
53 VMEM SUPEIDANKS ...t 29
5.4 Memory Banking and Read/Write Access Patterns.......ceveveiveeceeceecciceieennns 30
55 LOAd Data CaChu. ettt bbb 32
5.6 Memory Allocation among VMEM Superbanks........ccncnnenensisneesenenn. 33

Chapter 6. VPU Instruction Set Archit@CTUIe......oceceeree s 34
6.1 ProCessor ArChITECTUIE ...ttt 34

6.1.1 KEY FRATUIES ...t bbbt 34
6.1.2 Program and Data MemoOry SPaCES ... senes 35

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | iv



6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6

Chapter 7.

7.1
7.2
7.3
7.4

Chapter 8.

8.1

8.2
8.2.1
8.2.2
8.2.3

8.3
8.3.1
8.3.2
8.3.3

ArChiteCTUre REGISTEIS ... e 36
CoNtrol INSTrUCTIONS ...ttt 40
C Function Calling CoONVENTION. ... 42
Processor EXeCUtion States..... it 42
Overview of Scalar/Vector Math INSTrUCTIONS ..ot et et 44
Scalar Integer Math INSTruCtions......cccocccrcerrccc e, 45
Scalar Predicate INSTruCtioNS ... 45
Vector Math Instruction General RUIES..........ccoieevvvcccee s 45
Scalar/Vector Floating-Point Math Instructions .........cccceeoeeeeiveecseccecsccenne 53
Y T=T o o] YA @] 01T o= o 1= TR 59
[V =T 0 g Yo YA o] o 1= o =Y o T TP 59
Memory Address AIGNMENT ... s 60
Memory Address Range CONSTraints ... 61
S To= 1 F= T g D F= L= T Y/ o == 62
Vector Data Types and Promotion/Demotion ........eeceecesscsssessenne 62
Vector Load/Store Distribution OptionS......ccceeeceeeeecceeeeeeeeeeee e 64
TranspPOSiNG LOAA/STONE ... 66
Parallel Lookup, Histogram and Vector-Addressed Store........cccovvevneecenenee 71
Address GeNerator FEATUIES ...t 77
Multi-Dimensional Address Calculation ... 78
Automatic PrediCation ...t 80
Rounding and Saturation ... s 81
Min and Max Value CollECTION ... 83
Save and Restore to/from MemMOrY ... 84
Circular BUffer AdAreSSiNg ...t sese s ssssssssees 84
Decoupled Lookup Unit (DLUT) ...ttt sesssnans 88
OVEBIVIBW ...ttt ettt ettt bbbttt bbb eb et et e s e e e e st bebebebeae e as s st b bebesatas 88
DLUT FRATUIMNES .ttt st st s p bbb sn s 89
Task Structure and Operation MOdEsS.........cvnne s 90
Task Sequencing and VPU/DLUT INteraction.......cccrrininseseseeeeeeeeeeeneenns 91
Programming EXAmMPIES ... sesnes 92
Typical Test Case Organization........ s 92
TD Array AGQITION .o 93
S Yor=1 F= T gl Oo To =T OO OO OO OOOOTTTT 93
Optimization 1: Vectorized COde.......ereereceseee e 95
Optimization 2: Unroll and Pipeline the LOOpP ... 97
P24 S g = VAV [ [ T o USRS 100
SCAIAN COUB ettt bbb b bbbt n s e 100
Optimization 1: Vectorized, Unrolled and Pipelined LOOP ......cccoevrnerrerennne. 102
Optimization 2: Leveraging Agen to Collapse Nested LOOPS.....ccccccvuvererenne. 105

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | v



8.3.4 Performance Across 2D Array DIMENSIONS ......cccveerenieenineeeneneeseseesesssesssens 109

8.4 P2 00 o 1Y o] (1 o [ o TP TRT 109
8.4.1 1Tt F= T g o To [ TSR 109
8.4.2 Optimization 1: Vectorized and Agen Optimized LOOP......cccccoeevverereercrernnnn. 112
8.4.3 Optimization 2: Leveraging Denser MAC Instruction ......cccovvvvcccvccnenen, 120
8.4.4 Further Optimization fOr POWEN ...t 125

8.5 INterpolated 2D LOOKUP ...ttt s s 127
8.5.1 IS ToF=1 F= 5 To [ TP 127
8.5.2 VPU Parallel LOOKUP .....cciiiiccce sttt 128
85.3 VPU Parallel LooKUp in TWO LOOPS......ccccririririreeeinisssessessessssssesssssssssssessssssessssees 130
854 Leveraging DLUT ... 132

Chapter 9.  Instruction Set RETEIENCE ... 135

9.1 VPU Changes from Xavier 10 OFiN ... ssssesassssssssesssens 135

9.2 VPU Math Operation ThroughpUT.......ccccrrcessrsccees s 137
9.2.1 MUItiply/MAC INSTrUCLIONS ...ttt 137
9.2.2 MAC-Related INSTrUCTIONS ..o 139
923 Other Accelerated Vector Math Instructions.......cvvcecccccnsnvnccccene, 140
9.24 Scalar/Vector Floating-point INStructions..........cccccveeevevcseccsesece e 141
925 Scalar Integer Math INSTruCtioNS......oir e 142

9.3 VPU ComMPatibDiliTy c.c.cceeeiieccccer ettt st 144
9.3.1 Compatibility EXCEPTIONS ...t 144
93.2 Removed/EmMulated INSTrUCTIONS ..ottt ettt nen e e 145

94 Instruction EXeCUTiON Ordering ......cceeceirnsereeieisesesesesesessssesessssssessssssesssessssssnenes 145
9.4.1 ProCessor PIPEIINE ...ttt 145
9.4.2 Dt AUt/ GENEIAl BORNAVION ...ttt ettt e et et et et s s eee e enenenanaens 146
9.43 Delay Slots for Branch INStrucCtions.......c.ocennienenerceereeesee s 147
944 Exception for Instructions Accessing Address Generator ........ccccceeveeeneenee 147
945 Exception for Instructions Accessing HW Loop Registers.......coenveeneenes 148
946 Exception for Instructions Accessing FP Invalid Flag.....ccocovvnnrninenneenes 149
9.4.7 Hardware Stalls to Comply with Sequential Execution Order..........cccouu..... 150

9.5 INSTruCtion PradiCation ... 151
9.5.1 Instruction-Level Predication for Register Moves.........ccocovvveveenneennennnn. 151
952 Instruction-Level Predication for Vector Math ..., 151
9.5.3 PrediCation FOr LOAT/ StOre. . .ot ee e ee et er s e eeeseeees e eeeenanenaens 152

9.6 CONTIOl INSTIUCTIONS ...cee st 154
9.6.1 INSTrUCTION SUMIMAIY ..ot 154
9.6.2 Branch/Jump/Call Delay SIOtS........cceceeceeeeeeeeeeeeeeeteeeeeee et 156
9.6.3 Jump and Link (JAL, JALR) ...ttt 157
9.6.4 JUMP (U, JR) ettt bbb 158
9.6.5 Conditional Branch (BEQZ, BNEZ) ... eeeeeeeeeeeeeeeeeeeeeeeeeee e st seseseseseeseeenenananaens 159

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | vi



9.6.6 Software Break POiNt (SWBRK) ......ooeeeeeeeeeeeeeeeee e esee et st st s s e nenenananns 159
9.6.7 Hardware Zero-Overhead LOOP (RPT) ..ttt 160
9.6.8 General Purpose OULPUL (GPO_*) ettt 161
9.6.9 General Purpose INPUt (GPI_RD) ..ottt 164
9.6.10  Wait for GPl EVENt (WFE_GPI) ...t 164
0.6.T1  Wait TOr RS EVENT (WFE_RD) oottt eeeeeeee e eeee e st ee et eesese e snanenaeenaneennenenenans 165
9.6.12  SigNAl R5 (SIG_RD5)....ouieieteeeeetseetsete ettt snaes 165
9.6.13 Performance Counter (ENABLE/RD_TSC) ...oioeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeenenas 166
9.6.14  Floating-Point INvalid FIag ... 167
O.6.T5  OCD LOAA/STOIO ..ttt et e s ee e st st s e st e e s s s s anesensanansenenanas 168
9.6.16 Configure VMEM Superbanks (CFG_VMEM_SBA/B/C) ....cccccovvevrrrververrerernne. 168
9.6.17 Coprocessor Control/Status Register Load/Store........nnneneeneens 169
O.6.T8  MEMOINY FONCE ottt 170
9.7 Scalar ALU INSTIUCTIONS ..ottt bbb na 171
9.7.1 ALU RRR INSTIUCTIONS ...ttt 171
9.7.2 ALU RIR INSTIUCTIONS ...ttt seenes 182
9.7.3 Long Multiplication INSTrUCTIONS ..o 193
9.7.4 Predicate INSTrUCTIONS ...t 195
9.7.5 Scalar Floating-point INSTruCtioNS ... 202
9.7.6 Other Scalar ALU INSTrUCTIONS ..o 225
9.8 AVZ=Tox o g AN B0 AN 0 =3 o ¥ o T ] o =0 232
9.8.1 MOVE INSTIUCTIONS ...t 232
9.8.2 Vector OP 1T INSTIUCTIONS ...ttt 239
9.8.3 Vector OP 12 INSTIUCTIONS ...ttt 254
9.8.4 Vector OP2 1 INSTIUCTIONS ...t 263
9.8.5 Vector OP22 INSTIUCTIONS ...ttt e 295
9.8.6 Vector OP3 T INSTIUCTIONS ...t 300
9.8.7 Vector Multiply-Add INSErUCTIONS ... 326
0.8.8 Vector Floating-point INSTruCtioNS........coreeveersceseesee s 370
9.8.9 AVZ=Ton o T gl \V/ 1 T=Tol [ =3 U o ] o 1= 405
9.9 LOaA/ SO IN ST UCTIONS ettt e et et et et e eeeeteeeeee et eeeeeeseneseseeesennanaens 414
9.9.1 S CAIAN LOAA  STO O ..ottt ettt et et et eeeesee e eeses s es et et eeeeseneeaeeeneans 414
9.9.2 Scalar-Based VeCtor LOAA/STOre e eeeeeeeeeeeeeeeeeeeeeeeeee e eeseeneseneeeeenenenees 417
9.9.3 AGEN CONFIGUIATION ..t 423
994 Agen-Based Vector Load/Store.. ... 436
995 Agen-Based Scalar Load/Store ... 455
9.9.6 Parallel Lookup, Histogram, Vector Addressed Store .......coverneeereneennn. 458
9.9.7 MiSC REGISTEI STOME ...t 473
Chapter 10. Decoupled Lookup Unit (DLUT) Reference.......ccocveevererereeereeseieieeeseene 475
10.1  Index and Output Data FOrmat. ... 475

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | vii



TO.2  TabIE DAta FOIMAt oottt e e et ee et eteee e e e e eeeeeaeeeeneereseeeerennens 479

10.3  INAEX CalCUIATION ..ttt 481
L0 25 T I 1 B o Yo | (U o TP 481
10.3.2 1D Lookup with interpolation......... e 482
TO.3.3 2D LOOKUP cotiecctccte sttt sttt s b et 483
10.3.4 2D Lookup with Interpolation......... e 484
10.3.5 2D Lookup with Interpolation with Auto Index Generation........ccccceeeevueueeee. 485

10.4  Duplicate Detection and Consolidation.........cnvsecccee e 487

10.5 Conflict Resolution and LOOKUP ...t 487

10.6  Post LOOKUP INtErpolation ...t 487

10.7 2D Conflict-free Lookup with Interpolation ... 488

10.8  Table REfOrMAatting ..o 490

10.9  VPU/DLUT INTEITACE ..ottt st 493
LR T B - 11 [ o =Y L= == TR 493
10.9.2  INTEraction SEQUENCE ...ttt nses 497
10.9.3 Incorrect Task CoNfiguration ... 499
10.9.4 DLUT Execution States, Error Handling, Halt and Debug .......ccccceovvvvirenee. 500
10.9.5 Other Control/Status REGISTErS ... 503

Chapter T1. REGISTEN SPEC ...ttt nnnsee 504

11.1 VPS COprocesSOr REGISTEIS. ...ttt ne e 504
111,17 ReVISION ID REQGISTEN ...t 504
11.1.2  DLUT Task Control/Status REQIStErS ... 505

Chapter 12.  General Purpose INput/OULPUL ... 507
12.1 VPU/DMA CONEIOl INTOITACE ettt e ettt et et e e s s e eeeeaeeeneeen 507
12.2  Summary of GPI/GPO SigNalS ... ssassaes 508

Chapter 13. Design for Test and Safety ... 510

13,1 DEbUG FEATUIES......e bbb 510

13.2  Soft Error Cases and HanNAliNG......cccceerirncerreeseseeisesieesesesesess s esessssessessesssnenes 511

13.3  SAfEtY FEATUIES. ...ttt bbb 514

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | viii



List of Figures

Figure 1. VPU Subsystem (VPS) bIoCk diagram ...t sesssnnes 16
Figure 2. VPU core bloCK diagram ...ttt sss s 18
Figure 3. VMEM BIOCK diagram.......cccccerress ettt 27
Figure 4. VMEM access pattern examples for consecutive acCesses.......omvverrnierrerennnn. 31
Figure 5. VMEM transposed access pattern eXamples ... 31
Figure 6. VMEM access pattern examples for parallel table lookup and histogram .......... 32
Figure 7. AGEN data format in MemMOIy ... 38
Figure 8. VPU execution state diagram ... 43
Figure 9. Access patterns of transposition modes T and T2 ......cccccerrirreecreenercenersenenns 69
Figure 10. Access patterns of transposition modes T4, T8, T16 and T32 ....ccccoeevvevererennnn. 70
Figure 11. Parallel lookup, histogram and VAST data organization for various types and

[0 == 11T 1= o' TR 71
Figure 12. Workaround for vector accesses across circular buffer boundary...................... 87
Figure 13. VPU ProCeSsSOr PIPEIINE ...t sesse st ssssssessssssesssesssssnsnssens 146
Figure 14. DLUT index/output data [ayout ... 477
Figure 15. DLUT table data [ayOuUt. ...t 479
Figure 16. Example to leverage out-of-range handling to split a large table as two sub-

TADIE [OOKUPS ..t bbb 481
Figure 17. Table layout for VPU looKUP INSTrUCTIONS ..o 488
Figure 18. Table layout for DLUT 2D conflict-free lookup w/ interpolation...........ccccc......... 489
Figure 19. Table reformatting input/output layout scheme ... 491
Figure 20. Table reformatting input/output layout example .......ccccceoeeeeieierercsicercerseree 492
Figure 21. VPU/DLUT interaction timing diagram .........cccccceeieieieieeeseseeesesesesese s 498
Figure 22. DLUT ProCessiNg STAgES ..ottt 499
Figure 23. DLUT execution state conceptual state diagram.......cccovvninnnnncnnincnnen, 501

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | ix



List of Tables

Table 1. Support of scalar/vector operations in register files .......ccooceevcveeecceeeeeeeeeenne. 20
Table 2. VPU I-cache CharaCteriStiCS. ...t senes 22
Table 3. VMEM addreSS MapP ...ttt sttt s sssssssesesenas 29
Table 4. VLIW iNnStruction fOrmMat ...t sesses 35
Table 5. Little Endian layout of various data types ... 51
Table 6. FP add/subtract/multiply COrNer CaseS.......neseseessesse s ssssnns 54
Table 7. FP multiply-add/subtract COrner Cases....... et 55
Table 8. FP multiply corner cases in Gen-1 and Gen-2 VPU.........ceececeeeeeeeeee e, 56
Table 9. FP/INT CONVEIrSiON COMEI CASES...c.umimirnierieireesstesessssessssssessssssessssssesssssssssssesssssssessssnes 57
Table 10. Scalar 10ad/Store data tYPES ... ettt 62
Table 11. Scalar-based vector load/store data types........ceeeecceeeeeceeeeeee e 63
Table 12 Agen-based vector load/store data types ..., 63
Table 13. Line pitch constraint for various transposition modes........cccooeeveeesnnerccccrenennn, 67
Table 14. Table lookup 2-point and 2X2-poiNt SUPPOIM.....cceiveceeeeeece e 73
Table 15. HiStOgram SUPPOIT ...ttt nnnes 75
Table 16. Vector addressed StOre SUPPOIT ...t 75
Table 17. Performance optimization across array dimensions ..........cccccveveeeensceseseeennns 109
Table 18. MUltiply/MAC INSTIUCTIONS ..ot 137
Table 19. Scalar/vector load/store predication SUPPOIt........coreirieiinieinieeeee e 152
Table 20. Vector register predicated vector store variations.......ccoevveeeeeccevvnscccceeennn, 153
Table 21. CoNtrol INSTIUCTIONS ... s e 155
Table 22. Scalar ALU RRR INSTrUCTIONS ...t ssenes 171
Table 23. Scalar ALU RIR iNSErUCTIONS ...t senes 182
Table 24. Scalar ALU long Multiply iNSTrUCTIONS ... s 193
Table 25. Scalar predicate iINSTrUCTIONS ...t 196
Table 26. Scalar floating-point INSTrUCTIONS.......c.irece s 202
Table 27. Other scalar ALU INSTrUCTIONS ..o senes 225
Table 28 Scalar/vector move iINSTrUCTIONS ... 232
Table 29 vector register move SUPPOrt MatriX ... s 233
Table 30. Vector OP 1T iNSTrUCTIONS ..ottt 239
Table 31. Vector OP 12 iNSTrUCTIONS ..ottt 254
Table 32 Vector OP21 iNSTIUCTIONS ...ttt 263
Table 33. Vector OP22 iNSTrUCTIONS ..ot 295
Table 34 Vector OP3 1 INSTIUCTIONS ...t ees 300
Table 35. Vector multiply-add iNSTrUCTIONS ......c.cuviiirircc s 330
Table 36. Vector floating-point iNSTrUCTIONS. ... 370
Table 37. Vector miscellaneous iNSTrUCTIONS ... s 405
Table 38. Scalar [0ad/store INSTIUCTIONS ... 414

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | x



Table 39. Scalar-based vector [0ad/store iINSTrUCTIONS ...o.eoceceee ettt en 417

Table 40. Agen CONfig INSTIUCTIONS ...t 423
Table 41. Agen-based vector load/store iNStructions.........cccccveeecceeeceseeseee e, 436
Table 42. Agen-based scalar load/store iNStruCtions..........cccceeeeeceeeeeeieeceeeeeee e, 455
Table 43 Parallel lookup, histogram, vector addressed store instructions...........cccccu........ 459
Table 44 Miscellaneous register store iNStruCtions........ccovvvcceecsseccce e, 473
Table 44 Index and output line pitch and transpose Modes..........ccvvceveecennsesecesenenenn, 477
Table 45. DLUT task parameter data STruCtUre..... s 493
Table 46. DLUT parameter usage and CoONSTraints.......ccooeiiccceesssseceee s 496
Table 47. VPU reVvisSion ID reQISTEN ...ttt 504
Table 48. VPU DLUT task control/status registers....... e, 505
Table 49. VPU/DMA control Signal liSt........ccecrcciecsecesee ettt 507
Table 50. VPU GPI/GPO SiIgNal liSt ...t 508
Table 51. VPU soft error cases and handling.........ccnnne s ssesseseeeens 512
Table 52. VPU safety error cases and handling ... 514

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | xi



Chapter 1. Introduction

1.1 Document Scope

This document serves as a Programmer’s Guide for PVA VPU. It covers VPU processor
architecture, instruction set overview, example code, and instruction details.

1.2 References

1.2.1 Related External Documents
PVA SDK Documentation

1.2.2 Related NVIDIA-Internal Documents

PVA VPS IAS

PVA Cluster IAS
PVA DMA IAS

PVA L1 RAMIC IAS
PVA VPS MAS
PVA DLUT MAS

1.3 Glossary and Acronyms

cv Computer vision, field of study and application to recover 3D and motion
information from camera views.

PVA Programmable vision accelerator, a unit in Orin that accelerates computer vision
algorithms in autonomous driving use cases, includes VPU, DMA, and Cortex R5 RISC
processor.

SEC Safety and Event Control at PVA top level. It collects safety error events in PVA,

logs, aggregates, and forwarded as interrupts to the Cortex R5 processor.

VPU Vector processing unit, the main data processing engine in PVA.

SWE-PVA-076-PGRF | May 2025



VMEM VPU vector memory, the local/L1 data memory for VPU, also shared with DMA and
DLUT

DMA Direct memory access, a hardware block in charge of copying data between local
memory and some other space in the system, which can be on-chip memory or
system memory/DDR.

DLUT Decoupled lookup unit

VPS VPU subsystem, including VPU, its I-cache, DLUT and VMEM

Host1X Command and synchronization unit that works with CPU, image/video processing
and computer vision engines

ISP Image Signal Processor, processes camera images

vic Video and Image Compositor, capable of affine/perspective image transformation
and format conversion

OFA Optical Flow Accelerator, capable of dense optical flow and stereo disparity

DLA Deep Learning Accelerator

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 13




Chapter 2. Architecture Overview

A high-level overview of PVA, DMA, and VPS architecture is given in this chapter. For
more in-depth coverage of PVA architecture and DMA programming details, please
consult PVA SDK documentation.

2.1 PVA

PVA (programmable vision accelerator) is a computer vision (CV) processor targeting
Autonomous Driving (AD) applications, including camera, LiDAR, RADAR processing and
sensor fusion. PVA includes a control processor, Cortex R5, 2 copies of vector processing
subsystems (VPS) as data processing engines, and 2 copies of directed memory access
(DMA) as data movement engines. Orin PVA also includes an L2 SRAM memory to be
shared between the 2 sets of VPS and DMA.

The Cortex R5 processor interacts with other SOC components (for example, ISP, VIC,
OFA, DLA) through Host1X for control and synchronization at the subframe-application
level. R5 configures the VPUs and DMAs at the task level.

The VPUs act like coprocessors in system-level programming model. For each VPU task,
R5 configures DMA, optionally prefetches VPU program into VPU I-cache, and kicks off
each VPU-DMA pair to process a task that runs for typically hundreds of micro-seconds
to a few mini-seconds. Each VPU and DMA pair synchronize between themselves on tile
granularity, and there are typically tens to hundreds of tiles per task.

For Orin, the second generation of PVA, we have one PVA having 2 VPUs, each VPU
having 2 symmetrical vector functional units of 384-bit data path each.

For memory operations we have 3x32x16-bit throughput, having 3 memory slots and 3
superbanks, each superbank comprising of 32 banks of 16-bit-wide memories, and each
superbank can perform both read and write in the same clock cycle.

2.2 DMA

DMA moves data among external memory, PVA L2 memory, the 2 VMEMs (one in each
VPS), R5 TCM (tightly coupled memory), DMA descriptor memory, and PVA-level config
registers.

Orin DMA contains the following resources

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 14



16 channels, each channel can be configured to move data from a source to a
destination. The 16 channels work in parallel and can be optionally coordinated
through programming.

64 descriptors, each descriptor includes up to 5 dimensions to advance
source/destination address pointers. Descriptors can work in parallel or in sequence
through programming.

A set of internal buffers (ADB and VDB) to be allocated among channels. ADB, AXI
data buffer, is for storing data read from the external memory controller temporarily,
and VDB, VMEM data buffer, is for storing data read from the VMEM temporarily.

Please consult PVA SDK documentation for additional details in DMA programming.

2.3 VPS

The VPU Subsystem (VPS) consists of the following major components:
VPU core, the processor and main block of VPS.

VPU instruction cache (I-cache) supplies instruction words to VPU and maintains
temporary instruction storage, with prefetch/invalidation support and with interface
to the system memory through MC interconnects.

VPU vector memory (VMEM) houses data memory and supports various complex
memory access functionalities, including transposition, table lookup, histogram, and
vector addressed stores. It also supports accesses from outside-VPS hosts like DMA
and R5, to allow data exchange with R5 and other system-level components.

DLUT, decoupled lookup coprocessor, offloads lookup and interpolation tasks from
VPU

Each major component will be described in more detail in subsequent chapters.

The following block diagram of VPS shows the major components in VPS and how they
are connected.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 15



Figure 1. VPU Subsystem (VPS) block diagram

VPS

APB
config

Debug

2.4

To Instruction/Data
MC Interconnect

Interrupts to
Cortex R5

Events to/

«——>» from DMA

DLUT

of VPU processor models have been constructed.

The most accurate model is the deep pipeline (Working) model. The VPU working model
instruction set simulator (ISS) shall be cycle accurate with VPU processor inside Orin

silicon.

Orin PVA VPU Programmer’s Guide

256 bit AXI
3 icconfig 16KB I-Cache
GPIO ¢
Events
VPU
32-bit APB
L]
\:: VPU Config f I f l f I
] 512-bit SRAM  512-bit SRAM  512-bit SRAM
L1 VMEM
\:t Config I * I * 512-bit SRAM

VMEM —
—>
Super- Super- Super- —

Bank 0 Bank 1 Bank 2

(128KB) (128KB) (128KB)

| A
512 bitvSRIAM
Arbitrated among
DMA, R5, SOC

VPU Processor Models and
Differences

To facilitate model development as well as application software development, a number

SWE-PVA-076-PGRF | 16




There is a Native compilation model generated by the ASIP tool suite from the shallow
pipeline model. It is mostly an application development platform. It is a collection of
header files and C library that allows application code to be compiled in generic (thus
named Native) environments, including Linux GCC and Windows Microsoft Visual Studio.
It is functionally accurate with hardware for math operations. In memory operations it is
mostly functionally accurate with hardware, but there are exceptions.

Because Native is compiled in a generic compute platform, there is no hard limit in data
memory footprint, so is useful for early-stage software development. In this platform
VPU code can access almost unlimited amount of memory, to directly process a whole
frame of image, as opposed to processing one tile at a time through DMA.

Note that, depending on the physical memory size of the compute platform it is run on,
large enough memory usage in Native simulation may still lead to excessive thrashing
and slowdown.

Differences in behavior between Native compilation environment and final product,
which is deep pipeline ISS and silicon are:
There is no notion of clock cycles in Native compilation, thus Time Stamp Counter is
not functional.
There is no forced memory address alignment to 16-bit/32-bit with load/store of
short/int types (see Memory Address Alignment).

There is no forced memory address alignment to 512-bit with lookup, histogram, or
vector-addressed stores (see Memory Address Alignment).

There is no forced memory address alignment to 512-bit with agen circular buffer
feature (see Circular Buffer Addressing).

General purpose input and output (GPIO) in Native is non-functional, toggling GPO
ignored and reading GPI returns O. In ISS, the subset of GPIO pins that connect to
the decoupled lookup coprocessor (DLUT) are functional for interaction between VPU
and DLUT.

In working model ISS, the decoupled lookup table coprocessor (DLUT) is simulated
functionally accurately (bit-exact), but is currently only cycle approximate, NOT cycle-
accurate.

Although PVA-level simulator incorporating R5, DMA, VPU, DLUT component simulators
does incorporate budgetary system-level latency, for example external memory
controller latency, but it does not model components outside PVA so cannot predict
actual latency. Thus, PVA-level simulation, even when incorporating cycle-accurate VPU
working ISS, is NOT cycle-accurate with silicon when the simulation involves outside-VPU
interactions, for example, reading from or writing to external memory.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 17



Chapter 3. VPU Core

3.1 Block Diagram

Figure 2. VPU core block diagram

Instruction
Cache
A

VPU

PCU Y
—~CoreSight »| On-Chip Debug Program Control Instruction Fetch &
(ocD) g Unit (PCU) B Align Unit
A
Decode & Hazards
SO [s1]voJvi[mo[mi]Mm2
| Vector RF (32x384-bit) |
A 4

| Working RF (32x384-bit) |
| Accumulator RF (32x384-bit) |

[ Scalar RF (32x32-bit) |

) vV Yy ! YVvy 7

Scalar Units Vector Units Memory Units
< » GPIO Branch acu-0 || acu-1 || acu-2
Vector Vector
Pred Divide SIMD SIMD AGEN- | | AGEN- | | AGEN- <« AGEN RF
Math-0 | | Math-1 v 1 2 (8x620-bit)
Scalar Scalar Load-0 || Load-1 || Load-2
Math-0 | | Math-1 Distr Distr Distr
Store-0 | | Store-1 | | Store-2
Rnd & Rnd & Rnd &
Sat Sat Sat
A A A
VPU Coprocessor
(DLUT)
T T l A 4 \ 4 \ 4
VMEM

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 18



The VPU core is a vector SIMD VLIW DSP optimized for computer vision. It fetches
instructions through the I-cache, and accesses data through the vector memory
(VMEM). Major components inside VPU core are

Processor front end including config/status interface and PC control
Register files

Scalar unit with two scalar ALUs

Vector unit with two vector ALUs

Memory unit with 3 load/store units and address generators

3.2 Processor Front End

The VPU instruction format is a 7-way VLIW, consisting of:
2 scalar operation slots (sO/s1)
2 vector operation slots (vO/v1)
3 memory slots (M0O/m1/m?2)
Each instruction is encoded in 32-bit, and the instruction encoding supports variable-
length instructions, thus each execution packet contains between 1 and 7 32-bit words.
The compressed instruction stream is decompressed to full 7 instructions per packet
and dispatched to the scalar, vector, and memory units.
Example of compressed instruction packet:
ADD R1, R2, R3 || LDW *R4[20], R5
Corresponding decompressed instruction packet:
ADD R1, R2, R3 || s1_NOP || vB_NOP || vI_NOP || LDW *R4[20], R5 || m1_NOP || m2_NOP
The front end of the processor includes an interface to the instruction cache, 2-level

hardware loops, loop instruction buffer, and fetch/decode stages of the processor
pipeline.

The front end includes illegal instruction detection, both while expanding compressed
variable-length instruction packet into full 7-instruction packet using leading few bits of
each 32-bit instruction, and while decoding entire 32-bit instruction in
scalar/vector/memory units.

3.3 Register Files

The following register files are in the VPU core:
Scalar register file (Scalar RF): 32 entries x 32-bit
Predicate register file (Predicate RF): 16 entries x 32-bit
Main vector register file (VRF): 32 entries x 384-bit
Working register file (WRF): 32 entries x 384-bit
Extended accumulator register file (XARF): 32 entries x 512-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 19



Accumulator register file (ARF): 32 entries x 384-bit, part of XARF
Agen register file: 8 entries x 620-bit

The vector register files VRF, WRF and ARF support the following data types:
Word: each 384-bit entry is logically partitioned into 8 lanes x 48-bit
Halfword: each 384-bit entry is logically partitioned into 16 lanes x 24-bit
Byte: each 384-bit entry is logically partitioned into 32 lanes x 12-bit

XARF register file supports

Word: each 512-bit entry partitioned into 16 lanes x 32-bit (for VFilt4x2x2BBW,
VDotP4BBW, VDotP4x2BBW instructions)

Halfword: each 512-bit entry partitioned into 32 lanes x 16-bit (for VXNorAnd8x4x2
instruction)

Support of operations in various register files is tabulated as follows:

Table 1. Support of scalar/vector operations in register files

Scalar RF Predicate RF | VRF WRF ARF/XARF

Scalar math Yes Yes, as src or
dst of a few

Instruction Yes
level
predication
Per-lane Yes VO~V15
predication
Vop11/12 Yes Yes
Vop21 Yes, as src2 Yes Yes
Vop31 some, as src2 Yes some
Vop31_CA, some, as src2 Yes, PO~P15 Yes, as srcl, some, as Yes, as dst,
MAC as predicate src2, dst src2 src3dst
FP Yes Yes Yes
Load Yes Yes Yes
destination
Store source Yes Yes Yes

3.4 Scalar Unit

The scalar unit supports conventional scalar RISC instruction set, executing up to 2
scalar operations per cycle.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 20



32-bit integer/fixed-point as well as 16/32-bit floating-point Add, Sub, Mul, MAdd,
compare operations are supported through instructions. Some FP32 math functions
(square root, reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various
FP/INT conversions are supported as well.

3.5 Vector Unit

The vector unit executes up to 2 vector math instructions per cycle. Various integer
arithmetic and logic operations are implemented in the vector unit, with support for
Byte (extended to 12-bit), Halfword (extended to 24-bit) and Word (extended to 48-bit)
data types. Bitwise logic operations are also supported.

In addition to conventional arithmetic/logic operations, some larger or complex
operations (e.g., 3-input min/max/median) as well as FP32/FP16 operations Add, Sub,
Mul, MAdd, and compare are supported. Some FP32 math functions (square root,
reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various FP/INT
conversions are supported as well.

3.6 Load/Store Unit

The load/store unit supports up to 3 load/store instructions per cycle. Word, Halfword,
Byte, and selected promotion/demotion options are supported. For load, both
signed/unsigned flavors are supported. Source and destination can be single scalar
register, double scalar register, single vector register, or double vector register. Quad-
vector-register store is also available to facilitate key filtering benchmarks. Load/store
unit also supports various data distributions.

In Orin we have added load-and-permute instructions to manipulate/reorganize data
from a double vector in memory to a double vector register destination in any
permutation pattern. This enables various data access patterns to be efficiently carried
out through such instructions.

In general, we would like memory transactions from load/store instructions to be
executed in order through memory dependency checking and dynamic stalling. The VPU
has a rich set of load/store features, and for some features it is cost prohibitive to
implement the dependency checking. Scalar load/store instructions as well as
consecutive-location vector load/store are included in the dependency checking, so they
are guaranteed to execute in order. Transposing load/store, parallel table lookup, parallel
histogram, and vector addressed stores are excluded in the checking, so they are not
guaranteed to execute in order. A MemFence instruction is available to serialize memory
transactions that hardware dependency checking does not cover. See Memory
Coherency for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 21



Chapter 4. VPU Instruction Cache (I-
Cache)

4.1 Overview

The VPU Instruction Cache (I-cache) supplies instruction data to the VPU when
requested, requests missing instruction data from system memory, and basically
maintains temporary instruction storage for the VPU. It also implements the prefetch
command to reduce cache misses, as well as the invalidation command as needed for
error correction and debug.

Having an instruction cache allows for large total code size to be stored in the system
memory, while having small physical memory footprint for area efficiency.

4.2 Functionality

The following table captures the characteristics of the I-cache.

Table 2. VPU I-cache characteristics

Characteristic Configuration

Capacity 16KB

Associativity 2-way

Instruction width 256-bit

Instruction alignment 256-bit

Block size 128 bytes

Replacement policy LRU

Write policy None (I-cache read only)

No, fetch interface is in-order, so after a miss, if
following fetch request hits, it’s not possible to
indicate so.

Hit under miss (nonblocking, if/when VPU
requests another instruction word that’s
available, go ahead and return hit)

Miss under miss (if/when VPU requests
another instruction word that’s unavailable,
request for that cache line as well)

Yes (request/ready pipelining allows following fetch
request to be conveyed, and if it's a miss involving
another cache line, request can be sent out as well)

Hit latency

2 cycles

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 22




Characteristic Configuration

Prefetch (software request to fetch cache Yes, up to full cache capacity in a single R5/VPU

lines ahead of execution) interaction. Depending on outstanding transaction
allocation may request in batches

Interface for misses 256-bit AXI, AR, R channels only

Prefetch request from R5 and VPU Yes, will have separate config register entries for
concurrency

Prefetch and fetch concurrency Yes, giving fetch higher priority

ECC single error correction Yes, corrected on the fly and sent back to VPU

ECC single/double error detection Single errors are corrected but correction not

written back to cache; single error handling
software should invalidate cache line to initiate
refetch when the line is requested again.

Double errors are detected but not corrected.

Invalidation from R5 Yes, configurable address range

Invalidation from VPU Yes, configurable address range

4.2.1 Preemption

The VPU fetch/align unit fetches ahead of execution, and thus may request some
instruction data, but in the next few cycles branches to another PC location that renders
the previous request unnecessary. In such cases, the fetch/align unit cancels a previous
request and issues a request for the new PC location. This feature is called preemption
and is particularly useful when one of the no-longer-needed requests triggered a cache
miss. VPU execution would be stalled if hardware does not have the capability to cancel
such requests.

The I-cache handles preemption by clearing the preempted request from the pipeline. In
case the preempted request has been sent to the MC, the MC read request is not
affected, and returned data from MC would be written to a cache line normally, possibly
evicting instruction data on that cache line.

4.2.2 Prefetch

Prefetch capability is provided to both the R5 and the VPU. They use separate register
entries and command queues to avoid any race conditions, although SW on both sides
should be coherent and not attempt to request prefetch or invalidation at the same
time.

When a program for a task fits the I-cache, the R5 should prefetch the whole task, then
start VPU at its task PC. The VPU may initially see instruction-cache misses until the
whole task is loaded.

When program for a task does not fit the I-cache, we recommend that the task code is
partitioned into subtasks for concurrent execution and prefetch. Given the 2-way set

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 23



associativity characteristics of instruction cache and the cache capacity of 16KB, each
subtask should ideally be under 8KB.

The R5 should prefetch just the first subtask before starting the VPU task. VPU code
for a subtask should prefetch the next subtask at the appropriate time so that ideally
the prefetch is hidden behind execution.

R5 SW should not start requesting prefetch for VPU'’s next task until VPU has completed
its current task and is idle. This also ensures prefetches from R5 and VPU do not
contend for cache lines.

4.2.3 Invalidation

The I-cache supports two concurrent invalidation interfaces through the config
registers; one designated for R5 and the other designated for VPU. Each invalidation
interface can selectively invalidate an address range or the whole cache.

Invalidating the whole cache by VPU is supported via GPO sideband signaling (see
Summary of GPI/GPO Signals). Invalidating an address range by VPU is currently not
supported by software.

Invalidation can be used to provide a clean slate for I-cache at the beginning of every
task, and the R5 should be the one invalidating the entire cache.

Invalidation can also be used to handle I-cache single error detection. When a single
error is detected (when the VPU requesting instruction(s) that contains an error), the |-
cache sends the corrected instruction data back to VPU but does not write the
corrected instruction data back to the I-cache’s memory. The R5 software handling I-
cache single error detection should invalidate the cache line to cause the line to be
refreshed from DRAM, which we assume is ECC protected as well and contains the
correct program data.

Invalidation is also needed for VPU debug software breakpoint, which is implemented by
substituting code data at selected break point with SWBRK, software breakpoint
instruction. As I-cache is read-only, code change is implemented by altering the code
image in external memory and invalidating the corresponding cache line.

42.4 ECC (Single-Bit-Error-Correct Double-Bit-
Error-Detect)

To reduce fault rate against memory cell transient faults, the VPU I-cache is protected
by single bit error correction, double bit error detection scheme.

A single-bit error within a 256-bit instruction word is corrected on the fly, and an error
event is sent to the PVA top-level SEC block, and from there it is forwarded to R5 and
optionally to system-level error collator.

A double-bit error within a 256-bit instruction word is detected but not corrected. An
error event is sent to the PVA top-level SEC block, and from there it is forwarded to R5

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 24



and optionally to system-level error collator. The erroneous instruction word is return to
VPU, which continues to be executed.

Optionally, I-cache can be configured to suspend upon detection of double bit error, until
R5 software comes in to query I-cache for the error and reset VPS. This feature may be
useful during software development phase to differentiate RAM soft error from other
error sources.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 25



Chapter 5. VPU Vector Memory (VMEM)

5.1 Overview

VPU vector memory (VMEM) houses local data memory for VPU to access so it can
implement various image processing and computer vision algorithms efficiently. VMEM
supports various complex memory access patterns from VPU, including consecutive
read/write of various lengths, transposition, table lookup, histogram, vector addressed
stores. It also supports accesses from outside-VPS hosts like DMA and R5, to allow data
exchange with R5 and other system-level components.

VMEM includes VMEM I/F arbitration block and three VMEM superbanks of 128KB each.
Each superbank incorporates dual port memory and supports one read AND one write
per cycle. VMEM I/F arbitrates reads and writes separately for each superbank.

The VPU vector memory block diagram is as follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 26



Figure 3. VMEM block diagram

Non-VPU Clients

(via RAMIC) VPU Memory Units DLUT
A A A A A A A A A A A
VMEM
Y Y Y Y Y Y Y Y Y Y Y
VMEM I/F
T
512 512 512
v
SuperBank-0 SuperBank-1 SuperBank-2
(128KB) (128KB) (128KB)

5.2 VMEM Interface (VMEM I/F)

The VMEM |/F block performs arbitration among VPU load/store and external requests
(including DMA), and handles histogram read-modify-write requests. Memory arbitration
is carried out in superbank granularity and parallel between reads and writes. We have a
fixed priority scheme as follows:
Read priority (highest to lowest)

External (including DMA) read request-high

VPU MO load (including table lookup and histogram read)

VPU M1 load

VPU M2 load

StreamO read (DLUT lookup)

Stream1 read (DLUT index/config)

External (including DMA) read request-low

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 27



Write priority (highest to lowest)

Histogram write

External (including DMA) write request-high

VPU MO store

VPU M1 store

VPU M2 store

StreamO write (DLUT output)

External (including DMA) write request-low
We have VPU load/store prioritized over stream read/write in VMEM arbitration. Stream
read/write are driven by coprocessors. Normally coprocessors should have stream

buffers so performance may not be affected by occasional stalls. In comparison,
arbitration loss in VPU is likely to lead to performance loss.

Ideally, programmers should allocate memory objects to avoid VPU processing and
coprocessor processing to compete for any superbank read/write. When that is not
possible, programmers should consider coprocessor VMEM traffic and allocate memory
objects to minimize VMEM contentions.

The cases when there are read(s) and write(s) in near execution packets to near address
ranges in the memory are governed by memory coherency handling and are discussed
separately in Memory Coherency. Here we are discussing VMEM arbitration for memory
read/write transactions being executed at the same clock cycle.

Multiple memory transactions at the same clock cycle and going to the same superbank
are executed sequentially following the above arbitration priority, when they are all reads
or all writes. Mixed read/write cases (in the same execution packet) are:

RW: Execute both in parallel, read will return the previous value

RWW: Carry out the read and the first write in parallel, then the second write. The
read will return the previous value,

RRW: Carry out the first read, then the second read and the write in parallel. Both
reads return the previous value.

A 2-bit QoS signal is sent with each external request, and the QoS is translated into a
time-out count via VMEM config registers. Each external request is initially assigned to
the external-low priority. If/when the request waits out the time-out count, it’s escalated
to the external-high priority, which prompts it to be served at next available cycle, thus
ensuring some (configurable) minimal BW to VMEM for each QoS level.

The VPU supports memory accesses (table lookup, histogram, vector-addressed store,
transposing load/store) that can potentially span a large address range. As each memory
access is routed to a selected superbank based on the base address, no single memory
access can straddle multiple superbanks.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 28



5.3 VMEM Superbanks

The three memory superbanks appear as three memory regions in the VPU memory
map, differentiated by high address bits to allow programmers to allocate, based on
memory footprint and BW needs.

One simple way to allocate VMEM superbanks and avoid contention is
Superbank A write = DMA
Superbank A read = VPU
Superbank B read/write = VPU
Superbank C write = VPU
Superbank C read = DMA

This allows DMA to move data from system memory to Superbank A. VPU code would
read that data for processing, and can use Superbank B for intermediate outcome, and
write final outcome to Superbank C. DMA would then move data from Superbank C to
system memory. The DMA input and output buffers can be ping-ponged to allow
simultaneous read/write by VPU and DMA, without causing any contention.

This ideal, contention-free allocation scheme is only possible when DLUT is not involved,
and DMA input/output buffer as well as intermediate buffers fit the 3 superbanks
respectively.

When the buffer sizing does not work out, or when DLUT is involved, one will need to
allocate buffers among superbanks carefully to minimize contention among the VPU,
DMA and DLUT.

Each superbank has 128KB of capacity each. Each superbank sits in 256KB of space to
allow for future expansion. 1 MB is allocated for the 3 superbanks (384KB total
capacity). Address aliasing in the 1 MB space is as shown in the following table.

Table 3. VMEM address map

Byte address Memory Primary/Alias
0x00000 ~ Ox1FFFF Superbank A first 128KB Primary
0x20000 ~ Ox3FFFF Superbank A second 128KB Alias

0x40000 ~ Ox5FFFF Superbank B first 128KB Primary
0x60000 ~ Ox7FFFF Superbank B second 128KB Alias

0x80000 ~ Ox9FFFF Superbank C first 128KB Primary
OxA0000 ~ OxBFFFF Superbank C second 128KB Alias

0xCO000 ~ OXDFFFF Superbank C third 128KB Alias

OxEOOO0OQ ~ OxFFFFF Superbank C last 128KB Alias

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 29



EI Note: Address aliasing is a side effect of address decoder logic and should not be taken
advantage of in the software, as it is possible to set up address watch point via debugger
to detect out-of-valid-range memory read/write and trigger error interrupts to PVA-top
Cortex R5 processor.

Future generation hardware may change physical memory sizes and memory address
mapping. Best practice for VPU software is to use A/B/C memory region naming (for
example, chess_segment(A/B/C)) instead of hard-coding memory addresses, and to avoid
using the alias memory regions.

5.4 Memory Banking and Read/Write
Access Patterns

Each VMEM superbank consists of 32 banks of 16-bit wide RAMs. Each of the 32
memory banks are independently addressable per clock cycle. This enables a rich set of
access patterns:

Read/write one byte on any byte alignment

Read/write one 16-bit half-word on any half-word alignment

Read/write one 32-bit word on any word alignment

Read/write 8 or 16 consecutive 32-bit words from any half-word alignment.
Read/write 16, 24 or 32 consecutive 16-bit half-words from any half-word alignment
Read/write 32 consecutive 8-bit bytes from any byte alignment

Read/write 64 consecutive 8-bit bytes from any half-word alignment (starting odd
byte is not supported, and shall be forcefully aligned to an even byte)

Read/write in various transposed addressing patterns.
Read/write independent memory rows in each 16-bit bank, leveraged by parallel table
lookup, parallel histogram, and vector addressed store.

Various transposed load/store options, parallel table lookup, histogram, and vector
addressed store options are discussed later. This is just describing access patterns from
VMEM hardware capability point of view.

Example access patterns are shown in the following figures.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 30



Figure 4. VMEM access pattern examples for consecutive accesses

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank30 | Bank31
<8b>| <-- 16b -->|
WO w1 W14
W15
HO H1 H2 H3 H4 H29 H30
H31
BO (B1 |B2 |B3 (B4 |B5 |B6 [B7 |[B8 |B9 B58 |B59 |B60 (B61
B62 |B63
Figure 5. VMEM transposed access pattern examples
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 30 | Bank31
<8b> < 16b > | |
WO
w1
HO
H1
H2 w14
H3
H4
W15
H29
BO H30
B1
H31 B2
B3
B4
B29
B30
B31

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 31



Figure 6. VMEM access pattern examples for parallel table lookup and histogram

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank30 | Bank31
<8b> <--16b -->|
W_TBL w2
W1
W15
WO
H_TBL H4 H5

H30

B_TBL|

B31

Bl

B3

BO

B2

B4

B30

B5

5.5 Load Data Cache

Each VMEM memory bank contains a load data cache for power reduction. VPU
processor pipeline including load timing accommodate both cache-hit and cache-miss
cases. The cache can be enabled or disabled (see 9.6.16 for details) on a superbank

granularity.

The load cache, when enabled, only caches the following types of memory read

transactions:

Single/double vector load of 32-byte or 64-byte consecutive data

The following types of memory read transactions are ignored by the load cache:

Single vector WX-type load (48-byte transaction)

Single/double vector S (scalar) and C2 (circulating 2 items) distributions
Scalar register loads

Lookups

DMA reading VMEM
DLUT reading VMEM

When enabled, the load cache monitors ALL memory transactions to invalidate cache

entries when there’s a hit, including

Scalar/vector stores

Histogram/VAST operations

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 32



DMA writing VMEM
DLUT writing VMEM

When cache is enabled and cache hit occurs, load data is retrieved from the cache and
memory read transaction is not issued, saving some power. When the cache is enabled
and a cache miss occurs, there is no performance penalty, but there is a small power
penalty. Thus, enable/disable control is exposed to the programmer for power
optimization. Load data cache should be enabled when there are repeated accesses to
small localities, like in the case of filtering, and should otherwise be disabled.

5.6 Memory Allocation among VMEM
Superbanks

VPU application code may use storage specifiers {DMb, RAM_Ab, RAM_Bb, RAM_Cb},
together with chess_segment(A/B/C) and optional alignment constraint to allocate
scalar or array variables onto specific superbank.

Using RAM_Ab, RAM_Bb, RAM_Cb with chess_segment(A/B/C) causes the linker to
allocate variable to superbank A, B, or C, respectively

Example 1:
short chess_storage(RAM_Ab % 512: chess_segment(A)) foo[256];

This allocates foo as a 256-element short array on superbank A with 512-byte alignment.

Example 2:
char chess_storage(RAM_Bb % 512: chess_segment(B)) bar[256];

This allocates bar as a 256-element char array on superbank B with 512-byte alignment.

Example 3:
int chess_storage(DMb % 4) more_foo[256];

Using DMb storage specifier causes the linker to allocate such variables to superbank A
first, followed by B, then C, where it fits. Reserved regions between superbanks are
skipped automatically. This allocates more_foo as a 256-element int array with 4-byte
alignment in one of the superbanks.

Example 4:

int more_bar[128];

Not using any storage specifier causes the linker to allocate the variable to global
memory (_global segment in BCF file). Application project can supply a custom BCF file

to place _global segment in a valid memory range. Otherwise, the default BCF file applies
and places _global segment in superbank A.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 33



Chapter 6. VPU Instruction Set
Architecture

6.1 Processor Architecture

6.1.1 Key Features

The VPU instruction set architecture has the following key features:

VLIW and Wide SIMD vector processor, with multiple operations and multiple
load/store slots.

Multi-dimension address generation (6 dimensions).
Multiple levels of zero-overhead hardware looping (2 levels).

Instruction-level predication of certain vector operation, scalar load/store, vector
load.

Lane predication for vector store.

Loop collapsing to reduce overhead across data block and filter kernel dimension,
enabled by address generation and predication.

Reduced code size and library construction effort for filtering and other windowing
operations, enabled by zero-overhead nested looping through loop collapsing.

Memory banking and parallel lookup, histogram, and vector addressed store.

Memory bank address calculation to implement transposed vector load/store for
various transposition options.

Circular buffer addressing for memory-copy-free data/compute reuse.

Rich set of load and store data distribution patterns.

Vector load with permutation of loaded data.

Vector-lane predication of selected store operations.

Protected pipeline with sequential execution (except branch delay slots) and
hardware dependency stalling.

The VPU instructions are scheduled in the following 7-way VLIW format. Each
instruction word is 32-bit long, and up to 7 instruction words can be executed together
as an execution packet.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 34



Table 4. VLIW instruction format

SO S1 VO V1 MO M1 M2

Scalar Scalar Vector Vector Load/store, scalar Load/store, Load/store,
operation or operation operation operation or vector, scalar or scalar or
Control lookup, histogram, | vVector vector
(branch, call, vector-addressed

return, SW stores

breakpoint)

Variable-length packet encoding is supported, so that NOP (no operation) instructions
are skipped and not taking up any code space. There is an exception though. Compiler
may insert NOPs intentionally to align branch target, beginning of function, etc.,
execution packets to reduce branch penalty.

In general, control instructions are available only in SO slot. Scalar operations are
available in both scalar slots. Vector operations are available in both vector slots.
Memory operations are available in all 3 memory slots, except lookup, histogram, and
vector-addressed store are available only in MO. Additional details:

Agen save/restore instructions are available only in MO slot.
Quad-vector store instructions are available only in MO slot.

Per-lane predicated store instructions via vector register file are available only in MO
slot.

Per-lane rounding store (double vector only) instructions are available only in MO slot.

6.1.2 Program and Data Memory Spaces

Program memory space is 32-bit byte address, with valid range [0, 2732 - 4], as
instruction words are 32-bit each.

Data memory space is 20-bit byte address that spans 1MB, but only valid inside each of
three 128KB superbanks, for a total of 384KB of physical memory. Please see VMEM
Overview for the memory map.

Access outside the valid range would be wrapped back to the valid range. See Section
VMEM Superbanks for details in address mapping. Programmers should not take
advantage of this address wrapping, as data memory footprint and layout can change in
the next generation.

Reading uninitialized memory locations WILL NOT be detected as an error but can
trigger parity error. It’s too expensive to implement such detection or automatic
initialization in hardware. It is software’s responsibility to either initialize the entire
VMEM at the start of task or avoid referencing uninitialized memory locations.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 35



6.1.3  Architecture Registers

6.1.3.1 Control and Scalar Registers
Program counter (PC), counting in 32-bit granularity so PC = 1 means byte address of 4.

VPU program space is 232 bytes, due to tool-chain constraints, and hardware conforms
to this constraint. Although PC appears as a 32-bit register, upper 2 bits are not used.
Upon task launch, VPU gets a starting PC specified in a 32-bit byte address config
register by dropping lower 2 bits of the register. Also, the interface between VPU and I-
cache carries 27-bit address in 256-bit (32-byte) granularity.

Scalar registers RO..R31, 32-bit each. Special registers among them: RO = constant

zero

SP (stack pointer) = R1

LR (link register) = R15

Global data page pointer = R16

PL (64-bit product’s low 32-bit, also quotient for DIV) = R12

PH (64-bit product’s high 32-bit, also remainder for DIV) = R13
All scalar registers are reset to 0.

Compiler is instructed to treat RO as constant O and not modify RO. User assembly
program can use RO as a normal register and write non-zero to RO, but this would break
compiled code so is highly inadvisable.

Stack grows by incrementing the stack pointer, so items in the local frame (already in
the stack) are located with negative offset from the stack pointer. For example, the last
int32 word pushed into the stack occupies SP -4 ~ SP - 1 byte addresses, so is
addressed by its starting byte address SP - 4. Compiled code uses load/store with base +
immediate offset addressing mode to address items on the stack, and the immediate
offset has range of [-2048, 2047]. Thus, if we use the stack pointer register R1 to
represent the stack pointer itself, local frame size is limited to 2048 bytes.

In the model’s compiler setting, we tell compiler to put an offset of -2048 between the
logical stack pointer and the actual stack pointer register R1. In other words, we set
SP_register (R1) = SP - 2048. This allows any local frame to take as much as 4096 bytes,
thereby doubling the local frame size. This is because SP_reg + [-2048, 2047] = SP -
2048 + [-2048, 2047] = SP + [-4096, -1].

Hardware looping registers:

LF: 2-bit loop level, -1, O or 1, indicating which loop level the execution is in, reset to -
1 (which is encoded as binary “117).

LS[0..1]: 32-bit loop start PC, reset to O
LE[O..1]: 32-bit loop end PC, reset to O
LC[O..1]: loop count, 32-bit, reset to 1

There is also a predicate register file to support instruction predication:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 36



Predication registers: P2..P15 each 32-bit (PO, P1 are unconditional), reset to -1 (all
ones)
Additional miscellaneous registers are:
GPI: general purpose input register, 32-bit
GPO: general purpose output register, 32-bit, reset to O

TSC: Free running timestamp counter for performance instrumentation, 64-bit, reset
to O

INV: floating-point invalid flag, 1-bit, reset to O

CFG_VMEM: 3 x 32-bit, 32-bit for each superbank, bit O for load cache enable, bits
31..1 reserved, reset to O

6.1.3.2  Vector Registers

There are 3 vector register files: the main vector register file VO..V31; the working
register file WO..W31; and the accumulator register file ACO..AC31. Each register 384-bit
and can be partitioned as follows:

8 lanes x 48-bit (extended word, vintx)

16 lanes x 24-bit (extended half-word, vshortx)

32 lanes x 12-bit (extended byte, vcharx)
In addition, there is an extension register file, XRF, that extends precision of ARF on a
lane-by-lane basis. It’s used in selected MAC operation (VFilt4x2x2BBW) with 16 lanes x

32-bit per vector register entry, with lower 24-bit supplied by ARF, upper 8-bit supplied
by XRF. The extended accumulator register file, XARF, XAC0..XAC31, is partitioned as

16 lanes x 32-bit (Further extended half-word, xvshortx)
32 lanes x 16-bit (Further extended byte, xvcharx)
VRF and WRF have extensive bypassing to reduce load-to-math and math-to-math

latencies. ARF is accessible as accumulators. Compiler maps source code variables to
these register files according to latency requirement and register capacity constraints.

Vector registers are not cleared during reset; it is software’s responsibility to initialize
each register before its value can be used.

6.1.3.3  Agen Registers

Each unit of the agen register file AGEN[0..7] has the following fields:
Addr (32-bit, but only lower 20 bits are used in address calculation), reset to O
Transposition lane offset (12-bit), reset to O
Rounding/truncation option and number of bits (8-bit), reset to O (no rounding)
Saturation option (2-bit), reset to O (saturation disabled)
min/max option (2-bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 37



Auto predication off (1-bit), reset to O, indicating agen loop has gone past max
iteration count in all levels, so that subsequent stores should be automatically
predicated off, overriding predicate register (or predicate vector register).

Number of iterations (6 x 16-bit), reset to 1
Address modifiers (6 x 18-bit), reset to O

Circular buffer start and size (2 x 16-bit), reset to O

Saturation parameters (4 x 32-bit), reset to O
Loop variables (6 x 16-bit), reset to O

Min/max values (2 x 32-bit), reset to 0, and initialized to signed/unsigned 32-bit
MAX/MIN values depending on min/max option

Each Agen register has a parameter configuration portion, basically the first 16 words or
512-bit in memory and 428-bit in register (difference comes from 6 address modifiers,
32-bit in memory versus 18-bit in register). The last 6 words or 192-bit holds loop
variables, auto_predicate_off and min/max values.

Agen configuration can be stored in memory in 512-bit, and when it’s read back, loop
variables and min/max values are reset, and this is useful to save and restore Agen
configuration. In Orin there are instructions to save/restore the remaining part of Agen.
The entire register entry can be copied from one agen register to another as well.

Data organization of the agen configuration in memory (from Agen configuration save,
AgenCfgST) is as follows.

Figure 7. AGEN data format in memory

Word
0

O 00 N O U1 B W N -

[y
o

12
13
14
15

31
Addr
reserved | minmax | sat_opt (2- | round/truncate opt | reserved
(4-bit) _opt (2-bit) bit) and bits (8-bit) (4-bit)) lane_offset (12-bit)
N2 (16-bit) N1 (16-bit)
N4 (16-bit) N3 (16-bit)
N6 (16-bit) N5 (16-bit)
reserved (14 upper bits) MOD1 (18 LSBs)
reserved (14 upper bits) MOD?2 (18 LSBs)
reserved (14 upper bits) MOD3 (18 LSBs)
reserved (14 upper bits) MOD4 (18 LSBs)
reserved (14 upper bits) MODS5 (18 LSBs)
reserved (14 upper bits) MODG6 (18 LSBs)
CB_SIZE (16-bit) CB_START (16-bit)
SAT_LIM_LOW (comparison)
SAT_VAL_LOW (replacement)
SAT_LIM_HIGH (comparison)
SAT_VAL_HIGH (replacement)

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 38




Word 31 0

16 12 (16-bit) 11 (16-bit)
17 14 (16-bit) 13 (16-bit)
18 16 (16-bit) 15 (16-bit)
auto pred off
19 reserved (31-bit) (1-bit)
20 min_val (32-bit)
21 max_val (32-bit)

The rest of Agen data structure (6 x 32-bit = 192 bits) in the Agen register file, not
directly visible but can be accessed one loop variable at a time through STH
A<id>.I<level>:

In the data structure, ignored fields, basically upper bits of each address modifier, are
writable via CfgAgen Mod instruction as well as CfgAgenLD instruction, but are not
utilized in the address calculation.

Reserved fields are initialized to zero in InitAgen. They are not modifiable via any
CfgAgen instructions and not utilized in any Agen functionality. Through CfgAgenLD, if
corresponding contents in memory are non-zero, zero will be loaded into Agen data
structure instead. When CfgAgenST is used to store out the whole Agen data structure,
corresponding bits in memory will show zeros.

6.1.3.4  Floating-point Invalid Flag

To facilitate development of floating-pointing applications, in VPU we have a Boolean
flag to for floating-point invalid, invalid_flag, that captures any invalid outcome (NaN)
from FP32/FP16 operations. It’s a sticky bit, so that when there is any invalid outcome
from SO/S1/VO/V1 slots (as we support scalar as well as vector floating-point), the bit is
set.

invalid_flag |= s@_invalid | s1_invalid | v@_invalid | vi_invalid

There are a pair of MOV instructions to move invalid_flag to/from scalar register, so that
the flag can be cleared at beginning of applications and collected (and perhaps cleared)
at key points in the application to check for unexpected outcomes.

Please see Exception for Instructions Accessing FP Invalid Flag for instruction execution
ordering exceptions around FP invalid flag. Please see Floating-Point Invalid Flag for
MOV instructions for FP invalid flag.

Note that the invalid flag read-modify-write dependency is hidden from the compiler, so
that compiler can freely reorder, combine, and even optimize out unnecessary FP
operations to achieve better performance. If, for whatever reason, certain FP operations
should not be optimized out even when they are unnecessary, developer can add
chess_keep_dead() compiler directive on the variable assigned to the FP operations.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 39



For example,

float var3 = fadd(var1, var2);
chess_keep_dead(var3);
// no subsequent use of vars

6.1.4 Control Instructions

Control instructions include the following:
Flow control instructions include jump, jump-and-link (call), and conditional branch.
Zero-overhead hardware loop instruction
Memory fence instruction

Miscellaneous hardware control instructions involving GPI, GPO, coprocessor
load/store, R5 interaction, time stamp counter, floating-point invalid flag, and load
data cache

Debug instructions
Control instructions are only supported on the SO slot.

There are 2 delay slots following jump, jump-and-link, conditional branch, and hardware
loop. For jump and branch, there are additional 2 to 3 cycles of gap before the first
execution packet of the jump target can be executed, due to the fetch latency.

Memory fence takes variable number of cycles, up to 8 cycles, as it is stalled until
preceding memory writes are committed to memory, to ensure memory coherency.

Hardware control instructions that interact with other hardware components (GPI, GPO,
WFE_GPI/R5, SIG_R5, CPLD, CPST) take up to 16 cycles to execute, so that all preceding
instructions complete their execution, to avoid any synchronization issues.

For example, VPU software might write some value in VMEM before toggling a GPO bit
that triggers a DMA transfer to read from VMEM, so it’s only prudent to allow the
memory write to be completed before the GPO bit is toggled.

6.1.4.1 Hardware Looping
VPU supports 2 levels of zero-overhead hardware loops through the hardware loop
instruction (RPT) and the following hardware looping registers:

LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -
1 (encoded as binary “11”) to mean not being in any loop

LS[0..1]: 32-bit loop start PC, reset to O
LE[O..1]: 32-bit loop end PC, reset to O
LC[O..1]: loop count, 32-bit, reset to 1

Behavior of hardware loop (RPT) that encodes a scalar register and an immediate value:
LF++,
LC[LF] = scalar register value, for the loop iteration count.
LS[LF] = starting PC = PC(3 execution packets from RPT)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 40



LE[LF] = ending PC = PC(2 execution packets from RPT) + immediate

Hardware looping is carried out by RPT updating LF and corresponding LC, LF, LE entries,
and by monitoring PC against LE[LF], the ending PC of current loop level.

LF is initialized to -1, so when RPT is first executed, LC[0], LS[0], LE[O] are filled.

Conditional branch-back from loop-end PC is carried out via:

if (LF >= 0) {
if (PC == LE[LF]) {
if (LC[LF] == 1) {
LF--;
} else {
LC[LF]--;

branch_target = LS[LF]; // take branch right away
// end-of-loop branch back has no delay slots

}

All these steps - detecting end of the loop body by matching PC against LE, checking
the loop count register LC, making the decision to branch back to beginning of loop
body (LS) or to decrement LC then fall out of the loop - occur in the background without
incurring any explicit instruction, thus they feature zero-overhead looping.

There is a hardware loop buffer to store the first 3 execution packets of the loop body,
so that branching back from loop-end to loop-start does not suffer the usual 2 ~ 3
cycles of pipeline bubble. Loop execution goes seamlessly from one iteration to the next
iteration.

With the preceding hardware looping implementation, when nested hardware loops are
used (up to 2 levels), the 2 loop levels should not share the same ending PC.
Consequently, an NOP may be inserted by the compiler when there is no active
processing between the end of two loop levels. For example:

add__sint_add sint___sint sint

104 RPT R6,#7 || LHI #@,R7

106 ADD R5,R4,R5 || ADDI R4,#0, R2

108 LHI #0,R5 || ADD R5,R6,R3

110 RPT R2,#1 // outer loop starts
111 NOP

112 NOP

113 ADD R5,R4,R5 || ADD R3,R7,R7 // innerloop starts/ends
115 NOP // outer loop ends

116 JR R15

117 SUB R7,R5,R2

118 NOP

In this example, the outer loop starts at PC 110, the inner loop starts at 113, two delay
slots after the corresponding RPT instruction.

The immediate field of RPT encodes the PC difference between the 2" delay slot (just
before entering the loop) and the last packet of the loop. In the example above, the

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 41



outer loop ends at PC 115, so the RPT immediate field encodes 115-108 = 7. The inner
loop ends at 113, so the RPT immediate field encodes 113 -112 = 1.

Currently, the compiler does not generate code that branches into the middle of an
execution packet, or into a delay slot of any execution-control instruction. Moreover, an
assembly program that has such behavior would be rejected by the loader so it would
not simulate. Due to the tool chain restriction, hardware behavior when supplied with
such an assembly program is declared undefined.

In the case of nested hardware loops, the inner loop RPT shall not be placed in a delay
slot of the outer loop RPT, as it complicates the VPU execution controller to support
such looping structure. Compiler does not generate such a code sequence.

6.1.5 C Function Calling Convention

C functions shall adopt the following calling convention:
Stack pointer = R1
Link register =R15
Global data page pointer = R16
Scalar argument registers: R4, R5, R6, R7, R8, R9, R10,R11,R12,R13,R14
Scalar return value registers: R2, R3
Vector argument registers: VO, V1, V2, V3, V4, V5, V6, V7
Vector return value registers: V8, V9
Double vector argument registers: VO:V1, V2:V3, V4.V5, V6:V7
Double vector return value registers: V8:V9
In subsequent generations of VPU, it is likely that scalar and/or vector register file may

be expanded, and the C function calling convention may change. No assembly backward
compatibility is expected.

6.1.6 Processor Execution States

VPU execution state diagram is shown in the following figure. Description of the states,
various state transitions and conditions follow the figure.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 42



Figure 8. VPU execution state diagram

From any state

r5_vpu_start r5_vpu_halt

/ Halted
1'r5_vpu_halt H
7%

ocd_ ocd_
req req

req or
SWBRK

L —————
— Debug )

General priority for state transition, where applicable, is reset > VPU instruction > error >
debug > VPS register programming (halt/unhalt/r5_vpu_start) > VPU internal
state/detection.

Reset state: When reset is asserted, whatever state VPU is in, it shall transition to the
Reset state. De-asserting reset signal would transition VPU to WFE_RS state.

Debug state: When the ocd_req signal in VPU debug interface is asserted, VPU would
transition from any state except the Reset state to the Debug state. The state VPU
transitions from is saved in a shadow execution state (SES) register. If/when resuming
execution is desired, it is debugger software’s responsibility to restore VPU to the
interrupted state (including all VMEM and register contents, except for first 64 bytes of
VMEM), then de-assert ocd_req to allow VPU to resume execution by going to the state
saved in the SES. Debugger software can optionally change the SES before de-asserting
ocd_req to redirect VPU to a different state from the interrupted execution state. Please
see 13.1 for details on debug features.

WFE_RS5 state: This is when VPU is waiting for R5 to provide a starting PC
(R5_vpu_start_PC). Once R5 writes the starting PC then writes 1 to the R5_vpu_start
register field, VPU transitions out of WFE_RS5 state and jumps to the starting PC. VPU
software normally terminates a subframe-level task with WFE_R5 instruction, which
takes VPU back to this state.

Active state: VPU normal execution is in the active state. From active state, VPU can be
temporarily halted by vpu_halt register been written 1, to transition to the Halted state.
VPU can transition to debug state by debug controller asserting ocd_req, or by
executing SWBRK instruction. VPU can execute a WFE_R5 instruction to go to the
WFE_RS state. VPU can execute a WFE_GPI instruction to go to the WFE_GPI state.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 43



Upon hardware error and when the error source is configured to error-halt, VPU goes to
the Error-Halted state.

Priority on conditions to transition from active state is reset > error -> debug >
r5_vpu_halt > instruction. Instructions can be WFE_R5 or WFE_GPI. Since both are
control slot (SO) instructions, only one can be executed at any time.

WFE_GPI state: VPU executing a WFE_GPI instruction would transition VPU to this state.
WFE_GPI allows a mask value and a match value as arguments, and hardware logic keeps
VPU in this state until (GPI & mask) == match, upon which VPU is transitioned back to
the Active state.

EI Note: WFE_GPI is not exclusive to interaction with DMA,; it can be used for checking
availability of I-cache prefetch and/or invalidate.

Halted state: R5 can temporarily halt VPU by writing 1 to the vpu_halt register field.
When the field is written O, VPU would go back to the Active state and resume
execution. This mechanism can be used by R5 software to pause VPU execution upon
watch-dog timer expiration, so VPU state can be saved for further diagnosis.

Error-Halted state: When one of the error conditions occurs and it’s configured to error-
halt in error handling (see 13.2, and for further details please see PVA VPS IAS), VPU is
transitioned to the Error-Halted state. From this state, the debugger can drive the
execution state to Debug, or R5 can reset VPU.

The transition from WFE_GPI and WFE_R5 to Error-halted. It is possible for an
instruction causing the error to be close enough to WFE_GPI/WFE_RS instruction that
the execution state is temporarily transitioned to WFE_GPI/WFE_RS5 states before
ending up in Error-halted state.

6.2 Overview of Scalar/Vector Math
Instructions

With VPU execution packets organized as 7-way VLIW, it is most convenient to describe
the instructions in terms of instruction set grouping.

Control instructions can only be placed in the first scalar slot, SO.
Scalar math instructions can be placed in either of the scalar slots, SO and S1.

Vector math instructions can be placed in either of the vector math slots, VO and V1.
These 2 slots are symmetrical in functionality.

Certain memory operations can only be placed in the first memory slot, MO.

The remaining memory operations can be placed in any of the 3 memory slots, MO,
M1 and M2.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 44



This is a brief overview of scalar and vector math instructions, including general
functionality description and latency. For a more detailed description of each instruction,
consult Chapter 9 Instruction Set Reference. Memory instructions are better
understood after some coverage on memory banking and address generator features.

The latency number of cycles specified in the following sub-sections are for back-to-
back execution of the same class of instructions; for example, scalar integer math to
scalar integer math. Latency across different classes of instructions is outside the scope
of the VPU Programmer’s Guide.

6.2.1 Scalar Integer Math Instructions

We support common arithmetic and logic operations in both scalar slots.
Integer addition, subtraction, compare, and, or , exclusive or, sign/zero-extend
Integer shift left/right, signed/unsigned min/max
Integer multiplex (C select operator), shift-and-add, compare within, bit count
32-bit x 32-bit multiplication, keeping 32-bit product

Signed/unsigned 32-bit x signed/unsigned 32-bit multiplication, keeping 64-bit
product

Integer division, taking up to 33 cycles depending on the dividend bit width

All scalar integer math instructions except for integer division have 1 cycle of latency.

6.2.2 Scalar Predicate Instructions

VPU has a predicate register file, and some vector math instructions are predicated,
those with _CA postfix, to support periodically Clearing Accumulator in a filtering
application for example. We support instructions to move between the predicate
register file and scalar register file, as well as a few variations of modular increment
instructions for periodic predication.

All predicate instructions have 2 cycles of latency.

6.2.3 Vector Math Instruction General Rules

We support many vector integer math instructions. There are multiple ways to group
them into digestible chunks. The relevant section in the Instruction Reference chapter
categorizes instructions by number of input/output operands. Here we categorize
instructions by functionality:

ALU instructions: move, bitwise and/or/exclusive-or/not, bitwise 3-input and/or,
logical and/or/not, promote/demote, Hamming distance. All but Hamming distance
have 1 cycle of latency; Hamming distance has 3 cycles of latency.

Bit manipulation instructions: bit reverse, bit count, bit interleave/deinterleave, most
significant bit detection. All have 1 cycle of latency.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 45



Compare instructions: 2/3-input min/max, 3-input median, min/max with LT/GT flag,
Compare GE/GT/LE/LT/EQ/NE, multiplex (C select operator), 2-in/out sort, sort with
payload, horizontal min/max. All have 1 cycle of latency.

Add/Subtract: 1-cycle latency instructions are negation, sign-magnitude, apply sign,
add/sub. 2-cycle latency instructions are add2sub (A+B-C), absolute difference, sum
of absolute differences (SAD).

Shift instructions: shift (left or right), shift-or, shift-add, shift right, shift left, round,
extract bits, split bit sections, normalization. All have 2 cycles of latency.

Permutation instructions: permute, collate index, expand index, compare bit-pack,
bit unpack, bit transpose, select lane, SGM min-path-cost. All have 4 cycles of
latency.

MAC (multiply-accumulate) instructions: multiply, multiply-add, multiply-subtract,
2/4/2x2[4x2-term dot-product, 4/4x2/4x2x2-term filtering, blending, complex
multiply, sum of squares, square of sum, 2x2 determinant, 8x4x2 term exclusive-not-
or-add. All have 3 cycles of latency.

6.2.3.1 Extended Precision

The vector unit executes up to 2 vector operations per clock cycle. Various vector ALU
instructions are available. A 32-entry 384-bit vector register file (VRF), a 32-entry 384-bit
working register file (WRF) and a 32-entry 384-bit accumulator vector register file (ARF)
supply the operands and store the outcomes.

There is a 128-bit extension for the ARF to extend each entry to 512-bit wide. The
extended accumulator register file (XARF) is accessible only from selected MAC
operation, VXNorAdd8x4x2, VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW, and store
operations.

Each 384-bit entry in VRF/WRF/ARF is logically partitioned into 32 x 12-bit (extended
byte), 16 x 24-bit (extended halfword), or 8 x 48-bit (extended word). Each 512-bit entry
in XARF is logically partitioned into 32 x 16-bit (short), or 16 x 32-bit (word).

VPU vector math instructions operate on extended precisions. Extended byte is 12-bit,
versus standard byte being 8-bit. Extended halfword is 24-bit, versus standard halfword.
Extended word is 48-bit, versus standard word being 32-bit.

The idea is that normally in C code, variables and arrays are declared with standard
element type of char/uchar (8-bit), short/ushort (16-bit), and int/uint (32-bit). VPU
compute kernels use signed or unsigned loads to load data from VMEM and sign-extend
or zero-extend the values to place into destination vector registers. Processing occurs in
the vector datapath via vector math instructions, reading from and writing back into
vector register files. Eventually when a suitable chunk of the compute kernel is
completed, results are written back to VMEM in standard precision.

It is possible for VPU programs to store the intermediate outcome in extended precision
and load them back into vector register file. This can be through an extended-type
load/store in the code or can be through the compiler automatically spilling vector

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 46



variables onto the stack, when size of variables involved in a compute kernel exceeds size
of the vector register files (VRF/WRF/ARF/XARF).

In general, we would like to avoid spilling vector variables into the stack, as it generally
degrades performance and consumes higher power consumption. Programmer should
reduce size of variables involved in the computation by breaking up the computationin a
loop into multiple loops, or by reducing the unrolling factor in the unroll_loop pragma.

Note that lane partitioning does not involve any conversion instruction but is
accomplished via each vector math instruction specifying what precision it operates on.
Vector math instructions are either type-agnostic — for example, bitwise operations - or
have a type designation that can be:

W: 48-bit word

H: 24-bit half-word

B: 12-bit byte

W: 32-bit standard word in VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW

For example, in VAddH, single vector addition half-word, the ‘H’ specifies that it operates
on extended halfword precision and thus treats each source and destination vector
register entry as 16 lane x 24-bit. Some instructions involve operands with multiple
precisions. For example, VFilt4x2x2BBW involves extended byte (12-bit) source operands
as well as word (32-bit) accumulator operand (which is both source and destination).

Many vector math instructions support one of the source operands coming from a
scalar register, depending on the operation type, appropriate number of lower bits
(number of bits specified in the operation) are extracted, or entire 32-bit value is signed-
extended, then broadcast to all lanes to participate in the vector operation specified.

6.2.3.2  Signed/Unsigned Handling

EI Note: There are no signed/unsigned designations in vector math instructions. All vector
arithmetic operations where signed/unsigned make a difference, including comparison,
min/max, right-shift, round, etc., are performed as signed operations.

Signed and unsigned data may be stored in memory. Programmers are responsible for
choosing signed/unsigned data type in the load instructions to read data into vector
register file. Signed data type load (for example, VLDB) would cause the 8/16/32-bit data
items in memory to be sign-extended to the 12/24/48-bit lanes in a vector register.
Unsigned data type load (for example, VLDBU) would cause the 8/16/32-bit data items in
memory to be zero-padded to the 12/24/48-bit lane in a vector register.

For storing data back to memory, writing to memory itself is type-agnostic; however, if
it’s an agen-based store, and rounding and/or saturation features are enabled, be aware
that right-shift in store-path rounding is performed as signed right-shift, and
comparisons in store-path saturation are performed as signed comparison. Thus, if a
programmer intends to use full range of extended precision (12/24/48-bit) to store
unsigned data, store-path rounding and saturation features should be disabled.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 47



6.2.3.3  Data Types and Corresponding Bit Widths

Unless otherwise noted, the following lane partitioning scheme is followed in vector
register:

Word: 8 lanes x 48-bit, lane 0 in Vreg[47:0], lane 1 in Vreg[95:48], etc

Half-word: 16 lanes x 24-bit, lane 0 in Vreg[23:0], lane 1 in Vreg[47:24], etc

Byte: 32 lanes x 12-bit, lane 0 in Vreg[11:0], lane 1 in Vreg[23:12], etc

No type: bitwise operation on whole 384-bit

Standard Word: 16 lanes x 32-bit in XARF, lane 0 in XACreg[31:0], lane 1 in
XACreg[63:32], etc.

Where a scalar register is used as an operand (can be src2 or src3), the general scalar
operand bit width usage behavior is

Word: whole 32-bit sign extended to 48-bit and broadcast to 8 x 48-bit lanes
Half-word: lowest 24-bit broadcast to 16 x 24-bit lanes

Byte: lowest 12-bit broadcast to 32 x 12-bit lanes

No type: not applicable, as no-type operations do not allow scalar as operand

Exceptions to the above are stated in the specific instruction description. For example,
for bitwise operations it makes more sense to zero-extend in case of Word type rather
than sign-extend. As another example, VBitUnpk instruction uses its scalar operand one
bit per lane, so it’s 8-bit for Word type, 16-bit for Halfword type, and 32-bit for Byte
type.

Some ALU instructions do not use the full lane, but just 8/16/32 or 9/17/33 LSBs of the
lane, and they are specifically marked as such in the instruction table. Multiply and
multiply-add/subtract and bit reverse are in this category.

6.2.3.4 Internal Bit Widths and Overflow

Arithmetic datapath implementing various instructions employ sufficient precision so
that the functionality can be modeled as having infinite precision, but the final outcome
is presented in the specified output width, so the hardware is not responsible for
outcome overflow.

This style of functionality specification does not pin down internal details, leaving
implementation flexible, while clearly defining the end-to-end behavior. The
implementation flexibility allows sharing logic among various data types.

For example, VAdd adds 2 operands in each Byte/Half-word/Word lane. In case of Byte
lane, inputs are 12-bit signed and output is 12-bit signed, and internal processing width
can be any bit width greater than or equal to 12, so internally we can have
32 x 12-bit adders + 16 x 24-bit adders + 8 x 48-bit adders, each data type operates
in separate datapath,
8 x 48-bit adders + 8 x 24-bit adders + 16 x 12-bit adders, carrying out half of half-
word addition in 48-bit datapath, and half of byte addition in 24-bit and 48-bit
datapaths, or

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 48



32 x 12-bit adders with carry logic to conditionally string together 24-bit and 48-bit
additions based on type designation of the instruction.

For certain instructions, we do need internal bitwidth to be expanded to avoid internal
overflow, but this does not mean the output would not overflow. VAbsDif and VSAD_CA
are such instructions. Again, outcome is as if we use infinite arithmetic precision but
only present the specified bit width to the output.

There is no out-of-range or overflow detection in VPU, and there is no automatic
saturation. There is, however, free (not costing extra cycle) saturation in Agen-based
vector store.

6.2.3.5 Application Vector Data Types

Various data types are referred to in the intrinsic field.

EI Note: Extended width types are all signed.

vint: 8 x 32-bit vector (in memory)

vuint: 8 x 32-bit vector (in memory, unsigned)

dvint: 16 x 32-bit vector (in memory)

dvuint: 16 x 32-bit vector (in memory, unsigned)

vintx: 8 x 48-bit vector (mapped to register)

dvintx: 16 x 48-bit vector (mapped to register)

vfloat: 8 x 32-bit FP32 vector (in memory)

dvfloat: 16 x 32-bit FP32 vector (in memory)

vfloatx: 8 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)
dvfloatx: 16 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)
vshort: 16 x 16-bit vector (in memory)

vushort: 16 x 16-bit vector (in memory, unsigned)

dvshort: 32 x 16-bit vector (in memory)

dvushort: 32 x 16-bit vector (in memory, unsigned)

vshortx: 16 x 24-bit vector (mapped to register)

dvshortx: 32 x 24-bit vector (mapped to register)

xvshortx: 16 x 32-bit vector (mapped only to XARF)

dxvshortx: 32 x 32-bit vector (mapped only to XARF)

vhfloat: 16 x 16-bit FP16 vector (in memory)

dvhfloat: 32 x 16-bit FP16 vector (in memory)

vhfloatx: 16 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)
dvhfloatx: 32 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)
vchar: 32 x 8-bit vector (in memory)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 49



vuchar: 32 x 8-bit vector (in memory, unsigned)
dvchar: 64 x 8-bit vector (in memory)
dvuchar: 64 x 8-bit vector (in memory, unsigned)
vcharx: 32 x 12-bit vector (mapped to register)
dvcharx: 64 x 12-bit vector (mapped to register)
xvcharx: 32 x 16-bit vector (mapped only to XARF)
dxvcharx: 64 x 16-bit vector (mapped only to XARF)
There are two floating-point formats supported, FP32 and FP16. In vfloatx/dvfloatx,
each 48-bit element contains one FP32 number with sign extended to fill the upper 16
bits. In vhfloatx/dvhfloatx, each 24-bit lane element contains one FP 16 number with sign
extended to fill the upper 8 bits.
For predication of lanes in vector stores, we use
int: 8/16/32 bits of predication, mapped to one predicate register
dpred: 64 bits of predication, mapped to two predicate registers

6.2.3.6  Data Ordering in Single and Double Vector Registers

Double vector data types have twice as many elements as the corresponding single
vector data type. In vector register allocation, compiler would allocate even/odd register
pairs (for example V2:V3) for double vector data type variables.

There are two schemes of element ordering in a double vector:

Sequential: take dvintx for example, ascending elements are stored in dv.lo[0],
dv.lo[1], ..., dv.lo[7], dv.hi[0], dv.hi[1], ..., dv.hi[7]

Interleaved: take dvintx for example, ascending elements are stored in dv.lo[0],
dv.hi[0], dv.lo[1], dv.hi[ 1], ..., dv.lo[7], dv.hi[7]

The interleaved format is the way physical design works, so it is supported throughout
the instruction set. The sequential format is available only in load/store instructions and
selected vector math operations.

Vector math operations mixing single and double vectors, typically due to 2x width
expansion like VMulHHW, use deinterleaved ordering:

srcl al0] |al1] |a[2] |al3] al14] | a[15]
src2 b[0] b[1] b[2] b[3] b[14] b[15]
dst.lo a[0] * b[0] al2] * b[2] a[14] * b[14]
dst.hi al[11*b[1] a[3] * b[3] a[15]*b[15]

Vector demotion operations have both sequential (VDemote) and interleaving
(VDemote_l) flavors, but promotion operation only has deinterleaving flavor
(VPromote_DI).

See Vector Load/Store Distribution Options for sequential vs interleaving/deinterleaving
flavors in load/store operations involving double and quad vectors.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 50



6.2.3.7 Endianness

VPU adopts the Little Endian memory organization. In Little Endian, lower bytes are
stored into lower addresses than upper bytes. For example, a vint vector {2, 3, 4,5, 6, 7,
8, 9} in memory would look the same as a vshort vector {2,0, 3,0, 4,0,5,0,6,0, 7,0, 8,0,
9, 0} in memory, or as a vchar vector {2,0,0,0, 3,0,0,0, .., 9, 0, 0, 0} in memory.

Table 5. Little Endian layout of various data types

Word 0] 1 2 7

Content 2 3 4 9

Halfword 0] 1 2 4 5 i 14 15
Content 2 0] 3 0 4 0 9 0
Byte 0|112|3|41|51(61(7 (89|10 (11 |. 28 (29 |30 |31
Content 2/0003lojo0o4|0|0 |O 9 |0 |0 |O

The same Little Endianness is also observed in the lanes of vector registers. For example,
a register holding vintx vector {2, 3, 4, 5, 6, 7, 8, 9} also has the same contents of another
register holding vshortx vector {2,0, 3,0, 4,0, 5,0, 6,0, 7,0, 8, 0, 9, 0}. More generally,
word lane i would occupy the same 48-bit section of storage in a vector register as short
lanes 2*i and 2%i+1, with lane 2% taking the lower 24-bit of that 48-bit section.

6.2.3.8 Intrinsic Functions/Operators Support

Most vector math instructions support single vector operands and have intrinsic
functions or operators with single vector data type operands, for example, VBitRev
instruction has the following single vector intrinsic functions:

vintx vbitreverse(vintx src);

vshortx vbitreverse(vshortx src);

vcharx vbitreverse(vcharx src);

For such instructions, double vector pseudo intrinsic functions/operators are also
available to map to a pair of instructions, for example:

dvintx dvbitreverse(dvintx src);

dvshortx dvbitreverse(dvshortx src);

dvcharx dvbitreverse(dvcharx src);

The convention is to prefix the intrinsic function names with “d” so that it reads
dv<something>.

Selected vector math instructions allow scalar operand to be broadcast to each lane
before the operation takes place. Their intrinsic functions/operators support such
operand type combinations as well. For example, for VAbsDif we support:

vintx vabsdif(vintx srcl1, vintx src2);

vshortx vabsdif(vshortx src1, vshortx src2);

vcharx vabsdif(vcharx src1, vcharx src2);

vintx vabsdif(vintx srcl1, int src2);

vshortx vabsdif(vshortx src1, int src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 51



vcharx vabsdif(vcharx src1, int src2);

For such instructions, double vector pseudo intrinsics are also supported, for example:
dvintx dvabsdif(dvintx src1, dvintx src2);

dvshortx dvabsdif(dvshortx src1, dvshortx src2);

dvcharx dvabsdif(dvcharx src1, dvcharx src2);

dvintx dvabsdif(dvintx src1, int src2);

dvshortx dvabsdif(dvshortx src1, int src2);

dvcharx dvabsdif(dvcharx src1, int src2);

Note that in each function, the same int-type scalar operand is shared between the two
single vectors.

A subset of vector math instructions has cross-lane dependency. For example, VMaxR
does max reduction across 8 extended word lanes, 16 extended halfword lanes, or 32
extended byte lanes. For such instructions there is no double vector pseudo intrinsic
support to avoid confusion.

Another subset of vector math instructions involved mixed size operands (between
single and double vectors), for example, VMulBBH has two single vector vcharx type
inputs, and its output is a double vector dvshortx type output. As we do not support
quad vector data types, there is no double vector pseudo intrinsic support as well, and
the intrinsics/operator field is similarly noted.

We also support various re-interpret type intrinsic functions:

Functionality Intrinsic

Reinterpret as vcharx vcharx as_vcharx (<vtype>);
Reinterpret as vshortx vshortx as_vshortx (<vtype>);
Reinterpret as vintx vintx as_vintx (<vtype>);
Reinterpret as vfloatx vfloatx as_vfloatx (<vtype>);
Reinterpret as vhfloatx vhfloatx as_vhfloatx(<vtype>);
Reinterpret as dvcharx dvcharx as_dvcharx (<dvtype>);
Reinterpret as dvshortx dvshortx as_dvshortx(<dvtype>);
Reinterpret as dvintx dvintx as_dvintx (<dvtype>);
Reinterpret as dvfloatx dvfloatx as_dvfloatx(<dvtype>);
Reinterpret as dvhfloatx dvhfloatx as_dvhfloatx(<dvtype>);

With any of such re-interpret type intrinsics, there is no change in the variable value. The
raw data is simply reinterpreted. For example, applying as_vshortx() on a vintx variable
reinterpret each 48-bit lane i as a pair of 24-bit lanes 2*i and 2*i+1, lower 24-bit as the
even lane, upper 24-bit as the odd lane.

For instructions sharing the same register entries (VRF, WRF, ARF) as source and
destination, also known as read-modify-write operands, we expose functionality to the
compiler in the form of intrinsic functions with return values.

For example, vector multiply-add of Byte type has this intrinsic function prototype:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 52



vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);

instead of
void vmaddb(vcharx srci1, vcharx src2, vcharx & src3dst, u3imm rnd_opt, int pred);

The rationale for this choice is that return-value functions are more readable in
application code.

Since such instructions normally have accumulator-like behavior, we expect
programmers to use the same variable in the src2 fields as well as receiving return value
of the function; for example:

acc = vmaddb(data, coef, acc, RND_R7, pred);

When the intrinsic functions are used this way, compiler usually achieves efficient
register allocation without incurring additional register movements.

6.2.4  Scalar/Vector Floating-Point Math
Instructions

The following floating-point instructions are supported in scalar and vector slots:
FP16/FP32 add, subtract, multiply, multiply-add, multiply-subtract
FP16/FP32 compare LT/LE/GT/GE/EQ/NE

FP32 transcendental functions: square root, reciprocal, reciprocal of square root,
log/exp base 2, sine, cosine, tanh

Conversion functions among FP16/FP32/INT16 and INT32. FP-to-INT conversions
include rounding and truncation options, and FP16-to/from-INT conversion includes
fraction bit width to support fixed-point processing.

Scalar floating-point instructions have 2 latency cases. Scalar floating-point comparison
instructions have 1 cycle of latency and remaining scalar floating-point instructions have
4 cycles of latency.

Vector floating-point has 3 latency cases. Vector floating-point comparison has 1 cycle
of latency, conversion between FP16 and FP32 has 2 cycles of latency, and the
remaining vector floating-point instructions have 3 cycles of latency.

VPU is an embedded processor that does not support exceptions. As an alternative, the
floating-point invalid flag can be polled and set/reset by code explicitly.
The following features are also not supported:

errno macro

math_handling macro

MATH_ERRNO macro

MATH_ERREXCEPT macro

EDOM or domain error

ERANGE or poll error

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 53



6.2.4.1 FP Math Corner Cases

FP math outcome for various corner cases, x being a non-zero regular FP number:

Table 6. FP add/subtract/multiply corner cases

FAdd:
src2
srcl -X zero -zero inf -inf NaN
X zero X X inf -inf NaN
zero -X zero zero inf -inf NaN
-zero -X zero -zero inf -inf NaN
inf inf inf inf inf NaN NaN
-inf -inf -inf -inf NaN -inf NaN
NaN NaN NaN NaN NaN NaN NaN
FSub:
src2
srcl X zero -zero inf -inf NaN
X zero X X -inf inf NaN
zero -X zero zero -inf inf NaN
-zero -X -zero zero -inf inf NaN
inf inf inf inf NaN inf NaN
-inf -inf -inf -inf -inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN
FMul:
src2
srcl 1 -1 zero -zero inf -inf NaN
1 1 -1 zero -zero inf -inf NaN
-1 -1 1 -zero zero -inf inf NaN
zero zero -zero zero -zero NaN NaN NaN
-zero -zero zero -zero zero NaN NaN NaN
inf inf -inf NaN NaN inf -inf NaN
-inf -inf inf NaN NaN -inf inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

The outcome of FMAdd(a, b, c) follows that of FAdd( FMul(a, b), c) for the above corner
cases. Outcome of FMSub(a, b, c) follows that of FAdd( FMul(-a, b), c) for the corner

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 54



cases. For FMAdd, when multiplication a * b results in number too small to represent
even as denormal, the product is represented as +zero or -zero, before the addition is
performed. Similarly for FMSub with multiplication -a * b.

For combination of src2/src3 being zero/-zero , FMAdd and FMSub outcomes are:

Table 7. FP multiply-add/subtract corner cases

srcl src2 src3 FMAdd FMSub
Pos zero zero zero zero
pos zZero -Zero zero -Zero
Pos -Zero zero zero zero
pos -Zero -Zero -Zero zero
neg zZero zero zero zero
neg zero -Zero zero -Zero
neg -Zero zero zero zero
neg -Zero -Zero -Zero zero

EI Note: These corner cases apply to scalar and vector, hfloat (FP16) and float (FP32) types.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 55



FP multiply corner cases:

Table 8. FP multiply corner cases

srct src2 FMul
Zero -zero -zero
-zero zero -zero
Zero neg -zero
neg zero -zero
-zero pos -zero
pos -zero -Zero

6.2.4.2 FP MUFU Instruction Corner Cases

Corner cases of reciprocal, square root, reciprocal square root, exp2, log2, sine, cosine
and tanh functions are documented in the corresponding instruction details.

6.2.4.3 FP Comparison Corner Cases

FP comparison always returns integer O (false) or 1 (true), and works as if FP numbers
are placed into these categories that have strict ordering:

-inf < negative FP numbers < -8 == @ < positive FP numbers < inf

Negative FP numbers and positive FP numbers compare normally.

Behavior of comparison involving inf or -inf is:
inf is equivalent to inf, thus inf cmp_op inf is true for {==, <=, >=} and false for others
-inf is equivalent to -inf, thus -inf cmp_op -inf is true for {==, <=, >=} and false for
others

Behavior of comparison involving NaN is
NaN cmp_op anything (including NaN itself) is false, for cmp_op = {<, <=, >, >=, ==}.
NaN != anything (including NaN itself) is true.

Note that FP comparison produces an integer outcome, so it DOES NOT output NaN or
set the sticky invalid status bit.

Note that the above behavior and corner cases apply both to scalar and vector, hfloat
(FP16) type and float (FP32) type.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 56



6.2.4.4 FP Conversion Corner Cases

FP conversion can produce +/- Inf in case of converting int24/int32/int48/fp32 into fp16
and can produce NaN in case of conversion between fp32 and fp16. However, FP
conversion DOES NOT set the sticky invalid status bit even when outcome is NaN.

The following table shows scalar and vector floating-point conversion corner cases:

Table 9. FP/INT conversion corner cases

Conversion Function +/- Inf NaN
INT_FP Output +/- Inf not possible, as Output NaN is not possible
VINT_FP INT32_MIN / INT32_MAX can

be presented in normal FP32

numbers
INT_FP16 Output +/- Inf is possible from | Output NaN is not possible
VINT_FP16 values not representable in

FP16
VINTX_FP Output +/- Inf not possible, as Output NaN is not possible

INT48_MIN / INT48_MAX can
be presented in normal FP32

numbers
VINT24_FP16 Output +/- Inf is possible from Output NaN is not possible
values not representable in
FP16
FP_INT_Trunc/Round Input +/- Inf converts to output | Input NaN converts to output
VFP_INT_Trunc/Round INT32_MIN / INT32_MAX INT32_MIN / INT32_MAX
FP16_INT_Trunc/Round Input +/- Inf converts output Input NaN converts to output
VFP16_INT_Trunc/Round INT32_MIN / INT32_MAX INT32_MIN / INT32_MAX
VFP_INTX_Trunc/Round Input +/- Inf converts to output | Input NaN converts to output
INT48_MIN / INT48_MAX INT48_MIN / INT48_MAX
VFP16_INT24_Trunc/Round Input +/- Inf converts to output | Input NaN converts to output
INT24_MIN / INT24_MAX INT24_MIN / INT24_MAX
FP_FP16 Output +/- Inf is possible from Input NaN converts to output
VFP_FP16 +/- Inf and values not NaN
representable in FP16
FP16_FP Input +/- Inf converts to output | Input NaN converts to output
VFP16_FP +/- Inf NaN

6.2.4.5 FP Conversion to/from Fixed-Point Formats

Some of the VPU scalar/vector FP/Integer conversion instructions support fixed-point
conversion by having an argument that conveys gbit of the fixed-point format.

Fixed-point format is one that represents a number having fixed integer and fraction
widths using integer representation. There is a gbit configuration parameter, sometimes
referred to simply as Q, as in Q8, Q15, and so on, that programmer maintains in software
to indicate width of the fraction portion. Qbit can be viewed as the bit position of an
imaginary radix point, or boundary between integer bits and fraction bits.

Normally, variables in the same block of computation share the same gbit, so that fixed-
point addition and subtraction are performed the same way as integer addition and

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 57



subtraction. Fixed-point multiplication is performed as integer multiplication followed by
rounding to get back the same gbit configuration, or a different gbit configuration if
desirable in the application.

To convert a floating-point number to a fixed-point, we multiply the floating-point
number by 2”gbit. To convert from fixed-point to floating-point, we divide the fixed-
point number by 27gbit.

For example, numbers 1.125 and 5.0625 are represented in fixed-point with gbit = 8 as
1.125* 278 = (1 + 1/8) * 256 = 256 + 32 = 288, and 5.0625 * 278 = (5 + 1/16) * 256 = 1280
+ 16 = 1296.

The sum of the two numbers, 1.125 + 5.0625 = 6.1875, can be carried out as 288 + 1296
= 1584, and converted back to floating-point as 1584 / 256 = 6.1875.

With gbit argument as part of the conversion, the multiplication or division by 22gbit is
performed in hardware as part of the conversion, expanding precision and dynamic
range internally in the process, and bring some acceleration to the conversion process.

Not all FP/INT conversions support the gbit argument though. Basically, only a
conversion involving FP16 has this feature. FP16 format has relatively limited dynamic
range, as its 5 bits of exponent gives +/- 14 range in the exponent in regular (not
denormal) FP16 numbers. There are cases where the multiplication or division by 2*qgbit
involved, if carried out in FP16 math would have caused the number to become +/- Inf in
FP16, and if carried out in integer would have overflown the integer representation.
Without a gbit argument as part of the conversion, the programmer would have to go
through FP32, that is, FP16 - FP32 - multiply 2*gbit in FP32 - Integer, or Integer >
FP32 - multiply by 22-gbit in FP32 - FP16, and would have taken much longer.

For example, the number 128.0 represented in Q8 fixed-point is integer 0x8000, or 27 15.
It's representable in INT32 or INT24 (vector extended short lane). If we convert this
number from fixed-point to FP16 using standard (no-gbit) conversion and FP16 math,
we will convert it first to FP16 then multiplying by 27-8 in FP16. The first step of
converting INT24 or INT32 0x8000 to FP16 would result in +Inf (positive infinity), then
+Inf * 27-8 = +Inf. For this example, it seems we would want to first divide by 278 in
INT24/INT32, before performing the standard INT24/INT32 to FP16 conversion.
However, in general doing that would throw away fractional information that we work
hard to obtain and would like to preserve as much and as long as possible in the
computation.

Conversely, if we convert 128.0 represented in FP16 to Q8 fixed-point with standard (no-
gbit) conversion and FP16 math, we see issues. 128.0 itself we can represent just fine in
FP16. However, the multiplying by 2”*gbit = 2”8 involved, if performed in FP16, we would
see intermediate result becoming +Inf and cannot proceed to be accurately converted to
Q8 fixed-point. For this example, it would work if we converted 128.0in FP16 to
INT24/INT32, then we left-shift by 8 bits in INT24/INT32. However, in this process we
also throw away fractional portion of the input number, so it would not accurately
convert, for example, 128.25, to fixed-point.

Converting FP32 to/from fixed-point would not have the same issue, as FP32 with its 8-
bit exponent supports wider dynamic range, -126 ~ +126, much wider than integer side,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 58



so inputs that cause intermediate outcome to become +/-Inf would cause the final
converted outcome to be saturated to MAX/MIN integer value for that destination bit
width, so there is no loss of information if the multiplying/dividing by 22gbit is
performed in FP32 before/after conversion to/from integer.

6.3 Memory Operations

6.3.1 Memory Coherency

There is memory dependency detection logic to stall the processor pipeline to keep
memory coherent.

For this discussion, it is helpful to define coherent vs non-coherent memory operations.

Non-coherent memory operations:
Transposing load/store
Table lookup (load)
Histogram (load and store)
Vector-addressed store

Coherent memory operations: all other load/store. Each such load/store accesses
consecutive memory contents whose size range from one byte to 64 bytes.

The non-coherent accesses are non-consecutive and thus have a wide address range, so
it is too expensive to comprehend in the memory dependency stalling logic. Memory
access for load is in EX5 stage, whereas memory access for store is later in EX9 stage.
Thus, there should be 5 execution packets of separation between storing an item to
memory before the loading of that element should be scheduled.

When a coherent store and the subsequent coherent load are detected by hardware to
have “close enough” addresses and do not have enough execution packet separation in
the code, processor will stall the load to create the separation, so that load would return
memory contents after the store. The checking and stalling mechanism keeps the
memory operations coherent, or consistent with sequential execution.

To reduce timing pressure, the address checking is simplified (exact for scalar load/store
but use just starting row address for vector load/store) and is conservative. Thus,
sometimes, a load can be stalled unnecessarily until memory transaction from a previous
store is completed.

In case either or both memory operations are non-coherent, there is not enough
execution packet separation, and even when there are overlaps in addresses, processors
will not stall, causing RAW (read after write) and WAW (write after write) hazards. WAW
does not happen between normal store and vector-addressed-store, but can happen
between normal store and histogram update, as they occur on different pipeline stages.

To help achieve this separation between non-coherent memory operations, in Orin we
have added a memory fence instruction (MemFence) that can be used to avoid memory

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 59



coherency issues. The MemFence instruction would inject stalls until all preceding
memory store operations are committed. It is a broad (works on all memory operations)
and blind (not based on address) fence, so should be used judiciously, otherwise
performance may degrade too much.

Note that there is also available a compiler pragma chess_memory_fence() that works
similarly as the MemFence instruction. With chess_memory_fence(), compiler inserts as
many NOPs as necessary to ensure that memory store operations before the fence are
committed before memory operations after the fence can start. One advantage over
MempFence instructions is that each MemFence instruction simply inserts stall cycles,
and with chess_memory_fence(), the compiler is supposed to schedule useful work when
it’s possible, so that some useful work may be accomplished while memory operations
after the fence are delayed.

Histogram read/write has its own per-bank bypass mechanism (covering only histogram
read/write) to implement correct histogram operation despite VMEM latency.

There is RAW hazard detection and handling built-in for the histogram functionality to
ensure memory coherency among histogram updates. Note that there is no hazard
detection between histogram read/write versus any other load/store accesses, thus the
“non-coherent” memory operation designation for histogram.

6.3.2 Memory Address Alignment

Various scalar/vector load/store shall comply with the address alignment constraint and
misalignment handling.

In the case of demoting/promoting load/store, we determine alignment based on the
data type in memory, versus the data type in register file. For example, QVSTHB, quad
vector demoting store from Halfword to Byte, is considered Byte-type store regarding to
address alignment.
Byte-type load/store:
Scalar load/store LDB, STB (based-offset, post-modify, agen-based) are 8-bit
aligned.
Single vector (32 x 8-bit) load/store VLDB, VSTB (based-offset, post-modify, agen-
based) are 8-bit aligned.
Double vector (64 x 8-bit) load/store DVLDB, DVSTB (post-modify, agen-based)
are 16-bit aligned.
Promoting/demoting load/store resulting in 32 x 8-bit memory access, VLDBH,
VLDBW, DVSTHB, are 8-bit aligned.
Demoting store resulting in 64 x 8-bit memory access, QVSTHB, are 16-bit
aligned.
Halfword-type scalar/vector load/store shall be 16-bit aligned.
Word-type scalar/vector load/store shall be 32-bit aligned.

Extended-word type vector load/store can be leveraged for extended
Byte/Halfword/Word types (12/24/48-bit), shall be 16-bit aligned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 60



Table lookup, histogram, vector-addressed store base address should be 512-bit
aligned, so each 8-bit element is 8-bit aligned, 16-bit element 16-bit aligned, and 32-
bit element 32-bit aligned.

VLUT_*, DVLUT_*

VHIST_*, DVHIST_*

DVAST_*
Agen configuration (512-bit) load/store should be 32-bit aligned.
AgenCfglLD, AgenCfgST

Lane predicated vector stores would behave, in terms of address alignment, as
unpredicated vector stores.

Unsigned load would behave as the corresponding signed load (keeping all other
attributes the same), in terms of address alignment.

The hardware enforces the alignment constraint by forcing the lowest {1, 2, 6} bits of
the byte address to zero, based on the alignment requirement being 16-bit, 32-bit, or
256-bit. For 8-bit address alignment, the byte address is not altered.

6.3.3  Memory Address Range Constraints

Load/store addresses should be in valid range consistent with the address map:
Superbank A: Ox00000 ~ Ox1FFFF
Superbank B: 0x40000 ~ Ox5FFFF
Superbank C: Ox80000 ~ Ox9FFFF

Any single-item load/store should have base address inside the valid range. Any multiple-
item load/store should have base address sufficiently away from the end of each
superbank range, such that no data item would fall out of the valid range. For example,
software should avoid issuing a load or store starting Ox1FFEO and spanning more than
32 bytes. An exception is lane-predicated store, if prediction is off for the part of store
data going outside the valid range.

In case a multiple-item load/store falls partially or fully outside the valid range, hardware
wraps around the access so that the part of load/store falling outside the valid range is
mapped back in, to the superbank indicated by the base address.

In case the base address goes outside the valid range, hardware determines the
superbank by:

Address bits 19:18 == “00” - Superbank A

Address bits 19:18 == “01” - Superbank B

Address bits 19:18 == “10" or “11” - Superbank C
However, software should not take advantage of such a wrap-around, as address map

changes in future generations can change the address wrap-around and make the
software not work.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 61



6.3.4  Scalar Data Types

Byte, half-word and word types are supported. Signed/unsigned flavors of load for byte
and half-word are supported to properly sign or zero-extend into 32-bit scalar register
entry. Store operations are signed/unsigned agnostic so there is just one flavor.

Table 10. Scalar load/store data types

Size in Size in scalar Memory
Element type . ]
memory register alignment
B/BU: signed/unsigned byte 8-bit 32-bit 8-bit
H/HU: signed/unsigned half-word 16-bit 32-bit 16-bit
W/WU: signed/unsigned word 32-bit 32-bit 32-bit

Note that hardware does not tag each scalar register carrying signed or unsigned data,
where behavior is different, signed and unsigned flavors of scalar math operations are
offered, so programmer should choose signed/unsigned flavors in scalar load and scalar
math operations appropriately.

6.3.5 Vector Data Types and Promotion/Demotion

Scalar-based load/store can have immediate offset (10-bit) or can be post-modified with
a second scalar register. Only parallel distribution mode is available, loading 256-bit or
512-bit from memory to write into single or double vector register, or storing single or
double vector register into 256-bit or 512-bit in memory. The WX type allows storing the
raw bits tightly packed as 384-bit, and can be used to load/store B, H, or W-type vector
registers.

Data types supported for scalar-based vector load/store:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 62



Table 11. Scalar-based vector load/store data types

Vector .. Size in vector Memory
Element type . Size in memory . .
size register alignment
B/BU: single 32 x 8-bit 32 x 12-bit 8-bit
signed/unsigned byte vchar/vuchar vcharx
double 2 X 32 x 8-bit 2 x 32 x 12-bit 16-bit
dvchar/dvuchar dvcharx
H/HU: single 16 x 16-bit 16 x 24-bit 16-bit
signed/unsigned half- vshort/vushort vshortx
word
double 2 x 16 x 16-bit 2 x 16 x 24-bit 16-bit
dvshort/dvushort dvshortx
W/WU: single 8 x 32-bit 8 x 48-bit 32-bit
signed/unsigned vint/vuint vintx
word
double 2 X 8 x 32-bit 2 X 8 x 48-bit 32-bit
dvint/dvuint dvintx
WX: extended single 8 x 48-bit 8 x 48-bit 32-bit
precision (VRF, WRF) vintx vintx

Agen-based load/store offers more flexibility in data types. In addition to standard data
bytes, some types of promotion and demotion cases are supported.

Note that Load-Permute instruction type designations DVLDPermHB/HBU are not
included, as these type designations refer to data types in processing steps, permute as
Halfword and zero/sign extend as Byte, and are not indicating type demotion

functionality.

Table 12 Agen-based vector load/store data types

Type name Size in memory Siz‘? LG M_e mory
register alignment
B/BU: signed/unsigned byte load single: 32 x 8-bit 32 x 12-bit single: 8-bit
B: signed byte store vchar/vuchar vcharx double: 16-bit
double: 64 x 8-bit 2x 32 x 12-bit
dvchar/dvuchar dvcharx
H/HU: signed/unsigned half-word single: 16 x 16-bit 16 x 24-bit 16-bit
load vshort/vushrot vshortx
H: signed half-word store vhfloat vhfloatx
double: 32 x 16-bit 2x 16 x 24-bit
dvshort/dvushort dvshortx
dvhfloat dvhfloatx
W/WU: signed/unsigned word load | single: 8 x 32-bit 8 x 48-bit 32-bit
W: signed word store vint/vuint vintx

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 63



Type name Size in memory Siz? in vector M_e mory
register alignment
vfloat vfloatx
double: 16 x 32-bit 2x 8 x 48-bit
dvint/dvuint dvintx
dvfloat dvfloatx
BH/BHU: byte to half-word double: 32 x 8-bit 2x 16 x 24-bit 8-bit
promoting load vchar/vuchar dvshortx
BW/BWU: byte to word promoting | double: 16 x 8-bit 2x 8 x 48-bit 8-bit
load n/a (half of vchar/vuchar) dvintx
HW/HWU: half-word to word double: 16 x 16-bit 2X 8 x 48-bit 16-bit
promoting load vshort/vushort dvintx
BH: extended byte to half-word single: 32 x 16-bit 32 x 12-bit 16-bit
promoting store dvshort vcharx
HW: extended half-word to word single: 16 x 32-bit 16 x 24-bit 32-bit
promoting store dvint vshortx
HB: half-word to byte demoting quad: 64 x 8-bit 4 x 16 x 24-bit 16-bit
store dvchar 2 x dvshortx
double: 32 x 8-bit 2 x 16 x 24-bit
vchar dvshortx
WH: word to half word demoting quad: 32 x 16-bit 4 x 8 x 48-bit 16-bit
store dvshort 2x dvintx
double: 16 x 16-bit 2 x 8 x 48-bit
vshort dvintx
WH: word to half word demoting double: 32 x 16-bit dvshort 2 x 16 x 32-bit 16-bit
store from DXAC dxvshortx
WX: single vector register full 384- | single: 8 x 48-bit 8 x 48-bit 16-bit
bit load/store vintx vintx
(no rounding and saturation
support)
W: single XARF full 512-bit store single: 16 x 32-bit 16 x 32-bit 32-bit
xvshortx xvshortx

While in scalar/vector math we use “F” and “HF” type designation to denote float and
hfloat data types, in memory operations, float and hfloat are treated like int and short
respectively and are thus mapped to “W” and “H” type designations.

6.3.6  Vector Load/Store Distribution Options

Various data distribution options are supported for vector load/store:
S: scalar (load 1 element and broadcast to all lanes, store first lane), single register
(storing first lane of vector register) or double register (storing first lane of .lo single
vector and first lane of .hi single vector)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 64



P: parallel (1-to-1), single or double register
T: transposing, having constant offset between elements, single or double register
PDI: parallel double register deinterleaving (load-only)
Pl: parallel double register interleaving (store-only)
parallel quad register 4-way interleaving (store-only)
TDI: transposing double register deinterleaving (load-only)
Tl: transposing double register interleaving (store-only)
Pl12: alternate form of quad register interleaving (store-only)
C2: circulate between 2 data points, single register (load only)
T2: transposing after every pair of elements (double Word vector load/store)

T2DI/T2l: T2 with deinterleaving load or with interleaving store (double Word vector
load/store, double Halfword vector load)

T4: transpose every 4 data elements

T8: transpose every 8 data elements

T16: transpose every 16 data elements

T32: transpose every 32 data elements
Interleaving/deinterleaving is to offer data access flexibility as well as to deal with MAC
datapath interleaving in the lane-expanding cases. For double-register deinterleaving
load, we take memory items and interleave (deal) into the two vector registers. For
double-register interleaving store, we interleave (shuffle) data from two vector registers
to sequential items in the memory. For quad-register interleaving store, we interleave
each pair, then between the two pairs.

For example, “QVSTWH_P VO:V1, V2:V3, *A0++” would store out (indexing word lanes of
each register):

ve[e], ve[r1l, ., ve[7], vi[e], vi[1], ., V1[7],

v2[e], v2[1], ., Vv2[7], v3[e], v3[1], ., V3[7]

The 4-way interleaving version, QYSTWH_PI VO:V1_V2:V3 would store out:

ve[e], v2[e], vi[e], v3[e], ve[1], v2[1], V1[1], Vv3[1], ., VO[7], V2[7], V1[7], V3[7]

where the lowest 16-bit of each word lane is stored out in half-word spacing.

The 4-way interleaving QVSTHB_PI VO:V1, V2:V3 has a similar data pattern, with input
elements pulled from half-word (24-bit) lanes and stored out as bytes.

ve[e], v2[e], vi[e], v3[e], ve[1], Vv2[1], vi1[1], Vv3[1], ., VO[15], V2[15], V1[15], V3[15]
Alternative interleaving patternin QVSTWH_PI2 VO:V1, V2:V3, each element being 48-bit
input from register, 16-bit output in memory:

ve[e], vi1[e], ve[1], Vv1[1], .., Ve[7], Vvi1[7], v2[e], v3[e], Vv2[1], Vv3[1], .., V2[7], V3[7]
Alternative interleaving patternin QVSTHB_PI2 VO:V1, V2:V3, each element being 24-bit
input from register, 8-bit output in memory:

ve[e], vi[e], ve[1], Vvi[1], .., Vve[15], V1[15], V2[e], Vv3[@], v2[1], Vv3[1], .., V2[15], V3[15]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 65



Another way to compare with the “_P” distribution option is to look at VO, V1, V2, V3
each as an 8 (in case of WH type) or 16 (in case of HB type) -element array.

QVST*_P stores out VO + V1 + V2 + V3, “+” being concatenation.
QVST*_PI stores out interleave(interleave(VO, V1), interleave(V2, V3)).
QVST*_PI2 stores out interleave(VO, V1) + interleave(V2, V3).
A load with “C2” distribution, for example, “VLDW_C?2 *A0++, VO” would read the first 2

32-bit words from the location pointed by agen AQ, say x[0] and x[1], and distribute
them such that

ve = {x[e], x[1], x[e], x[1], x[e], x[1], x[@], x[1]}, seen as word (48-bit) lanes.

6.3.7  Transposing Load/Store

Transposing load/store accesses array elements vertically when the memory contents is
viewed with the configured line pitch. Here, line pitch is defined by number of elements.

Six transposition modes are supported, designated as T, T2, T4, T8, T16 and T32. T is the
normal transposition mode, and is supported broadly, for all Byte/Halfword/Word types
and various promotion/demotion types, single and double vector load/store. T<n>
transposition, n being a power of 2 from 2 to 32, reads/writes n consecutive data points
before applying the line pitch address offset.

Not all line pitch values are possible. Constraints on the line pitch are dependent on the
data type and the transposition mode, as shown in the following table.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 66



Table 13. Line pitch constraint for various transposition modes

Double Byte store (12-bit 2> 8-bit)

Trans- Single/double vector - type - load/store Line pitch Programmed
position constraint into
mode lane_ofst
(12-bit
unsigned)
T Single/double Word load (32-bit > 48-bit) 16k + 1 k
Single/double Word store (48-bit > 32-bit)
Single HW promoting store (24-bit > 32-bit)
Single/double Halfword load (16-bit > 24-bit) 32k + 1 k
Single/double Halfword store (24-bit > 16-bit)
Double HW promoting load (16-bit > 24-bit)
Double BH promoting store (12-bit > 16-bit)
Double/quad WH demoting store (48-bit - 16-bit)
Single Byte load (8-bit > 12-bit) 64k + 2 k
Single Byte store (12-bit - 8-bit)
Double BH promoting load (8-bit > 24-bit)
Double BW promoting load (8-bit = 48-bit)
Double/quad HB demoting store (24-bit &> 8-bit)
T2 Double Word load (32-bit - 48-bit) 16k + 2 k
Double Word store (48-bit > 32-bit)
Double Halfword load (16-bit = 24-bit) 32k + 2 k
Double Halfword store (24-bit > 16-bit)
T4 Double Halfword load (16-bit = 24-bit) 32k +4 k
Double Halfword store (24-bit = 16-bit)
T8 Double Word load (32-bit - 48-bit) 16k + 8 k
Double Word store (48-bit > 32-bit)
Double Halfword load (16-bit > 24-bit) 32k +8 k
Double Halfword store (24-bit > 16-bit)
T16 Double Halfword load (16-bit = 24-bit) 32k + 16 k
Double Halfword store (24-bit > 16-bit)
T32 Double Byte load (8-bit > 12-bit) 64k + 32 k

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like

normal (consecutive) load/store in address calculation. Behavior is still different than
normal (consecutive) load/store, in the sense that degenerate transposing memory
transactions are still noncoherent and can be used intentionally to avoid unnecessary

memory stalls. Please see Memory Coherency for details.

In case there is a type promotion or demotion in transposing load/store, it’s the data
type in memory that dictates which line pitch constraint to use.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 67




For Byte type we only support single vector T transposition load/store. For Halfword and
Word types, both single vector and double vector T transposition load/store are
supported.

In general, transposing load/store calculates byte addresses for each element as follows
for the normal transposition (T):
M = data size in bytes, 1, 2 or 4 for Byte/Halfword/Word type

P=(M==1) 72 (64*K + 2) : (64*K + M) // line pitch in bytes, K provided by agen lane_ofst
byte_address[i] = (base & SUPERBANK_SELECT)
+ alias_within_superbank((base + i*P), i = @ .. num_lanes - 1

With this address calculation, adjacent lanes are P (pitch in bytes) apart in memory.

The first term of byte address is for superbank selection, which is affected only by the
base address, not by any index. As each superbank occupies 256KB of space (256K =
2718), including aliased region, and we have 4 superbanks, we look at bits 19 and 18 of
byte address to select superbank:

SUPERBANK_SELECT = 0xC0000

For the T2 element-pair transposition, we carry out the following address calculation:
M = 2 for Halfword type, 4 for Word type
P = 64*K + 2*M // line pitch in bytes, K provided by agen lane_ofst
byte_address[2*i] = (base & SUPERBANK_SELECT)
+ alias_within_superbank ((base & BASE_MASK) + i*P)

byte_address[2*i+1] = (base & SUPERBANK_SELECT)

+ alias_within_superbank ((base & BASE_MASK) + i*P + M)

i =0 .. num_lanes/2 — 1, where BASE_MASK = Ox1FFCO.

With this address calculation, adjacent lanes are alternately M and 64*K+M apart in
memory.

The following diagram shows examples of T and T2 transposition access patterns. Note
that for Byte type, we write either all even bytes of every halfword or all odd bytes of
every halfword, depending on the LSB of byte address.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 68



Figure 9. Access patterns of transposition modes T and T2

345 67 3 010113213 14151617 181920 21 22 23 24 25 26 27 78 29 30 31 32 33 34 35 35 37 38 30 40 4% 42 43 44 45 46 &7 48 49 50 51 52 53 54 55 56 37 58 50 60 &2 62 63|

VLDB_T w/ %21 WLOW T w/ &2

INLOW 12w/ K3

T4,T8, T16, and T32 transposition modes are supported in selective load/store
instructions. Halfword type is more heavily used than the other types in computer vision,
and double vector load/store leverages full throughput of VMEM, so double vector
Halfword load/store supports all the transposition modes. Other type-transposition
combinations are supported where there is demand among use cases.
In general, line pitch in bytes for T<n> transposition is derived as

P = 64 * lane_offset + n * sizeof_data_type
The access pattern is that we would access consecutively n data elements before taking
the line pitch address offset to move down to the next line.

The following diagram shows H_T4, H_T8, H_T 16, B_T32 transposition access pattern.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 69




Figure 10. Access patterns of transposition modes T4, T8, T16 and T32

001 2 34 % 6 7 & 914011121314 151617 18 19 20 71 22 23 34 35 26 27 26 29 30 31 32 33 34 35 30 37 36 30 40 41 47 43 49 45 40 47 48 29 30 41 52 53 44 53 96 97 58 59 60 &1 62 63
0 DLDs Td v K=l

B2

126 L1 T 1

192 ovioe TEw k=3 | | |

= | [ T T T T T 1 T 1

320 [T 1

184 |

asg LT T T T T T T 1 [ T 1T

512 |
640 LT T T T 1T 1T T 1]

T4 DVLDH_TI6 w/ K=

88 LT T T T 1T T 1T T T 0 I T T T T ]

g3z

96 1 1 1

seo] | ] DVLDB T32 wf K=l

1024 IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

1064 HEEEEEEEEEEEEEEEEEEn|

wsl [TTTOTTTTT

216

The unsigned 12-bit lane offset is applied up to 31 times among the transposition
options of a load/store instruction, and line pitch is 64 bytes times the lane offset, so
the full range of unsigned 12-bit lane offset value can lead the raw address to map far
outside the superbank the base address is pointed to. The extreme case is with single-
vector byte-type T transpose, 31 * (64 * 4095 + 2), almost 8 Mega Bytes (with Mega
being 1024/2).

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like
normal (consecutive) load/store in address calculation in all cases except for byte-type T
transposing load/store. Because we have 16-bit memory banks, byte-type T transposing
load/store with zero lane offset would be reading/writing every-other byte instead of
consecutive bytes.

In cases where address patterns of degenerate transposing load/store are identical with
that of normal/consecutive load/store, the exact behavior is still different, in the sense
that degenerate transposing memory transactions are still non-coherent transactions
from memory coherence stall logic point of view, meaning there is no address proximity
checks to stall memory transactions automatically. In certain cases, the degenerate
transposing load/store can be used intentionally to avoid memory coherency stalls, but
programmers should be extremely careful with its use.

The alias_within_superbank function in address calculation keeps subsequent accesses
within one superbank. Only in B_T32/H_T16/W_T8 distribution options, where the line
pitch is applied only once, would we make use of almost-full range of lane offset. It’s also
for future extension of VMEM capacity. Programmers are strongly discouraged to
intentionally allow address to go outside physical memory and rely on address aliasing in
the hardware. Such code may not work in the future when address map changes.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 70




6.3.8 Parallel Lookup, Histogram and Vector-
Addressed Store

PVA supports parallel table lookup and histogram through table/bin replication, taking
advantage of the memory banking organization in VMEM superbanks.

Vector-addressed store, also called reverse parallel lookup, takes a scalar base address
(512-bit = 64-byte aligned), a vector of indices, a vector of data values, and writes the
data values into the indexed entries. Often, per-lane predication is required to perform
store on selected lanes.
Table lookup:

1/2/4/8/16 x W/WU word index, word table entry

1/2/4/8/16/32 x H/HU  halfword index, halfword table entry

1/2/4/8/16/32 x B/BU  byte index, byte table entry

1/2/4/8/16/32 x HB/HBU halfword index, byte table entry

Histogram:
1/2/4/8/16 W word index, word histogram bin
1/2/4/8/16/32 H halfword index, halfword histogram bin
Vector-addressed store:
16W word index, word store data
32H halfword index, halfword store data

Note that only memory slot 0, MO, supports lookup, histogram, and vector-addressed
store features.

6.3.8.1 Data Organization in Memory

Table/histogram/VAST data organization is as follows:

Figure 11. Parallel lookup, histogram and VAST data organization for various
types and parallelism
16-parallel Word-type:
TO[0] T1[0] T15[0]
TO[1] T[] T15[1]

8-parallel Word-type:
TO[O0..1] T1[0.1] | T710.1]

TO[2.3] T1[2.3] .| T712.3]

4-parallel Word-type:
T0[0..3] T1[0..3] .. | T3[0.3]

TO[4..7] T1[4.7] | T3[4.7]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 71



2-parallel Word-type:
TO[0..7] T1[0..7]
TO[8..15] T1[8..15]

1-parallel Word-type:
T0[0..15]
T0[16..31]

32-parallel Half-word-type:
TO[O] T1[0] T2[0] T31[0]

TO[1] T1[1] T2[1] T31[1]

16-parallel Half-word-type:
TO[0..1] T1[0.1] T15[0..1]

TO[2.3] T1[2.3] T15[2.3]

8-parallel Half-word -type:
T0[0..3] T1[0.3] _[T710.3]

TO[4..7] T1[4.7] L T74.7]

4-parallel Half-word -type:
T0[0..7] T1[0.7] _[T3[0.7]

TO[8..15] T1[8.15] [ T3[8.18]

2-parallel Half-word -type:
T0[0..15] T1[0..15]
T0[16..31] T1[16.31]

1-parallel Half-word -type:
TO[0..31]
TO[32..63]

32-parallel Byte-type:
TO[0..1] T1[0..1] T2[0.1] T31[0..1]
TO[2..3] T1[2.3] T2[2..3] T31[2.3]

16-parallel Byte -type:
T0[0..3] T1[0..3] T15[0..3]
TO[4..7] T1[4.7] T15[4.7]

8-parallel Byte -type:

TO[0..7] T1[0..7] [ T700.71
TO[8..15] T1[8..15] | T708.15]

4-parallel Byte -type:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 72



TO[0..15] T1[0..15] .. [ T3[0.15]
TO[16.31] T1[16.31] | 316311

2-parallel Byte -type:
T0[0.31] T1[0.31]
TO[32..63] T1[32..63]

1-parallel Byte -type:
T0[0..63]
TO[64..127]

6.3.8.2 Table Lookup

VMEM Superbanks support parallel table lookup with the following data element size
and parallelism combinations:

For byte element size, 1/2/4/8/16/32 ways of parallelism
For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism
For word (32-bit) element size, 1/2/4/8/16 ways of parallelism

The VPU sends a table base address (512-bit or 64-byte aligned) and an index vector to
the VMEM interface (VMEM I/F). The VPU also sends along addressing mode (to convey
that it’s a table lookup transaction), element size and parallelism as sideband signals. The
first K elements of the index vector are consumed for K-way lookup; the rest are
ignored.

The VMEM |/F decodes the upper bits of the base address and forwards all signals
pertaining to the lookup access to the addressed superbank.

The superbank carries out the lookup, extracts the K table entries from memory
according to the base address and the index vector, and sends an outcome vector
through the VMEM I/F back to the VPU. The first K elements of the outcome vector are
consumed by the VPU; the rest are ignored.

The 32 16-bit memory banks are divided evenly to support the various lookup
parallelisms. For example, for 4-way word-size lookup, the 32 memory banks are evenly
divided into 4 parallel tables, with each table residing in 8 16-bit memory banks. Please
see Section 6.3.8.1 for table data organization for various data type and parallelism
combinations.

In Gen-2 VPU we have added 2-point lookup and 2x2-point lookup.

Table 14. Table lookup 2-point and 2x2-point support

Instruction Memory object Index vector Outcome vector
VLUT_ "B signed byte (8-bit) sign-extended from byte | signed byte (12-bit)
VLUT_2pt_*B lane (12-bit)

VLUT_2x2pt_*B

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 73




Instruction

Memory object

Index vector

Outcome vector

VLUT_*BU
VLUT_2pt_*BU
VLUT_2x2pt_*BU

unsigned byte (8-bit)

sign-extended from byte
lane (12-bit)

signed byte (12-bit)

[DIVLUT_*H
[DIVLUT_2pt_*H
[DIVLUT_2x2pt_*H

signed half-word (16-bit)

Up to 16 LSBs from half-
word lane (24-bit)

signed half-word (24-bit)

[DIVLUT_*HU
[DIVLUT_2pt_*HU
[DIVLUT_2x2pt_*HU

unsigned half-word (16-bit)

Up to 16 LSBs from half-
word lane (24-bit)

signed half-word (24-bit)

[DIVLUT_*W

signed word (32-bit)

Up to 15 LSBs from word

signed word (48-bit)

[DIVLUT 2pt_*W lane (48-bit)

[DIVLUT_2x2pt_*W

[DIVLUT_*WU
[DIVLUT_2pt_*WU
[DIVLUT_2x2pt_*WU

unsigned word (32-bit) Up to 15 LSBs from word

lane (48-bit)

signed word (48-bit)

VLUT_*HB
VLUT_2pt_*HB
VLUT_2x2pt_*HB

signed byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit)

signed byte (12-bit)

VLUT_*HBU
VLUT_2pt_*HBU
VLUT_2x2pt_*HBU

unsigned byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit)

signed byte (12-bit)

6.3.8.3

VMEM Superbanks support parallel histogram with the following data element size and
parallelism combinations:

Histogram

There is no byte element size support
For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism
For word (32-bit) element size, 1/2/4/8/16 ways of parallelism

Since each superbank supports one read transaction and one write transaction per
cycle, histogram reads and writes are pipelined, to achieve up to 32 histogram updates
per cycle, in case of 32-way half-word case.

The VPU sends a histogram base address (512-bit or 64-byte aligned), an index vector
and an update vector to the VMEM interface (VMEM I/F). The VPU also sends along
addressing mode (to convey that it’s a histogram transaction), element size and
parallelism as sideband signals. The first K elements of the index vector and the update
vector respectively are consumed for K-way histogram; the rest are ignored.

The VMEM I/F decodes the upper bits of the base address and forwards all signals
pertaining to the histogram access to the addressed superbank.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 74




The superbank carries out the histogram update, reads the K histogram bins from
memory according to the base address and the index vector, adds the update vector to
the bins, writes the updated bins back to memory (where each bin came from), and
sends the before-update bins as an outcome vector through the VMEM I/F back to the
VPU. The first K elements of the outcome vector are consumed by the VPU; the rest are
ignored.

The 32 16-bit memory banks are divided evenly to support the various histogram
parallelisms. For example, for 4-way word-size histogram, the 32 memory banks are
evenly divided into 4 parallel histograms, with each histogram residing in 8 16-bit
memory banks. See Data Organization in Memory for histogram data organization for
various data type and parallelism combinations.

Compared to conventional/normal histogram, VPU parallel histogram feature
implements weighted histogram (by allowing an update vector to be added instead of
only incrementing by one), and supports bin value read-back, which is useful in sorting
and decision tree applications to bin records or features for further processing.

Table 15. Histogram support

Instruction eI Ol TR Index & weight vectors | Outcome vector
outcome)

[DIVHIST_*H signed half-word (16-bit) Up to 16 LSBs from half- signed half-word (24-bit)
word lane (24-bit)

[DIVHIST_*W signed word (32-bit) Up to 15 LSBs from word signed word (48-bit)
lane (48-bit)

[DIVHIST_OR_*H signed half-word (16-bit) Up to 16 LSBs from half- signed half-word (24-bit)
word lane (24-bit)

[DIVHIST_OR_*W signed word (32-bit) Up to 15 LSBs from word signed word (48-bit)
lane (48-bit)

6.3.8.4 Vector Addressed Store

VMEM Superbanks support vector addressed store, which is also called reverse lookup,
since instead of reading back indexed entries, data is written to the indexed entries. We
support the maximal parallelism, 32 half-word and 16-word configurations.

Table 16. Vector addressed store support

Instruction Memory object Index & data vectors Outcome
(outcome) vector
DVAST_32H signed half-word (16-bit) 11 LSBs from half-word n/a
lane (24-bit)
DVAST_16W signed word (32-bit) 11 LSBs from word lane n/a
(48-bit)

Basically, each index lane is sign-extended where insufficient to cover a whole
superbank, otherwise appropriate number of LSBs taken to cover a whole superbank.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 75




When we are extending, it’s always sign-extended, as opposed to complying with
signed/unsigned designation in the lookup instruction (which is used to sign/zero-extend
table/histogram entry).

In the case of byte indices (which is normally for byte entries), since a superbank has
128KB, 17 bits are needed for 1-way lookup, 16 bits for 2-way lookup (each way
containing 64KB), and so on, to 12 bits needed for 32-way lookup (each way containing
4KB). We would sign-extend from 12-bit byte lane.

For the conventional lookup providing starting address of the table as the base, byte-
indexed lookup can only cover 2KB for 1-way, 4KB for 2-way, and so on, to 64KB for 32-
way. Due to the limited table size coverage, we also support using halfword indices for
byte-entry table lookup.

In the case of halfword and word entry (which is only possible to go with halfword and
word indices), we have more than sufficient bit width in each index lane to cover a full
superbank, so only an appropriate number of LSBs are used. The address calculation is
signed/unsigned agnostic (except when we need to sign/zero-extend for the case of
byte indices), so it’s safe to treat indices as unsigned, which is how table lookup is
naturally implemented.

In case of VAST, only maximal parallelism is supported for each type (32H and 16W), so
the index is used to point to each 64-byte-aligned wide memory word. Thus, there is just
one bit width used, 11-bit, as superbank size 128KB is 2K x 64B.

The superbank to access is determined solely by the base address. There is no out-of-
bound memory access detection; large index values can cause the resulting address to
land outside the intended table or histogram object in the same superbank in VMEM.

Also, taking some LSBs of the indices, ignoring upper bits, is essentially performing
index wrap-around in the same superbank, but not in the table/histogram/VAST-object,
as there is no way to indicate size of the table/histogram/VAS-object to the processor. It
is the programmer’s responsibility to ensure that lookup/histogram/VAST operations do
not index outside the intended memory range or suffer the consequences.

For example, a 4KB 32-way H-type lookup table has only 4KB/2/32 = 64 entries in each
sub-table. If/when the base address is the starting address of the table, in conventional
non-negative indexing, only [0, 63] in index range makes sense. If the base address is
right in the middle of the table (starting address + 2KB), for a symmetrical signed
indexing, only [-32, 31] range makes sense. A whole superbank can be reached by the
lookup, with up to 128KB/2/32 = 2K entries. An index value of 2048 would behave the
same as 0, and full range of index values in 24-bit vector lane would wrap 8192 times
(ignoring upper 14 bits) around the superbank and can access data outside the allocated
4KB table.

Address Calculation

Parallel lookup, histogram, and vector address store addressing involves taking the
prescribed number of indices, separating the indices into vertical and horizontal
components, and accessing the table entry with the vertical/horizontal indices in the
appropriate sub-table.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 76



For example, 4-way parallel lookup of byte type would organize the table memory as 4
banks of 16 entries wide sub-tables, using the 4 LSBs of index horizontally within the
row of 16 entries fetched for a sub-table, and the upper bits vertically to pick the row.
Address calculation for the parallel lookup can be expressed as:

lut_out[i] = table[ (index[i] & OxF) + i*16 + (index[i]>>4)*64 ], for i = 0..3

In general, for M bytes-per-point data type, N-way parallel lookup, we calculate stride K =
(64/M)/N = 64/(M*N) = number of entries per table on the same memory line (512 bits =
64 bytes per line). Hardware accesses table entries at byte addresses

byte_offset[i] = ((index[i] modulo K) + i*K) * M + floor(index[i] / K)*64, for i = 0..N-1

Essentially, the table index is partitioned into two pieces, the modulo K piece for
indexing consecutive entries in a memory line, and the quotient divided by K piece for
addressing memory lines. As K is a power of two (since parallelism N, data size M and 64
are all powers of two), the modulo and the divide operations are implemented as bitwise
AND and right shift.

byte_address[i] = (base & SUPERBANK_SELECT)
+ ((base & BASE_MASK) + byte_offset[i] ) & SUPERBANK_MASK

The first term of byte address is for superbank selection, which is affected only by the
base address, not by any index. For the first generation, we have

SUPERBANK_SELECT = 0xC0000

BASE_MASK = Ox1FFC@,

SUPEBANK_MASK = Ox1FFFF.

For two-point lookup, DVLUT_2pt, up to 16 indices (consistent with the parallelism
designation) are used to calculate byte_offset and byte_address described above. Then,
same number of additional indices, index[i] + 1, go through the same calculation to
perform up to 32 lookups per DVLUT_2pt instruction. See 9.9.6.4 DVLUT_2pt instruction
description for details.

For 2x2-point lookup, DVLUT_2x2pt, up to 8 indices (consistent with the parallelism
designation) are used to calculate byte_offset and byte_address described above. Then,
3 times the number of additional indices, index[i] + 1, index[i] + LP, index[i] + LP + 1, go
through the same calculation to perform up to 32 lookups per DVLUT_2pt instruction.
LP here is line pitch and is derived from the PL register. See 9.9.6.5 DVLUT_2x2pt
instruction description for details.

Vector addressed store is also called reverse lookup, as instead of retrieving indexed
entries from memory, write values are to be written to the indexed locations. It is useful
for list-based processing.

6.4 Address Generator Features

Address generator, or agen, is a unique feature in VPU instruction set architecture. Agen
moves much of the multi-dimensional address calculation prominent in image and vision
processing to the background and carried out by hardware, improving performance and
power in common image and vision processing.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 77



6.4.1 Multi-Dimensional Address Calculation

Agen configuration includes address generator and various other load/store parameters
to accelerate regular load/store operations.

Each address generator supports up to 6-dimensional address calculation with its own
set of n1..n6 number of iteration parameters, amod1..amod6 address modifiers, and loop
variables i1..i6. Agen can be viewed as supporting 6-level nested for loop, with level 1 is
being the inner-most loop, and level 6 being the outer-most loop.

For cases when we do not need all 6 dimensions, the convention is to use the lower-
numbered variables and set the higher-numbered variables to default values. For
example, 2D agen should have

N3 =n4d =n5 =n6 =1

amod3 = amod4 = amod5 = amod6 = 0
The Agen supports 6-dimensional address calculation by realizing this function:
address(il1, i2, i3, i4, i5, i6) = base + item_size * (i1*w1 + 12*w2 + i3*w3 + i4*wd + i5*w5 +
i6*w6),
In this example, w1..w6 are the weights we place on the loop variables i1..i6. We can also
visualize w1..w6 as the step amount, in data elements, for each dimension.

Instead of the programmer providing the weights and hardware computing the address
via the sum of products expression, the programmer should provide the address
modifiers (amod1~amod6), which is the delta of one address to the next address as the
6-dimensional iterator is advanced.

The address modifiers should be calculated as follows:
Inside il loop: amod1 = wl.
When il is reset and i2 is incremented: amod2 = w2 - (n1 - 1)*w1.
When il and i2 are reset and i3 is incremented: amod3 =w3-(n2-1) *w2-(n1 -
1)*wl.
Whenil,i2 and i3 are reset and i4 is incremented: amod4 = w4 -(n3-1)*w3-(n2-1)
*w2-(n1-1)*wl.
Whenil,i2, i3 and i4 are reset and i5 is incremented: amod5 = w5 - (n4 - 1)*w4 - (n3 -
w3 -(n2-1)*w2-(n1-1)*wl.
Whenil,i2,i3, i4 and i5 are reset and i6 is incremented: amod6 = w6 - (n5 - 1)*w5 -
n4-1)*wd-(n3-1)*w3-(n2-1)*w2-(n1-1)*wl.

As the above expressions are tedious to program, there is a set of agen wrapper macros
to translate from n1..n6 and w1..w6 into amod1..amod6. Example of programming with
agen wrapper will be given in Optimization 2: Leveraging Agen to Collapse Nested Loops.

Agen data structure includes address modifiers as 18-bit fields, and CfgAgen Mod
instruction reads 32-bit from the source scalar register and stores only 18 LSBs,
dropping the upper 14 bits. Addresses generated from each agen is supposed to be
confined within a superbank (128KB = 27 17), so address calculation does not require
upper 14 bits.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 78



Behavior of agen-based load/store is post-increment. Data is accessed from the current
address and type, distribution option, etc., configuration. Then the address and loop
variables i1..i6 are advanced, and address modifier chosen, according to following
pseudo code:

lpend1 = (i1 == (n1 - 1)) || (n1 == 8);
lpend2 = (i2 == (n2 - 1)) || (n2 == 8);
lpend3 = (i3 == (n3 - 1)) || (n3 == 8);
lpend4 = (i4 == (n4 - 1)) || (n4 == 0);
lpend5 = (i5 == (n5 - 1)) || (n5 == 8);
lpend6 = (i6 == (n6 - 1)) || (n6 == 8);

if (lpendl && lpend2 && lpend3 && lpend4 && lpend5 && lpend6) {
amod = @; // stay at last data point

} else if (1lpend1 && lpend2 && lpend3 && lpend4 && lpend5) {
i1 = i2 = i3 = i4 = i5 = 0;

i6 = i6+1;

amod = amod6;

} else if (lpend1 && lpend2 && lpend3 && lpend4) {
i1 = i2 = i3 = i4 = 0;

i5 = 15+1;

amod = amod5;

} else if (lpend1 && lpend2 && lpend3) {

i1 = i2 = i3 = 0;

i4 = i4+1;

amod = amod4;

} else if (lpend1 && lpend2) {

i1 = i2 = 0;

i3 = i3+1;

amod = amod3;

} else if (lpend1) {

i1 = 0;

i2 = i2+1;

amod = amod?2;

} else {

i1 = i1 + 1;

amod = amod1;

}

If the agen functionality is implemented in scalar operations, it would take potentially
many instructions.

Agen address calculation is post-modify. When executing an agen-based load/store
operation, the lower 20-bit of Agen address field is used to address the load/store, amod
is calculated as described above, address (unsigned 20-bit) is added with amod (signed
18-bit).

Consider the VMEM address map (see 5.3). In agen address update, it is NOT possible to
jump from one superbank’s primary region into another superbank’s primary region,
since the gap is 128KB, 2717 bytes, thus minimal distance 2”217 + 1, while signed 18-bit
of amod can encode a range of -2217 ~ (2217 - 1). It IS possible, however, for an agen

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 79



address to walk from one primary region to an aliased region, then onward into another
superbank primary region. This is, however, strongly discouraged, as it may break
software compatibility in the future.

See Circular Buffer Addressing for additional address calculation steps when circular
buffer is configured.

With the reset default values of Addr = 0, amodi = 0, Ni = 1 and li = O, uninitialized agen
would have address fixed at O when it’s used in agen-based load/store.

Additionally, Ni = O is treated like Ni = 1 with the way end-of-loop is detected, and
maximal iteration count for any loop level is 65535.

Agen configuration also includes an optional lane_offset field for transposing load/store.
For the basic T transposition mode, the lane_offset field provides a row offset scaled by
the lane number. For lane i, relative to linear/consecutive access, the address offset is i *
lane_offset * 64 Bytes.

See Transposing Load/Store for use of lane_offset in address calculation across various
transposition modes.

6.4.2 Automatic Predication

When all loop variables reach their ending count, meaning the agen has executed the
prescribed number of load/stores, all loop variables are stuck at the ending count. Any
subsequent load with that Agen would repeat reading at the ending address. Any
subsequent store with that Agen will be predicated off.

For example, for an Agen with N1 =4, N2 = N3 =N4 =N5 = N6 = 1, its loop variable and
predicate off status with respect to execution of the relevant load/store is as follows:

[1 12 13 14 15 16 auto_pred_off

Initial state 0] 0] 0] 0] 0 0 0

after 1 execution 1 0 0 0 0 0 O (1st store allowed)
after 2 executions 2 0 0 0 0 0 0 (2nd store allowed)
after 3 executions 3 0 0 0 0 0 O (3rd store allowed)
after 4executions 3 0 0 0 0 0 1 (4th store allowed)
after 5executions 3 0 0 0 0 0 1 (5th store blocked)

We can think of the auto_pred_off as an overflow bit of the Agen loop variables updated
after the execution (like Agen loop variables), but its predication effect applies on the
next memory store transaction.

This agen automatic predication works as an override of programmer-specified
predication on vector or scalar store via predicate register or vector register. When
auto_pred_off is O, programmer-specified predication mechanism applies. When
auto_pred_offis 1, entire memory write transaction is blocked.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 80



The agen automatic predication does not affect loads. Any scalar or vector load using an
Agen with exceeded iteration count (thus auto_pred_off = 1) will still have its memory
transaction carried out and destination register write occurred, albeit with address stuck
at the last valid address so memory read-back value should remain the same (except
if/when there’s another party, VPU, DLUT or DMA, writing to that address).

The use case for this feature is loop unrolling. Often VPU code uses pragma
chess unroll loop (K) toindicate to compiler that the loop is to be unroll K times, for
software pipelining.

for (i=0; i<niter; i++) chess_unroll_loop(K)

{
// loop body

}

It is not required that iteration count (niter in the above example) be a multiple of K.
Compiler generates code to check, and break up the loop into a “multiple” loop and a
‘remainder” loop to ensure that the generated code executes correctly.

If/when the programmer is certain that the iteration count is indeed a multiple of K,
another pragma, chess unroll loop assuming multiple (K), can be used. This
pragma instructs compiler not to generate code to compute/check niter modulo K, and
to not to generate the “remainder” loop.

The automatically predicate-off feature may allow
chess unroll loop assuming multiple (K) to be used whether niterisa multiple
of K, resulting in smaller code size and lower loop overhead.

quotient_ceil = (niter + K — 1) / K; // ceiling (niter / K)

for (i=0; i< quotient_ceil * K; i++) chess_unroll_loop_assuming_multiple(K)

{
// loop body

}

This technique works for most common loops where outcomes are stored out in the
loop, so extra iterations, as long as stores are predicated off, do not affect the outcome.

When there is accumulation over loop iterations using vector or scalar register, the Agen
automatic predication feature does not quite work, as the predication applies only to
stores, not to register writes. Also, the store must be driven by Agen, as there’s no way
to specify an ending iteration count using scalar-based (base + offset or post-modify)
stores.

6.4.3 Rounding and Saturation

Agen-based store includes rounding and saturation features. Values from register file
are first rounded, then saturated.

There are corresponding Agen configuration fields to convey the parameters:

Rounding field includes 1-bit for round/truncation option and 7-bit for number of bits
to round/truncate

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 81



Saturation low/highs limit and values

Saturation option field indicates whether saturation is enabled, and whether
saturation limits are treated as signed or unsigned

When the number of bits to round/truncate exceeds source lane width (B=12, H=24,
W=48), rounding leads to zero for all inputs, and truncation leads to zero for
zero/positive inputs, and to -1 for negative inputs.

Rounding is performed by adding 1 to the bit position one bit lower than the bit count.
For example, if we are rounding off 3 bits, we add (1 << 2) then right-shift by 3 bits.
Truncation is performed by right-shift alone. Examples:

round(G, 1) =(6+ (1 <<Q))>>1=7>>1=3
round(6,2) =(6+(1<<1))>>2=8>>2=2
round(-6,3) = (-6 + (1 << 2)) >>3=-2>>3 =-]
truncate(6, 1) =6>>1=3

truncate(6,2) =6>>2 =1

truncate(-6, 3) = -6 >> 3 = -1

For saturation, we support 4-parameter saturation. When enabled, hardware carries out
the following:

store_val = (reg_val < SatlLimLo) ? SatVallLo : ((reg_val > SatLimHi) ? SatValHi : reg_val);

In this case, reg_val is 12/24/48-bit signed. SatLimLo and SatLimHi are sign/zero-
extended from 32-bit values in Agen configuration. We have a 2-bit saturation option
SatOpt to indicate whether to sign or zero extend the 32-bit configuration values. Note
that vector lane values are always read as signed.

Rounding and saturation steps are performed with bit width accommodating both the
data source bit width (12/24/48-bit lane width in vector registers) and comparison values
(signed/unsigned 32-bit). Consequently,

For promoting stores (12-bit into 16-bit, 24-bit into 32-bit), the source data values
are in representation range of signed 12-bit or 24-bit.

In the case of comparison values, SatLimLo and/or SatLimHi, exceed the source data
representation range, reg_val < SatLimLo would never happen, so the source data is
unchanged for that saturation bound. For example, SatLimLo (signed) = -
0x8000_0000 when source data is 12-bit, having representation range [-0x800,
Ox7FF], reg_val < SatLimLo is always false.

For extended word type source data (48-bit), and when saturation is enabled, the
comparison is carried out correctly as if it’s carried out in signed 48-bit. For example,
when reg_val = -0x8000_0000_0000 (min value in signed 48-bit) and SatLimLo
(signed) = -0x8000_0000 (min value in signed 32-bit), reg_val < SatLimLo is true and
the replacement occurs.

The saturation replacement values SatValLo and SatValHi are configured as 32-bit
numbers. When the memory store type is 8-bit or 16-bit, and the replacement occurs,
only the 8 or 16 LSBs of SatVallLo or SatValHi are written out to memory; the upper 24 or
16 bits are ignored.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 82



Rounding and saturation features are not available for these cases:
WX type: can be 8 x 48-bit, 16 x 24-bit, or 32 x 12-bit
W type on single vector XARF: 16 x 32-bit

Double-vector XARF store does include rounding and saturation.

Rounding and saturation operations are performed as integer operations, so if enabled
on floating-point (FP32 or FP16) type store, they would interpret floating-point binary
values as 48-bit/24-bit integer values, so the resulting values being stored may not make
sense.

6.4.4 Min and Max Value Collection

There is a min and max value collection feature in agen-based scalar/vector stores.
Min/max collection occurs after rounding/saturation and is predicated upon the lane
being stored to the memory.
There is a 2-bit min/max option to encode

O: disable (default)

1: disable

2: enable for signed min/max

3: enable for unsigned min/max

This includes a 32-bit MinVal (min value) and a 32-bit MaxVal (max value) in the Agen
register file.

Upon agen initialization, min/max option is initialized to O (disabled), and min/max values
are initialized to O.

Upon configuring the min/max option to 2 (enabled for signed min/max), the min value is
initialized to MAX_INT32 = Ox7FFF_FFFF. The max value is initialized to MIN_INT32 =
0Ox8000_0000.

Upon configuring the min/max option to 3 (enabled for unsigned min/max), the min value
is initialized to MAX_UINT32 = OxFFFF_FFFF. The max value is initialized to MIN_UINT32 =
0.

Upon configuring the min/max option to O or 1 (disabled), the min/max values are reset
to O.

The min/max option is in the first 512-bit part of the Agen config, so is saved with
AgenCfgST, and restored with AgenCfgLD. Upon AgenCfgLD, min/max values are
initialized according to min/max option.

The min/max values are in the second part of the Agen config, so is saved with
AgenCfgST_p2 and restored with AgenCfgLD_p2.

Note that with AgenCfgLD_p2, min/max values are loaded as-is from memory without
checking to see if they make sense:

1. Min value can be larger than Max value according to the signed/unsigned option
designated in MinMaxOpt.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 83



2. Min value and/or Max value may fall outside the valid range of signed/unsigned
option designated in MinMaxOpt and data type previously used agen-based store
associated with the specific Agen.

3. Max/Max values can be non-zero, though MinMaxOpt indicates min/max collection is
disabled.

(1) and (2) are because:

The initialized values for Min/Max values are type-blind, and in fact fall out of valid
char and short ranges in 3 of the 4 possible values (INT32MAX, INT32MIN,
UINT32MAX).

Agen data structure is type-neutral and does not record type of data being stored.

Because we cannot guarantee that min/max values make sense when min/max collection
feature is enabled, we don’t attempt to correct min/max values when the feature is
disabled, presumably min/max values are not useful to the application in such cases.

Upon every Agen-based store (scalar or vector), if min/max feature is enabled, signed or
unsigned min and max operations are carried out, so that the MinVal and MaxVal fields
maintain the min and max values across all stored data. They can be read out after
processing to query min and max values.

The min/max collection excludes WX type stores, and that if enabled on floating-point
(FP32 or FP16) type store, would interpret floating-point binary values as 32-bit/24-bit
integer values, so the resulting min/max values may not make sense. This is with
rounding/saturation steps before min/max collection being disabled. If either rounding
or saturation is enabled, input to min/max collection may not make sense.

6.4.5 Save and Restore to/from Memory

Once individual parameters in an agen are configured, the collection of all parameters
can be saved to memory via AgenCfgST and restored back via AgenCfgLD. This allows
calculation of parameters to be carried out during application initialization and be quickly
restored to configure the agens during regular tile processing.

Reserved fields are written as zeros initialized to zero in InitAgen. They are not
modifiable via any CfgAgen instructions and not utilized in any Agen functionality.
Through CfgAgenLD, if corresponding contents in memory are non-zero, zero will be
loaded into Agen data structure instead. When CfgAgenST is used to store out the
whole Agen data structure, corresponding bits in memory will show zeros.

Consult Instruction Execution Ordering for various execution order exceptions regarding
various instructions accessing Agen.

6.4.6  Circular Buffer Addressing

PVA supports circular buffer addressing to facilitate data reuse. Circular buffer
addressing is available in agen-based load/store instructions by configuring optional

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 84



circular buffer starting address (cbuf_sa) and circular buffer size (cbuf_sz) parameters in
the unit. Circular buffer is enabled when cbuf_sz is configured to be a nonzero value.

There’s alignment constraint (consistent between DMA and VPU) that circular buffer
should be 64-byte aligned. We allocate 16-bit for the starting address and the size
parameters. We apply 6-bit up-shift before interpreting the parameters as a byte
addressed to enforce the alignment.

Address is folded into the circular buffer via the following pseudo-code:
CB_start = cbuf_sa << 6;
CB_size = cbuf_sz << 6;

address = CB_start + ((address - CB_start) % CB_size);

// % = modulo operator, returns 0..CB_size-1

The circular buffer address calculation above is applied whenever agen-based load/store
updates its address when each instance of such instruction is executed. The sequence
of operations is as follows:

1. Prescribed load/store using the current address.

2. Address update using address modifiers, loop iteration count, and loop variables (see
Multi-Dimensional Address Calculation).

3. When circular buffer is enabled, address is folded back to [CB_start,
CB_start+CB_size-1] if it falls out of the range.

With circular buffer enabled (size > 0), address parameters should be constrained as
follows:

Base address and circular buffer should be inside a superbank.

Base address should be within the buffer, i.e.,, CB_start <= base_addr < CB_start +
CB_size.

Any address modifier must not have magnitude (absolute value) larger than the circular
buffer size; i.e., ]AMODIi]| <= CB_size.

When circular buffer is enabled, every AGEN address update would be checked to see if
it falls out of the circular buffer. If it falls under (addr < CB_start), it is adjusted with +
CB_size. If it falls over (addr >= CB_start + CB_size), it is adjusted with - CB_size. If
afterward it still falls out of the circular buffer, no error is reported. Note that when
Agen parameters are properly constrained, this should not happen.

Details of circular buffer address calculation are as follows (this information is intended
for verification, where parameters outside normal programming constraints may be
used):

Lower 20 bits of the AGEN address field is read as an unsigned number, addr

addr is added with amod, lower 18 bits of one of the 6 address modifiers selected for
this address increment. The addition outcome is kept as a signed 2 1-bit number,
addr1, as the normally updated address without circular buffering

Lower 14 bits of cbuf_start (Agen field) is left-shifted 6 bits to become CB_start (20-
bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 85



Lower 14 bits of cbuf_size (Agen field) is left-shifted 6 bits to become CB_size (20-
bit)

addr2 = addr1 + CB_size, which is addr1 wrapped forward, kept as signed 2 1-bit
number

addr3 = addr1 - CB_size, which is addr1 wrapped backward, kept as signed 21-bit
number

If amod is negative:

If addr1 is less than CB_start, meaning the negative address update makes it fall
before circular buffer’s start address, wrapped_addr is assigned addr2 (addr1
wrapped forward)

Otherwise, wrapped_addr is assigned addr1
Otherwise:

If addr1 is greater than or equal to CB_size + CB_start, meaning the positive
address update makes it fall after circular buffer’s end address, wrapped_addr is
assigned addr3 (addr1 wrapped backward)

Otherwise, wrapped_addr is assigned addr1

Lower 20 bits of wrapped_addr is read as an unsigned number and written back zero-
extended to the 32-bit AGEN address field.

Circular buffer addressing is NOT applied inside a single memory transaction of
single/double vector load/store. Thus, either vector load/store should avoid crossing the
circular buffer boundary, or there should be software workaround.

One software workaround scheme where DMA supplies data to the circular buffer, and
VPU consumes the data, is to allocate additional 64 bytes after the circular buffer as
work-around areas. Before VPU starts consuming data in the circular buffer, the first 64
bytes of circular buffer data should be copied to fill the 64 bytes work-around area. This
work-around only covers linear (consecutive) accesses though, not transposing
load/store, table lookup, or histogram.

There is no easy workaround when VPU supplies data into the circular buffer, and DMA
consumes it. Misaligned data access generally comes from spatial dependency and is
only in reading data. It is usually feasible to size output block dimension so that data
writes are compliant with reasonable alignment constraints. Thus, there is usually no
need for such a workaround.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 86



Figure 12. Workaround for vector accesses across circular buffer boundary

|~ aan |

copy

Circular Buffer
(2568 aligned)

Y

Superbanks are not consecutive in the data memory space (128KB in 256KB space). In
normal application, circular buffer should not go out of any superbank. When it does, the
address is wrapped around and mapped back to one of the VMEM superbanks without
any error interrupt being raised.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 87



Chapter 7. Decoupled Lookup Unit
(DLUT)

In this chapter, an overview of the Decoupled Lookup Unit (DLUT) is provided. For a
programming example, refer to Leveraging DLUT.

7.1 Overview

For Orin VPU, we extended VPU instruction set functionality in various areas within the
scope of an embedded vector SIMD machine. There is one area that we cannot extend in
this scope, that is resolving memory bank conflict in parallel lookup operations.

In the VPU instruction set, we do have various parallel lookup instructions (2/4/8/16/32-
way parallelism), but these instructions require that we have correspondingly that many
tables so that there is inherently no memory bank conflict. These tables are sometimes a
replication of one table, and sometimes different tables, depending on the application.

For example, in image warping we transform one image tile at a time, and parallel lookup
is only possible if we replicate it from that one image tile. For example, in the feature
tracker, we perform gradient descent on many patches of an image, and parallel lookup
can be performed on the many patches in parallel, if the patches are reformatted into
parallel table organization. Either way, table lookup parallelism is constrained by memory
footprint taken up by the parallel tables.

In applications involving table lookup, we often wish to perform parallel lookup with
certain throughput, while we cannot afford memory footprint to replicate one table that
many times, or load that many parallel tables into memory. Ideally, we want the
processor to allow parallel lookup with just one copy of the table as part of the
instruction set. However, such memory operations would result in data-dependent
memory bank conflicts in execution. For example, 32-way parallel halfword lookup with
one copy of the take may take up to 32 cycles just to carry out reading the table entries,
if all 32 lanes happen to go to the same memory bank. VPU can handle some degree of
data-dependent memory conflict, naming at superbank level. Handling memory bank
level conflicts is simply too difficult to accomplish in an embedded processor pipeline
with limited pipeline depth.

The decoupled lookup unit (DLUT) is architected to provide this functionality outside the
processor pipeline and can operate concurrently and independently with the processor

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 88



pipeline, thus the term “decoupled unit”. The DLUT carries out parallel lookup with one
common table by executing as many lookups in a cycle as it can in a decoupled pipeline.

Besides parallel lookup with one common table, DLUT also supports one configuration of
contention free lookup/interpolation, which is most helpful in accelerating target
workload in the Orin SOC plan. Although the functionality is supported in the VPU
processor, but by adding this to DLUT, we offload VPU processing cycles so there are
advantages in performance and power.

DLUT also supports table reformatting needed to bridge between DMA and DLUT or VPU
lookup operations. Again, the table reformatting can be accomplished at the same
throughput by the VPU processor, but by adding this to DLUT, we offload VPU
processing cycles so there is advantages in performance and power, and the
functionality in DLUT leverages datapath we need to have anyway for the main lookup
functionality, so does not pose much area or power increase, just minor engineering
effort.

7.2 DLUT Features

The DLUT provides these operation modes:
1D lookup
2D lookup
1D lookup and linear interpolation
2D lookup and bilinear interpolation
Table reformatting
Conflict free 2D lookup and bilinear interpolation (from parallel copies of table)
2D lookup and bilinear interpolation with auto-indexing, where the index data need
not be supplied; indices are generated by DLUT from a few parameters
Other DLUT features:
1D/2D lookup from one common table, with conflict detection/resolution

Optional integer only or fixed-point integer + fraction indices, via configurable
number of fractional bits

Out-of-range sentinel return value
Out-of-range predicate off output write

Configurable X/Y offset to translate between global coordinates and local
coordinates

Indices can be unsigned 16-bit, or 32-bit (each X or Y in case of 2D lookup)

Table entries (and output) can be 8-bit, 16-bit, or 32-bit, signed or unsigned, and
entry data type is independent of index data type

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 89



7.3 Task Structure and Operation Modes

We define a DLUT task as producing N2 * N1 outputs through lookup and optional post-
lookup interpolation. A trimmed down agen (address generator) drives addressing of
index read, and another agen drives output write. The table pointer can step linearly in
the outer dimension of N2, so one task can be regarded as N2 rounds of lookup, with
one table producing N1 outputs per round. These N2 rounds of lookup of one task share
the same parameter block that specifies index/output data type, index read agen,
output write agen, and so on.

Besides table lookup and post-lookup interpolation, DLUT also supports conflict-free 2D
lookup with bilinear interpolation, and various table reformatting as separate tasks.
DLUT supports the following operation modes:

1D lookup: from linear indices, optionally perform rounding or truncation to convert
to integer indices and 1D table lookup.

2D lookup: from 2D indices, optionally perform rounding or truncation to convert to
integer indices and 2D table lookup

1D lookup with linear interpolation

2D lookup with bilinear interpolation

2D conflict-free lookup with bilinear interpolation, 32-bit index and 16-bit entry only
Table reformatting

2D lookup and bilinear interpolation, with automatic index generation that supports
starting X/Y and scaling step per round of lookup

DLUT in operation utilizes 3 memory streams, index read stream, lookup read stream,
and output write stream. To simplify hardware design/verification, encourage efficient
operation, and simplify DLUT/VPU/DMA interaction, each stream is tied to the superbank
each task is configured with. Thus, address modification due to agen update and/or
table address offset is performed in bits 17:0 of the respective address pointers, leaving
bits 19:18 that identifies the superbank unchanged from the task-configured addresses.

Tor better DLUT performance, index and lookup should not be in the same superbank.
However, such an allocation does not affect the correctness of the outcome.

We define DLUT group size being the number of outputs per clock the hardware can
achieve ideally, when there is no conflict. The group size is basically set by either index
read throughput or lookup throughput, as output write throughput is never lower than
lookup throughput.

Group size for various modes is as follows:

1D/2D lookup (without interpolation): 32 for Byte/Halfword entries, 16 for Word
entries.

1D lookup with interpolation: 16 for Byte/Halfword entries, 8 for Word entries.
2D lookup with interpolation: 8 for Byte/Halfword entries, 4 for Word entries.

2D conflict-free lookup with interpolation: 8 (since only Halfword entry type is
supported).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 90



Table reformatting: 32 (since Halfword type is assumed).

Note that it is NOT required that the inner-loop output size, N1, should be a multiple of
group size. Hardware handles optional partial-group operation in the last inner iteration
by invalidating various index read, lookup, and output write lanes not being utilized. Note
that even when task length N1 is a multiple of group size, we can still have partial
transactions in index read and/or output write.

7.4  Task Sequencing and VPU/DLUT
Interaction

DLUT execution time is dependent on bank conflict within the indices, so it is not
constant. While it is possible to establish the average execution time given random
number distribution of the indices, the actual execution time can be drastically different.
For example, a task of 32 Halfword lookups can take between 1 and 32 cycles to
execute, excluding any control and pipelining overhead.

In applications there can be multiple dependent or independent lookup tasks that we
would like DLUT to execute sequentially, while VPU is executing some other compute
tasks. Since DLUT execution time is data dependent and can be drastically different, it is
not convenient for VPU to “check on” DLUT between compute tasks and kick off the
next DLUT task one at a time. To facilitate parallel execution, we architect the DLUT
interface to facilitate task sequencing.

VPU software prepares task parameters, allocate input/output regions, for multiple
tasks at a time, and go through one interaction with DLUT. Parameters for each task is a
fixed-sized data structure that links to the next task.

DLUT carries out the configured tasks sequentially without overlap. Each task is
processed to completion (last output written) before the next task is started (first index
read) to simplify hardware implementation.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 91



Chapter 8. Programming Examples

In this chapter, we show a few relatively simple programming examples. The profiling
instruction reports were generated at the time of the writing, and may not be accurate
later, as the performance is subject to processor model revisions and ASIP tool updates.

8.1 Typical Test Case Organization

A recommended way to organize test source files for a typical algorithm/application VPU
standalone test case, for example, array_add, is to have these source files:

array_add.prx project file listing source files, header include paths,
compiler settings, etc.

array_add_test.c: containing main function and global input/output arrays
array_add_ref.c reference function, typically written in plain/scalar C code
array_add_ref.h reference function header

array_add_opt.c optimized function

array_add_opt.h optimized function header

The VPU standalone test case typically used to develop/optimize compute kernels. For
developing a PVA application including DMA, one should follow the cuPVA development
flow.

A sample testbench code in array_add_test.c follows:

#include "stdio.h"
#include "string.h"

#define TEST_SZ 4096

int chess_storage(RAM_Ab:chess_segment(A)) in1[TEST_SZ];

int chess_storage(RAM_Bb:chess_segment(B)) in2[TEST_SZ];

int chess_storage(RAM_Cb:chess_segment(C)) out_ref[TEST_SZ];
int chess_storage(RAM_Cb:chess_segment(C)) out_opt[TEST_SZ];
int main()

{

test_mem_fill_int(in1, TEST_SZ, 0x80000000, Ox7FFFFFFF);
test_mem_fill_int(in2, TEST_SZ, 0x806000000, Ox7FFFFFFF);
memset(out_opt, @, sizeof(out_opt));

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 92



array_add_ref(in1, in2, out_ref, TEST_SZ);
array_add_opt(in1, in2, out_opt, TEST_SZ);

int fail = memcmp(out_ref, out_opt, sizeof(out_ref));
return fail;

}

The arrays are allocated with chess_storage() pragma. In a VPU programming
environment, the VMEM L1 data memory, which consists of 3 superbanks each 128KB, is
a precious resource, so typically programmers would allocate manually into the 3
superbanks in a matter that minimize bank conflict during VPU compute kernel
execution. See Memory Allocation among VMEM Superbanks about details in VMEM
superbanks and storage specifiers.

For this specific compute kernel, array addition, we need 2 inputs being in different
superbanks. The output array must be in a third superbank in Gen-1 VPU, since in Gen-1
VMEM, each superbank has one memory port that can support read or write, but not
both. In Gen-2 VPU, the output array can be in any superbank since each VMEM
superbank has one read port and one write port.

DMA and DLUT share VMEM superbanks as well, so can potentially conflict with VPU
compute kernel accessing VMEM superbanks. In Gen-2 VPU, one can take advantage of
the one-read-one-write ports of VMEM superbank to reduce conflicts. This is because
typically we have the producer/consumer relationship between each pair of masters
transmitting one array of data.

Typically, in the main program, input arrays are initialized with random values, and
optimized outcome array is initialized to zero. Then, the reference function is called to
produce expected outcome array, the optimized function is called to produce optimized
outcome. Finally, the two arrays are matched to verify that optimized function carries
out the intended functionality, and because of the matching, the convention being zero
indicates pass, non-zero indicates fail, is returns from main().

8.2 1D Array Addition

We shall use a one-dimension array addition function to illustrate the process of taking
some plain C code, and revise it step by step to achieve full performance.

8.2.1 Scalar Code

We start with the same code as the one shown in Hardware Looping to showcase the
hardware looping feature. We often call this the scalar code, as the code is written
without using vector data type, vector operation intrinsic functions, or vector load/store
intrinsic functions. The code is translated into scalar math and scalar load/store
instructions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 93



[/ xxERRRRkkkkkkkhkkkkkkbhhhhrhdkhrhrhbhdrhrhrhdrhrhrhbrhrhrhbhbrhrhrrxk

// Function implemented with normal/scalar C code

[/ RxERRR Rk kkkkkkhkkkkkkkkhhhrhdhhrhrhbhbrhrhrhbrhrhrhbrhrhrhbhbrhrhrrsk

void array_add_ref(int * A, int * B, int * C, int len)

{

}

for (int i=0 ; i<len; i++)
{

C[i] = A[i] + B[il;
}

Instead of assembly listing, the profiling instruction report is shown next. The report has
performance information annotated besides the assembly listing, so it is a lot more
convenient to assess performance with, than assembly listing. There is also function-
level PC range, code size, and cycle/instruction count information that are quite useful.

Some manual editing is done on the generated report to shorten labels and various
fields so that the report can easily fit the page width for readability. Somehow tool
generated instruction reports omit labels, and they are manually added back to make
better sense of the control flow.

Function detail: array_add_ref void_array_add_ref

Low PC 1 56

High PC A

Size in program memory: 16
Cycle-count 1 14352 (15.31%)
Instruction-count : 6154 ( 7.63%)
Instruction Coverage : 100.00%

PC  Assembly

P

P

sint

P

sint___sint

Exe-cnt Cycs

56 CMPLEI R7,#0,R2

57 BNEZ R2,#TGT_Fvoid_array_add_ref_12
58 NOP

59 NOP

60 RPT R7,#LE_Fvoid_array_add_ref_11
61 ORI RO, #4,R2

62 NOP || NOP

64 LDW *R4+=R2,R8 || LDW *R5+=R2,R3

66 ADD R3,R8,R9

.label LE_Fvoid_array_add_ref_11

67 STW R9, *R6+=R2

.label TGT_Fvoid_array_add_ref_12

68 JR R15
69 NOP
70 NOP || NOP

Orin PVA VPU Programmer’s Guide

1 5
1 1
1 1
1 1
1 1
1 1
1 1
2048 10240
2048 2048
2048 2048
1 1
1 1
1 3

SWE-PVA-076-PGRF | 94



The number in the ‘Exe-Cnt’ column is execution count, or how many times that specific
packet was executed, and number in the ‘Cycles’ column is the cycle count. Where the
two numbers differ, usually the cycle count is an integer multiple of the execution count,
with the ratio being the number of cycles each instance of the packet takes to execute,
usually due to stalling in the execution.

By looking at either number, one can quickly tell the loop body from the rest of the code,
as the loop body is iterated many times. In this example, the loop is iterated 2048 times,
so each execution packet in the loop body is executed 2048 times.

The loop body consists of 4 instructions in 3 execution packets, performing,
respectively, 2 loads, 1 operation, and 1 store, exactly as implied in the source code. In
general, plain C code compiles cleanly into scalar instructions.

The first packet of the loop body is taking 10240 cycles to execute 2048 times, so 5
cycles each time. Note that the stalled execution packet is executing 2 parallel loads, and
the very next packet is adding up the 2 destination registers of the loads. The stalling is
due to the load-to-use latency of 5 cycles.

Also, the code has conditional branches, BNEZ, although the branch is not taken
(otherwise the loop is completely bypassed and would get zero execution and cycle
counts). The conditional branch is there in the assembly to guard against the case when
the len (length) argument is zero, to truly implement the correct behavior of the C-
language for loop.

Performance from this plain C code is quite poor, taking 5+1+1 = 7 cycles per iteration,
with exactly one addition operation achieved per iteration. The whole function execution
takes 14,352 cycles. In subsequent sections we will show how performance can be
drastically improved.

8.2.2  Optimization 1: Vectorized Code

We make our first optimization revision by replacing scalar processing with vector
processing, as shown in the following code:

[[RxRRRRkkkkkkbhhkkhhrhbhhhhrhkbhhrhrhbhbhhhhrhbrbhhrhbrbrhrhbhbrhrhrrtk

// Optimization 1: vectorization
//*********************************************************************
void array_add_opt1(int * A, int * B, int * C, int len)
{

int vecw = chess_elementsof(dvintx);

dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * vptrC = (dvint *) C;

dvintx vA, vB, vC;

for (int i1=0 ; i<len/vecw; i++)

{
VA = sign_extend(*vptrA++);
vB = sign_extend(*vptrB++);
vC = VA + VB;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 95



*yptrC++ = extract(vC);
}
}

We use a pragma chess_elementsof(dvintx) to acquire the vector width, as the number
of elements in the dvintx type. Since source/destination arrays are of int type, we would
use dvint as the vector data type in memory, and dvintx as the vector data type in
register file. The two data types have the same number of elements, so it’s just as valid
to code vecw = chess_elementsof(dvint).

We cast each source and destination array points to dvint pointers, and declare vector
variables VA, vB, vC, of dvintx type.

In the loop body, we perform signed vector loads via sign_extend() intrinsic function with
vector pointer dereferencing with post-increment. Sign_extend is thus named to
indicate that we are sign-extending from standard int (32-bit) type into extended word
(48-bit) type for each element of the array.

We load the two source operands vA and vB, we add them up into vC, and we store out
vC. The store is coded as vector pointer dereferencing and the extract() intrinsic
function. Exact is thus names to indicate that we are extracting part of the extended
word (48-bit) in each vector lane into a standard int type (32-bit) before storing into
memory.

The generated (and cosmetically, manually edited) profiling instruction report that
shows compiled assembly with execution count and cycle count information is as
follows:

Function detail: array_add_opt1 void_array_add_opt1___P__sint___P__sint___P__sint___sint

Low PC 172

High PC 195

Size in program memory: 24

Cycle-count 21044 (1 1.11%)

Instruction-count  : 398 ( 0.49%)

Instruction Coverage : 100.00%

PC  Assembly Exe-cnt Cycs
72 SRAI R7,#31,R2 1 1
73 ANDI R2,#15,R2 1 1
74 ADD R2,R7,R7 1 1
75 SRAI R7,#4,R2 1 1
76 CMPLEI R2,#@,R7 1 5
77 BNEZ R7,#TGT_Fvoid_array_add_opt1_15 1 1
78 NOP 1 1
79 NOP 1 1
80 RPT R2,#LE_Fvoid_array_add_opt1_14 1 1
81 ORI RO, #64,R7 1 1
82 NOP 1 1
83 DVLDW_P #*R4+=R7,V2:V3|| DVLDW_P *R5+=R7,V0:V1 128 768
85 VAddW V2:V3,V0:V1,V4:V5 128 128

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 96



.label LE_Fvoid_array_add_opt1_14

86 DVSTW_P V4:V5, *R6+=R7 128 128
.label TGT_Fvoid_array_add_opt1_15

87 JR R15 1 1
88 NOP 1 1
89 NOP || NOP || NOP || NOP || NOP || NOP || NOP 1 3

The vectorized function takes 1044 cycles to execute and is about 13.7x the
performance of the scalar code. Essentially, we gain a speedup of 16x by processing a
dvint, 16 elements of 32-bit, per iteration, but the loop executes 6+1+1 = 8 cycles per
iteration, versus 7 cycles per iteration in the scalar loop, so we give back some of the
speedup from vectorization.

The compiled assembly is still relatively clean, and the loop body still has 4 instructions in
3 execution packets. The 4 instructions are respectively 2 vector loads, one vector
addition, and one vector store. Here the de-reference of pointer with post-increment in
the C code maps perfectly to the vector load/store instructions.

The higher stall count in the first execution packet of the loop body, 6 cycles in the
vectorized loop, versus 5 cycles in the scalar loop, is due to processor pipelining. Vector
addition happens to have its source operands forwarded from the load unit one cycle
later than scalar addition can forward its source operands, so load-to-use latency for
vector operations is one cycle longer.

8.2.3 Optimization 2: Unroll and Pipeline the Loop

Next, we tackle the inefficiency caused by load-to-use latency, as shown in the following
optimized code:
//*********************************************************************
// Optimization 2: pipelining & unrolling
//*********************************************************************
void array_add_opt2(int * A, int * B, int * restrict C, int len)
{

int vecw = chess_elementsof(dvintx);

dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * restrict vptrC = (dvint *) C;

dvintx vA, vB, vC;

for (int i=0@ ; i<len/vecw; i++) chess_unroll_loop(8)
chess_prepare_for_pipelining chess_loop_range(16,)

VA = sign_extend(*vptrA++);
vB = sign_extend(*vptrB++);
vC = VA + VB;

*yptrC++ = extract(vC);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 97



We cannot significantly reduce the latency. What we can do is to fill the pipeline with
useful work while the latency is played out. Technique to do that is called software
pipelining, and is enabled by the 3 pragma annotated on the for statement:

chess_unroll_loop(8) tells the compiler to replicate the loop body 8 times and adjust
the loop iteration count accordingly, by dividing it by 8.

chess_prepare_for_pipelining tells the compiler to software pipeline this loop,
causing the loop body code (which could be the original loop contents or already
replicated through loop unrolling) to be folded and scheduled into multiple iterations,
and consequently there will be a prolog of the loop and an epilog of the loop.

Often, chess_unroll_loop() and chess_prepare_for_pipelining pragmas go hand-in-
hand. Most loops would need both pragmas to achieve the best performance.

chess_loop_range(16,) tells the compiler that this loop is guaranteed (by the
programmer) to run at least 16 iterations. This pragma causes generated code to do
without the “what if len is zero” checking and conditional branch, resulting in a more
streamlined control flow in the compiled assembly.

One other thing to point out is the keyword restrict on address pointers C and vC that
we use to write back to memory. This restrict keyword is telling the compiler that it is
safe to perform these writes in any order relative to other memory reads and/or writes.
Without the restrict keyword, compiler cannot overlap multiple instances of the original
load/store operations to software-pipeline the loop effectively.

The corresponding profiling instruction report is shown next.
Function detail: array_add_opt2 void_array_add_opt2___P__sint___P__sint___P__sint___sint

Low PC 1 96

High PC 1 167

Size in program memory: 72
Cycle-count 1 141 (1 0.15%)
Instruction-count : 139 ( 0.17%)
Instruction Coverage : 100.00%

PC  Assembly Exe-cnt Cycs

96 SRAI R7,#31,R2

97 ORI RO, #64,R2 || ANDI R2,#15,R3

99 ADD R3,R7,R7

100 SRAI R7,#7,R7 || DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27

103 ADDI R7,#-1,R7 || DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19

106 DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11

108 DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3

110 DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1

112 DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9

114 RPT R7,#LE_Fvoid_array_add_opt2_54

115 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17

118 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25, *R6+=R2]| |
DVLDW_P *R5+=R2,V24:V25 1 1

122 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27] |

S\ P W QS I W s 4
_ A A O A A A A a A

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 98



DVSTW_P V18:V19, *R6+=R2 15
126 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19]|

DVSTW_P V10:V11, *R6+=R2 15
130 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P #*R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11]||

DVSTW_P V2:V3, *R6+=R2 15
134 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3]| |

DVSTW_P V@:V1, *R6+=R2 15
138 VAddW v20:V21,V16:V17,V16:V17|| DVLDW_P *R4+=R2,V4:V5|| DVLDW_P #*R5+=R2,V0:V1| |

DVSTW_P V8:V9, *R6+=R2 15
142 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9| |

DVSTW_P V16:V17, *R6+=R2 15
146 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17] |

DVSTW_P V28:V29, *R6+=R2 15
150 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25, *R6+=R2| |

DVLDW_P #*R5+=R2,V24:V25 15
154 VAddW V14:V15,V10:V11,V10:V11|| DVSTW_P V18:V19, *R6+=R2 1
156 VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V108:V11, *R6+=R2 1
158 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3, *R6+=R2 1
160 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P VO:V1, *R6+=R2 1
162 JR R15 || VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9, *R6+=R2 1
165 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R6+=R2 1
167 DVSTW_P V28:V29, *R6+=R2 1

This optimized function takes just 141 cycles to execute and achieves 7.4 times the
performance of the previous code, which is vectorized but not yet software pipelined. If
we compare it to the original plain C code, the speedup is 101.8 times.

This loop has a theoretical max throughput of one dvint vector addition, 16 lanes x 32-
bit, per clock cycle. It's bounded by each dvint vector operation needing 2 loads and 1
store for input/output, saturating the 3 superbanks x 512-bit of VMEM bandwidth.
Vector math throughout for addition is one dvintx addition per vector slot, so in this
loop, vector math is only 50% utilized. Each execution packet in the loop body is packed
with one VAddW (double vector addition), 2 DVLDW (double vector load word type), and
one DVSTW (double vector store word type), confirming the math and memory
utilization.

In terms of efficiency, 128/141 = 91%. Overhead comes from 13 cycles spent setting up
the local frame on the stack, extracting arguments from the stack, setting up the loop,
and finally for 2 cycles of pipeline bubble from executing a return instruction (JR R15) to
the caller.

In reference to the loop unrolling factor: performance-wise, it’'s not necessary to unroll 8
times. It is convenient to constrain a compute function to limit loop iteration count to a
power of 2, thus unrolling by 2, 4, 8, is more convenient than unrolling by 5, 6, 7, etc. The
minimal number of times to unroll a loop depends on how much vacancy thereisin a
single iteration due to load to use latency and sometimes also vector math operation
latency. With compiler and ISS (instruction set simulator), one can just experiment with
different unrolling factors and find a factor that works.

For a simple, single-operation loop like in the array addition example, we need to unroll 6
times to achieve optimal performance. If unrolling by K times achieves the optimal

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 99

15

15

15

15

15

15

15

W —m 4 4 o



performance, unrolling more than K times should achieve the same performance, but
would cause the compiled code size to grow. VPU Instruction Cache has a set capacity,
16K Bytes for the Orin generation, so we should not unnecessarily increase the code
size.

8.3 2D Array Addition

Next, we shall use a two-dimension array addition function to illustrate how we leverage
the multi-dimensional address calculation feature of agens to collapse nested for loops
to minimize looping overhead and achieve optimal performance.

8.3.1 Scalar Code

The following code implements a two-dimension array addition.
//*********************************************************************

// Function implemented with normal/scalar C code
//*********************************************************************

void array2d_add_ref(int * A, int * B, int * C,
int blkw, int blkh,
int lofst_A, int lofst_B, int lofst_C)
{
for (int i1=0 ; i<blkh; i++)
for (int j=0 ; j<blkw; j++)
{
C[i * lofst_C + j] = A[i * lofst_A + j] + B[i * lofst_B + j];
}
}

As each source and operand array is two dimensional, in the function’s arguments we
convey block width and block height of the computation, and line offset for each
operand array. This function uses two levels of nested for loops to iterate through rows
and columns. In the loop body, the statement carrying out the addition operation
indexes into each operand array with two-dimensional indexing to acquire each input
data element and to store each output data element.

Compiled assembly, along with execution count and cycle count is shown next:

Function detail: array2d_add_ref
void_array2d_add_ref___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint

Low PC : 168

High PC : 199

Size in program memory: 32

Cycle-count : 14438 (13.01%)

Instruction-count : 6218 ( 7.16%)

Instruction Coverage : 100.00%

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 100



Assembly

Exe-cnt Cycs

CMPLE R7,R@,R2 || CMPLE R8,R@,R3
BNEZ R3,#TGT_Fvoid_array2d_add_ref_23

186

NOP
NOP
RPT
ORI
NOP

R8,#LE_Fvoid_array2d_add_ref_22
RO, #4,R3

BNEZ R2,#TGT_Fvoid_array2d_add_ref_20

NOP
NOP
RPT
ORI
MoV
LDW
ADD

R7,#LE_Fvoid_array2d_add_ref_19
R6,#0,R13

R5,R8 || MOV R4,R12 || NOP
*R12+=R3,R17 || LDW *R8+=R3,R14
R14,R17,R18

.label #LE_Fvoid_array2d_add_ref_19
187 STW R18,*R13+=R3
.label TGT_Fvoid_array2d_add_ref_20

188 SLLIADD R10,#2,R5,R5|| SLLIADD R9,#2,R4,R4

.label LE_Fvoid_array2d_add_ref_22
190 SLLIADD R11,#2,R6,R6

.label TGT_Fvoid_array2d_add_ref_23
191 JR R15

192

193 NOP || NOP || NOP || NOP || NOP || NOP || NOP

NOP

1 5
1 1
1 1
1 1
1 1
1 1
1 1
8 8
8 8
8 22
8 8
8 8
8 16
2048 10240
2048 2048
2048 2048
8 8
8 8
1 1
1 1
1 3

The block width and height are configured as 256 and 8 respectively. The execution
count numbers show execution packets that are outside the loops (those with execution
count of 1), between the loops (those with execution count of 8), and inside the inner-

most loop (those with execution count of 2048).

Compared to the one-dimensional array addition with the same number of element-wise
additions, this function takes 14438 - 14352 = 86 cycles longer, or 0.6% slower. We can
look at these additional number cycles as the cost of performing two-dimensional
addressing. This cost strongly depends on the block width and height.

The additional number of cycles (86) depends only on the block height, as the compiled
code has a fixed number of instructions between loop levels, and they are executed 8

times in this case because the outer loop is iterated 8 times.

The proportion of cycles (0.6%) spent between the loops roughly depends only on the
block width. The compiled code has a fixed number of instructions in the innermost loop
body as well, which is executed block_width * block_height = 2048 times. Thus,
proportion of time spent between loop levels is some (K1 * block_height) / (K2 *
block_width * block_height) = K1 / (K2 * block_width) = K3 / block_width. The wider the
block width, the smaller proportion of time spent between loop levels.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 101



In this code example, we do not see a large proportion of time spent handling two-
dimensional addressing, but this is due to the block width being large enough for the
inner loop to be unrolled 8 times and with sufficient iteration count to support the
unrolling, as 16 * 16 = 256. If the block width is less than 256, we would see a larger
proportion of processing time spent on two-dimensional addressing. Later in
Performance Across 2D Array Dimensions, we will show cycle counts across different
block dimension configurations.

8.3.2  Optimization 1: Vectorized, Unrolled and
Pipelined Loop

Here we apply the vectorization and unrolling/pipelining techniques shown in
Optimization 1: Vectorized Code and Optimization 2: Unroll and Pipeline the Loop
respectively on the two-dimensional addition function.
//*********************************************************************

// Optimization 1: vectorized, unrolled and pipelined
//*********************************************************************
void array2d_add_opt1(int * A, int * B, int * restrict C,

int blkw, int blkh,

int lofst_A, int lofst_B, int lofst_C)

dvintx vA, vB, vC;

int idx_A, idx_B, idx_C;

int vecw = chess_elementsof(dvint);
dvint * vptrA = (dvint *) A;

dvint * vptrB = (dvint *) B;

dvint * restrict vptrC = (dvint *) C;

for (int i1=0 ; i<blkh; i++)
{
for (int j=0 ; j<blkw/vecw; j++) chess_loop_range(16,)
chess_unroll_loop(8) chess_prepare_for_pipelining

VA = sign_extend(*vptrA++);
vB = sign_extend(*vptrB++);
vC = VA + VB;
*yptrC++ = extract(vC);
}
A += lofst_A;
B += lofst_B;
C += lofst_C;
vptrA = (dvint *) A;
vptrB = (dvint *) B;
vptrC = (dvint *) C

’

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 102



We still need nested for loops to iterate horizontally and vertically. After the inner loop,
between loop levels, there is an update of pointers to adjust for the line offset so we can
start the next row coming back to the inner loop.

The chess_loop_range, chess_unroll_loop, and chess_prepare_for_pipelining pragmas are
applied only to the inner loop, as it is generally not improving performance to apply them
on the outer loop as well.

The profiling instruction report is shown next:

Function detail: array2d_add_opt1
void_array2d_add_opt1___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint

Low PC : 200

High PC 1 287

Size in program memory: 88

Cycle-count 1226 ( 0.20%)

Instruction-count : 204 ( 0.23%)

Instruction Coverage : 100.00%

PC  Assembly Exe-cnt Cycs
200 CMPLEI R8,#0,R2

201 BNEZ R2,#TGT_Fvoid_array2d_add_opt1_82

202 NOP

203 NOP

204 SRAI R7,#31,R3

205 ANDI R3,#15,R3

206 RPT R8,#LE_Fvoid_array2d_add_opt1_81 || ADD R3,R7,R7

208 SRAI R7,#7,R7

209 ORI RO,#64,R2 || ADDI R7,#-1,R7

211 MOV R5,R3 || MOV R4,R12

213 DVLDW_P *R12+=R2,V30:V31|| DVLDW_P #*R3+=R2,V26:V27

215 DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19

217 DVLDW_P *R12+=R2,V14:V15|| DVLDW_P #*R3+=R2,V10:V11

219 DVLDW_P #*R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3

221 DVLDW_P *R12+=R2,V4:V5|| DVLDW_P #*R3+=R2,V0:V1

223 RPT R7,#LE_Fvoid_array2d_add_opt1_62 || DVLDW_P *R12+=R2

226 ORI R6,#0,R8 || VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21]| |

0O 0O 0O 0O 0O 00O 00 | A 4 4 A A A A
=
0O 00O 00O 00 00 00O O ) | A @A @A @A @A Ol

DVLDW_P #*R3+=R2,V16:V17 8 16
230 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25, *R8+=R2]| |

DVLDW_P #*R3+=R2,V24:V25 8 8
234 VAddW V14:V15,V10:V11,V108:V11|| DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27| |

DVSTW_P V18:V19, *R8+=R2 8 8
238 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19| |

DVSTW_P V1@:V11, *R8+=R2 8 8
242 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11| |

DVSTW_P V2:V3, *R8+=R2 8 8
246 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R12+=R2,V6:V7|| DVLDW_P #*R3+=R2,V2:V3||

DVSTW_P VO@:V1, *R8+=R2 8 8

250 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1] |

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 103



DVSTW_P V8:V9, *R8+=R2 8
254 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R12+=R2,V12:V13|| DVLDW_P *R3+=R2,V8:V9]| |

DVSTW_P V16:V17, *R8+=R2 8
258 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21|| DVLDW_P *R3+=R2,V16:V17| |
DVSTW_P V28:V29, *R8+=R2 8

.label LE_Fvoid_array2d_add_opt1_62
262 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25, *R8+=R2]| |
DVLDW_P *R3+=R2,V24:V25 8

266 SLLIADD R9,#2,R4,R4|| SLLIADD R10,#2,R5,R5|| VAddW V14:V15,V10:V11,V10:V11]|]|
DVSTW_P V18:V19, *R8+=R2

270 SLLIADD R11,#2,R6,R6|| VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11, *R8+=R2

273 VAddW V4:V5,V@:V1,Ve:V1|| DVSTW_P V2:V3, *R8+=R2

275 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V@:V1, *R8+=R2

277 VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9, *R8+=R2

279 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17, *R8+=R2

.label LE_Fvoid_array2d_add_opt1_81

281 DVSTW_P V28:V29, *R8+=R2 8

.label TGT_Fvoid_array2d_add_opt1_82

282 JR R15 1

283 NOP 1

284 NOP || NOP || NOP || NOP 1

0O 0O 0O 0O O 0o

It is not easy to spot the inner loop from the report, as the execution counts are 8 for
both between-loop packets and inner loop packets. This is because of the inner-loop is
unrolled 8 times, and with prolog and epilog together executing unrolled loop once, the
actual inner loop body is executed just once, as 256 / (8 * chess_elementsof(dvint)) - 1 =
256/ 128 -1 = 1. Blank lines are manually inserted to better visualize the innermost
loop.

There is still a significant speedup from the scalar code, 14438/226 = 64.9 times. The
inner loop is still packed with 1 VAddW, 2 DVLDW, and 1 DVSTW per execution packet, in
all 8 execution packets.

The use of nested for loops and clock cycles spent between loop levels does add to the
overhead. Compared to the ideal time spent, which is (256 * 8) / 16 = 128 cycles, the
function execution time is only 128/226 = 57% efficient. There is relatively high overhead
to handle 2D addressing, versus 91% efficient in the 1D array addition case.

As argued in the previous section, on scalar code performance, proportion of time spent
between loop levels is mostly a function of the inner-loop iteration count. In the
configuration where profiling instruction report is generated, we operate on 8 tall x 256
wide arrays. If it’s not as “short-and-wide” in aspect ratio, say it's 16 tall x 128 wide or 32
tall x 64 wide, we don’t have sufficient number of iterations for the inner-most loop to
fully unroll and pipeline, and we have smaller iteration count on the inner loop, and both
would contribute to reducing the overall efficiency of the code.

In Performance Across 2D Array Dimensions we will present function cycle count across
various 2D array dimensions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 104

0O 0O 0O 0O o ©o



8.3.3  Optimization 2: Leveraging Agen to Collapse
Nested Loops

In this section, we tackle the performance degradation from two-dimensional
addressing.

In image and vision processing, we often need an even higher dimension of address
calculation. For example, in 2D convolution, we have 2 dimensions from producing some
block-width x block-height of output block, and we have kernel-width x kernel-height
looping to perform convolution between points in the 2D convolution kernel and 2D
neighborhood around each output pixel. The address generator, or agen, feature is there
to support up to 6 dimensions of address calculation.

The following optimized code shows how agens are configured and utilized for the 2D
array addition function:
//*********************************************************************
// Optimization 2: leverage agen, initialization
//*********************************************************************
void array2d_add_opt2_init(int * A, int * B, int * C,

int blkw, int blkh,

int lofst_A, int lofst_B, int lofst_C,

int * niter, AgenCFG * agen_ptr)

int vecw = chess_elementsof(dvint);
dvintx vA, vB, vC;

agen in@, inl1, out;

short niter1 = blkw/vecw;

short niter2 = blkh;

* niter = niter1 * niter2;
agen_wrapper_t wrapper;

in@ = init(A);

wrapper.size = sizeof(int);
wrapper.nl = niterl;
wrapper.n2 = niter2;
wrapper.sl = vecw;
wrapper.s2 = lofst_A;
INIT_AGEN2(in@, wrapper);

in1 = init(B);

wrapper.size = sizeof(int);
wrapper.n1l = niter1;
wrapper.n2 = niter2;
wrapper.sl = vecw;
wrapper.s2 = lofst_B;
INIT_AGEN2(in1, wrapper);

out = init(C);
wrapper.size = sizeof(int);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 105



wrapper.n1 = nitert;
wrapper.n2 = niter2;
wrapper.s1l = vecw;
wrapper.s2 = lofst_C;
INIT_AGEN2(out, wrapper);

chess_separator_scheduler();

*agen_ptr++
*agen_ptr++
*agen_ptr++

extract_agen_cfg(in@);
extract_agen_cfg(in1);
extract_agen_cfg(out);

[ [ XFRKRRkkkkkkkkkhkkkhhbhrhhdhhhhbhhbhrhrbhrbrbhhbrbhkbhdhrbhrhrbkrhrtk

// Optimization 2: leverage agen
//*********************************************************************
void array2d_add_opt2(int niter, AgenCFG * agen_ptr)
{

agen_A in@ = init_agen_A_from_cfg(*agen_ptr++);

agen_B in1 = init_agen_B_from_cfg(*agen_ptr++);

agen_C out = init_agen_C_from_cfg(*agen_ptr++);

dvintx vA, vB, vC;

for (int i1=0 ; i<niter; i++) chess_loop_range(16,)
chess_unroll_loop(8) chess_prepare_for_pipelining

{
vA = dvint_load(in@);
vB = dvint_load(in1);
vC = VA + VB;
vstore(vC, out);

}

}

There are 2 functions, array2d_add_opt2_init() and array2d_add_opt2(). Agen parameter
calculation and configuration is placed in an “init” function meant to be called just once
or twice per application. By separating out the agen parameter calculation and
configuration portion, we reduce the per-tile computation time.

The configured agens are saved to memory via the AgenCfgST instruction (see
AgenCfgST) one at a time, and are restored from memory via AgenCfgLD instruction
(see AgenCfgLD) one at a time before the compute loop.

In the init function, we still must calculate inner loop number of iterations, niter1, and
outer loop number of iterations, niter2, but they are not used to iterate nested for loops.
Instead, they are used in agen programming, as it’s agen that needs to know about
these iteration counts to carry out the 2D addressing. Product of niter1 and niter2, niter,
is returned to the main function, to supply to the compute function to iterate the
collapsed for loop.

In the init function, we declare wrapper variable of agen_wrapper_t type. Using agen
wrapper allows the programmer to specify the step size of various dimensions and use

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 106



macros like INIT_AGENZ to carry out the complex expressions (see 6.4.1) to calculate the
address modifiers, instead of coding the complex expressions directly. In general, we
pre-determine dimension needed in the agens, say K dimensions, we program wrapper
nl.nk, s1..sk, and then call INIT_AGENk to complete the agen programming.

There is a straightforward producess to convert the indexing expression in the scalar
code into the step parameters s1..sk for the wrapper. For example, array A is indexed in
the scalar code as:

Ali * lofst_A + j]

We map the inner loop variable j into loop level 1 of agen, and outer loop variable i into
loop level 2.

Furthermore, in the process of vectorizing the 2D array addition, we process one dvint at
a time, so the original indexing should be converted into loading from

A+ i2 * lofst_A + i1 * vecw

with vecw = chess_elementsof(dvint). We take the vectorized indexing expression and
basically fill step parameters s1..sk with whatever scaling factor is being multiplied with
the corresponding loop variable i1..ik. Thus, we program them as

wrapper.s1l = vecw;

wrapper.s2 = lofst_A;

In the loop body, loading through agen-based load is performed via intrinsic function
dvint_load(agen), and storing through agen-based store is performed via intrinsic
function vstore(variable, agen). vstore() function is type-overloaded to handle various
vector data types.

The 2 agens for load, inO and in1, and the one agen for store, out, are declared as
variables of agen_A/B/C types respectively. These _A/B/C suffixes are to denote
superbank A/B/C. They do not really need to match the actual pointer values being in
superbank A/B/C, but are there to guide compiler scheduling, so that we don’t load from
the same superbank to store to the same superbank multiple times in an execution
packet and cause unnecessary performance degradation.

With the agen taking up the 2D address calculation, we can collapse the 2 levels of
nested for loops into just one level and run it niter = niter1 * niter2 times. This also helps
with unrolling and software pipelining, as the number of iterations being a multiple of 8
and being at least 16 are now constraints on the overall loop iteration count, and can
apply to more array dimension cases.

The profiling instruction report is shown next:
Function detail: array2d_add_opt2 void_array2d_add_opt2___sint___Pdvuint

Low PC 1 344

High PC 1 415

Size in program memory: 72
Cycle-count ;146 ( 0.13%)
Instruction-count : 141 ( 0.16%)
Instruction Coverage : 100.00%

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 107



PC  Assembly Exe-cnt Cycs

344 ORI RO,#64,R4 || SRAI R4,#3,R2 1 1
346 ADDI R2,#-1,R2 1 1
347 AgenCfglLD *R5+=R4, A0 1 1
348 AgenCfgLD *(R5+0),A2 1 1
349 AgenCfgLD *(R5+64), A1 1 4
350 DVLDW_P *A@++,W12:W13 1 1
351 DVLDW_P *A@++,V10:V11|| DVLDW_P *A2++,V14:V15 1 1
353 DVLDW_P *A@++,V6:V7|| DVLDW_P *A2++, W8:W9 1 1
355 DVLDW_P *A@++,V2:V3|| DVLDW_P *A2++, W4:W5 1 1
357 DVLDW_P *A@++,V0:V1|| DVLDW_P *A2++, WO :W1 1 1
359 DVLDW_P *A@++,V4:V5|| DVLDW_P *A2++, W2 :W3 1 1
361 RPT R2,#LE_Fvoid_array2d_add_opt2_54|| DVLDW_P *A2++,W6:W7 1 1
363 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A@++,V8:V9|| DVLDW_P *A2++, W10:W11 1 1
366 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A@++,V12:V13|| DVLDW_P *A2++, W14:W15] |

DVSTW_P V16:V17, *A1++ 1 1
370 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19, *A1++|| DVLDW_P *A@++,W12:W13| |

DVLDW_P *A2++,V14:V15 15 15
374 VAddW V2:V3,W0:W1,V22:V23|| DVLDW_P *A@++,V10:V11|| DVLDW_P *A2++,W8:W9| |

DVSTW_P V20:V21, *A1++ 15 15
378 VAddW VO:V1,W2:W3,V24:V25|| DVLDW_P *A@++,V6:V7|| DVLDW_P *A2++, W4:W5] |

DVSTW_P V22:V23, *A1++ 15 15
382 VAddW V4:V5,W6:W7,V26:V27|| DVLDW_P *A@++,V2:V3|| DVLDW_P *A2++,WO:W1]||

DVSTW_P V24:V25, *A1++ 15 15
386 VAddW V8:V9,W10:W11,V28:V29|| DVLDW_P *A@++,V@:V1|| DVLDW_P *A2++,W2:W3| |

DVSTW_P V26:V27, *A1++ 15 15
390 VAddW V12:V13,W14:W15,V30:V31|| DVLDW_P *A@++,V4:V5|| DVLDW_P *A2++ W6 :W7| |

DVSTW_P V28:V29, *A1++ 15 15
394 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A@++,V8:V9|| DVLDW_P *A2++ W10:W11]||

DVSTW_P V30:V31, *A1++ 15 15
.label LE_Fvoid_array2d_add_opt2_54
398 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A@++,V12:V13|| DVLDW_P *A2++, W14:W15] |

DVSTW_P V16:V17, *A1++ 15 15
402 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19, *A1++ 1 1
404 VAddW V2:V3,W0:W1,V22:V23|| DVSTW_P V20:V21, *A1++ 1 1
406 VAddW VO:V1,W2:W3,V24:V25|| DVSTW_P V22:V23, *A1++ 1 1
408 VAddW V4:V5,W6:W7,V26:V27|| DVSTW_P V24:V25, *A1++ 1 1
410 JR R15 || VAddW V8:V9,W10:W11,V28:V29|| DVSTW_P V26:V27, *A1++ 1 1
413 VAddW V12:V13,W14:W15,V30:V31|| DVSTW_P V28:V29, *A1++ 1 1
415 DVSTW_P V30:V31, *A1++ 1 3

Now the loop body stands out, as there is just one loop level. Scalar code before the loop
is relatively terse, as agen parameter calculation and configuration is moved to the init
function, which takes 51 cycles (not shown here). We don’t add these cycles to the tile
compute function cycle count, as the init function is run just once per application.

It takes just 146 cycles to run the per-tile compute function, compared to 226 cycles in
the vectorized and unrolled/pipelined version that still needs to deal with 2D address
calculation. In this version, agen hardware takes care of 2D address calculation in the

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 108



background, so we are not spending any clock cycle. The efficiency of this code is
128/146 = 88%.

8.34 Performance Across 2D Array Dimensions

We vary the array dimension and collect cycle count, as follows. For optimization 1 and 2,
efficiency ratios vs ideal cycle counts are also shown in parenthesis.

Table 17. Performance optimization across array dimensions

Optimization 1 s

Array | Array | Scalar code (vFe,ctor, 3::;“7;?::;:: gvge:;:;) )
Height | Width | cycles unvolfpipeline) cyces | ¢\l ettcioncy %)
4 512 14,394 186 (69%) 146 (88%)

8 256 14,438 226 (57%) 146 (88%)

16 128 14,526 322 (40%) 146 (88%)

16 512 57,534 690 (74%) 530 (97%)

32 256 57,710 850 (60%) 530 (97%)

64 128 58,062 1,234 (41%) 530 (97%)

We can see that optimization 2 code’s performance is not at all sensitive to block width
versus height changes, only to the total number of data points, and efficiency is good.
Scalar code performance is a weak function of the block width, wider blocks perform
slightly better. Optimization 1 code’s performance is better than scalar code, but is
worse than optimization 2 code’s performance, and the narrower the block width, the
worse off it gets.

8.4 2D Convolution

Next, we see how 2D convolution, a common image processing step, is accelerated by
leveraging the multi-dimension address calculation feature of agens, along with store-
path rounding and predicated vector math instructions.

8.4.1 Scalar Code

A straightforward implementation of 2D convolution is as follows.

[/ ExERRR Rk kkkkkkhkkkhkkkkhhhrhkhkhrhrhbhbrhrhrhdrhrhrhbrhrhrhbhbrbrrrrsk

// Filter implemented with natural C code to do 2D addressing
//*********************************************************************

void filter_short_ref(short *data, short *coef, short *out,
int kw, int kh, int gbits, int blkw, int blkh,
int lofst_data, int lofst_out)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 109



short sdata;
short scoef;
int prod;
long long acc;

int rnd_add = (gbits == 0) ? @ : (1 << (gbits-1));

for (int i4=0 ; i4<blkh; i4++)
for (int i3=0 ; i3<blkw; i3++) {
acc = 0;
for (int i2=0 ; i2<kh; i2++)
for (int 11=0 ; il1<kw; 1i1++) {
sdata = data[(i4 + i2)*lofst_data + i3 + i1];
scoef = coef[i2*kw + i1];
prod = sdata * scoef;
acc += prod;
}
acc = (acc + rnd_add) >> gbits;
out[i4*lofst_out + i3] = acc;
}
}

The function carries out 2D convolution with 4 levels of nested for loop. The 4 levels of
looping are needed to drive indexing of data and coefficient arrays and output array.
Data indexing has 4 dimensions, horizontally and vertically to traverse in the kw x kh
neighborhood to perform dot-product with the coefficient array, and then horizontally
one vector width at a time, vertically one row at a time, to produce the 2D array output.
Coefficient and output each have 2 dimensions of indexing.

There are statements between the outer 2 loop levels and the inner 8 loop levels. Before
entering the inner 2 loop levels, we clear the accumulator. After exiting the inner 2 loop
levels, having already accumulated kw * kh products to the accumulator, we perform
rounding on the accumulated sum then store the rounded outcome to the output array.

The profiling instruction report of this scalar code is as follows:
Function detail: filter_short_ref void_filter_short_ref_ ...

Low PC : 56

High PC : 143

Size in program memory: 88
Cycle-count ;285663 (71.77%)
Instruction-count : 191024 (73.10%)

Instruction Coverage : 94.92%

PC  Assembly Exe-cnt Cyc
56 ADDI R9,#-1,R2 || ADDI R1,#20,R1

58 CMPEQ R9,R@,R19 || ORI R@,#1,R3

60 SLL R3,R2,R2 || CMPLTI R9,#32,R13|| STW R13,*(R1+2036)

63 ADDI R9,#-32,R18 || CMPLEI R7,#0,R14|| STW R10,*(R1+2028)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 110

S



66
68
70
73
76
77
78
80
81
82
83
84
85
87
88
89
90
91
93
94
96
97
99
100
102
104
106
108
110
112
114
115
116
117
118
119
120
121
122
124
125
126
127
128
129
130
131
132
133

ORI RO,#2,R20 || ORI R@,#32,R3

J #__114_void_filter_short_ref || ORI RO, #0,R23

SUB R3,R9,R2 || MUX R19,R@,R2,R17|| STW R11,*(R1+2032)
SRAI R17,#31,R15 || CMPLEI R8,#0,R3|| STW R15,*(R1+2040)
J #__113_void_filter_short_ref

SLLIADD R1@,#1,R6,R10

ORI RO, #0,R22 || MOV R6,R11

BNEZ R3,#TGT_J_Fvoid_filter_short_ref_81

ADD R4,R22,R24

NOP

RPT R8,#TGT_Fvoid_filter_short_ref_48
LHI #0,R28

ORI RO, #0,R23 || MOV R5,R25

BNEZ R14,#TGT_Fvoid_filter_short_ref_48
NOP

NOP

RPT R7,#LE_Fvoid_filter_short_ref_46

MOV R24,R27 || MOV R25,R26

NOP

LDH *R27+=R20,R30 || LDH *R26+=R20,R29
MUL R29,R30,R30

ADD R23,R30,R30 || SRAI R30,#31,R31
ORI R30,#0,R21

ADD R28,R31,R308 || CMPLTU R30,R23,R31
MOV R21,R23 || ADD R30,R31,R28

SLLIADD R12,#1,R24,R24|| SLLIADD R7,#1,R25,R25
ADD R15,R28,R25 || ADD R17,R23,R24

SRL R24,R9,R23 || CMPLTU R24,R23,R26
ADDI R22,#2,R22 || ADD R25,R26,R25

SRA R25,R18,R25 || SLL R25,R2,R26

OR R23,R26,R23

MUX R13,R23,R25,R23

MUX R19,R24,R23,R23

STH R23, *R11+=R20

CMPLTU R11,R10,R23

BNEZ R23,#TGT_Fvoid_filter_short_ref_24
NOP

NOP

SLLIADD R12,#1,R4,R4|| LDW *(R1+2044),R23
LDW *(R1+2036),R22

LDW *(R1+2032),R11

LDW *(R1+2028),R10

ADDI R23,#1,R23

SLLIADD R22,#1,R6,R6

CMPLT R23,R11,R11

BNEZ R11,#TGT_Fvoid_filter_short_ref_20
STW R23,*(R1+2044)

NOP

LDW *(R1+2040),R4

Orin PVA VPU Programmer’s Guide

—_ A A

32

32

32
2048
2048
2048
2048
2048
2048
6144
6144
6144
6144
6144
6144
18432
18432
18432
18432
18432
18432
6144
2048
2048
2048
2048
2048
2048
2048
2048
2080
2080
2080
2080
32

32

32

32

32

32

33

33

33

33

W = 4

32

32

96
2048
2048
2048
2048
2048
2048
6144
6144
14336
6144
6144
6144
92160
18432
18432
18432
18432
18432
6144
2048
2048
2048
2048
2048
2048
2048
2048
10400
2080
2080
6176
32

32

32

64

32

32
165
33

33

97

SWE-PVA-076-PGRF | 111



134 JR R4

135 ADDI R1,#-20,R1

136 NOP

137 J #TGT_Fvoid_filter_short_ref_50
138 ORI RO,#0,R28 || ORI RO,#0,R23
140 NOP || NOP || NOP || NOP

O O ® | | -4

The function takes 285,663 cycles to compute a 64 wide x 32 tall outputs worth of 2D
convolution, about 140 cycles per output, or about 15 cycles per data-coefficient
product. From the rising then falling numbers in the execution count and cycle count, we
can tell where the boundaries of 4 levels of for loop are.

In the innermost loop with execution count of 18432 (which is 64 * 32 * 9), we have a 10
cycle loop, as (92160 + 5*18432) / 18432 = 10. These 10 cycles are from 5 cycles of load
and latency, multiply, add, then a few cycles to perform array indexing needed for the
inner-most loop.

Later in the optimized code, we will see how various VPU instructions and agen features
are leveraged, so that we perform all these, loading data/coefficient, multiply-add, index
update, and in vectorized form so doing a double short vector worth thus 32 sets of
these, in one cycle. Moreover, the 4 nested for loops are collapsed into one single loop,
with periodic accumulator initialization and rounding and storing of output all absorbed
into the loop body.

8.4.2 Optimization 1: Vectorized and Agen
Optimized Loop

As we have learned in Optimization 2: Leveraging Agen to Collapse Nested Loops,
besides vectorization and loop unrolling, software pipelining, we can leverage multi-
dimensional addressing capability of agens to collapse nested for loops. The following
example code includes two functions. There’s an initialization function to
calculate/configure agen parameters and save the agen configurations to memory. Then
there is a run-time compute function to restore the agens and run the filtering loop.

[[RxRRRRkkkkkkbhhkkkkhkbhhhhrhkbhhrhrhbhbhhhhrhbrbrhrrbrbhhrhbhbrhrhrrrk

// Filter optimized, initialization function
//*********************************************************************
void filter_short_opt1_init(short *data, short *coef, short* restrict out,

int kw, int kh, int gbits, int blkw, int blkh,

int lofst_data, int lofst_out, int * niter_ptr,

AgenCFG * cfg_ptr)

int vecw = chess_elementsof(dvshort);
short niter1 = kw;

short niter2 = kh;

short niter3 = blkw/vecw;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 112

OO0 ® W -



short niter4 = blkh;

* niter_ptr++
* niter_ptr

= niter1 * niter2 * niter3 * niter4;
= niter1 * niter2;

agen data_agen, coef_agen, out_agen;
agen_wrapper_t wrapper;

data_agen

wrapper.size
.n1
.n2
.n3
.n4
.s1
.82
.s3
.s4

wrapper
wrapper
wrapper
wrapper
wrapper
wrapper
wrapper
wrapper

init((vshort*) data);

= sizeof(short);
kw;

kh;

blkw/vecw;

blkh;

1,

lofst_data;
Vecw;
lofst_data;

INIT_AGEN4(data_agen, wrapper);

coef_age

n

wrapper.size

wrapper .
wrapper .
wrapper .
wrapper.

ni
n2
s1
s2

init((vshort*)coef);

= sizeof(short);

kw * kh;
(blkw/vecw) * blkh;
15

9,

INIT_AGEN2(coef_agen, wrapper);

out_agen

wrapper
wrapper
wrapper
wrapper
wrapper
wrapper

.n1
.n2
.n3
.s1
.s2
.s3

init((vshort*)out);
wrapper.size

= sizeof(short);
kw * kh;
blkw/vecw;

blkh;

9,

Vecw;

lofst_out;

INIT_AGEN3(out_agen, wrapper);
out_agen.round = gbits;

chess_separator_scheduler();

*cfg_ptr
*cfg_ptr
*cfg_ptr

++
++
++

extract_agen_cfg(data_agen);
extract_agen_cfg(coef_agen)
extract_agen_cfg(out_agen);

’

[/ xxxRRRkkkkkkkkhkkhkhhbhhhhrhbhbrhrhbhbhhhhrhbrbrhrhbrbhhrhbhbrhrkrrrk

// Filter optimized, run-time compute function
//*********************************************************************

void filter_short_opt1(int * niter_ptr, AgenCFG * cfg_ptr)

{

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 113



int count_madd = 0;
int count_store = 1;
int pred_madd = 0;
int pred_store = 0;

int niter = * niter_ptr++;
int niter_in = * niter_ptr;
dvshortx dvdata;

int  coef;

dvintx dvacc@, dvaccl;

agen_A data_agen = init_agen_A_from_cfg(*cfg_ptr++);
agen_B coef_agen = init_agen_B_from_cfg(*cfg_ptr++);
agen_C out_agen = init_agen_C_from_cfg(*cfg_ptr++);

chess_separator_scheduler();

for (int i=0; i<niter; i++) chess_prepare_for_pipelining
chess_unroll_loop(8) chess_loop_range(16,) {

dvdata = dvshort_load_di(data_agen);

coef = short_load(coef_agen);

dvacc@
dvacci

vstore_i(dvacc®, dvaccl, out_agen, pred_store);

count_madd
pred_madd = (count_madd!=0) ? (int)@xFFFFFFFF : 0;

count_store = (count_store == niter_in-1) ? @ :(count_store + 1);

pred_store = (count_store==0) ? (int)@xFFFFFFFF : 0;

vmaddhw(dvdata.lo, coef, dvacc@, VPU_ROUND_O@, pred_madd);
vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_O@, pred_madd);

(count_madd == niter_in-1) ? @ : (count_madd + 1);

Agen programming for data, coefficients and outputs follow the nested loop iteration

counts and data, coefficient, and output indexing in the scalar code.

Nested for loops in the scalar code:
for (int i14=0 ; i4<blkh; i4++)
for (int i3=0 ; i3<blkw; i3++) {

for (int i12=0 ; i2<kh; i2++)
for (int 11=0 ; il1<kw; 1i1++) {

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 114



Let’'s compare the data indexing in the scalar code:
sdata = data[(i4 + i2)*lofst_data + i3 + i1];

with data agen programming:
data_agen = init((vshort*) data);
wrapper.size = sizeof(short);
wrapper.nl = kw;
wrapper.n2 = kh;
wrapper.n3 = blkw/vecw;
wrapper.n4 = blkh;
wrapper.sl = 1;
wrapper.s2 = lofst_data;
wrapper.s3 = vecw;
wrapper.s4 = lofst_data;
INIT_AGEN4(data_agen, wrapper);

The iteration counts are translated directly to the iteration counts in data agen
programming, except that in i3 loop, we run for blkw/vecw iterations instead of blkw,
due to computing vecw elements of the output array in parallel through the
vectorization process. The step amount is adjusted accordingly to vecw elements
instead of one.

Coefficient indexing in the scalar code:
scoef = coef[i2*kw + i1];

Coefficient agen programming:

coef_agen = init((vshort*)coef);
wrapper.size = sizeof(short);
wrapper.n1 = kw * kh;

wrapper.n2 = (blkw/vecw) * blkh;
wrapper.s1l = 1;

wrapper.s2 = 0;
INIT_AGEN2(coef_agen, wrapper);

In this instance, we lump the scalar for loops i1 and i2 into just one dimension in
coefficient agen. This is because coefficient indexing just advance by one element per
iteration in the inner 2 loop levels. In coefficient agen programming we can just use one
loop level with the combined number of iterations kw * kh to comprehend the inner 2
loop levels in the scalar code.

In the scalar code, coefficient indexing has no i3 or i4 components, the two outer loop
variables. Consequently, coefficient addressing just repeats the same pattern when we
iterate the outer loops. In agen programming, we accomplish this repeating pattern by
configuring an outer dimension n2 parameter to the combined iteration count of the
two outer loops, (blkw/vecw) * blkh, and with step amount s2 configured to O.

Output indexing in the scalar code:
out[i4*lofst_out + i3] = acc;

Output agen programming:

out_agen = init((vshort*)out);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 115



wrapper.size = sizeof(short);
wrapper.n1 = kw * kh;
wrapper.n2 = blkw/vecw;
wrapper.n3 = blkh;

wrapper.sl = 0;

wrapper.s2 = vecw;

wrapper.s3 = lofst_out;
INIT_AGEN3(out_agen, wrapper);
out_agen.round = gbits;

In the scalar code, output is stored out between the inner 2 loops and outer 2 loops, as
in the inner 2 loops we are accumulating the products between data points and
coefficients, and only when we are out of the inner 2 loops, we are ready to store the
outcome to memory.

In the optimized code, the store is placed in the loop body instead of in an outer loop. Of
course, it is functionally correct to move the store to the outer loop. but doing that
would introduce much loop prolog/epilog time between loop levels and slow down the
processing significantly. It is possible to avoid more of the loop prolog/epilog overhead if
we fully unroll by kw * kh iterations so that the revised code has again single loop level,
but doing that would hard-wire the code to a fixed convolution kernel size (if not kw x kh,
at least the product kw * kh), which will have impact in code size if an application
requires more than one convolution kernel size.

By moving the store inside the loop, we need to make two changes in the code. One is
that the store should be predicated to execute periodically, once per kw * kh iterations.
The other is that we need to change the output agen programming.

Store predication is accomplished through calculation of the predicate flag pred_store in
the optimized code:

count_store = (count_store == niter_in-1) ? @ : (count_store + 1);
pred_store = (count_store==0) ? (int)@xFFFFFFFF : 0;

The count_store is initialized to 1, and pred_store to O, outside the loop. Inside the loop,
count_store is modularly incremented, meaning it is incremented by 1 each time, until it
reaches niter_in - 1, whereas it is reset to O. pred_store flag is set -1 when count_store
is zero and otherwise is set 0. With these statements, we implement a periodic
pred_store with the following pattern:

00 .0100 .1.

Here, the period is niter_in, which is calculated in the initialization function to be kw * kh
and stored to memory and restored in the run-time function. This achieves the objective
of storing out once at the end of each period of kw * kh executions of the store.

These two lines of code involve many scalar operations, so it seems time-consuming to
execute. To avoid predication becoming the bottleneck in compute loops, we have
architected our predicate instructions to implement common periodic predication
patterns, so these 2 lines of code map to just one predicate instruction, MODINC_NOTP.
The “NOT” comes from the predication being derived negatively from the counter (true
when counter is zero).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 116



The output agen programming is also adjusted to account for placing the store inside
the loop. An inner dimension n1 is inserted before the outer 2 dimensions iterating over
output horizontally one vector width at a time, and vertically one row at a time. The inner
dimension n1 is iterated kw * kh times with zero stepping, to implement a pattern that
keeps the address static for kw * kh executions of the store before each advancement
of the address.

The outer 2 dimensions of the output agen follow that of the scalar code, except that
horizontally we are advancing by vector width at a time, due to vectorization, and
vertically one row at a time.

The fact that we need an inner dimension for the output agen has to do with how
predicated store is executed in the pipeline. In the processor pipeline, we need all
memory operation to have address calculation early in the pipeline to deal with memory
latency. Agen update is part of address calculation and thus is executed early and
unconditionally even when there is predication on the store. The store predicate that
controls whether a memory write is taking place is evaluated later in the pipeline, just in
time to drive out to the VMEM interface along with data to be stored.

Similar predication is needed to implement accumulator initialization, which is also
executed between loop levels. Through these 2 statements we implement another
periodic predicate signal, pred_madd:

count_madd = (count_madd == niter_in-1) ? 8 : (count_madd + 1);

pred_madd = (count_madd!=0) ? (int)@xFFFFFFFF : @;

Both count_madd and pred_madd are initialized to O outside the loop. The pred_madd
signal implemented has this pattern:

611.17011.1.

Here, the period being also niter_in = kw * kh, matching the period of pred_store.
pred_madd goes into the argument of vmaddhw, which is mapped to the predicated
vector multiply-add instruction VMAddHHW_CA. When predicate is O, the instruction
does just multiplication, and when the predicate is non-zero, the instruction does
multiply-add. Thus, the pred_madd pattern drives the MAC instruction to clear the
accumulators for the first iteration in a period of kw * kh iterations.

These two lines of optimized code producing the pred_madd signal, although looking
expensive, are mapped into just one predicate instruction, MODINCP.

Optimized code has loop body as follows:
dvdata = dvshort_load_di(data_agen);
coef = short_load(coef_agen);
dvacc@ = vmaddhw(dvdata.lo, coef, dvacc®, VPU_ROUND_@, pred_madd);
dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_@, pred_madd);
vstore_i(dvacc®, dvaccl, out_agen, pred_store);

Note the use of deinterleaving load, dvshort_load_di(), and interleaving store, vstore_i().
They are a matched pair to deal with data ordering when we use expanding MAC
instructions, in this case VMAddHHW_CA, to produce outcome.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 117



The expanding MAC instruction VMAddHHW_CA performs 17-bit x 17-bit multiplications
(rather than 16-bit, so we can handle both signed 16-bit and unsigned 16-bit
multiplication) and accumulates in 48-bit accumulators, to account for both product bit
width and room for dynamic range growth in accumulating multiple products.

Here coefficients are loaded to a scalar variable/register, one at a time, and the scalar
register is fed directly to the VMAddHHW_CA instruction and broadcast to all vector
lanes performing the mutiply-add. In most vector math instructions, we support scalar
source 2 operand optionally.

The profiling instruction report is as follows:
Function detail: filter_short_opt1 void_filter_short_opt1___P__sint___Pdvuint

Low PC : 232

High PC : 359

Size in program memory: 128
Cycle-count : 597 ( 08.15%)
Instruction-count 593 ( 0.23%)

Instruction Coverage : 100.00%

PC  Assembly Exe-cnt Cycs
232 ORI RO,#64,R3 || LDW *(R4+4),R2 || LDW *(R4+0),R4 1
235 AgenCfgLD *R5+=R3,A0 1
236 AgenCfgLD *(R5+64),A2 1
237 AgenCfgLD *(R5+0),A1 1
238 ORI RO,#0,R5 || SRAI R4,#3,R4 1
240 ADDI R2,#-1,R2 || ADDI R4,#-1,R13 1
242 ORI RO, #1,R4 || MOVSP R5,P2 1
244 MOVP P2,P9 || DVLDH_PDI *A@++,V12:V13 1
246 DVLDH_PDI *A@++,V8:V9 1
247 LDH *A1++, R11 || DVLDH_PDI *A@++,V4:V5 1
249 LDH *A1++, R9 || DVLDH_PDI *A@++,V0:V1 1
251 LDH *A1++, R7 || DVLDH_PDI *A@++,V2:V3 1
253 LDH *A1++, R3 || DVLDH_PDI *A@++,V6:V7 1
255 LDH *A1++, R6 1
256 RPT R13,#LE_Fvoid_filter_short_opt1___P__sint___Pdvuint_89|| LDH *A1++, R8 || 1
258 MODINCP R2,R5,P18 || NOP || [P9] VMAddHHW_CA V13,R11,AC0:AC1] |

[P9] VMAddHHW_CA V12,R11,AC2:AC3 || DVLDH_PDI *A@++,V10:V11|| LDH *A1++, R10 1 1
265 MODINC_NOTP R2,R4,P4||MODINCP R2,R5,P3||[P10] VMAddHHW_CA V9,R9,ACO:AC1]||

[P10] VMAddHHW_CA V8,R9,AC2:AC3||[P2] QVSTWH_PI AC2:AC3,ACO:ACT,*A2++]| |

LDH *AT++, R12||DVLDH_PDI *A@++,V14:V15 1 1
272 MODINCP R2,R5,P14 | |MODINC_NOTP R2,R4,P5||[P3] VMAddHHW_CA V4,R7,AC2:AC3| |

[P3] VMAddHHW_CA V5,R7,ACO:AC1||[P4] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++] |

DVLDH_PDI *A@++,V12:V13]||LDH *A1++,R11 71 71
279 MODINCP R2,R5,P5 | |MODINC_NOTP R2,R4,P6||[P14] VMAddHHW_CA V@,R3,AC2:AC3| |

[P14] VMAddHHW_CA V1,R3,AC0:ACT||[P5] QVSTWH_PI AC2:AC3,ACO:ACT,*A2++]| |

DVLDH_PDI *A@++,V8:V9||LDH *A1++, R9 71 71
286 MODINCP R2,R5,P13 | |MODINC_NOTP R2,R4,P7||[P5] VMAddHHW_CA V2,R6,AC2:AC3| |

RN W U (K U WU (UK K K WU (U (i S (G N S )

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 118



[P5] VMAddHHW_CA V3,R6,ACO:AC1||[P6] QVSTWH_PI AC2:AC3,ACO:ACT,*A2++| |

DVLDH_PDI *A@++,V4:V5||LDH *A1++,R7 71 71
293 MODINCP R2,R5,P7 ||MODINC_NOTP R2,R4,P15||[P13] VMAddHHW_CA V6,R8,AC2:AC3]| |

[P13] VMAddHHW_CA V7,R8,ACO:AC1||[P7] QVSTWH_PI AC2:AC3,ACO:ACT, *A2++] |

DVLDH_PDI *A@++,V@:V1||LDH *A1++,R3 7171
360 MODINCP R2,R5,P11 | |MODINC_NOTP R2,R4,P8||[P7] VMAddHHW_CA V10,R10,AC2:AC3| |

[P7] VMAddHHW_CA V11,R18,AC0:AC1||[P15] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++| |

DVLDH_PDI *A@++,V2:V3||LDH *A1++,R6 71 71
307 MODINC_NOTP R2,R4,P12||MODINCP R2,R5,P9||[P11] VMAddHHW_CA V14,R12,AC2:AC3]| |

[P11] VMAddHHW_CA V15,R12,ACO:AC1T||[P8] QVSTWH_PI AC2:AC3,ACB8:ACT,*A2++| |

DVLDH_PDI *A@++,V6:V7||LDH *A1++,8 7171
314 MODINCP R2,R5,P10 ||MODINC_NOTP R2,R4,P2||[P9] VMAddHHW_CA V13,R11,ACO:AC1||

[P9] VMAddHHW_CA V12,R11,AC2:AC3||[P12] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++| |

DVLDH_PDI *A@++,V10:V11||LDH *A1++,R10 71 71
321 MODINCP R2,R5,P3 ||MODINC_NOTP R2,R4,P4||[P18] VMAddHHW_CA V8,R9,AC2:AC3||

[P10] VMAddHHW_CA V9,R9,ACO:AC1||[P2] QVSTWH_PI AC2:AC3,ACO:ACT,*A2++] |

DVLDH_PDI *A@++,V14:V15||LDH *A1++,R12 71 71
328 MODINCP R2,R5,P14 || MODINC_NOTP R2,R4,P5|| [P3] VMAddHHW_CA V4,R7,AC2:AC3||

[P3] VMAddHHW_CA V5,R7,AC@:AC1|| [P4] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++ 1T 1
333 MODINC_NOTP R2,R4,P6|| MODINCP R2,R5,P5|| [P14] VMAddHHW_CA V1,R3,AC0:AC1| |

[P14] VMAddHHW_CA V@,R3,AC2:AC3|| [P5] QVSTWH_PI AC2:AC3,AC08:ACT, *A2++ 1T 1
338 MODINC_NOTP R2,R4,P7|| MODINCP R2,R5,P13|| [P5] VMAddHHW_CA V3,6R6,ACO:ACT||

[P5] VMAddHHW_CA V2,R6,AC2:AC3|| [P6] QVSTWH_PI AC2:AC3,ACO:ACT,*A2++ 1T 1
343 MODINC_NOTP R2,R4,P15|| MODINCP R2,R5,P7|| [P13] VMAddHHW_CA V7,R8,ACO:AC1||

[P13] VMAddHHW_CA V6,R8,AC2:AC3|| [P7] QVSTWH_PI AC2:AC3,ACO:AC1,*A2++ 1T 1
348 MODINC_NOTP R2,R4,P8|| MODINCP R2,R5,P11|| [P7] VMAddHHW_CA V11,R10,ACO:AC1| |

[P7] VMAddHHW_CA V1@,R10,AC2:AC3|| [P15] QVSTWH_PI AC2:AC3,AC@:AC1, *A2++ 1T 1
353 JR R15 1T 1
354 MODINC_NOTP R2,R4,P12|| [P11] VMAddHHW_CA V14,R12,AC2:AC3] |

[P11] VMAddHHW_CA V15,R12,ACO:AC1|| [P8] QVSTWH_PI AC2:AC3,ACO:ACT, *A2++ 1
358 NOP || [P12] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 3

The loop body is scheduled optimally into 8 cycles, packing 2 scalar predicate
instructions, 2 vector math instructions, and 3 memory operations (2 loads and 1 store)
in every execution packet.

The loop prolog starting well ahead of the loop body, and the loop epilog ending well
after the loop body, as the loop is unrolled 8 times and software pipelined.

The optimized function completes the same 64 wide x 32 tall output convolution task in
597 cycles. There is an almost 480x speedup compared to 285,663 cycles by the scalar
code.

Next, we will see how we leverage a denser MAC instruction, VFilt4x2HHW_CA, to
achieve further speedup.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 119



8.4.3 Optimization 2: Leveraging Denser MAC
Instruction

In VPU instruction set, besides vector multiply-add, we have denser MAC instructions.
For 16-bit data, we have:

VDotP2HHW_CA 2-term dot-product

VDotP4 _CA 4-term dot-product
VDotP4x2_CA 2 sets of 4-term dot-product
VFilt4HHW_CA 4-tap filtering
VFilt4x2HHW_CA 2 sets of 4-tap filtering

Of these, VDotP* instructions are suitable for dot-product. VFiltdHHW_CA delivers 4
MACs per halfword lane is very useful for 2D convolution.

We do have VFiltdx2HHW_CA that delivers 8 MACs per halfword lane so it has 2x raw
MAC throughput of VFilt4HHW_CA. However, VFilt4x2HHW is more suitable for CNN or
filter banks, where multiple output planes are produced. It is possible to leverage it for
2D convolution where a single output plane is produced, but there is some
preprocessing and postprocessing steps involved to reformat data and output, and to
avoid spending VPU cycles on pre- and post-processing, we will have to configure DMA
to perform the reformatting while transferring data in and out of VMEM, so
construction of the test case is much more involved.

VFilt4dHHW_CA performs horizontal 4-tap filtering on 16 lanes of 16-bit
data/coefficients and accumulates sum of products in 16 lanes of 48-bit accumulators.
To leverage VFilt4HHW_CA, we need to zero-pad the coefficients horizontally into
multiple of 4 kernel width.

Compared to VMAddHHW_CA that performs one MAC per halfword lane, VFilt4HHW_CA
performs 4 MACs per halfword lane, so we need to feed 4 data points and 4 coefficient
points to each lane to feed the MACs. The way we accomplish this, on the data feed, is
to leverage the sliding-window dependency and provide 2 single vectors of data loaded
with overlapping data. On the coefficient feed, we take advantage of the fact that in
convolution we use the same filter kernel for all output data points to share coefficients
within each group of lanes.

From instruction details in VFILT4 _CA, we see that the intrinsic for VFilt4HHW_CA:
dvshortx vfilt4_bbh(vcharx srcla, vcharx srclb, vcharx src2, dvshortx src3dst, int pred);

This requires that data, coefficients, accumulators within each group of 4 lanes being
laid out as:

srcla D[0] D[1] D[2] D[3]
srclb D[4] D[5] D[6] D[7]
src2 Cl[o] C[1] C[2] C[3]
src3dst.lo ACCI[0] ACC[2]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 120



src3dst.hi ACCI1] ACCI3]

In each group of 4 lanes, the instructions are carried out:

ACCI[0] +=D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3];
ACC[1]+=D[1]*C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3];
ACC[2] +=D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3];
ACCI[3] +=D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3];

Like the other examples, we want to double-up vector math to take advantage of the
double vector load/store throughput. Thus to feed 2 VFilt4HHW_CA instructions placed
on both vector slots of the same execution packet, we would load from the data array 2
double vectors with 4 element offset for data, and either use VLDPerm to load from the
coefficient array 4 elements and create the 4-term repeating pattern in the coefficient
single vector, or we reformat the coefficients outside the compute kernel function to
create this pattern.

However, if we use 2 loads for data, 1 load for coefficient, to feed the MACs, and
together with predicated store to write outcome to VMEM when all product terms are
accumulated, we spend 4 memory operations to feed 2 vector math operations, and
would not be able to execute optimally as it would become memory-bound. To reduce
the memory-to-vector-math ratio, we reuse data between 2 output rows; essentially
working on 2 double vectors worth of output at a time, and the 2 double vectors are
mapped to even and odd rows of the output array. By working on 2 rows of output at a
time, we will also to zero-pad coefficients vertically and perform the 3x3 FIR filtering as
4x4 FIR filtering.

Derivation for number of iterations and step parameters for the agen is similar to the
other examples, so here we shall just show program listings and profiling instruction
report.

The filter_16b_filt4_init() function:

void filter_16b_filt4_init(short *data, short *coef, short* restrict out,
int kw, int kh, int gbits, int blkw, int blkh,
int lofst_data, int lofst_out,
AGEN_PTR * agen_cfg, int * niter, int * niter_in)

int vecw = chess_elementsof(dvshort);
short niter1 = (kw+3)/4;

short niter2 = kh+1;
short niter3 = blkw/vecw;
short niter4 = blkh/2;

agen_wrapper_t wrapper®, wrapper1, wrapper2;

*niter = niter1 * niter2 * niter3 * niter4;
*niter_in = niter1 * niter2;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 121



agen ad = init

wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.
wrapper@.

size
ni
n2 =
n3 =
n4 =
nS =
s1 =
s2 =
s3 =
s4 =
s5

N 11—~

niter1;
niter2;
niter3;
niter4;

4;

4;
lofst_data
VECW;

2 * lofst_data;

INIT_AGEN5(a@, wrapper@);

agen al =
wrapper1.
wrapper1.
wrapper1.
wrapper1.
wrapper1.

init((vshort*) coef);
= sizeof(vshort);
2 * niter1 * niter2;
niter3 * niter4;

size
nl =

>
N
1

s1 =
s2 =

1;
0;

INIT_AGEN2(al1, wrapperl);

agen a2 = init((dvshort* restrict
= sizeof(short);
niter1 * niter2;

wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.
wrapper2.

size
nl =
n2 =
n3 =
s1 =
s2 =
s3 =

niter3;
niter4;
0,
Vecw;

2 * lofst_out;

INIT_AGEN3 (a2, wrapper2);
a2.round = gbits;

agen a3 =

a3.a = (vint * restrict) (out + lofst_out);

*agen_cfg++

a2;

*agen_cfg++ =

*agen_cfg++
*agen_cfg++

}

a0.get_cfg
al.get_cfg
a2.get_cfg
a3.get_cfg

Py

)
)
)
)

(dvshort*)data);
sizeof(short);

1
1

1

1

) out);

The filter_16b_filter_exec() function, noting how the pair of double vectors for data are

reused for 2 sets of accumulators.
void filter_16b_filt4_exec(AGEN_PTR * agen_cfg, int niter, int niter_in)

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 122



dvshortx vdata®, vdatal;

vshortx vcoef@, vcoefl;

dvintx vacc@, vaccl;

dvintx vacc2, vacc3;

int count_madd = 0;

int count_store = 1;

int pred_madd 0;

int pred_store = 0;

agen a@ = a@.expand_cfg(*agen_cfg++)

agen al = al.expand_cfg(*agen_cfg++);
( )
( )

agen a2 = a2.expand_cfg(*agen_cfg++);
agen a3 = a3.expand_cfg(*agen_cfg++);

chess_separator_scheduler();

for (int i=0; i<niter; i++) chess_prepare_for_pipelining
chess_unroll_loop(4) chess_loop_range(12,)

{

vdata® = dvshort_load(a®);

vdatal = dvshort_load(a®);

vcoef@ = vshort_load(al);

vcoef1 = vshort_load(al);

vaccd = vfilt4_hhw(vdata®.lo, vdatal.lo, vcoef®, vacc@, pred_madd);
vaccl = vfilt4_hhw(vdata®.hi, vdatal.hi, vcoef@, vaccl, pred_madd);
vacc2 = vfilt4_hhw(vdata@.lo, vdatal.lo, vcoefl, vacc2, pred_madd);
vacc3 = vfilt4_hhw(vdata@.hi, vdatal.hi, vcoef1, vacc3, pred_madd);

vstore_i2(vacc@, vaccl, a2, pred_store);
vstore_i2(vacc2, vacc3, a3, pred_store);

}
}
The profiling instruction report of the _exec function is as follows.
Function detail: filter_16b_filt4_exec void_filter_16b_filt4_exec___Pdvuint___sint___sint
Low PC : 168
High PC : 279
Size in program memory: 112
Cycle-count : 279 ( 5.41%)
Instruction-count : 276 ( 9.98%)
Instruction Coverage : 100.00%
PC  Assembly Exe-cnt Cycs
168 ORI RO, #64,R7 1 2
169 AgenCfglLD *R4+=R7, A0 1 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 123



170 AgenCfglLD *R4+=R7, A1
171 AgenCfgLD *(R4+64),A2
172 AgenCfgLD *(R4+0),A3
173 GPO_SETLI #1
174 ORI R@,#0,R7 || SRAI R5,#2,R5
176 ADDI R5,#-1,R4 || DVLDH_P *A@G++,V10:V11
178 VLDH_P *A1++,W6 || DVLDH_P *A@++,V12:V13
180 VLDH_P *A1++,W4 || DVLDH_P *A@++,V2:V3
182 VLDH_P *A1++,W2 || DVLDH_P *A@++,V4:V5
184 VLDH_P *A1++,W1 || DVLDH_P *A@++,Ve:V1
186 VLDH_P *A1++,W0 || DVLDH_P *A@++,V6:V7
188 RPT R4,#LE_Fvoid_filter_16b_filt4_exec || VLDH_P *A1++,W3
190 MOVSP R7,P6 || ADDI R6,#-1,R6 || DVLDH_P *A@++,V8:V9|| VLDH_P *A1++, W5
194 MOVP P6,P2 || ORI RO,#1,R5 || [P6] VFilt4HHW_CA V11,V13,W6,ACO:ACT|

[P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3 || DVLDH_P *A@++,V14:V15|| VLDH_P *A1++,W7 1 1
200 MODINCP R6,R7,P7 || [P6] VFilt4HHW_CA V11,V13,W4,AC4:AC5] |

[P6] VFilt4HHW_CA V10,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,ACO:ACT,*A3++] |

DVLDH_P *A@++,V10:V11|| VLDH_P *A1++,W6 31 31
206 MODINC_NOTP R6,R5,P4|| [P7] VFilt4HHW_CA V3,V5,W2,AC0:ACT| |

[P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++| |

DVLDH_P *A@++,V12:V13|| VLDH_P *A1++, W4 31 31
212 MODINCP R6,R7,P8 || [P7] VFilt4HHW_CA V3,V5,W1,AC4:AC5|

[P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7 || [P4] QVSTWH_PI2 AC2:AC3,ACO:ACT,*A3++]| |

DVLDH_P *A@++,V2:V3|| VLDH_P *A1++, W2 31 31
218 MODINC_NOTP R6,R5,P5|| [P8] VFilt4HHW_CA V1,V7,W8,AC0:AC1|

[P8] VFilt4HHW_CA V@,V6,W0,AC2:AC3 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++| |

DVLDH_P *A@++,V4:V3|| VLDH_P *A1++, W1 31 31
224 MODINCP R6,R7,P9 || MODINC_NOTP R6,R5,P3|| [P8]VFilt4HHW_CA V1,V7,W3,6AC4:AC5]| |

[P8] VFilt4HHW_CA V@,V6,W3,AC6:AC7 || [P5] QVSTWH_PI2 AC2:AC3,ACO:ACT,*A3++]| |

DVLDH_P *A@++,V0:V1|| VLDH_P *A1++,W0 31 31
231 MODINC_NOTP R6,R5,P2|| MODINCP R6,R7,P6|| [P9]VFilt4HHW_CA V9,V15,W5,AC0O:ACT| |

[PO] VFilt4HHW_CA V8,V14,W5,AC2:AC3 || [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++| |

DVLDH_P *A@++,V6:V7|| VLDH_P *A1++, W3 31 31
238 [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5|| [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7 ||

[P3] QVSTWH_PI2 AC2:AC3,ACO:AC1,*A3++|| DVLDH_P *A@++,V8:V9|| VLDH_P *A1++,W5 31 31
243 [P6] VFilt4HHW_CA V11,V13,W6,ACO:ACT|| [P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3| |

[P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH_P *A@++,V14:V15|| VLDH_P *A1++ W7 31 31
248 MODINCP R6,R7,P7|| MODINC_NOTP R6,R5,P4||[P6]VFilt4HHW_CA V11,V13,W4,6AC4:AC5] |

—_ —a A A 4 Mm A A A A A A
_ —a A A O Mm A A A A A A

[P6]VFilt4HHW_CA V1@,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,AC@:AC1, *A3++ 1 1
253 MODINC_NOTP R6,R5,P5|| MODINCP R6,R7,P8|| [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7]| |

[P7]VFilt4HHW_CA V3,V5,W1,AC4:AC5 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5, *A2++ 1 1
258 MODINC_NOTP R6,R5,P3|| MODINCP R6,R7,P9|| [P7] VFilt4HHW_CA V2,V4,W2,6AC2:AC3| |

[P7]VFilt4HHW_CA V3,V5,W2,AC0:AC1 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5, *A2++ 1 1
263 [P8] VFilt4HHW_CA V@, V6,W3,AC6:AC7|| [P8] VFilt4HHW_CA V1,V7,W3,AC4:AC5]| |

[P4] QVSTWH_PI2 AC2:AC3,ACO:AC1T,*A3++ 1 1
266 [P8] VFilt4HHW_CA V@,V6,W@,AC2:AC3|| [P8] VFilt4HHW_CA V1,V7,W0,ACO:ACT||

[P5] QVSTWH_PI2 AC6:AC7,AC4:AC5, *A2++ 1 1
269 [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7|| [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5]| |

[P5] QVSTWH_PI2 AC2:AC3,ACO:AC1T,*A3++ 1 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 124



272 [P9] VFilt4HHW_CA V8,V14,W5,AC2:AC3|| [P9] VFilt4HHW_CA V9,V15,W5,ACO:ACT|
[P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++

275 [P3] QVSTWH_PI2 AC2:AC3,ACO:AC1T,*A3++

276 GPO_CLRLI #1

277 JR R15

278 NOP

279 NOP

N N S W G
W = = A A

The vector slots are fully utilized in the loop body, executing a pair of MAC instructions
(VFilt4HHW) in every execution packet. Also, the 3 memory slots are also packed with
one double vector load for data, one single vector load for coefficients, and one quad
vector store. We could have loaded coefficients with a double vector load and left the
memory slots less utilized. The key is that, if possible, we want to saturate the vector
math slots to achieve the best performance. If to achieve full vector math utilization, we
need to saturate memory slots as well, that’s OK; however, if possible, if we can achieve
full vector math utilization with less memory slots utilization, we would achieve better
power efficiency as well.

The loop body portion executes for 8 * 31 = 248 cycles, compared with 8*71 = 568 cycles
in the VMAdd implementation. The 4x MAC density is diluted somewhat from
implementing 3x3 FIR filter as 4x4 FIR; 4 *9 / 16 = 2.25x speedup. For larger FIR kernel,
the diluting would not be as bad.

8.4.4 Further Optimization for Power

The proceeding programming examples are about techniques in performance
optimization. While reducing processing time often leads to reduction in the energy
exerted to implement specific functions, there are additional techniques one can follow
to further optimize for power.

VPU has load data cache features that can help reduce power when used correctly. Load
data cache reduces power consumption by bypassing VMEM superbank read for the
memory banks that are read with the same row address. In a 2D convolution, both data
and coefficient read may be implemented to have such address patterns and can
leverage load data cache feature. In the 2D convolution optimization 1 and optimization
2 examples, we already have data read address pattern that works for load data cache.

Optimization 1 data agen initialization:
wrapper@.size = sizeof(short);
wrapper.n1 = kw;
wrapper.n2 = kh;

wrapper.si 1;
wrapper.s2 = lofst_data;

For data read in optimization 1 agen innermost i1 loop, we move the read pointer 1 pixel
at a time for kw reads from the agen, and each read is a double vector read. Enabling

load data cache for data agen can save (kw-1)*31 out of every kw*32 memory bank read
transactions for data read. In the next i2 loop, we move data pointer by one row of data,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 125



which is usually greater than 64 bytes (as we vectorize processing we should process
minimally the vector width).

Optimization 2 data agen initialization:

wrapper@.size = sizeof(short);
wrapper@.nl = 2;

wrapper@.n2 = niter1; // (kw+3)/4
wrapper@.n3 = niter2; // kh+1

wrapper@.s1 = 4;
wrapper@.s2 = 4;
wrapper@.s3 = lofst_data;

For data read in optimization 2 agen innermost i1 loop, we move the read pointer 4 pixels
at a time for 2 reads from the agen, and again each read is a double vector read.
Enabling load data cache can save 1*28 out of every 2*32 memory bank read
transactions. In case kw > 4, the pointer moves by 4 pixels, and there is further power
saving.

For coefficients read in optimization 1, coefficients are read one element at a time into a
scalar register. Scalar reads are not cached (see Load Data Cache), so optimization 1
coefficient read does not work for load cache.

Optimization 2 coefficient agen initialization:

wrapper1.size = sizeof(vshort);
wrapperl.n1l = 2 * niter1 * niter2;
wrapper1. niter3 * niter4;
wrapperl.s1 = 1;

wrapper1.s2 = 0;

>
N
1l

For coefficient read in optimization 2, coefficients are reformatted outside the filtering
loop so that in the filtering loop coefficients are read one single vector at a time (vshort)
without repetition, so the pattern does not work for load cache.

It is possible to leverage load cache, but we will have to change the coefficient
reformatting loop. To simplify the filtering loop in the example, we have the coefficient
reformatting loop create the 2-output-rows-at-a-time zero-padded coefficient array
AND repeated 4 times, as there are 4 4-lane groups in a single vector of halfwords. If we
revise the coefficient reformatting loop to not repeat the coefficient data 4 times and
revise the filtering loop to use VLDPerm to load and permute the coefficients with
appropriate permutation pattern, we can leverage load data cache for coefficient reads
as well, and further reduce power consumption for 2D convolution.

For example, if we have 3x3 filtering (kw = kh = 3), current optimization 2 code
coefficient reformatting loop would produce:
coef[] = {c@, C1, C2, 0, C@, C1, C2, ©, CO, C1, C2, B, CO, C1, C2, @, // out @ row O

0, 0,0, 0, 00,0 0,00, 0 0, 0,0, 0,0, // out 1 row @

€3, C4, C5, @, C3, C4, C5, @, C3, C4, C5, @, C3, C4, C5, @, // out @ row 1

ce, C1, C2, @, Ce, C1, C2, @, C@, C1, C2, @, CO, C1, C2, @, // out 1 row 1

c6, C7, C8, @, C6, C7, C8, @, C6, C7, C8, @, C6, C7, C8, @, // out B row 2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 126



3, Cc4, C5, @, C3, C4, C5, @, C3, C4, C5, @, C3, C4, C5, @, // out 1 row 2

8, 0,0,0,0 0,0 00 0 0 0,0, 0,0,0, // out 8 row 3

c6, C7, C8, @, C6, C7, C8, B, C6, C7, C8, B, C6, C7, C8, B};// out 1 row 3
To leverage load data cache for coefficients, we would skip the 4-time repetition, so that
the reformatted coefficients would be:
coef[] = {Co, C1, C2, @, // out @ row @

0, 0, 0, 0, // out 1 row 0@
C3, C4, C5, @, // out @ row 1
ce, C1, C2, @, // out 1 row 1
C6, C7, C8, @, // out @ row 2
C3, C4, C5, @, // out 1 row 2
0, 0, 0, 0, // out @ row 3
C6, C7, C8, @};// out 1 row 3

Load data cache is enabled on a per VMEM superbank basis, so to have effective
caching, we would need data and coefficient arrays be allocated in different VMEM
superbanks. Otherwise, the load cache would be threshing from data, and coefficient
reads giving different row addresses to the same memory banks, and the cache would
have poor hit rate. When load data cache is enabled and when the read data pattern has
few repeated read to the memory banks, we may end up consuming higher power, from
additional activity in recording/matching the memory bank row addresses.

8.5 Interpolated 2D Lookup

In computer vision, we sometimes need to perform interpolated 2D lookup, typically to
resize an image, to undistort an image, or to warp an image patch for object tracking.
Most common interpolation scheme is bilinear interpolation. VPU instruction set
includes instructions that accelerate interpolated 2D lookup.

In this example, we shall look at scalar/reference code, VPU optimized code, and code
leveraging the DLUT (decoupled lookup table unit) to perform interpolated 2D lookup.

Here we skip the profiling instruction report.

8.5.1 Scalar Code

The following is the scalar/reference function performing interpolated 2D lookup:
//*********************************************************************

// interpolate_lookup2d_ref

// 2D table tblw wide

// index X/Y interleaved
//*********************************************************************

void interpolated_lookup2d_ref(int tblw, int len_out, int frac_bits,
short * tbl, short * idx, short * out)

{
int x, y, int_x, int_y, frac_x, frac_y;
int lu_idx, entry@, entryl, entry2, entry3;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 127



int out@1, out23, outd123;
int frac_mask = (1 << frac_bits) - 1;
int rnd_add =1 << (frac_bits - 1);

for (int 1 = @; i < len_out; i++) {
X = *idx++;
y = *idx++;
int_x = x >> frac_bits;
int_y =y >> frac_bits;
frac_x = x & frac_mask;
frac_y = y & frac_mask;

lu_idx = int_y * tblw + int_x;

entryd = tbhl[lu_idx];

entryl = tbl[lu_idx + 1];

entry2 = tbl[lu_idx + tbhlw];
entry3 = tbl[lu_idx + thlw + 1];

out@1 = entry@ + (((entryl - entry@) * frac_x + rnd_add) >> frac_bits);
out23 = entry2 + (((entry3 - entry2) * frac_x + rnd_add) >> frac_bits)
out@123 = out@1 + (((out23 - out@1) * frac_y + rnd_add) >> frac_bits);
*out++ = out0123;
}
}

The index data is X/Y interleaved. Each element (carrying either X or Y) is a fixed-point
number with number of fraction bits being frac_bits.

The reference code reads X &Y indices, separates out integer and fraction components,
calculates a linear index using the integer X & Y components, performs the 2x2 lookup,
then uses the fraction X & Y components to perform bilinear interpolation to produce
one output value. Notice how we perform horizontal interpolation to blend entryO with
entry1 to produce outO1, and entry2 with entry3 to produce out23. Then we perform
vertical interpolation to blend outO1 and out23 to produce the final output.

This scalar/reference function takes 63,504 cycles to produce 2048 outputs
interpolating from a 66 x 34 image patch, averaging 31 cycles per output.

8.5.2  VPU Parallel Lookup

VPU has parallel lookup instructions to perform 2x2 lookup, up to a parallelism of 8. To
leverage such instructions, we will need to replicate the original table containing the
image patch 8 times.

Given the replicated lookup table, VPU optimized function performing interpolated 2D
lookup is as follows:

void interpolated_lookup2d_opt(int tblw, int len_out, int frac_bits,
short * tbl, short * idx, short * restrict out)

{
dvshortx vidx;
dvshortx bitpos;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 128



bitpos.lo = replicateh(frac_bits);

bitpos.hi = replicateh(frac_bits);

dvshortx xy_int, xy_frac, xy_frac_norm;

vshortx lu_idx, lu_idx_even, lu_idx_odd;

dvshortx entry_even, entry_odd;

vshortx out@1, out23, outd123;

int 1sh_bits = 15 - frac_bits;

int lp_k = tblw/4;

short even_arr[] = {8, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1};

short odd_arr[] = {1, 3, 5, 7, 9, 11, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1};

vshortx pat_even = zero_extend(*((vushort *) even_arr));

vshortx pat_odd = zero_extend(*((vushort *) odd_arr));

int niter = len_out/16;

agen_A aidx = init_A(didx);

aidx.n1 = niter;

aidx.mod1 = sizeof(dvshort);

agen_C aout = init_C(out); // write 16 at a time

aout.n1 = niter;

aout.mod1 = sizeof(vshort);

short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =

(short chess_storage(DMb%64:chess_segment(B)) *) tbl;

#define UNROLL1 7

// round up to multiple of unrolling factor

niter = ((niter + UNROLL1 - 1)/UNROLLT) * UNROLL1;

for (int 1 = 8; i < niter; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL1) chess_loop_range(3 * UNROLLT,)

vidx = dvshort_load_di(aidx); [/ x/y intrlv -> lo/hi

dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y

lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);
// int_y * tblw + int_x

xy_frac_norm = xy_frac << lsh_bits;

lu_idx_even = vpermute(lu_idx, pat_even); // e, 2, 4, ..., 14

lu_idx_odd = vpermute(lu_idx, pat_odd); // 1, 3,5, ..., 15

entry_even = vlookup_2x2pt_8h(tbl_ptr, lu_idx_even, 1lp_k);

entry_odd vlookup_2x2pt_8h(tbl_ptr, lu_idx_odd, 1lp_k);

outo1 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);

out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);

out@123 = vblend(out®@1, out23, xy_frac_norm.hi);

vstore(out@123, aout);

The use of vpermute() to reorganize elements in lu_idx vector to separate even and odd
data points. Unfortunately, this is needed to work with viookup_2x2pt_8h, as only 8 data
points are needed in each index vector of vshortx type (which holds 16 lanes). After the
8 even/odd data points, rest of the lanes are zero-filled, by padding -1 in the even_arr[]
and odd_arr[] arrays.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 129



The loop has the following vector math operations:
2x vsplitbits
vmaddh
2x vsla
2x vpermute
2x vhblend_i
vblend

That’s 10 operations, so we would say the SOL (speed of light/ideal) performance is 5
cycles per iteration.

Unrolling factors from 4 to 8 are tried, and with 7x loop unrolling, we found the best
performance at 39 cycles per iteration, or 5. 57 cycles per original iteration.

The compiler often, but not always, achieves SOL performance. The loop body has
relatively long latency due to cascading of long math and lookup latencies (vmaddh >
vpermute - vlookup) and would need to unroll more to allow compiler to pack the vector
math slots but unrolling more leads to more challenging register allocation.

The optimized function executes for 805 cycles for the same test configuration (2048
outputs, 66 x 34 image patch). This translates to 0.393 cycle per output, and roughly
78.9x speedup over scalar/reference function.

8.5.3  VPU Parallel Lookup in Two Loops

One optimization strategy we can try when we have a long string of math operations in
the loop is to break it into 2 loops. For the VPU parallel lookup code 1 in the previous
section, there is another advantage in breaking up the loop into two, in that the
permutation operation in vector math we can get for free (of vector math operations) by
leveraging the load with permute instruction. The resulting code is as follows:

void interpolated_lookup2d_opt2(int tblw, int len_out, int frac_bits,
short * tbl, short * idx, short * temp_buf_idx,
short * temp_buf_frac, short * out)

dvshortx vidx;

dvshortx bitpos;

bitpos.lo = replicateh(frac_bits);

bitpos.hi = replicateh(frac_bits);

dvshortx xy_int, xy_frac, xy_frac_norm;

vshortx lu_idx;

dvshortx dv_lu_idx;

dvshortx entry_even, entry_odd;

vshortx out@1, out23, outd123;

int lp_k = tblw/4;

char perm_pat_arr[] = {8, 2, 4, 6, 8, 10, 12, 14, -1,-1,-1,-1,-1,-1,-1,-1,
1, 3, 5, 7, 9, 11, 13, 15, -1,-1,-1,-1,-1,-1,-1,-1};

vcharx perm_pat = sign_extend(*((vchar *) perm_pat_arr));

short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 130



(short chess_storage(DMb%64:chess_segment(B)) *) tbl;

int niter = len_out/16;

agen_A aidx = init_A(idx); // read 16 X + 16 Y at a time
aidx.n1 = niter;

aidx.mod1 = sizeof(dvshort);

agen_C atemp_idxw = init_C(temp_buf_idx); // write 16 indices at a time
atemp_idxw.n1 = niter;

atemp_idxw.mod1 = sizeof(vshort);

agen_C atemp_fracw = init_C(temp_buf_frac);// write 16 dX + 16 dY at a time
atemp_fracw.n1 = niter;

atemp_fracw.mod1 = sizeof(dvshort);

agen_C atemp_idxr = init_C(temp_buf_idx); // read 16 indices at a time
atemp_idxr.n1 = niter;

atemp_idxr.mod1 = sizeof(vshort);

agen_C atemp_fracr = init_C(temp_buf_frac);// read 16 dX + 16 dY at a time
atemp_fracr.n1 = niter;

atemp_fracr.mod1 = sizeof(dvshort);

agen_C aout = init_C(out); // write 16 outputs at a time
aout.n1 = niter;

aout.mod1 = sizeof(vshort);

chess_separator_scheduler();

#define UNROLL2 6

#define UNROLL3 5
// round up to multiple of unrolling factor
int niter1 ((niter + UNROLL2 - 1)/UNROLL2) * UNROLL2;
int niter2 ((niter + UNROLL3 - 1)/UNROLL3) * UNROLL3;

for (int 1 = @; i < niter1; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL2) chess_loop_range(3 * UNROLL2,)

{
vidx = dvshort_load_di(aidx); /! x/y intrlv -> lo/hi
dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y
xy_frac_norm = xy_frac << (15 - frac_bits); // lo=x, hi=y
lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);

// int_y * tblw + int_x

vstore(xy_frac_norm, atemp_fracw); // 16 dX + 16 dY
vstore(lu_idx, atemp_idxw); // 16 IDX

chess_separator_scheduler();

for (int 1 = @; i < niter2; i++) chess_prepare_for_pipelining
chess_unroll_loop(UNROLL3) chess_loop_range(3 * UNROLL3,)
{
dv_lu_idx = dvshort_load_perm(atemp_idxr, perm_pat); // 8 even + 8 odd
xy_frac_norm = dvshort_load(atemp_fracr); // 16 dX + 16 dY
entry_even = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.lo, 1lp_k);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 131



entry_odd = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.hi, 1lp_k);

out@1 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);
out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);
out@123 = vblend(out@1, out23, xy_frac_norm.hi);

vstore(out@123, aout);

'
b

The two inner loops the following vector math operations, respectively:
2x vsplitbits
vmaddh
2x vsla

2x vhblend_i
vblend

After adding loads and stores to both loops to make them work, the resulting first loop
is still vector math-bound at SOL of 2.5 cycles per iteration. The second loop becomes
MO-slot and lookup-bound, at SOL of 2 cycles per iteration.

Again, unrolling factors from 4 to 8 are tried, and with 6x loop unrolling, we found the
best performance at 17 cycles per iteration, or 2.83 cycles per original iteration. The
second loop is 5x unrolled at 10 cycles per iteration, or 2 cycles per original iteration,
meeting SOL.

The optimized function executes for 748 cycles for the same test configuration (2048
outputs, 66 x 34 image patch). The difference in inner-loop performance, 2.83 + 2 = 4.83
cycles per iteration versus 5.57 cycles per iteration, can lead to a bigger gap in cycle
count if there is a bigger workload.

In breaking up the long sequence math into two loops, we achieve slightly faster
compute function, but we also incur greater power consumption by having more VMEM
read/write for the same application. The two-loop solution is also likely to have larger
code size, which can lead to higher I-cache misses in an application. There are pros and
cons in this implementation.

854 Leveraging DLUT

Interpolated 2D lookup is one of the operation modes supported by DLUT. To leverage
DLUT, we need to leverage Sampler APIs in PVA SDK. For this particular problem, we
configure the DLUT task with:

#include <cupva_device.h>
void dlut_setup_interp2D(CupvaSampler *restrict sampler,
int tblw, int tblh, int len_out, int frac_bits,

short * tbl, short * idx, short * out)

CupvaSamplerInput2D const sampler_tbl = {

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 132



.data = tbl,

.type = SAMPLER_INPUT_TYPE_S16,
.width = thlw,
.height = tblh,
.linePitch = tbhlw,

.outOfRangeMode = SAMPLER_OUT_OF _RANGE_CONSTANT,
.out0OfRangeVal =@, // don't care, not using on OOR feature

.flags = 0, // don't care, linePitch is specified
N
CupvaSamplerIndices2D const sampler_idx = {
.data = idx,
.type = SAMPLER_INDEX_TYPE_U16,
.width = len_out, // idx & out are 1D
.height =1,
.linePitch =0,
.fractionalBits = frac_bits,
.fractionalHandling = SAMPLER_FRAC_HANDLING_INTERPOLATE,
.offsetX =0,
.offsetY =0,
.interleaving = SAMPLER_INTERLEAVING_ELEMENTS,
i
CupvaSamplerOutput const sample_out = {
.data = out,
.pitch =0, // output 1D
.transMode = TRANS_MODE_NONE,

}s

cupvaSamplerSetup(sampler, &sampler_tbl, &sampler_idx, &sample_out);

This is setting up the DLUT task as 2D interpolation task mode and providing relevant
parameters to the DLUT task.

In the main() function of this test case, DLUT is configured then invoked by this
sequence of steps:

CupvaSampler sampler_interp2D;

// set up DLUT task via Sampler APIs

dlut_setup_interp2D(&sampler_interp2D, tblw, tblh, len_out, frac_bits,
tbl, idx, out);

// trigger DLUT to start
cupvaSamplerStart(&config.z_reorder_sampler);

// VPU can perform other processing in parallel with DLUT

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 133



// wait for sampler to be done
cupvaSamplerWait();

For common image processing tasks that process a constant-sized tile at a time, DLUT
setup should ideally be performed in the application initialization time, perhaps with
multiple sets of input, index, and output buffers for double-buffering.

Not counting the setup time, per-tile DLUT execution time is about 60 cycles of latency
plus about len_out/4 cycles (for 16-bit 2D interpolated lookup), around 60 + 2048/4 =
572 cycles.

Besides faster processing speed than VPU, leveraging DLUT has the following
advantages:

The table does not need to be replicated, and this saves VMEM footprint, processing
time and power consumption.

While DLUT is busy performing the interpolated lookup, VPU can be potentially doing
some useful work.

DLUT generally consumes much less energy compared to VPU doing the same lookup
or interpolated lookup workload.

DLUT configuration and interaction code, in general, takes up less VPU code size than
VPU doing the same lookup or interpolated lookup workload.

DLUT provides table access out-of-bound handling without performance penalty.

Please see the PVA SDK documentation for full list of Sampler API functions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 134


https://docs.nvidia.com/pva/sdk/index.html

Chapter 9. Instruction Set Reference

9.1 VPU Changes from Xavier to Orin

Changes in VPU from Xavier (Gen-1) to Orin (Gen-2) are as follows; throughput numbers
are for one VPU:

Doubled I-cache capacity from 8KB to 16KB
Doubled VMEM capacity from 3 x 64KB to 3 x 128KB

Double VMEM bandwidth from one read-or-write to one read and one write per
superbank memory, from 3 x 512-bit per cycle to 3 x 2 x 512-bit per cycle in terms of
max possible read/write transactions

Additional vector register files: 32 x 384-bit WRF and 32 x 384-bit ARF, with ARF
extended to 32 x 512-bit in select MAC and vector store instructions

Doubled Predicate register file from 8 x 32-bit to 16 x 32-bit, from P0..P7 to PO..P15

Integer MAC throughput boosted (see 9.2.1 for MAC instructions in Xavier/Orin)
8-bit x 8-bit, from 128 MACs per cycle to 1024 MACs per cycle, 8x speedup
16-bit x 16-bit, from 64 MACs per cycle to 256 MACs per cycle, 4x speedup
32-bit x 16-bit, from 32 MACs per cycle to 64 MACs per cycle, 2x speedup
32-bit x 32-bit, from 16 MACs per cycle to 64 MACs per cycle, 4x speedup

Accelerated FFT (see 9.2.2 for FFT instructions in Xavier/Orin)
16-bit x 16-bit complex multiply, from 16 per cycle to 32 per cycle, 2x speedup
32-bit x 16-bit complex multiply, from 8 per cycle to 16 per cycle, 2x speedup
32-bit x 32-bit complex multiply, from 4 per cycle to 16 per cycle, 4x speedup
32-bit and 16-bit 4 x 2 add/sub

Double throughput commonly vector operations (see 9.2.1 and 9.2.3 for such
instructions)

Add, Sub, Compares, Min, Max, AbsDif

And, Or, Xor, BitCnt

Multiply, Multiply-add, Multiply-subtract
Vector Blending

VBlend extended to cover Word type

New VHBIend_| to blend between even/odd lanes to work seamlessly with 2-point
and 2x2-point lookup

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 135



Enhance vector bitwise operations

Add scalar source 2 option and distinguish B/H/W types for bitwise And, Or, Xor
Reduction operations going directly to scalar register destination

VSumR, VMInR, VMaxR, VAndR, VOrR, VXorR, VBitCmp
Additional vector integer math instructions

VMINLT, VMaxLT, producing 2-input min/max and less-than/greater-than flag, to
maintain min/max and index where min/max comes from

VSort2PL, sorting with payload, treating even lanes as keys and odd lanes as
accompanying payload

VCollateldx_Bits, fusing VCollateldx (collate index) and bit-packing into scalar
destination

VNormldxFrac, fusing VNorm (normalization) and 2 VExtrBits (bit extraction) to
produce table index and post-lookup interpolation fraction bits

VCmp*_AndL, VCmp*_OrL, using compare with logical and/or operations
VApplySign, apply positive/negative sign

VSelectLane, select a lane to write to scalar destination

VSplitBits, splitting a source into 2-bit sections

VXShiftL, VXShiftR, to work with an extra vector load to implement cross-lane
left/right shift, for bit manipulation.

VHMIin2ID, VHMax2ID, VMinSkip2RID, VMaxSkip2RID, Word type only, basically
decomposition of VMInRID/VMaxRID Word type with vector destination into 2
instructions to avoid critical timing path.

VShuffle, shuffle permutation

Vector floating-point support (see 9.2.3 for list of vector instructions added in Orin)
Vector FP16/FP32 FMA
Vector FP32/FP16 compare

Vector FP32 reciprocal, square root, reciprocal square root, sin, cos, log2, exp2,
tanh

Vector FP32/FP16/INT48/INT32/INT24 conversions
Scalar floating-point enhancement (see 9.2.4 for list of instructions)
In Xavier VPU there was just scalar FP32 FMA

All vector FP32/FP16 math instructions also offer scalar variation, except for
conversion to/from IN48/INT24

Agen features

Automatically predicate off stores when executed over configured number of
iterations

Min/Max collection

Advance agen base
Memory features

Load cache (see 5.5)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 136



Transpose modes T2/T4/T8/T16/T32 (see 6.3.7)
Memory Fence (see 9.6.18)
Load + permute (see 9.9.4.7 and 9.9.4.8)
Per-lane rounding (see 9.9.4.9)
2-point and 2x2-point lookup (see 9.9.6.4 and 9.9.6.5)
Histogram double throughput from VMEM upgrading to dual port memory
OR-histogram (see 9.9.6.8 and 9.9.6.9)
Decoupled coprocessor
Coprocessors register interface (CPLD/CPST)
Additional VMEM read/write ports to support coprocessors
Decoupled lookup unit (DLUT)

9.2 VPU Math Operation Throughput

Math throughput is an important performance metric for a processor. The most
important math operation for throughput comparison is multiply-add, especially for DSP
processors. Multiplication is expensive in power, so it's useful to have a summary of
various multiplication and MAC instructions to correlate performance and power
consumption. Throughput numbers for a wider range of operations are also tabulated.

9.2.1 Multiply/MAC Instructions

Multiply/multiply-accumulate instructions, per instruction throughput, and per VPU MAC
throughput are as follows. Instructions added in Orin are denoted in the “Added in Orin”
column in the table below:

Table 18. Multiply/MAC instructions

. - Added Thruput Mul / MAC
Instruction Function in Thruput
orin | Perslot per VPU (1)
VMulB Multiply round_trunc(8b x 9b) = 12b 32 64 x 8b
VMulBBH Multiply round_trunc(9b x 9b) = 24b 32 64 x 8b
VMulH Multiply round_trunc(17b x 17b) = 24b 16 32x 16b
VMulHHW Multiply round_trunc(17b x 17b) = 48b 16 32 x 16b
VMulWHW Multiply round_trunc(33b x 17b) = 48b 8 64 x 16b
VMulWWL Multiply 33b x 33b = 48b : 32b 8 16 x 32b
VMuIBBH (2x) Multiply 9b x 9b = 24b Y 64 128 x 8b
VMulHHW Multiply 17b x 17b = 48b Y 32 64 x 16b
VMulWHW Multiply 33b x 17b = 48b Y 16 64 x 16b
VMulwW Multiply trunc_16b(33b x 33b) = 48b Y 16 32x32b

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 137




_ ; Added Thruput Mul / MAC
Instruction Function in Thruput
orin | Perslot per VPU (1)
VMul2B Multiply round_trunc(Sb x 9b) = 12b 64 128 x 8b
VMul2H Multiply round_trunc(17b x 17b) = 24b 32 64 x 16b
VMul2WHW Multiply round_trunc(33b x 17b) = 48b 16 64 x 16b
VMAddB_CA Multiply-add 12b + round_trunc(9b x 9b) = 12b 32 64 x 8b
VMAddBBH_CA Multiply-add 24b + round_trunc(9b x 9b) = 24b 32 64 x 8b
VMAddH_CA Multiply-add 24b + round_trunc(17b x 17b) = 24b 16 32 x 16b
VMAddHHW_CA Multiply-add 48b + round_trunc(17b x 17b) = 48b 16 32x 16b
VMAddWHW_CA Multiply-add 48b + round_trunc(33b x 17b) = 48b 8 32 x 16b
VMAddB_CA (2x) Multiply-add 12b + 9b x 9b = 12b Y 64 128 x 8n
VMAddBBH_CA Multiply-add 24b + 9b x 9b = 24b Y 64 128 x 8b
VMAddH_CA Multiply-add 24b + 17b x 17b = 24b Y 32 64 x 16b
VMAddHHW_CA Multiply-add 48b + 17b x 17b = 48b Y 32 64 x 16b
VMAddWHW_CA Multiply-add 48b + 33b x 17b = 48b 16 64 x 16b
VMAddW_CA Multiply-add 48b + trunc_16b(33b x 33b) = 48b 16 32x32b
VDotP2BBH_CA 2-term dot product 24b + 9b x 9b + 9b x 9b = 24b 32 128 x 8b
VDotP2HHW_CA 2-term dot product 48b + 17b x 17b + 17b x 17b = 48b 16 64 x 16b
VDotP2WHW_CA 2-term dot product 48b + 33b x 17b + 33b x 17b = 48b 8 32 x 16b
VDotP2W_CA 2-term dot product 48b + trunc_16b(33b x 33b) 8 32x32b
+trunc_16b(33b x 33b) = 48b
VDotP2x2W_CA (2x) 2-term dot product 48b + trunc_16b(33b x 33b) Y 16 64 x 32b
+ trunc_16b(33b x 33b) = 48b
VDotP4BBH_CA (2x) 4-term dot product 24b + 9b x 9b + ... + 9b x 9b = 24b Y 32 256 x 8b
VDotP4BBW_CA 4-term dot product 32b + 9b x 9b + ... + 9b x 9b = 32b Y 32 256 x 8b
VDotP4HHW_CA 4-term dot product 48b + 17bx 17b + ...+ 17bx 17b=48b | Y 16 128 x 16b
VDotP4AWHW_CA 4-term dot product 48b + 33bx 17b +... +33bx 17b=48b | Y 8 128 x 16b
VDotP4x2BBH_CA (4x) 4-term dot product 24b + 9b x 9b + ... + 9b x 9b = 24b Y 64 512 x 8b
VDotP4x2BBW_CA 4-term dot product 24b + 9b x 9b + ... + 9b x 9b = 32b Y 64 512 x8b
VDotP4x2HHW_CA 4-term dot product 48b + 17bx 17b + ...+ 17bx 17b=48b | Y 32 256 x 16b
VFilt4BBH_CA (2x) 4-term filter 24b + 24b + 9b x 9b + ... + S9b x 9b = 24b Y 32 256 x 8b
VFilt4HHW_CA 4-term filter 48b + 17bx 17b + ... + 17b x 17b = 48b Y 16 128 x 16b
VFilt4x2BBH_CA (4x) 4-term filter 24b + 24b + 9b x 9b + ... + 9b x 9b = 24b Y 64 512 x 8b
VFilt4x2HHW_CA 4-term filter 48b + 17bx 17b + ...+ 17b x 17b = 48b Y 32 256 x 16b
VFilt4x2x2BBH_CA (8x) 4x2-term filter 24b + 24b + 9b x 9b + ... + 9b x 9b = 24b Y 64 1024 x 8b
VFilt4x2x2BBW_CA 4x2-term filter 32b + 24b + 9b x 9b + ... + 9b x 9b = 32b Y 64 1024 x 8b

EI Note: Count conventional 8b/16b/32b multiplications or multiply-accumulates. 33b x 17b
counted as 2 16b MACs.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 138




9.2.2 MAC-Related Instructions
Additional instructions that leverage multiply-add or multiply-accumulate datapath:
. . Added Thruput Mul / MAC
Instruction Function in Thruput
orin  [PerSlot | veU ()
VCMulH Complex multiply round_trunc(17b x 17b) = 24b 8 64 x 16b
VCMulHHW Complex multiply round_trunc(17b x 17b) = 48b 8 64 x 16b
VCMuUlHHW  (2x) Complex multiply 17b x 17b = 48b 16 128 x 16b
VCMUIWHW  (2x) Complex multiply 33b x 17b = 48b 8 128 x 16b
VCMulw Complex multiply trunc_16b(33b x 33b) = 48b Y 8 64 x 32b
VMSubB_CA Multiply-subtract 12b + round_trunc(9b x 9b) = 12b 32 64 x 8b
VMSubBBH_CA Multiply-subtract 24b + round_trunc(9b x 9b) = 24b 32 64 x 8b
VMSubH_CA Multiply-subtract 24b + round_trunc(17b x 17b) = 24b 16 32 x 16b
VMSubHHW_CA Multiply-subtract 48b + round_trunc(17b x 17b) = 48b 16 32x 16b
VMSubWHW_CA Multiply-subtract 48b + round_trunc(33b x 17b) = 48b 8 32 x 16b
VMSubW_CA Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b 8 16 x 32b
VMSubB_CA  (2x) Multiply-subtract 12b + 9b x 9b = 12b Y 64 128 x 8b
VMSubBBH_CA Multiply-subtract 24b + 9b x 9b = 24b Y 64 128 x 8b
VMSubH_CA Multiply-subtract 24b + 17b x 17b = 24b Y 32 64 x 16b
VMSubHHW_CA Multiply-subtract 48b + 17b x 17b = 48b Y 32 64 x 16b
VMSubWHW_CA Multiply-subtract 48b + 33b x 17b = 48b Y 16 64 x 16b
VMSubW_CA Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b Y 16 32 x32b
VBlendB Blend 12b + round(9b x 8b - 9b x 8b) = 12b 32 128 x 8b
VBlendH Blend 24b + round(17b x 16b - 17bb x 16b) = 24b 16 64 x 16b
VBlendW Blend (48b << 16) + trunc_16b(33b x 32b) Y(W) | 8 32 x32b
—-trunc_16b(33b x 32b) = 48b
VHBIlend_IB Blend 12b + round(9b x 8b - 9b x 8b) = 12b Y 32 128 x 8b
VHBIlend_IH Blend 24b + round(17b x 16b - 17bb x 16b) = 24b Y 16 64 x 16b
VHBlend_IW Blend (48b << 16) + trunc_16b(33b x 32b) Y 8 32 x32b
-trunc_16b(33b x 32b) = 48b
VHBIlend_IBHB Blend 12b + round(9b x 8b - 9b x 8b) = 12b Y 32 128 x 8b
VXNorAdd8x4x2_CA 8x4-term XNorAdd 16b + 1b A 1b+ ..+ 1b~ 1b = 16b Y 128 8192 x 1b
VSumSqgBBH Sum of square 9b x 9b + 9b x 9b = 24b Y 32 128 x 8b
VSumSgHHW Sum of square 17b x 17b + 17b x 17b = 48b Y 16 64 x 16b
VSumSqw Sum of square trunc_16b(33b x 33b) Y 8 32x32b
+ trunc_16b(33b x 33b) = 48b
VSgSumBBH Square of sum (9b + 9b) x (9b + 9b) = 24b Y 32 192 x 8b
VSqSumHHW Square of sum (17b + 17b) x (17b + 17b) = 48b Y 16 96 x 16b
VDet2x2HHW Determinant 2x2 17b x 17b + 17b x 17b = 48b Y 16 64 x 16b
VDet2x2W Determinant 2x2 trunc_16b(33b x 33b) Y 8 32x32b
- trunc_16b(33b x 33b) = 48b

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 139




9.2.3

Other Accelerated Vector Math Instructions

Selected math operations are accelerated over baseline 32 x 12-bit, 16 x 24-bit, or 8 x
48-bit per vector slot.

See Removed/Emulated Instructions for list of Xavier vector math instructions that we

removed in Orin, where there is slowdown instead of speedup. We retain intrinsic
functions to maintain source code compatibility through emulating the functionality
with other instructions.

. . Added Thruput Operation
Instruction Function in Thruput
Orin per slot per VPU

VAddB/H/W Addition

VSubB/H/W Subtraction

VAndB/H/W Bitwise and

VOrB/H/W Bitwise or

VXorB/H/W Bitwise exclusive-or

VMinB/H/W Min

VMaxB/H/W Max

VCmpLTB/H/W Compare less than

VCmpLEB/H/W Compare less than or equal to

VCmpGTB/H/W Compare greater than

VCmpGEB/H/W Compare greater than or equal to

VCmpEQB/H/W Compare equal

VCmpNEB/H/W Compare not equal

VBitCntB/H/W Bit count

VAbsDifB/H/W Absolute difference
12-bit operation 32 64 x 12-bit
24-bit operation 16 32 x 24-bit
48-bit operation 8 16 x 48-bit

2x perf of above 12-bit operation Y 64 128 x 12-bit
24-bit operation Y 32 64 x 24-bit
48-bit operation Y 16 32 x 48-bit

VAdd2SubB 12-bitA+B-C 32 128 x 12-bit

VAdd2SubH 24-bitA+B-C 16 64 x 24-bit

VAdd2SubW 48-bitA+B-C 8 32 x 48-bit
4-input-2-output add/subtract for radix-4 FFT

VAddSub4x2B (3x) 12-bit Y 32 192 x 12-bit

VAddSub4x2H 24-bit Y 16 96 x 24-bit

VAddSub4x2W 48-bit Y 8 48 x 48-bit
4-input-2-output configurable add/subtract

VCfgAddSub4x2B (3x) 12-bit Y 32 192 x 12-bit

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 140




Added Operation
. . Thruput
Instruction Function in | Thruput
Orin per slot per VPU
VCfgAddSub4x2H 24-bit Y 16 96 x 24-bit
VCfgAddSub4x2W 48-bit Y 8 48 x 48-bit

9.2.4  Scalar/Vector Floating-point Instructions

In Xavier VPU we support only scalar FP32 instructions. In Orin VPU to extend floating
support to both scalar and vector, and both FP32 and FP16.

Operation

Instruction Function Added Thruput Thruput
in Orin per slot

per VPU
VAddF FP32 addition Y 8 16 x 32-bit
VSubF FP32 subtraction Y
VMulF FP32 multiplication Y
VMAddF FP32 multiply-add Y
VMSubF FP32 multiply-subtract Y
VCmp*F FP32 comparison LT/LE/GT/GE/EQ/NE Y
VRCPF FP32 reciprocal Y
VSQRTF FP32 square root Y
VRSQF FP32 reciprocal of square root Y
VEXP2F FP32 exponent based 2 Y
VLOG2F FP32 log based 2 Y
VSINF FP32 sine Y
VCOSF FP32 cosine Y
VTANHF FP32 hyperbolic tangent Y
VAddHF FP16 addition Y 16 32 x 16-bit
VSubHF FP16 subtraction Y
VMulHF FP16 multiplication Y
VMAddHF FP16 multiply-add Y
VMSubHF FP16 multiply-subtract Y
VCmp*HF FP16 comparison LT/LE/GT/GE/EQ/NE Y
VINT_FP INT32 to FP32 conversion Y 8 16 x 32/48-
VFP_INT_Trunc FP32 to INT32 conversion with truncation Y bit
VFP_INT_Round FP32 to INT32 conversion with rounding Y
VINTX_FP INT48 to FP32 conversion Y
VFP_INTX_Trunc FP32 to INT48 conversion with truncation Y
VFP_INTX_Round FP32 to INT48 conversion with rounding Y
VINT_FP16 INT32 to FP16 conversion Y 16 32 x 16/24-
VFP16_INT_Trunc FP16 to INT32 conversion with truncation Y bit
VFP16_INT_Round FP16 to INT32 conversion with rounding Y

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 141




Operation

Instruction Function f:‘dg:: :::ZT:: Thruput
per VPU

VINT24_FP16 INT24 to FP16 conversion Y

VFP16_INT24_Trunc FP16 to INT24 conversion with truncation Y

VFP16_INT24_Round FP16 to INT24 conversion with rounding Y

VFP16_FP FP16 to FP32 conversion Y

VFP_FP16 FP32 to FP16 conversion Y

FAdd (Scalar) FP32 addition 1 2 X 32-bit

FSub FP32 subtraction

FMul FP32 multiplication

FMAdd FP32 multiply-add

FMSub FP32 multiply-subtract

FCmp* FP32 comparison LT/LE/GT/GE/EQ/NE Y

HFAdd (Scalar) FP16 addition Y 1 2 x 16-bit

HFSub FP16 subtraction Y

HFMul FP16 multiplication Y

HFMAdd FP16 multiply-add Y

HFMSub FP16 multiply-subtract Y

HFCmp* FP16 comparison LT/LE/GT/GE/EQ/NE Y

FRCP (Scalar) FP32 reciprocal Y 1 2 x 32-bit

FSQRT FP32 square root Y

FRSQ FP32 reciprocal of square root Y

FEXP2 FP32 exponent based 2 Y

FLOG2 FP32 log based 2 Y

FSIN FP32 sine Y

FCOS FP32 cosine Y

FTANH FP32 hyperbolic tangent Y

INT_FP (Scalar) INT32 to FP32 conversion 1 2 x 32-bit

FP_INT_Trunc FP32 to INT32 conversion with truncation Y

FP_INT_Round FP32 to INT32 conversion with rounding

INT_FP16 INT32 to FP16 conversion Y

FP16_INT_Trunc FP16 to INT32 conversion with truncation Y

FP16_INT_Round FP16 to INT32 conversion with rounding Y

FP16_FP FP16 to FP32 conversion Y

FP_FP16 FP32 to FP16 conversion Y

9.2.5

Orin PVA VPU Programmer’s Guide

Scalar Integer Math Instructions

In the 2 scalar math slots, we support a variety of integer math instructions as well:

SWE-PVA-076-PGRF | 142




Instruction Function Added in Orin
Add Addition

Sub Subtraction

And Bitwise and

Or Bitwise or

Xor Bitwise exclusive-or

SLL Shift left logical

SRL Shift right logical/unsigned

SRA Shirt right arithmetic/signed

SXTD Sign-extend

ZXTD Zero-extend

CmpEQ Compare equal

CmpNE Compare not equal

CmpGE (U) Compare greater than (unsigned)

CmpGT (U) Compare greater than or equal to (unsigned)

CmpLE (V) Compare less than (unsigned)

CmpLT (V) Compare less than or equal to (unsigned)

MIN (U) Minimal (unsigned)

MAX (U) Maximal (unsigned)

Mul 32-bit x 32-bit -> 32-bit multiply

LMulSS 32-bit x 32-bit -> 64-bit multiply signed-signed

LMulSU 32-bit x 32-bit -> 64-bit multiply signed-unsigned

LMulUuU 32-bit x 32-bit -> 64-bit multiply unsigned-unsigned

Div Integer division (variable # cycles)

MODINC Modular increment

MODINCP Modular increment and predicate if not zero
MODINC_NOTP Modular increment and predicate if zero

DPMODINCP Modular increment and predicate double if not zero
DPMODINC_NOTP Modular increment and predicate double if zero

MUXP Multiplex from predicate (C select operator)

MUX Multiplex from scalar register (C select operator)

SLLIADD Shift left immediately and add Y
CMPWITHIN Compare within low/high bounds Y
BITCNT Bit count Y

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 143



9.3 VPU Compatibility

9.3.1 Compatibility Exceptions

We aim to maintain C source code backward compatibility with Xavier (Gen-1) VPU. We
do not plan to support assembly code or binary compatibility.

There are a few cases where we need to break C source code compatibility in Orin VPU.

Vector multiply-add rounding/truncating options, in Gen-1 we supported {.R0O, .R7,
.R15, .R16,.T0, .T7,.T15,.T16}. In Gen-2 we added .R4, taking up encoding space of
.TO. Thus, hard-coded rounding/truncating option 4 in the application code, which

was mapped to .TO, in Gen-2 will map to .R4.

Some VMEM storage classes involving Word and Halfword types need to be revised
to the base classes involving Byte type.

RAM_Aw, RAM_Ah - RAM_Ab
RAM_Bw, RAM_Bh - RAM_Bb
RAM_Cw, RAM_Ch - RAM_Cb
DMw, DMh - DMb

CLRHWLP needs 3 instruction packets of gap to the Loop End instruction packet for
the clear hardware loop (and exit loop) functionality to work.

Agen auto predication features would predicate off any agen-based scalar/vector
store past the configured iteration counts. For example, if N1/N2/N3/N4/N5/N6 are
left unchanged after initializing an agen (which would set them to default value of 1),
in Gen-1 1SS/silicon, multiple stores to the same location (as address would stick to
last valid address), but in Gen-2 ISS/silicon, only the first store would be carried out;
subsequent stores are blocked and thus not carried out.

Address map difference and aliasing of address space means that code that
addresses outside primary address regions would behave differently in Gen-1
ISS/silicon versus Gen-2 I1SS/silicon. For example, reading 0x 10024 would be aliased
back to physical memory at 0x24 in Gen-1, and would be reading physical memory at
0x10024 in Gen-2.

Gen-1 VPU supports floating-point math in scalar slots only and FP32 only, and
functionality was implemented with Synopsys DesignWare floating-point fused
multiply-add unit, Gen-2 VPU extends floating-point support to scalar/vector and
FP16/FP32, and functionality was provided by reusing NVIDIA GPU SM floating-point
unit. There can be differences in various corner case behavior around +/- zero, +/-
infinity, and denormal numbers.

vbool, vector Boolean type, was removed as it is ambiguous (as how many lanes of
Boolean).

Intrinsic functions for VMinRID/VMaxRID in Gen-1 was vminr()/vmaxr(), which are
easy to confuse with intrinsic functions for VMinR/VMaxR. They are corrected in Gen-
2 as vminrid()/vmaxrid().

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 144



Agen configuration load/store syntax was revised to better support Native
compilation. See AgenCfgST and AgenCfglLD for details.

9.3.2 Removed/Emulated Instructions

The following instructions are removed from the Orin VPU instruction set due to timing
pressure:

Removed VMinR, VMaxR with vector register destination, replaced with scalar
destination

Removed VMInRID, VMaxRID with vector register destinations (dst1 & dst2), replaced
with scalar destinations (dst1 & dst?2)

Removed VPromote (without deinterleaving)
The intrinsic functions are still supported by emulating the functionality with multiple
instructions. We do not regard this as breaking backward compatibility, but it is worth

noting, in case programmers see compute kernels utilizing these instructions
performing slower in Orin ISS/silicon versus Xavier ISS/silicon.

9.4 Instruction Execution Ordering

9.4.1 Processor Pipeline

Normally processor pipelining is behind the scenes, as execution packets appear to
execute sequentially, and mostly one packet per cycle, with instructions in the same
packet executed in parallel. However, to understand various conditions where the
processor stalls, and the few exceptions to the sequential execution behavior better, we
need to learn about the VPU processor pipeline stages:

IF1..IF3: Instruction fetch stages
ID: Instruction decode stage

EX1 .. EX9: execution stages
VPU pipeline diagram follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 145



Figure 13. VPU processor pipeline

Fetch &
|F1 | Branch Pipe

IF2

Instruction
IF3 Alignment

Scalar Math Pipe Vector Math Pipe Load Pipe Store Pipe
Instruction
Decode . . Instruction Instruction
1D - SRE Instruction Decode Instruction Decode Decode Decode
r-1
Rd

Scalar | Pred Scalar| Pred

EX1| Branch-2 RS:; RS:aFd RF RF RF RF
Read | Read Read | Read

Pred Read y y /
SRF Part VRF/WRF AGU VRF AGU VRF
EX2 Read GiigdIbath /0 Read AGEN | Read ||| AGEN | Read
Pred WB
1 MEM | SRF
2% o o L || i | s
Ops 2 Addr Calc
Cycle
EX4 SRF Scalar ARF Ops c 3cle Address Pine-0
wB FP Read H XBAR o
Ops
VRF
Memory Pipe- | Read
EX5 Read 1 Part
1/0
SRF VRF/WRF/ARF Read Pipe-

EX6 WB WB XBAR 2 RND

Sbnk Mux MEM
SRF Part Addr | Data
WB 1/0 Calc [ Mux

VRF/WRF Addr | Data

EX8 WB XBAR | XBAR

Memory
EX9 Write
EX10

9.4.2 Default/General Behavior

The VPU instructions execute in the following general order consistent with assembly
encoding:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 146



1. Scalar and vector instructions in the same VLIW execution packet are executed in
parallel.

2. Within the same VLIW execution packet, loads are executed before stores.

3. Multiple stores are executed in parallel if they go to different memory superbanks.
Multiple writes going to the same memory superbanks are executed in slot order.

4. Reading the same register (scalar or vector) by multiple slots is supported.

5. Writing to same register (scalar or vector) by multiple slots is NOT allowed (compiler
does not schedule such code, and such code would cause assembler to fail).

6. Same register (scalar or vector) can be read (multiple times) and written (only once)
in the same execution packet, read preceding write.

9.4.3 Delay Slots for Branch Instructions

Branch and hardware loop instructions have delay slots, so they also appear as executing
out of order; 2 packets after branch instruction are executed before taking the branch.

SWRBK, CLR_HWLP, STW HWLP, WFE_GPI, and WFE_RS5 should not be placed in a
branch delay slot.

Please see Control Instruction Summary for number of delay slots for each instruction.

9.4.4  Exception for Instructions Accessing Address
Generator

Address Generator fields have the following read/write accesses:
MovAgen reads and writes Agen in EX2

Agen-based load/store reads and writes Agen in EX2 (reading most fields, writing
base and loop variables)

Agen-based store reads and writes Agen in EX7 (updating MinVal, MaxVal)

InitAgen and CfgAgen write Agen in EX2

Store Agen Loopvar reads Agen in EX2

AgenCfgST/AgenCfgST_p2 reads Agen in EX7

AgenCfgLD/AgenCfgST_p?2 writes Agen in EX7
In the processor model we have, hardware stalls so that instructions appear to be
executed sequentially. However, instructions from the same execution packet are
executed or stalled together, except stalling for memory dependency. Thus, Agen

read/write instructions that access Agen in different pipeline stages exhibit non-
sequential behavior.

Write-EX2 + Read-EX7 in the same packet: would appear that write precedes read,
violating rule #6. Possible combinations for this category are:

MovAgen with AgenCfgST in same packet: Moved Agen contents are stored to
memory.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 147



Agen-based load/store with AgenCfgST in the same packet: Updated Agen contents
are stored to memory.
InitAgen or CfgAgen with AgenCfgST in the same packet: Configured Agen contents
are stored to memory.

Write-EX2 + Write-EX7 in the same packet: allowed, with Write-EX2 occurring before
Write-EX7, so the outcome from Write-EX7 stays. This is violating rule #5. Possible
combinations for this category are:
MovAgen with AgenCfgLD in same packet: Moved Agen contents are lost, overridden
by load outcome of AgenCfgLD.
Agen-based load with AgenCfgLD in same packet: Agen-based load is carried out
with current address value (since agen-update is post-modifying). Agen address
update is lost, overridden by load outcome of AgenCfgLD.
InitAgen or CfgAgen with AgenCfgLD in same packet: Configured Agen contents is
lost, overridden by load outcome of AgenCfgLD.

Note that Read-EX2 + Write-EX7, Read-EX2 + Write-EX2, and Read-EX7 + Write-EX7 in
same packet would appear that read precedes write and thus conform to the general
instruction ordering (rule #6).

Agen-based load/store (reading agen configuration in EX2) and AgenCfgLD (writing agen
configuration in EX7) in same packet: agen-based load/store uses configuration before
AgenCfgLD

MovAgen (reading source agen in EX2) and InitAgen/AgenCfg (writing agen
configuration in EX2) in same packet: source agen of MovAgen is read first, before being
updated by InitAgen/AgenCfg

AgenCfgST_p2 (reading agen loop variables and min/max value in EX7) and agen-based
store (reading/writing agen loop variables and min/max value in EX7, min/max value only
when min/max collection is enabled) in same packet: AgenCfgST_p2 stores agen loop
variables etc. before being updated by the agen-based store.

Agen-based load with AgenCfgLD in the same packet is allowed in Xavier VPU but is
disallowed in Orin VPU. In Orin, we have added min/max collection feature, and both
instructions are written into MinVal/MaxVal agen fields in EX7.

9.4.5 Exception for Instructions Accessing HW
Loop Registers

The hardware zero-overhead looping utilizes the following registers:

LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -
1 (which is encoded as binary “117).

LS[0..1]: 32-bit loop start PC, reset to O
LE[O..1]: 32-bit loop end PC, reset to O
LC[O..1]: loop count, 32-bit, reset to 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 148



The hardware Loop instruction RPT accesses these registers (both read and write) in
EX2 stage.

The PCU, program control unit, accesses these registers (both read and write) upon end
of the loop (PC matching LE[LF]) to implement looping behavior.

These registers are written by CLR_HWLP instruction, to clear hardware loop context for
a new algorithm task, and read by STW HWLP instruction, for debug. These instructions
have placement restrictions with respect to hardware loop, to avoid hazards.
CLR_HWLP should not be placed:

In two packets before RPT

In the same packet as RPT

In the two RPT delay slots

In the first 2 packets of loop body

In the last 2 packets of loop body

In the first 2 packets after the loop.

Otherwise, hardware loop state is non-deterministic.

STW HWLP should not be placed:
In two packets before RPT
In the same packet as RPT
In two RPT delay slots
In the first 3 packets of loop body
In the last 3 packets of loop body
In the first 2 packets after the loop.

Otherwise, stored contents are non-deterministic.

These restrictions do not affect instructions injected through debug in Debug State,
since such instructions are executed one instruction at a time through all pipeline
stages.

9.4.6 Exception for Instructions Accessing FP
Invalid Flag

With the scalar and vector unit FP instructions, we have an invalid flag that FP
operations can set, and a pair of move instructions moving between the flag and a scalar
register that we can use to acquire and clear the flag.

Interesting scenarios:

When there are multiple FP operations in the same packet, the invalid outcome from
any operation can set the invalid flag, and since the flag is sticky, the flag update can
be represented as follows:

invalid_flag |= s@_invalid | s1_invalid | v@_invalid | vi1_invalid

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 149



When MOV R, INV instruction (only in SO since it’s classified as a control instruction)
and FP operation(s) (in S1/VO/V1 slots) are placed in the same packet, writing of the
flag from MOV R, INV instruction is ignored, overridden by the FP operation(s).

When MOV INV, R instruction (in SO) and FP operation(s) (in S1/VO/V1 slots) are
placed in the same packet, reading of the flag occurs before the FP operation(s)
affect the flag. This case is consistent with the “read before write” general ordering
rule.

9.4.7 Hardware Stalls to Comply with Sequential
Execution Order

There is RAW (read after write) and WAW (write after write) data hazard detection on all
register files (scalar, predicate, agen, VRF, WRF, ARF, XARF) to ensure sequential
execution regarding dependency through registers.

Various control instructions interact with components external to the VPU processor in
various pipeline stages:

GPO_SET/CLR/WR affect GPO pins in the EX2 stage.

GPI_RD reads GPI pins in the EX2 stage.

CPST writes to coprocessor space via APB write transaction in the EX4 stage

(address/write-request/write-data driven in EX4, wait for peripheral to be ready in
EX5).

CPLD reads from coprocessor space via APB read transaction in the EX5 stage
(address/read-request driven in EX4, wait for peripheral to be ready and read-data in
EX5).

SIG_RS5 raises vpu_start_r5 control signal to R5 in the EX3 stage.

WFE_GPI and WFE_R5 waits for all proceeding instructions to exit pipeline before
execution, so has their own mechanism to ensure sequential execution.

SIG_R5 and WFE_RS are involved in R5/VPU communication. As R5 and VPU are two
separate processor cores, we are not relying on fine timing of individual signals, but on
the interaction protocol, to ensure coherent behavior.

Among the remaining external interface instructions, i.e. GPI/GPO/CPLD/CPST, GPI and
CPLD are read actions, and GPO and CPST are write actions. We need to watch for
potential RAW hazards:

GPI after GPO: both execute in EX2, so execution order is preserved.

GPI after CPST: CPST executes in EX4 and GPI in EX2, so potential RAW hazard.
Hardware stalls GPI in EX2 (or earlier) until peripheral responds to readiness for the
CPST transaction.

CPLD after GPO: GPO executes in EX2 and CPLD in EX4, so execution order is
preserved.

CPLD after CPST: CPST executes in EX4 and CPLD in EX5, also APB bus is sequential,
so execution order is preserved.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 150



Potential WAW hazards:

GPO after CPST: CPST executes in EX4 and GPO in EX2, so potential WAW hazard.
Hardware stalls GPO in EX1 (or earlier) until peripheral responds to readiness for the
CPST transaction.

CPST after GPO: GPO executes in EX2 and CPST in EX4, so execution order is
preserved.

9.5 Instruction Predication

The VPU has 14 32-bit predicate registers, P2... P15. PO are P1 are reserved to indicate
unpredicated (always-execute) instructions. In addition, the first half of the main vector
register file, VO..V15, can be used for vector store lane predication.
The following predication features are available:

Vector math instruction-level predication.

Vector load instruction-level predication.

Scalar store instruction-level predication.

Vector store lane predication.

9.5.1 Instruction-Level Predication for Register
Moves

Scalar-to-scalar, scalar-to-vector, and vector-to-scalar are instruction-level predicated.
When predication is on (nonzero), the register move is performed. When predication is
off (zero), the register move is skipped.

Predicated register move can be used for conditional execution to avoid conditional
branches.

95.2 Instruction-Level Predication for Vector Math

Selected vector ALU instructions are predicated on or off identically across lanes, MOVS
(scalar-to-vector move) and those with “_CA” suffix in mnemonic. It’'s a common decision
for all lanes to carry out one functionality or the other, with the predication-off
functionality emulating clearing of the accumulator.

For example:

[P2] VMAddHHW_CA Ve, V1, V2:V3 // if (P21==8), V2:V3 = VO*V1
// otherwise V2:V3 += VO*V1

Clearing of the accumulator typically happens periodically, once every K iterations, where
K'is number of items being accumulated, as in filtering. MODINCP can be used to
implement a modulo K counter to control the periodic predication.

Please consult the description of individual instructions for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 151



953 Predication for Load/Store

Predication support for various addressing modes of scalar/vector load/store is shown
as follows:

Table 19. Scalar/vector load/store predication support

Predication feature Base+offset Post-modify Agen-based
Scalar load not available instruction-level not available
Scalar store not available instruction-level instruction-level
Vector load not available not available instruction-level
Vector store not available not available per-lane
9.5.3.1 Instruction-Level Predication for Post-Modify Scalar
Load

Scalar load with post-modify addressing mode is instruction-level predicated.

When predication is on, memory read, address register update, and destination write are
carried out. Otherwise, none of these are carried out. Of course, predicate register will
always be read for the predication.

Predicated scalar load/store is used to accelerate various conditional scalar processing.

9.5.3.2 Instruction-Level Predication for Post-Modify and
Agen-Based Scalar Store

Scalar store, both post-modify and agen-based variations are instruction-level
predicated.

For the post-modify scalar store, predication drives both memory write and the register
update (base += modifier). When predication is on, both memory write and register
update are carried out, otherwise, both are not carried out.

For the agen-based scalar store, predication drives only memory write. Agen update is
always carried out. When predication is on, memory write is carried out, otherwise,
memory write is not carried out.

In both kinds of scalar stores, source register read is carried out unconditionally, with
any necessary hardware stalling to preserve source register dependency.

Predicated scalar load/store is used to accelerate various conditional scalar processing.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 152



9.5.3.3 Instruction-Level Predication for Agen-Based Vector
Load

Agen-based vector load instructions are instruction-level predicated. When predication
is on, memory read and destination vector register write are performed. When
predication is off, memory read and destination vector register write are skipped.
Address update is carried out unconditionally.

A use case for predicated vector load is for integral image, where predication is used to
deal with boundary rows.

9.5.3.4  Lane Predication for Agen-Based Vector Store

Agen-based vector store instructions are predicated per lane. Predication-on lanes are
written to memory, predication-off lanes are skipped. Address update is carried out
unconditionally.

Predication is conveyed via either predicate register(s) or a single vector register in VRF.

In case of predication via predicate register(s), as many bits of predicate register are
used as the number of lanes, and up to 64 lanes, or two predicate registers, are used.
The predication bits are the least significant bit justified.

For example, “[P2] DVSTW_PI VO, *AO++” stores 16-word lanes, with lane i predicated by
bit i of the predicate register P2.

In case of predication via a single vector register in VRF, predicates are evenly spaced
starting from bit 0. The VRF entry is regarded as a 384-bit vector, and a single bit is used
for each lane. Bit position for each lane is lane_index * (384/num_lanes).

For vector store with scalar distribution, for example, VSTW_S, predication is supported
only through predicate registers, and not through vector register. We are storing out
just one or two values so there is little value in using vector register to convey
predicates.

The following table shows bits of VRF used across variations of vector store:

Table 20. Vector register predicated vector store variations

Vector store Number Bits used in As bit O of array

of source | predicate VRF entry | elements

lanes
VSTB_P/T 32 0,12,24,..372 arr_vcharx[0, 1, .., 31]
VSTBH_P/T
VSTH_P/T 16 0, 24, 48, ..., 360 arr_vshorx[O, 1, .., 15]
VSTHW_P/T
VSTW_P/T 8 0, 48, 96, ..., 336 arr_vintx[O, 1, ..., 7]
VSTWX_P
VSTB_S 1 Predication via VRF not supported

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 153



Vector store Number Bits used in As bit O of array

of source | predicate VRF entry | elements

lanes
VSTH_S
VSTW_S
DVSTB_P/PI 64 0,6,12,..,378 as bit 0 and bit 6 of

arr_vcharx[O, 1, ..., 31]

DVSTH_P/PI/T/TI 32 0,12,24,..,372 arr_vcharx|0, 1, .., 31]
DVSTHB_P/PI
DVSTW_P/PI/T/TI[T2/T2I 16 0, 24, 48, ..., 360 arr_vshortx[O, 1, ..., 15]
DVSTWH_P/PI/T/TI
DVSTB_S 2 Predication via VRF not supported
DVSTH_S
DVSTW_S
QVSTHB_P/PI/PI2 64 Predication via VRF not supported
QVSTWH_P/PI/PI2[T/TI2 32 Predication via VRF not supported

For example, “[V2] DVSTW_PI VO, *AO++” stores 16 word lanes, with lane i predicated by
bit i*24 of V2, or bit 0 of each element of a vshortx-type variable mapped to V2.

There is a behavior difference between predicate register file and vector register file for
predication. With predicate register file, in case all lanes are predicated off, the memory
transaction is not issued, conserving power consumption. With vector register file, to
shorten the latency the VRF entry is read late in the pipeline, same stage as the store
data, too late to block the memory transaction, so the predicated memory transaction is
always issued.

Lane-predicated store via predicate register is supported in all types and distribution
combinations of Agen-based scalar/vector stores as well as VAST, vector addressed
stores, and in all memory slots.

Lane-predicated store via VRF is supported in agen-based single/double vector store of
VRF, non-scalar distribution, and in MO slot only.

9.6 Control Instructions

9.6.1 Instruction Summary

The following control instructions are supported. Most are available only in the SO slot,
except the following:

RD_TSC.L/H can be issued in both SO and S1 slots.
CPLD, CPST, MemFence are available only in MO slots.

In the table, delay slots refer to execution packets (one slot is one packet) following the
control instructions that are executed before the control instruction takes place. For

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 154



example, the JR instruction has 2 delay slots, so two execution packets following the JR
instruction’s own packet are executed before the jump takes place.

Table 21. Control instructions

Function

Assembly Format

Comments

Jump to immediate

Jimm20_addr

Jump to relative immediate address, with 2 delay slots.

Jump to register

JR Raddr

Jump to absolute address in register, with 2 delay slots.

Jump and link (call)

JAL imm?20_addr

Call (jump and link) relative immediate address., with 2
delay slots.

Jump and link
register (call)

JALR Raddr

Call absolute address in register, with 2 delay slots.

Branch if zero

BEQZ Rsrc, imm14_addr

Branch if Rsrc is zero to relative immediate address, 2 delay
slots.

Branch if nonzero

BNEZ Rsrc, imm14_addr

Branch if Rsrc is not zero to relative immediate address, 2
delay slots.

Software break
point

SWBRK

Software break point.

Hardware loop

RPT Rsrc,imm16

Hardware zero-overhead loop, with the Rsrc specifying
number of iterations, and the immediate encoding size of
the loop, with 2 delay slots.

Clear hardware loop
registers

CLR_HWLP

Initialize hardware loop registers to default values

GP out set low

GPO_SETLIimm16

Set lower 16-bit of GPO according to immediate

GP out set high

GPO_SETHI imm16

Set higher 16-bit of GPO according to immediate

GP out clear low

GPO_CLRLI imm16

Clear lower 16-bit of GPO according to immediate

GP out clear high

GPO_CLRHI imm16

Clear higher 16-bit of GPO according to immediate

GP out set

GPO_SET Rsrc

Set 32-bit of GPO according to Rsrc

GP out clear

GPO_CLR Rsrc

Clear 32-bit of GPO according to Rsrc

GP out write GPO_WR Rsrc Copy 32-bit Rsrc to 32-bit GPO

GP out read GPO_RD Rdst Copy 32-bit GPO into Rdst

GPinread GPI_RD Rdst Sample 32-bit GPI into Rdst

Wait for GPI WFE_GPI Rsrc1, Rsrc2 Wait until (GPI & Rsrc1) == Rsrc2

pattern

Wait for R5 event WFE_R5 Transition into low-power WFE_R5 state until R5 writes
R5_vpu_start to dispatch next task

Signal R5 SIG_R5 Rsrc Send software interrupt to R5; Rsrc carries a software-
defined 32-bit data to write to a VPU config register, which
R5 interrupt service routine can read.

Enable timestamp ENABLE_TSC Enable performance counter

counter

Once enabled, timer increments in Active state (and not
increment in Reset, Debug, WFE_RS5, WFE_GPI, Halted,
Error-Halted states).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 155




Function Assembly Format Comments

Read timestamp RD_TSCL Rdst Copy performance counter lower/upper 32-bit to Rdst.

counter RD_TSCH Rdst SO and S1 slots.

Move FP invalid flag | MOV INV-R Move floating-point invalid flag to/from scalar register
MOV R-INV

OCD load/store OCD_LD PC/GPO OCD (debug) load/store
OCD_ST PC/GPI/GPO

Configure VMEM CFG_VMEM_SBA/B/C Rsrc Write configuration

Superbanks RD_CFG_VMEM_SBA/B/C Rdst | Read configuration

Coprocessor store CPST Rsrc, Rdaddr

CPST Rsrc, #imm12

Coprocessor load CPLD Rsaddr, Rdst MO slot only

CPLD #imm12, Rdst

Memory fence MemFence MO slot only

The VPU does not take interrupts, and thus there is no enable/disable interrupt, return
from interrupt, etc., instructions available.

The PC is internally modeled to count in 32-bit increments. For example, PC = 1 means
byte address of 4. The 20-bit absolute immediate field for J, JAL, the 14-bit relative
immediate fields for BEQZ, BNEZ, the 16-bit immediate field for RPT, conform to this
convention (count in 32-bit increments).

By default, the compiler aligns all branch targets to 256-bit = 32-byte = 8-word
alignment, to avoid the instruction fetch interface spending an extra cycle to fetch a
execution packet starting from target PC.

9.6.2  Branch/Jump/Call Delay Slots

For the processor pipeline to work, 2 execution packets after the branch/jump/call
instructions are executed before taking the branch/jump/call. These 2 execution packets
are called in the delay slots of the branch/jump/call instructions. Please see instruction
summary or details in each branch/jump/call instruction for how many delay slots there
are.

Note that the branching action is delayed but register read/write is still executed
sequentially.

For example, case 1:
1 LDHI R5, #0
2 BEQZ RS, #42
3 ADDIR5, #-1,R5
4 NOP
5 HALT

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 156



In this case, R5 for instruction #2 is sampled and branch decision made accordingly.
Subsequent instruction #3 that changes R5 does not change the branch decision.

For example, case 2:
1 LDHI R15, #0
2 JAL #42
3 ADDIR15, #-1,R15
4 NOP
5 HALT

In this case, R15, the link register, is changed in instruction #1, but JAL (jump and link) in
instruction #2 would overwrite R15 with the return PC (after 2 delay slots, thus #5). R15
is then revised again by instruction #3 before taking the branch. Thus, when the called
function returns via JR R15, execution starts at #4, rather than the normal behavior, 2

delay slots past the JAL, at #5.

9.6.3

Jump and Link (JAL, JALR)

Instruction name

JAL

Functionality

Jump and link (call)

Assembly format

JAL imm20_addr

Type and bit width

20-bit signed immediate

Predication

not available

Source options

not available

Destination options

not available (implicit: PC and LR)

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump and link (call) relative immediate address.
There're 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the
destination.

PC after the delay slot is written to the link register R15. This is where a
subsequent JR R15 should jump to when returning from the called function.

Instruction name JALR

Functionality Jump and link register (call)
Assembly format JALR Raddr

Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

not available (implicit: PC and LR)

Additional options

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 157



Intrinsics/operator

not available

Additional details

Jump and link (call) absolute address in register.
There're 2 delay slots.

Immediate value is calculated as the PC offset from the 2" delay slot to the
destination.

PC after the delay slots is written to the link register R15. This is where a
subsequent JR R15 should jump to when returning from the called function.

9.6.4

Jump (J, JR)

Instruction name J
Functionality Jump to immediate
Assembly format J imm20_addr

Type and bit width

20-bit signed immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump to relative immediate address.
There’re 2 delay slots; one execution packet immediately following the jump
would be executed before the jump takes place.

Immediate value is calculated as the PC offset from the 2nd delay slot to the
destination.

Instruction name JR
Functionality Jump to register
Assembly format JR Raddr

Type and bit width

32-bit absolute address

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Jump to absolute address in register.

There are 2 delay slots.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 158



9.6.5 Conditional Branch (BEQZ, BNEZ)

Instruction name

BEQZ

Functionality

Branch if zero

Assembly format

BEQZ Rsrc, imm14_addr

Type and bit width

14-bit signed immediate

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Branch if Rsrc is zero to relative immediate address.

There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2" delay slot to the

destination.

Instruction name

BNEZ

Functionality

Branch if not zero

Assembly format

BNEZ Rsrc, imm14_addr

Type and bit width

14-bit signed immediate

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Branch if Rsrc is not zero to relative immediate address.

There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2"? delay slot to the

destination.

9.6.6 Software Break Point (SWBRK)

Instruction name

SWBRK

Functionality

Software break point

Assembly format

SWBRK

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 159



Instruction name

SWBRK

Intrinsics/operator

not available

Additional details

Upon executing this, VPU transitions into debug state. Only the debug
controller can transition VPU back to active state.

SWBRK should not be placed in any branch or hardware loop delay slots.

9.6.7

Hardware Zero-Overhead Loop (RPT)

Instruction name

RPT

Functionality

Hardware loop

Assembly format

RPT Rsrc,imm16

Type and bit width

Rsrc: 32-bit unsigned iteration count
Imm16: 16-bit unsigned PC offset

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

not available

Additional details

Hardware zero-overhead loop, with Rsrc indicating number of iterations.
There are 2 delay slots.

The immediate field encodes loop size, which is the PC difference between
the 2" delay slot packet (very next packet is beginning of loop) and the last
packet of the loop.

Rsrc is checked at the end of the loop body, so loop is iterated at least one
time. Loop with Rsrc = 0 will be executed one time (same behavior as Rsrc =

1).

Instruction name CLR_HWLP
Functionality Clear hardware loop registers
Assembly format CLR_HWLP

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void clr_hwlp();

Additional details

Initialize LF = -1 (2-bit binary 11), LC[0..1] = 1, LS[0..1] = 0, LE[0..1] = 0.

Should be included in each task starting code to clear hardware loop
registers for the new task.

Should not be placed:
in the same packet as RPT
in RPT delay slots

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 160



Instruction name CLR_HWLP
in first 2 packets of loop body

in last 2 packets of loop body

9.6.8  General Purpose Output (GPO_*)

The following instructions are available for GPO feature:

GPO_SETLI

GPO_SETHI

GPO_CLRLI

GPO_CLRHI

GPO_SET

GPO_CLR

GPO_RD

GPO_WR

GPO set/clear low/high immediate are used to set or clear a number of GPO bits at the
same time, all in the lower 16 bits or upper 16 bits and known at compile time. For
example, gpo_clrh(5) would map to “GPO_CLRHI #5” to clear GPO[18] and GPO[16], while
leaving all other GPO pins unchanged.

GPO set/clear are used to set or clear a number of GPO bits at the same time, either not
all in lower/upper 16 bits or unknown at compile time. The set/clear bit mask value is
supplied by a scalar register. For example, gpo_set(val) would map to “GPO_SET R4”
(assuming variable val is allocated to R4), to set GPO pins where bits of val are one,
leaving all other GPO pins unchanged.

GPO read/write are used to replace (or not replace) a number of GPO bits at the same
time, allowing any binary transition (0 > 0,0 > 1,1 > 0, 1 > 1) in each bit. For example,
to replace GPO[7:4] with a 4-bit value in val, one would code:

temp = gpo_rd();

temp &= OxFFFF_FFOF;

temp |= val << 4;

gpo_wr (temp);

which would map to (assuming val is allocated to R6):

GPO_RD R4

LHI #O@xFFFF, RS

ORI R5, #OxFFOF, RS
AND R4, R5, R4

SLLI R6, #4, R5

OR R4, R5, R4
GPO_WR R4

Instruction name GPO_SETLI

Functionality General purpose output set low immediate

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 161



Instruction name

GPO_SETLI

Assembly format

GPO_SETLIimm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_setl(unsigned short imm);

Additional details

Set lower 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit of GPO is set. The remaining GPO bits
are left unchanged.

For example, GPO_SETLI #0x11 would set bits 4 and 0 of GPO.

Instruction name

GPO_SETHI

Functionality

General purpose output set high immediate

Assembly format

GPO_SETHI imm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_seth(unsigned short imm);

Additional details

Set upper 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit in upper 16 bits of GPO is set. The
remaining GPO bits are left unchanged.

For example, GPO_SETHI #0x11 would set bits 20 and 16 of GPO.

Instruction name

GPO_CLRLI

Functionality

General purpose output clear low immediate

Assembly format

GPO_CLRLI imm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clrl(unsigned short imm);

Additional details

Clear lower 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit of GPO is cleared. The remaining GPO
bits are left unchanged.

For example, GPO_CLRLI #0x11 would clear bits 4 and 0 of GPO.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 162



Instruction name

GPO_CLRHI

Functionality

General purpose output clear high immediate

Assembly format

GPO_CLRHI imm16

Type and bit width

16-bit unsigned immediate

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clrh(unsigned short imm);

Additional details

Clear upper 16-bit of GPO according to immediate. When a bit of the
immediate is on, the corresponding bit in upper 16 bits of GPO is cleared. The
remaining GPO bits are left unchanged.

For example, GPO_CLRHI #0x11 would clear bits 20 and 16 of GPO.

Instruction name

GPO_SET

Functionality

General purpose output set register

Assembly format

GPO_SET Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_set(unsigned int);

Additional details

Set 32-bit GPO according to register source. When a bit of the scalar register
is on, the corresponding bit of GPO is set. The remaining GPO bits are left
unchanged.

For example, GPO_SET R1 with R1 = 0x11 would set bits 4 and O of GPO.

Instruction name

GPO_CLR

Functionality

General purpose output clear register

Assembly format

GPO_CLR Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_clr(unsigned int);

Additional details

Clear 32-bit GPO according to register source. When a bit of the scalar
register is on, the corresponding bit of GPO is cleared. The remaining GPO
bits are left unchanged.

For example, GPO_CLR R1 with R1 = 0x11 would clear bits 4 and O of GPO.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 163



Instruction name

GPO_RD

Functionality

General purpose output read

Assembly format

GPO_RD Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned int gpo_rd();

Additional details

Copy 32-bit GPO to destination register Rdst.

Instruction name GPO_WR
Functionality General purpose output write
Assembly format GPO_WR Rsrc

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void gpo_wr(unsigned int var);

Additional details

Copy 32-bit source register Rsrc to GPO.

9.6.9

General Purpose Input (GPI_RD)

Instruction name GPI_RD
Functionality General purpose input read
Assembly format GPI_RD Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned int gpi_rd();

Additional details

Sample 32-bit GPI into destination register Rdst.

9.6.10 Wait for GPI Event (WFE_GPI)

Instruction name

WFE_GPI

Functionality

Wait for GPI pattern

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 164



Instruction name

WFE_GPI

Assembly format

WFE_GPI Rsrc1, Rsrc2

Type and bit width

32-bit unsigned

Predication

not available

Source options

Two scalar registers

Destination options

not available

Additional options

not available

Intrinsics/operator

void wfe_gpi(unsigned int mask, unsigned int match);

Additional details

Wait until (GPI & Rsrc1) == Rsrc2, Rsrc1 being the bit mask and Rsrc2 being
the match pattern.

For example, WFE_GPI R1, R2, with R1 = 3 and R2 = 1 would wait for GPI[0] =
1 and GPI[1] = 0 before proceeding to the next execution packet.

Should not be placed in a branch delay slot.

9.6.11

Wait for R5 Event (WFE_RD5)

Instruction name WFE_R5
Functionality Wait for R5 event
Assembly format WFE_R5

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void wfe_r5();

Additional details

Transition into low-power WFE_R5S state until R5 writes R5_vpu_start to
dispatch next task.

Should be included as the last statement in every task’s exit code. Should not
be placed in a loop.

Should not be placed in a branch delay slot.

9.6.12 Signal R5 (SIG_R5)

Instruction name SIG_R5
Functionality Signal R5
Assembly format SIG_R5 Rsrc

Type and bit width

not applicable

Predication

not available

Source options

scalar register

Destination options

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 165



Instruction name

SIG_R5

Additional options

not available

Intrinsics/operator

void sig_r5(unsigned int data);

Additional details

Send software interrupt to R5; Rsrc carries a software-defined 32-bit data to
write to a VPU config register, which R5 interrupt service routine can read.

9.6.13 Performance Counter (ENABLE/RD_TSC)

Instruction name ENABLE_TSC
Functionality Enable performance counter
Assembly format ENABLE_TSC

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

not available

Additional options

not available

Intrinsics/operator

void enable_TSC();

Additional details

Once enabled, the 64-bit counter increments in Active state (and not
increment in Reset, Debug, WFE_R5, WFE_GPI, Halted, Error-Halted states).

Once enabled, subsequent ENABLE TSC would be ignored.

Though the counter is called TSC, it does not count in real-time scale, but in
VPU clock cycles.

Instruction name

RD_TSC

Functionality

Read performance counter

Assembly format

RD_TSCL Rdst
RD_TSCH Rdst

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

unsigned long long read_TSC();//read lower/upper parts together
unsigned int read_TSCL(); // read just lower part
unsigned int read_TSCH(); // read just upper part

Additional details

Copy TSC lower/upper 32-bit to Rdst.

It's available on both SO and S1 slots, and ideally should be schedule in both
S0 and S1 to copy lower/upper parts to avoid skewed copy introducing
inconsistency.

Intrinsic functions are supported to read just lower or upper part, or both
parts. Intrinsic function reading both parts are implemented such that,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 166



Instruction name

RD_TSC

RD_TSCL and RD_TSCH are executed in the same execution packet and
with no other fused operations to avoid potential inconsistency.
unsigned long long start_time = read_TSC();

// loop code

unsigned long long end_time = read_TSC();
printf(“Loop XXX cycle count = %1d \n”, end_time - start_time);

9.6.14 Floating-Point Invalid Flag

Instruction name MOV INV-R

Functionality Move floating-point invalid flag to register
Assembly format MOV INV, Rdst

Type and bit width 1-bit

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

not available

Intrinsics/operator

int invalid_flag();

Additional details

Move floating-point invalid flag to scalar register. After the move, the scalar
register becomes either O or 1.

The invalid flag is set when any input or output floating-point value is NaN
(not a number).

Instruction name MOV R-INV
Functionality Move register to floating-point invalid flag
Assembly format MOV Rsrc, INV

Type and bit width

not applicable

Predication

not available

Source options

scalar register

Destination options

not available

Additional options

not available

Intrinsics/operator

void set_invalid_flag(int var);

Additional details

Move scalar register to floating-point invalid flag. Invalid flag is cleared if the
scalar register is zero and set if the scalar register is non-zero.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 167



9.6.15 OCD Load/Store

Instruction name OCD_LD
Functionality OCD (on-chip debug) load
Assembly format OCD_LD PC

OCD_LD GPO

OCD_LD SES (shadow execution state)

Type and bit width

32-bit unsigned

Predication

not available

Source options

dedicated ocd_data register

Destination options

PC or GPO

Additional options

not available

Intrinsics/operator

not available

Additional details

Copy from ocd_data dedicated debug register to PC, GPO, or SES, for debug.

Only take effect in debug mode; treated like NOP otherwise.

Instruction name OCD_ST
Functionality OCD (on-chip debug) store
Assembly format OCD_ST PC

OCD_ST GPI

OCD_ST GPO

OCD_ST SES (shadow execution state)

Type and bit width

32-bit unsigned

Predication

not available

Source options

PC, GPl or GPO

Destination options

dedicated ocd_data register

Additional options

not available

Intrinsics/operator

not available

Additional details

Copy from PC, GPI, GPO, SES to ocd_data dedicated debug register.

9.6.16 Configure VMEM Superbanks
(CFG_VMEM_SBA/B/C)

Instruction name

CFG_VMEM_SBA/B/C

Functionality

Cofigure VMEM Superbanks

Assembly format

CFG_VMEM_SBA/B/C Rsrc

Type and bit width

not applicable

Predication

not available

Source options

32-bit scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 168



Instruction name

CFG_VMEM_SBA/B/C

Destination options

not available

Additional options

not available

Intrinsics/operator

void cfg_vmem_sba(int data);
void cfg_vmem_sbb(int data);
void cfg_vmem_sbc(int data);

Additional details

Write VMEM superbank A/B/C configuration data, 32-bit for each superbank.
Bit O: Load cache enable (O = disable, 1 = enable)

Bits 1 ~ 31: Reserved

Reset value =0

For example, cfg_vmem_sba(0) disables load cache in Superbank A, and
cfg_vmem_sbb(1) enables load cache in Superbank B.

Instruction name

RD_CFG_VMEM_SBA/B/C

Functionality

Read cofiguration of VMEM Superbanks

Assembly format

RD_CFG_VMEM_SBA/B/C Rdst

Type and bit width

not applicable

Predication

not available

Source options

not available

Destination options

32-bit scalar register

Additional options

not available

Intrinsics/operator

int rd_cfg_vmem_sba();
int rd_cfg_vmem_sbb();
int rd_cfg_vmem_sbc();

Additional details

Read VMEM superbank A/B/C configuration data, 32-bit for each superbank
and return in destination register.

Bit O: Load cache enable (O = disable, 1 = enable)
Bits 1 ~ 31: Reserved

Reset value =0

9.6.17 Coprocessor Control/Status Register
Load/Store

Instruction name

CPST

Functionality

Coprocessor store

Assembly format

CPST Rsrc, Rdaddr
CPST Rsrc, #imm12

Type and bit width

32-bit

Predication

not available

Source options

32-bit scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 169



Instruction name

CPST

Destination options

Coprocessor address supplied by bits 13:2 of Rdaddr
or 12-bit immediate word address

Additional options

not available

Intrinsics/operator

void cp_store(unsigned int src, int daddr);

Additional details

Available in MO slot

Instruction name

CPLD

Functionality

Coprocessor load

Assembly format

CPLD Rsaddr, Rdst
CPLD #imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

Coprocessor address supplied by bits 13:2 of Rdaddr

or 12-bit immediate word address

Destination options

32-bit scalar register

Additional options

not available

Intrinsics/operator

unsigned int cp_load(int saddr);

Additional details

Available in MO slot

9.6.18 Memory Fence

Instruction name

MemFence

Functionality

Memory fence

Assembly format

MemFence

Type and bit width

none

Predication not available
Source options none
Destination options none

Additional options

not available

Intrinsics/operator

void mem_fence();

Additional details

Available in MO slot

Stall appropriately for any preceding memory write (scalar/vector store,
histogram, VAST) to commit to memory before the execution packet where
MemFence resides can execute, to ensure memory coherency and prevent
RAW data hazards.

See Memory Coherency for comparison between MemFence instruction and
chess_memory_fence() pragma.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 170



9.7 Scalar ALU Instructions

The scalar unit supports various common scalar arithmetic and logic operations in the
SO and ST slots.

9.7.1 ALU RRR Instructions

9.7.1.1 Instruction Summary

These RRR (register-register-register) instructions have two source registers and one
destination register. Unless otherwise noted, these are 32-bit operations.

Table 22. Scalar ALU RRR instructions

Function Assembly Format Comments

Add ADD Rsrc1, Rsrc2, Rdst

Subtract SUB Rsrc1, Rsrc2, Rdst

Multiply MUL Rsrc1, Rsrc2, Rdst

And AND Rsrc1, Rsrc2, Rdst Bitwise and

Or OR Rsrc1, Rsrc2, Rdst Bitwise or

Exclusive or XOR Rsrc1, Rsrc2, Rdst Bitwise exclusive or

Shift left logical SLL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count, also works for shift left
arithmetic.

6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Shift right logical SRL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Shift right SRA Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

arithmetic 6 LSBs of Rsrc2 are read as unsigned bit count; other
bits are ignored.

Sign extend SXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to sign
extend from. 6 LSBs of Rsrc2 are read as unsigned bit
width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does
sh = 32 - Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Zero extend ZXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to zero
extend from. 6 LSBs of Rsrc2 are read as unsigned bit
width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does
sh = 32 - Rsrc2[5:0];

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 171



Function Assembly Format Comments

Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.

Compare equal CMPEQ Rsrc1, Rsrc2, Rdst

Compare not equal | CMPNE Rsrc1, Rsrc2, Rdst

Compare greater CMPGE Rsrc1, Rsrc2, Rdst
than or equal

Compare greater CMPGEU Rsrc1, Rsrc2, Rdst
than or equal
unsigned

Compare greater CMPGT Rsrc1, Rsrc2, Rdst
than

Compare greater CMPGTU Rsrc1, Rsrc2, Rdst
than unsigned

Compare less than CMPLE Rsrc1, Rsrc2, Rdst
or equal

Compare less than CMPLEU Rsrc1, Rsrc2, Rdst
or equal unsigned

Compare less than CMPLT Rsrc1, Rsrc2, Rdst

Compare less than CMPLTU Rsrc1, Rsrc2, Rdst

unsigned

Modular increment | MODINC Rsrc1, Rsrc2, Rdst Modular increment:
Rdst = (Rsrc2 == Rsrc1) ?0: (Rsrc2 + 1);
For example, with R4 = 3, R5 = 0, repeated execution
of MODINC R4, R5,R5 resultsinR5=1,2,3,0, 1, ...

Min MIN Rsrc1, Rsrc2, Rdst

Min unsigned MINU Rsrc1, Rsrc2, Rdst

Max MAX Rsrc1, Rsrc2, Rdst

Max unsigned MAXU Rsrc1, Rsrc2, Rdst

9.7.1.2 ADD

Instruction name ADD

Functionality Add

Assembly format ADD Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator+(int src1, int src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 172



Instruction name

ADD

Additional details

9.7.1.3 SUB
Instruction name SuUB
Functionality Subtract
Assembly format SUB Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator-(int src1, int src2);

Additional details

9.7.1.4 MUL
Instruction name MUL
Functionality Multiply
Assembly format MUL Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator*(int src1, int src2);

Additional details

9.7.1.5 AND
Instruction name AND
Functionality Bitwise and
Assembly format AND Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 173



Instruction name

AND

Additional options

Intrinsics/operator

int operator&(int src1, int src2);

Additional details

9.7.16  OR

Instruction name OR

Functionality Bitwise or

Assembly format OR Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator|(int src1, int src2);

Additional details

9.7.1.7 XOR

Instruction name

XOR

Functionality

Bitwise exclusive or

Assembly format

XOR Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator?(int src1, int src2);

Additional details

9.7.1.8 SLL

Instruction name SLL

Functionality Shift left

Assembly format SLL Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 174



Instruction name

SLL

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator<<(int srcl1, int src2);
unsigned int operator<<(unsigned int src1, int src2);

Additional details

Rsrc2 carries the shift count, also works for shift left arithmetic.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

9.719 SRL

Instruction name

SRL

Functionality

Shift right logical

Assembly format

SRL Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int operator>>(unsigned int src1, int src2);

Additional details

Rsrc2 carries the shift count.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Zeroes are shifted into the most significant bits (logical vs arithmetic).

9.7.1.10 SRA

Instruction name

SRA

Functionality

Shift right arithmetic

Assembly format

SRA Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator>>(int src1, int src2);

Additional details

Rsrc2 carries the shift count.
6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Source 1 sign bit is into the most significant bits (arithmetic vs logic).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 175



9.7.1.11

SXTD

Instruction name SXTD

Functionality Sign extend

Assembly format SXTD Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int ext(int src1, int src2);

Additional details

Rsrc2 carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs of
Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:

sh = 32 - Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Examples:

src1 = OxFO with src2 = 6 would take the lower 6 bits of src1, 0x30, sign-
extend it to OxFFFF_FFFO, and copy to dst.

src1 = OxFO with src2 = 4 would take the lower 4 bits of src1, O, sign-extend it
to 0 and copy to dst.

9.7.1.12 ZXTD

Instruction name

ZXTD

Functionality

Zero extend

Assembly format

ZXTD Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int extu(int src1, int src2);

Additional details

Rsrc2 carries the bit width of Rsrc1 we want to zero extend from. 6 LSBs of
Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:
sh =32 - Rsrc2[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.

Examples:

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 176



Instruction name

ZXTD

src1 = OxFO with src2 = 6 would take the lower 6 bits of src1, 0x30, zero-
extend it to Ox30, and copy to dst.

src1 = OxFO with src2 = 4 would take the lower 4 bits of src1, O, zero-extend it
to O and copy to dst.

9.7.1.13 CMPEQ

Instruction name

CMPEQ

Functionality

Compare equal

Assembly format

CMPEQ Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(int srci1, int src2);

Additional details

9.7.1.14 CMPNE

Instruction name

CMPNE

Functionality

Compare not equal

Assembly format

CMPNE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(int src1, int src2);

Additional details

9.7.1.15 CMPGE

Instruction name

CMPGE

Functionality

Compare greater or equal

Assembly format

CMPGE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 177



Instruction name CMPGE

Source options scalar register

Destination options scalar register

Additional options
Intrinsics/operator bool operator>=(int src1, int src2);

Additional details

9.7.1.16 CMPGEU

Instruction name CMPGEU

Functionality Compare greater or equal unsigned
Assembly format CMPGEU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(unsigned int src1, unsigned int src2);

Additional details

9.7.1.17 CMPGT

Instruction name CMPGT

Functionality Compare greater than

Assembly format CMPGT Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(int src1, int src2);
Additional details

9.7.1.18 CMPGTU

Instruction name CMPGTU

Functionality Compare greater than unsigned

Assembly format CMPGTU Rsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 178



Instruction name

CMPGTU

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(unsigned int src1, unsigned int src2);

Additional details

9.7.1.19 CMPLE

Instruction name

CMPLE

Functionality

Compare less or equal

Assembly format

CMPLE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(int src1, int src2);

Additional details

9.7.1.20 CMPLEU

Instruction name

CMPLEU

Functionality

Compare less or equal unsigned

Assembly format

CMPLEU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(unsigned int src1, unsigned int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 179



9.7.1.21 CMPLT

Instruction name

CMPLT

Functionality

Compare less than

Assembly format

CMPLT Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(int src1, int src2);

Additional details

9.7.1.22 CMPLTU

Instruction name

CMPLTU

Functionality

Compare less than unsigned

Assembly format

CMPLTU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(unsigned int src1, unsigned int src2);

Additional details

9.7.1.23 MODINC

Instruction name

MODINC

Functionality

Modular increment

Assembly format

MODINC Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int dst = mod_inc(int src2, int srci1);
unsigned int dst = mod_inc(unsigned int src2, unsigned int src1);
// note change in order vs assembly, src2 is the counter,

// src1 is the max value

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 180



Instruction name

MODINC

Additional details

Modular increment:

Rdst = (Rsrc2 == Rsrc1) ? 0: (Rsrc2 + 1);

For example, with R4 = 3, R5 = 0, repeated execution of
MODINC R4, R5, R5

resultsinR5=1,2,3,0, 1, ...

9.7.1.24 MIN
Instruction name MIN
Functionality Minimal
Assembly format MIN Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int min(int src1, int src2);

Additional details

9.7.1.25 MINU

Instruction name

MINU

Functionality

Minimal unsigned

Assembly format

MINU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int min(unsigned int src1, unsigned int src2);

Additional details

9.7.1.26 MAX
Instruction name MAX
Functionality Maximal
Assembly format MAX Rsrc1, Rsrc2, Rdst
Type and bit width 32-bit

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 181



Instruction name

MAX

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int max(int src1, int src2);

Additional details

9.7.1.27 MAXU

Instruction name

MAXU

Functionality

Maximal unsigned

Assembly format

MAXU Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int max(unsigned int src1, unsigned int src2);

Additional details

9.7.2

9.7.2.1

ALU RIR Instructions

Instruction Summary

These RIR (register-immediate-register) instructions have one source register, one 12-bit
immediate, and one destination register. The immediate operand can be sign-extended
(where designated as Imm12) or zero-padded (where designated as Uimm12).

Table 23. Scalar ALU RIR instructions

Function Assembly Format Comments
Add ADDI Rsrc1, Imm12, Rdst

Add ADDUI Rsrc1, UImm12, Rdst

Subtract SUBI Rsrc1, Imm12, Rdst

Subtract SUBUI Rsrc1, Uimm12, Rdst

And ANDI Rsrc1, UImm12, Rdst

Exclusive or XORI Rsrc1, UImm12, Rdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 182




Function

Assembly Format

Comments

Shift left logical

SLLI Rsrc1, UImm12, Rdst

Immediate carries the shift count, also works for shift
left arithmetic. 6 LSBs of immediate are read as
unsigned bit count; other bits are ignored.

Shift right logical

SRLI Rsrc1, UImm12, Rdst

Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count;
other bits are ignored.

Shift right SRAI Rsrc1, UImm12, Rdst Immediate carries the shift count.

arithmetic 6 LSBs of immediate are read as unsigned bit count;
other bits are ignored.

Sign extend SXTDI Rsrc1, Uimm12, Rdst Immediate carries the bit width of Rsrc1 we want to

sign extend from. 6 LSBs of Immediate are read as
unsigned bit width; other bits are ignored.

When Imm([5:0] is between 1 and 32, VPU does:
sh = 32 - Imm[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Zero extend

ZXTDI Rsrc1, Umm12, Rdst

Immediate carries the bit width of Rsrc1 we want to
zero extend from. 6 LSBs of Rsrc2 are read as
unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:
sh =32 - Imm[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;
Otherwise (0 or > 32), Rdst = 0.

Compare equal

CMPEQI Rsrc1, Imm12, Rdst

Compare not equal

CMPNEI Rsrc1, Imm12, Rdst

Compare greater
than or equal

CMPGEI Rsrc1, Imm12, Rdst

Compare greater
than or equal
unsigned

CMPGEUI Rsrc1,Ulmm12, Rdst

Compare greater
than

CMPGTI Rsrc1, Imm12, Rdst

Compare greater
than unsigned

CMPGTUI Rsrc1, UImm12, Rdst

Compare less than
or equal

CMPLEI Rsrc1, Imm12, Rdst

Compare less than
or equal unsigned

CMPLEU Rsrc1, UImm12, Rdst

Compare less than

CMPLTI Rsrc1, Imm12, Rdst

Compare less than
unsigned

CMPLTUI Rsrc1, UImm12, Rdst

Min

MINI Rsrc1, Imm12, Rdst

Min unsigned

MINUI Rsrc1, Uimm12, Rdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 183




Function

Assembly Format

Comments

Max

MAXI Rsrc1, Imm12, Rdst

Max unsigned

MAXUI Rsrc1, UImm12, Rdst

9.7.2.2

ADDI

Instruction name

ADDI

Functionality

Add immediate

Assembly format

ADDI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator+(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.3

ADDUI

Instruction name

ADDUI

Functionality

Add unsigned immediate

Assembly format

ADDUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator+(int src1, int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.72.4  SUBI

Instruction name

SuBI

Functionality

Subtract immediate

Assembly format

SUBI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 184



Instruction name

SuBI

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// instructions to correctly implement expressions

// involving scalar subtraction operation.

Additional details

Imm12 is sign-extended before the operation.

9.7.2.5

SUBUI

Instruction name

SUBUI

Functionality

Subtract unsigned immediate

Assembly format

SUBUI Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// instructions to correctly implement expressions

// involving scalar subtraction operation.

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.6

ANDI

Instruction name

ANDI

Functionality

Bitwise and immediate

Assembly format

ANDI Rsrc1, UiImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator&(int src1, int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 185



9.7.2.7

XORI

Instruction name

XORI

Functionality

Bitwise exclusive or immediate

Assembly format

XORI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator*(int src1, int uimmi2);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.8

SLLI

Instruction name

SLLI

Functionality

Shift left immediate

Assembly format

SLLIRsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator<<(int src1, int uimmi12);
unsigned int operator<<(unsigned int src1, int src2);

Additional details

Immediate carries the shift count, also works for shift left arithmetic. 6 LSBs
of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.9

SRLI

Instruction name

SRLI

Functionality

Shift right logical immediate

Assembly format

SRLI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int operator>>(unsigned int src1, int uimmi2);

Additional details

Immediate carries the shift count.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 186



Instruction name

SRLI

6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.10 SRAI

Instruction name

SRAI

Functionality

Shift right arithmetic immediate

Assembly format

SRAI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int operator>>(int src1, int uimmi12);

Additional details

Immediate carries the shift count.
6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.11

SXTDI

Instruction name

SXTDI

Functionality

Sign extend immediate

Assembly format

SXTDI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int ext(int src1, int uimm12);

Additional details

Immediate carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs

of Immediate are read as unsigned bit width; other bits are ignored.
When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 — Imm[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 187



9.7.2.12 ZXTDI

Instruction name

ZXTDI

Functionality

Zero extend immediate

Assembly format

ZXTDI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int extu(int srcl1, int uimm12);

Additional details

Immediate carries the bit width of Rsrc1 we want to zero extend from. 6
LSBs of Rsrc2 are read as unsigned bit width; other bits are ignored.
When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 — Imm[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

9.7.2.13 CMPEQI

Instruction name

CMPEQI

Functionality

Compare equal immediate

Assembly format

CMPEQI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.14 CMPNEI

Instruction name

CMPNEI

Functionality

Compare not equal immediate

Assembly format

CMPNE Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 188



Instruction name

CMPNEI

Additional options

Intrinsics/operator

bool operator!=(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.15 CMPGEI

Instruction name

CMPGEI

Functionality

Compare greater or equal immediate

Assembly format

CMPGEI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(int srcl1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.16 CMPGEUI

Instruction name

CMPGEUI

Functionality

Compare greater or equal unsigned immediate

Assembly format

CMPGEUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(unsigned int src1, unsigned int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.17 CMPGTI

Instruction name

CMPGTI

Functionality

Compare greater than immediate

Assembly format

CMPGTI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 189



Instruction name

CMPGTI

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.18 CMPGTUI

Instruction name

CMPGTUI

Functionality

Compare greater than unsigned immediate

Assembly format

CMPGTUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(unsigned int src1, unsigned int uimmi12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.19 CMPLEI

Instruction name

CMPLEI

Functionality

Compare less or equal immediate

Assembly format

CMPLEI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.20 CMPLEUI

Instruction name

CMPLEUI

Functionality

Compare less or equal unsigned immediate

Assembly format

CMPLEUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 190



Instruction name

CMPLEUI

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(unsigned int src1, unsigned int uimm12);

Additional details

Ulmm12 is zero-extended before the operation.

9.7.2.21

CMPLTI

Instruction name

CMPLTI

Functionality

Compare less than immediate

Assembly format

CMPLTI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(int src1, int imm12);

Additional details

Imm12 is signed-extended before the operation.

9.7.2.22 CMPLTUI

Instruction name

CMPLTUI

Functionality

Compare less than unsigned immediate

Assembly format

CMPLTUI Rsrc1, UImm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(unsigned int src1, unsigned int uimmi12);

Additional details

Ulmm12 is zero-extended before the operation.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 191



9.7.2.23 MINI

Instruction name

MINI

Functionality

Minimal immediate

Assembly format

MINI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int min(int src1, int imm12);

Additional details

9.7.2.24 MINUI

Instruction name

MINUI

Functionality

Minimal unsigned immediate

Assembly format

MINUI Rsrc1, Imm12, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int min(unsigned int src1, unsigned int uimm12);

Additional details

9.7.2.25 MAXI

Instruction name

MAXI

Functionality

Maximal Immediate

Assembly format

MAXI Rsrc1, Imm12, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int max(int src1, int imm12);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 192



9.7.2.26 MAXUI

Instruction name

MAXUI

Functionality

Maximal unsigned immediate

Assembly format

MAXUI Rsrc1, Imm12, Rdst

Type and bit width

32-bit unsigned

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned int max(unsigned int src1, unsigned int uimm12);

Additional details

9.7.3

9.7.3.1

Instruction Summary

Long Multiplication Instructions

The scalar ALU also supports long multiply, multiplication between two signed/unsigned
32-bit operands. Outcome is placed in the PL/PH special register pair.

Table 24. Scalar ALU long multiply instructions

Function

Assembly Format

Comments

Long multiply
signed-signed

LMULSS Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

Long multiply
signed-unsigned

LMULSU Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

Long multiply
unsigned-unsigned

LMULUU Rsrc1, Rsrc2

Multiply into 64-bit product in PL:PH (dedicated
product low/high registers)

9.7.3.2

LMULSS

Instruction name

LMULSS

Functionality

Long multiply signed-signed

Assembly format

LMULSS Rsrc1, Rsc2

Type and bit width

signed 32-bit x signed 32-bit = signed 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 193




Instruction name

LMULSS

Intrinsics/operator

long long mulwl_s(int src1, int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.3

LMULSU

Instruction name

LMULSU

Functionality

Long multiply signed-unsigned

Assembly format

LMULSU Rsrc1, Rsc2

Type and bit width

signed 32-bit x unsigned 32-bit > signed 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

long long mulwl_su(int src1, unsigned int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.4

LMULUU

Instruction name

LMULUU

Functionality

Long multiply unsigned-unsigned

Assembly format

LMULUU Rsrc1, Rsc2

Type and bit width

unsigned 32-bit x unsigned 32-bit = unsigned 64-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

unsigned long long mulwl_u(unsigned int src1, unsigned int src2);

Additional details

Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 194



9.7.4

9.7.4.1

Instruction Summary

Predicate Instructions

Moving between scalar register and predicate register, and modular
increment/decrement on predicate register is also supported. These are used for
periodic predication that enable loop collapsing.

Function

Assembly Format

Comments

Move scalar to
predicate

MOVSP Rsrc, Pdst

Move scalar register to predicate register

Negate scalar to
predicate

NOTSP Rsrc, Pdst

Negate scalar register to predicate register

Move predicate to
scalar

MOVPS Psrc, Rdst

Move predicate register to scalar register

Move predicate

MOVP Psrc, Pdst
MOVP DPsrc, DPdst

Move single/double predicate register

Modular increment

MODINC Rsrc1, Ps2d

Modular increment predicate register Ps2d. Rsrc1
conveys the max value.

Modular increment

MODINCP Rsrc1, Rs2d, Pdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and Pdst is set all O or all 1 based on
Rs2d outcome being zero/non-zero

Modular increment
NOT

MODINC_NOTP Rsrc1, Rs2d,
Pdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and Pdst is set all O or all 1 based on
Rs2d outcome being non-zero/zero, inversed w.r.t.
MODINCP

Modular increment,
double predicate

DPMODINCP Rsrc1, Rs2d,
DPdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and DPdst is set all O or all 1 based on
Rs2d outcome being zero/non-zero. Both destination
predicate registers are set identically.

Modular increment
NOT, double
predicate

DPMODINC_NOTP Rsrc1, Rs2d,
DPdst

Modular increment scalar register Rs2d. Rsrc1 conveys
the max value, and DPdst is set all O or all 1 based on
Rs2d outcome being non-zero/zero, inversed w.r.t.
DPMODINCP. Both destination predicate registers are
set identically.

Predicated Move

[Preg] MOV Rsrc, Rdst

Predicated scalar register move

Multiplex to predicate

MUXP Rsrc1, Rsrc2, Rsrc3,
Pdst

Multiplex to predicate destination.

For example, with Rsrc1 = 1, Rsrc2 = 2, Rsrc3 = 3, Pdst =
(Rsrc1!=0) ? Rsrc2 : Rsrc3, so would set Pdst to Rsrc2 =
2.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 195




Table 25. Scalar predicate instructions

See Instruction Predication for use cases of instruction predication.

9.74.2

MOVSP

Instruction name

MOVSP

Functionality

Move scalar to predicate

Assembly format

MOVSP Rsrc, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement
// with destination variable mapped to a predicate register
// example: int dst_predicate = int src;

Additional details

PO and P1 contain constant -1, and should not be a destination of MOVSP

9.74.3

NOTSP

Instruction name

NOTSP

Functionality

Negate (bitwise not) scalar to predicate

Assembly format

NOTSP Rsrc, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other

// bitwise logic instructions to correctly implement

// expressions involving bitwise not operations. NOTSP,

// specifically, may be used when the outcome is mapped to
// a predicate register.

Additional details

PO and P1 contain constant -1, and should not be a destination of NOTSP

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 196



9.74.4

MOVPS

Instruction name

MOVPS

Functionality

Move predicate to scalar

Assembly format

MOVPS Psrc, Rdst

Type and bit width

32-bit

Predication

not available

Source options

predicate register

Destination options

scalar register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement
// with source variable mapped to a predicate register and
// destination variable mapped to a scalar register

// example: int dst = int src_predicate;

Additional details

9.7.4.5

MOVP

Instruction name

MOVP

Functionality

Move predicate register

Assembly format

MOVP Psrc, Pdst
MOVP DPsrc, DPdst

Type and bit width

32-bit

Predication

not available

Source options

single or double predicate register

Destination options

single or double predicate register

Additional options

Intrinsics/operator

// not needed, instantiated from an assignment statement

// with source and destination variables mapped to predicate
// registers

// example: int dst_predicate = int src_predicate;

Additional details

PO and P1 contain constant -1, and should not be a destination of MOVP

9.7.4.6

MODINC

Instruction name

MODINC

Functionality

Modular increment

Assembly format

MODINC Rsrc1, Ps2d

Type and bit width

32-bit

Predication

not available

Source options

scalar register and predicate register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 197



Instruction name MODINC

Destination options predicate register

Additional options

Intrinsics/operator int mod_inc(int s2d, int src1);

unsigned int mod_inc(unsigned int s2d, unsigned int src1);
// note the change in operand order vs assembly

// s2d is the counter, src1 is the max value

Additional details Modular increment predicate register:
Ps2d = (Ps2d == Rsrc1) ?0: (Ps2d + 1);
For example, with R1 = 4, P2 = 0, a sequence of
MODINC R1, P2
resultsinP2=1,2,3,4,0,1, ...
This is useful for VMadd_CA to occasionally clear the accumulator.

9.7.47  MODINCP

Instruction name MODINCP

Functionality Modular increment predicate
Assembly format MODINCP Rsrc1, Rs2d, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and predicate register

Additional options

Intrinsics/operator int mod_inc_pred_nz(int s2d, int src1, int & pdst);
unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, in
pdst);

// Note the change in operand order compared to assembly
// First argument is the modular counter input

// Second argument src1 is the max counter value input

// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular

// increment is non-zero, otherwise is set 0

// Return modular counter value after the increment

// Typical usage:

// count = mod_inc_pred_nz(count, period_mns_1, count_nz);

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);

Pdst =Rs2d ?-1:0;//setOorall 1s(-1)

For example, with R1 = 4, initial R2 = 0, a sequence of
MODINCP R1, R2, P2

resultsinR2=1,2,3,4,0,1, ...
p2=-1,-1,-1,-1,0,-1, ...

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 198



9.7.48 MODINC_NOTP

Instruction name

MODINC_NOTP

Functionality

Modular increment not predicate

Assembly format

MODINC_NOTP Rsrc1, Rs2d, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register and predicate register

Additional options

Intrinsics/operator

int mod_inc_pred_z(int s2d, int srci1, int & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, int

pdst);

// Note the change in operand order compared to assembly

// First argument is the modular counter input

// Second argument src1 is the max counter value input
// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular

// increment is 0, otherwise is set ©

// Return modular counter value after the increment

// Typical usage:

// count = mod_inc_pred_nz(count, period_mns_1, count_z);

Additional details

Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst = (Rs2d==0) ?-1:0; // set O or all 1s (-1)
For example, with R1 = 4, initial R2 = 0, a sequence of
MODINC_NOTP R1, R2, P2
resultsinR2=1,2,3,4,0,1, ...
P2=0,0,0,0,-1,0,..

9.749 DPMODINCP

Instruction name

DPMODINCP

Functionality

Modular increment predicate, double predicate

Assembly format

DPMODINCP Rsrc1, Rs2d, DPdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register and double predicate register

Additional options

Intrinsics/operator

int mod_inc_pred_nz(int s2d, int src1, dpred & pdst);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 199



Instruction name DPMODINCP

unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, dp
& pdst);

// note the change in operand order

// s2d is the counter, srcl1 is the max value, pdst is

// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);

Pdst =Rs2d ?-1:0;//setOorall 1s(-1)

For example, with R1 = 4, initial R2 = 0, a sequence of
DPMODINCP R1, R2, P2:P3

resultsinR2=1,2,3,4,0, 1, ...
p2=pP3=-1,-1,-1,-1,0,-1, ...

9.7.4.10 DPMODINC_NOTP

Instruction name DPMODINC_NOTP

Functionality Modular increment not predicate, double predicate
Assembly format DPMODINC_NOTP Rsrc1, Rs2d, DPdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and double predicate register

Additional options

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, dpred & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, dpr
pdst);

// note the change in operand order
// s2d is the counter, src1 is the max value, pdst is
// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :
Rs2d = (Rs2d == Rsrc1) ?0: (Rs2d + 1);
Pdst = (Rs2d==0) ?-1:0; // set O or all 1s (-1)

For example, with R1 = 4, initial R2 = 0, a sequence of
DPMODINC_NOTP R1, R2, P2:P3

resultsinR2=1,2,3,4,0, 1, ...
P2=P3=0,0,0,0,-1,0, ...

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 200



9.74.11

Predicated MOV

Instruction name

Predicated MOV

Functionality

Predicated scalar register move

Assembly format

[Preg] MOV Rsrc, Rdst

Type and bit width

32-bit

Predication

Instruction-level predication

Source options

scalar register and predicate register

Destination options

scalar register

Additional options

Intrinsics/operator

// not needed, instantiated from the following code
// if (preg) chess_guard {

// int dst = int src;

/1}

Additional details

9.74.12 MUXP

Instruction name

Multiplex to predicate

Functionality

Multiplexing with scalar sources and predicate destination

Assembly format

MUXP Rsrc1, Rsrc2, Rsrc3, Pdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

predicate register

Additional options

Intrinsics/operator

// Intrinsic functions are not needed for this instruction.
// Compiler may leverage MUXP to implement a ternary

// conditional operator when the outcome variable is mapped
// to a predicate register. For example,

// int chess_storage(PA2) dst = (a@ '= @) ? al : a2;

Additional details

Multiplex to predicate destination.
Pdst = (Rsrc1!=0) ? Rsrc2 : Rsrc3;
For example, with R1 =1,R2 =2,R3 = 3,
MUXP R1, R2, R3, P4
would set P4 to R2, which is 2.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 201



9.7.5  Scalar Floating-point Instructions

9.7.5.1 Instruction Summary

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float
conversion instructions are available in the SO and S1 instruction slots. Scalar registers
supply the sources and destination of FP instructions.

FP multiply-add is implemented with a fused multiply-add datapath that preserves full
product precision and has higher precision than separate FP multiply and FP add
operations.

A sticky invalid status bit, INV, is available, for software to read, set, or clear by moving
between INV and a scalar register. We have (detailed in 9.3.14):

MOV INV-R: moving from the invalid flag to a scalar register
MOV R-INV: moving from a scalar register to the invalid flag

It’s sticky in the sense that once a floating-point instruction produces an invalid (NaN)
outcome, the flag is set if it's previously clear and remains set until a MOV R-INV
instruction moves zero value to the flag.

The flag can also be set by software, by a MOV R-INV instruction moving a software-
calculated invalid value to the flag. This is useful for software emulation of floating-point
functions (reciprocal, square root, etc.).

R5 software can configure VPU to go to error-halted mode upon the flag being set, or to
just continue execution.

FP instructions output a fixed NaN encoding value of Ox7FCO_0000, which is a quiet NaN
(as opposed to a signaling NaN), as invalid output. Note that this is different behavior
from X86 FP NaN output, going with some NaN propagation rule with priority among
inputs to propagate input NaN value to the output.

Note that there is just one invalid status bit to indicate floating-point outcome being
NaN.

Table 26. Scalar floating-point instructions

Function Assembly Format Comments
FP add FAdd Rsrc1, Rsrc2, Rdst

FP subtract FSub Rsrc1, Rsrc2, Rdst

FP multiply FMul Rsrc1, Rsrc2, Rdst

FP multiply-add FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

FP multiply-subtract FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

FP16 add HFAdd Rsrc1, Rsrc2, Rdst

FP16 subtract HFSub Rsrc1, Rsrc2, Rdst

FP16 multiply HFMul Rsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 202



Function

Assembly Format

Comments

FP16 multiply-add

HFMAdd Rsrc1, Rsrc2, Rsrc3,
Rdst

FP16 multiply-subtract

HFMSub Rsrc1, Rsrc2, Rsrc3,
Rdst

INT to FP conversion

INT_FP Rsrc, Rdst

Integer to floating-point conversion

FP to INT conversion with
truncation

FP_INT_Trunc Rsrc, Rdst

Floating-point to integer conversion with
truncation (consistent with C float-to-int
type casting)

FP to INT conversion with
rounding

FP_INT_Round Rsrc, Rdst

Floating-point to integer conversion with
rounding

INT to FP16 conversion

INT_FP16 Rsrc1, Rsrc2, Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to INT conversion
wth truncation

FP16_INT_Trunc Rsrc1, Rsrc2,
Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to INT conversion
wth rounding

FP16_INT_Round Rsrc1, Rsrc2,
Rdst

Rsrc2 conveys gbit for fixed-point
representation.

FP16 to FP32 conversion

FP16_FP Rsrc, Rdst

FP32 to FP16 conversion

FP_FP16 Rsrc, Rdst

FP compare LT

FCmpLT Rsrc1, Rsrc2, Rdst

FP compare LE

FCmpLE Rsrc1, Rsrc2, Rdst

FP compare GT

FCmpGT Rsrc1, Rsrc2, Rdst

FP compare GE

FCmpGE Rsrc1, Rsrc2, Rdst

FP compare EQ

FCmpEQ Rsrc1, Rsrc2, Rdst

FP compare NE

FCmpNE Rsrc1, Rsrc2, Rdst

FP16 compare LT

HFCmpLT Rsrc1, Rsrc2, Rdst

FP16 compare LE

HFCmpLE Rsrc1, Rsrc2, Rdst

FP16 compare GT

HFCmpGT Rsrc1, Rsrc2, Rdst

FP16 compare GE

HFCmpGE Rsrc1, Rsrc2, Rdst

FP16 compare EQ

HFCmpEQ Rsrc1, Rsrc2, Rdst

FP16 compare NE

HFCmpNE Rsrc1, Rsrc2, Rdst

FP reciprocal

FRCP Vsrc, Vdst

FP square root

FSQRT Vsrc, Vdst

FP reciprocal square root

FRSQ Vsrc, Vdst

FP exponential base-2

FEXP2 Vsrc, Vdst

FP logarithm base-2

FLOGZ2 Vsrc, Vdst

FP sine

FSIN Vsrc, Vdst

FP cosine

FCOS Vsrc, Vdst

FP hyperbolic tangent

FTANH Rsrc, Rdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 203




9.75.2

FAdd

Instruction name

FAdd

Functionality

Floating-point add

Assembly format

FAdd Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fadd(float src1, float src2); //bit-exact between ISS & Native
float operator+(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

9.75.3

FSub

Instruction name

FSub

Functionality

Floating-point subtract

Assembly format

FSub Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fsub(float src1, float src2); //bit-exact between ISS & Native
float operator-(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 204



9.75.4

FMul

Instruction name

FMul

Functionality

Floating-point multiply

Assembly format

FMul Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmul(float src1, float src2); //bit-exact between ISS & Native
float operator*(float src1, float src2); // NOT bit-exact between
// ISS and Native

Additional details

IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.5

FMAdd

Instruction name

FMAdd

Functionality

Floating-point multiply-add

Assembly format

FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmadd(float src1, float src2, float src3);

Additional details

Performing multiply-add with IEEE compliant floating-point multiply and add.
Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Example:

FMAdd R1, R2, R3, R4

would perform R4 = R1 * R2 + R3, reading the source registers R1, R2, R3 as
32-bit floating-point numbers, and producing 32-bit floating-point outcome
in R4.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 205



9.7.5.6

FMSub

Instruction name

FMSub

Functionality

Floating-point multiply-subtract

Assembly format

FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fmsub(float src1, float src2, float src3);

Additional details

Performing IEEE compliant floating-point multiply-subtract, src3 -src1 *
src2. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Example:

FMSub R1, R2, R3, R4

would perform R4 = R3 - R1 * R2, reading the source registers R1, R2, R3 as
32-bit floating-point numbers, and producing 32-bit floating-point outcome
in R4.

9.7.5.7

HFAdd

Instruction name HFAdd

Functionality FP16 add

Assembly format HFAdd Rsrc1, Rsrc2, Rdst
Type and bit width 16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfadd(hfloat src1, hfloat src2);
hfloat operator+(hfloat src1, hfloat src2);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 addition performed, and FP16 outcome is sign-extended to 32-bit in
the destination register.

IEEE compliant half-precision floating-point add. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 206



9.7.5.8 HFSub

Instruction name HFSub

Functionality FP16 subtract

Assembly format HFSub Rsrc1, Rsrc2, Rdst
Type and bit width 16-bit float

Predication not available

Source options scalar register
Destination options scalar register

Additional options

Intrinsics/operator hfloat hfsub(hfloat src1, hfloat src2);
hfloat operator-(hfloat src1, hfloat src2);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 subtraction performed, and FP16 outcome is sign-extended to 32-bit in
the destination register.

IEEE compliant half-precision floating-point subtract. Handles denormal,
zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.75.9 HFMul

Instruction name HFMul

Functionality FP16 multiply

Assembly format HFMul Rsrc1, Rsrc2, Rdst
Type and bit width 16-bit float

Predication not available

Source options scalar register
Destination options scalar register

Additional options

Intrinsics/operator hfloat hfmul(hfloat src1, hfloat src2);
hfloat operator*(hfloat src1, hfloat src2);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiplication performed, and FP16 outcome is sign-extended to 32-bit
in the destination register.

IEEE compliant half-precision floating-point multiply. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 207



9.7.5.10 HFMAdd

Instruction name

HFMAdd

Functionality

FP16 multiply-add

Assembly format

HFMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfmadd(hfloat src1, hfloat src2, hfloat src3);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiply-add src1 * src2 + src3 performed, and FP16 outcome is sign-
extended to 32-bit in the destination register.

Fused multiply-add is performed, preserving intermediate precision as much
as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

9.75.11

HFMSub

Instruction name

HFMSub

Functionality

FP16 multiply-subtract

Assembly format

HFMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

16-bit float

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat hfmsub(hfloat src1, hfloat src2, hfloat src3);

Additional details

Least significant 16 bits of sources registers are read as FP16 numbers,
FP16 multiply-subtract src3 - src1 * src2 performed, and FP16 outcome is
sign-extended to 32-bit in the destination register.

Fused multiply-subtract is performed, preserving intermediate precision as
much as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 208



9.75.12 INT_FP

Instruction name INT_FP

Functionality Integer to floating-point conversion

Assembly format INT_FP Rsrc, Rdst

Type and bit width 32-bit signed integer input, 32-bit float output
Predication not available

Source options scalar register

Destination options scalar register

Additional options
Intrinsics/operator float int_fp(int src); //bit-exact between ISS & Native float

// Type casting int into float also compiles into INT_FP,
// but it’'s not bit-exact between ISS and Native. For example,
float_var = (float) int_var;

Additional details Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.75.13 FP_INT_Trunc

Instruction name FP_INT_Trunc

Functionality Floating-point to integer conversion

Assembly format FP_INT_Trunc Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit signed integer output
Predication not available

Source options scalar register

Destination options scalar register

Additional options

|ntrin5ic5/operator int fp_int_trunc(float SrC); //bit-exact between ISS & Native float

// Type casting float into int also compiles into FP_INT_Trunc,
// but it’'s not bit-exact between ISS and Native. For example,
int_var = (int) float_var;

Additional details FP32 to integer conversion with truncation.
For example, if input is 0x3FCO_0000 (1.5 in FP32), output is trunc(1.5) = 1
Note that
- truncation is used during the conversion, consistent with C float-to-int type
casting.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 209



Instruction name FP_INT_Trunc

- When output value exceeds 32-bit int representation range, output is
saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

9.7.5.14 FP_INT_Round

Instruction name FP_INT_Round

Functionality Floating-point to integer conversion

Assembly format FP_INT_Round Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit signed integer output
Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int fp_int_round(float src);
int f32_to_i32_rte(float src); // Gen-1 legacy

Additional details FP32 to integer conversion with rounding.

For example, if input is 0Ox3FCO_000O (1.5 in FP32), output is round(1.5) = 2,
as 1.5 is tied between 1 and 2, so we round to 2 (even).

Note that

- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is
saturated between Ox8000_0000 and x7FFF_FFFF.

- NaN maps to either 0Ox8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements
rounding implicitly, programmers are strongly encouraged to switch to Gen-2
intrinsic function fp_int_round() to avoid confusion.

9.7.5.15 INT_FP16

Instruction name INT_FP16

Functionality Integer to 16-bit floating-point conversion
Assembly format INT_FP16 Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit int input, 16-bit float output
Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 210



Instruction name

INT_FP16

Source options

src1: scalar register
src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat int_fp16(int srcl1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in source
fixed-point representation. dst = src1 / 2”src2.

Note that rounding is included in this instruction’s functionality.
Only rounding mode supported is round to nearest, ties to even.
16-bit floating-point output is sign-extended into the 32-bit container.

Where output absolute value falls below normal FP16 range, denormal FP16
output is generated.

9.75.16 FPI16_INT_Trunc

Instruction name

FP16_INT_Trunc

Functionality

Floating-point to integer conversion with truncation

Assembly format

FP16_INT_Trunc Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

src1: scalar register

src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int fp16_int_trunc(hfloat src1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = trunc(src1 * 2/src2).

16-bit floating-point input is read from 16 LSBs of the 32-bit input.
Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 2”src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 211



9.7.5.17 FP16_INT_Round

Instruction name

FP16_INT_Round

Functionality

Floating-point to integer conversion with rounding

Assembly format

FP16_INT_Round Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

src1: scalar register
src2: scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int fp16_int_round(hfloat src1, int src2);

Additional details

src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = round(src1 * 2”src2).

16-bit floating-point input is read from 16 LSBs of the 32-bit input.
Note that

- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value round(src1 * 2”src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

9.7.5.18 FPI16_FP

Instruction name

FP16_FP

Functionality

Floating-point FP16 to floating-point FP32 conversion

Assembly format

FP16_FP Rsrc, Rdst

Type and bit width

16-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fp16_fp(hfloat src);

Additional details

FP16 floating-point input is read from 16 LSBs of the 32-bit source,
converted to FP32 floating-point outcome, and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 212



9.7.5.19 FP_FP16

Instruction name

FP_FP16

Functionality

Floating-point FP32 to floating-point FP16 conversion

Assembly format

FP_FP16 Rsrc, Rdst

Type and bit width

32-bit float input, 16-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

hfloat fp_fp16(float src);

Additional details

FP32 floating-point input is read from 32-bit source, converted to FP16
floating-point outcome, sign-extended and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.

9.7.5.20 FCmpLT

Instruction name

FCmpLT

Functionality

Floating-point compare less than

Assembly format

FCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.21

FCmpLE

Instruction name

FCmpLE

Functionality

Floating-point compare less than or equal to

Assembly format

FCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 213



Instruction name

FCmpLE

Intrinsics/operator

bool operator<=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.22 FCmpGT

Instruction name

FCmpGT

Functionality

Floating-point compare greater than

Assembly format

FCmpGT Rsrcl, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.23 FCmpGE

Instruction name

FCmpGE

Functionality

Floating-point compare greater than or equal to

Assembly format

FCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 214



9.7.5.24 FCmpEQ

Instruction name

FCmpEQ

Functionality

Floating-point compare equal

Assembly format

FCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.25 FCmpNE

Instruction name

FCmpNE

Functionality

Floating-point compare not equal

Assembly format

FCmpNE Rsrc1, Rsrc2, Rdst

Type and bit width

32-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(float src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.26 HFCmpLT

Instruction name

HFCmpLT

Functionality

FP16 compare less than

Assembly format

HFCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<(hfloat srci1, hfloat src2);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 215



Instruction name

HFCmpLT

Additional details

Always return O or 1 and never set invalid status flag.
See 6.2.4.3 for corner cases.

9.7.5.27 HFCmpLE

Instruction name

HFCmpLE

Functionality

FP16 compare less than or equal

Assembly format

HFCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator<=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.28 HFCmpGT

Instruction name

HFCmpGT

Functionality

FP16 compare greater than

Assembly format

HFCmpGT Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 216



9.7.5.29 HFCmpGE

Instruction name

HFCmpGE

Functionality

FP16 compare greater than or equal

Assembly format

HFCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator>=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.30 HFCmpEQ

Instruction name

HFCmpEQ

Functionality

FP16 compare equal

Assembly format

HFCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator==(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 217



9.7.5.31

HFCmpNE

Instruction name

HFCmpNE

Functionality

FP16 compare not equal

Assembly format

HFCmpNE Rsrc1, Rsrc2, Rdst

Type and bit width

16-bit float input, 32-bit int output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

bool operator!=(hfloat src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.32 FRCP

Instruction name

FRCP

Functionality

Floating-point reciprocal

Assembly format

FRCP Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float frcp(float src);

Additional details

Performing FP32-input, FP32-output reciprocal. Set invalid status flag when

output is NaN.
Corner cases:
RCP(+denorm) gives +Inf

RCP(-denorm) gives -Inf

RCP(+0.0) gives +Inf
RCP(-0.0) gives -Inf
RCP(+1.0) gives +1.0
RCP(-1.0) gives-1.0
RCP(+Inf) gives +0.0
RCP(-Inf) gives-0.0
RCP(NaN) gives NaN

Max relative error is 2”-23 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 218



9.7.5.33 FSQRT

Instruction name

FSQRT

Functionality

Floating-point square root

Assembly format

FSQRT Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fsqrt(float src);

Additional details

Performing FP32-input, FP32-output square root. Set invalid status flag
when output is NaN.

Corner cases:
SQRT(+denorm) gives +0.0
SQRT(-denorm) gives -0.0
SQRT(+0.0) gives +0.0
SQRT(-0.0) gives-0.0
SQRT(+1.0) gives +1.0

SQRT(-1.0) gives NaN

SQRT(+Inf) gives +Inf

SQRT(-I

SQRT(NaN) gives NaN

SQRT(negative) gives NaN (other than for -denorm or -0)

nf) gives NaN
a

Max relative error is 2*-23 over entire normal floating-point range.

9.7.5.34 FRSQ

Instruction name

FRSQ

Functionality

Floating-point reciprocal square root

Assembly format

FRSQ Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float frsq(float src);

Additional details

Performing FP32-input, FP32-output reciprocal square root. Set invalid
status flag when output is NaN.

Corner cases:

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 219



Instruction name FRSQ

RSQ(+denorm) gives +Inf

RSQ(-denorm) gives -Inf

(-
RSQ(+0.0) gives +Inf
RSQ(-0.0) gives -Inf
RSQ(+1.0) gives +1.0
RSQ(-1.0) gives NaN
RSQ(+Inf) gives +0.0
RSQ(-Inf) gives NaN

RSQ(NaN) gives NaN
RSQ(negative) gives NaN (other than for -denorm or -0)

Max relative error is 22-22.4 over entire normal floating-point range.

9.7.5.35 FEXP2

Instruction name FEXP2

Functionality Floating-point exponential base-2
Assembly format FEXP2 Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output
Predication not available

Source options scalar register

Destination options scalar register

Additional options
Intrinsics/operator float fexp2(float src);

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid
status flag when output is NaN.

Corner cases:
EXP2(+denorm) gives +1.0
EXP2(-denorm) gives +1.0
EXP2(+0.0) gives +1.0
EXP2
EXP2
EXP2
EXP2(NaN) gives NaN

.0) gives +1.0
+Inf)  gives +Inf

(-
(
(-0
(
(-Inf)  gives +0.0
(

Max relative error is 27-22.5 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 220



9.7.5.36 FLOG2

Instruction name FLOG2

Functionality Floating-point logarithm base-2
Assembly format FLOG2 Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output
Predication not available

Source options scalar register

Destination options scalar register

Additional options
Intrinsics/operator float flog2(float src);

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid
status flag when output is NaN.

Corner cases:
LOG2(+denorm) gives -Inf

LOG2(-denorm) gives -Inf

LOG2(+0.0) gives -Inf

LOG2(-0.0) gives -Inf

LOG2(+Inf) gives +Inf

LOG2(-Inf) gives NaN

LOG2(NaN) gives NaN

LOG2(negative) gives NaN (other than for -denorm or -0)

Max absolute error is 2#-22 in range (0.5, 2.0).
Max relative error can be as large as 0.9 in range (0.5, 2.0).
Max relative error is 27-22.5 in range [0, 0.5] and [2.0, +Inf].

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 221



9.7.5.37 FSIN

Instruction name

FSIN

Functionality

Floating-point sine

Assembly format

FSIN Rsrc, Rdst

Type and bit width

32-bit float input, 32-bit float output

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

float fsin(float src);

Additional details

Performing FP32-input, FP32-output sine function. Input in radians should be
pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-
normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

SIN(+denorm) gives +0.0
SIN(-denorm) gives -0.0

(-
SIN(+0.0)
SIN(-0.0)
SIN(+Inf)
SIN(-Inf)
SIN(NaN)
(

SIN(normal) is always in the range [-1, +1]

Max absolute error is 22-20.5 in range -2*pi ~ 2*pi.
Max absolute error is 22-14.7 in range -100*pi ~ 100*pi.
The max error includes cumulative error of performing the required pre-

gives +0.0
gives -0.0
gives NaN
gives NaN
gives NaN

normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no
defined error guarantees.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 222



9.7.5.38 FCOS

Instruction name FCOS

Functionality Floating-point cosine

Assembly format FCOS Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fcos(float src);

Additional details Performing FP32-input, FP32-output cosine function. Input in radians should

be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-
normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

COS(+denorm) gives +1.0

COS(-denorm) gives +1.0
COS(+0.0) gives +1.0
COS(-0.0) gives +1.0
COS(+Inf) gives NaN
COS(-Inf)  gives NaN

COS(NaN) gives NaN
COS(normal) is always in the range [-1, +1]

Max absolute error is 24-20.9 in range -2*pi ~ 2*pi.

Max absolute error is 22-15.3 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-
normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no
defined error guarantees.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 223



9.7.5.39 FTANH

Instruction name FTANH

Functionality Floating-point hyperbolic tangent
Assembly format FTANH Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output
Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float ftanh(float src);

Additional details Performing FP32-input, FP32-output hyperbolic function. Set invalid status
flag when output is NaN.

Corner cases:

TANH(-denorm) gives -0.0

TANH(-0.0) gives -0.0

TANH(+0.0) gives +0.0

TANH(+denorm) gives +0.0

TANH(-Inf) gives-1.0

TANH(+Inf) gives 1.0

TANH(NaN) gives NaN

TANH(normal) is always in the range [-1.0 .. +1.0]

Max relative error is 22-11 over the entire normal floating-point range.

Max absolute error is 2”-12 over the entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 224



9.7.6

9.7.6.1 Instruction Summary

Table 27. Other scalar ALU instructions

Other Scalar ALU Instructions

Function Assembly Format

Comments

Count leading bits CLB Rsrc, Rdst

If bit 31 is zero, count leading O bits, otherwise, count
leading 1 bits

Load high LHI imm16, Rdst

Set destination to (immediate << 16)

Or immediate ORI Rsrc1,imm16, Rdst

Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate
value into a scalar register.

Mux MUX Rsrc1, Rsrc2, Rsrc3, Rdst Select between 2 items
Rdst = Rsrc1 ? Rsrc2 : Rsrc3
Divide DIV Rsrc1, Rsrc2 Divide Rsrc1 by Rsrc2, resulting quotient into PL and

remainder into PH, takes multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit
number.

When Rsrc?2 is zero, return quotient = OxFFFF_FFFF
(max value of unsigned 32-bit), and return remainder
=Rsrcl.

Divide-by-zero would generate error interrupt to R5.
Only available in SO slot.

Logical left shift SLLIADD Rsrc1, Ulmm4, Rsrc?2, dst = (srcl << imm) + src2;

and add Rdst

Compare within CMPWITHIN Rsrc1, Rsrc2, dst = (srcl <= src2) && (src2 < src3);
Rsrc3, Rdst

Bit count

BITCNT Rsrc, Rdst

Count number of bits set to one

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 225




9.76.2 CLB

Instruction name CLB
Functionality Count leading bits
Assembly format CLB Rsrc, Rdst
Type and bit width 32-bit

Predication not available
Source options scalar register
Destination options scalar register

Additional options
Intrinsics/operator int clb(int src);

Additional details If bit 31 of the source is 0, count number of consecutive O bits from bit 31
down. Otherwise, count number of consecutive 1 bits from bit 31 down.

Examples:

clb(0) = 32
clb(0x1000_0000) = 3
clb(0x6000_0000) = 1
clb(0x8000_0000) = 1
clb(0OxEO00_0000) = 3
clb(OxFFFO_0000) = 12

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 226



9.76.3 LHI

Instruction name

LHI

Functionality

Load high. Load (immediate << 16) into scalar destination, and thus not just
loading high, but clearing low at the same time.

Assembly format

LHI imm16, Rdst

Type and bit width

32-bit

Predication

not available

Source options

not available

Destination options

scalar register

Additional options

Intrinsics/operator

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

not available, instantiated automatically when assigning
a value exceeding 12-bit to variable mapped to a scalar
register, for example,

int var1 = 0x654321;
is compiled into

LHI 0x65, R4

ORI 0x4321, R4
when var1 is mapped to R4. When the value fits 12-bit,
compiler instantiates ADDI, for example,

ADDI RO, #321, R4

Additional details

Set destination to (immediate << 16)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 227



9.76.4 ORI

Instruction name ORI

Functionality Bitwise OR with 16-bit immediate
Assembly format ORI Rsrc1,imm16, Rdst

Type and bit width 32-bit

Predication not available

Source options not available

Destination options scalar register

Additional options

Intrinsics/operator // not available, instantiated automatically when assigning // value
exceeding 16-bit to variable mapped to a scalar

// register, for example,

// int var1 = B@x654321;

// is compiled into

//  LHI @x65, R4

// ORI 0x4321, R4

// when var1 is mapped to R4. When the value fits 12-bit,

// compiler instantiates ADDI, for example,

//  ADDI R@, #321, R4

Additional details Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate value into a scalar
register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 228



9.76.5 MUX

Instruction name

MUX

Functionality

Scalar multiplexing

Assembly format

MUX Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

char mux(int src1, char src2, char src3);
short mux(int srci1, short src2, short src3);

int mux(int src1, int src2, int src3);

hfloat mux(int src1, hfloat src2, hfloat src3);
float mux(int src1, float src2, float src3);
char mux(bool src1, char src2, char src3);
short mux(bool src1, short src2, short src3);
int mux(bool src1, int src2, int src3);
hfloat mux(bool src1, hfloat src2, hfloat src3);
float mux(bool src1, float src2, float src3);

Additional details

Select between 2 data items,
Rdst = Rsrc1 ? Rsrc2 : Rsrc3

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 229



9.76.6 DIV

Instruction name DIV
Functionality Scalar divide
Assembly format DIV Rsrc1, Rsrc2
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

void udiv(unsigned int src1, unsigned int src2, unsigned int & dst1,
unsigned int & dst2);

unsigned int operator/( unsigned int src1, unsigned int src2);
unsigned int operator%( unsigned int src1, unsigned int src2);

Additional details

Divide Rsrc1 by Rsrc2, resulting quotient into PL and remainder into PH, takes
multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit number.

When Rsrc2 is zero, return quotient = OxFFFF_FFFF (max value of unsigned 32-
bit), and return remainder = Rsrc1.

Divide-by-zero would generate error interrupt to R5.

This is a multi-cycle instruction, taking up to 33 cycles to complete. Subsequent
instructions using PL/PH as source or destination shall be stalled until DIV
completes. Also, to avoid task switch before PL/PH are written, subsequent
HALT, WFE_RS5, and GPO writes are stalled until DIV completes.

Note that DIV is only available in the SO slot.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 230




9.7.6.7

SLLIADD

This is an instruction added in Gen-2 VPU to accelerate address calculation.

Instruction name

SLLIADD

Functionality

Scalar shift and add

Assembly format

SLLIADD Rsrc1, UImm4, Rsrc2, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int slladd(int src1, int shift_uimm4, int src2);

Additional details

Unsigned 4-bit immediate value is used as left shift bit count, to shift left by
up to 15 bits.

int dst = ((int srcl) << imm) + (int src2);

Why just 4-bit? The intention of this instruction is to support address calculation of
base[index], byte_addr(base) + index * sizeof(base), when the size of the data type is a
power of 2. 4-bit left shift would cover up to size of 2215 = 32768 bytes, and is more
than commonly needed.

9.7.6.8

CMPWITHIN

This is an instruction added in Gen-2 VPU to accelerate range checking.

Instruction name

CMPWITHIN

Functionality

Compare within

Assembly format

CMPWITHIN Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width

32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int cmpwithin(int src1, int src2, int src3);

Additional details

Returns (src1 <= src2) && (src2 < src3);

Note that signed comparison is carried out.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 231



9.7.6.9  BITCNT

Instruction name BITCNT
Functionality Bit count
Assembly format BITCNT Rsrc, Rdst
Type and bit width 32-bit

Predication

not available

Source options

scalar register

Destination options

scalar register

Additional options

Intrinsics/operator

int bitcount(int src);

Additional details

and contains 3 ones.

Count number of bits set to one; a scalar version of VBitCnt.
For example, bitcount(13) = 3, as the binary representation of 13is “1101”

9.8 Vector ALU Instructions

9.8.1 Move Instructions

9.8.1.1 Instruction Summary

Table 28 Scalar/vector move instructions

Function

Assembly Format

Comments

Vector move

VMov Vsrc/Wsrc, Vdst/Wdst
VMov Vsrc, ACdst

VMov ACsrc, Vdst

VMov ACsrc, ACdst

VMov XACsrc, XACdst

Move vector register

Move scalar to
vector

<pred> VMovS<W/WU/H/B> Rsrc,
Vdst/Wdst/ACdst

Broadcast scalar register to all
W/H/B lanes of vector register

Vector move double

<pred> DVMov DVsrc/DWsrc, DVdst/DWdst
<pred> DVMov DACsrc, DACdst

<pred> DVMov DXACsrc, DXACdst

DVMov DVsrc, DACdst

DVMov DACsrc, DVdst

Move double vector register

Vector move pair

VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2

Move 2 vector registers

Move from vector
to scalar

<pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst

Move vector lane O to scalar
register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 232




Table 29 vector register move support matrix

Destination
VRF WRF ARF XARF
VRF single/double single/double single/double demote_i
double-to-single
WRF single/double single/double
Source
ARF single/double single/double
XARF promote_di single/double
single-to-double
9.8.1.2 VMOV
Instruction name VMOV
Functionality Vector move
Assembly format VMov Vsrc/Wsrc, Vdst/Wsrc
VMov Vsrc, ACdst
VMov ACsrc, Vdst
VMov ACsrc, ACdst
VMov XACsrc, XACdst
Type and bit width n/a: 384-bit
Predication not available
Source options Single vector register in VRF, WRF, ARF, XARF
Destination options Single vector register in VRF, WRF, ARF, XARF
Additional options
Intrinsics/operator // not needed; instantiated from assignment statement
// between source and destination of same single vector
/] type, for example,
// vintx dst = vintx src;
// vshortx dst = vshortx src;
// vcharx dst = vcharx src;
// xvshortx dst = xvshortx src;
// xvcharx dst = xvcharx src;
/] vfloatx dst = vfloatx src;
// vhfloatx dst = vhfloatx src;
Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 233



Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 234



9.8.1.3 VMOVS

Instruction name VMOVS
Functionality Move scalar to vector
Assembly format <pred> VMovS<type> Rsrc, Vdst/Wdst/ACdst
pred = none, [P2..P15]
Type and bit width W: 32-bit sign-extended to 48-bit and broadcast to 8 x 48-bit

WU: 32-bit zero-extended to 48-bit and broadcast to 8 x 48-bit
H: lowest 24-bit broadcast to 16 x 24-bit
B: lowest 12-bit broadcast to 32 x 12-bit

Note that float/vfloatx type intrinsic function is mapped to W type
instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H
type instruction.

Predication Instruction-level predication
Source options Scalar register
Destination options Single vector register in VRF, WRF, ARF

Additional options

Intrinsics/operator vintx replicatew(int src);

vintx replicatew(unsigned int src);

vshortx replicateh(int src);

vcharx replicateb(int src);

vfloatx replicatef(float src); // W type, float value
// sign-extended to 48-bit

vhfloatx replicatehf(hfloat src); // H type, hfloat value
// sign-extended to 24-bit

Additional details Example:
[P2] VMovSH R2, V3

When P2 is non-zero, this would copy R2[23:0] to all 16 half-word lanes of V3.
Otherwise, V3 is unchanged.

The predication feature is not exposed through intrinsic functions, but with
code pattern:

if (condition) chess_guard {
vector_var = replicatew(scalar_value);

}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 235



9.8.1.4 DVMOV

Instruction name DVMOV
Functionality Move double vector
Assembly format <pred> DVMov DVsrc/DWsrc, DVdst/DWdst

<pred> DVMov DACsrc, DACdst
<pred> DVMov DXACsrc, DXACdst
DVMov DVsrc, DACdst

DVMov DACsrc, DVdst

pred = none, [P2..P15]

Type and bit width n/a: 768-bit

Predication Instruction-level predication on DV/DW moves
Source options Double vector register in VRF, WRF, ARF, XARF
Destination options Double vector register in VRF, WRF, ARF, XARF

Additional options

/! type, for example,

// dvintx dst = dvintx src;

// dvshortx dst = dvshortx src;
// dvcharx dst = dvcharx src;

// dxvshortx dst = dxvshortx src;
// dxvcharx dst = dxvcharx src;
// dvfloatx dst = dvfloatx src;
// dvhfloatx dst = dvhfloatx src;

Intrinsics/operator // not needed; instantiated from assignment statement
// between source and destination of same single vector

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 236



9.8.1.5 VMOV2

Instruction name VMOV2

Functionality Move vector pair

Assembly format VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2
Type and bit width n/a: 384-bit

Predication not available

Source options Two vector registers in VRF
Destination options Two vector registers in VRF

Additional options

Intrinsics/operator // Optional; instantiated from two assignments of the

// same single vector data type, or one assignment of the

// same double vector data type, for example,

// vintx dst = vintx src;

// vshortx dst = vshortx src;

// vcharx dst = vcharx src;

// vfloatx dst = vfloatx src;

// vhfloatx dst = vhfloatx src;

void dvmov(vfloatx src1, vfloatx src2, vfloatx &dst1, vfloatx &dst2);
void dvmov(vhfloatx src1,vhfloatx src2,vhfloatx &dst1,vhfloatx &dst2);
void dvmov(vintx src1, vintx src2, vintx &dst1, vintx &dst2);

void dvmov(vshortx srci1, vshortx src2, vshortx &dst1, vshortx &dst2);
void dvmov(vcharx src1, vcharx src2, vcharx &dst1, vcharx &dst2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 237



9.8.1.6 MOVVS

Instruction name MOVVS

Functionality Move vector lane O to scalar

Assembly format <pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst
pred = none, [P2..P15]

Type and bit width W: 32-bit

H: 24-bit sign-extend to 32-bit
B: 12-bit sign-extend to 32-bit
HU: 24-bit zero-pad to 32-bit
BU: 12-bit zero-pad to 32-bit

Note that float/vfloatx type intrinsic function is mapped to W type
instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H
type instruction.

Predication Instruction-level predication
Source options Vector register (lane 0) in VRF
Destination options Scalar register

Additional options n/a

Intrinsics/operator int smovw (vintx src);

int smovh (vshortx src);

int smovb (vcharx src);

int smovhu (vshortx src);

int smovbu (vcharx src);
float smovf (vfloatx src);
hfloat smovhf (vhfloatx src);

Additional details Available in memory slots.

The predication feature is not exposed through intrinsic functions, but with
code pattern:

if (condition) chess_guard {
scalar_var = smovw(vector_value);

}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 238



9.8.2

Vector OP11 Instructions

These are one-source, one-destination operation vector instructions.

The double vector flavor is supported for selected operators.

9.8.2.1

Instruction Summary

Table 30. Vector OP11 instructions

Function

Assembly Format

Comments

Vector not bitwise

VNot Vsrc/Wsrc, Vdst/Wsrc

Vector not logical

VNotL<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector bit reverse

VBitRev<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Use standard (32/16/8) bit width

Vector negate

VNeg<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector sum VSumR<type> Vsrc/Wsrc, Sum of all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst
type = {BW, HW, W}

Vector min VMInR<W/H/B> Vsrc/Wsrc, Rdst Min of all lanes.

reduction Scalar destination only

Vector max VMaxR<W/H/B> Vsrc/Wsrc, Rdst Max of all lanes.

reduction Scalar destination only

Vector AND VAndR<W/H/B> Vsrc/Wsrc, Bitwise AND across all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst

Vector OR VOrR<W/H/B> Vsrc/Wsrc, Bitwise OR across all lanes.

reduction Vdst/Wdst/Rdst Result stored across all lanes of Vdst

Vector XOR VXorR<W/H/B> Vsrc/Wsrc, Bitwise XOR across all lanes.

reduction Vdst/Wdst/Rdst

Result stored across all lanes of Vdst

Vector bitunpack

VBitUnpk<W/H/B> Rsrc, Vdst/Wdst

Bit unpack from scalar

Vector bit-
transpose

VBitTranspH Vsrc/Wsrc, Vdst/Wdst

Transpose 16-bit across 16 lanes.
Used in LBP encode, speedup ~ 2x

Vector most-
significant bit
detect

VMSBD<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Return most significant bit position, input
must be non-negative, return -1 for zero
input

Vector bit count

VBitCnt<W/H/B> Vsrc/Wsrc, Vdst/Wdst

VBitCnt<W/H/B> DVsrc/DWsrc,
DVdst/DWdst

Count number of 1 bits

Vector collate
indices

VCollateldx<W/H> Vsrc/Wsrc, Vdst/Wdst

Compute indices to nonzero lanes

Vector expand
indices

VExpandldx<W/H> Vsrc/Wsrc/Rsrc,
Vdst/Wdst

Compute indices to expand collated data

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 239




Function

Assembly Format

Comments

Vector horizontal 2-
term min-ID

VHMIin2IDW Vsrc/Wsrc, Vdst/Wdst

Computer min & ID in each lane pair

Vector horizontal 2-
term max-ID

VHMax2IDW Vsrc/Wsrc, Vdst/Wdst

Computer max & ID in each lane pair

Vector shuffle
permutation

VShuffle<type> Vsrc/Wsrc, Vdst/Wdst

9.8.22 VNOT

Instruction name

VNOT

Functionality

Vector inversion bitwise

Assembly format

VNot Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

no type: 384-bit (bitwise)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator~(vintx src);
vshortx operator~(vshortx src);
vcharx operator~(vcharx src);

// double vector pseudo intrinsics
dvintx operator~(dvintx src);
dvshortx operator~(dvshortx src);
dvcharx operator~(dvcharx src);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 240



9.8.2.3

VNOTL

Instruction name

VNOTL

Functionality

Vector inversion logical

Assembly format

VNotL<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator!(vintx src);
vshortx operator!(vshortx src);
vcharx operator!(vcharx src);

// double vector pseudo intrinsics
dvintx operator!(dvintx src);
dvshortx operator! (dvshortx src);
dvcharx operator!(dvcharx src);

Additional details

Example:
VNotLB V1, V2

This would detect zero/non-zero of V1 byte lanes, and set a byte lane of V2 to
0 if the corresponding lane in V1 is non-zero, and 1 if the corresponding lane
in V1 is zero.

9.8.24

VBITREV

Instruction name

VBITREV

Functionality

Vector bit reverse

Assembly format

VBitRev<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vbitreverse(vintx src);
vshortx vbitreverse(vshortx src);
vcharx vbitreverse(vcharx src);

// double vector pseudo intrinsics
dvintx dvbitreverse(dvintx src);
dvshortx dvbitreverse(dvshortx src);
dvcharx dvbitreverse(dvcharx src);

Additional details

Reverse lower 8/16/32 bits of each lane; upper bits are dropped.

Output lower 8/16/32 bits of each lane bit-reversed; upper bits are zero, and
appear unsigned (or non-negative).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 241



Instruction name

VBITREV

Example:

vintx src = {0, 0x100, 0x200, 0x300, 0, @, 0, 0};

vintx dst = vbitreverse(src);

Expected dst = {0, 0x80_0000, 0x40_0000, 0xC0O_0000, 0, 0, 0, 0}

9.8.2.5

VNEG

Instruction name

VNEG

Functionality

Vector negate

Assembly format

VNeg<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator-(vintx src);
vshortx operator-(vshortx src);
vcharx operator-(vcharx src);

// double vector pseudo intrinsics
dvintx operator-(dvintx src);
dvshortx operator-(dvshortx src);
dvcharx operator-(dvcharx src);

Additional details

9.8.2.6

VSUMR

Instruction name

VSUMR

Functionality

Vector sum reduction

Assembly format

VSumR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width

W: 8 x 48-bit > 8 x 48-bit

HW: 16 x 24-bit 2 8 x 48-bit

BW: 32 x 12-bit > 8 x 48-bit

Note that sign extension is applied for HW and BW cases.

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator

vintx vsumr(vintx src);
vintx vsumr(vshortx src);
vintx vsumr(vcharx src);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 242



Instruction name VSUMR

int vsumr_s(vintx src);

int vsumr_s(vshortx src);

int vsumr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Sum across all lanes of source is broadcast to all lanes of destination.
Destination is of W-type to reduce chance of overflow.

Note that number of lanes reduces for HW and BW variations.

Programmer should be aware of possibility of overflow in the VSumRW case,
and code accordingly.

For scalar destination, in W-type, 32 LSBs of the sum is returned.
Programmer should be aware of potential overflow in the outcome. In H-type
and B-type, the sum is sign-extended to 32-bit.

9.8.2.7 VMINR

Instruction name VMINR

Functionality Vector min reduction

Assembly format VMinR<type> Vsrc/Wsrc, Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options Single vector register in VRF or WRF

Destination options Single register in scalar register file

Additional options
Intrinsics/operator int vminr_s(vintx src);

int vminr_s(vshortx src);

int vminr_s(vcharx src);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

vintx vminr(vintx src);

vshortx vminr(vshortx src);

vcharx vminr(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Min across all lanes of source is stored in the scalar destination.

For W-type, 32 LSBs of the min value is returned. Programmer should be
aware of potential overflow in the outcome. In H-type and B-type, the min
value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination

register. For W-type 48-bit min value is output in each lane of the vector
destination.

For Halfword and Byte types, the emulation uses vminr_s() and replicateh/b().

For Word type, using just vminr_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 243



Instruction name VMINR

Examples:

VMinRB V1, V2 is emulated as VMinRB V1, R2; VMovSB R2, V2.
vminr(vcharx_src) as { replicateb(vminr_s(vcharx_src)); }

VMinRH V1, V2 is emulated as VMinRH V1, R2; VMovSH R2, V2.
vminr(vshortx_src) as { replicateh(vminr_s(vshortx_src)); }

VMinRW V1, V2 is emulated as

VHMin2IDW V1, V3; VMinSkip2RIDW V3, V2, R2.

vminr(vintx_src) as {
vhmin2id(vintx_src, temp);
vminskip2rid(temp, vintx_dst1, id_dst2);
return vintx_dst1;

9.8.2.8 VMAXR

Instruction name VMAXR

Functionality Vector max reduction

Assembly format VMaxR<type> Vsrc/Wsrc, Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options Single vector register in VRF or WRF

Destination options Single register in scalar register file

Additional options
Intrinsics/operator int vmaxr_s(vintx src);

int vmaxr_s(vshortx src);

int vmaxr_s(vcharx src);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

vintx vmaxr(vintx src);

vshortx vmaxr(vshortx src);

vcharx vmaxr(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Max across all lanes of source is stored in the scalar destination.

For W-type, 32 LSBs of the max value is returned. Programmer should be
aware of potential overflow in the outcome. In H-type and B-type, the max
value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination
register. For W-type 48-bit max value is output in each lane of the vector
destination.

For Halfword and Byte types, the emulation uses vmaxr_s() and replicateh/b().

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 244



Instruction name VMAXR

For Word type, using just vmaxr_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmax2id() and vmaxskip2rid(). See 9.8.2.18 and 9.8.3.10 for details.

Examples:

VMaxRB V1, V2 is emulated as VMaxRB V1, R2; VMovSB R2, V2.
vmaxr (vcharx_src) as { replicateb(vmaxr_s(vcharx_src)); }

VMaxRH V1, V2 is emulated as VMaxRH V1, R2; VMovSH R2, V2.
vmaxr(vshortx_src) as { replicateh(vmaxr_s(vshortx_src)); }

VMaxRW V1, V2 is emulated as

VHMax2IDW V1, V3; VMaxSkip2RIDW V3, V2, R2.

vmaxr(vintx_src) as {
vhmax2id(vintx_src, temp);
vmaxskip2rid(temp, vintx_dst1, id_dst2);
return vintx_dst1;

9.8.2.9 VANDR

Instruction name VANDR

Functionality Vector bitwise AND reduction

Assembly format VAndR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options
Intrinsics/operator vintx vandr(vintx src);

vshortx vandr(vshortx src);

vcharx vandr(vcharx src);

int vandr_s(vintx src);

int vandr_s(vshortx src);

int vandr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Bitwise AND across all lanes of source is broadcast to all lanes of destination.
dst[i] = src[0@] & src[1] & .. & src[nlanes — 1]

For scalar destination, in W-type, 32 LSBs of the AND reduction value is
returned. Programmer should be aware of potential overflow in the outcome.
In H-type and B-type, the AND reduction value is zero-extended to 32-bit.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 245



9.8.2.10 VORR

Instruction name

VORR

Functionality

Vector bitwise OR reduction

Assembly format

VOrR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator

vintx vorr(vintx src);

vshortx vorr(vshortx src);

vcharx vorr(vcharx src);

int vorr_s(vintx src);

int vorr_s(vshortx src);

int vorr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details

Bitwise OR across all lanes of source is broadcast to all lanes of destination.
dst[i] = src1[@] | src1[1] | .. | src1[nlanes — 1]

For scalar destination, in W-type, 32 LSBs of the OR reduction value is
returned. Programmer should be aware of potential overflow in the outcome.
In H-type and B-type, the OR reduction value is zero-extended to 32-bit.

9.8.2.11

VXORR

Instruction name

VXORR

Functionality

Vector bitwise XOR reduction

Assembly format

VXorR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator

vintx vxorr(vintx src);

vshortx vxorr(vshortx src);

vcharx vxorr(vcharx src);

int vxorr_s(vintx src);

int vxorr_s(vshortx src);

int vxorr_s(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details

XOR across all lanes of source is broadcast to all lanes of destination.
dst[i] = src[@] * src[1] * .. » src[nlanes - 1]

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 246



Instruction name

VXORR

For scalar destination, in W-type, 32 LSBs of the XOR reduction value is
returned. Programmers should be aware of potential overflow in the
outcome. In H-type and B-type, the XOR reduction value is zero-extended to
32-bit.

9.8.2.12 VBITUNPK

Instruction name

VBITUNPK

Functionality

Vector unpack from scalar

Assembly format

VBitUnpk<type> Rsrc, Vdst/Wdst

Type and bit width

W: take Rsrc[7:0], unpack into 8 x 48-bit, each lane gets O or 1
H: take Rsrc[15:0], unpack into 16 x 24-bit, each lane gets O or 1
B: take Rsrc[31:0], unpack into 32 x 12-bit, each lane gets O or 1

Predication

not available

Source options

Scalar register

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vcharx vbitunpackb(int src);
vshortx vbitunpackh(int src);
vintx vbitunpackw(int src);
// double vector pseudo intrinsics unavailable

Additional details

Unpack lower 8/16/32-bit of source scalar register, one bit into each vector
lane, bit i into lane i.

For example, with R4 = OxFO, “VBitUnpkW R4, VO” would result in
Vv0={0,0,0,0,1,1,1,1}

9.8.2.13 VBITTRANSP

Instruction name

VBITTRANSP

Functionality

Vector bit transpose

Assembly format

VBitTranspH Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

H: 16 x 16-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vshortx vbittranspose(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details

Transpose between bit dimension (16 bits) and lane dimension (16 lanes),
useful for census transform and rank transform

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 247



Example for VBitTranspH:

Lane

15
15

14
14

13
13

12
12

11
11

10
10

0
0

FFOO

FOFO

0
0

43690| 52428| 61680 65280

AAAA| CCCC

Value (dec)

Value (hex)

10
11
12
13
14
15

10
11
12
13
14
15

Bit

Bit

Value (dec)

Value (hex)

- € Q 5

SWE-PVA-076-PGRF | 248

Orin PVA VPU Programmer’s Guide



9.8.2.14 VMSBD

Instruction name

VMSBD

Functionality

Vector most significant bit detect

Assembly format

VMSBD<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vmsbd(vintx src);

vshortx vmsbd(vshortx src);

vcharx vmsbd(vcharx src);

// double vector pseudo intrinsics
dvintx dvmsbd(dvintx src);
dvshortx dvmsbd(dvshortx src);
dvcharx dvmsbd(dvcharx src);

Additional details

Return most significant bit position, treat input as unsigned, return -1 for
zero input.

For example, value of Ox12 has leading bit in bit 4, thus MSBD would return 4.

9.8.2.15 VBITCNT

Instruction name

VBITCNT

Functionality

Vector bit count

Assembly format

VBitCnt<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vbitcount(vintx src);
vshortx vbitcount(vshortx src);
vcharx vbitcount(vcharx src);

Additional details

Count input “1” bits. For example, input of 12 = 0xOC would lead to bit count
of 2.

Instruction name

VBITCNT

Functionality

Double vector bit count

Assembly format

VBitCnt<type> DVsrc/DWsrc, DVdst/DWsrc

Type and bit width

W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Predication

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 249



Instruction name

VBITCNT

Source options

Double vector register in VRF or WRF

Destination options

Double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx dvbitcount(dvintx src);
dvshortx dvbitcount(dvshortx src);
dvcharx dvbitcount(dvcharx src);

Additional details

Count input “1” bits. For example, input of 12 = 0xOC would lead to bit count
of 2.

9.8.2.16 VCOLLATEIDX

Instruction name

VCOLLATEIDX

Functionality

Vector collate

Assembly format

VCollateldx<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector registers in VRF or WRF

Additional options

Intrinsics/operator

vintx vcollate_idx(vintx src);
vshortx vcollate_idx(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details

Vdst/Wdst gets indices to nonzero lanes (sequentially from lane 0) of
Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc.

For example, VCollateldxW VO, V1, with VO = {0, -1, 2, -3, 0, 0, 0, 4}. Non-zero
lanes are lane 1, 2, 3, and 7. Expected outcome V1 ={1,2,3,7,0,4,5, 6}. The
idea is that a subsequent VPermW would use V1 as indices to
extract/compact VO nonzero and zero lanes into {-1, 2,-3, 4,0, 0, O, O}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 250



9.8.2.17 VEXPANDIDX

Instruction name VEXPANDIDX

Functionality Vector expand, the inverse operation of vector collate
Assembly format VExpandldx<type> Vsrc/Wsrc/Rsrc, Vdst/Wdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)
Predication not available

Source options Single vector register in VRF or WRF, or scalar register
Destination options Single vector registers in VRF or WRF

Additional options

Intrinsics/operator vintx vexpand_idx(vintx src);

vshortx vexpand_idx(vshortx src);

vintx vexpand_idxw(int src);

vshortx vexpand_idxh(int src);

// double vector pseudo intrinsics unavailable

Additional details Identify nonzero lanes of Vsrc/Wsrc (sequentially from lane 0) and replace
these lanes with incrementing indices. Zero lanes continue the indexing from
non-zero lanes.

When scalar register source is used, extract zero/nonzero directly from the
scalar, biti = 1 indicating lane i is nonzero.

The source contains a Boolean array. The expanded index can be used to
expand, or uncollated, a collated array back to original data.

For example, VExpandIldxW VO, V1, with VO ={0, 1,1, 1,0, 0, O, 1}. Non-zero
lanes are 1, 2, 3, and 7. Expected outcome V1 ={4,0, 1,2, 5,6, 7, 3}. The idea
is that a subsequent VPermW would use V1 as indices to expand collated
data, for example, {-1, 2,-3,4,0,0,0,0} to {0, -1, 2,-3,0, 0, 0, 4}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 251



9.8.2.18 VHMINZ2ID

Instruction name

VHMIN2ID

Functionality

Vector horizontal (between lane) min and ID

Assembly format

VHMin2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vhmin2id(vintx src);

Additional details

Min-ID between even/odd lanes in each lane pair. even destination lane gets
the minimal value, odd destination lane gets the lane ID (0 or 1) that has the
minimal value, in case of tie, ID = 0.

dst[2*i] = min(src[2*i], src[2*i+1]);

dst[2*i+1] = (src[2*i] <= src[2*i+1]) 2 @ : 1;

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMInRID with scalar register destinations.

9.8.2.19 VHMAX2ID

Instruction name

VHMAX2ID

Functionality

Vector horizontal (between lane) max and 1D

Assembly format

VHMax2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vhmax2id(vintx src);

Additional details

Min-ID between even/odd lanes in each lane pair. even destination lane gets
the maximal value, odd destination lane gets the lane ID (0 or 1) that has the
maximal value, in case of tie, ID = 0.

dst[2*i] = max(src[2*i], src[2*i+1]);

dst[2*i+1] = (src[2*i] >= src[2*i+1]) ? @ : 1;

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMaxRID with scalar register destinations.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 252



9.8.2.20 VSHUFFLE

Instruction name VSHUFFLE

Functionality Vector shuffle permutation
Assembly format VShuffle<type> Vsrc/Wsrc, Vdst/Wdst
Type and bit width B: 32 x 12-bit

H: 16 x 24-bit

W: 8 x 48-bit
Predication not available
Source options Single vector register in VRF or WRF
Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vshuffle(vcharx src);
vshortx vshuffle(vshortx src);
vintx vshuffle(vintx src);

Additional details Perform shuffle permutation among byte/halfword/word lanes. Equivalent to
VPerm with pattern:

Byte: {0, 16,1,17,2,18,3,19,4, 20,5, 21, 6, 22, 7, 23,
8,24,9,25,10,26,11,27,12,28, 13,29, 14,30, 15,31}

Halfword: {0, 8, 1,9,2,10,3,11,4,12,5,13,6, 14,7, 15}
Word: {0, 4, 1,5,2,6,3,7}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 253



9.8.3

Vector OP12 Instructions

These are one-source, two-destination operation vector instructions.

9.8.3.1

Instruction Summary

Table 31. Vector OP12 instructions

Function Assembly Format Comments

Vector sign- VSignMag<W/H/B> Vdst1/Wdst2 gets sign values.
magnitude Vsrc/Wsrc, Vdst 1/Wdst 1, Vdst2/Wdst2 Vdst2/Wdst2 gets magnitude values.
Vector min VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the min value.

reduction & ID

dst2 gets the min ID.

Vector max
reduction & ID

VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2

dst1 gets the max value.
dst2 gets the max ID.

Vector type VPromote_DlI<type> With and without deinterleaving
promotion Vsrc/Wsrc, Vdst 1/Wdst 1, Vdst2/Wdst2

VPromote_DI<type> XACsrc, Vdst1, Vdst2

type = {H, W}
Vector bit VBitDelntrivW 1:1 and 2:1 deinterleaving

deinterleaving

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2
VBitDelntrlv2 1W
Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Collate index and
bits

VCollateldx_Bits<type> Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Vector min skip2
reduction-ID

VMinSkip2RIDW Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Complete min reduction-ID, assuming src
is outcome from VHMin2ID

Vector max skip2
reduction-ID

VMaxSkip2RIDW Vsrc/Wsrc,
Vdst1/Wdst1, Rdst2

Complete max reduction-ID, assuming src
is outcome from VHMax2I1D

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 254




9.8.3.2

VSIGNMAG

Instruction name

VSIGNMAG

Functionality

Vector sign magnitude

Assembly format

VSignMag<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vsignmag(vintx src, vintx & dst1l, vintx & dst2);

void vsignmag(vshortx src, vshortx & dst1, vshortx & dst2);
void vsignmag(vcharx src, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsignmag(dvintx src, dvintx & dst1, dvintx & dst2);
void dvsignmag(dvshortx src, dvshortx & dst1, dvshortx & dst2);
void dvsignmag(dvcharx src, dvcharx & dst1, dvcharx & dst2);

Additional details

dst1 gets the sign, O for zero/positive and 1 for negative. dst2 gets the
magnitude (absolute value).

9.8.3.3

VMINRID

Instruction name

VMINRID

Functionality

Vector min reduction with ID

Assembly format

VMInRID<type> Vsrc/Wsrc, Rdst1, Rdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1, dst2: scalar registers

Additional options

Intrinsics/operator

void vminrid_s(vintx src, int & dst1, int & dst2);
void vminrid_s(vshortx src, int & dst1, int & dst2);
void vminrid_s(vcharx src, int & dst1, int & dst2);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

void vminrid(vintx src, vintx & dst1, vintx & dst2);

void vminrid(vshortx src, vshortx & dst1, vshortx & dst2);

void vminrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details

dst1 gets the min value among lanes, 12-bit/24-bit outcome is sign-extended
to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with
upper 16 bits dropped.

dst2 gets lane ID (0 ~ 7/15/31) where the min value is found, lowest lane when
there’s a tie.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 255



Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination
registers. For W-type 48-bit min value is output in each lane of the first vector
destination.

For Halfword and Byte types, the emulation uses vminrid_s() and
replicateh/b().

For Word type, using just vminrid_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Examples:

VMinRIDB V1, V2, V3 is emulated as

VMinRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3.

vminrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {
vminrid_s(vcharx_src, min_dst, id_dst);
vcharx_dst1 = replicateb(min_dst);
vcharx_dst2 = replicateb(id_idst);

}

VMinRIDH V1, V2, V3 is emulated as

VMinRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3.

vminrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
vminrid_s(vshortx_src, min_dst, id_dst);
vshortx_dst1 = replicateh(min_dst);
vshortx_dst2 = replicateh(id_idst);

}

VMinRIDW V1, V2, V3 is emulated as
VHMin2IDW V1, V4; VMinSkip2RIDW V4, V2, R2; VMovS R2, V3.
vminrid(vintx_src, vintx_dst1, vintx_dst2) as {
vhmin2id(vintx_src, temp);
vminskip2rid(temp, vintx_dst1, id_dst2);
vintx_dst2 = replicatew(id_dst2);
}

9.8.34 VMAXRID

Instruction name VMAXRID

Functionality Vector max reduction with ID

Assembly format VMaxRID<type> Vsrc/Wsrc, Rdst 1, Rdst2
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Predication not available

Source options Single vector register in VRF or WRF
Destination options dst1, dst2: scalar registers

Additional options

|ntrin5ics/operator void vmaxrid_s(vintx src, int & dst1, int & dStZ),
void vmaxrid_s(vshortx src, int & dst1, int & dst2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 256



Instruction name VMAXRID
void vmaxrid_s(vcharx src, int & dst1, int & dst2);

// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions

void vmaxrid(vintx src, vintx & dst1, vintx & dst2);
void vmaxrid(vshortx src, vshortx & dst1, vshortx & dst2);
void vmaxrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details dst1 gets the max value among lanes, 12-bit/24-bit outcome is sign-extended
to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with
upper 16 bits dropped

dst2 gets lane ID (0 ~ 7/15/31) where the max value is found, lowest lane when
there’s a tie.

Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination
registers. For W-type 48-bit min value is output in each lane of the first vector
destination.

For Halfword and Byte types, the emulation uses vmaxrid_s() and
replicateh/b().

For Word type, using just vmaxrid_s() and replicatew() will not compute bits
47..32 of the extended word lane properly. Instead, the emulation uses
vhmax2id() and vmaxskip2rid(). See 9.8.2.19 and 9.8.3.10 for details.

Examples:

VMaxRIDB V1, V2, V3 is emulated as

VMaxRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3.

vmaxrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {
vmaxrid_s(vcharx_src, max_dst, id_dst);
vcharx_dst1 = replicateb(max_dst);
vcharx_dst2 = replicateb(id_idst);

VMaxRIDH V1, V2, V3 is emulated as

VMaxRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3.

vmaxrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
vmaxrid_s(vshortx_src, max_dst, id_dst);
vshortx_dst1 = replicateh(max_dst);
vshortx_dst2 = replicateh(id_idst);

VMaxRIDW V1, V2, V3 is emulated as
VHMax2IDW V1, V4; VMaxSkip2RIDW V4, V2, R2; VMovS R2, V3.
vmaxrid(vintx_src, vintx_dst1, vintx_dst2) as {
vhmax2id(vintx_src, temp);
vmaxskip2rid(temp, vintx_dst1, id_dst2);
vintx_dst2 = replicatew(id_dst2);
}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 257



9.8.3.5

VPROMOTE_DI

Instruction name

VPROMOTE_DI

Functionality

Vector type promotion with deinterleaving

Assembly format

VPromote_DI<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

BH: 32 x 12-bit > 2 x 16 x 24-bit, HW: 16 x 24-bit > 2 x 8 x 48-bit, with sign
extension

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vpromote_di(vcharx src, vshortx & dst1, vshortx & dst2);
void vpromote_di(vshortx src, vintx & dst1l, vintx & dst2);
dvshortx vpromote_di(vcharx src);

dvintx vpromote_di(vshortx src);

// double vector pseudo intrinsics unavailable

Additional details

Expand byte to half-word or half-word to word, with 2 single registers as
destination and with deinterleaving.

Example:
VPromote_DIHW V1, V2, V3

with V1 ={0, 1, 2, .., 15} would copy V1’s contents to V2 and V3
deinterleavingly, so that

V2 =A0,2,4,..,14}and
v3={1,3,5,.., 15}

Instruction name

VPROMOTE_DI (Gen-2 from XARF to VRF)

Functionality

Vector type promotion with deinterleaving

Assembly format

VPromote_DI<type> XACsrc, Vdst1, Vdst2

Type and bit width

H: 32 x 16-bit 2 2 x 16 x 24-bit, W: 16 x 32-bit > 2 x 8 x 48-bit

Predication

not available

Source options

Single vector register in XARF

Destination options

dst1: Single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vpromote_di(xvcharx src, vshortx& dst1, vshortx& dst2);
void vpromote_di(xvshortx src, vintx& dst1, vintx& dst2);
dvshortx vpromote_di(xvcharx src);

dvintx vpromote_di(xvshortx src);

// double vector pseudo intrinsics unavailable

Additional details

Expand halfword to extended halfword or word to extended word.
Example:
VPromote_DIH XACO, V2, V3

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 258



Instruction name VPROMOTE_DI (Gen-2 from XARF to VRF)

with XACO = {0, 1, 2, ..., 31} would copy XACO contents to V2 and V3
deinterleavingly, so that

Ve ={0, 2, 4, ..., 30} and
v3={1,3,5,..,31}

9.8.3.6 VPROMOTE (Emulated)

Instruction name VPROMOTE (Emulated)

Functionality Vector type promotion (without deinterleaving)

Assembly format VPromote<type> Vsrc, Vdst1, Vdst2

Type and bit width BH: 32 x 12-bit > 2 x 16 x 24-bit, HW: 16 x 24-bit > 2 x 8 x 48-bit, with sign
extension

Predication not available

Source options Single vector register

Destination options Single vector register

Additional options

Intrinsics/operator void vpromote(vshortx src, vintx & dst1, vintx & dst2);
void vpromote(vcharx src, vshortx & dst1, vshortx & dst2);
dvintx vpromote(vshortx src);

dvshortx vpromote(vcharx src);

// double vector pseudo intrinsics unavailable

Additional details Expand byte to half-word or half-word to word, with 2 single registers as
destination and without deinterleaving.

It’s an instruction in Gen-1 VPU only. In Gen-2, it was removed to reduce
timing pressure in cross-lane unit. The intrinsic is supported by implementing
the same functionality using multiple instructions.

The emulation uses vshuffle() and vpromote_di() intrinsic functions. See
9.8.2.20 and 9.8.3.5 for details.

Examples:

VPromoteBH V1, V2, V3 is emulated as

VShuffleB V1, V4; VPromote_DIBH V4, V2, V3.

vpromote(vcharx_src, vshortx_dst1, vshortx_dst2) as {
vpromote_di(vshuffle(vcharx_src), vshortx_dst1, vshortx_dst2); }

VPromoteHW V1, V2, V3 is emulated as

VShuffleH V1, V4; VPromote_DIHW V4, V2, V3.
vpromote(vcharx_src, vintx_dst1, vintx_dst2) as {
vpromote_di(vshuffle(vshortx_src), vintx_dst1, vintx_dst2); }

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 259



9.8.3.7

VBITDEINTRLV

Instruction name

VBITDEINTRLV

Functionality

Vector bit deinterleave

Assembly format

VBitDeintrlv<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

W: 8 x 32-bit > 8 x 16-bit + 8 x 16-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vbit_deinterleave(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details

In each 48-bit W lane, bit-deinterleave src[31:0] into dst1[15:0] and dst2[15:0]
dst1[15] = src[31], dst2[15] = src[30],

dst1[14] = src[29], dst2[14] = src[28], and so on.

dst1[47:16] = dst2[47:16] =0

Instruction name

VBITDEINTRLV21

Functionality

Vector bit deinterleave 2:1

Assembly format

VBitDelntrlv21<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width

W: 8 x 48-bit > 8 x 32-bit + 8 x 16-bit

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF
dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vbit_deinterleave_21(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave_21(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details

In each 48-bit W lane, bit-deinterleave src[47:0] into dst1[31:0] and dst2[15:0]
dst1[31:30] = src[47:46], dst2[15] = src[45],

dst1[29:28] = src[44:43], dst2[14] = src[42], and so on.

dst1[47:32] = dst2[47:16] =0

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 260



9.8.3.8

VCOLLATEIDX_BITS

Instruction name

VCOLLATEIDX_BITS

Functionality

Vector collate index and bits

Assembly format

VCollateldx_Bits<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

Single vector registers in VRF or WRF

Scalar register

Additional options

Intrinsics/operator

void vcollate_idx_bits(vintx src, vintx& dst1, int& dst2);
void vcollate_idx_bits(vshortx src, vshortx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details

Vdst1/Wdst1 gets indices to nonzero lanes (sequentially from lane 0) of
Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc. Rdst2 gets bit-
packed Boolean vector indicating nonzero lanes of Vsrc/Wsrc.

For example, VCollateldxW VO, V1, R2, with VO = {0, -1, 2, -3, 0, 0, 0, 4}. Non-
zero lanes are lane 1, 2, 3, and 7. Expected outcome V1 ={1, 2,3, 7,0, 4, 5, 6},
R2 = Ox8E (bits 1, 2, 3, 7 are ones).

The idea is that a subsequent VPermW would use V1 as indices to
extract/compact VO nonzero and zero lanes into {-1, 2,-3, 4,0,0,0,0}. R2 is
saved for later-on expanding the nonzeros back to original data array.

9.8.3.9

VMINSKip2RID

Instruction name

VMINSKIP2RID

Functionality

Vector every-other-lane horizontal min reduction and ID

Assembly format

VMinSkip2RID<type> Vsrc/Wsrc, Vdst 1/Wdst1, Rdst2

Type and bit width

W: 8 x 48-bit signed

Predication

not available

Source options

Single vector register in VRF or WRF

Destination options

dst1: Single vector register in VRF or WRF

dst2: scalar register

Additional options

Intrinsics/operator

void vminskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details

Complete min reduction-ID functionality cross lanes, assuming the source is
outcome of VHMIn2ID, with even lanes containing min values and LSB of odd
lanes containing 1-bit min-ID (between lanes 2* and 2*1+1).
min_val = min(src[@], src[2], src[4], src[6]);
id_val = (src[@] == min_val) ? src[1][@] :

((src[2] == min_val) ? (2 + src[3][@]) :

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 261



Instruction name VMINSKIP2RID

((src[4] == min_val) ? (4 + src[5][@]) : (6 + src[7][@])));
dst1[@..7] = min_val;
dst2 = id_val;

src[i][0] means bit O of srcl[il.

This operation is supported only for the Word type, to handle potential
overflow of Word-type VMInRID with scalar register destinations.

For example, start with VO ={3, 1, 4,0, 2,5, 9, 1}, holding 8 int48 values.
After VHMIn2IDW V0, V1, we shall have

V1={1,1,0,1,2,0, 1, 1}, this is because

min(3, 1) = 1 from odd lane, min(4, 0) = O from odd lane, and so on.
While executing VMinSkip2RID V1, V2, R3, we have

min_val = min(1,0, 2, 1) =0,

and we have src1[2] == min_val, so id_val = 2 + src[3][0] = 2+1 = 3.

We return

v2={0,0,0,0,0,0,0,0}and R3 =3

9.8.3.10 VMAXSkip2RID

Instruction name VMAXSKIP2RID

Functionality Vector every-other-lane horizontal max reduction and ID
Assembly format VMaxSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst 1, Rdst2
Type and bit width W: 8 x 48-bit signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: scalar register

Additional options

Intrinsics/operator void vmaxskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details Complete max reduction-ID functionality cross lanes, assuming the source is
outcome of VHMax2ID, with even lanes containing max values and LSB of
odd lanes containing 1-bit max-ID (between lanes 2*I and 2*1+1).

max_val = max(src[0], src[2], src[4], src[6]);

id_val = (src[@] == max_val) ? src[1] :
((src[2] == max_val) ? (2 + src[3]) :
((src[4] == max_val) ? (4 + src[5]) : (6 + src[7])));

dst1[@..7] = max_val;

dst2 = id_val;

This operation is supported only for the Word type, to handle potential
overflow of Word-type MaxRID with scalar register destinations.

See example in VMinSkip2RID instruction description.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 262



9.8.4 Vector OP21 Instructions

These are two-source, one-destination operation vector instructions.

9.8.4.1

Instruction Summary

For some of these two-source, one-destination instructions, source 2 can be vector
register or scalar register. In case of scalar register, its value is broadcast to all lanes
before the operation, depending on the type:

For Byte-type operations, bits 11:0 of scalar register is broadcast to all extended
byte lanes (12-bit each).

For Halfword-type operations, bits 23:0 of scalar register is broadcast to all extended
halfword lanes (24-bit each).

For Word-type operations, the 32-bit scalar register is sign-extended to extended
word lanes (48-bit each).

Double vector flavor is supported for selected operators.

Table 32 Vector OP21 instructions

Function

Assembly Format

Comments

Vector and bitwise

VAnd<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector and logical VAndL<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Vector or bitwise VOr<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector or logical VOrL<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Vector exclusive or | VXor<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector add

VAdd<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 263




Function

Assembly Format

Comments

VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector subtract

VSub<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DVdst/DWdst

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector absolute
difference

VAbsDif<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VAbsDif<W/H/B> DVsrcl,
DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2,
DVdst/DWdst

Vector min

VMin<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMin<W/H/B> DVsrc1/Wsrcl,
DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector max

VMax<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMax<W/H/B> DVsrc1/Wsrcl,
DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector shift

VShift<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, when
positive shift left, when negative
shift right. Bit counts are saturated
to [-12, 12], [-24, 24] or [-48, 48]
range before applying the shift.

Vector shift left

VSLA<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] before
applying the left shift.

Vector shift right

VSRA<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] range before
applying the right shift.

Vector round

VRound<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to
[0, 12], [0, 24], [0, 48] range before
applying the right shift.

Vector permute

VPerm<W/H/B>
Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 264




Function

Assembly Format

Comments

src2 carries permute pattern in
corresponding lane, value i for lane i.

Only 5/4/3 LSBs are read as
unsigned indices for W/H/B type.

Vector compare GT

VCmpGT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpGT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare GE

VCmpGE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpGE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LT

VCmpLT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpLT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LE

VCmpLE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpLE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare EQ

VCmpEQ<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpEQ<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpEQ<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare NE

VCmpNE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
VCmpNE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpNE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 265




Function

Assembly Format

Comments

Vector compare VBitCmp<type> Compare src1 >= src2, bit-pack

and bit-pack Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, outcome, then broadcast to all lanes
Vdst/Wdst/Rdst
type = {BBW, H, WWB}

Vector normalize VNorm<W/H/B> Normalize src1 data with most-

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

significant bit position src2

Vector octant
detect

VOctDetH
Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

src1 =Y values, src2 = X values,
detect octant of (X, Y) vectors.

Vector type
demotion

VDemote_I<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
VDemote<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
type = {HB, WH}

VDemote_I<type> Vsrcl, Vsrc2, XACdst
type = {H, W}

Type demotion with and without
interleaving

Vector bit
interleaving

VBitIntrivW

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
VBitIntriv2 1W

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Bit interleaving, 1:1 and 2:1

Vector apply sign

VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2,
Vdst/Wdst

Inverse operation of VSignMag,
treating src1 as sign (O for
zero/positive and 1 for negative),
and src2 as magnitude.

Vector select lane

VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 266




9.8.4.2

VAND

Instruction name

VAND

Functionality

Vector bitwise AND

Assembly format

VAnd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator&(vintx src1, vintx src2);

vshortx operator&(vshortx src1, vshortx src2);
vcharx operator&(vcharx src1, vcharx src2);

vintx operator&(vintx src1, unsigned int src2);
vshortx operator&(vshortx src1, unsigned int src2);
vcharx operator&(vcharx src1, unsigned int src2);

Additional details

Instruction name

VAND

Functionality

Double vector bitwise AND

Assembly format

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator&(dvintx srci1, dvintx src2);
dvshortx operator&(dvshortx src1, dvshortx src2);
dvcharx operator&(dvcharx src1, dvcharx src2);

dvintx operator&(dvintx src1, unsigned int src2);
dvshortx operator&(dvshortx src1, unsigned int src2);
dvcharx operator&(dvcharx srcl1, unsigned int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 267



9.8.4.3

VANDL

Instruction name

VANDL

Functionality

Vector logical AND

Assembly format

VAndL<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all
vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator&(vintx src1, vintx src2);

vshortx operator&&(vshortx src1, vshortx src2);
vcharx operator&&(vcharx src1, vcharx src2);

vintx operator&&(vintx srcl1, unsigned int src2);
vshortx operator&&(vshortx srcl, unsigned int src2);
vcharx operator&&(vcharx srci1, unsigned int src2);
// double vector pseudo intrinsics

dvintx operator&&(dvintx srcl1, dvintx src2);
dvshortx operator&&(dvshortx src1, dvshortx src2);
dvcharx operator&&(dvcharx src1l, dvcharx src2);
dvintx operator&&(dvintx src1, unsigned int src2);
dvshortx operator&&(dvshortx src1, unsigned int src2);
dvcharx operator&&(dvcharx src1, unsigned int src2);

Additional details

9.8.4.4

VOR

Instruction name

VOR

Functionality

Vector bitwise OR

Assembly format

VOr<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator|(vintx src1, vintx src2);
vshortx operator|(vshortx src1, vshortx src2);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 268



Instruction name

VOR

vcharx operator|(vcharx src1, vcharx src2);

vintx operator|(vintx src1, unsigned int src2);
vshortx operator|(vshortx src1, unsigned int src2);
vcharx operator|(vcharx src1, unsigned int src2);

Additional details

Instruction name

VOR

Functionality

Double vector bitwise OR

Assembly format

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator|(dvintx src1, dvintx src2);
dvshortx operator|(dvshortx src1, dvshortx src2);
dvcharx operator|(dvcharx src1, dvcharx src2);

dvintx operator|(dvintx src1, unsigned int src2);
dvshortx operator|(dvshortx src1, unsigned int src2);
dvcharx operator|(dvcharx src1, unsigned int src2);

Additional details

9.8.4.5

VORL

Instruction name

VORL

Functionality

Vector logical OR

Assembly format

VOrL Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all
vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator||(vintx srcl1, vintx src2);
vshortx operator||(vshortx src1, vshortx src2);
vcharx operator||(vcharx srcl1, vcharx src2);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 269



Instruction name VORL

vintx operator||(vintx src1, unsigned int src2);
vshortx operator||(vshortx src1, unsigned int src2);
vcharx operator||(vcharx src1l, unsigned int src2);
// double vector pseudo intrinsics

dvintx operator||(dvintx src1, dvintx src2);
dvshortx operator||(dvshortx src1, dvshortx src2);
dvcharx operator||(dvcharx src1, dvcharx src2);
dvintx operator||(dvintx src1, unsigned int src2);
dvshortx operator||(dvshortx srcl1, unsigned int src2);
dvcharx operator||(dvcharx src1, unsigned int src2);

Additional details

9.84.6 VXOR

Instruction name VXOR

Functionality Vector bitwise exclusive or

Assembly format VXor<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator?(vintx srci1, vintx src2);

vshortx operator*(vshortx src1, vshortx src2);
vcharx operator*(vcharx srci1, vcharx src2);

vintx operator?(vintx src1, unsigned int src2);
vshortx operator?(vshortx src1, unsigned int src2);
vcharx operator?(vcharx src1, unsigned int src2);

Additional details

Instruction name VXOR

Functionality Double vector bitwise exclusive or

Assembly format VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 270



Instruction name VXOR

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator*(dvintx src1, dvintx src2);
dvshortx operator?(dvshortx src1, dvshortx src2);
dvcharx operator®(dvcharx src1, dvcharx src2);
dvintx operator*(dvintx src1, unsigned int src2);
dvshortx operator?(dvshortx src1, unsigned int src2);
dvcharx operator®(dvcharx src1, unsigned int src2);

Additional details

9.8.4.7 VADD

Instruction name VADD

Functionality Vector add

Assembly format VAdd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator+(vintx src1, vintx src2);
vshortx operator+(vshortx src1, vshortx src2);
vcharx operator+(vcharx src1, vcharx src2);
vintx operator+(vintx src1, int src2);
vshortx operator+(vshortx srcl, int src2);
vcharx operator+(vcharx src1, int src2);

Additional details

Instruction name VADD

Functionality Double vector add

Assembly format VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 271



Instruction name VADD

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator+(dvintx src1, dvintx src2);
dvshortx operator+(dvshortx src1, dvshortx src2);
dvcharx operator+(dvcharx src1, dvcharx src2);
dvintx operator+(dvintx src1, int src2);
dvshortx operator+(dvshortx src1, int src2);
dvcharx operator+(dvcharx srcl1, int src2);

Additional details

9.848 VSUB

Instruction name VSUB

Functionality Vector subtract

Assembly format VSub<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator-(vintx src1, vintx src2);
vshortx operator-(vshortx src1, vshortx src2);
vcharx operator-(vcharx src1, vcharx src2);
vintx operator-(vintx src1, int src2);
vshortx operator-(vshortx src1, int src2);
vcharx operator-(vcharx src1, int src2);

Additional details

Instruction name VSUB

Functionality Double vector subtract

Assembly format VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 272



Instruction name VSUB

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator-(dvintx src1, dvintx src2);
dvshortx operator-(dvshortx src1, dvshortx src2);
dvcharx operator-(dvcharx src1, dvcharx src2);
dvintx operator-(dvintx src1, int src2);
dvshortx operator-(dvshortx src1, int src2);
dvcharx operator-(dvcharx src1, int src2);

Additional details

9.8.49 VABSDIF

Instruction name VABSDIF

Functionality Vector absolute difference
Assembly format VAbsDif<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vabsdif(vintx srci1, vintx src2);
vshortx vabsdif(vshortx src1, vshortx src2);
vcharx vabsdif(vcharx src1, vcharx src2);
vintx vabsdif(vintx src1, int src2);
vshortx vabsdif(vshortx src1, int src2);
vcharx vabsdif(vcharx src1, int  src2);

Additional details

Instruction name VABSDIF

Functionality Double vector absolute difference

Assembly format VAbsDif<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 273



Instruction name VABSDIF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx dvabsdif(dvintx src1, dvintx src2);
dvshortx dvabsdif(dvshortx src1, dvshortx src2);
dvcharx dvabsdif(dvcharx src1, dvcharx src2);
dvintx dvabsdif(dvintx src1, int src2);
dvshortx dvabsdif(dvshortx src1, int  src2);
dvcharx dvabsdif(dvcharx src1, int src2);

Additional details

9.8.4.10 VMIN

Instruction name VMIN

Functionality Vector min

Assembly format VMin<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vmin(vintx srci1, vintx src2);
vshortx vmin(vshortx src1, vshortx src2);
vcharx vmin(vcharx srci1, vcharx src2);
vintx vmin(vintx srcl1, int src2);
vshortx vmin(vshortx src1, int src2);
vcharx vmin(vcharx src1, int  src2);

Additional details Return minimal of 2 inputs

Instruction name VMIN

Functionality Double vector min

Assembly format VMin<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VMin<type> DWSsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 274



Instruction name

VMIN

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx dvmin(dvintx src1, dvintx src2);
dvshortx dvmin(dvshortx src1, dvshortx src2);
dvcharx dvmin(dvcharx src1, dvcharx src2);
dvintx dvmin(dvintx src1, int src2);
dvshortx dvmin(dvshortx src1, int  src2);
dvcharx dvmin(dvcharx src1, int src2);

Additional details

Return minimal of 2 inputs

9.8.4.11

VMAX

Instruction name

VMAX

Functionality

Vector max

Assembly format

VMax<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vmax(vintx srcl1, vintx src2);
vshortx vmax(vshortx src1, vshortx src2);
vcharx vmax(vcharx src1, vcharx src2);

vintx vmax(vintx srcl1, int src2);
vshortx vmax(vshortx src1, int src2);
vcharx vmax(vcharx src1, int  src2);

Additional details

Return maximal of 2 inputs

Instruction name

VMAX

Functionality

Double vector max

Assembly format

VMax<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VMax<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 275



Instruction name

VMAX

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx dvmax(dvintx src1, dvintx src2);
dvshortx dvmax(dvshortx src1, dvshortx src2);
dvcharx dvmax(dvcharx src1, dvcharx src2);

dvintx dvmax(dvintx src1, int src2);
dvshortx dvmax(dvshortx src1, int  src2);
dvcharx dvmax(dvcharx src1, int src2);

Additional details

Return minimal of 2 inputs

9.8.4.12 VSHIFT

Instruction name

VSHIFT

Functionality

Vector shift

Assembly format

VShift<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vshift(vintx src1, vintx src2);
vshortx vshift(vshortx srci1, vshortx src2);
vcharx vshift(vcharx src1, vcharx src2);

vintx vshift(vintx src1, int src2);
vshortx vshift(vshortx src1, int src2);
vcharx vshift(vcharx src1, int src2);

// double vector pseudo intrinsics

dvintx dvshift(dvintx src1, dvintx src2);
dvshortx dvshift(dvshortx src1, dvshortx src2);
dvcharx dvshift(dvcharx src1, dvcharx src2);

dvintx dvshift(dvintx src1, int src2);
dvshortx dvshift(dvshortx src1, int src2);
dvcharx dvshift(dvcharx src1, int  src2);

Additional details

When the lane value in src2 is positive, perform left shift, otherwise perform
right shift, -k indicating >> k.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [-12, 12], [-24, 24], [-48, 48] range
before detecting sign and applying the shift.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 276



9.8.4.13 VSLA

Instruction name VSLA

Functionality Vector shift left

Assembly format VSLA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<<(vintx src1, vintx src2);
vshortx operator<<(vshortx src1, vshortx src2);
vcharx operator<<(vcharx src1, vcharx src2);
vintx operator<<(vintx src1, int src2);
vshortx operator<<(vshortx srcl, int src2);
vcharx operator<<(vcharx src1, int src2);

// double vector pseudo intrinsics

dvintx operator<<(dvintx srcl1, dvintx src2);
dvshortx operator<<(dvshortx srcl1, dvshortx src2);
dvcharx operator<<(dvcharx src1, dvcharx src2);
dvintx operator<<(dvintx src1, int src2);
dvshortx operator<<(dvshortx src1, int src2);
dvcharx operator<<(dvcharx src1, int src2);

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before
applying the shift.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 277



9.8.4.14 VSRA

Instruction name VSRA

Functionality Vector shift right

Assembly format VSRA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>>(vintx srcl, vintx src2);
vshortx operator>>(vshortx src1, vshortx src2);
vcharx operator>>(vcharx src1, vcharx src2);
vintx operator>>(vintx src1, int src2);
vshortx operator>>(vshortx srcl, int src2);
vcharx operator>>(vcharx src1, int  src2);

// double vector pseudo intrinsics

dvintx operator>>(dvintx srcl1, dvintx src2);
dvshortx operator>>(dvshortx src1, dvshortx src2);
dvcharx operator>>(dvcharx src1, dvcharx src2);
dvintx operator>>(dvintx src1l, int src2);
dvshortx operator>>(dvshortx src1l, int src2);
dvcharx operator>>(dvcharx src1, int  src2);

Additional details Shift right arithmetic (preserving sign). Unsigned data should be loaded with
appropriate unsigned type of vector load, and zero-padded when loading into
extended vector lanes.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read
as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before
applying the shift.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 278



9.8.4.15 VROUND

Instruction name VROUND

Functionality Vector round
Assembly format VRound<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vround(vintx srcl, vintx src2);
vshortx vround(vshortx src1, vshortx src2);
vcharx vround(vcharx src1, vcharx src2);
vintx vround(vintx src1, int src2);
vshortx vround(vshortx src1, int src2);
vcharx vround(vcharx src1l, int src2);

// double vector pseudo intrinsics

dvintx dvround(dvintx src1, dvintx src2);
dvshortx dvround(dvshortx src1, dvshortx src2);
dvcharx dvround(dvcharx src1, dvcharx src2);
dvintx dvround(dvintx src1, int src2);
dvshortx dvround(dvshortx src1, int src2);
dvcharx dvround(dvcharx src1, int  src2);

Additional details In case of Vsrc2/Wsrc2, each lane gets an independent number of bits to
round. In case of Rsrc2, lower 12/24/32 bits are broadcast so all lanes are
rounded by the same number of bits.

Number of bits to round is read as a signed number and saturated to [0, 12],
[0, 24], or [0, 48] range before being applied to the rounding.

Let rnd_bits be number of bits to round. Rounding is performed in each lane
where rnd_bits >= 1, by

temp1 = src1 >> (rnd_bits - 1);

dst = (templ + 1) >> 1;

In lanes where rnd_bits <= 0, dst = src1 (no rounding).

Note that rounding by the lane width or more bits would result in O for both
positive and negative inputs.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 279



9.8.4.16 VPERM

Instruction name VPERM

Functionality Vector permute

Assembly format VPerm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vpermute(vintx srcl1, vintx src2);
vshortx vpermute(vshortx srcl, vshortx src2);
vcharx vpermute(vcharx srcl1, vcharx src2);
vfloatx vpermute(vfloatx src1, vintx src2);
vhfloatx vpermute(vhfloatx src1l, vshortx src2);

vintx vpermute(vintx src1l, int src2);
vshortx vpermute(vshortx src1, int src2);
vcharx vpermute(vcharx src1, int src2);
vfloatx vpermute(vfloatx src1l, int src2);
vhfloatx vpermute(vhfloatx srcl, int src2);

// double vector pseudo intrinsics unavailable

Additional details Treat src1 as lane data and src2 as lane indices.
For each lane, return value of the lane pointed to by the index.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are
ignored.

For example, say if we start with
v0={1,3,5,7,9, 11,13, 15}in W lanes
V1={4,5,6,7,0,0,1,1}in W lanes
VPermW VO, V1, V2 would result in
V2={9,11,13,15,1,1,3,3}in W lanes

When using scalar register as src2, the value in 3/4/5 LSBs of the scalar
register is used to select one of 8/16/32 W/H/B lanes of src1, and value in the
selected lane is replicated in all lanes of the destination.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 280



9.8.4.17 VCMPGT

Instruction name

VCMPGT

Functionality

Vector compare greater than

Assembly format

VCmpGT<type> Vsrc1/Wsrcl, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator>(vintx src1, vintx src2);
vshortx operator>(vshortx srci1, vshortx src2);
vcharx operator>(vcharx src1, vcharx src2);
vintx operator>(vintx srcl, int src2);
vshortx operator>(vshortx src1, int src2);
vcharx operator>(vcharx src1, int src2);

Additional details

Instruction name

VCMPGT

Functionality

Double vector compare greater than

Assembly format

VCmpGT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator>(dvintx srcl1, dvintx src2);
dvshortx operator>(dvshortx src1, dvshortx src2);
dvcharx operator>(dvcharx src1, dvcharx src2);
dvintx operator>(dvintx srcl, int src2);
dvshortx operator>(dvshortx src1, int src2);
dvcharx operator>(dvcharx srcl1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 281



9.8.4.18 VCMPGE

Instruction name

VCMPGE

Functionality

Vector compare greater than or equal

Assembly format

VCmpGE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator>=(vintx srcl, vintx src2);
vshortx operator>=(vshortx srci1, vshortx src2);
vcharx operator>=(vcharx srcl, vcharx src2);
vintx operator>=(vintx srcl1, int src2);
vshortx operator>=(vshortx src1, int src2);
vcharx operator>=(vcharx srcl, int src2);

Additional details

Instruction name

VCMPGE

Functionality

Double vector compare greater than or equal

Assembly format

VCmpGE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpGE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator>=(dvintx src1, dvintx src2);
dvshortx operator>=(dvshortx src1, dvshortx src2);
dvcharx operator>=(dvcharx src1, dvcharx src2);
dvintx operator>=(dvintx src1, int src2);
dvshortx operator>=(dvshortx src1, int src2);
dvcharx operator>=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 282



9.8.4.19 VCMPLT

Instruction name

VCMPLT

Functionality

Vector compare less than

Assembly format

VCmpLT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<(vintx src1, vintx src2);
vshortx operator<(vshortx srci1, vshortx src2);
vcharx operator<(vcharx src1, vcharx src2);
vintx operator<(vintx srcl, int src2);
vshortx operator<(vshortx src1, int src2);
vcharx operator<(vcharx src1, int src2);

Additional details

Instruction name

VCMPLT

Functionality

Double vector compare less than

Assembly format

VCmpLT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator<(dvintx src1, dvintx src2);
dvshortx operator<(dvshortx src1, dvshortx src2);
dvcharx operator<(dvcharx src1, dvcharx src2);
dvintx operator<(dvintx srcl1, int src2);
dvshortx operator<(dvshortx src1, int src2);
dvcharx operator<(dvcharx srcl1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 283



9.8.4.20 VCMPLE

Instruction name

VCMPLE

Functionality

Vector compare less than or equal

Assembly format

VCmpLE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<=(vintx srcl, vintx src2);
vshortx operator<=(vshortx srci1, vshortx src2);
vcharx operator<=(vcharx src1, vcharx src2);
vintx operator<=(vintx src1, int src2);
vshortx operator<=(vshortx srcl1, int src2);
vcharx operator<=(vcharx srcl1, int src2);

Additional details

Instruction name

VCMPLE

Functionality

Double vector compare less than or equal

Assembly format

VCmpLE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpLE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator<=(dvintx srci1, dvintx src2);
dvshortx operator<=(dvshortx src1, dvshortx src2);
dvcharx operator<=(dvcharx src1, dvcharx src2);
dvintx operator<=(dvintx src1, int src2);
dvshortx operator<=(dvshortx src1, int src2);
dvcharx operator<=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 284



9.8.4.21

VCMPEQ

Instruction name

VCMPEQ

Functionality

Vector compare equal

Assembly format

VCmpEQ<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator==(vintx srcl, vintx src2);

vshortx operator==(vshortx srci1, vshortx src2);
vcharx operator==(vcharx src1, vcharx src2);
vintx operator==(vintx src1, int src2);
vshortx operator==(vshortx srcl1, int src2);
vcharx operator==(vcharx src1, int src2);

Additional details

Instruction name

VCMPEQ

Functionality

Double vector compare equal

Assembly format

VCmpEQ<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpEQ<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator==(dvintx srcl1, dvintx src2);
dvshortx operator==(dvshortx src1, dvshortx src2);
dvcharx operator==(dvcharx src1, dvcharx src2);
dvintx operator==(dvintx src1, int src2);
dvshortx operator==(dvshortx src1, int src2);
dvcharx operator==(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 285



9.8.4.22 VCMPNE

Instruction name

VCMPNE

Functionality

Vector compare not equal

Assembly format

VCmpNE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator!=(vintx srcl, vintx src2);
vshortx operator!=(vshortx src1, vshortx src2);
vcharx operator!=(vcharx src1, vcharx src2);
vintx operator!=(vintx src1, int src2);
vshortx operator!=(vshortx srcl1, int src2);
vcharx operator!=(vcharx src1, int src2);

Additional details

Instruction name

VCMPNE

Functionality

Double vector compare not equal

Assembly format

VCmpNE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VCmpNE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width

Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options

dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvintx operator!=(dvintx src1, dvintx src2);
dvshortx operator!=(dvshortx src1, dvshortx src2);
dvcharx operator!=(dvcharx src1, dvcharx src2);
dvintx operator!=(dvintx src1, int src2);
dvshortx operator!=(dvshortx src1, int src2);
dvcharx operator!=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 286



9.8.4.23 VBITCMP

Instruction name VBITCMP

Functionality Vector compare and bit-pack

Assembly format VBitCmp<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst/Rdst
Type and bit width Vector operand:

WWAB: 8 x 48-bit compare as signed > 8-bit - broadcast to B lanes.

H: 16 x 24-bit compare as signed > 16-bit > broadcast to H lanes.
BBW: 32 x 12-bit compare as signed > 32-bit > broadcast to W lanes.
Scalar operand:

WWAB: full 32-bit sign-extended to 48-bit, H: 24 LSBs, BBW: 12 LSBs,
compare as signed.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vbitcmp(vcharx vsrci1, vcharx vsrc2);
vshortx vbitcmp(vshortx vsrcl, vshortx vsrc2);
vcharx vbitcmp(vintx vsrcl, vintx vsrc2);
vintx vbitcmp(vcharx vsrcl, int vsrc2);
vshortx vbitcmp(vshortx vsrc1, int  vsrc2);
vcharx vbitcmp(vintx vsrcl, int  vsrc2);

int vbitcmp_s(vcharx vsrc1, vcharx vsrc2);

int vbitcmp_s(vshortx vsrcl1, vshortx vsrc2);
int vbitemp_s(vintx vsrcl1, vintx vsrc2);

int vbitcmp_s(vcharx vsrc1, int  vsrc2);

int vbitcmp_s(vshortx vsrcl, int vsrc2);

int vbitemp_s(vintx vsrc1, int vsrc2);

// double vector pseudo intrinsics unavailable

Additional details Compare src1 >=src2 in each W/H/B lane, compact to 8/16/32-bit scalar,
broadcast to all destination B/H/W lanes.

For example, say if we start with

V0={1,3,5,7,9,11,13,15}in W lanes

V1={5,5,5,5, 10, 10, 10, 10} in W lanes

VBitCmpWWB V0, V1, V2 would result in {0,0,1,1,0,1,1,1} = OxEC,
V2 = {OxEC, OxEC, ..., OXEC} in B lanes

For scalar destination, in WWB-type, the 8-bit scalar is zero-extended to 32-
bit and returned. In H-type, the 16-bit scalar is zero-extended to 32-bit and
returned. In BBW-type, the 32-bit scalar is returned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 287



9.8.4.24 VNORM

Instruction name VNORM

Functionality Vector normalize

Assembly format VNorm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12
LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vnorm(vcharx vsrcl, vcharx vsrc2);
vshortx vnorm(vshortx vsrc1, vshortx vsrc2);
vintx vnorm(vintx vsrcl, vintx vsrc2);

// double vector pseudo intrinsics

dvintx dvnorm(dvintx vsrc1, dvintx vsrc2);
dvshortx dvnorm(dvshortx vsrcl1, dvshortx vsrc2);
dvcharx dvnorm(dvcharx vsrc1, dvcharx vsrc2);

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 is read as an signed number, 7 -
src2, 15 -src2, or 31 -src2 is performed, outcome saturated to [-12, 12], [-
24, 24], [-48, 48] range, then src1 is shifted by this many bits. Arithmetic
shift is performed to preserve sign bit when shifting right.

The intention is to precede VNorm with VMSBD, so that src2 holds the
most significant bit position of src1. VNorm would then shift the most
significant bit (left or right) to bit 7 for B, bit 15 for H, bit 31 for W.

For example, when src2 = 11, the shift amountis 7 - 11 = -4, to shift src1
right by 4 bits. When src2 = 5, the shift amount is 7 -5 = 2, to shift src1 left
by 2 bits.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 288



9.8.4.25 VOCTDET

Instruction name VOCTDET

Functionality Vector octant detection for atan2(Y, X)

Assembly format VOctDetH Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
Type and bit width H: 16 x 24-bit, signed

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx voct_detect(vshortx vsrcl, vshortx vsrc2);
// double vector pseudo intrinsics
dvshortx dvoct_detect(dvshortx vsrc1, dvshortx vsrc2);

Additional details Treat Vsrc1/Wsrc1 as Y, Vsrc2/Wsrc2 as X, return octant of (X, Y) in 2D
plane, O ~ 7.

First (O%) octant from O to 44.999 degree, second (1th) from 45 to 89.999
degree, etc, O degree being the X axis.

Condition Octant and angle range
X>=0, Y>=0, |Y|<=|X|] 0:[0~ 0.25 pi]
X>=0, Y>=0, |[Y|>|X| 1:(0.25 pi ~ 0.5 pi)
X<0, Y>=0, |[Y|>|X] 2:(0.5 pi~ 0.75 pi)
X<0, Y>=0, |Y|<=|X| 3:[0.75 pi ~ pi]
X<0, Y<0O, |Y|<=|X]  4:(pi~ 1.25 pi)
X<0, Y<O, [Y|>[X]  5:(1.25 pi~ 1.5 pi)
X>=0,Y<0, |[Y[>|X| 6:[1.5 pi~ 1.75 pi]
X>=0,Y<0, |Y|<=|X|] 7:[1.75 pi~ 2 pi]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 289



9.8.4.26 VDEMOTE_I

Instruction name

VDEMOTE_I

Functionality

Vector type demotion with interleaving

Assembly format

VDemote_l<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

HB: 2 x 16 x 24-bit > 32 x 12-bit, WH: 2 x 8 x 48-bit > 16 x 24-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

void vdemote_i(vshortx srci1, vshortx src2, vcharx & dst);
void vdemote_i(vintx srcl1, vintx src2, vshortx & dst);
vcharx vdemote_i(dvshortx src);

vshortx vdemote_i(dvintx src);

// double vector pseudo intrinsics unavailable

Additional details

Compress half-word to byte or word to half-word, with 2 single registers as
source and with interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,
lower 24 bits. Programmer should be aware of the possibility of overflow.

Example:
VDemote_IWH V1,V2,V3

withV1={0,1,2,..,7Yand V2 ={8, 9, ..., 15} would copy V1 and V2 contents
to V3 interleavingly, such that

v3={0,8,1,9,.,7, 15}

Instruction name

VDEMOTE_I (Gen-2 from VRF to XARF)

Functionality

Vector type demotion with interleaving

Assembly format

VDemote_l<type> Vsrcl, Vsrc2, XACdst

Type and bit width

H: 2 x 16 x 24-bit > 32 x 16-bit, W: 2 x 8 x 48-bit > 16 x 32-bit

Predication

not available

Source options

src1: Single vector register in VRF

src2: single vector register in VRF

Destination options

Single vector register in XARF

Additional options

Intrinsics/operator

void vdemote_i(vshortx src1, vshortx src2, xvcharx &dst);
void vdemote_i(vintx srcl1, vintx src2, xvshortx &dst);
// double vector pseudo intrinsics unavailable

Additional details

Compress extended halfword to halfword or extended word to word.
Example:
VDemote_IH VO, V1, XAC2

withvV0={0,1,2,..,15}and V1 ={16, 17, .., 31} would copy VO and V1
contents to V3 interleavingly, such that

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 290



Instruction name VDEMOTE_I (Gen-2 from VRF to XARF)
XAC2 ={0,16,1,17,..,15,31}.

9.8.4.27 VDEMOTE

Instruction name VDEMOTE

Functionality Vector type demotion

Assembly format VDemote<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width HB: 2 x 16 x 24-bit &> 32 x 12-bit, WH: 2 x 8 x 48-bit > 16 x 24-bit
Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator void vdemote(vintx src1, vintx src2, vshortx & dst);
void vdemote(vshortx src1, vshortx src2, vcharx & dst);
vcharx vdemote(dvshortx src);

vshortx vdemote(dvintx src);

// double vector pseudo intrinsics unavailable

Additional details Compress half-word to byte or word to half-word, with 2 single registers as
source and without interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,
lower 24 bits. Programmer should be aware of the possibility of overflow.

Example:
VDemoteWH V1, V2, V3

withV1={0,1,2,..,7Yand V2 ={8, 9, ..., 15} would copy V1 and V2 contents
to V3 sequentially, such that

v3={0,1,2,.., 15}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 291



9.8.4.28 VBITINTRLV

Instruction name

VBITINTRLV

Functionality

Vector bit interleave

Assembly format

VBitIntrlv<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

W: 8 x 16-bit + 8 x 16-bit > 8 x 32-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vbit_interleave(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvintx dvbit_interleave(dvintx src1, dvintx src2);

Additional details

In each 48-bit W lane, bit-interleave src1[15:0] and src2[15:0] into dst
dst[31] = src1[15], dst[30] = src2[15],

dst[29] = src1[14], dst[28] = src2[14], and so on.

dst[47:32] = 0.

Instruction name

VBITINTRLV21

Functionality

Vector bit interleave 2:1

Assembly format

VBitIntrlv21<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width

W: 8 x 32-bit + 8 x 16-bit > 8 x 48-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options

dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx vbit_interleave_21(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvintx dvbit_interleave_21(dvintx src1, dvintx src2);

Additional details

In each 48-bit W lane, bit-interleave src1[31:0] and src2[15:0] into dst in 2-
bit, 1-bit pattern.

dst[47:46] = src1[31:30], dst[45] = src2[15],
dst[44:43] = src1[29:28], dst[42] = src2[14], and so on.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 292



9.8.4.29 VAPPLYSIGN

Instruction name VAPPLYSIGN

Functionality Vector apply sign
Assembly format VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
Type and bit width B: 32 x 12-bit
H: 16 x 24-bit
W: 8 x 48-bit
Predication not available
Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vapply_sign(vcharx src1, vcharx src2);
vshortx vapply_sign(vshortx srci1, vshortx src2);
vintx vapply_sign(vintx src1, vintx src2);

// double vector pseudo intrinsics

dvcharx dvapply_sign(dvcharx src1, dvcharx src2);
dvshortx dvapply_sign(dvshortx src1, dvshortx src2);
dvintx dvapply_sign(dvintx src1, dvintx src2);

Additional details Inverse operation of VSignMag (vector sign-magnitude). The intention is that
in each vector lane (width depending on data type), we treat src1 as a
Boolean carrying the sign bit that we want to apply on src2 that carries the
magnitude.

The hardware performs
dst =src1 ?-src2:src2

so that output gets negated src2 when src1 is true (non-zero), and src2 as-is
when src1 is false (zero).

Thus, in addition to applying a sign to a magnitude, it can be used to
conditionally flip the sign of any number.

Note that this instruction does not perform absolute value function on src2
before applying the sign.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 293



9.8.4.30 VSelectLane

Instruction name

VSelectLane

Functionality

Vector select lane

Assembly format

VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

Type and bit width

Vector operand:
W: 32-bit
H: 24-bit sign-extend to 32-bit
B: 12-bit sign-extend to 32-bit
Scalar operand: W: 3 LSBs, H: 4 LSBs, B: 5 LSBs

Predication

not available

Source options

src1: single vector register in VRF or WRF

src2: scalar register

Destination options

dst: destination register

Additional options

Intrinsics/operator

int vselectlane(vintx src1, int src2);
int vselectlane(vshortx srcl1, int src2);
int vselectlane(vcharx src1, int src2);
float vselectlane(vfloatx srcl1, int src2);

hfloat vselectlane(vhfloatx src1,int src2);
// double vector pseudo intrinsics unavailable

Additional details

Treat src1 as lane data and src2 as lane index.

For W-type, 32 LSBs of the selected 48-bit lane is returned in the destination
scalar register. Programmer should be aware of potential overflow in the
outcome. For H/B-type, selected 12-bit/24-bit is sign-extend to 32-bit in the

destination register.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are

ignored.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 294



9.8.5

Vector OP22 Instructions

These are two-source, two-destination operation vector instructions.

9.8.5.1

Instruction Summary

Table 33. Vector OP22 instructions

Function

‘ Assembly Format

Comments

Non-overwriting

Vector 2-item sort

VSort2<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Vdst1 = min(Vsrc1, Vsrc2);
Vdst2 = max(Vsrc1, Vsrc2);

Vector
add/subtract

VAddSub<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Vdst1 = Vsrc1 + Vsrc2;
Vdst2 = Vsrc1 - Vsrc2,;

Vector complex
add/sub

VCAddSubH Vsrc1, Vsrc2, Vdst1, Vdst2

Like VAddSub but swap
even/odd lanes of Vsrc2 and
add/subtract, see details

Vector min-LT-flag

VMInLT<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Vdst1 = min(Vsrc1, Vsrc2);
Vdst2 = Vsrc1 < Vsrc2;

Vector max-GT-flag

VMaxGT<W/H/B> Vsrcl, Vsrc2, Vdst1, Vdst2

Vdst1 = max(Vsrc1, Vsrc2);
Vdst2 = Vsrc1 > Vsrc2,;

Vector 2-item sort
with payload

VSort2PL<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2

Key and payload interleaved in
each source and destination
vector register

Vector split bits

VSplitBits Vsrc1, Vsrc2, Vdst1, Vdst2

Split src1 into two right-
justified bit fields

9.8.5.2

VSORT?2

Instruction name

VSORT2

Functionality

Vector 2-point sort

Assembly format

VSort2<type> Vsrcl, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsort2(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vsort2(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsort2(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 295




Instruction name VSORT?2

// double vector pseudo intrinsics

void dvsort2(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvsort2(dvshortx srci1, dvshortx src2, dvshortx & dst1,dvshortx & dst2);
void dvsort2(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 = min(src1, src2), dst2 = max(src1, src2)

9.8.5.3 VADDSUB

Instruction name | VADDSUB

Functionality Vector add-subtract

Assembly format VAddSub<type> Vsrcl, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options | dstl1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vaddsub(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vaddsub(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvaddsub(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1,dvshortx & dst2);
void dvaddsub(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 =src1 + src2, dst2 = src1 - src2.

9.854 VCADDSUB

Instruction name | VCADDSUB

Functionality Vector add-subtract

Assembly format VCAddSub<type> Vsrcl, Vsrc2, Vdst1, Vdst2
Type and bit width H: 16 x 24-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options | dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vcaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 296



Instruction name

VCADDSUB

// double vector pseudo intrinsics
void dvcaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);

Additional details

Even lanes, dst1[2*i] = src1[2%i] + src2[2*i+1]
dst2[2*i] = src1[2*i] - src2[2*i+1]
Odd lanes, , dst1[2*i+1] = src1[2*i+1] - src2[2*i]
dst2[2*i+1] = src1[2%i+1] + src2[2*i]
This is for 16-bit FFT acceleration, where real and imaginary components are
interleaved, even lanes being real, odd lanes being imaginary.
We are implementing rotating complex number src2 by +/- 90 degree and adding
tosrcl:
dst1 = src1 - j*src2;
dst2 = srcl1 + j*src2;

Thus,
dst1[2*1i] (R) = src1[2*i] (R) + src2[2*i+1] (I)
dst1[2*i+1] (I) = src1[2*i+1] (I) - src2[2*i] (R)
dst2[2*i] (R) = src1[2*i] (R) - src2[2*i+1] (I)
dst2[2*i+1] (I) = src1[2*i+1] (I) + src2[2*i] (R)

9.8.55  VMINLT

Instruction name

VMINLT

Functionality

Vector min-less-than-flag

Assembly format

VMinLT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vminLT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vminLT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

void vminLT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvminLT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvminLT(dvshortx srci1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvminLT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 = min(src1, src2), dst2 = (src1 < src2), so that flag = 1
indicating src1 being the min, and O indicating src2 being the min.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 297




9.8.5.6

VMAXGT

Instruction name

VMAXGT

Functionality

Vector max-greater-than-flag

Assembly format

VMaxGT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF
dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vmaxGT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vmaxGT(vshortx src1l, vshortx src2, vshortx & dst1, vshortx & dst2);

void vmaxGT(vcharx srcl, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvmaxGT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvmaxGT(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvmaxGT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

For each lane, dst1 = max(src1, src2), dst2 = (src1 > src2), so that flag = 1
indicating src1 being the max, and O indicating src2 being the max.

9.8.5.7

VSORTZ2PL

Instruction name

VSORTZ2PL

Functionality

Vector 2-item sort with payload

Assembly format

VSort2PL<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsort2pl(vintx srci1, vintx src2, vintx & dst1, vintx & dst2);

void vsort2pl(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

void vsort2pl(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsort2pl(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvsort2pl(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvsort2pl(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

Key and payload are lane-interleaved; even lanes carry key, odd lanes carry
payload.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 298




Instruction name

VSORT2PL

For each pair of lanes 2*i and 2*i+1:

if (src1[2*i] <= src2]2*i]) {
dst1[2*i] = src1[2*i];
dst2[2*i] = src2[2*i];
dst1[2*i+1] = src1[2*i+1];
dst2[2*i+1] = src2[2*i+1];

}

else {
dst1[2*i] = src2[2*i];
dst2[2*i] = src1[2*i];
dst1[2*i+1] = src2[2*i+1];
dst2[2*i+1] = src1[2*i+1];

}

9.8.5.8 VSPLITBITS

Instruction name

VSPLITBITS

Functionality

Vector split bit fields and right-justify

Assembly format

VSplitBits<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator

void vsplitbits(vintx src1, vintx src2, vintx & dst1, vintx & dst2);

void vsplitbits(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

void vsplitbits(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

// double vector pseudo intrinsics

void dvsplitbits(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);

void dvsplitbits(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvsplitbits(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details

Each lane of src2 is read as a signed number and saturated to [0, 48], [0, 24], [0, 12]
to obtain the bit position T. Each lane of src1 is read as a signed number. dst1
(signed) gets right-justified upper bits of src1, from bit T and up. dst2 (unsigned)
gets lower bits of src1, from bit T-1 down.
Pseudo-code for the Halfword case:

T=(src2 <0) ?20 : ((src2 >24) ? 24 : src2);

mask = (1 << T) - 1;

dst1l = src1 >> T;

dst2 = src1 & mask;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 299




9.8.6 Vector OP31 Instructions

These are three-source, one-destination operation vector instructions.

9.8.6.1 Instruction Summary

The subset of three-source, one-destination instructions with “_CA” suffix support the
“clear-accumulator” feature. They are optionally predicated but not predicated in the
conventional sense of being executed or skipped. They are predicated to execute one of
two different functionalities, and one being a subset of the other to clear the
accumulators.

For example, [P2] VMIn3W_CA VO, V1, V2 does
V2 = min(VO, V1,V2) when P2 1=0
V2 = min(VO, V1) otherwise

This is used to carry out cumulative minimum operation, with V2 being the accumulator.
When the predicate is off, the minimum is carried out without V2, effectively clearing
the accumulator.

The _CA suffix is also used in a few vector multiply-add, multiply-subtract instructions in
the Vector Multiply-Add Instruction section.

The _CA predicated instructions are overwriting using the 3™ operand as both the 3™
source and the destination. This is so there’s room in the encoding for the additional
predication field.

The non-CA instructions in the Vector OP31 group are non-overwriting, with destination
being a separate field. Compiler can opt to assign the same register as the 3 source
and destination, to accomplish overwriting.

Note that valid predicate registers are P2...P15 for predication. PO and P1 are reserved
for unpredicated execution of the full functionality (min of 3 items in case of VMin3, for
example), and in assembly listing, the leading [PO] or [P1] would be omitted to indicate
unpredicated execution.

Table 34 Vector OP31 instructions

Function Assembly Format Comments

Vector multiplexor VMux<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = (src1!=0) ? src2 : src3
VMux<W/H/B> Wsrcl, Vsrc2, Vsrc3, Vdst
VMux<W/H/B> Vsrc1, Wsrc2, Vsrc3, Vdst
VMux<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst

Vector multiplexor VMux<W/H/B> Vsrc1, Rsrc2, Vsrc3, Vdst Vdst = (Vsrc1 !1=0) ? Rsrc2 :
with scalar src2 Vsrc3

Double vector VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1 Vdst = (src1!=0) ? src2 :src3
multiplexor VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst]1

VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 300



Function

Assembly Format

Comments

Vector mid of 3

VMid3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst
VMid3<W/H/B> Vsrcl, Vsrc2, Wsrc3, Vdst
VMid3<W/H/B> Vsrcl1, Wsrc2, Wsrc3, Vdst

Vdst = mid(src1, src2, src3)

Vector A+B-C

VAdd2Sub<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst

Vdst = Vsrc1 + Vsrc2 - Vsrc3

Vector shift-or

VShiftOr<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst

Vdst = VShift(Vsrc1, Vsrc2) |
Vsrc3.

Vector shift-add

VShiftAdd<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst

Vdst = Vshift(Vsrc1, Vsrc2) +
Vsrc3.

Vector extract bits

VExtrBits<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst

Extract low, high bits from
src3, 8-bit each.

Shift(Vsrc1, Vsrc2) then AND
with bit mask between low
and high bit positions.

Vector atan2 post-
processing

VAtan2PPH Vsrc1, Vsrc2, Vsrc3, Vdst

Vsrcl =Y, Vsrc2 = X, detect
octant of (X, Y) vector then
map Vsrc3 angle from first-
octan arctan angle to the
appropriate octant.

Vector min of 3

VMin3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst
VMin3<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst
VMin3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = min(src1, src2, src3)

Vector max of 3

VMax3<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst
VMax3<W/H/B> Vsrcl, Vsrc2, Wsrc3, Vdst
VMax3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = max(src1, src2, src3)

Vector add 3

VAdd3<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 + Vsrc2 + Vsrc3

Vector bitwise-and 3

VANnd3 Vsrc1, Vsrc2/, Vsrc3, Vdst

Vdst = Vsrc1 & Vsrc2 & Vsrc3

Vector bitwise-or 3

VOr3 Vsrcl, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 | Vsrc2 | Vsrc3

Vector bitwise-xor 3

VXor3 Vsrc1, Vsrc2, Vsrc3, Vdst

Vdst = Vsrc1 ” Vsrc2 ~ Vsrc3

Vector min of 3,

<pred> VMin3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst

predicated
Vector max of 3, <pred> VMax3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst
predicated
Vector add 3, <pred> VAdd3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst
predicated

Vector bitwise-and 3,
predicated

<pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector bitwise-or 3,
predicated

<pred> VOr3_CA Vsrcl, Vsrc2, Vsrc3dst

Vector bitwise-xor 3,
predicated

<pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector sum of
absolute differences

<pred> VSAD<W/H/B/BH/HW>_CA Vsrc1, Vsrc2,
ACsrc3dst/DACsrc3dst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 301




Function

Assembly Format

Comments

Vector sum of
Hamming distance

<pred> VSumHD<W/H/B>_CA Vsrc1, Vsrc2/Rsrc2,
ACsrc3dst

Vector compare LT
and AndL

VCmpLT_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE
and AndL

VCmpLE_AndL<W/H/B> Vsrcl, Vsrc2, Vsrc3, Vdst

Vector compare EQ
and AndL

VCmpEQ_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE
and AndL

VCmpNE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LT
and OrL

VCmpLT_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE
and OrL

VCmpLE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare EQ
and OrL

VCmpEQ_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE
and OrL

VCmpNE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector cross-element
shift right

VXShiftR <type> Vsrcl, Vsrc2, Rsrc3/Vsrc3, Vdst

Vector cross-element
shift left

VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 302




9.8.6.2

VMUX

Instruction name

VMUX

Functionality

Vector multiplexor

Assembly format

VMux<type> Vsrc1, Vsrc2, Vsrc3, Vdst1
VMux<type> Wsrc1, Vsrc2, Vsrc3, Vdst 1
VMux<type> Vsrc1, Wsrc2, Vsrc3, Vdst1
VMux<type> Vsrc1, Vsrc2, Wsrc3, Vdst 1

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

src1: single vector register in VRF or WRF
src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vmux(vintx src1, vintx src2, vintx src3);
vshortx vmux(vshortx src1, vshortx src2,vshortx src3);
vcharx vmux(vcharx src1, vcharx src2, vcharx src3);
vhfloatx vmux(vshortx src1,vhfloatx src2,vhfloatx src3);
vfloatx vmux(vintx src1, vfloatx src2, vfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

9.8.6.3

VMUX (Rsrc2)

Instruction name

VMUX

Functionality

Vector multiplexor with scalar src2

Assembly format

VMux<type> Vsrc1, Rsrc2, Vsrc3, Vdst1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF
src2: scalar register

src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vmux(vintx srcl1, int src2, vintx src3);
vshortx vmux(vshortx src1, int src2, vshortx src3);
vcharx vmux(vcharx src1, int src2, vcharx src3);
vhfloatx vmux(vshortx src1, hfloat src2,vhfloatx src3);
vfloatx vmux(vintx src1, float src2, vfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 303



Instruction name

VMUX

src2 is from a scalar register, its lower 12/24/32-bit is broadcast to all vector
lanes as the “true” data input.

9.8.6.4 VMUX (Double Vector)

Instruction name

VMUX (Gen-2 double vector/double throughput)

Functionality

Vector multiplexor

Assembly format

VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1
VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1
VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Type and bit width

W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Predication

not available

Source options

src1: double vector register in VRF
src2: double vector register in VRF or WRF, or scalar register
src3: double vector register in VRF or WRF

Destination options

dst1: double vector register in VRF

Additional options

Intrinsics/operator

dvintx dvmux(dvintx srci1, dvintx src2, dvintx src3);
dvshortx dvmux(dvshortx src1, dvshortx src2,dvshortx src3);
dvcharx dvmux(dvcharx src1, dvcharx src2, dvcharx src3);
dvhfloatx dvmux(dvshortx src1, dvhfloatx src2,dvhfloatx src3);
dvfloatx dvmux(dvintx src1, dvfloatx src2, dvfloatx src3);
dvintx dvmux(dvintx srci1, int src2, dvintx src3);

dvshortx dvmux(dvshortx src1, int src2, dvshortx src3);
dvcharx dvmux(dvcharx src1, int src2, dvcharx src3);
dvhfloatx dvmux(dvshortx src1, hfloat src2, dvhfloatx src3);
dvfloatx dvmux(dvintx src1, float src2, dvfloatx src3);

Additional details

For each lane, dst1 =src1 ? src2 : src3.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 304



9.8.6.5

VMID3

Instruction name

VMID3

Functionality

Vector median3

Assembly format

VMid3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1
VMid3<type> Vsrcl, Vsrc2, Wsrc3, Vdst
VMid3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vmid3(vintx srci1, vintx src2, vintx src3);

vshortx vmid3(vshortx srci1, vshortx src2, vshortx src3);
vcharx vmid3(vcharx srci1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvmid3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmid3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmid3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details

For each lane, return median of 3 sources.

9.8.6.6

VADD2SUB

Instruction name

VADD2SUB (to change intrinsic to +/- operators)

Functionality

Vector add then subtract

Assembly format

VAdd2Sub<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst 1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vadd2sub(vintx srcl1, vintx src2, vintx sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, vshortx sc3);
vcharx vadd2sub(vcharx src1, vcharx src2, vcharx sc3);
vintx vadd2sub(vintx src1, vintx src2, int sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, int sc3);
vcharx vadd2sub(vcharx src1, vcharx src2, int sc3);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 305



Instruction name

VADD2SUB (to change intrinsic to +/- operators)

// double vector pseudo intrinsics

dvintx dvadd2sub(dvintx src1, dvintx src2, dvintx sc3);
dvshortx dvadd2sub(dvshortx srci1, dvshortx src2, dvshortx sc3);
dvcharx dvadd2sub(dvcharx src1, dvcharx src2, dvcharx sc3);
dvintx dvadd2sub(dvintx src1, dvintx src2, int sc3);
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, int sc3);
dvcharx dvadd2sub(dvcharx srci1, dvcharx src2, int sc3);

Additional details

For each lane, dst1 = src1 + src2 - src3.

9.8.6.7 VSHIFTOR

Instruction name

VSHIFTOR

Functionality

Vector shift-or

Assembly format

VShiftOr<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes, as signed.

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or scalar register

src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vshiftor(vintx srcl1, vintx src2, vintx src3);
vshortx vshiftor(vshortx src1, vshortx src2, vshortx src3);
vcharx vshiftor(vcharx src1, vcharx src2, vcharx src3);
vintx vshiftor(vintx srcl1, int src2, vintx src3);
vshortx vshiftor(vshortx src1, int src2, vshortx src3);
vcharx vshiftor(vcharx src1, int src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvshiftor(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvshiftor(dvshortx srci1, dvshortx src2, dvshortx src3);
dvcharx dvshiftor(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvshiftor(dvintx src1, int src2, dvintx src3);
dvshortx dvshiftor(dvshortx srci1, int src2, dvshortx src3);
dvcharx dvshiftor(dvcharx srcl1, int src2, dvcharx src3);

Additional details

For each lane, dst1 = shift(src1, src2) | src3.

Shift left or right based on sign of src2. src2 is read as a signed number and
saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the
shift. Positive bit count shifts left, and negative bit count shifts right.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 306



9.8.6.8 VSHIFTADD

Instruction name

VSHIFTADD

Functionality

Vector shift-add

Assembly format

VShiftAdd<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1

Type and bit width

Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes, as signed.

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or scalar register
src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vshiftadd(vintx src1, vintx src2, vintx src3);
vshortx vshiftadd(vshortx src1, vshortx src2, vshortx src3);
vcharx vshiftadd(vcharx src1, vcharx src2, vcharx src3);
vintx vshiftadd(vintx src1, int src2, vintx src3);
vshortx vshiftadd(vshortx src1, int src2, vshortx src3);
vcharx vshiftadd(vcharx src1, int src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvshiftadd(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvshiftadd(dvcharx srci1, dvcharx src2, dvcharx src3);
dvintx dvshiftadd(dvintx src1, int src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, int src2, dvshortx src3);
dvcharx dvshiftadd(dvcharx src1, int src2, dvcharx src3);

Additional details

For each lane, dst1 = shift(src1, src2) + src3.

Shift left or right based on sign of src2. src2 is read as a signed number and
saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the
shift. Positive bit count shifts left, and negative bit count shifts right.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 307



9.8.6.9 VEXTRBITS

Instruction name VEXTRBITS

Functionality Vector extract bits
Assembly format VExtrBits<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vintx vextract_bits(vintx src1, vintx src2, vintx src3);
vshortx vextract_bits(vshortx srci1, vshortx src2, vshortx src3);
vcharx vextract_bits(vcharx srcl1, vcharx src2, vcharx src3);
vintx vextract_bits(vintx src1, vintx src2, int src3);

vshortx vextract_bits(vshortx src1, vshortx src2, int src3);
vcharx vextract_bits(vcharx src1, vcharx src2, int src3);

// double vector pseudo intrinsics

dvintx dvextract_bits(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvextract_bits(dvintx src1, dvintx src2, int src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, int src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, int src3);

Additional details Shift input then AND with bitmask between low and high bit positions.

low = src3[7:08]; // Unsigned bit position

high = src3[15:8] // Unsigned bit position, Rsrc3 or Vsrc3
/] in H/W types
high = src3[11:8]; // Unsigned bit position, Vsrc3 in B type

temp1 = shift(src1, src2); // up or down based on src2 sign
temp2 = ~((1 << low)-1);

temp3 = (1 << high+1) - 1;

dst = temp1 & temp2 & temp3

If low > high or if low >= BITWIDTH, O is returned. Otherwise, high is saturated to
top bit position of the lane.

For example, with byte lane input src1 = 0x12, src2 = 4, low = 4, high = 7,
temp1 = shift(0Ox12, 4) = 0x120

temp2 = OxFFO (enable bits 4 and higher)

temp3 = OxOFF (enable bits 7 and lower)

return Ox120 & OxFFO & OxOFF = Ox20

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 308



9.8.6.10 VATANZ2PP

Instruction name

VATANZ2PP

Functionality

Vector atan2 post-processing

Assembly format

VAtan2PP<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width

H: 16 x 24-bit

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vshortx vatan2_postp(vshortx src1, vshortx src2, vshortx src3);
// double vector pseudo intrinsics
dvshortx dvatan2_postp(dvshortx src1, dvshortx src2, dvshortx src3);

Additional details

Treat Vsrcl as Y, Vsrc2 as X, detect octant of (X, Y) in 2D plane, 0 ~ 7 (see
9.8.4.25 VOctDetH). Treat Vsrc3 as first-octant outcome of atan, A, and return:

Condition Octant and ang range Return angle
X>=0,Y>=0, [Y|<=|X] 0:[0~0.25pi] A&Ox7FFF

X>=0, Y>=0, [Y|>|X] 1:(0.25 pi~ 0.5 pi) (0x2000 - A) & Ox7FFF
X<0,Y>=0, [Y|>|X] 2:(0.5pi~0.75pi) (0x2000 + A) & OX7FFF
X<0,Y>=0, [Y|<=|X| 3:[0.75pi~pi] (0x4000 - A) & Ox7FFF
X<0, Y<0, [Y|<=|X] 4:(pi~ 1.25pi) (0x4000 + A) & OX7FFF
X<0, Y<0, |Y|>|X| 5:(1.25 pi ~ 1.5 pi) (0x6000 - A) & Ox7FFF
X>=0,Y<0, |Y[>|X|] 6:[1.5pi~ 1.75 pi] (0x6000 + A) & Ox7FFF
X>=0,Y<0, |Y[<=|X| 7:[1.75pi~2pi] (0x8000 - A) & Ox7FFF

For example, in a particular lane, say we have src1 = X =100, src2 =Y = -200,
src3 = A =0x972. It'sin the 6% octant, as X is positive, Y is negative, and |Y| >
|X]. Return value is Ox6000 + Ox972 = Ox6972.

The atan2(y, x) function is implemented with table lookup. In order to compress the
table, we take the absolute value of y, x, and sort (|y|, |x]) so that |y| <= |x|. This folds the

whole 2*pi range of output to 1/8 of the range, O ~ pi/4.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 309



After doing lookup and post-lookup interpolation with the sorted (lyl, [x]), we use the
VAtan2PPH with the first-octant angle and (y, x) as inputs to map the angle back to the
full range, as shown in the following diagram:

oct tan ang
y 0 y/x a

x/ly1/4 — a
Xy 1/4+a
X -y/Ix 1/2 —a

yix 1/2+a
xly 3l4—-a
-xly 3/4+a

-yIx 1-—a

Note that the 2*pi full range is quantized to 15-bit, O ~ Ox7FFF. Thus, 90-degree is
0x2000, 180-degree 0x4000, and 270-degree Ox6000.

9.8.6.11 VMIN3

Instruction name VMIN3
Functionality Vector min3
Assembly format VMin3<type> Vsrcl, Vsrc2, Vsrc3, Vdst1

VMin3<type> Vsrcl, Vsrc2, Wsrc3, Vdst
VMin3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Predication not available
Source options src1: single vector register in VRF

src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vmin3(vintx src1, vintx src2, vintx src3);
vshortx vmin3(vshortx srci1, vshortx src2, vshortx src3);
vcharx vmin3(vcharx src1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvmin3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmin3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmin3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return minimal of 3 sources.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 310



9.8.6.12 VMIN3_CA

Instruction name

VMIN3_CA

Functionality

Vector min3

Assembly format

<pred> VMin3<type>_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2..P15]
[PO] is omitted

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

Available across lanes to clear accumulator

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

src3dst: single vector register in ARF

Additional options

Intrinsics/operator

vintx vmin3_ca(vintx src1, vintx src2, vintx src3, int pred);

vshortx vmin3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vmin3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvmin3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvmin3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred);
dvcharx dvmin3_ca(dvcharx srcl1, dvcharx src2, dvcharx src3, int pred);

Additional details

Vsrc3dst = pred ? min(Vsrc1, Vsrc2, Vsrc3dst)

: min(Vsrc1, Vsrc2);
When predicate is off, the operation becomes min of first 2 sources, allowing
min accumulation to start fresh.

9.8.6.13 VMAX3

Instruction name

VMAX3

Functionality

Vector max3

Assembly format

VMax3<type> Vsrc1, Vsrc2, Vsrc3, Vdst 1
VMax3<type> Vsrc1, Vsrc2, Wsrc3, Vdst
VMax3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF or WRF
src3: single vector register in VRF or WRF

Destination options

dst1: single vector register

Additional options

Intrinsics/operator

vintx vmax3(vintx srcl1, vintx src2, vintx src3);
vshortx vmax3(vshortx srcl, vshortx src2, vshortx src3);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 311




Instruction name VMAX3
vcharx vmax3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics

dvintx dvmax3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmax3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmax3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return maximal of 3 sources.

9.8.6.14 VMAX3_CA

Instruction name VMAX3_CA

Functionality Vector max3

Assembly format <pred> VMax3<type>_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2.. P15]
[PO] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Predication Available across lanes to clear accumulator
Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vmax3_ca(vintx src1, vintx src2, vintx src3, int pred);

vshortx vmax3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vmax3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvmax3_ca(dvintx srcl1, dvintx src2, dvintx src3, int pred);
dvshortx dvmax3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred);
dvcharx dvmax3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Vsrc3dst = preg ? max(Vsrc1, Vsrc2, Vsrc3dst)
: max(Vsrc1, Vsrc2);

When predicate is off, the operation becomes max of first 2 sources, allowing
max accumulation to start fresh.

9.8.6.15 VADD3

Instruction name VADD3

Functionality Vector add3

Assembly format VAdd3<type> Vsrc1, Vsrc2, Vsrc3, Vdst 1
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
Predication not available

Source options src1: single vector register in VRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 312



src2: single vector register in VRF
src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vadd3(vintx srcl1, vintx src2, vintx src3);

vshortx vadd3(vshortx src1, vshortx src2, vshortx src3);
vcharx vadd3(vcharx src1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvadd3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvadd3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvadd3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details

9.8.6.16 VADD3_CA

Instruction name

VADD3_CA

Functionality

Vector add3

Assembly format

<pred> VAdd3B/H/W_CA Vsrcl, Vsrc2, ACsrc3dst

pred = none, [P2.. P15]
[PO] is omitted

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication

Available across lanes to clear accumulator

Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

src3dst: B/H/W: single vector register in ARF

Additional options

Intrinsics/operator

vintx vadd3_ca(vintx srcl, vintx src2, vintx src3, int pred);

vshortx vadd3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vadd3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvadd3_ca(dvintx srcl1, dvintx src2, dvintx src3, int pred);
dvshortx dvadd3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvadd3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details

Vsrc3dst = preg ? (Vsrcl + Vsrc2 + Vsrc3dst)
: (Vsrcl + Vsrc2);

When predicate is off, the operation becomes sum of first 2 sources, allowing
accumulation to start fresh.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 313



9.8.6.17 VAND3

Instruction name

VAND3

Functionality

Vector and 3

Assembly format

VANd3 Vsrcl, Vsrc2, Vsrc3, Vdst1

Type and bit width

no type, full 384 bits

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF
src3: single vector register in VRF

Destination options

dst1: single vector register in VRF

Additional options

Intrinsics/operator

vintx vand3(vintx srci1, vintx src2, vintx src3);

vshortx vand3(vshortx srcl1, vshortx src2, vshortx src3);
vcharx vand3(vcharx src1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvand3(dvintx src1, dvintx src3);
dvshortx dvand3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvand3(dvcharx src1, dvcharx src2, dvcharx src3);

src2, dvintx

Additional details

Bitwise AND in each vector lane

9.8.6.18 VAND3_CA

Instruction name

VAND3_CA

Functionality

Vector and 3

Assembly format

<pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]
[PO] is omitted

Type and bit width

no type, full 384 bits

Predication

Available across lanes to clear accumulator

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Destination options

src3dst: single vector register in VRF

Additional options

Intrinsics/operator

vintx vand3_ca(vintx srcl, vintx src2, vintx src3, int pred);

vshortx vand3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vand3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvand3_ca(dvintx src1, dvintx src3, int pred);
dvshortx dvand3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvand3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

src2, dvintx

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 314



Instruction name VAND3_CA

Additional details Bitwise AND in each vector lane
Vsrc3dst = preg ? (Vsrcl & Vsrc2 & Vsrc3dst)
: (Vsrcl & Vsrc2);

When predicate is off, the operation becomes AND of first 2 sources, allowing
AND accumulation to start fresh.

9.8.6.19 VOR3

Instruction name VOR3

Functionality Vector or 3

Assembly format VOr3 Vsrcl, Vsrc2, Vsrc3, Vdst1
Type and bit width no type, full 384 bits

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vor3(vintx srcl1, vintx src2, vintx src3);

vshortx vor3(vshortx src1, vshortx src2, vshortx src3);
vcharx vor3(vcharx src1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvor3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvor3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvor3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Bitwise OR in each vector lane

9.8.6.20 VOR3_CA

Instruction name VOR3_CA

Functionality Vector or 3

Assembly format <pred> VOr3_CA Vsrcl, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]
[PO] is omitted
Type and bit width no type, full 384 bits

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in VRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 315



Instruction name VOR3_CA
Additional options

Intrinsics/operator vintx vor3_ca(vintx srcl1, vintx src2, vintx src3, int pred);

vshortx vor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvor3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvor3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Bitwise OR in each vector lane
Vsrc3dst = preg ? (Vsrcl | Vsrc2 | Vsrc3dst)
(Vsrc1 | Vsre2);

When predicate is off, the operation becomes OR of first 2 sources, allowing OR
accumulation to start fresh.

9.8.6.21 VXOR3

Instruction name VXOR3

Functionality Vector exclusive-or 3

Assembly format VXor3 Vsrcl, Vsrc2, Vsrc3, Vdst1
Type and bit width no type, full 384 bits

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vxor3(vintx srcl1, vintx src2, vintx src3);

vshortx vxor3(vshortx srci1, vshortx src2, vshortx src3);
vcharx vxor3(vcharx srcl1, vcharx src2, vcharx src3);

// double vector pseudo intrinsics

dvintx dvxor3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvxor3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvxor3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Bitwise exclusive OR in each vector lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 316



9.8.6.22 VXOR3_CA

Instruction name VXOR3_CA

Functionality Vector exclusive-or 3

Assembly format <pred> VXor3_CA Vsrcl, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]
[PO] is omitted
Type and bit width no type, full 384 bits

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in VRF

Additional options

Intrinsics/operator vintx vxor3_ca(vintx srcl, vintx src2, vintx src3, int pred);

vshortx vxor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vxor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

// double vector pseudo intrinsics

dvintx dvxor3_ca(dvintx srcl1, dvintx src2, dvintx src3, int pred);
dvshortx dvxor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvxor3_ca(dvcharx srcl1, dvcharx src2, dvcharx src3, int pred);

Additional details Bitwise exclusive-OR in each vector lane
Vsrc3dst = preg ? (Vsrc1l A Vsrc2 * Vsrc3dst)
: (Vsrcl * Vsrc2);

When predicate is off, the operation becomes XOR of first 2 sources, allowing
XOR accumulation to start fresh.

9.8.6.23 VSAD_CA

Instruction name VSAD_CA

Functionality Vector sum of absolute differences

Assembly format <pred> VSad<type>_CA Vsrc1, Vsrc2, ACsrc3dst/DACsrc3dst

pred = none, [P2.. P15]

[PO] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit
HW: 16 x ( |24-bit - 24-bit| + 48-bit)

BH: 32 x ( [12-bit - 12-bit| + 24-bit)

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register for W in ARF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 317



Instruction name VSAD_CA
src3dst: double vector register for HW, BH in ARF

Additional options

Intrinsics/operator vintx VvSAD_ca(vintx src1, vintx src2, vintx src3, int pred);

vshortx vSAD_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vSAD_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

dvintx vSAD_ca(vshortx src1, vshortx src2, dvintx src3, int pred);
dvshortx vSAD_ca(vcharx src1, vcharx src2, dvshortx src3, int pred);

// double vector pseudo intrinsics

dvintx dvSAD_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvSAD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvSAD_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details For each lane, src3dst +=|src1 - src2| when predicate is on. Otherwise, src3dst =
|src1 - src2|.

For HW and BH types, destination is a double vector register. Lane 2*i from [src1
- src2| is added/stored to lane i of the lower register of the pair. Lane 2*i+1 from
[src1 - src2| is added/stored to lane i of the upper register.

9.8.6.24 VSUMHD_CA

Instruction name | VSumHD_CA

Functionality Vector sum of Hamming distance

Assembly format <pred> VSumHD<type>_CA Vsrc1, Vsrc2/Rsrc2, ACsrc3dst

pred = none, [P2.. P15]
[PO] is omitted
Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs
broadcast to all vector lanes, as unsigned.

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register

Destination options | src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vSumHD_ca(vintx src1, vintx src2, vintx src3, int pred);

vshortx vSumHD_ca(vshortx srci1, vshortx src2, vshortx src3, int pred);
vcharx vSumHD_ca(vcharx src1, vcharx src2, vcharx src3, int pred);

vintx vSumHD_ca(vintx src1, unsigned int src2, vintx src3, int pred);
vshortx vSumHD_ca(vshortx src1, unsigned int src2, vshortx src3, int pred);
vcharx vSumHD_ca(vcharx src1, unsigned int src2, vcharx src3, int pred);

// double vector pseudo intrinsics
dvintx dvSumHD_ca(dvintx srci1, dvintx src2, dvintx src3, int pred);

dvshortx dvSumHD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 318



Instruction name | VSumHD_CA

dvcharx dvSumHD_ca(dvcharx srci1, dvcharx src2, dvcharx src3, int pred);

dvintx dvSumHD_ca(dvintx src1, unsigned int src2, dvintx src3, int pred);
dvshortx dvSumHD_ca(dvshortx src1, unsigned int src2, dvshortx src3, int pred);
dvcharx dvSumHD_ca(dvcharx src1, unsigned int src2, dvcharx src3, int pred);

Additional details For each lane, src3dst += bit_count(src1 » src2) when predicate is on, otherwise,
src3dst = bit_count(src1 » src2).

“A” is the bit-wise XOR operation.

9.8.6.25 VCMPLT_ANDL

Instruction name VCMPLT_ANDL

Functionality Vector compare less than and logical AND
Assembly format VCmpLT_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpLT_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLT_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLT_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl < vintx src2) && src3;
// vshortx dst = (vshortx src1 < vshortx src2) && src3;
// vcharx dst = (vcharx srcl < vcharx src2) && src3;

// double vector pseudo intrinsics

dvcharx dvCmpLT_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLT_andL(dvshortx srci1, dvshortx src2, dvshortx src3);
dvintx dvCmpLT_andL(dvintx srci1, dvintx src2, dvintx src3);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 319



9.8.6.26 VCMPLE_ANDL

Instruction name

VCMPLE_ANDL

Functionality

Vector compare less than or equal and logical AND

Assembly format

VCmpLE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

srcl1, src2, src3: single vector register in VRF

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vcharx vCmpLE_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLE_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLE_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl <= vintx src2) && src3;
// vshortx dst = (vshortx src1 <= vshortx src2) && src3;
// vcharx dst = (vcharx srcl <= vcharx src2) && src3;

// double vector pseudo intrinsics

dvcharx dvCmpLE_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLE_andL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLE_andL(dvintx srci1, dvintx src2, dvintx src3);

Additional details

9.8.6.27 VCMPEQ_ANDL

Instruction name

VCMPEQ_ANDL

Functionality

Vector compare equal and logical AND

Assembly format

VCmpEQ_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

srcl, src2, src3: single vector register in VRF

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vcharx vCmpEQ_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpEQ_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpEQ_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl == vintx src2) && src3;
// vshortx dst = (vshortx src1 == vshortx src2) && src3;
// vcharx dst = (vcharx srcl == vcharx src2) && src3;

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 320



Instruction name VCMPEQ_ANDL

// double vector pseudo intrinsics

dvcharx dvCmpEQ_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpEQ_andL(dvshortx srci1, dvshortx src2, dvshortx src3);
dvintx dvCmpEQ_andL(dvintx srci1, dvintx src2, dvintx src3);

Additional details

9.8.6.28 VCMPNE_ANDL

Instruction name VCMPNE_ANDL

Functionality Vector compare not equal and logical AND
Assembly format VCmpNE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpNE_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpNE_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpNE_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl != vintx src2) && src3;
// vshortx dst = (vshortx src1 != vshortx src2) && src3;
// vcharx dst = (vcharx src1 != vcharx src2) && src3;

// double vector pseudo intrinsics

dvcharx dvCmpNE_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpNE_andL(dvshortx srci1, dvshortx src2, dvshortx src3);
dvintx dvCmpNE_andL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.29 VCMPLT_ORL

Instruction name VCMPLT_ORL

Functionality Vector compare less than and logical OR
Assembly format VCmpLT_OrL <type> Vsrcl, Vsrc2, Vsrc3, Vdst
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options srcl, src2, src3: single vector register in VRF
Destination options dst: Single vector register in VRF

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 321



Instruction name VCMPLT_ORL

Intrinsics/operator vcharx vCmpLT_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLT_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLT_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl < vintx src2) || src3;
// vshortx dst = (vshortx src1 < vshortx src2) || src3;
// vcharx dst = (vcharx srcl < vcharx src2) || src3;

// double vector pseudo intrinsics

dvcharx dvCmpLT_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLT_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLT_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.30 VCMPLE_ORL

Instruction name VCMPLE_ORL

Functionality Vector compare less than or equal and logical OR
Assembly format VCmpLE_OrL <type> Vsrcl, Vsrc2, Vsrc3, Vdst
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed
Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpLE_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLE_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLE_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl1 <= vintx src2) || src3;
// vshortx dst = (vshortx src1 <= vshortx src2) || src3;
// vcharx dst = (vcharx src1 <= vcharx src2) || src3;

// double vector pseudo intrinsics

dvcharx dvCmpLE_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLE_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLE_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 322



9.8.6.31

VCMPEQ_ORL

Instruction name

VCMPEQ_ORL

Functionality

Vector compare equal and logical OR

Assembly format

VCmpEQ_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

srcl1, src2, src3: single vector register in VRF

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vcharx vCmpEQ_orL(vcharx src1l, vcharx src2, vcharx src3);
vshortx vCmpEQ_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpEQ_orL(vintx srcl1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl == vintx src2) || src3;
// vshortx dst = (vshortx src1 == vshortx src2) || src3;
// vcharx dst = (vcharx srcl == vcharx src2) || src3;

// double vector pseudo intrinsics

dvcharx dvCmpEQ_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpEQ_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpEQ_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.32 VCMPNE_ORL

Instruction name

VCMPNE_ORL

Functionality

Vector compare not equal and logical OR

Assembly format

VCmpNE_OrL <type> Vsrcl, Vsrc2, Vsrc3, Vdst

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication

not available

Source options

srcl, src2, src3: single vector register in VRF

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vcharx vCmpNE_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpNE_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpNE_orL(vintx srcl1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,

// vintx dst = (vintx srcl != vintx src2) || src3;
// vshortx dst = (vshortx src1 != vshortx src2) || src3;
// vcharx dst = (vcharx srcl != vcharx src2) || src3;

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 323



Instruction name

VCMPNE_ORL

// double vector pseudo intrinsics

dvcharx dvCmpNE_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpNE_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpNE_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.33 VXSHIFTR

Instruction name

VXShiftR

Functionality

Vector cross element shift right

Assembly format

VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Type and bit width

Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector
lanes as unsigned.

Predication

not available

Source options

src1, src2: single vector register in VRF
src3: single vector in VRF or scalar register

Destination options

dst: Single vector register in VRF

Additional options

Intrinsics/operator

vcharx vxshiftr(vcharx src1, vcharx src2, vcharx src3);

vshortx vxshiftr(vshortx src1, vshortx src2, vshortx src3);

vintx vxshiftr(vintx src1, vintx src2, vintx src3);

vcharx vxshiftr(vcharx src1, vcharx src2, unsigned int src3);
vshortx vxshiftr(vshortx src1, vshortx src2, unsigned int src3);
vintx vxshiftr(vintx src1, vintx src2, unsigned int src3);

// double vector pseudo intrinsics

dvcharx dvxshiftr(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvxshiftr(dvintx src1, dvintx src2, dvintx src3);

dvcharx dvxshiftr(dvcharx srcl1, dvcharx src2, unsigned int src3);
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, unsigned int src3);
dvintx dvxshiftr(dvintx src1, dvintx src2, unsigned int src3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 324



Instruction name VXShiftR

Additional details Src1 carries current lane data. Src2 carries next lane data (from another load
from memory). Src3[7:0] carries number of LSBs of src1 we want to shift
right and throw out, and refill upper bits from LSBs of src2.

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned
number. Src3[7:0] is treated as an unsigned number and saturated to
8/16/32 before being used in the subsequent operations.

In each lane we compute

nbits = src3[7:0];

nbits = (nbits > bitwidth) ? bitwidth : nbits;

dst = ((src1 >> nbits) | (src2 << (bitwidth - nbits))) & mask;
where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) - 1.
MSB LSB MSB LSB

src2 srcl

dst & sre3 >

9.8.6.34 VXSHIFTL

Instruction name VXShiftL

Functionality Vector cross element shift left

Assembly format VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Type and bit width Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector
lanes as unsigned.

Predication not available

Source options src1, src2: single vector register in VRF

src3: single vector in VRF or scalar register

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vxshiftl(vcharx src1, vcharx src2, vcharx src3);

vshortx vxshiftl(vshortx src1, vshortx src2, vshortx src3);

vintx vxshiftl(vintx src1, vintx src2, vintx src3);

vcharx vxshiftl(vcharx src1, vcharx src2, unsigned int src3);
vshortx vxshiftl(vshortx src1, vshortx src2, unsigned int src3);
vintx vxshiftl(vintx src1, vintx src2, unsigned int src3);

// double vector pseudo intrinsics

dvcharx dvxshiftl(dvcharx srci1, dvcharx src2, dvcharx src3);
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvxshiftl(dvintx src1, dvintx src2, dvintx src3);

dvcharx dvxshiftl(dvcharx src1, dvcharx src2, unsigned int src3);
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, unsigned int src3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 325



Instruction name VXShiftL
dvintx dvxshiftl(dvintx src1, dvintx src2, unsigned int src3);

Additional details Src1 carries current lane data. Src2 carries previous lane data (from another
load from memory). Src3[7:0] carries number of MSBs of src1 we want to
shift left and throw out, and refill lower bits from MSBs of src2.

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned
number. Src3[7:0] is treated as an unsigned number and saturated to
8/16/32 before being used in the subsequent operations.

In each lane we compute

nbits = src3[7:0];

nbits = (nbits > bitwidth) ? bitwidth : nbits;

dst = ((src1 << nbits) | (src2 >> (bitwidth - nbits))) & mask;
where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) - 1.
MSB LSB MSB LSB

srcl src2

<-src3-> dst

9.8.7  Vector Multiply-Add Instructions

9.8.7.1 Types and Data Widths

Multiplication has higher area cost per bit, so instead of extended precision of B=12-bit,
H=24-bit, W=48-bit, VPU supports B=9-bit, H=17-bit, W=33-bit of multiplication input.
The 1 extra bits compared with standard bit width allows support of both signed and
unsigned data of standard bit widths.

For src1 and src2, the B/H/W types correspond to 9/17/33 bits, as opposed to 12/24/48
bits for most other vector ALU operations.

For multiply-add/subtract and various dot-product/filtering operations, src3 is the
operand to be added/subtracted from, and extended bit width of 12/24/48 bits of src3
are used. 12/24/48-bit results are calculated and written to the destination.

There is optional rounding/truncation after multiplication (and before add or subtract for
VMAdd, VMSub). Rounding is not by arbitrary bit counts but with a few selected options.

There are two encoding schemes:

For Word type (33-bit by 33-bit) multiply/multiply-add/multiply-subtract resulting in 48-
bit outcome, VPU supports:

.RO/.TO/omitted: no rounding (encoded as 0)

.T4: rounding down 4 bits (encoded as 5)

.T8: truncate down 7 bits (encoded as 6)

.T16: truncate down 16 bits (encoded as 7)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 326



There is an instruction (VMulWWL) that carries out 33-bit x 33-bit multiply without
rounding/truncation and produces 66-bit outcome in two register entries.
For all other type combinations (B, BBH, H, HHW, WHW):

.RO/.TO/omitted: no rounding (encoded as 0)

.R7: rounding down 7 bits (encoded as 1)

.R15: rounding down 15 bits (encoded as 2)

.R16: rounding down 16 bits (encoded as 3)

.R4: rounding down 4 bits (encoded as 4)

.T7: truncate down 7 bits (encoded as 5)

.T15: truncate down 15 bits (encoded as 6)

.T16: truncate down 16 bits (encoded as 7)

Note that in Gen-1 VPU MAC instructions, there is just one set of encoding for non-Word
type:

.RO/omitted: no rounding (encoded as 0)

.R7: rounding down 7 bits (encoded as 1)

.R15: rounding down 15 bits (encoded as 2)

.R16: rounding down 16 bits (encoded as 3)

.TO: truncating O bits, same as no rounding (encoded as 4)

.T7: truncate down 7 bits (encoded as 5)

.T15: truncate down 15 bits (encoded as 6)

.T16: truncate down 16 bits (encoded as 7)

and for Word-type MAC, the only available rounding option is .T16, except for VMulWWL.

Note that not all options are supported in all VMul/VMAdd/VMSub instructions for all
types. Please see individual MAC instruction for details.

VPU supports the following type combinations of multiply/multiply-add/multiply-
subtract:

B: 9-bit by 9-bit multiplication with 12-bit accumulator or product

BBH: 9-bit by 9-bit multiplication with 24-bit accumulator or product

BBW: 9-bit by 9-bit multiplication with 32-bit accumulator

H: 17-bit by 17-bit multiplication with 24-bit accumulator or product

HHW: 17-bit by 17-bit multiplication with 48-bit accumulator or product

WHW: 33-bit by 17-bit multiplication with 48-bit accumulator or product, src2 isin
half-word lanes, but only even-numbered lanes are used, lining up with W lanes

W: 33-bit by 33-bit multiplication with truncation of 0/4/8/16 bits, keeping 48 LSBs
of product.
WWL: 33-bit by 33-bit multiplication with 66-bit product

B, H, WHW, W are lane-parallel operations, in the sense that we have src1[i] * src2[i] >
dst[i]. The others, BBH, BBW, HHW, WWH, WWL, are lane-expansion operations, with

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 327



single vector as src1, single vector as src2, but double vector as src3/destination to
receive the 2x wider output. In lane-expansion operations, outcome elements are
deinterleaved to the two src3/destination registers to avoid long routes.

A few expanding operations (VDotP4x2BBH/HHW, VFilt4x2BBH/HHW,
VFilt4x2x2BBH/BBW) produce two sets of products and accumulate into two sets of
accumulators, requiring a quad vector for the accumulator operand.

For example, VMAddBBH.R15 VO, V1, V2:V3 would result in:
V2[@] += round(ve[e] * Vvi[e], 15);

V3[@] += round(Ve[1] * V1[1], 15);

V2[1] += round(Ve[2] * V1[2], 15);

V3[1] += round(Ve[3] * V1[3], 15)

’

;2[15] += round(Ve[30] * V1[38], 15);
V3[15] += round(V@[31] * V1[31], 15);

VMuUIWWL long multiplication (33-bit-by-33-bit multiplication producing 66-bit outcome)
does not offer rounding option, and there’s no multiply-add/subtract variations, just
multiplication. The L in destination type indicates 66-bit width, and is split into a pair of
destination registers, lower unsigned 32-bit stored in the low (even) register, and upper
33-bit signed extended in the high (odd) register.

For example, VMuUlWWL VO, V1, V2:V3 would result in:

v2[e] = low_32b(ve[e] * vi[@]);
v3[e] = high_33b(ve[@] * vi[e]);
V2[1] = low_32b(Ve[1] * VI[1]);
V3[1] = high_33b(Ve[1] * V1[1]);
V2[7] = low_32b(Ve[7] * V1[7]);
V3[7] = high_33b(Ve[7] * V1[7]);

VDotP2HHW carries out 2 taps x 16 outputs per instruction. We have two src1 (srcla
and src1b) to supply data for first and second taps. We share src2 between each pair of
output to supply the two taps per lane.

For example, VDotP2HHW VO, V1, V2, V4:V5 would treat VO, V1, V2 each as Half-word
vectors (16H each), V4:V5 together as a Word vector (16W), and perform:

VA[Q] += Ve[e]*V2[e] + Vi[e]*V2[1];

V5[0] += Ve[1]*V2[@] + VI[1]*V2[1];

VA[1] += VO[2]*V2[2] + V1[2]*V2[3];

V5[1] += VO[3]*V2[2] + V1[3]*V2[3];

;4[7] +
V5[7] +

VO[14]*v2[14] + V1[14]*V2[15];
VO[15]*V2[14] + V1[15]*V2[15];

In this case, conceptual data V4 and V5 are first interleaved into one stream to supply
added to the multiply-add operation, then deinterleaved back to the two registers.

VBlend performs alpha blending between Vsrcla and Vsrc1b, using Vsrc2 as the
blending factor. There is no rounding option, as rounding is tied to the supported data
type, 7 bits for Byte type, and 15 bits for Half-word type.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 328



For example, in VBlendH VO, V1, V2, V3, we treat each vector as 16 Half-words, say VO =
A, V1 =B,V2 =alpha, V3 =Y, and perform

Y[@] = A[@] + round(B[@] * alpha[@] - A[@] * alpha[@], 15);

Y[1] = A[1] + round(B[1] * alpha[1] - A[1] * alpha[1], 15);

;[15] = A[15] + round(B[15] * alpha[15] — A[15] * alpha[15], 15);

VCMulH and VCMulHHW complex multiplication is supported with rounding/truncation
but no 3 source input. Real and imaginary parts are interleaved in lanes.

For example, say we have VCMulH VO, V1, V2 instructions. VO, V1 each holds a vector of
8 complex numbers (16 real + imaginary components), and outcome V2 is another vector
of 8 complex numbers. VPU calculates:

v2[e] = ve[e] * vi[e] - ve[1] * VI[1]; // CO.R = AB.R * B8.R - AG.I * BO.I

V2[1] = ve[e] * Vi[1] + Vve[1] * vi[e]; // C8.I = A@.R * B8.I + AB.I * BO.R

ve[14] * v1[14] - ve[15] * V1[15]; // C7.R = A7.R * B7.R - A7.I * B7.I
ve[14] * v1[15] + Vve[15] * V1[14]; // C7.I = A7.R * B7.I + A7.I * B7.R

;2[14]
V2[15]

For VCMulHHW, outputs are deinterleaved between the two vector registers. For
example, VCMulHHW VO, V1, V2:V3 would lead to:

v2[e] = ve[e] * vi[e] - ve[1] * Vv1[1]; // CO.R = AB.R * B8.R - AB.I * BO.I
v3[e] = ve[e] * Vvi[1] + ve[1] * vi[e]; // C6.I = AB.R * B8.I + AB.I * BO.R
V2[7] = ve[14] * V1[14] - ve@[15] * V1[15]; // C7.R = A7.R * B7.R - A7.I * B7.I
V3[7] = ve[14] * V1[15] + v@[15] * V1[14]; // C7.I1 = A7.R * B7.I + A7.I * B7.R

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 329



9.8.7.2

Instruction Summary

Table 35. Vector multiply-add instructions

Function

Assembly Format

Comments

Vector multiply

VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,
Vdst/ACdst

VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,
DVdst/DACdst

type = B, H, BBH, HHW, WHW, W

W type does not allow Rsrc2.

VMuUIWHW DVsrc1/DWsrc1, DVsrc2, DVdst/DWdst
VMuUlWHW DVsrc1, DWsrc2, DVdst/DWdst
VMuUIW.T<bits> DVsrc1/DWsrc1, DVsrc2,
DVdst/DWdst

VMulW.T<bits> DVsrc1, DWsrc2, DVdst/DWdst
.RO/T4/T8/T16 for W

Vdst = round/trunc(Vsrc1 * Vsrc2,
bits)

Vector multiply-
add/sub

<pred> VMAdd<type>_CA . R/T<bits>

Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst
VMAdd<type>.R/T<bits>

Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst
pred> VMSub<type>_CA . R/T<bits>

Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst
VMSub<type>.R/T<bits>

Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst

type = B, H, BBH, HHW, WHW, W
W type does not allow Rsrc2.

Vdst = -Vdst +/- round/trunc(Vsrc1 *
Vsrc2, nbits)

DV multiply-add/sub

<pred> VMAdd<type>_CA.R/T<bits> DVsrcl,
DVsrc2/DWsrc2/Rsrc2, DACsrc3dst/QACsrc3dst

<pred> VMSub<type>_CA.R/T<bits> DVsrc1,
DVsrc2/DWsrc2/Rsrc2, DACsrc3dst / QACsrc3dst

type = {B, BBH, H, HHW, WHW, W}
W type does not allow Rsrc2.

.RO only for B, BBH, H, HHW, WHW
.RO/T4/T8/T16 for W

Vector long multiply

VMulWWL Vsrc1, Vsrc2, DVdst/DACdst

Perform signed 33-bit x signed 33-bit
multiplication producing 66-bit
product, lower 32-bit unsigned in
Vdst.lo and upper 34-bit sign-
extended in Vdst.hi, no rounding

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 330




Function

Assembly Format

Comments

Vector complex
multiply

VCMulHHW Vsrc1, Vsrc2, DACdst (Gen-1)
VCMulHHW DVsrc1, DWsrc2, QACdst
VCMulWHW DVsrc1, Wsrc2, DACdst

Vector dot product, 2-
term

<pred> VDotP2BBH/HHW_CA Vsrcla, Vsrclb, Vsrc2,
DACsrc3dst

<pred> VDotP2WHW_CA Vsrcla, Vsrclb, Vsrc2,
ACsrc3dst

<pred> VDotP2W_CA.T16 Vsrcla, Vsrclb, Vsrc2,
ACsrc3dst

Perform 2-term dot product, Vdst +=
Vsrcla * Vsrc2_even + Vsrclb *
Vsrc2_odd

Vector dot product 2-
term with negation

<pred> VDotPN2<type>_CA
Vsrcla, Vsrclb, Vsrc2, Vsrc3dst

Perform a variation of 2-term dot
product, Vdst += Vsrcla * Vsrc2_even
=Vsrc1b * Vsrc2_odd

type = WHW
Vector blend VBlend<type> Vsrcla = X0, Vsrc1b = X1, Vsrc2 =
Vsrcla, Vsrclb, Vsrc2/Rsrc2, Vdst alpha.
VBlend<type> Vdst = round(X1*alpha - X0*alpha,
Wsrcla, Wsrc1b, Vsrc2/Rsrc2, Vdst nbits) + X0
type =B, H, W

Vector blend
horizontal

VHBIlend_I<type> Vsrcla, Vsrclb, Vsrc2, Vdst
type = B, H, W, BHB

Vector double multiply

VMul2<type> . R/T<bits> DVsrc1, Vsrc2/Rsrc2,
DVdst/DACdst

type = B, H, WHW

Rsrc2 option available for B/H types only

WHW type requires .T16

Vsrc1 and Vdst are double vector.

Double multiplication sharing Vsrc2

Vector 4-tap filter

<pred> VFilt4<type>_CA Vsrcla, Vsrc1b, Wsrc2,
DACsrc3dst

type = BBH, HHW

Vsrcla, Vsrc1b supplies overlapping
data vector offset by 4 entries

Vector 4-tap x 2 filter

<pred> VFilt4x2<type>_CA Vsrcla, Vsrc1b, DWsrc2,
DACsrc3dst

type = BBH, HHW

Vsrcla, Vsrc1b supplies overlapping
data vector offset by 4 entries

Vector 4x2-tap x 2
filter

<pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b,
DWsrc2, QACsrc3dst

<pred> VFilt4x2x2BBW_CA DVsrcla, DVsrclb,
DWsrc2, QXACsrc3dst

For BBH/BBW, DVsrcla, DVsrc1b
each supplies overlapping data vector
offset by 8 entries.

Vector XNor add
8x4x2

<pred> VXNorAdd8x4x2_CA DVsrcla, DVsrclb,
DWsrc2, QXACsrc3dst

Convolution between binary data &
coefficients, 8 horizontal x 4 vertical
taps x 2 sets per byte lane

Vector 4-term dot
product

<pred> VDotP4HHW_CA DVsrcla, DVsrc1b, Wsrc2,
DACsrc2dst

<pred> VDotP4WHW_CA DVsrcla, DVsrc1b, Wsrc2,
ACsrc2dst

<pred> VDotP4BBW_CA DVsrcla, DVsrclb, Wsrc2,

DXACsrc3dst

DVsrcla, DVsrc1b together supplies 4
independent data terms

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 331




Function

Assembly Format

Comments

Vector 4-term x 2 dot
product

<pred> VDotP4x2BBH_CA DVsrcla, DVsrclb,
DWsrc2, QACsrc3dst

<pred> VDotP4x2HHW_CA DVsrcla, DVsrclb,
DWsrc2, QACsrc3dst

<pred> VDotP4x2BBW_CA DVsrcla, DVsrclb,
DWsrc2, QXACsrc3dst

DVsrcla, DVsrc1b together supplies 4
independent data terms

Vector 2-term x 2 dot
product

<pred> VDotP2x2W_CA.T16 Vsrcla, Vsrc1b, DWsrc2,
DACsrc3dst

Vsrcla, Vsrc1b together supplies 2
independent data terms

Vector sum of squares

VSumSqg<type> Vsrcl, Vsrc2, Vdst/DVdst
type = BBH, HHW, W.T16

dst =src1”2 + src2”2
Truncate each term by 16 bits for W
type

Vector square of sum

VSqSum<type> Vsrc1, Vsrc2, DVdst
type = BBH, HHW

dst =src172 + src272 + 2*src1*src2

Vector 2x2 matrix
determinant

VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst
VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst
VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst
type = HHW, W.T16

dst = src1.lo * src2.hi-src1.hi *src2.lo

9.8.7.3

VMUL

Instruction name VMUL

Functionality

Vector multiply

Assembly format

VMuIH.R7 V2,V3,V4
VMulBBH V2, V3, V4:V5
VMuIBBH V2, R3, V4:V5
VMulHHW V2, V3, ACO:AC1

VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vdst/ACdst
VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVdst/DACdst

Rounding O bits (.RO) is omitted. For example,

Type and bit width B: 32 x (9-bit src1/src2 = 12-bit dst)

H: 16 x (17-bit src1/src2 = 24-bit dst)
BBH: 32 x (9-bit src1/src2 = 24-bit dst)
HHW: 16 x (17-bit src1/src2 = 48-bit dst)

W: 8 x (33-bit src1/src2 = 48-bit dst)

support for Rsrc2.

WHW: 8 x (33-bit src1, 17-bit src2 > 48-bit dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no

All other types support full set of rounding/truncation options and Rsrc2.

Predication

not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 332




Instruction name

VMUL

Source options

src1: single vector register in VRF
src2: single vector register in VRF, scalar register (except W type)

Destination options

B/H/WHW)/W: dst: single vector register in VRF or ARF
BBH/HHW: dst: double vector register in VRF or ARF

Additional options

Intrinsics/operator

vcharx vmulb(vcharx src1, vcharx src2, u3imm rnd_opt);
vshortx vmulh(vshortx src1, vshortx src2, u3imm rnd_opt);
dvshortx vmulbh(vcharx srcl1, vcharx src2, u3imm rnd_opt);
dvintx vmulhw(vshortx src1, vshortx src2, u3imm rnd_opt);
vintx vmulwhw(vintx srci1, vintx src2, u3imm rnd_opt);
vintx vmulw(vintx src1l, vintx src2, u3imm rnd_opt);

vintx vmulw_t16(vintx src1, vintx src2); // Gen-1 legacy

vcharx vmulb(vcharx src1, int src2, u3imm rnd_opt);
vshortx vmulh(vshortx src1, int src2, u3imm rnd_opt);
dvshortx vmulbh(vcharx src1, int src2, u3imm rnd_opt);
dvintx vmulhw(vshortx src1, int src2, u3imm rnd_opt);
vintx vmulwhw(vintx src1, int src2, u3imm rnd_opt);

// Double vector pseudo intrinsics

dvcharx dvmulb(dvcharx src1, dvcharx src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, dvshortx src2, u3imm rnd_opt);
dvintx dvmulwhw(dvintx src1, dvintx src2, u3imm rnd_opt);

dvcharx dvmulb(dvcharx src1, int src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, int src2, u3imm rnd_opt);
dvintx dvmulwhw(dvintx src1, int src2, u3imm rnd_opt);

Additional details

For each lane, dst = round(src1 * src2, rnd_opt), using the specified B/H/W lane,
and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take
lower 17-bit of each W lane.

For BBH/HHW, destination double vector is deinterleaved between the two
vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

See 9.8.7.1 for rounding/truncation options.

For example, VMuIB.R7 V1, V2, V3 has the following data layout and behavior:

V1: D[O] D[1] D[2] D[3] D[30] D[31]
va: Cl[o] C[1] Cl2] C[3] C[30] C[31]
V3: P[O] P[1] P[2] P[3] P[30] P[31]

Pl[i] = round(D[i] * C[il, 7); // C[i], D[i] taken from 9 LSBs of each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 333




While VMUlHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior:

V1 D[O] D[1] D[2] D[3] D[14] | D[15]
v2: Cclo] CI1] Ccl2] CI3] clr4] Cl15]
AC2: P[O] P[2] P[14]
AC3: P[1] P[3] P[15]

P[i] = truncate(DIi] * C[i], 16); // Cl[il, D[i] taken from 17 LSBs of each lane

The outcome from input lane 1 is deposited in AC3 lane 0, which is DAC1 (viewing AC2
and AC3 as a double vector) lane 8, outcome from input lane 3 is deposited in AC3 lane 1,
which is DAC1 lane 9, and so on.

Instruction name

VMUL (Gen-2 double throughput)

Functionality

Vector multiply

Assembly format

VMulWHW DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst
VMulWHW DWsrc 1, DVsrc2/Rsrc2, DVdst/DWdst

VMulW.T<bits> DVsrc1, DVsrc2/DWsrc2, DVdst/DWdst
VMulW.T<bits> DWsrc1, DVsrc2, DVdst/DWdst

For Word type, truncating by O bit is omitted.

Type and bit width

WHW: 2 x 8 x (33-bit src1, 17-bit src2 = 48-bit dst)
W: 2 x 8 x (33-bit src1/src2 = 48-bit dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no
support for Rsrc2.

For WHW type, only no rounding/truncation (RO) is supported, and there is
support for Rsrc2.

Predication

not available

Source options

src1: double vector register in VRF/WRF
src2: double vector register in VRF/WRF or scalar register
excluding both src1 and src2 from WRF

Destination options

Double vector register in VRF/WRF

Additional options

Intrinsics/operator

dvintx dvmulwhw (dvintx srcl, dvintx src2);
dvintx dvmulwhw (dvintx srcl, int src2);
dvintx dvmulw (dvintx srcl, dvintx src2, u3imm rnd opt);

dvintx dvmulw tl6(dvintx srcl, dvintx src2); // Gen-1 legacy

Additional details

For each lane, dst = src1 * src2, or (src1 * src2) >> trunc_bits.

No rounding is supported for VMulWHW. Truncation by 0/4/8/16 bits is
supported for VMulW.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 334




For example, VMuUlWHW VO0O:V1, V2:V3, V4:V5 has the following data layout and behavior:

VO: D[0] D[1] D[2] D[3] D[7]
Ve: Cc[o] C[1] C[2] C[3] C[7]
\VZE P[O] P[1] P[2] P[3] P[7]
V1 D[8] D[9] D[10] D[11] D[15]
V3: C[8] C[9] C[10] C[11] C[15]
V5: P[8] P[9] P[10] PL11] P[15]
P[i] = DI[i] * CIil; // D[i] taken from 33 LSBs of each lane,

// C[i] taken from 17 LSBs of each lane

There is nothing wrong with drawing the layout as a single row per operand, showing
lane O, 1, ..., 15. The above style of drawing it as two rows matches with micro-
architecture of the SIMD units inside the processor, and is more consistent across
various MAC instructions.

9.8.7.4 VMADD_CA

Instruction name | VMADD_CA

Functionality Vector multiply-add

Assembly format <pred> VMAdd<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst
pred = none, [P2..P15]

type = {B, H, BBH, HHW, WHW, W}

.RO omitted

VMAdd<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst

type = {B, BBH, H, HHW, WHW, W}
.RO omitted

Type and bit width | B: 32 x (9-bit src1/src2, 12-bit src3dst)

H: 16 x (17-bit src1/src2, 24-bit src3dst)

BBH: 32 x (9-bit src1/src2, 24-bit src3dst)

HHW: 16 x (17-bit src1/src2, 48-bit src3dst)
WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )
W: 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no support
for Rsrc2.

All other types support full set of rounding/truncation options and Rsrc2.

Predication Available across lanes to clear accumulator

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 335




Instruction name | VMADD_CA

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register (except W type)

Destination B/H/WHW)/W: src3dst: single vector register in ARF or VRF
options BBH/HHW: src3dst: double vector register in ARF or VRF

Additional options

Intrinsics/ operator | // predicated
vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);

vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt,int pred);
dvintx vmaddhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);

vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);

vintx vmaddw_t16(vintx src1, vintx src2, vintx src3, int pred);

vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmaddhw(vshortx srci1, int src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);

// unpredicated

vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt);
vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt);
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt);
dvintx vmaddhw(vshortx srci1, vshortx src2, dvintx src3, u3imm rnd_opt);
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);

vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);

vintx vmaddw_t16(vintx src1, vintx src2, vintx src3);

vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt);
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt);
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt);
dvintx vmaddhw(vshortx srci1, int src2, dvintx src3, u3imm rnd_opt);
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);

// Double vector pseudo intrinsics, when (rnd_opt != @)

dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt,int pred);
dvshortx dvmaddh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt,

int pred);

dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src3@, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst@, dvshortx & dst1);

void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src3@, dvintx src31, u3imm
rnd_opt, int pred, dvintx & dst@, dvintx & dst1);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 336




Instruction name

VMADD_CA

dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, int src2, dvshortx src3@, dvshortx src31, u3imm rnd_opt,
int pred, dvshortx & dst@, dvshortx & dst1);

void dvmaddhw(dvshortx src1, int src2, dvintx src3@, dvintx src31, u3imm rnd_opt,
int pred, dvintx & dst@, dvintx & dst1);

Additional details

For each lane, src3dst += round/trunc(src1 * src2, rnd_opt), using the specified B/H/W lane,
and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-
bit of each W lane.

When predicate is off, only multiply-round is performed, src3dst = round/trunc(src1 * src2,
rnd_opt), effectively clearing the accumulator.

For BBH/HHW, destination double vector registers are deinterleaved between the two
vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

See 9.8.7.1 for rounding/truncating options. For W,.R0/T4/T8/T 16 options are supported.

Note that we do not support scalar source 2 when source 2 is of the Word type. This is
because for Word type we would like to use 33 bits so we can support both signed 32-bit
and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits, and
we do not want to create variation of behavior between source 2 being from a vector or a
scalar, nor do we want to have Signed/Unsigned designation in the instruction itself (like
scalar having LMULSS/SU/UU), so we just don’t support scalar source 2.

For example, VMAddB.R7 V1, V2, V3 has the following data layout and behavior:

V1: D[O] D[1] D[2] D[3] D[30] D[31]
ve: C[o] Cl1] Cl2] C[3] C[30] C[31]
V3: A[0] Al] Al2] A[3] A[30] A[31]

Alil = A[i] + round(DL[i] * C[i], 7); // Clil, D[i] taken from 9 LSBs of each lane

While [P2] VMAdJdHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior:

V1 D[0] D[1] D[2] D[3] D[14] D[15]
ve: C[o] Cl1] Cl2] C[3] Cl14] C[15]
AC2: A[0] Al2] A[14]
AC3: Al1] A[3] A[15]

Ali] = P2 ? (A[i] + truncate(D[i] * C[i], 16)) : truncate(D[i] * C[i], 16)

// Cli], D[i] taken from 17 LSBs of each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 337




The accumulator for input lane 1 is mapped to AC3 lane O, which is DAC1 (viewing AC2
and AC3 as a double vector) lane 8, accumulator for input lane 3 is mapped to AC3 lane
1, which is DAC1 lane 9, and so on.

Instruction name

VMADD_CA (Gen-2 double vector/throughput)

Functionality

Vector multiply-add

Assembly format

<pred> VMAdd<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,
DACsrc3dst /QACsrc3dst

pred = none, [P2..P15]
type = {B, BBH, H, HHW, WHW, W}

.RO only for B, BBH, H, HHW, WHW
.RO/T4/T8/T16 for W

Type and bit width

B: 2 x 32 x(9-bit src1/src2, 12-bit src3dst)

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst)

H: 2x 16 x (17-bit src1/src2, 24-bit src3dst)

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst)
WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )
W: 2 x 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no support
for Rsrc2.

All other types support no rounding/truncation option (R0O) and Rsrc2.

Predication

Available across lanes to clear accumulator

Source options

src1: double vector register in VRF
src2: double vector register in VRF/WRF (all types) or scalar register (all except W type)

Destination options

B/H/WHW)/W: src3dst: double vector register in ARF
BBH/HHW: src3dst: quad vector register in ARF

Additional options

Intrinsics/ operator

// Note that some of the following intrinsic function names are the same as double vector
// pseudo intrinsic functions in the non-double vector/throughput variations of VMAdd_CA.
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double

// vector/throughput instructions when (rnd_opt == 8). Otherwise, each intrinsic function
// maps to 2 instances of the single vector instructions. For w type, the double

// vector intrinsic function always maps to a double vector/throughput instruction.

dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmaddw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmaddw_t16(dvintx src1, dvintx src2, dvintx src3, int pred);

void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src3_8, dvintx src3_1, u3imm

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 338



Instruction name

VMADD_CA (Gen-2 double vector/throughput)

rnd_opt, int pred, dvintx & dst_@, dvintx & dst_1);

void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src3_8, dvshortx src3_1, u3imm

rnd_opt, int pred, dvshortx & dst_@, dvshortx & dst_1);

dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, int src2, dvshortx src3_0, dvshortx src3_1, u3imm

rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1);

void dvmaddhw(dvshortx src1, int src2, dvintx src3_8, dvintx src3_1, u3imm rnd_opt,
int pred, dvintx & dst_@, dvintx & dst_1);

Additional details

For example, [P3] VMAddHHW VO:V1, V2:V3, ACO:AC3 has the following data layout and

behavior:
VO: D[0] D[2] D[4] D[6] D[28] D[30]
V1: D[1] D[3] D[5] D[7] D[29] D[31]
Ve: Cc[o] C[2] C[4] c[e] C[28] C[30]
V3: Cl1] C[3] CI5] CI7] C[29] | C[31]
ACO: | ACC[O] ACC[4] ACC[28]
AC1: | ACC[2] ACCI[6] ACCI[30]
AC2: | ACC[1] ACCI[5] ACC[29]
AC3: | ACC[3] ACC[7] ACC[31]
ACCIi] = P3 ? (ACCIi] + D[i] * C[i]) : (D[i] * C[i]);
9.8.7.5 VMSUB_CA
Instruction name VMSUB_CA

Functionality

Vector multiply-subtract

Assembly format

pred = none, [P2..P15]
type = {B, H, BBH, HHW, WHW, W}
.RO omitted

type = {B, BBH, H, HHW, WHW, W}

VMSub<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVsrc3dst

<pred> VMSub<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 339




Instruction name

VMSUB_CA

.RO omitted

Type and bit width

B: 32 x (9-bit src1/src2, 12-bit src3dst)

H: 16 x (17-bit src1/src2, 24-bit src3dst)

BBH: 32 x (9-bit src1/src2, 24-bit src3dst)

HHW: 16 x (17-bit src1/src2, 48-bit src3dst)
WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )
W: 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no
support for Rsrc2.

All other types support full set of rounding/truncation options and Rsrc2.

Predication

Available across lanes to clear accumulator (except W type)

Source options

src1: single vector register in VRF

src2: single vector register in VRF or scalar register

Destination options

B/H/WHW: src3dst: single vector register in ARF or VRF
BBH/HHW: src3dst: double vector register in ARF or VRF

Additional options

Intrinsics/ operator

// predicated

vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);

vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);

vintx vmsubw_t16(vintx src1, vintx src2, vintx src3, int pred);

vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);

// unpredicated

vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt);
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt);
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt);
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt);
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);

vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);

vintx vmsubw_t16(vintx src1, vintx src2, vintx src3);

vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt);
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt);
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt);
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 340




Instruction name

VMSUB_CA

vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);

// Double vector pseudo intrinsics, when (rnd_opt != @)

dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx srci1, dvcharx src2, dvshortx src30, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst@, dvshortx & dst1);

void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src3@, dvintx src31, u3imm
rnd_opt, int pred, dvintx & dst@, dvintx & dst1);

dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx src1, int src2, dvshortx src30, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst@, dvshortx & dst1);

void dvmsubhw(dvshortx src1, int src2, dvintx src3@, dvintx src31, u3imm rnd_opt,
int pred, dvintx & dst@, dvintx & dst1);

Additional details

For each lane, src3dst -= round(src1 * src2, rnd_opt), using the specified B/H/W lane, and
taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-bit
of each W lane.

When predicate is off, only multiply-round is performed, src3dst = round(src1 * src2,
rnd_opt), effectively clearing the accumulator.

For BBH/HHW, destination double vector registers are deinterleaved between the two
vector registers. See Data Ordering in Single and Double Vector Registers for data
ordering in single/double vector registers.

See Types and Data Widths for rounding/truncating options. For W,.R0/T4/T8/T16
options are supported.

Note that we do not support scalar source 2 when source 2 is of the Word type. This is
because for Word type we would like to use 33 bits so we can support both signed 32-bit
and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits,
and we do not want to create variation of behavior between source 2 being from a vector
or a scalar, nor do we want to have Signed/Unsigned designation in the instruction itself
(like scalar having LMULSS/SU/UU), so we just don’t support scalar source 2.

See VMAdd _CA for data layout and behavior examples.

Instruction name

VMSUB_CA (Gen-2 double vector/throughput)

Functionality

Vector multiply-subtract

Assembly format

<pred> VMSub<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DACsrc3dst /QACsrc3dst

pred = none, [P2..P15]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 341




Instruction name | VMSUB_CA (Gen-2 double vector/throughput)

type = {B, BBH, H, HHW, WHW, W}
.RO only for BBH, HHW, WHW
.RO/T4/T8/T16 for W

Type and bit width B: 2 x 32 x(9-bit src1/src2, 12-bit src3dst)

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst)

H: 2x 16 x (17-bit src1/src2, 24-bit src3dst)

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst)
WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst )
W: 2 x8x(33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (RO/T4/T8/T16) are supported, and there is no support
for Rsrc2.

All other types support no rounding/truncation option (R0O) and Rsrc2.

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF
src2: double vector register in VRF/WREF (all types) or scalar register (all except W type)

Destination B/H/WHW)/W: src3dst: double vector register in ARF
options BBH/HHW: src3dst: quad vector register in ARF

Additional options

Intrinsics/ operator | // Note that some of the following intrinsic function names are the same as double vector
// pseudo intrinsic functions in the non-double vector/throughput variations of VMSub_CA.
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double

// vector/throughput instructions when (rnd_opt == @). Otherwise, each intrinsic function
// maps to 2 instances of the single vector instructions. For w type, the double

// vector intrinsic function always maps to a double vector/throughput instruction.

dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmsubw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmsubw_t16(dvintx src1, dvintx src2, dvintx src3, int pred);

void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src3_@, dvintx src3_1, u3imm
rnd_opt, int pred, dvintx & dst_@, dvintx & dst_1);

void dvmsubbh(dvcharx src1, dvcharx src2, dvshortx src3_8, dvshortx src3_1, u3imm
rnd_opt, int pred, dvshortx & dst_@, dvshortx & dst_1);

dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx src1, int src2, dvshortx src3_@, dvshortx src3_1, u3imm

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 342




Instruction name | VMSUB_CA (Gen-2 double vector/throughput)

rnd_opt, int pred, dvshortx & dst_@, dvshortx & dst_1);

void dvmsubhw(dvshortx src1, int src2, dvintx src3_8, dvintx src3_1, u3imm rnd_opt,
int pred, dvintx & dst_@, dvintx & dst_1);

Additional details

See VMAdd _CA for data layout and behavior examples.

98.7.6 VMULWWL

Instruction name VMULWWL

Functionality Vector long multiply

Assembly format VMul<type> Vsrc1, Vsrc2, DVdst/DACdst

Type and bit width WWL: 8 x (33-bit src1/src2 = 66-bit > 2 x 48-bit)
Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst: double vector register in VRF or ARF, lower 32-bit zero-extended in the low
register, upper 34-bit sign-extended in the high register

Additional options

Intrinsics/operator dvintx vmulwl(vintx src1, vintx src2);

Additional details For each lane, dst = src1 * src2.

Destination double vector registers are low/high deinterleaved between the two
vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

While VMUIWWL V1, V2, V4:V5 has the following data layout and behavior:

V1. D[O] D[1] D[7]
Ve: c[o] C[1] C[7]
V4. P[O].lo P[1].lo P[7].lo
V5: P[Ol.hi | P[11hi | .. P[71.hi
P[i] = D[i] * C[i]; // Cli], D[i] taken from 33 LSBs of each lane

Plillo =P[i] & ((1 <<32)-1);
P[i].hi = P[i] >> 32;

9.8.7.7 VCMUL

Instruction name | VCMUL (Gen-1)

Functionality Vector complex multiply

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 343



Instruction name

VCMUL (Gen-1)

Assembly format

VCMul<type>.R/T<bits> Vsrc1, Vsrc2, Vdst

.RO is omitted

Type and bit width

H: 8 x (complex 17-bit src1/src2 - 24-bit dst)
HHW: 8 x (complex 17-bit src1/src2 > 48-bit dst)

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

H dst: single vector register in VRF
HHW dst: double vector register in VRF

Additional options

Intrinsics/operator

vshortx vemulh(vshortx src1, vshortx src2, u3imm rnd_opt);
dvintx vemulhw(vshortx src1, vshortx src2, u3imm rnd_opt);

// double vector pseudo intrinsics

dvshortx dvemulh(dvshortx src1, dvshortx src2, u3imm rnd_opt);

Additional details

Real/imaginary lane interleaved (even lane = real, odd lane = imaginary).
Vdst.r = round(Vsrc1.r * Vsrc2.r, nbits) — round(Vsrc1.i * Vsrc2.i, nbits)
Vdst.i = round(Vsrc1.r * Vsrc2.i, nbits) + round(Vsrc1.i * Vsrc2.r, nbits)
or

Vdst.r = trunc(Vsrcl.r * Vsrc2.r, nbits) - trunc(Vsrc1.i * Vsrc2.i, nbits)

Vdst.i = trunc(Vsrc1.r * Vsrc2.i, nbits) + trunc(Vsrc1.i * Vsrc2.r, nbits)

For example, VCMulIH.R7 V1, V2, V3 has the following data layout and behavior:

V1: DRI[O] DI[0] DRI[1] DI[1] DRI[7] DI[7]
ve: CRI[O] Cl[o] CR[1] CI[1] CR[7] CI[7]
V3: PR[O] PI[O] PR[1] PI[1] PR[7] PI[7]

PRIi] = round(DRI[i] * CR[i], 7) - round(DI[i] * CI[i], 7);
PI[i] = round(DR[i] * CI[i], 7) + round(DI[i] * CRI[i], 7);
// C*[i], D*[i] taken from 17 LSBs of each lane

While VCMulHHW.T16 V1, V2, V4:V5 has the following data layout and behavior:

V1 DRI[O] DI[0] DR[1] DI[1] DR[7] DI[7]
ve: CR[O] Cl[o] CR[1] CI[1] CR[7] CI[7]
V4. PR[O] PR[1] PR[7]
V5: PI[O] PI[1] PI[7]

PRIi] = truncate(DRI[i] * CR[i], 16) - truncate (DI[i] * CI[i], 16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 344




PI[i] = truncate (DR[i] * CI[i], 16) + truncate (DI[i] * CR[i], 16);
// C*[i], D*[i] taken from 17 LSBs of each lane

The following instruction is added in Gen-2 VPU to accelerate 16-bit x 16-bit and 32-bit x
16-bit FFT by 2x.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 345



Instruction name

VCMUL (added in Gen-2)

Functionality

Vector complex multiply

Assembly format

VCMulHHW DVsrc1, DWsrc2, QACdst
VCMulWHW DVsrc1, Wsrc2, DACdst
VCMuIW.T16 DVsrc1, DWsrc2, DACdst

Type and bit width

HHW: 16 x (complex 17-bit src1/src2 - 48-bit dst)
WHW: 8 x (complex 33-bit src1, 17-bit src2 - 48-bit dst)
W: 8 x (complex 33-bit src1/src2 > 48-bit dst)

Predication

not available

Source options

src1: double vector register real in .lo, imaginary in .hi, in VRF
src2: HHW/W: double vector register real in .lo, imaginary in .hi, in WRF
WHW: single vector register real/imaginary interleaved in WRF

NOTE THAT storage format is different from single-vector VCMul instructions. In
single-vector instructions real/imaginary are interleaved in a single vector, whereas
in double-vector instructions real/imaginary are store in .lo and .hi single vector
respectively.

Destination options

HHW: quad vector register with even real in .q0, odd real in .q1, even imaginary in
.g2, odd imaginary in .q3, in ARF

WHW/W: double vector register with real in .lo, imaginary in .hi, in ARF

Additional options

Intrinsics/operator

void dvemulhw(dvshortx src1, dvshortx src2, dvintx &outr, dvintx &outi);
dvintx dvemulwhw(dvintx src1, vshortx src2);
dvintx dvemulw_t16(dvintx src1, dvintx src2);

Additional details

For HHW/WHW:
dst.r =srcl.r *src2.r —srcl.i * src2.i

dst.i=srcl.r *src2.i + srcl.i* src2.r

For W:
dst.r = (src1.r *src2.r >> 16) — (src1.i * src2.i >> 16)
dst.i=(srcl.r *src2.i>> 16) + (srcl.i * src2.r >> 16)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 346




For example, VCMulHHW VO:V1, W2:W3, AC4:AC7 has the following data layout and

behavior:

VO: DR[O] | DR[1] DR[14] | DR[15]
V1 DI[0] DI[1] DI[14] | DI[15]
wa: CR[0O] | CR[1] CR[14] | CR[15]
w3t cl[o] CI[1] CI[14] | CI[15]
AC4: PR[O] PR[14]

AC5: PR[1] PR[15]

ACS: PI[0] PI[14]

ACT: PI[1] PI[15]

PRI[i] = DR[i] * CR[i] - DI[i] * CI[i];
PI[i] = DRi] * CI[i] + DI[i] * CRIil;
// C*[i], D*[i] taken from 17 LSBs of each lane

For example, VCMulWHW VO:V1, W2, AC4:AC5 has the following data layout and

behavior:
VO: DR[O] DR[1] DR[6] DR[7]
V1. DI[0] DI[1] DI[6] DI[7]
Wwea: CR[O] CI[0] CR[1] CI[1] CR[6] Cli[6] CR[7] CI[7]
AC4: PR[O] PR[1] PR[6] PR[7]
ACS: PI[O] PI[1] PI[6] PI[7]

PR[i] = DR[i] * CR[i] - DI[i] * CI[i];
PI[i] = DR[i] * CI[i] + DI[i] * CR[il;

// D*[i] taken from 33 LSBs of each lane,
// C*[i] taken from 17 LSBs of each lane

For example, VCMulW.T16 VO:V1, W2:W3, AC4:AC5 has the following data layout and

behavior:

VO: DRI[O] DR[1] DR[7]
V1 DI[0] DI[1] DI[7]
wa: CRI[O] CR[1] CR[7]
W3: Cl[o] CI[1] CI[7]
AC4: PR[O] PR[1] PR[7]
ACS: PI[O] PI[1] PI[7]

PRI[i] = truncate(DR[i] * CR[i], 16) - truncate(DI[i] * CI[i], 16);

from

PI[i] = truncate(DR[i] * CI[i], 16) + truncate(DI[i] * CR[i], 16);

lane

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 347

// C*[i], D*[i] taken

// 33 LSBs of each



9.8.7.8 VDOTP2_CA

Instruction name

VDOTP2_CA

Functionality

Vector 2-term dot product

Assembly format

<pred> VDotP2BBH/HHW_CA Vsrcla, Vsrclb, Vsrc2, DACsrc3dst
<pred> VDotP2WHW_CA Vsrc1a, Vsrc1b, Vsrc2, ACsrc3dst
<pred> VDotP2W_CA.T16 Vsrcla, Vsrclb, Vsrc2, ACsrc3dst

pred = none, [P2..P15]
.T16 is available only for W type and is always applied with W type.

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)
WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)
W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: single vector register in VRF
src1b: single vector register in VRF

src2: single vector register in VRF

Destination options

src3dst: double vector register (BBH, HHW types) in ARF
src3dst: single vector register (WHW, W type) in ARF

Additional options

Intrinsics/operator

dvshortx vdotp2_bbh(vcharx srcla, vcharx srclb, vcharx src2, dvshortx
src3dst, int pred);

dvintx vdotp2_hhw(vshortx srcla, vshortx srclb, vshortx src2, dvintx
src3dst, int pred);

vintx vdotp2_whw(vintx srcla, vintx srclb, vshortx src2, vintx src3dst,
int pred);

vintx vdotp2_w_t16(vintx srcla, vintx srclb, vintx src2, vintx src3dst,
int pred);

Additional details

When predicate is off, destination is replaced with the sum of 2 products,
Vsrc3dst = Vsrcla * Vsrc2_even + Vsrc1b * Vsrc2_odd,

effectively clearing the accumulator.

Otherwise, the sum of 2 products is added to the accumulator
Vsrc3dst += Vsrcla * Vsrc2_even + Vsrc1b * Vsrc2_odd

BBH: Treat coefficient vector as byte vector (32 x 9-bit), but share a pair of
coefficients between a pair of accumulators.

fori=0..15:
Vsrc3dst[2*] +=Vsrcla[2*i] * Vsrc2[2*i] + Vsrc1b[2*i]] * Vsrc2[2*i+1]
Vsrc3dst[2*i+1] += Vsrcl1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 348




Instruction name

VDOTP2_CA

HHW: Treat coefficient vector as half-word vector (16 x 17-bit), but share a pair of
coefficients between a pair of accumulators.

fori=0.7:
Vsrc3dst[2*] +=Vsrcla[2*i] *Vsrc2[2*] + Vsrc1b[2*i] * Vsrc2[2*i+1]
Vsrc3dst[2*i+1] += Vsrcl1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1]

WHW: Treat coefficient vector as half-word vector (16 x 17-bit).
fori=0.7:
Vsrc3dst[i] += Vsrclali] * Vsrc2[2*i] + Vsrc1bli] * Vsrc2[2*i+1]

W: Treat coefficient vector as word vector (8 x 48-bit) and each pair of W lanes
share 2 coefficients. Each product is truncated by 16 bits.

fori=0.3:
Vsrc3dst[2*] += (Vsrcla[2*i] * Vsrc2[2*i]>>16) + (Vsrc1b[2*i] * Vsrc2[2*i+1]>>16)

Vsrc3dst[2*i+1] += (Vsrc1a[2*i+1] * Vsrc2[2*]>>16) + (Vsrc1b[2*i+1] *
Vsrc2[2*i+1]>>16)

See 6.2.3.6 for data ordering in single/double vector registers.

For example, VDotP2BBH_CA V1, V2, V3, AC2:AC3 has the following data layout and

behavior:
V1 D[0O] D[1] D[2] D[3] D[30] D[31]
Ve: E[O] E[1] E[2] E[3] E[30] E[31]
V3: C[o][o] | c[1][o] | c[olf1] | crhrg | .. C[o][15] | C[1][15]
AC2: A[O] Al2] A[30]
AC3: Al1] A[3] A[31]
A[2*%] =A[2*] + C[O][i]*D[2*] + C[1][i]*E[2*];

A[2*i+ 1] = A[2*1 + 1] + C[O][i] * D[2*i + 1] + C[1][i] * E[2*i + 1];

While VDotP2W.T16 V1, V2, V3, AC2 has the following data layout and behavior:

\AE D[O] D[1] D[2] D[3] D[6] D[7]
Va: E[0] E[1] E[2] E[3] E[6] E[7]
V3: c[ojfo] | criifo1 | croiri] | cri | .. C[O][3] | C[11[3]
AC2: A[0] Al1] Al2] A[3] Al6] Al7]
Al[2*] = A[2*i]] + truncate(C[O][i] * D[2*i], 16) + truncate(C[1][i] * E[2*i], 16);

A[2% + 1] = A[2*1 + 1] + truncate(C[O][i] * D[2* + 1], 16) + truncate( C[1][i] * E[2*i + 1],

16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 349




9.8.79 VDOTPN2_CA

Instruction name VDOTPN2_CA

Functionality Vector 2-term dot product variation

Assembly format <pred> VDotPN2<type>_CA Vsrcla, Vsrcl1b, Vsrc2, Vsrc3dst
pred = none, [P2..P15]

Type and bit width WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options srcla: single vector register in VRF

src1b: single vector register in VRF
src2: single vector register in VRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vdotpn2_whw(vintx srcla, vintx srclb, vshortx src2, vintx src3dst,
int pred);
Additional details Perform multiply add/sub, Vsrc3dst += Vsrcla * Vsrc2_even - Vsrcl1b * Vsrc2_odd

when predicate is on.

When predicate is off, destination is replaced with the difference of products,
Vsrc3dst = Vsrcla * Vsrc2_even - Vsrc1b * Vsrc2_odd, effectively clearing the
accumulator.

Treat coefficient vector as half-word vector.
fori=0.7:
Vsrc3dst[i] += Vsrclalil*Vsrc2[2*i] - Vsrc1b[i]*Vsrc2[2*i+1]

See VDotP2 CA for data layout and behavior.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 350



9.8.7.10 VBLEND

Instruction name

VBLEND

Functionality

Vector blend

Assembly format

VBlend<type> Vsrcla, Vsrclb, Vsrc2/Rsrc2, Vdst
VBlend<type> Wsrcla, Wsrc1b, Vsrc2/Rsrc2, Vdst

Type and bit width

B: 32 x ( 9-bit signed src1a/src1b, 8-bit unsigned src2 > 12-bit dst)
H: 16 x ( 17-bit signed src1a/src1b, 16-bit unsigned src2 - 24-bit dst)
W: 8 x ( 33-bit signed srcl1a/src1b, 32-bit unsigned src2 > 48-bit dst)

Predication

not available

Source options

srcla: single vector register in VRF or WRF
src1b: single vector register in VRF or WRF

src2: single vector register in VRF or scalar register

Destination options

dst: single vector register in VRF

Additional options

Intrinsics/operator

vcharx vblend(vcharx srcla, vcharx srclb, vcharx src2);

vshortx vblend(vshortx srcla, vshortx srclb, vshortx src2);
vintx vblendw_q15(vintx srcla, vintx srclb, vintx src2);

vcharx vblend(vcharx srcla, vcharx srclb, unsigned int src2);
vshortx vblend(vshortx srcla, vshortx srclb, unsigned int src2);
vintx vblendw_q15(vintx srcla, vintx srclb, unsigned int src2);

// double vector pseudo intrinsics

dvcharx dvblend(dvcharx srcla, dvcharx srclb, dvcharx src2);
dvshortx dvblend(dvshortx srcla, dvshortx srcib, dvshortx src2);
dvintx dvblendw_q15(dvintx srcla, dvintx srclb, dvintx src2);
dvcharx dvblend(dvcharx srcla, dvcharx srclb, unsigned int src2);
dvshortx dvblend(dvshortx srcla, dvshortx srcib, unsigned int src2);
dvintx dvblendw_q15(dvintx srcla, dvintx srclb, unsigned int src2);

Additional details

Treat Vsrcla lower 9/17/33 bits as X0, Vsrc1b lower 9/17/33 bits as X1, Vsrc2 lower
8/16/32 bits as unsigned alpha blending factor with Q7/Q15/Q31 fixed-point
representation.

B/H: Vdst = X0 + round(X1*alpha - XO*alpha, nbits);

W: Vdst = (X0 << 15) + (X1*alpha >> 16) - (XO*alpha >> 16);

nrbits = 7 for type B, 15 for type H (hard-wired, not as .R<nbits> option)

Note that we do support scalar source 2 when source 2 is of the Word type, as
opposed to VMAdd/VMSub not supporting scalar source 2. This is because this
instruction supports only unsigned type for source 2, and indeed we can get
unsigned 32-bit value from a scalar register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 351




9.8.7.11

VHBLEND_|

Instruction name

VHBLEND_|

Functionality

Vector blend horizontal interleaved

Assembly format

VHBlend_l<type> Vsrcla, Vsrc1b, Vsrc2, Vdst

Type and bit width

B: 32 x ( 9-bit signed src1a/src1b, 8-bit unsigned src2 - 12-bit dst)
H: 16 x ( 17-bit signed src1a/src1b, 16-bit unsigned src2 - 24-bit dst)
W: 8 x ( 33-bit signed srcla/src1b, 32-bit unsigned src2 - 48-bit dst)

BHB: like B but with each lane pair sharing blending factor in Halfword lanes

Predication

not available

Source options

srcla: single vector register in VRF
src1b: single vector register in VRF
src2: single vector register in VRF

Destination options

dst: single vector register in VRF

Additional options

Intrinsics/operator

vcharx vhblend_i(vcharx srcla, vcharx srclb, vcharx src2);

vshortx vhblend_i(vshortx srcla, vshortx srcib, vshortx src2);
vintx vhblend_iw_q15(vintx srcla, vintx srclb, vintx src2);
vcharx vhblend_i(vcharx srcla, vcharx srclb, vshortx src2); // BHB

// double vector pseudo intrinsics

dvcharx dvhblend_i(dvcharx srcla, dvcharx srclb, dvcharx src2);
dvshortx dvhblend_i(dvshortx srcla, dvshortx srcib, dvshortx src2);
dvintx dvhblend_iw_g15(dvintx srcla, dvintx srclb, dvintx src2);

Additional details

Perform blending within each pair of lanes in src1a, src1b and interleave outcome.
In each even/odd pair of extended Byte/Halfword/Word lanes, extract 9/17/33 LSBs
as signed srcla/src1b for XO/X1, extract 8/16/32 LSBs of src2 for as unsigned
blending factor, according to this pattern for B/H/W types

srcla A[0] B[O]
srclb Al1] B[1]
src2 alphal0] alpha[1]
dst Y[0] Y[1]

For BHB type, both lanes share the same blending factor:

srcla A[0] B[O]
srclb All] B[1]
src2 alpha[0] = alpha[1]
dst Y[0] Y[1]

The datapath carries out:
B/H/BHB: Y[i] = A[i] + round(B[i] * alphal[i] - A[i] *alphal[i], nbits);

i ={0, 1}, nrbits = 7 for type B/BHB, 15 for type H

W: Y[i] = (A[i] << 15) + (B[il*alphali] >> 16) - (A[i]*alphali] >> 16);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 352




Instruction name VHBLEND_I

Note that the BHB variation still support Byte-type blending factor (unsigned 8 bits
in Q7 fixed-point), just that the lane position of blending factors are in even Byte
lanes, as if it's a Halfword type vector.

VHBIlend_lI is intended to use with DVLUT_2x2pt to achieve bilinear interpolation with
maximal throughput bottlenecked by the lookup.

As DVLUT_2x2pt for B/H/W type fetch up to 8/8/4 sets of 2x2 table entries, after
interpolation the yield is half a single vector worth of outcome. To maximize throughput,
at a minimum we would bundle up two DVLUT_2x2pt instructions and subsequent 3
blending instructions. Then we will need to unroll the loop to compensate for load-to-use
latency.

The intended code loop is as follows for halfword (short) type:

for (...) {
idx = dvshort_load_di(...); // .lo: @, 2, ... .hi: 1, 3, .
x_frac = dvshort_load_perm(...); // .lo: @, @, 2, 2, ... .hi: 1, 1, 3, 3,

y_frac = vshort_load(...);

entries1 = dvlut_2x2pt_8h(table, idx.lo);

entries2 = dvlut_2x2pt_8h(table, idx.hi);

y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation
y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
vstore(out);

Similarly for word (int) type:

for (...) {
idx = dvint_load_di(...); // .lo: @, 2, ... .hi: 1, 3,
x_frac = dvint_load_perm(...); // .lo: @, @, 2, 2, ... .hi: 1, 1, 3, 3,

y_frac = vint_load(...);

entries1 = dvlut_2x2pt_4w(table, idx.lo);

entries?2 = dvlut_2x2pt_4w(table, idx.hi);

y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation
y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
vstore(out);

For byte (char) type, there is no load-permute feature, so we will have to use byte-to-
halfword promoting load and the BHB type variation of VHBIlend:

for (...) {
idx = dvchar_load_di(...); // .lo: 0, 2, ... hics 1, 3, ...
x_frac = vchar_dvshortx_load_di(...); // .lo: ®, -, 2, -, ... .hi: 1, -, 3, -,

y_frac = vchar_load(...);
entries1 = dvlut_2x2pt_8b(table, idx.lo);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 353



entries?2 = dvlut_2x2pt_8b(table, idx.hi);

y_intrp1 = vhblend_i(entriesi.lo, entries1.hi, x_frac.lo); // horz interpolation
y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
vstore(out);

9.8.7.12 VMUL2

Instruction name VMUL2
Functionality Vector double multiply
Assembly format VMul2<type>.R/T<bits> DVsrc1, Vsrc2/Rsrc2, DVdst/DACdst

Rsrc2 option is available for B and H types only.
WHW type requires .T16
.RO is omitted

Type and bit width B: 32 x (9-bit src1/src2 = 12-bit dst)
H: 16 x (17-bit src1/src2 = 24-bit dst)
WHW: 8 x (33-bit src1 x 17-bit src2 - 48-bit dst) only with .T16

Predication not available

Source options src1: double vector register in VRF
src2: single vector register in VRF or single scalar register (B and H types)

Destination options dst: double vector register in VRF or ARF

Additional options

Intrinsics/operator dvcharx dvmulb(dvcharx src1, vcharx src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, vshortx src2, u3imm rnd_opt);
dvintx dvmulwhw_t16(dvintx src1, vintx src2);

dvcharx dvmulb(dvcharx src1, int src2, udimm rnd_opt);
dvshortx dvmulh(dvshortx src1, int src2, udimm rnd_opt);
Additional details Perform 2 sets of multiplication, sharing src2

dst.lo = round(src1.lo * src2, rnd_opt)

dst.hi = round(src1.hi * src2, rnd_opt)

See 9.8.7.1 for rounding/truncating options.

For example, VMu2IH.R7 VO:V1, V2, AC4:AC5 has the following data layout and behavior:

VO: D[O] D[1] D[15]
V1 E[O] E[1] E[15]
ve: C[o] Cl1] C[15]
AC4: P[0] P[1] P[15]
AC5: Q[0] Ql1] Q[15]

P[i] = round(C[i] * DI[il, 7); // C[i], D[i], E[i] taken from 17 LSBs of each lane
Qli] = round(C[i] * E[i], 7);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 354



9.8.7.13 VFILT4_CA
This is an instruction added in Gen-2 VPU to accelerate filtering and CNN applications by

2X.

Instruction name

VFILT4_CA

Functionality

Vector 4-term filter

Assembly format

<pred> VFilt4<type>_CA Vsrcla, Vsrc1b, Wsrc2, DACsrc3dst

pred = none, [P2..P15]

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)
HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: single vector register in VRF
src1b: single vector register in VRF

src2: single vector register in WRF

Destination options

src3dst: double vector register in ARF

Additional options

Intrinsics/operator

dvshortx vfilt4_bbh(vcharx srcla, vcharx src1b, vcharx src2, dvshortx
src3dst, int pred);

dvintx vfilt4_hhw(vshortx srcla, vshortx srcib, vshortx src2, dvintx
src3dst, int pred);

Additional details

When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to
the accumulator.

Data entries for the products are formed with 4-tap filtering pattern, treating
srcla and src1b as two data vectors offset by 4 elements. Coefficient entries are
shared among 4 outputs. Accumulators are double vector registers to
accommodate type promotion.

BBH data, coefficient, accumulator layout per 48-bit and

HHW data, coefficient, accumulator layout per 96-bit:

srcla D[0] D[1] D[2] D[3]
srclb D[4] D[5] D[6] D[7]
src2 C[o] Cl1] Cl2] C[3]
src3dst.lo ACCI[0] ACC[2]
src3dst.hi ACCI[1] ACCI[3]

ACC[0] += D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3];
ACC[1]+=D[1]*C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3];
ACC[2] += D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3];
ACCI[3] +=D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3];

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 355




Instruction name

VFILT4_CA

See Data Ordering in Single and Double Vector Registers for data ordering in
single/double vector registers.

9.8.7.14 VFILT4x2_CA

This is an instruction added in Gen-2 VPU to accelerate 8-bit/16-bit filtering and CNN
applications by 4x. It’s doing twice the amount of work compared to VFilt4_CA by
accepting two sets of coefficients (src2) and accumulating onto two sets of

accumulators.

Instruction name

VFILT4x2_CA

Functionality

Vector 4-term filter

Assembly format

<pred> VFilt4x2<type>_CA Vsrcla, Vsrc1b, DWsrc2, QACsrc3dst

pred = none, [P2..P15]

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)
HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: single vector register in VRF
src1b: single vector register in VRF

src2: double vector register in WRF

Destination options

src3dst: quad vector register in ARF

Additional options

Intrinsics/operator

void vfilt4x2_bbh(vcharx srcla, vcharx srcilb, dvcharx src2, dvshortx src3
dvshortx src3_1, int pred, dvshortx & dst_@, dvshortx & dst_1);

void vfilt4x2_hhw(vshortx srcla, vshortx srcib, dvshortx src2, dvintx
src3_0, dvintx src3_1, int pred, dvintx & dst_@, dvintx & dst_1);

Additional details

When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to
the accumulator.

Data entries for the products are formed with horizontal 4-tap filtering pattern,
treating srcla and src1b as two data vectors offset by 4 elements. Coefficient
entries are shared among 4 outputs. There are two sets of coefficients and two
sets of accumulators. Accumulators are quad vector registers to accommodate
type promotion.

BBH data, coefficient, accumulator layout per 48-bit and

HHW data, coefficient, accumulator layout per 96-bit:

srcla D[0] D[1] D[2] D[3]
srclb D[4] D[5] D[6] D[7]
src2.lo C[0][0] C[o][1] C[o][2] C[O][3]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 356



Instruction name

VFILT4x2_CA

src2.hi

src3dst.q0
src3dst.ql
src3dst.q2
src3dst.q3

chlo] chim] Cllf2] Cl1Ii3]
AcCc[o][0] AccC[0][2]
Acc[o][1] ACC[0][3]
ACC[1][0] Acc[1][2]
ACC[1][1] ACC[1][3]

ACCI[O][0] += D[O] * C[O][0] + D[1] * C[0I[1] + D[2] * C[0][2] + D[3] * C[O][3];
ACC[0][1] += D[1] * C[0][0] + D[2] * C[O][1] + D[3] * C[0][2] + D[4] * C[O][3];
ACC[0][2] += D[2] * C[O][0] + D[3] * C[0][1] + D[4] * C[0][2] + D[5] * C[O][3];
ACC[0][3] += D[3] * C[0][0] + D[4] * C[O][1] + D[5] * C[0][2] + D[6] * C[O][3];

ACC[1][0] += D[0] * C[1][0] + D[1] * C[1][1] + D[2] * C[1][2] + D[3] * C[11[3];
ACC[1][1] +=DI[1]*C[1][0] + D[2] * C[1]1[1] + D[3]1 * C[1][2] + D[4] * C[11[3];
ACC[1][2] += D[2] * C[1][0] + D[3] * C[1][1] + D[4] * C[1][2] + D[5] * C[11[3];
ACC[11[3] += D[3] * C[1][0] + D[4] * C[1][1] + D[5] * C[1][2] + D[6] * C[11[3];

9.8.7.15 VFILT4x2x2_CA

This is an instruction added in Gen-2 VPU to further accelerate 8-bit CNN applications by
2x (compared to VFilt4x2). Source 1a and 1b are double vectors each, and accumulator
bit width is extended from 24-bit to 32-bit in VFilt4x2x2BBW_CA. This instruction
delivers 4 horizontal taps x 2 deep/vertical taps x 2 sets of accumulators x 32 lanes =
512 INT8 MACs per instruction. Per VPU we have 1K INT8 MACs, and per PVA we have
2K INT8 MACs. This is 8X of Gen-1 PVA INT8 MAC performance.

Instruction name

VFILT4x2x2_CA

Functionality

Vector 4x2-term filter x 2 sets

Assembly format

<pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b, DWsrc2, QACsrc3dst
<pred> VFilt4x2x2BBW_CA DVsrc1la, DVsrc1b, DWsrc2, QXACsrc3dst

pred = none, [P2..P15]

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)
BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

src1a: double vector register in VRF

src1b: double vector register in VRF

src2: double vector register in WRF

Destination options

src3dst: BBH: quad vector register in ARF

BBW: quad vector register in XARF

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 357




Instruction name

VFILT4x2x2_CA

Additional options

Intrinsics/operator

void vfilt4x2x2_bbh(dvcharx srcla, dvcharx srclb, dvcharx src2, dvshortx
src3_0, dvshortx src3_1, int pred, dvshortx & dst_@, dvshortx & dst_1);

void vfilt4x2x2_bbw(dvcharx srcla, dvcharx srcib, dvcharx src2, dxvshortx
src3_0, dxvshortx src3_1, int pred, dxvshortx & dst_0, dxvshortx & dst_1

Additional details

When predicate is off, destination is replaced with the sum of 2x4 products,

effectively clearing the accumulator. Otherwise, the sum of 2x4 products is added
to the accumulator.

Data entries for the products are formed with 4 (horizontal) x 2 (vertical or deep)
tap filtering pattern, treating src1a and src1b as two sets of two data vectors
offset by 8 elements. Coefficient entries are shared among 8 outputs in a slice.
There are two sets of coefficients and two sets of accumulators.

For BBH, each accumulator is 24-bit wide and mapped to quad vector in ARF.

For BBW, each accumulator is 32-bit wide and mapped to quad vector in ARF as
well as quad vector in XRF. Lower 24-bit comes from ARF and upper 8-bit comes
from XRF.

Data layout per group of 8 byte lanes for VFilt4x2x2BBH & VFilt4x2x2BBW:

srcla.lo
srcla.hi
srclb.lo
src1b.hi
src2.lo
src2.hi
src3dst.q0

src3dst.ql
src3dst.q2

src3dst.q3

D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7]
D[8] D[9] D[10] D[11] D[12] D[13] D[14] D[15]
E[0] E[1] E[2] E[3] E[4] E[5] E[6] E[7]

E[8] E[9] E[10] E[11] E[12] E[13] E[14] E[15]
clol[o1[o1| croifoir11| croiroir21| croiroira1 | Cloir11o1 | Clol 1111 | Clolriral | Crolriesi
cli1o1fo1| criifoirt1| criifoir21| 110131 | CL11i1101 [ CIII | CI1IM1[2] | CL1I011[3]
Acclo][o] Acclol[2] ACC[0][4] Acclol[e]
AccCI[o][1] ACCI[0I[3] ACCI[O][5] ACCI[0I[7]
AcCC[1][0] AcCl1]1[2] ACC[11[4] AccCl1][6]
ACCI11[1] ACC[11[3] ACC[11[5] ACC[11[7]

For VFilt4x2x2BBW, XRF provides 8 upper bits for each accumulator:

src3dst.x0
src3dst.x1
src3dst.x2
src3dst.x3

ACCI0][0]

ACCI0][2]

ACCI0][4]

ACCIO0][6]

ACCIO][1]

ACCIO0][3]

ACCIO0][5]

ACCIO0][7]

ACCI[1][0]

ACCI[1][2]

ACC[1][4]

ACC[1][6]

ACCI[1][1]

ACC[1][3]

ACC[1][1]

ACC[1][7]

Acc[o][0] += D[0] * C[o][o][0] + D[1] * C[O][0][1] + D[2] * C[O][0][2] + D[3] * C[0][0][3]
+ E[0] * C[O][1][0] + E[1] * C[O][1][1] + E[2] * C[O][1][2] + E[3] * C[O][1][3];
ACC[0][1] += D[1] * C[0][0][0] + D[2] * C[O][0][1] + D[3] * C[O][0][2] + D[4] * C[0][0][3]
+E[1]* C[O][1][0] + E[2] * C[O][1][1] + E[3] * C[O][1][2] + E[4] * C[O][1][3];
ACC[0][2] += D[2] * C[0][0][0] + D[3] * C[O][0][1] + D[4] * C[O][0][2] + D[5] * C[0][0][3]

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 358




+E[2] * C[o][1][0] + E[3] * C[O][1][1] + E[4] * C[O][1][2] + E[5] * C[O][1][3];

XCC[O][7] += D[7] * C[O][0][O] + D[8] * C[0][O][1] + D[9] * C[0][0][2] + D[10] * C[O][0][3]
+E[7]* C[O][1][0] + E[8] * C[O][1][1] + E[9] * C[O][1][2] + E[10] * C[O][1][3];

ACC[1][0] += D[O] * C[1][0][0] + D[1]* C[1][0][1] + D[2] * C[1][0][2] + D[3] * C[1][0][3]
+E[0] * C[1][1][0] + E[1] = C[1I[1101] + E[2] * C[1][1][2] + E[3] * C[1][1][3];

ACC[1][1] += D[1] * C[1][0][0] + D[2] * C[1][0][1] + D[3] * C[1][C][2] + D[4] * C[1][0][3]
+E[1]* C[T][1][0] + E[2] * C[1I[0]01] + E[3] * C[1][1][2] + E[4] * C[T][1][3];

ACC[1][2] += D[2] * C[1][C][0] + D[3] * C[1][0][1] + D[4] * C[1][C][2] + D[5] * C[1][0][3]
+E[2]* C[1][1][0] + E[3] * C[1][1101] + E[4] * C[1][1][2] + E[5] * C[T][1][3];

;&CC[l][7] += D[7]* C[1][0][0] + D[8] * C[1][0][1] + D[9] * C[1][0][2] + D[10] * C[1][0][3]
+E[7]* C[1][1][0] + E[8] * C[1][1][1] + E[9] * C[1][1][2] + E[10] * C[1][1][3];

9.8.7.16  VXNORADD8x4x2_CA

This is an instruction added in Gen-2 VPU to accelerate binary CNN convolution layers, by
operating on 1-bit data/coefficients, and computing 8 horizontal taps x 4 deep taps x 2
sets of accumulators x 64 lanes = 4K XNor-accumulate per instruction. This is equivalent
to 4K binary MACs (one XNor-Add translating to 1 binary Multiply-Accumulate). Per VPU
we have 8K binary MACs, and per PVA we have 16K binary MACs. This is 4X of INT8 MAC
performance.

Instruction name VXNorAdd8x4x2_CA

Functionality Vector exclusive NOR 8x4 filter x 2 sets

Assembly format <pred> VXNorAdd8x4x2_CA DVsrcla, DVsrc1b, Wsrc2, QXACsrc3dst
pred = none, [P2..P15]

Type and bit width Binary data/coefficients, extended charx (16-bit) accumulators

Predication Available across lanes to clear accumulator

Source options srcla: double vector register in VRF

src1b: double vector register in VRF
src2: single vector register in WRF

Implicit PL scalar register

Destination options src3dst:quad vector ARF + quad vector XRF

Additional options

Intrinsics/operator void vxnor_add8x4x2(dvcharx srcla, dvcharx srclb, vcharx src2, dxvcharx
src3_0, dxvcharx src3_1, int pred, unsigned int mask, dxvcharx & dst_@,
dxvcharx & dst_1);

Additional details This instruction accelerates binary CNN 3D convolution. Per group of 8 byte lanes,
this instruction delivers 1024 XNor-accumulate throughput per instruction via 8
horizontal taps (S) x 4 deep taps (C) x 2 sets x 16 lanes of accumulator of XNOR-
add throughput. Each instruction delivers 8 x 4 x 2 x 64 = 4096 binary XNOR-
accumulate throughput.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 359



Instruction name

VXNorAdd8x4x2_CA

Data is read from src1a and src1b (together 4 single registers supplying 4 rows of
data). In each group of 8 byte lanes, each single vector source supplies 16 + 8 -1 =
23 bits from the first 3 extended byte lanes.

Coefficients are read from src2. For 2 sets of 8x4 binary coefficients, we need
2*8*4 = 64 bits, and they are read from 8 extended byte lanes of src2.

Accumulators are read from and written back to src3dst, which is a quad
extended ARF (XARF) register. In each slice, we need 2 sets x 16 horizontal lanes x
16-bit accumulator = 512 bits of accumulators, provided by 4 registers x 8 lanes x
(12 + 4) bits from twice extended byte type = 512 bits of src3dst.

A 32-bit mask is read from scalar register PL to enable/disable each XNor
contribution to the accumulation. This is needed to trim the horizontal 8 taps
and/or vertical 4 taps as needed to implement arbitrary weight tensor dimension
through looping. For example, when S = 13 and C = 3, we would accumulate
throughput looping, first 8 x 3 then 5 x 3 weight data, and would need to feed PL
with correct mask values for these 2 sets of weight data.

In a non-binary CNN, weights can be zero-padded as needed to trim the weight
set. However, in binary CNN, we are matching activation binary with weight binary,
and there is no room in the weight binary to encode a neutral weight value needed
to trim down the weight tensor dimension. It’s technically possible to use 2 bits
per tap of weight to encode “don’t care”, but this would double the weight storage
and traffic so is less efficient. The weight mask provides a mechanism to trim the
weight dimension.

Horizontally overlapped 8x4 data bits are XNORed with 2 sets of horizontally
shared 8x4 coefficient bits, then ANDed with the 8x4 mask bits. When predicate is
off, the destination is replaced with the masked sum of XNOR terms, effectively
clearing the accumulator. Otherwise, the masked sum of XNOR terms is added to
the accumulator.

Data layout per 96-bit:

Lowest byte lane

srcla.lo
srcla.hi
srcl1b.lo
src1b.hi
src2
src3dst.q0
src3dst.ql
src3dst.q2
src3dst.q3

Highest byte lane

D[0O][0..7] |D[O][8..15] |D[O][16..23]|D.C. D.C. D.C. D.C. D.C.
D[1][0..7] |D[1][8.15] |D[2][16..23]|D.C. D.C. D.C. D.C. D.C.
D[2][0..7] |D[2][8..15] |D[2][16.23]|D.C. D.C. D.C. D.C. D.C.
D[3][0..7] |D[3][8..15] |D[3][16..23]|D.C. D.C. D.C. D.C. D.C.
clo][o][o..71|C[ol[1][0..71|C[0][2][0..71| C[O][3]1[0..7]1| C[11[O][O..7]1|C[1][1][0..7]|C[1][2][0..7] |C[1]1[3][0..7]
ACC[0][0] |AcCcC[O0l[2] |ACC[O][4] |ACC[O][6] |ACC[Ol[8] |AcCC[OI[10] |ACC[O][12] |ACC[O][14]
ACCI[OI[1] |ACCIOI[3] |ACC[O]I[5] |ACC[Ol[7] |AcCC[0l[9] |ACC[Ol[11] |ACC[O][13] |ACC[O][15]
ACC[1][0] |ACCI[11[2] |ACC[1][4] |ACC[11[6] |ACC[11[8] |ACC[11[10] |ACC[1][12] |ACC[1][14]
ACC[11[1] |ACCI[11[3] [|ACC[1][5] [|ACC[1I[7] |ACC[11[9] |ACC[1][11] |ACC[1][13] |ACC[1][15]

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 360




XRF and ARF together provides the 16-bit accumulator as src3 and destination; XRF

provides 4 upper bits and ARF provides the lower 12 bits for each accumulator:

src3dst.x0
src3dst.x1
src3dst.x2

src3dst.x3

ACCI0][0]

ACCI0][2]

ACC[0][4]

ACCI[0][6]

ACC[0][8]

ACC[0][10]

ACC[O0][12]

ACC[0][14]

ACCIO]I[1]

ACC[0][3]

ACC[O0][5]

ACC[O][7]

ACC[0][9]

ACC[O][11]

ACCI[0][13]

ACCI[O][15]

ACCI[1][0]

ACCI[1][2]

ACC[1]1[4]

ACC[1][6]

ACC[1][8]

ACC[1][10]

ACC[1][12]

ACC[1][14]

ACC[1]1[1]

ACC[1][3]

ACC[1][5]

ACC[11[7]

ACC[1][9]

ACC[1][11]

ACC[1][13]

ACC[1][15]

In the data layout diagram, each column represents a 12-bit extended byte lane. Each
“D.C.” entry represents a 12-bit don’t care value. Each entry in the src1a/src1b/src2
rows having 8 bits of activation/weight data also includes 4 upper don’t care bits.

Activation inputs involved are indexed as D[C][W], C being input depth and W being
horizontal index. Coefficients (or weights) are indexed as C[K][C][S], K being output
depth, C being input depth, and S being kernel horizontal index. Accumulators are
indexed as ACC[K][Q], K being output depth and Q being output horizontal index. Mask
bits are indexed as mask[C][S], C being input depth and S being kernel horizontal index.

The instructions carry out this nested for loop in each group of 8 byte lanes of vector
math to add to the accumulators when predicate is true:
for (k = 0..1) // output depth (K)
for (q=0..15) // output horizontal (Q)
for (s=0..7) // kernel horizontal (S)
ACC[k][q] += (mask[@][s] & ~(C[k][@][s] *» D[@][qg+s]))
+ (mask[1][s] & ~(C[k][1][s] * D[1][q+s]))
+ (mask[2][s] & ~(C[k][2][s] * D[2][q+s]))
+ (mask[3][s] & ~(C[k][3][s] * D[3][q+s]));

Otherwise (when predicate is false), we write bit counts of XNor between binary
activation and weights to the accumulators, resulting in this behavior:
for (k = 0..1) // output depth (K)
for (g=08..15) // output horizontal (Q)
ACC[k][q] = 0;
for (s=0..7) // kernel horizontal (S)
ACC[k][q] += (mask[®@][s] & ~(C[k][@][s] * D[@][qg+s]))
+ (mask[1][s] & ~(C[k][1][s] » D[1][q+s]))
+ (mask[2][s] & ~(C[k][2][s] * D[2][q+s]))
+ (mask[3][s] & ~(C[k][3][s] * D[3][q+s]));

For intended binary CNN mapping, the 4 slices are supplied with activation data with 16
bits of offset between slices. It’s 16 bits because each slice produces 2 planes x 16
horizontal outputs. We intend to use VLDPermHBU_P with permute indices {0, 1, 1, 1, 1,
2,2,2, 2,3,3,3, 3,4, 4,4} to permute bit-packed activation data in memory as
Halfwords, then take the 16 permuted halfwords and zero-extend each 8-bit into 12-bit
extended byte lane in each single vector register in src1a/src1b.

The same 2 * 8 * 4 = 64 bits of weight data is replicated among slices, so we can use
VLDPermHBU_P with permute indices {0, 1,2,3, 0,1,2,3, 0,1,2,3, 0, 1,2, 3} to
permute bit-packed weight data in memory as Halfwords, then take the 16 permuted

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 361



halfwords and zero-extend each 8-bit into 12-bit extended byte lane in the single vector

register src2.

9.8.7.17 VDOTP4_CA

This is an instruction added in Gen-2 VPU to accelerate matrix multiplication by 2x.

One use case is bilinear interpolation. Another use case is fully connected convolution

layer.

Instruction name

VDotP4_CA

Functionality

Vector 4-term dot product

Assembly format

<pred> VDotP4HHW/BBH_CA DVsrcla, DVsrc1b, Wsrc2, DACsrc3dst
<pred> VDotP4AWHW_CA DVsrcla, DVsrc1b, Wsrc2, ACsrc3dst
<pred> VDotP4BBW_CA DVsrcla, DVsrc1b, Wsrc2, DXACsrc3dst

pred = none, [P2..P15]

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)
HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)
WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)
BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: double vector register in VRF
src1b: double vector register in VRF

src2: single vector register in WRF

Destination options

src3dst: BBH/HHW: double vector register in ARF
WHW: single vector register in ARF
BBW: double vector register in XARF

Additional options

Intrinsics/operator

dvshortx vdotp4_bbh(dvcharx srcla, dvcharx srclb, vcharx src2, dvshortx
src3dst, int pred);

dvintx vdotp4_hhw(dvshortx srcla, dvshortx srclb, vshortx src2, dvintx
src3dst, int pred);

vintx vdotp4_whw(dvintx srcla, dvintx srcib, vshortx src2, vintx
src3dst, int pred);

dxvshortx vdotp4_bbw(dvcharx srcla, dvcharx srcib, vcharx src2,
dxvshortx src3dst, int pred);

Additional details

When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to
the accumulator.

There are 4 independent data vectors. Coefficients are shared, within each group
of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 362




Instruction name

VDotP4_CA

Accumulators for HHW are in a double vector register to accommodate type
promotion. Accumulators for W are in a single vetor register.

BBH data, coefficient, accumulator layout per group of 4 byte lanes:

HHW data, coefficient, accumulator layout per group of 4 halfword lanes:

srcla.lo
srcla.hi
srclb.lo
src1b.hi
src2
src3dst.lo
src3dst.hi

D[0][0] D[O][1] D[0][2] D[0][3]
DI1][0] DII[1] DI1][2] DI1][3]
D[2][0] D[2][1] D[2][2] D[2][3]
D[3][0] DI3][1] D[3][2] DI3][3]
Clal Cl] Cl2] C[3]
ACCIO0] ACCI[2]

ACC[1] ACCI3]

ACC[0] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3];
ACC[1] += D[O][1] * C[O] + D[1][1]* C[1] + D[2][1] * C[2] + D[3][1] * C[3];
ACC[2] += D[0][2] * C[O] + D[1][2] * C[1] + D[2][2] * C[2] + D[31[2] * C[3];
ACC[3] += D[0][3] * C[O] + D[1][3] * C[1] + D[2][3] * C[2] + DI[3][3] * C[3];

For VDotP4BBW, XRF provides 8 upper bits for each accumulator:

src3dst.x0
src3dst.x1

ACC[0]

ACCI[2]

ACCI[1]

ACC[3]

WHW data, coefficient, accumulator layout per 96-bit:

srcla.lo
srcla.hi
srcl1b.lo
src1b.hi
src2

src3dst

D[0][0] D[O][1]
D[1][0] DI1][1]
D[2][0] D[2][1]
D[3][0] D[3][1]
C[0] Cl1] C[2] C[3]
ACC[O0] ACC[1]

ACC[o] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3];
ACC[1] +=D[O][1] * C[O] + D[1][1]* C[1] + D[2][1] * C[2] + D[3][1] * C[3];

See 6.2.3.6 for data ordering in single/double vector registers.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 363




9.8.7.18 VDOTP4x2_CA

This is an instruction added in Gen-2 VPU to accelerate 16-bit matrix multiplication by
4x. It’s doing twice the amount of work compared to VDotP4_CA by accepting two sets
of coefficients (src2) and accumulating onto two sets of accumulators.

Instruction name

VDotP4x2_CA

Functionality

Vector 4-term dot product

Assembly format

<pred> VDotP4x2BBH/HHW_CA DVsrcla, DVsrc1b, DWsrc2, QACsrc3dst
<pred> VDotP4x2BBW_CA DVsrcla, DVsrc1b, DWsrc2, QXACsrc3dst

pred = none, [P2..P15]

Type and bit width

BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)
HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)
BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: double vector register in VRF
src1b: double vector register in VRF

src2: double vector register in WRF

Destination options

src3dst: quad vector register in ARF (BBH/HHW)
quad vector register in XARF (BBW)

Additional options

Intrinsics/operator

void vdotp4x2_bbh(dvcharx srcla, dvcharx srclb, dvcharx src2, dvshortx
src3_0, dvshortx src3_1, int pred, dvshortx & dst_@, dvshortx & dst_1);

void vdotp4x2_hhw(dvshortx srcla, dvshortx srcib, dvshortx src2, dvintx
src3_0, dvintx src3_1, int pred, dvintx & dst_@, dvintx & dst_1);

void vdotp4x2_bbw(dvcharx srcla, dvcharx srclb, dvcharx src2, dxvshortx
src3_0, dxvshortx src3_1, int pred, dxvshortx &dst_@, dxvshortx &dst_1);

Additional details

When predicate is off, destination is replaced with the sum of 4 products,
effectively clearing the accumulator. Otherwise, the sum of 4 products is added to
the accumulator.

There are 4 independent data vectors. Coefficients are shared, within each group
of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW.
Accumulators are in a quad vector register to accommodate type promotion.

BBH data, coefficient, accumulator layout per 48-bit:

Also, HHW data, coefficient, accumulator layout per 96-bit:

srclalo D[0][0] D[O][1] D[0][2] D[0][3]
srcla.hi D[1][0] D[11[1] D[1][2] D[1]1[3]
srclb.lo D[2][0] D[2][1] D[2][2] D[2][3]
src1b.hi D[3][0] D[31[1] D[3][2] D[3][3]
src2.lo crojro] croil clolrz] CIO][3]
src2.hi c[11[0] Cl1101] cl[11[2] C[11[3]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 364




Instruction name

VDotP4x2_CA

src3dst.q0 ACCI0][0] ACCI[O0][2]
src3dst.ql ACCI[O][1] ACCI0][3]
src3dst.q2 ACCI1][0] ACCI1][2]
src3dst.q3 ACCI[1][1] ACC[1][3]

ACCI0][0] += D[0][0] * c[o][0] + D[11[0] * C[0][1] + D[2][0] * C[0][2] + D[3][0] * C[O]1[3];
ACC[0][1] += D[0][1] * C[0][0] + D[1][1]1 * C[0][1] + D[2][1] * C[O][2] + D[31[1] * C[O][3];

ACC[0][2] += D[0][2] * C[0][0] + D[1][2] * C[0][1] + D[2][2] * C[0][2] + D[3][2] * C[O][3];
ACCI[0][3] += D[0][3] * C[0][0] + D[1][3] * C[0][1] + D[2][3] * C[0][2] + D[31[3] * C[0][3];

(o]l
(ol
(ol
(ol

] 1[0]
] 1[0]
] 1[0]
] 1[0]

]
]
]
]

(21l
(21l
(21l
(21l

[ (31l
[ (31l
[ (31
[ (31l

ACC[1][0] += D[0][0] * C[1][0] + D[11[0] * C[1][1] + D[2][0] * C[1][2] + D[3][0] * C[11[3];
ACC[1][1] += D[O][1] * C[1][0] + D[1][1] * C[11[1] + D[2][1] * C[1][2] + DI31[1] * C[1][3];
ACC[1]1[2] += D[0][2] * C[1][0] + D[11[2] * C[1][1] + D[2][2] * C[1][2] + D[3][2] * C[11[3];
ACCI[1][3] += D[O][3] * C[1][0] + D[11[3] * C[11[1] + D[2][3] * C[1][2] + DI[3][3] * C[1][3];

BBW data, coefficient layout per 48-bit is the same as that of BBH.

BBW accumulator is similar, with layout of lower 24-bit of each accumulator same
as that of BBH, and upper 8-bit of each accumulator in the extension part of

XARF:
src3dst.x0 ACC[O][0] | ACC[O0][2] | ACC[O][4] | Acc[o][6]
src3dst.x]1 ACC[O][1] | ACCI[O][3] | ACC[O][5] | AccC[Oo][7]
src3dst.x2 ACC[1][0] | ACC[11[2] | ACC[1]1[4] | AcC[1][6]
src3dst.x3 ACC[1][1] | ACC[11[3] | ACCI[1][5] | AcC[11[7]

9.8.7.19 VDOTP2x2_CA

Instruction name

VDOTP2x2_CA

Functionality

Vector 2-term dot product

Assembly format

<pred> VDotP2x2W_CA.T16 Vsrcla, Vsrc1b, DWsrc2, DACsrc3dst

pred = none, [P2..P15]
.T16 is always applied with W type.

Type and bit width

W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst)

Predication

Available across lanes to clear accumulator

Source options

srcla: single vector register in VRF
src1b: single vector register in VRF

src2: double vector register in WRF

Destination options

src3dst: single vector register in ARF

Additional options

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 365




Instruction name

VDOTP2x2_CA

Intrinsics/operator

dvintx vdotp2x2_w_t16(vintx srcla, vintx srclb, dvintx src2, dvintx src3g

int pred);

Additional details

W: Treat src1a and src1b as data vector, each being 8 x 31-bit in a 8 x 48-bit
container. Treat src2 as coefficient vector, 2 x 2 x 31-bit in a 2 x 2 x 48-bit

container replicated per group of 2 word lanes. Each product is truncated by 16

bits before being summed.

Data, coefficient, accumulator layout per 96-bit:

srcla D[0][0] D[O][1]
srclb D[1][0] D[1][1]
src2.lo Cc[o][0] C[o][1]
src2.hi cl1[o] Cl1][1]
src3dst.lo ACCI[0][0] ACCI[O][1]
src3dst.hi ACCI[1][0] ACC[1][1]

When predicate is true, do
ACc[o][0] += (D[0][0] * C[O][0] >> 16) + (D[1][0] * C[O][1] >> 16);

ACCIO][1] += (DL
ACC[1][0] += (DI
(

)+ (
o][1]* C[o][0] >> 16) + (
o][o] * c[1][0] >> 16) + (

)+ (

+

)
DI1I[1]* CloI[1] >> 16);
bl1][o]* C[1][1] >> 16);

)

ACC[1][1] += (D[OI[1] * C[1][0] >> 16) + (D[1][1]* C[11[1] >> 16);

Otherwise

Acclo][o] = (D[o

ACCI[O][1] = (D[O

ACC[1][0] = (D[O
(

ACC[1][1] = (D[O

1[0] * C[O][0] >> 16) +
1011~ C[0][0] >> 16) +
1[0]1* C[1][0] >> 16) +
1011~ C[1][0] >> 16) +

P

D[1][0] * C[01[1] >> 16);
D[11[1]1* C[o][1] >> 16);
D[1][0] * C[11[1] >> 16);
D1I[11* C[1][1] >> 16);

)
)
)
)

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 366




9.8.7.20 VSUMSQ

Instruction name VSUMSQ

Functionality Vector sum of squares

Assembly format VSumSqg<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, DVdst/DWdst
type = BBH, HHW

VSumSqg<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst
type=W.T16

Type and bit width BBH: 32 x (9-bit src1/src2 = 24-bit dst)
HHW: 16 x (17-bit src1/src2 = 48-bit dst)
W.T16: 8 x (33-bit src1/src2 = 48-bit dst)

Predication not available

Source options src1: single vector register in VRF/WRF

src2: single vector register in VRF/WRF

Destination options dst: double vector register in VRF/WRF for BBH/HHW
single vector register in VRF/WRF for W.T16

Additional options

Intrinsics/operator dvshortx vsumsq(vcharx srcl1, vcharx src2);
dvintx vsumsq(vshortx srci1, vshortx src2);
vintx vsumsq_t16(vintx src1, vintx src2);

// double vector pseudo intrinsics
dvintx dvsumsq_t16(dvintx src1, dvintx src2);

Additional details Perform sum of squares operation in each lane,

dst =src1 *srcl + src2 * src2 // BBH/HHW

dst = ((src1 *src1)>>16) + ((src2 * src2)>>16) // W.T16

9/17/33 LSBs of src1 and src2 are used and interpreted as signed numbers.
See 6.2.3.6 for data ordering in single/double vector registers.

VSumSQ can be used in calculation Euclidean distance, sqrt(x"2 + y*2), or
magnitude of a complex number, sqrt(real*2 + imaginary”2).

For example, VSumSgHHW V1, W2, V4:V5 has the following data layout and behavior:

V1: X[0] X[1] X[2] X[3] X[14] X[15]
we: Y[0] Y[1] Y[2] Y[3] Y[14] Y[15]
V4. S[0] S[2] S[14]
V5: S[1] S[3] S[15]

S[il = X[ * X[i1 + YLD * YL, // X[, Y[i] taken from 17 LSBs from each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 367



9.8.7.21 VSQSUM

Instruction name

VSQSUM

Functionality

Vector square of sum

Assembly format

VSqSum<type> Vsrcl, Vsrc2, Vdst/DVdst

Type and bit width

BBH: 32 x (9-bit src1/src2 = 24-bit dst)
HHW: 16 x (17-bit src1/src2 = 48-bit dst)

Predication

not available

Source options

src1: single vector register in VRF
src2: single vector register in VRF

Destination options

dst: BBH/HHW: double vector register in VRF

Additional options

Intrinsics/operator

dvshortx vsqsum(vcharx src1, vcharx src2);
dvintx vsgsum(vshortx srci1, vshortx src2);

Additional details

Perform square of sum operation in each lane.

dst = (src1 +src2)?2 = src172 + src2”2 + 2 * src1 * src2
9/17 LSBs of src1 and src2 are used and interpreted as signed numbers.
See 6.2.3.6 for data ordering in single/double vector registers.

VSgSum can be used to calculate trace-square of a 2x2 matrix, trace being the
sum of two diagonal terms. Trace-sgare is used in the Harris Corner feature point
detection algorithm.

Note that VSqQSumW.T 16 was considered but deferred. For timing we would implement
itasa”2 + bA2 + 2*a*b, but we would need to add another 32-bit multiplier per W lane to

implement it.

For example, VSqSumBBH V1, V2, V4:V5 has the following data layout and behavior:

V1: X[0] X[1] X[2] X[3] X[30] X[31]
va: Y[0] Y[1] Y[2] Y[3] Y[30] Y[31]
V4: S[0] S[2] S[30]
V5: S[1] S[3] S[31]

S[i] = (X[iT1 + YLD * (X[i] + Y[i1); // X[i], Y[i] taken from 9 LSBs from each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 368




9.8.7.22 VDET2x2

Instruction name

VDET2x2

Functionality

Vector 2x2 matrix determinant

Assembly format

VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst
VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst
VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst

Type and bit width

HHW: 16 x (17-bit src1/src2 = 48-bit dst)
W.T16: 8 x (33-bit src1/src2 = 48-bit dst)

Predication

Not available

Source options

src1: double vector register in VRF or WRF
src2: double vector register in VRF or WRF

Destination options

dst: HHW: double vector register in VRF
W.T16: single vector register in VRF

Additional options

Intrinsics/operator

dvintx vdet2x2_hhw(dvshortx src1, dvshortx src2);
vintx vdet2x2_w_t16(dvintx src1, dvintx src2);

Additional details

Treat two double vector sources as 4 entries in a 2x2 matrix.

Src1.lo contains AQOQ, src1.hi contains AOT, src2.lo contains A10, src2.hi contains
A11,in each lane.

For HHW return AOO*A11 - AO1*A10 in each lane, extending precision into a
double vector.

For W.T16 return ((AOO*A11)>>16) - ((AO1*A10)>>16) in each lane, keeping word
precision in a single vector.

See 6.2.3.6 for data ordering in single/double vector registers.

For example, VDet2x2HHW VO:V1, V2:V3, V4:V5 has the following data layout and

behavior:
VO: X[0] X[1] X[2] X[3] X[14] X[15]
V1: Y[O] Y[1] Y[2] Y[3] Y[14] Y[15]
Ve: Z[0] Z[1] Z[2] Z[3] Z[14] Z[15]
V3: WI0] WI1] WI[2] WI3] WI[14] WI[15]
V4: S[0] S[2] S[14]
V5: S[1] S[3] S[15]
. X[i] Y[i ) . . .
S[i] = det([ZH W[[i]]]) = X[i] * W[i] — Y[i] * Z[i]

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 369




9.8.8  Vector Floating-point Instructions

9.8.8.1

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float
conversion instructions are available in the vector math VO and V1 instruction slots. The
main vector register file VRF and working register file WRF supply the sources and
destination of FP instructions.

Instruction Summary

FP multiply-add is implemented with a fused multiply-add datapath that preserves full
product precision and has higher precision than separate FP multiply and FP add
operations.

Invalid outcome is captured in the sticky invalid status bit, INV, as described in section
9.45.

Handling of NaN and various corner cases in vector FP math follows that of scalar FP
math. FP comparison behavior of vector FP math follows that of scalar FP math. See FP
Math Corner Cases, FP Comparison Corner Cases, and FP Conversion Corner Cases for
corner case details.

Table 36. Vector floating-point instructions

Function

Assembly Format

Comments

Vector FP add

VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP subtract

VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP multiply

VMuIF Vsrc1/Wsrcl, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP multiply-
add

VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2,
Vsrc3dst

Vector FP multiply-
subtract

VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Vector FP16 add

VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

subtract

Vector FP16 VMulIHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
multiply

Vector FP16 VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst
multiply-add <pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2,

Vsrc3dst

Vector FP16
multiply-subtract

VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Vector INT to FP
conversion

VINT_FP Vsrc1, Vdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 370



Function

Assembly Format

Comments

Vector FP to INT
conversion with
truncation

VFP_INT_Trunc Vsrc, Vdst

Vector FP to INT
conversion with
rounding

VFP_INT_Round Vsrc, Vdst

Vector INTX to FP
conversion

VINTX_FP Vsrcl, Vdst

Vector FP to INTX
conversion with
truncation

VFP_INTX_Trunc Vsrc, Vdst

Vector FP to INTX
conversion with

VFP_INTX_Round Vsrc, Vdst

rounding
Vector INT to FP16 VINT_FP16 DVsrc1, Rsrcz2, Vdst Rsrc2 conveys gbit
conversion for fixed-point

representation.

Vector FP16 to INT
conversion wth
truncation

VFP16_INT_Trunc Vsrc1, Rsrc2, DVdst

Rsrc2 conveys gbit
for fixed-point
representation.

Vector FP16 to INT
conversion wth
rounding

VFP16_INT_Round Vsrc1, Rsrc2, DVdst

Rsrc2 conveys gbit
for fixed-point
representation.

Vector INT24 to
FP16 conversion

VINT24_FP16 Vsrc1, Rsrc2, Vdst

Rsrc2 conveys gbit
for fixed-point
representation.

Vector FP16 to
INT24 conversion
wth truncation

VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst

Rsrc2 conveys gbit
for fixed-point
representation.

Vector FP16 to
INT24 conversion
wth rounding

VFP16_INT24_Round Vsrc1, Rsrc2, Vdst

Rsrc2 conveys gbit
for fixed-point
representation.

Vector FP16 to FP32
conversion

VFP16_FP Vsrc, DVdst

Vector FP32 to FP16
conversion

VFP_FP16 DVsrc, Vdst

Vector FP compare
LT

VCmpLTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare
LE

VCmpLEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare
GT

VCmpGTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare
GE

VCmpGEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 371




Function

Assembly Format

Comments

Vector FP compare
EQ

VCmpEQF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Vector FP compare
NE

VCmpNEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

VCmpLTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,

compare LT Vdst/Wdst

Vector FP16 VCmpLEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,
compare LE Vdst/Wdst

Vector FP16 VCmpGTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,
compare GT Vdst/Wdst

Vector FP16 VCmpGEHF

compare GE Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst
Vector FP16 VCmpEQHF

compare EQ Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst
Vector FP16 VCmpNEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,
compare NE Vdst/Wdst

Vector FP reciprocal

VRCPF Vsrc/Wsrc, Vdst/Wdst

Vector FP square
root

VSQRTF Vsrc/Wsrc, Vdst/Wdst

Vector FP reciprocal
square root

VRSQF Vsrc/Wsrc, Vdst/Wdst

Vector FP
exponential base-2

VEXP2F Vsrc/Wsrc, Vdst/Wdst

Vector FP logarithm
base-2

VLOGZ2F Vsrc/Wsrc, Vdst/Wdst

Vector FP sine

VSINF Vsrc/Wsrc, Vdst/Wdst

Vector FP cosine

VCOSF Vsrc/Wsrc, Vdst/Wdst

Vector FP hyperbolic
tangent

VTANHF Vsrc/Wsrc, Vdst/Wdst

9.8.8.2 VAddF

Instruction name

VAddF

Functionality

Floating-point add

Assembly format

VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 372



Instruction name VAddF

Additional options

Intrinsics/operator vfloatx operator+( vfloatx src1, vfloatx src2);
vfloatx operator+( vfloatx src1, float src2);
vfloatx vaddf(vfloatx src1, vfloatx src2);
vfloatx vaddf(vfloatx src1, float src2);

// Double vector pseudo intrinsics

dvfloatx operator+( dvfloatx srci1, dvfloatx src2);
dvfloatx operator+( dvfloatx srci1, float src2);
dvfloatx dvaddf(dvfloatx src1, dvfloatx src2);
dvfloatx dvaddf(dvfloatx src1, float src2);

Additional details IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Outcome sign extended to fill bits 47 ~ 32.

9.8.8.3  VSubF

Instruction name VSubF

Functionality Floating-point subtract

Assembly format VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit (sign-extend FP32 to 48-bit

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx operator-( vfloatx src1, vfloatx src2);
vfloatx operator-( vfloatx src1, float src2);
vfloatx vsubf(vfloatx srci1, vfloatx src2);
vfloatx vsubf(vfloatx srci1, float src2);

// Double vector pseudo intrinsics

dvfloatx operator-( dvfloatx srcl, dvfloatx src2);
dvfloatx operator-( dvfloatx src1, float src2);
dvfloatx dvsubf(dvfloatx src1, dvfloatx src2);
dvfloatx dvsubf(dvfloatx src1l, float src2);

Additional details IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 373



Instruction name VSubF

Set the invalid status flag when any input or output is NaN.
Outcome sign extended to fill bits 47 ~ 32.

9.884  VMulF

Instruction name VMulF

Functionality Floating-point multiply

Assembly format VMUIF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx operator*( vfloatx src1l, vfloatx src2);
vfloatx operator*( vfloatx src1, float src2);
vfloatx vmulf(vfloatx src1, vfloatx src2);
vfloatx vmulf(vfloatx src1, float src2);

// Double vector pseudo intrinsics

dvfloatx operator*( dvfloatx srci1, dvfloatx src2);
dvfloatx operator*( dvfloatx src1, float src2);
dvfloatx dvmulf(dvfloatx src1, dvfloatx src2);
dvfloatx dvmulf(dvfloatx src1l, float src2);

Additional details IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN.
Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Outcome sign extended to fill bits 47 ~ 32.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 374



9.8.85 VMAddF

Instruction name VMAddF

Functionality Floating-point multiply-add

Assembly format VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst
pred = none, [P2..P15]

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication Available across lanes to clear accumulator (CA variation)

Source options unpredicated:

src1/src3: vector register in VRF
src2: vector register WRF or scalar register
predicated (_CA):

src1/src3: vector register in VRF

src2: vector register VRF/WREF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3);

vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3);

vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3, int pred);
vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3, int pred);

// Double vector pseudo intrinsics

dvfloatx dvmaddf(dvfloatx src1, dvfloatx src2, dvfloatx src3);
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3);
dvfloatx dvmaddf(dvfloatx srci1, dvfloatx src2, dvfloatx src3, int

pred);
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3, int
pred);

Additional details Performing multiply-add with IEEE compliant floating-point multiply and add.

Handles denormal, zero, infinity, NaN. Generates quiet NaN.
Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Outcome sign extended to fill bits 47 ~ 32.

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise
perform src1 * src2 + positive_zero, ignoring the src3 input.

Note that for corner cases around positive/negative zeros, src1 * src2 and
src1 * src2 + positive_zero produce different outcomes.

Example:
VMAddF V1, V2,V3, V4
would perform V4 = V1 *V2 + V3 in each Word lane.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 375



9.8.8.6 VMSubF

Instruction name VMSubF

Functionality Floating-point multiply-subtract

Assembly format VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication Not available

Source options src1/src3: vector register in VRF
src2: vector register in WRF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vmsubf(vfloatx src1, vfloatx src2, vfloatx src3);
vfloatx vmsubf(vfloatx src1, float src2, vfloatx src3);

// Double vector pseudo intrinsics
dvfloatx dvmsubf(dvfloatx srci1, dvfloatx src2, dvfloatx src3);
dvfloatx dvmsubf(dvfloatx srci1, float src2, dvfloatx src3);

Additional details Performing IEEE compliant floating-point multiply-sub, src3 —src1 * src2.
Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.
Set the invalid status flag when any input or output is NaN.
Outcome sign extended to fill bits 47 ~ 32.
Example:

VMSubF V1, W2,V3,V4
would perform V4 = V3 -V1* W2 in each Word lane.

9.8.8.7 VAddHF

Instruction name VAddHF

Functionality FP16 add
Assembly format VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator+( vhfloatx src1, vhfloatx src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 376



Instruction name VAddHF

vhfloatx operator+( vhfloatx srci1, hfloat src2);
vhfloatx vaddhf(vhfloatx src1, vhfloatx src2);
vhfloatx vaddhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics

dvhfloatx operator+( dvhfloatx src1, dvhfloatx src2);

dvhfloatx operator+( dvhfloatx src1, hfloat src2);

dvhfloatx dvaddhf(dvhfloatx src1, dvhfloatx src2);

dvhfloatx dvaddhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 addition performed, and FP16 outcome is sign-
extended to 24-bit in each Halfword lane of the destination register.

IEEE compliant half-precision floating-point add. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.8.8  VSubHF

Instruction name VSubHF

Functionality FP16 subtract

Assembly format VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator-( vhfloatx srci1, vhfloatx src2);
vhfloatx operator-( vhfloatx src1, hfloat src2);
vhfloatx vsubhf(vhfloatx src1, vhfloatx src2);
vhfloatx vsubhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics

dvhfloatx operator-( dvhfloatx src1, dvhfloatx src2);
dvhfloatx operator-( dvhfloatx src1, hfloat src2);
dvhfloatx dvsubhf(dvhfloatx src1, dvhfloatx src2);
dvhfloatx dvsubhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as
FP16 numbers, FP16 subtraction performed, and FP16 outcome is sign-
extended to 24-bit in each Halfword lane of the destination register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 377



Instruction name VSubHF

IEEE compliant half-precision floating-point add. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.89 VMulHF

Instruction name VMulHF

Functionality FP16 multiply

Assembly format VMUIHF Vsrc1/Wsrcl, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WREF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator*( vhfloatx src1, vhfloatx src2);
vhfloatx operator*( vhfloatx src1, hfloat src2);
vhfloatx vmulhf(vhfloatx srci1, vhfloatx src2);
vhfloatx vmulhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics

dvhfloatx operator*( dvhfloatx src1, dvhfloatx src2);
dvhfloatx operator*( dvhfloatx src1, hfloat src2);
dvhfloatx dvmulhf(dvhfloatx src1, dvhfloatx src2);
dvhfloatx dvmulhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as
FP16 numbers, FP16 multiplication performed, and FP16 outcome is sign-
extended to 24-bit in each Halfword lane of the destination register.

IEEE compliant half-precision floating-point multiply. Handles denormal, zero,
infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 378



9.8.8.10 VMAddHF

Instruction name VMAddHF

Functionality FP16 multiply-add

Assembly format VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst

pred = none, [P2..P15]

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication Instruction level predication

Source options unpredicated:

src1/src3: vector register in VRF
src2: vector register WRF or scalar register
predicated (_CA):

src1/src3: vector register in VRF

src2: vector register VRF/WREF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);
vhfloatx vmaddhf(vhfloatx src1, hfloat src2, vhfloatx src3);
vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3, int
pred);

vhfloatx vmaddhf(vhfloatx src1, hfloat src2, vhfloatx src3, int
pred);

// Double vector pseudo intrinsics

dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat src2, dvhfloatx src3);
dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3,

int pred);
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat src2, dvhfloatx src3, int
pred);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 multiply-add performed, and FP16 outcome is sign-
extended to 24-bit in each Halfword lane of the destination register.

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise
perform src1 * src2 + positive_zero, ignoring the src3 input.

Fused multiply-add is performed, preserving intermediate precision as much
as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 379



9.8.8.11

VMSubHF

Instruction name

VMSubHF

Functionality

FP16 multiply-subtract

Assembly format

VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Type and bit width

Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication

Not available

Source options

src1/src3: vector register in VRF
src2: vector register in WRF or scalar register

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vhfloatx vmsubhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);
vhfloatx vmsubhf(vhfloatx src1, hfloat src2, vhfloatx src3);

// Double vector pseudo intrinsics
dvhfloatx dvmsubhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);
dvhfloatx dvmsubhf(dvhfloatx src1, hfloat src2, dvhfloatx src3);

Additional details

Least significant 16 bits of each Halfword lane in each source are read as
FP16 numbers, FP16 multiply-subtract performed, and FP16 outcome is
sign-extended to 24-bit in each Halfword lane of the destination register.

Fused multiply-subtract is performed, preserving intermediate precision as
much as possible. Handles denormal, zero, infinity, NaN. Generates quiet
NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.8.12 VINT_FP

Instruction name

VINT_FP

Functionality

Integer to floating-point conversion

Assembly format

VINT_FP Vsrc, Vdst

Type and bit width

Input: 8 x 48-bit integer
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vfloatx vint_vfp(vintx src);

// Double vector pseudo intrinsics
dvfloatx dvint_dvfp(dvintx src);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 380



Instruction name

VINT_FP

Additional details

floating-point outcome is sign-extended back into a 48-bit Word lane.
The 32-bit integer to 32-bit floating-point conversion process is the same as

Each Word-lane 48-bit integer input is first saturated to 32-bit integer range,
[-2731, 2731-1], before converting to 32-bit floating-point. Each 32-bit

in INT_FP scalar instruction.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.8.8.13 VFP_INT_Trunc

Instruction name

VFP_INT_Trunc

Functionality

Floating-point to integer conversion

Assembly format

VFP_INT_Trunc Vsrc, Vdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit integer

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vintx vfp_vint_trunc(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvint_trunc(dvfloatx src);

Additional details

- truncation is used during the conversion, consistent with C float-to-int type

- Both zero and minus zero maps to zero.

FP32 to integer conversion with truncation.
For example, if input is Ox3FCO_0000 (1.5 in FP32), output is trunc(1.5) = 1
Note that

casting.

- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is
saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 381



9.8.8.14 VFP_INT_Round

Instruction name

VFP_INT_Round

Functionality

Floating-point to integer conversion

Assembly format

VFP_INT_Round Vsrc, Vdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit integer

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vintx vfp_vint_round(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvint_round(dvfloatx src);

Additional details

FP32 to integer conversion with rounding.

For example, if input is Ox3FCO_0000 (1.5 in FP32), output is round(1.5) = 2,
as 1.5 is tied between 1 and 2, so we round to 2 (even).

Note that

- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is
saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements
rounding implicitly, programmers are strongly encouraged to switch to Gen-2
intrinsic function fp_int_round() to avoid confusion.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 382



9.8.8.15 VINTX_FP

Instruction name

VINTX_FP

Functionality

Extended integer to floating-point conversion

Assembly format

VINTX_FP Vsrc, Vdst

Type and bit width

Input: 8 x 48-bit integer
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vfloatx vintx_vfp(vintx src);

// Double vector pseudo intrinsics
dvfloatx dvintx_dvfp(dvintx src);

Additional details

Each Word-lane 48-bit integer input is converted to 32-bit floating-point. Each
32-bit floating-point outcome is sign-extended back into a 48-bit Word lane.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.8.8.16  VFP_INTX_Trunc

Instruction name

VFP_INTX_Trunc

Functionality

Floating-point to extended integer conversion with truncation

Assembly format

VFP_INTX_Trunc Vsrc, Vdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit integer

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vintx vfp_vintx_trunc(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvintx_trunc(dvfloatx src);

Additional details

FP32 to INT48 conversion with truncation.
Note that

- truncation is used during the conversion, consistent with C float-to-int type
casting.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 48-bit int value (Ox7FFF_FFFF_FFFF).
- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 383



Instruction name

VFP_INTX_Trunc

- When output value exceeds 48-bit int representation range, output is
saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF.

- NaN maps to either 0Ox8000_0000_0000 or Ox7FFF_FFFF_FFFF, preserving

the sign.
- The invalid status flag is NOT set when input is NaN.

9.8.8.17 VFP_INTX_Round

Instruction name

VFP_INTX_Round

Functionality

Floating-point to extended integer conversion with rounding

Assembly format

VFP_INTX_Round Vsrc, Vdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit integer

Predication

not available

Source options

vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vintx vfp_vintx_round(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvintx_round(dvfloatx src);

Additional details

FP32 to INT48 conversion with rounding.
Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 48-bit int value (Ox7FFF_FFFF_FFFF).
- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000).

- When output value exceeds 48-bit int representation range, output is
saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF.

- NaN maps to either 0x8000_0000_0000 or Ox7FFF_FFFF_FFFF, preserving

the sign.

- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 384



9.8.8.18 VINT_FP16

Instruction name VINT_FP16

Functionality Integer to 16-bit floating-point conversion
Assembly format VINT_FP16 DVsrc1, Rsrc2, Vdst
Type and bit width Input: 2 x 8 x 48-bit integer

Output: 16 x 24-bit (FP16 sign-extend to 24-bit)
Predication not available
Source options src1: double vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx dvint_vfp16(dvintx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys gbit in source
fixed-point representation. dst = src1 / 2”src2.

Each Word-lane 48-bit integer input is first saturated to 32-bit integer range,
[-2731, 2731-1], before converting to 16-bit floating-point along with the
gbit information. Each 16-bit floating-point outcome is sign-extended back
into a 24-bit Halfword lane.

The 32-bit integer to 16-bit floating-point conversion process is the same as
in INT_FP16 scalar instruction.

Note that rounding is included in this instruction’s functionality.
Only rounding mode supported is round to nearest, ties to even.

Where output absolute value falls below normal FP16 range, denormal FP16
output is generated.

Conversion inputs come interleaved from a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 385



9.8.8.19 VFPI6_INT_Trunc

Instruction name VFP16_INT_Trunc

Functionality Floating-point to integer conversion with truncation

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst

Type and bit width Input: 16 x 16-bit (16 LSBs of each 24-bit lane)
Output: 2 x 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options double vector register in VRF

Additional options

Intrinsics/operator dvintx vfp16_dvint_trunc(vhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = trunc(src1 * 2”src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-
bit container).

Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 2”2src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0Ox8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

- Conversion outputs are deinterleaved into a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 386



9.8.8.20 VFP16_INT_Round

Instruction name VFP16_INT_Round

Functionality Floating-point to integer conversion with rounding

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst

Type and bit width Input: 16 x 16-bit (16 LSBs of each 24-bit lane)
Output: 2 x 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options double vector register in VRF

Additional options

Intrinsics/operator dvintx vfp16_dvint_round(vhfloatx srci1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys gbit in
destination fixed-point representation. dst = round(src1 * 27src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-
bit container).

Note that

- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 32-bit int value (Ox7FFF_FFFF).
- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value round(src1 * 2/src2) exceeds 32-bit int representation
range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0Ox8000_0000 or Ox7FFF_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

- Conversion outputs are deinterleaved into a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 387



9.8.8.21 VINT24_FP16

Instruction name VINT24_FP16

Functionality 24-bit integer to 16-bit floating-point conversion
Assembly format VINT24_FP16 Vsrc1, Rsrc2, Vdst
Type and bit width Input: 16 x 24-bit integer

Output: 16 x 24-bit (FP16 sign-extend to 24-bit)
Predication not available
Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx vint24_vfp16(vshortx src1, int src2);

// Double vector pseudo intrinsics
dvhfloatx dvint24_dvfp16(dvshortx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys gbit in source
fixed-point representation. dst = src1 / 2”src2.

Note that rounding is included in this instruction’s functionality.
Only rounding mode supported is round to nearest, ties to even.

Each 16-bit floating-point output is sign-extended into a Halfword lane (24-
bit container).

Where output absolute value falls below normal FP16 range, denormal FP16
output is generated.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 388



9.8.8.22 VFPI16_INT24_Trunc

Instruction name VFP16_INT24_Trunc

Functionality Floating-point to integer conversion with truncation

Assembly format VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst

Type and bit width Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vshortx vfp16_vint24_trunc(vhfloatx srci1, int src2);

// Double vector pseudo intrinsics
dvshortx dvfp16_dvint24_trunc(dvhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys gbit in destination
fixed-point representation. dst = trunc(src1 * 2”src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-
bit container).

Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 24-bit int value (Ox7F_FFFF).

- Minus infinity maps to minimal 24-bit int value (0x80_0000).

- When output value trunc(src1 * 27src2) exceeds 24-bit int representation
range, output is saturated between 0x80_0000 and x7F_FFFF.

- NaN maps to either 0x80_0000 or Ox7F_FFFF, preserving the sign.
- Denormal FP16 input value is supported.
- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 389



9.8.8.23 VFP16_INT24_Round

Instruction name VFP16_INT24_Round

Functionality Floating-point to integer conversion with rounding

Assembly format VFP16_INT24_Round Vsrc1, Rsrc2, Vdst

Type and bit width Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vshortx vfp16_vint24_round(vhfloatx src1, int src2);

// Double vector pseudo intrinsics
dvshortx dvfp16_dvint24_round(dvhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys gbit in
destination fixed-point representation. dst = round(src1 * 2”src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-
bit container).

Note that

- Rounding is used during the conversion. The only rounding mode supported
is round to nearest, ties to even.

- Both zero and minus zero maps to zero.
- Infinity maps to maximal 24-bit int value (Ox7F_FFFF).
- Minus infinity maps to minimal 24-bit int value (0x80_0000).

- When output value round(src1 * 2”src2) exceeds 24-bit int representation
range, output is saturated between 0x80_0000 and x7F_FFFF.

- NaN maps to either 0x80_0000 or Ox7F_FFFF, preserving the sign.
- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 390



9.8.8.24 VFPI16_FP

Instruction name

VFP16_FP

Functionality

Vector floating-point FP16 to floating-point FP32 conversion

Assembly format

VFP16_FP Vsrc, DVdst

Type and bit width

Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Output: 2 x 8 x 48-bit (FP32 sign-extend to 48-bit)

Predication

not available

Source options

vector register in VRF

Destination options

double vector register in VRF

Additional options

Intrinsics/operator

dvfloatx vfp16_dvfp(vhfloatx src);

Additional details

FP16 floating-point input is read from 16 LSBs of each Halfword lane in the
source, converted to FP32 floating-point outcome, sign-extended, and
written to 48-bit Word lane in the destination.

Note that the invalid status flag is NOT set when input is NaN.
Conversion outputs are deinterleaved into a double vector register.

9.8.8.25 VFP_FPI16

Instruction name

VFP_FP16

Functionality

Vector floating-point FP32 to floating-point FP16 conversion

Assembly format

VFP_FP16 DVsrc, Vdst

Type and bit width

Input: 2 x 8 x 32-bit (32 LSBs of each 48-bit lane)
Output: 16 x 24-bit (FP16 sign-extend to 24-bit)

Predication

not available

Source options

double vector register in VRF

Destination options

vector register in VRF

Additional options

Intrinsics/operator

vhfloatx dvfp_vfp16(dvfloatx src);

Additional details

FP32 floating-point input is read from 32 LSBs of each Word lane in the
source, converted to FP 16 floating-point outcome, sign-extended, and
written to 24-bit Halfword lane in the destination.

Note that the invalid status flag is NOT set when input is NaN.

Conversion inputs come interleaved from a double vector register.

9.8.8.26 VCmpLTF

Instruction name

VCmpLTF

Functionality

Floating-point compare less than

Assembly format

VCmPpLTF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 391



Instruction name

VCmpLTF

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<( vfloatx src1, vfloatx src2);
vintx operator<( vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator<( dvfloatx src1, dvfloatx src2);
dvintx operator<( dvfloatx src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See for FP comparison corner cases.

9.8.8.27 VCmpLEF

Instruction name

VCmpLEF

Functionality

Floating-point compare less than or equal to

Assembly format

VCmpLEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator<=( vfloatx srcl1, vfloatx src2);
vintx operator<=( vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator<=( dvfloatx src1, dvfloatx src2);
dvintx operator<=( dvfloatx src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 392



9.8.8.28 VCmpGTF

Instruction name

VCmpGTF

Functionality

Floating-point compare greater than

Assembly format

VCmpGTF Vsrc1/Wsrcl, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF
src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator>( vfloatx srcl1, vfloatx src2);
vintx operator>( vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator>( dvfloatx src1, dvfloatx src2);
dvintx operator>( dvfloatx src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.29 VCmpGEF

Instruction name

VCmpGEF

Functionality

Floating-point compare greater than or equal to

Assembly format

VCmpGEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator>=( vfloatx srcl1, vfloatx src2);
vintx operator>=( vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator>=( dvfloatx src1, dvfloatx src2);
dvintx operator>=( dvfloatx src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 393



Instruction name

VCmpGEF

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.30 VCmpEQF

Instruction name

VCmpEQF

Functionality

Floating-point compare equal

Assembly format

VCmpEQF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator==( vfloatx srci1, vfloatx src2);
vintx operator==( vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator==( dvfloatx src1, dvfloatx src2);
dvintx operator==( dvfloatx src1, float src2);

Additional details

Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.31

VCmpNEF

Instruction name

VCmpNEF

Functionality

Floating-point compare not equal

Assembly format

VCmMpNEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Scalar input: 32-bit scalar float broadcast to each lane
Output: 8 x 48-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vintx operator!=( vfloatx src1, vfloatx src2);
vintx operator!=( vfloatx src1, float src2);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 394



Instruction name VCmpNEF

// Double vector pseudo intrinsics

dvintx operator!=( dvfloatx src1, dvfloatx src2);
dvintx operator!=( dvfloatx src1, float src2);

Additional details Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.32 VCmpLTHF

Instruction name VCmpLTHF

Functionality FP16 compare less than

Assembly format VCmpLTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator<( vhfloatx src1, vhfloatx src2);
vshortx operator<( vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator<( dvhfloatx srci1, dvhfloatx src2);
dvshortx operator<( dvhfloatx src1, hfloat src2);

Additional details Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.33 VCmpLEHF

Instruction name VCmpLEHF

Functionality FP16 compare less than or equal

Assembly format VCmpLEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 395



Instruction name VCmpLEHF

Additional options

Intrinsics/operator vshortx operator<=( vhfloatx srci1, vhfloatx src2);
vshortx operator<=( vhfloatx srci1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator<=( dvhfloatx src1, dvhfloatx src2);
dvshortx operator<=( dvhfloatx src1, hfloat src2);

Additional details Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.34 VCmpGTHF

Instruction name VCmpGTHF

Functionality FP16 compare greater than
Assembly format VCmpGTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst
Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator>( vhfloatx src1, vhfloatx src2);
vshortx operator>( vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator>( dvhfloatx srci1, dvhfloatx src2);
dvshortx operator>( dvhfloatx src1, hfloat src2);

Additional details Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.35 VCmpGEHF

Instruction name VCmpGEHF

Functionality FP16 compare greater than or equal

Assembly format VCmpGEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 396



Instruction name

VCmpGEHF

Predication

not available

Source options

src1: vector register in VRF or WRF
src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vshortx operator>=( vhfloatx src1, vhfloatx src2);
vshortx operator>=( vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator>=( dvhfloatx src1, dvhfloatx src2);
dvshortx operator>=( dvhfloatx src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.36 VCmpEQHF

Instruction name

VCmpEQHF

Functionality

FP16 compare equal

Assembly format

VCmpEQHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vshortx operator==( vhfloatx src1, vhfloatx src2);
vshortx operator==( vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator==( dvhfloatx src1, dvhfloatx src2);
dvshortx operator==( dvhfloatx src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.
See FP Comparison Corner Cases for FP comparison corner cases.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 397



9.8.8.37 VCmpNEHF

Instruction name

VCmpNEHF

Functionality

FP16 compare not equal

Assembly format

VCmpNEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width

Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)
Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane
Output: 16 x 24-bit integer

Predication

not available

Source options

src1: vector register in VRF or WRF
src2: vector register in VRF, WRF or scalar register

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vshortx operator!=( vhfloatx src1, vhfloatx src2);
vshortx operator!=( vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator!=( dvhfloatx src1, dvhfloatx src2);
dvshortx operator!=( dvhfloatx src1, hfloat src2);

Additional details

Always return O or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.38 VRCPF

Instruction name

VRCPF

Functionality

Floating-point reciprocal

Assembly format

VRCPF Vsrc/Wsrc, Vdst/Wdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF or WRF

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vfloatx vfrcp(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfrcp(dvfloatx src);

Additional details

Performing FP32-input, FP32-output reciprocal. Set invalid status flag when
output is NaN.

Corner cases:
RCP(+denorm) gives +Inf
RCP(-denorm) gives -Inf

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 398



Instruction name VRCPF

RCP(+0.0) gives +Inf
RCP(-0.0) gives -Inf
RCP(+1.0) gives +1.0

RCP(-1.0) gives-1.0
RCP(+Inf) gives +0.0
RCP(-Inf) gives -0.0

(-
(
(-1
(
(-
(

RCP(NaN) gives NaN

Max relative error is 22-23 over entire normal floating-point range.

9.8.8.39 VSQRTF

Instruction name VSQRTF

Functionality Floating-point square root

Assembly format VSQRTF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfsqrt(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfsqrt(dvfloatx src);

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag
when output is NaN.

Corner cases:
SQRT(+denorm) gives +0.0
SQRT(-denorm) gives -0.0
SQRT(+0.0) gives +0.0
SQRT(-0.0) gives-0.0
SQRT(+1.0) gives +1.0
SQRT(-1.0) gives NaN
SQRT(

SQRT(-Inf) gives NaN
SQRT(NaN) gives NaN

SQRT(negative) gives NaN (other than for -denorm or -0)

+Inf)  gives +Inf

Max relative error is 2*-23 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 399



9.8.8.40 VRSQF

Instruction name VRSQF

Functionality Floating-point reciprocal square root

Assembly format VRSQF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

|ntrinsics/operator vfloatx Vfrsq(VfloatX SrC);

// Double vector pseudo intrinsics
dvfloatx dvfrsq(dvfloatx src);

Additional details Performing FP32-input, FP32-output reciprocal square root. Set invalid
status flag when output is NaN.

Corner cases:
RSQ(+denorm) gives +Inf
RSQ(-denorm) gives -Inf
RSQ(+0.0) gives +Inf
RSQ(-0.0) gives -Inf
RSQ(+1.0) gives +1.0
RSQ(-1.0) gives NaN
RSQ(+Inf) gives +0.0

RSQ(-

RSQ(NaN) gives NaN

RSQ(negative) gives NaN (other than for -denorm or -0)

Inf) gives NaN
a

Max relative error is 22-22.4 over entire normal floating-point range.

9.8.8.41 VEXP2F

Instruction name VEXP2F

Functionality Floating-point exponential base-2

Assembly format VEXP2F Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 400



Instruction name VEXP2F

Additional options

Intrinsics/operator vfloatx vfexp2(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfexp2(dvfloatx src);

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid
status flag when output is NaN.

Corner cases:
EXP2(+denorm) gives +1.0
EXP2(-denorm) gives +1.0
EXP2(+0.0) gives +1.0
EXP2(-0.0) gives +1.0
EXP2(+Inf) gives +Inf
EXP2(-Inf) gives +0.0
EXP2(NaN) gives NaN

Max relative error is 22-22.5 over entire normal floating-point range.

9.8.8.42 VLOGZ2F

Instruction name VLOG2F

Functionality Floating-point logarithm base-2

Assembly format VLOG2F Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vflog2(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvflog2(dvfloatx src);

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid
status flag when output is NaN.

Corner cases:

LOG2(+denorm) gives -Inf

LOG2(-denorm) gives -Inf
LOG2(+0.0) gives -Inf
LOG2(-0.0) gives -Inf
LOG2(+Inf) gives +Inf

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 401



Instruction name

VLOG2F

LOG2(-Inf) gives NaN
LOG2(NaN) gives NaN
LOG2(negative) gives NaN (other than for -denorm or -0)

Max absolute error is 27-22 in range (0.5, 2.0).
Max relative error can be as large as 0.9 in range (0.5, 2.0).
Max relative error is 27-22.5 in range [0, 0.5] and [2.0, +Inf].

9.8.8.43 VSINF

Instruction name

VSINF

Functionality

Floating-point sine

Assembly format

VSINF Vsrc/Wsrc, Vdst/Wdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF or WRF

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vfloatx vfsin(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfsin(dvfloatx src);

Additional details

Performing FP32-input, FP32-output sine function. Input in radians should be
pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-
normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

SIN(+denorm) gives +0.0

SIN(-denorm) gives -0.0

SIN(+0.0) gives +0.0

SIN(-0.0) gives-0.0

SIN(+Inf)  gives NaN

SIN(-Inf)  gives NaN

SIN(NaN) gives NaN

SIN(normal) is always in the range [-1, +1]

Max absolute error is 22-20.5 in range -2*pi ~ 2*pi.
Max absolute error is 22-14.7 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-
normalization.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 402



Instruction name

VSINF

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

9.8.8.44 VCOSF

Instruction name

VCOSF

Functionality

Floating-point cosine

Assembly format

VCOSF Vsrc/Wsrc, Vdst/Wdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF or WRF

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vfloatx vfcos(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfcos(dvfloatx src);

Additional details

Performing FP32-input, FP32-output cosine function. Input in radians should
be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-
normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:
COS(+denorm) gives +1.0
COS(-denorm) gives +1.0
COS(+0.0) gives +1.0
COS(-0.0) gives +1.0
COS(+Inf) gives NaN
COS(-
COS(NaN) gives NaN
(

COS(normal) is always in the range [-1, +1]

Inf) gives NaN

Max absolute error is 22-20.9 in range -2*pi ~ 2*pi.

Max absolute error is 22-15.3 in range -100*pi ~ 100*pi.
The max error includes cumulative error of performing the required pre-

normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 403



9.8.8.45 VTANHF

Instruction name

VTANHF

Functionality

Vector floating-point hyperbolic tangent

Assembly format

VTANHF Vsrc/Wsrc, Vdst/Wdst

Type and bit width

Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)
Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication

not available

Source options

vector register in VRF or WRF

Destination options

vector register in VRF or WRF

Additional options

Intrinsics/operator

vfloatx vftanh(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvftanh(dvfloatx src);

Additional details

Performing FP32-input, FP32-output hyperbolic function. Set invalid status
flag when output is NaN.

Corner cases:

TANH(-denorm) gives -0.0

TANH(-0.0) gives -0.0

TANH(+0.0) gives +0.0

TANH(+denorm) gives +0.0

TANH(-Inf) gives-1.0

TANH(+Inf) gives 1.0

TANH(NaN) gives NaN

TANH(normal) is always in the range [-1.0 .. +1.0]

Max relative error is 2*-11 over the entire normal floating-point range.

Max absolute error is 22-12 over the entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 404



9.8.9

9.8.9.1

Vector Misc Instructions

Instruction Summary

Table 37. Vector miscellaneous instructions

Function

Assembly Format

Comments

Vector min path cost

VMinPathCost<H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

For SGM, semi-global matching
algorithm

Vector Boolean map

VBMap31 Rsrc, Vsrcl, Vsrc2, Vsrc3, Vdst

Arbitrary 3-input-1-output
Boolean operation, use Rsrc1
to encode the function

Vector 4x2 add/sub

VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3,
Vsrc4, Vdst1, Vdst2

4-input-2-output, various
add/sub operations

Vector configurable 4x2
add/sub

VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3,
DVdst

VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3,
DVdst

VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3,
DVdst

4-input-2-output, configurable
add/sub operations

Vector normalize and
extract index and
fraction

VNormldxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Normalize src1 into index and
fraction fields

Vector horizontal min4
accumulate

<pred> VHMin4<type>_CA DVsrc1, Wsrc2,
ACsrc3dst

Min across (up to) 4 data terms
and accumulator

Vector horizontal max4
accumulate

<pred> VHMax4<type>_CA DVsrc1, Wsrc2,
ACsrc3dst

Max across (up to) 4 data
terms and accumulator

9.8.9.2

VMIN_PATH_COST

Instruction name

VMIN_PATH_COST

Functionality

Vector min path cost

Assembly format

VMinPathCost1<type> Vsrc1, Vsrc2, Vsrc3, Vdst
VMinPathCost2<type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width

B: 32 x 12-bit signed Vsrc1/Vsrc2/Vsrc3, two 12-bit unsigned scalars packed in

PL or PH

H: 16 x 24-bit signed Vsrc1/Vsrc2/Vsrc3, 15-bit and 17-bit unsigned scalars

packed in PL or PH

Predication

not available

Source options

srcl, src2, src3: singe vector register

Implicit source PL (R12, VMinPathCost1) or PH (R13, VMinPathCost?2)

Destination options

dst: single vector register

Additional options

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 405




Intrinsics/operator vshortx vminpathcost1(vshortx src1, vshortx src2, vshortx src3, int
srcd4); // srcd in PL

vshortx vminpathcost2(vshortx srci1, vshortx src2, vshortx src3, int
src4); // src4 in PH

vcharx vminpathcost1(vcharx src1, vcharx src2, vcharx src3, int
srcd4); // srcd in PL

vcharx vminpathcost2(vcharx src1, vcharx src2, vcharx src3, int
src4); // src4 in PH

vshortx vminpathcost(vshortx src1, vshortx src2, vshortx src3, int
src4); // same functionality as vminpathcost1

vcharx vminpathcost(vcharx src1, vcharx src2, vcharx src3, int src4);
// same functionality as vminpathcost1

Additional details Perform SGM min path cost calculation, which involves neighboring lanes.
Each lane i of output involves itself, previous (i-1) and next (i+1) lanes: dst[i] =
min(cost[i], cost[i-1]+p, cost[i+1]+p, q).

Implicit (in assembly, not in intrinsic calls) scalar register PL=R12 or PH = R13
supplies p and g. VMinPathCost1 uses PL, and VMinPathCost2 uses PH. These
2 variants are mapped to the “1” and “2” variants in the intrinsic functions.

For Byte type, p = src4[27:16] (unsigned 12-bit) and q = src4[11:0] (unsigned
12-bit).

For Half-word type, p = src4[31:17] (unsigned 15-bit) and g = src4[16:0]
(unsigned 17-bit).

Treat Vsrc1, Vsrc2, Vsrc3 as 3 neighboring sections of a cost array, Vsrc2
supplying the current section, Vsrc1 the previous section, and Vsrc3 the next
section.

For Byte type, a single vector register contains 32 12-bit lanes. For lanes 1..30
of output, previous/current/next lanes are all available in Vsrc2. Lane O output
shall use Vsrc1[31] to supply the previous lane, and lane 31 output shall use
Vsrc3[0] to supply the next lane.

For Half-word type, a single vector register contains 16 24-bit lanes. For lanes
1..14 of output, previous/current/next lanes are all available in Vsrc2. Lane O
output shall use Vsrc1[15] to supply the previous lane, and lane 15 output
shall use Vsrc3[0] to supply the next lane.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 406



9.89.3 VBMap3l

Instruction name VBMap31

Functionality Vector Boolean map

Assembly format VBMap31 Rsrc, Vsrc1, Vsrc2, Vsrc3, Vdst
Type and bit width none (bit-wise)

Predication not available

Source options Rsrc: scalar register

Vsrcl, Vsrc2, Vsrc3: single vector register

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vintx vbmap31(int src, vintx src1, vintx src2, vintx src3);
vshortx vbmap31(int src, vshortx src1, vshortx src2, vshortx src3);
vcharx vbmap31(int src, vcharx srcl, vcharx src2, vcharx src3);

// Double vector pseudo intrinsics

dvintx dvbmap31(int src, dvintx srci1, dvintx src2, dvintx src3);
dvshortx dvbmap31(int src, dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvbmap31(int src, dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Perform an arbitrary 3-input-1-output Boolean function using bits 7..0 of the
scalar register source. These 8 bits are read as a truth table, indicating 0/1
outcome for the 8 combinations of 3 inputs, Vsrc1 contributing to bit 2 of the
bit position, Vsrc2 contributing to bit 1, Vsrc3 contributing to bit O. This is a
bitwise operation across all 384 bits.
For example, to implement the following Boolean function,

Vsrc1 Vsrc?2 Vsrc3 Output

0 0

= O B O = O +H O
R O O B O O +— B

0 0
0 1
0 1
1 0
1 0
1 1
1 1

bits 7..0 of Rsrc should contain Ox93.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 407



9.8.9.4  VAddSub4x2

Instruction name VAddSub4x2

Functionality Vector 4x2 add/sub

Assembly format VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3, Vsrc4, Vdst1, Vdst2
Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Vsrc1, Vsrc2, Vsrc3, Vsrc4: single vector register in VRF

Only selected combination of VRF entries are allowed.

Destination options Vdst1, Vdst2: single vector register in VRF
Additional options op =0 or 1, implementing one of two patterns
Intrinsics/operator void vaddsub4x2_8(vintx src1, vintx src2, vintx src3, vintx src4,

vintx &dst1, vintx &dst2);

void vaddsub4x2_1(vintx src1, vintx src2, vintx src3, vintx src4,
vintx &dst1, vintx &dst2);

void vaddsub4x2_0(vshortx src1, vshortx src2, vshortx src3, vshortx
src4, vshortx &dst1, vshortx &dst2);

void vaddsub4x2_1(vshortx srci1, vshortx src2, vshortx src3, vshortx
src4, vshortx &dst1, vshortx &dst2);

void vaddsub4x2_0(vcharx srcl1, vcharx src2, vcharx src3, vcharx src4,
vcharx &dst1, vcharx &dst2);

void vaddsub4x2_1(vcharx src1, vcharx src2, vcharx src3, vcharx src4,
vcharx &dst1, vcharx &dst2);

Additional details When op = 0, perform
dst1 =srcl1 +src2 + src3 + src4d
dst2 =src1 -src2 + src3 -src4d
When op = 1, perform
dstl =srcl +src2 -src3-src4d
dst2 = src1 -src2 -src3 + src4

The VAddSub4x?2 instruction is architected to accelerate FFT as well as Hadamard
transform. Number of input/output operands makes it infeasible to allow arbitrary
combination of operands, so the instruction is encoded so that only specific
combinations of VRF entries are allowed:

For radix-4 DIF (decimation in frequency) FFT, the add/sub network carries out
z0.r = XO.r + x1.r + x2.r + x3.r T op=0

z2.r = X0.r - x1.r + x2.r - x3.r

z0.i = x0.i + x1.i + x2.i + X3.i T op=0

z2.i = x0.i - x1.i + x2.i - x3.i

zl.r = x0.r + x1.i-x2.r - x3.i T op=1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 408



z3.r = XO.r - x1.i - x2.r + x3.i
z1.i=x0.i-xT.r -x2.i + x3.r
z3.i = x0.i + x1.r - x2.i - X3.r

T op=1

Multiple sets of register assignment are supported to allow loop unrolling:

x0.r x0.i x1.r xT.i xa.r x2.i x3.r x3.i
RAO VO V1 V2 V3 V4 V5 V6 V7
RA 1 V8 V9 V10 V11 \a V13 V14 V15
RA 2 V16 V17 V18 V19 V20 V21 V22 V23
RA 3 Va4 Va5 V26 Va7 Va8 V29 V30 V31
There are 16 combinations of VRF input operands needed:
Combo | for op srcl src2 src3 src4
0 RA O zO.r, z2.r VO Ve V4 V6
1 RA 0 z0.i, z2.i V1 V3 V5 V7
2 RAOzl.r,z3.r 1 VO V3 V4 V7
3 RA 0 z3.i, z1.i 1 Vi Ve V5 V6
4 RA 1 z0.r, z2.r 0 V8 V10 Vi2 V14
5 RA 1 z0., z2.i 0 V9 V11 Vi3 V15
6 RA1zl.r, z3.r 1 V8 V11 Vi2 V15
7 RA 1 z3.,z1.i 1 V9 V10 V13 V14
8 RA 2 zO.r, z2.r 0 V16 Vi8 V20 Va2
9 RA 2 z0.i, z2.i 0 V17 V19 Va1l va3
10 RA2zl.r, z3.r 1 V16 V19 V20 va3
11 RA 2 z3.i, z1.i 1 V17 Vi8 Va1l Va2
12 RA 3 zO.r, z2.r 0 V24 V26 V28 V30
13 RA 3 z0.i, z2.i 0 V25 va7 V29 V31
14 RA3zl.r, z3.r 1 Va4 va7 Va8 V31
15 RA 3 z3.i, z1.i 1 V25 V26 V29 V30

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 409



9.89.5 VCfgAddSub4x2

Instruction name

VCfgAddSub4x2

Functionality

Vector configurable 4x2 add/sub

Assembly format

VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3, DVdst
VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3, DVdst
VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3, DVdst

Type and bit width

B: 32 x 12-bit, H: 16 x 24-bit, W: 8 x 48-bit

Predication

not available

Source options

DVsrc1, DVsrc2: double vector register in VRF or WRF
Rsrc3: scalar register

Destination options

DVdst: double vector register in VRF

Additional options

Intrinsics/operator

dvcharx vcfg_addsub4x2(dvcharx src1, dvcharx src2, int src3);
dvshortx vcfg_addsub4x2(dvshortx src1, dvshortx src2, int src3);
dvintx vcfg_addsub4x2(dvintx src1, dvintx src2, int src3);

Additional details

Decode configuration from scalar Rsrc3 by extracting 8 2-bit parameters:
m11 =Rsrc3[1:0], m12 = Rsrc3[3:2], m13 = Rsrc3[5:4], m14 = Rsrc3[7:6],

m21 = Rsrc3[9:8], m22 = Rsrc3[11:10], m23 = Rsrc3[13:12], m24 =
Rsrc3[15:14].

Each parameter is interpreted as

“00™: 0

‘0171

“10”: -1

“117: -1

Compute

dst.lo=m11*srcl.lo + m12*src1.hi + m13*src2.lo + m14*src2.hi
dst.hi=m21*src1.lo + m22*src1.hi + m23*src2.lo + m24*src2.hi

Note that .lo and .hi components are derived from double vector operands as
described in 6.2.3.6, according to the interleaved format.

9.8.9.6 VNormldxFrac

Instruction name

VNormldxFrac

Functionality

Vector normalize and extract index/fraction

Assembly format

VNormldxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width

W: 8 x 48-bit, H: 16 x 24-bit

(B type is omitted, as including it would increase bitwidth of shared shifter
required to implement this feature)

Predication

not available

Source options

src1: single vector register in VRF

src2: single vector register in VRF

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 410



Instruction name VNormldxFrac

src3 (implicit) PL scalar register

Destination options | dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vnorm_idx_frac(vintx src1, vintx src2, int src3, vintx & dst1,
vintx & dst2);

void vnorm_idx_frac(vshortx src1, vshortx src2, int src3, vshortx &
dst1, vshortx & dst2);

// Double vector pseudo intrinsic
void dvnorm_idx_frac(dvintx src1, dvintx src2, int src3, dvintx &
dst1, dvintx & dst2);

void dvnorm_idx_frac(dvshortx srci1, dvshortx src2, int src3, dvshortx
& dst1, dvshortx & dst2);

Additional details src carries the input data, src2[7:0] carries the MSB position previously
detected via VMSBD on src1. src3[3:0] (implicit in PL scalar register) carries
index_nbits, number of index bits in a subsequent table lookup. Dst1 returns
the index, and dst2 returns the fraction.
src2[7:0] is read as a signed 8-bit number to accommodate VMSBD return
value in [-1, 23] for Halfword and [-1, 47] for Word.
src3[3:0] conveys index_nbits, and has valid range of 6 ~ 9. In case src3[3:0] is
below 6 or above 9, both dst1 and dst2 return O.
The lookup table should contain 27index_nbits + 1 entries, so index_nbits being
6 ~ 9 corresponds to 65 ~ 1025 entries, which is a reasonable table size of
lookup table for a log table to get reasonable accuracy through linearly
interpolated lookup.
Index output is for a subsequent table lookup, so is extracted from src1 bits
from msb_pos-1 downto msb_pos - index_nbits and right justified.
Fraction output is for post-lookup linear interpolation, so is extracted from src1
bits from msb_pos - index_nbits - 1 (following index bits) downto O and left
justified.
Pseudo-code for Halfword type, in lane i:

norm_pos = 15;

frac_mask = (1 << norm_pos) - 1;

index_nbits = PL[3:8]; // read as unsigned int4

idx_mask = (1 << index_nbits) - 1;

input = srci1[i];

msb_pos = src2[i][7:0]; // read as signed int8

if (index_nbits < 6 || index_nbits > 9)

dst[i] = ©;

else {

shiftVal = norm_pos - msb_pos + index_nbits;
shiftVal = (shiftVal < -24) ? -24 :

((shiftval > 24) ? 24 : Shiftval);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 411



Instruction name | VNormldxFrac
idx_frac = shift(input, shiftval);
/] shift left for positive shiftVal
// shift right for negative shiftVal
frac = idx_frac & frac_mask;
idx = (idx_frac >> norm_pos) & idx_mask;

}

For Word type, norm_pos = 31, and shiftVal is saturated to [-48, 48] instead.

9.89.7 VHMIin4_CA

Instruction name VHMin4_CA

Functionality Vector horizontal min-4 accumulate

Assembly format <pred> VHMin4<type>_CA DVsrc1, Wsrc2, ACsrc3dst
pred = none, [P2..P15]
Type and bit width B: 32 x 12-bit, H: 16 x 24-bit

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: single vector register in WRF

Destination options | src3dst: single vector register in ARF

Additional options

Intrinsics/operator vcharx vhmin4_ca(dvcharx src1l, vcharx src2, vcharx src3, int pred);

vshortx vhmin4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred);

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.
Src?2 carries control parameter to include/exclude input in bit O of each lane.
Src3dst is the accumulator.

The instruction carries out min operation among horizontally overlapping 4 data
terms and the accumulator when the predicate is true. When the predicate is
false, the accumulator input is ignored, effectively clearing the accumulator.

Layout of data for each 4 lane group:

srcl.lo DI[O] D[1] D[2] D[3]
srcl.hi D[4] D[5] D[6] D[7]
src2 Cl[o] Cl1] Cl2] C[3]
src3dst ACC[O0] ACC[1] ACC[2] ACC[3]

mO = C[0][0] (bit O of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0]

ACCI[O0] = min(mask(mO0, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),
ACCI[O]);

ACC[1] = min(mask(mO0, D[1]), mask(m1, D[2]), mask(m2, D[3]), mask(m3, D[4]),

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 412



ACC[1]);

ACC[2] = min(mask(mO, D[2]), mask(m1, D[3]), mask(m2, D[4]), mask(m3, D[5]),
ACC[2]);

ACCI[3] = min(mask(mO0, D[3]), mask(m1, D[4]), mask(m2, D[5]), mask(m3, D[6]),
ACCI[3]);

mask(m, d) = (m ==0) ? INT_MAX :d

INT_MAX is the maximal integer value for the type. Basically, when the control
parameter is 0, the data term is replaced with INT_MAX and thus excluded
from the min operation.

9.89.8 VHMax4_CA

Instruction name VHMax4_CA

Functionality Vector horizontal max-4 accumulate

Assembly format <pred> VHMax4<type>_CA DVsrc1, Wsrc2, ACsrc3dst
pred = none, [P2..P15]

Type and bit width B: 32 x 12-bit, H: 16 x 24-bit

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: single vector register in WRF

Destination options | src3dst: single vector register in ARF

Additional options

Intrinsics/operator vcharx vhmax4_ca(dvcharx src1l, vcharx src2, vcharx src3, int pred);

vshortx vhmax4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred);

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.
Src?2 carries control parameter to include/exclude input in bit O of each lane.
Src3dst is the accumulator.

The instruction carries out max operation among horizontally overlapping 4
data terms and the accumulator when the predicate is true. When the
predicate is false, the accumulator input is ignored, effectively clearing the
accumulator.

Layout of data for each 4 lane group:

srcl.lo D[0] D[1] D[2] D[3]
srcl.hi D[4] D[5] D[6] D[7]
src2 c[o] Cl1] Cl2] CI3]
src3dst ACCI[0] ACCI[1] ACCI[2] ACCI[3]

mO = C[0][0] (bit O of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0]
ACCI[0] = max(mask(mO, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),
ACCI[0]);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 413



Instruction name

VHMax4_CA

ACC[1] = max(mask(mO, D[1]), mask(m1, D[2]), mask(m?2, D[3]), mask(m3, D[4]),
ACC[1]);

ACC[2] = max(mask(mO, D[2]), mask(m1, D[3]), mask(m?2, D[4]), mask(m3, D[5]),
ACC[2]);

ACCI[3] = max(mask(mO, D[3]), mask(m1, D[4]), mask(m?2, D[5]), mask(m3, D[6]),
ACCI[3]);

mask(m, d) =(m==0) ? INT_MIN : d

INT_MIN is the minimal integer value for the type. Basically, when the control
parameter is O, the data term is replaced with INT_MIN and thus excluded from
the max operation.

9.9 Load/Store Instructions

9.9.1 Scalar Load/Store

9.9.1.1 Instruction Summary

Scalar load/store are supported with signed/unsigned word/half-word/byte data types
and the following address modes:

Indexed, with register base and 12-bit (singed) immediate offset

Post increment, with register base and register modifier value

Table 38. Scalar load/store instructions

Function Assembly Format Comments
Load base- LD<type> *(Rbase+imm12), Rdst Use Rbase + (signed) imm12 as byte address.
offset type = B, BU, H, HU, W Data is sign-extended or zero-padded.
Load post- <pred> LD<type> *Rbase+=Rmod, Rdst Use Rbase as byte address, Rbase is post-modified.
modify pred = none, [P2.. P15] Data is sign-extended or zero-padded.

type = B, BU, H, HU, W
Store base- ST<type> Rsrc, *(Rbase+imm12) Use Rbase + (signed) imm12 as byte address.
offset type = B, H, W
Store post- <pred> ST<type> Rsrc, *Rbase+=Rmod Use Rbase as byte address, Rbase is post-modified.
modify pred = none, [P2.. P15]

type=B,H, W

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 414



9.9.1.2

LD Base-Offset

Instruction name

LD

Functionality

Load

Assembly format

LD<type> *(Rbase+imm12), Rdst

Type and bit width

B/BU: 8-bit (char, unsigned char)
H/HU: 16-bit (short, unsigned short, hfloat)
W: 32-bit (int, unsigned int, float)

Predication

Not available

Source options

Rbase: scalar register

Destination options

Rdst: scalar register

Additional options

Intrinsics/operator

not needed
// Instantiated to read from array or local frame, e.g.,
// a = array[10];

Additional details

For example,
LDW *(R1+12), R4
Use Rbase + (signed) imm12 as byte address, Rbase is not modified.

Data is sign-extended or zero-padded, based on specified type being signed
or unsigned.

9.9.1.3

LD Post-Modify

Instruction name

LD

Functionality

Load post-modify

Assembly format

<pred> LD<type> *Rbase+=Rmod, Rdst
pred = none, [P2.. P15]

Type and bit width

B/BU: 8-bit (char, unsigned char)
H/HU: 16-bit (short, unsigned short, hfloat)
W: 32-bit (int, unsigned int, float)

Predication

Instruction-level predication

Source options

Rbase: scalar register

Rmod: scalar register

Destination options

Rdst: scalar register

Rbase: scalar register

Additional options

Intrinsics/operator

not needed
// Instantiated to read from array with pointer increment, e.g.,
/] a = *ptr+;

Additional details

Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod.

Data is sign-extended or zero-padded, based on specified type being signed or

unsigned.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 415



Instruction name

LD

Predication: Execute (memory read into Rdst and Rbase post-modify) only if
the referenced predicate register != 0.

99.14 ST Base-Offset

Instruction name

ST

Functionality

Store

Assembly format

ST<type> Rsrc, *(Rbase+imm12)

Type and bit width

B: 8-bit (char)
H: 16-bit (short, hfloat)
W: 32-bit (int, float)

Predication

not available

Source options

Rbase: scalar register

Rsrc: scalar register

Destination options

Additional options

Intrinsics/operator

not needed
// Instantiated to write into array or local frame, e.g.,
// array[18] = b;

Additional details

For example,

STW R4, *(R1+12)
STHRS5, *(R1+16)

Use Rbase + (signed) imm12 as byte address, Rbase is not modified.

9.9.1.5 ST Post-Modify

Instruction name

ST

Functionality

Store post-modify

Assembly format

<pred> ST<type> Rsrc, *Rbase+=Rmod
pred = none, [P2.. P15]

Type and bit width

B: 8-bit (char)
H: 16-bit (short, hfloat)
W: 32-bit (int, float)

Predication

Instruction-level predication

Source options

Rbase: scalar register
Rmod: scalar register

Rsrc: scalar register

Destination options

Rbase: scalar register

Additional options

Intrinsics/operator

not needed

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 416




Instruction name ST

/] *ptr++ = b;

// Instantiated to write into array with pointer increment, e.g.,

Additional details

predicate register != 0.

Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod.
Predication: Execute (memory write and Rbase modify) only if the referenced

9.9.2

9.9.2.1

Instruction Summary

Scalar-Based Vector Load/Store

Table 39. Scalar-based vector load/store instructions

Function

Assembly Format

Comments

Vector load base
plus offset

VLD<type>_P *(Rbase+Imm), Vdst
type = B, BU, H, HU, W, WU, WX
VLDWX_P *(Rbase+Imm), Wdst

Use Rbase + (4*imm10) as byte address.

Data is sign-extended or zero-padded.

Vector load post-
modify

VLD<type>_P *Rbase+=Rmod, Vdst
type = B, BU, H, HU, W, WU, WX

Use Rbase as byte address, Rbase is
post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded.

Double vector load
post-modify

DVLD<type>_P *Rbase+=Rmod, Vdst
type = B, BU, H, HU, W, WU

Use Rbase as byte address, Rbase is
post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded.

Vector store base
plus offset

VST<type>_P Vsrc, *(Rbase+Imm)
type = B, H, W, WX
VSTWX_P Wsrc, *(Rbase+Imm)

Use Rbase + (4*imm10) as byte address.

Vector store post-
modify

VST<type>_P Vsrc, *Rbase+=Rmod
type B, H, W, WX, BH, HW

Use Rbase as byte address, Rbase is
post-modified to Rbase+Rmod.

Double vector store
post-modify

DVST<type>_P Vsrc, *Rbase+=Rmod
type B, H, W

Use Rbase as byte address, Rbase is
post-modified to Rbase+Rmod.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 417




99.2.2 Base-Offset

Instruction name VLD base-offset
Functionality Vector load base plus offset
Assembly format VLD<type>_P *(Rbase+Imm), Vdst
VLDWX_P *(Rbase+Imm), Vdst/Wdst
Type and bit width B/BU: 32 x 8-bit = 32 x 12-bit (vchar/vuchar -> vcharx)

H/HU: 16 x 16-bit > 16 x 24-bit (vshort/vushort -> vshortx,
vhfloat -> vhfloatx)
W/WU for VRF: 8 x 32-bit = 8 x 48-bit (vint/vuint -> vintx,
vfloat -> vfloatx)
WX: 8 x 48-bit = 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available
Source options Rbase: scalar register
Destination options Single vector register in VRF, WRF

Additional options

Intrinsics/operator vcharx sign_extend(vchar src);
vshortx sign_extend(vshort src);
vintx sign_extend(vint src);
vfloatx sign_extend(vfloat src);
vhfloatx sign_extend(vhfloat src);

vcharx zero_extend(vuchar src);
vshortx zero_extend(vushort src);
vintx zero_extend(vuint src);

// Instantiated with memory read with sign/zero extension, e.g.,
// vcharx v1 = sign_extend(vchar_array[3]);

// vcharx v1 = sign_extend(*((vchar *)(char_array + 10)));

// WX load does not require intrinsic function. Instantiated with,

/l e.g.,
// vcharx v2 = vcharx_array[10];
Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address.

Rbase is not modified.

Data is sign-extended or zero-padded, based on specified type being signed
or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 418



99.23 VLD Post-Modify

Instruction name VLD post-modify

Functionality Vector load post-modify

Assembly format VLD<type>_P *Rbase+=Rmod, Vdst

Type and bit width B/BU: 32 x 8-bit = 32 x 12-bit (vchar/vuchar -> vcharx)

H/HU: 16 x 16-bit > 16 x 24-bit (vshort/vushort -> vshortx,
vhfloat -> vhfloatx)
W/WU for VRF: 8 x 32-bit = 8 x 48-bit (vint/vuint -> vintx,
vfloat -> vfloatx)
WX: 8 x 48-bit = 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available
Source options Rbase: scalar register
Destination options Vdst: single vector register

Additional options

Intrinsics/operator vcharx sign_extend(vchar src);
vshortx sign_extend(vshort src);
vintx sign_extend(vint src);
vfloatx sign_extend(vfloat src);
vhfloatx sign_extend(vhfloat src);

vcharx zero_extend(vuchar src);
vshortx zero_extend(vushort src);
vintx zero_extend(vuint src);

// Instantiated with post-increment memory read with
// sign/zero extension, e.g.,
// vcharx v1 = sign_extend(*vchar_ptr++);

// WX load does not require intrinsic function. Instantiated with,
/l e.g.,
// vcharx v2 = *vcharx_ptr++;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded, based on specified type being signed
or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 419



9924 DVLD Post-Modify

Instruction name DVLD post-modify

Functionality Double vector load post-modify

Assembly format DVLD<type>_P *Rbase+=Rmod, DVdst

Type and bit width B/BU: 64 x 8-bit = 2 x 32 x 12-bit (dvchar/dvuchar -> dvcharx)

H/HU: 32 x 16-bit 2 2 x 16 x 24-bit (dvshort/dvushort -> dvshortx,
dvhfloat -> dvhfloatx)

W/WU: 16 x 32-bit = 2 x 8 x 48-bit (dvint/dvuint -> dvintx,
dvfloat -> dvfloatx)

Predication Not available
Source options Rbase: scalar register
Destination options Vdst: double vector register

Additional options

Intrinsics/operator dvcharx sign_extend(dvchar src);
dvshortx sign_extend(dvshort src);
dvintx sign_extend(dvint src);
dvfloatx sign_extend(dvfloat src);
dvhfloatx sign_extend(dvhfloat src);

dvcharx zero_extend(dvuchar src);
dvshortx zero_extend(dvushort src);
dvintx zero_extend(dvuint src);

// Instantiated with post-increment memory read with sign/zero
// extension, e.g.,
// dvcharx v1 = sign_extend(*dvchar_ptr++);

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded, based on specified type being signed
or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 420



99.25 VST Base-Offset

Instruction name VST base-offset
Functionality Vector store base plus offset
Assembly format VST<type>_P Vsrc, *(Rbase+Imm)
VSTWX_P Vsrc/Wsrc, *(Rbase+Imm)
Type and bit width B: 32 x 12-bit & 32 x 8-bit (vcharx -> vchar/vuchar)

H: 16 x 24-bit = 16 x 16-bit (vshortx -> vshort/vushort,
vhfloatx -> vhfloat)
W for VRF: 8 x 48-bit = 8 x 32-bit (vintx -> vint/vuint,
vfloatx -> vfloat)
WX: 8 x 48-bit = 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available

Source options Rbase: scalar register

Single vector register in VRF, WRF

Destination options

Additional options

Intrinsics/operator vchar extract(vcharx src);
vshort extract(vshortx src);
vint extract(vintx src);
vfloat extract(vfloatx src);
vhfloat extract(vhfloatx src);

// Instantiated with memory write with sign/zero extension,
/l e.g.,

// vchar_array[3] = extract(vcharx_var);

// *((vchar *)(char_array + 10)) = extract(vcharx_var);

// WX does not require intrinsic function. Instantiated
// with, e.g.,
// vcharx_array[3] = vcharx_var;

Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address.
Rbase is not modified.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 421



99.2.6 VST Post-Modify

Instruction name VST post-modify

Functionality Vector store post-modify

Assembly format VST<type>_P Vsrc, *Rbase+=Rmod

Type and bit width B: 32 x 12-bit 2 32 x 8-bit (vcharx -> vchar/vuchar)

H: 16 x 24-bit = 16 x 16-bit (vshortx -> vshort/vushort,
vhfloatx -> vhfloat)
W for VRF: 8 x 48-bit = 8 x 32-bit (vintx -> vint/vuint,
vfloatx -> vfloat)
WX: 8 x 48-bit = 8 x 48-bit (vcharx, vshortx, vintx)
BH: 32 x 12-bit = 32 x 16-bit (vcharx -> dvshort)
HW: 16 x 24-bit = 16 x 32-bit (vshortx -> dvint)

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options Rbase: scalar register

Additional options

Intrinsics/operator vchar extract(vcharx src);
vshort extract(vshortx src);
vint extract(vintx src);
vfloat extract(vfloatx src);
vhfloat extract(vhfloatx src);

// Instantiated with post-increment memory write with
// sign/zero extension, e.g.,
// *vchar_ptr++ = extract(vcharx_var);

// WX does not require intrinsic function. Instantiated
// with, e.g.,
// *vcharx_ptr++ = vcharx_var;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 422



9.9.2.7

DVST Post-Modify

Instruction name

DVST post-modify

Functionality

Double vector store post-modify

Assembly format

DVST<type>_P DVsrc, *Rbase+=Rmod

Type and bit width

B: 2 x 32 x 12-bit = 64 x 8-bit (dvcharx -> dvchar/dvuchar)
H: 2 x 16 x 24-bit & 32 x 16-bit (dvshortx -> dvshort/dvushort)
W: 2 x 8 x 48-bit = 16 x 32-bit (dvintx -> dvint/dvuint)

Predication

Not available

Source options

Rbase: scalar register

Vsrc: double vector register

Destination options

Rbase: scalar register

Additional options

Intrinsics/operator

dvchar extract(dvcharx src);
dvshort extract(dvshortx src);
dvint extract(dvintx src);
dvfloat extract(dvfloatx src);
dvhfloat extract(dvhfloatx src);

// Instantiated with post-increment memory write with
// sign/zero extension, e.g.,
// *dvchar_ptr++ = extract(dvcharx_var);

Additional details

Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

9.9.3

9.9.3.1

Agen Configuration

Instruction Summary

In scalar slots we allow the following instructions to configure the agen.

Table 40. Agen config instructions

Function

Assembly Format

Comments

Initialize agen

InitAgen Rsrc, A<id>.Base
id=0.7

Set base address and initialize all other
parameters to default values, including
resetting loop variables 11..16 to O

Configure agen
base

<pred> CfgAgen Rsrc, A<id>.Base
id=0.7

Set base address (predicated)

Configure agen
num lterations

CfgAgen Rsrc, A<id>.N<level>
id=0.7,level=1..6

Only lower 16 bits are used.
Default = 1.

Configure agen
address modifier

CfgAgen Rsrc, A<id>.Mod<level>
id=0.7,level=1..6

Address modifiers are signed.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 423




Function

Assembly Format

Comments

32 bits are stored, but only lower 17 bits
are used in address calculation.

Default =0

Configure rounding

CfgAgen Rsrc, A<id>.Round

Rounding applies to store only and is
ignored for WX type store.

Bit 7 specifies round (0) or truncate (1).

Bits 6:0 specifies number of bits to
round/truncate.

Default = 0 (no rounding)

Configure
saturation option

CfgAgen Rsrc, A<id>.SatOpt

Only 2 LSBs of Rsrc are used.
0: no saturation (default)
1 : no saturation

2 : treat 32-bit comparison values as
signed

3 :treat 32-bit comparison values as
unsigned

Saturation option is ignored for WX type
store.

Configure lane
offset

CfgAgen Rsrc, A<id>.LaneOfst

Lane offsets are unsigned.
Default =0

Configure
saturation

CfgAgen Rsrc, A<id>.SatLimLo
CfgAgen Rsrc, A<id>.SatLimHi
CfgAgen Rsrc, A<id>.SatVallLo
CfgAgen Rsrc, A<id>.SatValHi

Saturation applies to store only and is
ignored for WX type store.

Default =0

Configure circular
buffer

CfgAgen Rsrc, A<id>.CBStart
CfgAgen Rsrc, A<id>.CBSize

Configure starting address and size of
circular buffer, Rsrc is read as byte
address, and is right-shifted 6 bits before
writing to the CBStart and CBSize fields
to force 64-byte alignment.

CBSize = 0 indicates circular buffer is
disabled.

Default = 0.

Agen Config Move

MovAgen A<src_id>, A<dst_id>

Copy all agen parameters and loop
variables (608-bit).

Save agen config

AgenCfgST A<id>, *Rptr += Rmod
AgenCfgST_p2 A<id>, *Rptr += Rmod

Save first/second 512-bit of agen data
structure.

Restore agen
config

AgenCfgLD *Rptr += Rmod, A<id>
AgenCfgLD_p2 *Rptr += Rmod, A<id>

Restore first/second 512-bit of agen data
structure.

Agen update

AgenUpd A<id>++

Update agen without memory transaction

Move agen base

MovAgen A<id>.Base, Rdst

Copy agen base address to scalar

Advance agen base

AdvAgen A<id>.Base, Rsrc2

Perform circular buffer wrap-around if
configured

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 424




Function

Assembly Format Comments

Configure min/max
option

CfgAgen Rsrc, A<id>.MinMaxOpt
values accordingly

Move agen
min/max

MovAgen A<id>.MinVal, Rdst
MovAgen A<id>.MaxVal, Rdst

scalar

9.9.3.2

InitAgen

Instruction name

InitAgen

Functionality

Initialize agen with base address

Assembly format

InitAgen Rsrc, A<id>.Base
id=0.7

Type and bit width

Base: 32-bit unsigned

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen config (all parameters including base)

Additional options

Intrinsics/operator

agen init(vint * arr1);

Additional details

Set base address and initialize all other parameters to default values,
including resetting loop variables 11..16 to O

9.9.3.3

CfgAgen Base

Instruction name

CfgAgen base

Functionality

Configure agen base address

Assembly format

<pred> CfgAgen Rsrc, A<id>.Base
id=0..7
pred = none, [P2.. P15]

Type and bit width

32-bit unsigned

Predication

Instruction-level predication

Source options

Rsrc: scalar register

Destination options

Agen config base

Additional options

Intrinsics/operator

// Not needed, just assign to agen member a
// For example,
agenl.a = (vint *) arrayl;

Additional details

Set base address

Orin PVA VPU Programmer’s Guide

Configure minmax_opt, initialize min/max

Copy agen collected min/max value to

SWE-PVA-076-PGRF | 425



9934

CfgAgen Nlter

Instruction name

CfgAgen Niter

Functionality

Configure number of iterations

Assembly format

CfgAgen Rsrc, A<id>.N<level>
id=0.7, level = 1..6

Type and bit width

16-bit

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen[id].N[level]

Additional options

Intrinsics/operator

// Not needed, just assign to agen member n1..n6
// For example,
agen1l.n1 = niter1;

Additional details

Only lower 16 bits of Rsrc are used. Default = 1.

Programming it to O would exhibit the same looping behavior as
programming it to 1.

9.9.3.5

CfgAgen Mod

Instruction name

CfgAgen Mod

Functionality

Configure agen address modifier

Assembly format

CfgAgen Rsrc, A<id>.Mod<level>
id=0.7,level = 1.6

Type and bit width

Of the 32-bit value in Rsrc, only 18 LSBs stored in the designated Mod
register.

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen[id].Mod[level]

Additional options

Intrinsics/operator

// Not needed, just assign to agen member mod1..mod6
// For example,
agenl.mod1 = vector_width * sizeof(data);

Additional details

Default = 0.

Note that address modiers are signed.

9.9.3.6

CfgAgen Round

Instruction name

CfgAgen Round

Functionality

Configure agen rounding parameter

Assembly format

CfgAgen Rsrc, A<id>.Round

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 426



Instruction name

CfgAgen Round

id=0.7

Type and bit width

8-bit unsigned

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agenlid].Round

Additional options

Intrinsics/operator

// Not needed, just assign to agen member round
// For example,
agenl.round = qgbits;

Additional details

Rounding applies to store only, and is ignored for WX-type store.
Only bit 7 and bits 6:0 of Rsrc are used.

Bits 7 specifies round (0), truncate (1)

Bits 6:0 specifies number of bits to round/truncate.

When number of bits exceeds source lane width (B=12, H=24, W=48),
rounding leads to zero for all inputs, and truncation leads to zero for
zero/positive inputs, and to -1 for negative inputs.

Default = 0 (no rounding)

9.9.3.7

CfgAgen SatOpt

Instruction name

CfgAgen SatOpt

Functionality

Configure agen saturation option

Assembly format

CfgAgen Rsrc, A<id>.SatOpt
id=0.7

Type and bit width

8-bit unsigned (only 2 LSBs are used)

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen[id].SatOpt

Additional options

Intrinsics/operator

// Not needed, just assign to agen member round
// For example,
agenl.sat_opt = 0;

Additional details

Only 2 LSBs of Rsrc are used.

0: no saturation (default)

1:no saturation

2 : treat 32-bit comparison values as signed

3 : treat 32-bit comparison values as unsigned
This is ignored for WX-type store.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 427



9.9.3.8

CfgAgen LaneOfst

Instruction name

CfgAgen LaneOfst

Functionality

Configure agen lane offset

Assembly format

CfgAgen Rsrc, A<id>.LaneOfst
id=0.7

Type and bit width

12-bit unsigned

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen[id].LaneOfst

Additional options

Intrinsics/operator

// Not needed, just assign to agen member lane_ofst
// For example,
agen1.lane_ofst = num_columns/16;

Additional details

Only 12 LSBs of Rsrc are stored into the lane offset field. Default = 0.

Note that lane offsets are unsigned.

Used for transposing vector load/store. See 6.3.7 for details.

9.9.3.9

CfgAgen Sat

Instruction name

CfgAgen Sat

Functionality

Configure agen saturation

Assembly format

CfgAgen Rsrc, A<id>.SatLimLo
CfgAgen Rsrc, A<id>.SatLimHi
CfgAgen Rsrc, A<id>.SatVallLo
CfgAgen Rsrc, A<id>.SatValHi

id=0..7

Type and bit width

32-bit

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agen[id].SatLimLo/SatLimHi/SatValLo/SatValHi

Additional options

Intrinsics/operator

// Not needed; just assign to corresponding agen struct members

// For example,

agenl.sat_lim_lo = low_bound;
agenl.sat_val_lo = low_bound;
agenl.sat_lim_hi = high_bound;

Additional details

Saturation applies to store only and is ignored for WX-type store.
Default =0

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 428



9.9.3.10 CfgAgen CB

Instruction name

CfgAgen CB

Functionality

Configure agen circular buffer

Assembly format

CfgAgen Rsrc, A<id>.CBStart
CfgAgen Rsrc, A<id>.CBSize
id=0.7

Type and bit width

16-bit (from 32-bit scalar register source, 6 LSBs are dropped, bits 21:6 are
stored into agen cb_start or cb_size fields)

Predication

Not available

Source options

Rsrc: scalar register

Destination options

Agenlid].CBStart/CBSize

Additional options

Intrinsics/operator

// Recommended syntax, works in ISS and Native

short chess_storage(DMh%64: chess_segment(C)) cb_buf1[CB1_SIZE];
agen1 = update_agen_cb_start(agen1, (short *) cb_buf1);

agen2 = update_agen_cb_size(agen2, CB1_SIZE * sizeof(short));

// Legacy syntax, works in ISS but not in Native

agen agenl.cb_start = (short *) cb_buf1;

agen agen2.cb_size = CB1_SIZE * sizeof(short);

Additional details

Configure starting address and size of circular buffer, Rsrc is read as byte
address or size in bytes, and is right-shifted 6 bits before writing to the
CBStart and CBSize fields to force 64-byte alignment.

CBSize = 0 indicates circular buffer is disabled.
Default = 0.
Note that CBStart and CBSize are both unsigned.

9.9.3.11

MovAgen

Instruction name

MovAgen

Functionality

Agen config move

Assembly format

MovAgen A<src_id>, A<dst_id>
src_id/dst_id = 0..7

Type and bit width

608-bit

Predication

Not available

Source options

Agen([src_id]

Destination options

Agen[dst_id]

Additional options

Intrinsics/operator

// Not needed, just assign an agen to another agen
// For example,
agen2 = agenl;

Additional details

Copy all agen parameters and loop variables (608-bit).

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 429



9.9.3.12 AgenCfgST

Instruction name

AgenCfgST

Functionality

Save agen config

Assembly format

AgenCfgST A<id>, *Rptr += Rmod
AgenCfgST_p2 A<id>, *Rptr += Rmod
id=0.7

Type and bit width

512-bit or 192-bit

Predication

Not available

Source options

Agen[id]
Rptr/Rmod: scalar register

Destination options

Rmod: scalar register

Additional options

Intrinsics/operator

AgenCFG ageni.get_cfg(); // Legacy syntax also supported
AgenCFG_p2 extract_agen_cfg_p2(agen src);

// For example,

AgenCFG * ptr = &cfg_arr[0];

AgenCFG_p2 ptr2 = &cfg2_arr([0];

*ptr++ = extract_agen_cfg(agenl);

*ptr2++ = extract_agen_cfg_p2(agenl);

Additional details

AgenCfgST saves the first 512-bit of agen data structure
AgenCfgST_p2 saves the remaining 192-bit of agen data structure
Address should be 32-bit aligned.

For readability each MOD1..MODSG6 register is sign-extended to 32-bit in
stored memory locations.

Available only in the MO slot.

Instruction name

AgenCfgST (base-offset)

Functionality

Save agen config

Assembly format

AgenCfgST A<id>, *(Rbase + Imm12)
AgenCfgST_p2 A<id>, *(Rbase + Imm12)
id=0.7

Type and bit width

512-bit or 192-bit

Predication

Not available

Source options

Agenlid]
Rbase: scalar register

Imm12: 12-bit immediate byte address offset

Destination options

n/a

Additional options

Intrinsics/operator

AgenCFG extract_agen_cfg(agen src); // Recommended
AgenCFG ageni.get_cfg(); // Legacy syntax also supported
AgenCFG_p2 extract_agen_cfg_p2(agen src);

// For example,

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 430



Instruction name AgenCfgST (base-offset)

AgenCFG cfg_arr[3];

AgenCFG cfg2_arr([3];

cfg_arr[0] = extract_agen_cfg(agenl);
cfg2_arr[@] = extract_agen_cfg_p2(agenl);

Additional details AgenCfgST saves the first 512-bit of agen data structure
AgenCfgST_p2 saves the remaining 192-bit of agen data structure
Address should be 32-bit aligned.

For readability each MOD1..MODG6 register is sign-extended to 32-bit in
stored memory locations.

Available only in the MO slot.

9.9.3.13 AgenCfgLD

Instruction name AgenCfgLD

Functionality Restore agen config

Assembly format AgenCfgLD *Rptr += Rmod, A<id>
AgenCfgLD_p2 *Rptr += Rmod, A<id>
id=0.7

Type and bit width 512-bit or 192-bit

Predication Not available

Source options Rptr/Rmod: scalar register

Destination options Agenl[id]

Rmod: scalar register

Additional options

Intrinsics/operator agen init_agen_from_cfg(AgenCFG src); // Recommended

agen agenl.expand_cfg(AgenCFG src); // Legacy syntax also supported
agen update_agen_p2(agen al, AgenCFG_p2 data_p2);

// For example,

AgenCFG * ptr1 = &cfg_arr[0];

AgenCFG_p2 * ptr2 = &cfg2_arr[0];

agen al = init_agen_from_cfg(*ptri++);

al = update_agen_p2(al, *ptr2++);

Additional details AgenCfgLD restores the first 512-bit of agen data structure, and set the rest
to “sensible” initial state ready to execute dependent agen-based load/store
instructions

All loop variables to O
auto_pred_off to O

MinVal/MaxVal to O, INT32 MAX/MIN, UINT32 MAX/MIN, according to
MinMaxOpt

AgenCfgLD_p?2 restores the remaining 192-bit of agen data structure from
memory.

Address in Rptr should be 32-bit aligned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 431



Instruction name

AgenCfgLD

Each of MOD1..MODBG6 register will only take 18 LSBs in corresponding 32-bit
memory locations.

Available only in the MO slot.

Instruction name

AgenCfgLD (base-offset)

Functionality

Restore agen config

Assembly format

AgenCfgLD *(Rbase + Imm12), A<id>
AgenCfgLD_p2 *(Rbase + Imm12), A<id>
id=0.7

Type and bit width

512-bit or 192-bit

Predication

Not available

Source options

Rbase: scalar register

Imm12: 12-bit immediate byte address offset

Destination options

Agenlid]

Additional options

Intrinsics/operator

agen init_agen_from_cfg(AgenCFG src); // Recommended

agen agenl.expand_cfg(AgenCFG src); // Legacy syntax also supported
agen update_agen_p2(agen al, AgenCFG_p2 data_p2);

// For example,

AgenCFG cfg_arr[4];

AgenCFG_p2 cfg2_arr[4];

agen al = init_agen_from_cfg(cfg_arr[@]);

al = update_agen_p2(al, cfg2_arr[0]);

Additional details

AgenCfgLD restores the first 512-bit of agen data structure, and set the rest
to “sensible” initial state ready to execute dependent agen-based load/store
instructions

All loop variables to O
auto_pred_off to O

MinVal/MaxVal to O, INT32 MAX/MIN, UINT32 MAX/MIN, according to
MinMaxOpt

AgenCfgLD_p2 restores the remaining 192-bit of agen data structure from
memory.

Address in Rptr should be 32-bit aligned.

Each of MOD1..MODG6 register will only take 18 LSBs in corresponding 32-bit
memory locations.

Available only in the MO slot.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 432



9.9.3.14 AgenUpd

Instruction name

AgenUpd

Functionality

Update agen loop variables and address without memory transaction

Assembly format

AgenUpd A<id>++

Type and bit width

Predication

Not available

Source options

Destination options

Additional options

Intrinsics/operator

agen update_agen(agen a);

Additional details

Perform agen loop variables and address update as configured by agen
parameters, without performing any memory load/store transaction.

Note that this instruction is available in memory slots, as opposed to scalar
slots for the other non-load/store agen configuration instructions.

9.9.3.15 Move Agen Base

Instruction name

MovAgen Base

Functionality

Copy agen address to scalar

Assembly format

MovAgen A<id>.Base, Rdst
id=0.7

Type and bit width

32-bit unsigned

Predication

Not available

Source options

Agen address

Destination options

scalar register

Additional options

Intrinsics/operator

// not needed, just access agen member a
int * ptr = (int *) agen.a;

Additional details

Move the current agen address (updated with each execution of agen-based
load/store, rather than the starting address) to scalar register, mostly to
facilitate debug.

Note that this instruction is available in memory slots, as opposed to scalar
slots for the other non-load/store agen configuration instructions.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 433



9.9.3.16 Advance Agen Base

Instruction name AdvAgenBase
Functionality Advance agen base address by offset
Assembly format AdvAgen A<id>.Base, Rsrc2
id=0.7
Type and bit width 32-bit unsigned base + 18-bit signed offset
Predication Not available
Source options Agen address, scalar register supplying address offset
Destination options Agen address

Additional options

Intrinsics/operator void adv_agen_base(agen& srcdst, int ofst);

Additional details When circular buffer is configured (cb_size > 0), the base address is advanced
by the offset (which can be positive or negative) with circular buffer wrap-
around. In this case, magnitude of offset must not exceed circular buffer
size, otherwise, the circular buffer addressing logic may not correctly wrap
the modified address back into the circular buffer. See 6.4.6 Circular Buffer
Addressing for details.

When circular buffer is not configured (cb_size = 0), the base address is
simply advanced (positively or negatively) by the offset, i.e., base += offset.

Only 18 LSBs of Rsrc2 providing the offset is used in the address calculation,
so this feature should not be used to move the base address between one
superbank to another superbank.

FINE PRINT: Technically it’s possible, but leveraging the address wrapping
behavior (see Memory Address Range Constraints) to place the base address
at the edge of one superbank’s primary-or-alias address space, and to
advance it by as little as one byte to fall into another superbank’s primary-or-
alias address space. However, the address wrapping behavior is not backward
or forward compatible, so this practice is very dangerous.

This instruction is available in memory slots, as opposed to scalar slots for
the other non-load/store agen configuration instructions.

9.9.3.17 CfgAgen MinMaxOpt

Instruction name CfgAgen MinMaxOpt

Functionality Configure min/max option

Assembly format CfgAgen Rsrc, A<id>.MinMaxOpt
id=0.7

Type and bit width 8-bit unsigned (only 2 LSBs are used)

Predication Not available

Source options Scalar register

Destination options Agenlid].MinMaxOpt

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 434



Instruction name CfgAgen MinMaxOpt

Intrinsics/operator // Not needed; just assign to agen member minmax_opt
agenl.minmax_opt = value;

Additional details Min/max option:

0: disable (default)

1: disable

2: enable for signed min/max

3: enable for unsigned min/max

Upon configuring the min/max option to 2 (enabled for signed min/max), the
min value is initialized to MAX_INT32 = Ox7FFF_FFFF. The max value is
initialized to MIN_INT32 = 0x8000_0000.

Upon configurating the min/max option to 3 (enabled for unsigned min/max),
the min value is initialized to MAX_UINT32 = OxFFFF_FFFF. The max value is
initialized to MIN_UINT32 = 0.

Upon configurating the min/max option to O or 1, the min/max values are
reset to O.

Resetting min/max values as a consequence of configurating min/max option
happens not just by this instruction, but also by InitAgen (setting min/max
option to default 0 and min/max values to 0) and AgenCfgLD (restoring
min/max option to whatever value saved in memory, and initializing min/max
values according to the option).

9.9.3.18 Move Agen Min/Max

Instruction name MovAgen Min/Max
Functionality Copy agen collected min or max value to scalar
Assembly format MovAgen A<id>.MinVal, Rdst
MovAgen A<id>.MaxVal, Rdst
id=0..7
Type and bit width 32-bit signed
Predication Not available
Source options Agen min or max value
Destination options scalar register
Additional options
Intrinsics/operator // Not needed; just access agen member min_val or max_vol
int dst1 = agen.min_val;
int dst2 = agen.max_val;
Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 435



9.9.4  Agen-Based Vector Load/Store

Agen-based load/store offers more flexibility, in expanding and contracting between
memory and vector register, and with data distribution options.

When double vector registers are used, it must be a consecutive V[2*i]:V[2*i+1] pair.

A parallel quad vector register store is also offered and only in MO slot, to store 4 vector
registers with demotion into 512-bit memory space. This is needed for filtering with 16-

bit-by-16-bit multiply and 48-bit accumulator to achieve peak performance.

9.94.1

Instruction Summary

Vector load/store instructions:

Table 41. Agen-based vector load/store instructions

Function

Assembly Format

Comments

Vector load agen-
based

<pred> VLD<type>_distr *A<id>++, Vdst/Wdst

Double vector load
agen-based

<pred> DVLD<type>_distr *A<id>++, DVdst/DWdst

Vector store agen-
based

<pred> VST<type>_distr Vsrc/ACsrc/XACsrc, *A<id>++

Double vector store
agen-based

<pred> DVST<type>_distr DVsrc/DACsrc/DXACsrc, *A<id>++

Quad vector store
agen-based

<pred> QVST<type>_distr DVsrc1, DVsrc2, *A<id>++
<pred> QVST<type>_distr DACsrc1, DACsrc2, *A<id>++

Vector load +
permute agen-
based

VLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, Vdst/Wdst

Double vector load
+ permute agen-
based

DVLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc,
DVdst/DWdst

Vector store with
per-land rounding

DVST <type>_PLRound_distr Vsrc1/Wsrc1, DVsrc2/DACsrc2,
*A<id>++

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 436




9.94.2 VLD Agen

Instruction name

VLD agen

Functionality

Vector load agen-based

Assembly format

<pred> VLD<type>_<distr> *A<id>++, Vdst
<pred> VLD<type>_<distr> *A<id>++, Wdst
pred = none, [P2.. P15]

Type and bit width

Type/distribution supported:

B_P, H_P, W_P, BU_P, HU_P, WU_P,
B_T,H_T, W_T, BU_T, HU_T, WU_T,

B_S, H_S, W_S, BU_S, HU_S, WU_S,
B_C2,H_C2, W_C2,BU_C2, HU_C2, WU_C2,
WX_P

For example:
VLDB_P *AO++, VO
[P1]VLDH_T, *Al1++, V2

Predication

Instruction-level predication

Source options

Destination options

Vdst: single vector register in VRF or WRF

Additional options

Intrinsics/operator

// unpredicated

vcharx vchar_load( agen& al); // B_P

vshortx vshort_load( agen& al); // H_P

vintx vint_load( agen& al); // W_P

vcharx vuchar_load( agen& al); // BU_P
vshortx vushort_load(agen& al); // HU_P

vintx vuint_load( agen& al); // WU_P

vcharx vchar_load_transp( agen& al); // B_T
vshortx vshort_load_transp( agen& al); // H_T
vintx vint_load_transp( agen& al); // W_T
vcharx vuchar_load_transp( agen& al); // BU_T
vshortx vushort_load_transp(agen& al); // HU_T
vintx vuint_load_transp( agen& al); // WU_T
vcharx vchar_load_bs( agen& al); // B_S
vshortx vshort_load_hs( agen& al); // H_S
vintx vint_load_ws( agen& al); // W_S
vcharx vuchar_load_bs( agen& al); // BU_S
vshortx vushort_load_hs(agen& al); // HU_S
vintx vuint_load_ws( agen& al); // WU_S
vcharx vchar_load_c2( agen& al); // B_C2
vshortx vshort_load_c2( agen& al); // H_C2
vintx vint_load_c2( agen& al); // W_C2
vcharx vuchar_load_c2( agen& al); // BU_C2
vshortx vushort_load_c2(agen& al); // HU_C2
vintx vuint_load_c2( agen& al); // WU_C2

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 437



Instruction name VLD agen

vcharx vcharx_load( agen& al); // WX
vshortx vshortx_load( agen& al); // WX
vintx vintx_load( agen& al); // WX

// predicated

void vchar_load( vcharx& dst, agen& al, bool pred); // B_P

void vshort_load( vshortx& dst, agen& al, bool pred); // H_P
void vint_load( vintx& dst, agen& al, bool pred); // W_P

void vuchar_load( vcharx& dst, agen& a1, bool pred); // BU_P
void vushort_load(vshortx& dst, agen& al, bool pred); // HU_P
void vuint_load( vintx& dst, agen& al, bool pred); // WU_P

void vchar_load_transp( vcharx& dst, agen& al,bool pred);//B_T
void vshort_load_transp( vshortx& dst, agen& al,bool pred);//H_T
void vint_load_transp( vintx& dst, agen& al,bool pred);//W_T
void vuchar_load_transp( vcharx& dst, agen& al,bool pred);//BU_T
void vushort_load_transp(vshortx& dst, agen& ail,bool pred);//HU_T
void vuint_load_transp( vintx& dst, agen& al,bool pred);//WU_T
void vchar_load_bs( vcharx& dst, agen& al, bool pred); //B_S
void vshort_load_hs( vshortx& dst, agen& al, bool pred); //H_S
void vint_load_ws( vintx& dst, agen& al, bool pred); //W_S
void vuchar_load_bs( vcharx& dst, agen& al, bool pred); //BU_S
void vushort_load_hs(vshortx& dst, agen& a1, bool pred); //HU_S
void vuint_load_ws( vintx& dst, agen& al, bool pred); //WU_S
void vchar_load_c2( vcharx& dst, agen& al, bool pred); //B_C2
void vshort_load_c2( vshortx& dst, agen& al, bool pred); //H_C2
void vint_load_c2( vintx& dst, agen& al, bool pred); //W_C2
void vuchar_load_c2( vcharx& dst, agen& al, bool pred); //BU_C2
void vushort_load_c2(vshortx& dst, agen& a1, bool pred); //HU_C2
void vuint_load_c2( vintx& dst, agen& al, bool pred); //WU_C2
void vcharx_load( vcharx& dst, agen& al, bool pred); //WX

void vshortx_load( vshortx& dst, agen& al, bool pred); //WX
void vintx_load( vintx& dst, agen& al, bool pred); //WX

// Float

vfloatx vfloat_load( agen& a); // W_P

vfloatx vfloat_load_transp(agen& a); // W_T

vfloatx vfloat_load_ws( agen& a); // W_S

vfloatx vfloat_load_c2( agen& a); // W_C2

void vfloat_load( vfloatx& dst, agen& a, bool pred);// W_P
void vfloat_load_transp(vfloatx& dst, agen& a, bool pred);// W_T
void vfloat_load_ws( vfloatx& dst, agen& a, bool pred);// W_S
void vfloat_load_c2( vfloatx& dst, agen& a, bool pred);// W_C2
vhfloatx vhfloat_load( agen& a); // H_P

vhfloatx vhfloat_load_transp(agen& a); // H_T

vhfloatx vhfloat_load_hs( agen& a); // H_S

vhfloatx vhfloat_load_c2( agen& a); // H_C2

void vhfloat_load( vhfloatx& dst, agen& a, bool pred);//H_P
void vhfloat_load_transp(vhfloatx& dst, agen& a, bool pred);//H_T

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 438



Instruction name VLD agen

void vhfloat_load_hs( vhfloatx& dst, agen& a, bool pred);//H_S
void vhfloat_load_c2( vhfloatx& dst, agen& a, bool pred);//H_C2

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

When predication is off, writing to Vdst is skipped.
See Transposing Load/Store for address calculation and pattern for transpose

distribution.
9.94.3 DVLD Agen
Instruction name DVLD agen

Functionality

Double vector load agen-based

Assembly format

<pred> DVLD<type>_<distr> *A<id>++, DVdst
<pred> DVLD<type>_<distr> *A<id>++, DWdst
pred = none, [P2.. P15]

Type and bit width

Type/distribution supported:

B_P,H_P, W_P, BU_P, HU_P, WU_P, H_T, W_T, HU_T, WU_T,
B_PDI, H_PDI, W_PDI, BU_PDI, HU_PDI, WU_PDI,

H_TDI, W_TDI, HU_TDI, WU_TDI,

BH_P, BW_P, HW_P, BHU_P, BWU_P, HWU_P,

BH_T, BW_T, HW_T, BHU_T, BWU_T, HWU_T

BH_PDI, BW_PDI, HW_PDI,

BHU_PDI, BWU_PDI, HWU_PDI,

H_T2DI, HU_T2DI, W_T2DI, WU_T2DlI,

B_T32,BU_T32,

H_T2, HU_T2,H_T4, HU_T4,H_T8, HU_T8, H_T16, HU_T16,
W_T8, WU_T8

For example:
DVLDB_P *A0++, VO:V1
[P1]DVLDH_T, *A1++,V2:V3

Predication

Instruction-level predication

Source options

Destination options

Vdst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

// unpredicated

dvcharx dvchar_load( agen& al1); // B_P
dvshortx dvshort_load( agen& al); // H_P
dvintx dvint_load( agen& al); // W_P
dvcharx dvuchar_load( agen& al); // BU_P
dvshortx dvushort_load(agen& al1); // HU_P

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 439



Instruction name

DVLD agen

dvintx dvuint_load( agen& al); // WU_P

dvshortx dvshort_load_transp( agen& al); // H_T
dvintx dvint_load_transp( agen& al); // W_T
dvshortx dvushort_load_transp(agen& al); // HU_T
dvintx dvuint_load_transp( agen& al); // WU_T
dvcharx dvchar_load_di( agen& al1); // B_PDI
dvshortx dvshort_load_di( agen& al); // H_PDI
dvintx dvint_load_di( agen& al); // W_PDI
dvcharx dvuchar_load_di( agen& al1); // BU_PDI
dvshortx dvushort_load_di(agen& al); // HU_PDI
dvintx dvuint_load_di( agen& al); // WU_PDI
dvshortx dvshort_load_transp_di( agen& al); // H_TDI
dvintx dvint_load_transp_di( agen& al); // W_TDI
dvshortx dvushort_load_transp_di(agen& al1); // HU_TDI
dvintx dvuint_load_transp_di( agen& al); // WU_TDI

dvshortx vchar_dvshortx_load( agen& al); // BH_P

dvintx vchar_dvintx_load( agen& al); // BW_P

dvintx vshort_dvintx_load( agen& al); // HW_P

dvshortx vuchar_dvshortx_load( agen& al); // BHU_P
dvintx vuchar_dvintx_load( agen& al); // BWU_P

dvintx vushort_dvintx_load( agen& a1); // HWU_P
dvshortx vchar_dvshortx_load_transp( agen& al); // BH_T
dvintx vchar_dvintx_load_transp( agen& al); // BW_T
dvintx vshort_dvintx_load_transp( agen& al); // HW_T
dvshortx vuchar_dvshortx_load_transp( agen& al); // BHU_T
dvintx vuchar_dvintx_load_transp( agen& al); // BWU_T
dvintx vushort_dvintx_load_transp( agen& al); // HWU_T
dvshortx vchar_dvshortx_load_di( agen& a1); // BH_PDI
dvintx vchar_dvintx_load_di ( agen& al); // BW_PDI
dvintx vshort_dvintx_load_di ( agen& al); // HW_PDI
dvshortx vuchar_dvshortx_load_di ( agen& a1); // BHU_PDI
dvintx vuchar_dvintx_load_di ( agen& al); // BWU_PDI
dvintx vushort_dvintx_load_di ( agen& al1); // HWU_PDI

dvshortx dvshort_load_transp2_di( agen& a1); // H_T2DI
dvshortx dvushort_load_transp2_di(agen& al1); // HU_T2DI
dvintx dvint_load_transp2_di( agen& al); // W_T2DI
dvintx dvuint_load_transp2_di( agen& al); // WU_T2DI
dvcharx dvchar_load_transp32( agen& al); // B_T32
dvshortx dvshort_load_transp2( agen& al); // H_T2
dvshortx dvshort_load_transp4( agen& al); // H_T4
dvshortx dvshort_load_transp8( agen& al); // H_T8
dvshortx dvshort_load_transp16( agen& al); // H_T16
dvintx dvint_load_transp8( agen& al); // W_T8
dvcharx dvuchar_load_transp32( agen& al); // BU_T32
dvshortx dvushort_load_transp2( agen& al); // HU_T2
dvshortx dvushort_load_transp4( agen& al); // HU_T4

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 440



Instruction name DVLD agen

dvshortx dvushort_load_transp8( agen& al); // HU_T8
dvshortx dvushort_load_transp16(agen& al); // HU_T16
dvintx dvuint_load_transp8( agen& al); // WU_T8

// predicated

void dvchar_load( dvcharx& dst, agen& a1, bool pred); // B_P

void dvshort_load( dvshortx& dst, agen& al, bool pred); // H_P

void dvint_load( dvintx& dst, agen& al, bool pred); // W_P

void dvuchar_load( dvcharx& dst, agen& a1, bool pred); // BU_P

void dvushort_load(dvshortx& dst, agen& al, bool pred); // HU_P

void dvuint_load( dvintx& dst, agen& al, bool pred); // WU_P

void dvshort_load_transp(dvshortx& dst, agen& al, bool pred); // H_T
void dvint_load_transp( dvintx& dst, agen& al, bool pred); // W_T

void dvushort_load_transp(dvshortx& dst, agen& al, bool pred); // HU_T
void dvuint_load_transp( dvintx& dst, agen& al, bool pred); // WU_T
void dvchar_load_di( dvcharx& dst, agen& al, bool pred); // B_PDI

void dvshort_load_di( dvshortx& dst, agen& al, bool pred); // H_PDI
void dvint_load_di( dvintx& dst, agen& al, bool pred); // W_PDI

void dvuchar_load_di( dvcharx& dst, agen& al, bool pred); // BU_PDI
void dvushort_load_di(dvshortx& dst, agen& al, bool pred); // HU_PDI
void dvuint_load_di( dvintx& dst, agen& al, bool pred); // WU_PDI

void dvshort_load_transp_di( dvshortx& dst, agen& al,bool pred); // H_TDI
void dvint_load_transp_di( dvintx& dst, agen& al,bool pred); // W_TDI
void dvushort_load_transp_di(dvshortx& dst, agen& al,bool pred); // HU_TDI
void dvuint_load_transp_di( dvintx& dst, agen& a1,bool pred); // WU_TDI

void vchar_dvshortx_load( dvshortx& dst, agen& al, bool pred); // BH_P
void vchar_dvintx_load( dvintx& dst, agen& al, bool pred); // BW_P

void vshort_dvintx_load( dvintx& dst, agen& al, bool pred); // HW_P

void vuchar_dvshortx_load(dvshortx& dst, agen& al, bool pred); // BHU_P
void vuchar_dvintx_load( dvintx& dst, agen& al, bool pred); // BWU_P
void vushort_dvintx_load( dvintx& dst, agen& al, bool pred); // HWU_P
void vchar_dvshortx_load_transp( dvshortx& dst, agen& a, bool p); //BH_T
void vchar_dvintx_load_transp( dvintx& dst, agen& a, bool p); //BW_T
void vshort_dvintx_load_transp( dvintx& dst, agen& a, bool p); //HW_T
void vuchar_dvshortx_load_transp(dvshortx& dst, agen& a, bool p); //BHU_T
void vuchar_dvintx_load_transp( dvintx& dst, agen& a, bool p); //BWU_T
void vushort_dvintx_load_transp( dvintx& dst, agen& a, bool p); //HWU_T
void vchar_dvshortx_load_di( dvshortx& dst,agen& al,bool pred); //BH_PDI
void vchar_dvintx_load_di( dvintx& dst,agen& a1,bool pred); //BW_PDI
void vshort_dvintx_load_di( dvintx& dst,agen& a1,bool pred); //HW_PDI
void vuchar_dvshortx_load_di(dvshortx& dst,agen& a1,bool pred); //BHU_PDI
void vuchar_dvintx_load_di( dvintx& dst,agen& a1,bool pred); //BWU_PDI
void vushort_dvintx_load_di( dvintx& dst,agen& al,bool pred); //HWU_PDI

void dvshort_load_transp2_di( dvshortx& dst, agen& a, bool p); // H_T2DI
void dvushort_load_transp2_di(dvshortx& dst, agen& a, bool p); // HU_T2DI
void dvint_load_transp2_di( dvintx& dst, agen& a, bool p); // W_T2DI

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 441



Instruction name DVLD agen

void dvuint_load_transp2_di( dvintx& dst, agen& a, bool p); // WU_T2DI
void dvchar_load_transp32( dvcharx& dst, agen& a1, bool pred); //B_T32
void dvshort_load_transp2( dvshortx& dst, agen& al, bool pred); //H_T2
void dvshort_load_transp4( dvshortx& dst, agen& al, bool pred); //H_T4
void dvshort_load_transp8( dvshortx& dst, agen& al, bool pred); //H_T8
void dvshort_load_transp16( dvshortx& dst, agen& al, bool pred); //H_T16
void dvint_load_transp8( dvintx& dst, agen& al, bool pred); //W_T8
void dvuchar_load_transp32( dvcharx& dst, agen& al, bool pred); //BU_T32
void dvushort_load_transp2( dvshortx& dst, agen& al, bool pred); //HU_T2
void dvushort_load_transp4( dvshortx& dst, agen& al, bool pred); //HU_T4
void dvushort_load_transp8( dvshortx& dst, agen& al, bool pred); //HU_T8
void dvushort_load_transp16(dvshortx& dst, agen& al, bool pred); //HU_T16
void dvuint_load_transp8( dvintx& dst, agen& al, bool pred); //WU_T8

// Float & Hfloat

dvfloatx dvfloat_load( agen& al); // W_P
dvfloatx dvfloat_load_transp( agen& al); // W_T
dvfloatx dvfloat_load_di( agen& al); // W_PDI
dvfloatx dvfloat_load_transp_di( agen& al); // W_TDI
dvfloatx dvfloat_load_transp2_di(agen& al1); // W_T2DI
dvfloatx dvfloat_load_transp8( agen& al); // W_T8

void dvfloat_load( dvfloatx& dst, agen& a, bool p); // W_P

void dvfloat_load_transp( dvfloatx& dst, agen& a, bool p); // W_T

void dvfloat_load_di( dvfloatx& dst, agen& a, bool p); // W_PDI

void dvfloat_load_transp_di( dvfloatx& dst, agen& a, bool p); // W_TDI
void dvfloat_load_transp2_di(dvfloatx& dst, agen& a, bool p); // W_T2DI
void dvfloat_load_transp8( dvfloatx& dst, agen& a, bool p); // W_T8

dvhfloatx dvhfloat_load( agen& al); // H_P
dvhfloatx dvhfloat_load_transp( agen& al); // H_T
dvhfloatx dvhfloat_load_di( agen& al); // H_PDI
dvhfloatx dvhfloat_load_transp_di( agen& a1); // H_TDI
dvhfloatx dvhfloat_load_transp2( agen& al); // H_T2
dvhfloatx dvhfloat_load_transp2_di(agen& a1); // H_T2DI
dvhfloatx dvhfloat_load_transp4( agen& al); // H_T4

dvhfloatx dvhfloat_load_transp8( agen& al); // H_T8
dvhfloatx dvhfloat_load_transp16( agen& al); // H_T16
void dvhfloat_load( dvhfloatx& dst, agen& a, bool p); // H_P

void dvhfloat_load_transp( dvhfloatx& dst, agen& a, bool p); // H_T

void dvhfloat_load_di( dvhfloatx& dst, agen& a, bool p); // H_PDI

void dvhfloat_load_transp_di( dvhfloatx& dst, agen& a, bool p); // H_TDI
void dvhfloat_load_transp2( dvhfloatx& dst, agen& a, bool p); // H_T2
void dvhfloat_load_transp2_di(dvhfloatx& dst, agen& a, bool p); // H_T2DI
void dvhfloat_load_transp4( dvhfloatx& dst, agen& a, bool p); // H_T4
void dvhfloat_load_transp8( dvhfloatx& dst, agen& a, bool p); // H_T8
void dvhfloat_load_transp16( dvhfloatx& dst, agen& a, bool p); // H_T16

— —

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 442



Instruction name

DVLD agen

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

When predication is off, writing to Vdst is skipped.

Please see Transposing Load/Store for address calculation and pattern for
transpose distributions.

For Byte type loads, the starting address is aligned to 16-bit in order to access 64
bytes of data with 32 memory banks.

9.9.4.4

VST Agen

Instruction name

VST agen

Functionality

Vector store agen-based

Assembly format

<pred> VST<type>_<distr> Vsrc, *A<id>++
pred = none, [P2.. P15], [V0..V15]

<pred> VST<type>_<distr> ACsrc, *A<id>++
<pred> VST<type>_<distr> XACsrc, *A<id>++
pred = none, [P2..P15]

Type and bit width

For VRF source, predicate register and VRF predication are supported for these
type/distributions:

B_P,H_P,W_P,B_T,H_T, W_T,
BH_P, HW_P, BH_T, HW_T, WX_P

For VRF source, only predicate register predication is supported for these
type/distributions:

B_S,H_S,W_S

For ARF source, predication through predicate register is supported for these
type/distributions:

B_P,H_P, W_P,B_T,H_T, W_T, B_S, H_S, W_S,
BH_P, HW_P, BH_T, HW_T, WX_P

For XAC source, predication through predicate register is supported and only with
W_P type/distribution. In addition, rounding/saturation operations are bypassed.

Note that WX_P distribution is predicated as 8 lanes x 48-bit (versus 16 lanes x
24-bit or 32 lanes x 12-bit).

For example:
VSTB_P VO, *A0++
[P1]VSTH_T V2, *Al++

Predication

Per-lane predication

Source options

Vsrc: single vector register in VRF, ARF, or XARF

Destination options

Additional options

Intrinsics/operator

// unpredicated

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 443



Instruction name VST agen

void vstore( vcharx vecl, agen& al); // B_P

void vstore( vintx vecl, agen& al); // W_P

void vstore( xvshortx vecl, agen& al); // W_P for XAC
void vstore_bh( vcharx vecl, agen& al); // BH_P

void vstore_hw( vshortx vecl, agen& al); // HW_P

void vstore_transp( vcharx vecl, agen& al); // B_T

(

void vstore( vshortx vecl, agen& al); // H_P
(
(

void vstore_transp( vshortx vecl, agen& al); // H_T
void vstore_transp( vintx vecl, agen& al); // W_T
void vstore_transp_bh(vcharx vecl, agen& al); // BH_T
void vstore_transp_hw(vshortx vecl, agen& al); // HW_T
void vstore_bs( vcharx vecl, agen& al); // B_S
void vstore_hs( vshortx vecl, agen& al); // H_S
void vstore_ws( vintx vecl, agen& al); // W_S

void vstore_ext(  vcharx vecl, agen& al); // WX_P
void vstore_ext(  vshortx vecl, agen& al); // WX_P
void vstore_ext(  vintx vecl, agen& al); // WX_P

// predicate register per-lane predicated

void vstore( vcharx vecl1, agen& al, int pred); // B_P

void vstore( vshortx vecl, agen& al, int pred); // H_P

void vstore( vintx vecl, agen& al, int pred); // W_P

void vstore( xvshortx vecl, agen& al, int pred); // W_P for XAC
void vstore_bh(vcharx vec1, agen& al, int pred); // BH_P

void vstore_hw(vshortx vec1, agen& al, int pred); // HW_P

void vstore_transp( vcharx vecl, agen& al, int pred); // B_T
void vstore_transp( vshortx vecl, agen& al, int pred); // H_T
void vstore_transp( vintx vecl, agen& al, int pred); // W_T
void vstore_transp_bh(vcharx vecl, agen& al, int pred); //BH_T
void vstore_transp_hw(vshortx vecl, agen& al, int pred); //HW_T
void vstore_bs( vcharx vecl, agen& al, int pred); // B_S

void vstore_hs( vshortx vecl, agen& al, int pred); // H_S

void vstore_ws( vintx vecl, agen& al, int pred); // W_S

void vstore_ext(vcharx vecl, agen& al, int pred); // WX_P
void vstore_ext(vshortx vecl, agen& al, int pred); // WX_P
void vstore_ext(vintx vec1, agen& al, int pred); // WX_P

// Note that vstore_ext() for vcharx and vshortx are predicated
// as 8 x 48-bit lanes, like for vintx, as opposed to 32 x 12-
// bit lanes or 16 x 24-bit lanes. vstore_ext() for the 3

// vector types are mapped to the same instruction.

// VRF per-lane predicated

void vstore( vcharx vecl, agen& al, vcharx pred); // B_P
void vstore( vshortx vecl, agen& al, vshortx pred); // H_P
void vstore( vintx vecl, agen& al, vintx pred); // W_P
void vstore_bh(vcharx vec1, agen& a1, vcharx pred); // BH_P

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 444



Instruction name VST agen

void vstore_hw(vshortx vecl, agen& al, vshortx pred); //HW_P
void vstore_transp( vcharx v1, agen& al, vcharx p);//B_T
void vstore_transp( vshortx v1, agen& al, vshortx p);//H_T
void vstore_transp( vintx v1, agen& al, vintx p);//W_T
void vstore_transp_bh(vcharx v1, agen& a1, vcharx p);//BH_T
void vstore_transp_hw(vshortx v1, agen& al, vshortx p);//HW_T
void vstore_ext( vintx v1, agen& al, vintx p);//WX_P

// vstore_ext(vcharx v1, agen& al, vcharx p) and

// vstore_ext(vshortx v1, agen& al, vshortx p) are not
// supported as we cannot support appropriate predicate
// datatype for per-lane predication.

// Float

void vstore( vfloatx vecl, agen& al); // W_P

void vstore_transp(vfloatx vecl, agen& al); // W_T

void vstore_ws( vfloatx vecl, agen& al); // W_S

void vstore( vfloatx vecl, agen& al, int pred); // W_P
void vstore_transp(vfloatx vecl, agen& al, int pred); // W_T
void vstore_ws( vfloatx vecl, agen& al, int pred); // W_S
void vstore( vfloatx vecl, agen& al, vintx pred); // W_P
void vstore_transp(vfloatx vecl, agen& al, vintx pred); // W_T

void vstore( vhfloatx vecl, agen& al); // H_P

void vstore_transp(vhfloatx vecl, agen& al); // H_T

void vstore_hs( vhfloatx vecl, agen& al); // H_S

void vstore( vhfloatx vec1, agen& al, int pred);//H_P

void vstore_transp(vhfloatx vecl, agen& al, int pred);//H_T
void vstore_hs( vhfloatx vecl, agen& al, int pred);//H_S
void vstore( vhfloatx vecl, agen& al, vshortx pred);//H_P
void vstore_transp(vhfloatx vecl, agen& al, vshortx pred);//H_T

Additional details Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is
skipped. Address updates are always carried out.

Consumes lower K bits of Preg or a single VRF for K-lane predication. See 9.5.3.4
for details.

Please see Transposing Load/Store for address calculation and pattern for
transpose distribution.

Per-lane predication via vector register is only available in the MO slot, and is NOT
supported for scalar distribution.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 445



9.945 DVST Agen

Instruction name DVST agen
Functionality Double vector store agen-based
Assembly format <pred> DVST<type>_<distr> DVsrc, *A<id>++

pred = none, [P2.. P15], [V0..V15]

<pred> DVST<type>_<distr> DACsrc, *A<id>++
<pred> DVST<type>_<distr> DXACsrc, *A<id>++
pred = none, [P2.. P15]

Type and bit width For double VRF source, predicate register and VRF predication are supported with
type/distribution:

B_P,H_P, W_P,H_T, W_T,

B_PI, H_PI, W_PI, H_TI, W_TI,

HB_P, WH_P, HB_T, WH_T,

HB_PI, WH_PI, HB_TI, WH_TI, W_T2, W_T2I,

In addition, for double VRF source, only predicate register is supported with
type/distribution:

B_S,H_S,W_S,B_T32,H_T2, H_T2l, H_T4, H_T8, H_T16, W_T8

For double ARF source, predication through predicate register is supported with
type/distribution:

B_P,H_P, W_P,H_T, W_T,B_S, H_S, W_S,

B_PI, H_PI, W_PI, H_TI, W_TI,

HB_P, WH_P, HB_T, WH_T,

HB_PI, WH_PI, HB_TI, WH_TI,

B_T32, H_T2, H_T2l, H_T4, H_T8, H_T16, W_T2, W_T2I, W_T8

For double XAC source, predication through predicate register is supported and
only with WH_PI type/distribution. In addition, rounding/saturation operations are
bypassed, and it’s available in the MO slot.

For example:
DVSTB_P VO:V1, *AO0++
[P1]DVSTH_T V2:V3, *Al++

Predication Per-lane predication

Source options DVsrc: double vector register in VRF, ARF, or ARF + XRF (together 32-bit per
Halfword lane)

Destination options

Additional options

Intrinsics/operator // unpredicated
void vstore( dvcharx vec1, agen& al); // B_P

void vstore( dvshortx vecl, agen& al); // H_P
void vstore( dvintx vecl, agen& al); // W_P

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 446



Instruction name

DVST agen

void vstore_hb(dvshortx vecl, agen& al); // HB_P

void vstore_wh(dvintx vecl, agen& al); // WH_P

void vstore_transp( dvshortx vecl, agen& al); // H_T
void vstore_transp( dvintx vecl, agen& al); // W_T
void vstore_transp_hb(dvshortx vecl, agen& al); // HB_T
void vstore_transp_wh(dvintx vecl, agen& al); // WH_T

void vstore_i( dvcharx vecl, agen& al); // B_PI

void vstore_i( dvshortx vecl, agen& al); // H_PI

void vstore_i( dvintx vecl, agen& al); // W_PI

void vstore_i_hb(dvshortx vecl1, agen& al); // HB_PI

void vstore_i_wh(dvintx vecl, agen& al); // WH_PI

void vstore_i( dxvshortx vecl, agen& al); // WH_PI DXAC
void vstore_transp_i( dvshortx vec1, agen& al); // H_TI
void vstore_transp_i( dvintx vecl, agen& al); // W_TI
void vstore_transp_i_hb(dvshortx vec1, agen& al); // HB_TI
void vstore_transp_i_wh(dvintx vec1, agen& al); // WH_TI
void vstore_bs(dvcharx vec1, agen& al); // B_S

void vstore_hs(dvshortx vecl, agen& al); // H_S

void vstore_ws(dvintx vecl, agen& al); // W_S

void vstore_transp32( dvcharx vecl, agen& al); // B_T32
void vstore_transp2( dvshortx vecl, agen& al); // H_T2
void vstore_transp2_i(dvshortx vecl1, agen& al); // H_T2I
void vstore_transp4( dvshortx vecl, agen& al); // H_T4
void vstore_transp8( dvshortx vecl, agen& al); // H_T8
void vstore_transp16( dvshortx vecl, agen& al); // H_T16
void vstore_transp2( dvintx vecl, agen& al); // W_T2
void vstore_transp2_i(dvintx vecl, agen& al); // W_T2I
void vstore_transp8( dvintx vecl, agen& al); // W_T8

// per-lane predicated via predicate register

void vstore( dvcharx vecl1, agen& a1, dpred pred); // B_P

void vstore( dvshortx vecl, agen& al, int pred); // H_P

void vstore( dvintx vecl, agen& al, int pred); // W_P

void vstore_hb(dvshortx vecl, agen& al, int pred); // HB_P
void vstore_wh(dvintx vec1, agen& al, int pred); // WH_P

void vstore_transp( dvshortx vecl, agen& al, int pred);//H_T
void vstore_transp( dvintx vecl, agen& al, int pred);//W_T
void vstore_transp_hb(dvshortx vecl, agen& al, int pred);//HB_T
void vstore_transp_wh(dvintx vecl1, agen& al, int pred);//WH_T

void vstore_i(dvcharx vec1, agen& a1, dpred pred); // B_PI

void vstore_i(dvshortx vec1, agen& al, int pred); // H_PI

void vstore_i(dvintx vecl, agen& al, int pred); // W_PI

void vstore_i_hb(dvshortx vecl, agen& al, int pred); //HB_PI

void vstore_i_wh(dvintx vecl, agen& al, int pred); //WH_PI

void vstore_i( dxvshortx vec1, agen& al, int pred); //WH_PI DXAC

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 447



Instruction name

DVST agen

void vstore_transp_i( dvshortx vec1, agen& al, int pred); //H_TI
void vstore_transp_i( dvintx vecl, agen& al, int pred); //W_TI
void vstore_transp_i_hb(dvshortx vecl, agen& al, int pred); //HB_TI
void vstore_transp_i_wh(dvintx vec1, agen& al, int pred); //WH_TI
void vstore_bs(dvcharx vecl, agen& al, int pred); // B_S

void vstore_hs(dvshortx vecl, agen& al, int pred); // H_S

void vstore_ws(dvintx vecl, agen& al, int pred); // W_S

void vstore_transp32( dvcharx vecl, agen& al, dpred pred); //B_T32
void vstore_transp2( dvshortx vecl, agen& al, int pred); //H_T2
void vstore_transp2_i(dvshortx vecl, agen& al, int pred); //H_T2I
void vstore_transp4( dvshortx vecl, agen& al, int pred); //H_T4
void vstore_transp8( dvshortx vecl, agen& al, int pred); //H_T8
void vstore_transp16( dvshortx vecl, agen& al, int pred); //H_T16
void vstore_transp2( dvintx vecl, agen& al, int pred); //W_T2
void vstore_transp2_i(dvintx vecl, agen& al, int pred); //W_T2I
void vstore_transp8( dvintx vecl, agen& al, int pred); //W_T8

// per-lane predicated via VRF

void vstore( dvcharx vecl, agen& al, vcharx pred); // B_P

void vstore( dvshortx vecl, agen& al, vcharx pred); // H_P

void vstore( dvintx vecl1, agen& al, vshortx pred); // W_P

void vstore_hb(dvshortx vecl, agen& al, vcharx pred); // HB_P

void vstore_wh(dvintx vec1, agen& al, vshortx pred); // WH_P

void vstore_transp( dvshortx vecl, agen& al, vcharx pred);//H_T
void vstore_transp( dvintx vecl, agen& al, vshortx pred);//W_T
void vstore_transp_hb(dvshortx vecl, agen& a1, vcharx pred);//HB_T
void vstore_transp_wh(dvintx vecl1, agen& al, vshortx pred);//WH_T
void vstore_i( dvcharx vecl, agen& al, vcharx pred); // B_PI

void vstore_i( dvshortx vecl1, agen& al, vcharx pred); // H_PI
void vstore_i( dvintx vecl, agen& al, vshortx pred); // W_PI
void vstore_i_hb(dvshortx vecl, agen& al, vcharx pred); // HB_PI
void vstore_i_wh(dvintx vecl, agen& al, vshortx pred); // WH_PI
void vstore_transp_i( dvshortx v1, agen& al, vcharx p); // H_TI
void vstore_transp_i( dvintx v1, agen& al, vshortx p); // W_TI
void vstore_transp_i_hb(dvshortx v1, agen& al, vcharx p); // HB_TI
void vstore_transp_i_wh(dvintx v1, agen& al, vshortx p); // WH_TI
void vstore_transp2 ( dvintx v1, agen& al, vshortx p); //W_T2
void vstore_transp2_i( dvintx v1, agen& al, vshortx p); //W_T2I

// Float (basically leveraging H and W type stores)

void vstore( dvhfloatx vecl, agen& al); // H_P

void vstore_transp( dvhfloatx vecl, agen& al); // H_T
void vstore_i( dvhfloatx vecl1, agen& al); // H_PI

void vstore_transp_i( dvhfloatx vecl1, agen& al); // H_TI
void vstore_hs( dvhfloatx vecl, agen& al); // H_S

void vstore_transp2( dvhfloatx vecl, agen& al); // H_T2
void vstore_transp2_i(dvhfloatx vec1, agen& al); // H_T2I
void vstore_transp4( dvhfloatx vecl, agen& al); // H_T4

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 448



Instruction name

DVST agen

void vstore_transp8( dvhfloatx vecl, agen& al); // H_T8

void vstore_transp16( dvhfloatx vec1, agen& al); // H_T16

void vstore( dvhfloatx vecl, agen& al, int pred); // H_P

void vstore_transp( dvhfloatx vecl, agen& al, int pred); // H_T
void vstore_i( dvhfloatx vecl, agen& al, int pred); // H_PI

void vstore_transp_i( dvhfloatx vec1, agen& al, int pred); // H_TI
void vstore_hs( dvhfloatx vecl, agen& al, int pred); // H_S

void vstore_transp2( dvhfloatx vecl, agen& al, int pred); // H_T2
void vstore_transp2_i(dvhfloatx vec1, agen& al, int pred); // H_T2I
void vstore_transp4( dvhfloatx vecl, agen& al, int pred); // H_T4
void vstore_transp8( dvhfloatx vecl, agen& al, int pred); // H_T8
void vstore_transp16( dvhfloatx vecl, agen& al, int pred); // H_T16
void vstore( dvhfloatx vecl, agen& al, vcharx p); // H_P

void vstore_transp( dvhfloatx vecl, agen& al, vcharx p); // H_T
void vstore_i( dvhfloatx vecl1, agen& al, vcharx p); // H_PI

void vstore_transp_i( dvhfloatx vec1, agen& al, vcharx p); // H_TI

void vstore( dvfloatx vecl, agen& al); // W_P

void vstore_transp( dvfloatx vecl, agen& al); // W_T

void vstore_i( dvfloatx vecl, agen& al); // W_PI

void vstore_transp_i( dvfloatx vecl, agen& al); // W_TI

void vstore_ws( dvfloatx vecl, agen& al); // W_S

void vstore_transp2( dvfloatx vecl, agen& al);// W_T2

void vstore_transp2_i(dvfloatx vecl1, agen& al);// W_T2I

void vstore_transp8( dvfloatx vecl, agen& al);// W_T8

void vstore( dvfloatx vec1, agen& al, int pred); // W_P

void vstore_transp( dvfloatx vecl, agen& al, int pred); // W_T
void vstore_i( dvfloatx vecl, agen& al, int pred); // W_PI

void vstore_transp_i( dvfloatx vecl, agen& al, int pred); // W_TI
void vstore_ws( dvfloatx vecl, agen& al, int pred); // W_S

void vstore_transp2( dvfloatx vecl, agen& al, int pred); // W_T2
void vstore_transp2_i(dvfloatx vecl, agen& al, int pred); // W_T2I
void vstore_transp8( dvfloatx vecl, agen& al, int pred); // W_T8
void vstore( dvfloatx vecl, agen& al, vshortx p); // W_P

void vstore_transp( dvfloatx vecl, agen& al, vshortx p); // W_T
void vstore_i( dvfloatx vecl, agen& al, vshortx p); // W_PI
void vstore_transp_i( dvfloatx vecl, agen& al, vshortx p); // W_TI
void vstore_transp2 ( dvfloatx vecl, agen& al, vshortx p); // W_T2
void vstore_transp2_i(dvfloatx vecl, agen& al, vshortx p); // W_T2I

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is
skipped. Address updates are always carried out.

Consumes lower K bits of Preg or a single VRF for K-lane predication. For
transposition distribution, each element is separately predicated, so that
DVSTW_T2 requires 16 predication bits, just like DVSTW_P and DVSTW_T. See
Lane Predication for Agen-Based Vector Store for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 449



Instruction name

DVST agen

See Transposing Load/Store for address calculation and pattern for transpose
distributions.

Per-lane predication via vector register is only available in the MO slot, and is NOT
supported for scalar distribution.

9.9.4.6

QVST Agen

Instruction name

QVST agen

Functionality

Quad vector store agen-based

Assembly format

<pred> QVST<type>_distr DVsrc1, DVsrc2, *A<id>++
<pred> QVST<type>_distr DACsrc1, DACsrc2, *A<id>++
pred = none, [P2.. P15]

Type and bit width

Type/distribution supported for quad vector VRF and ARF source:
HB_P, HB_PI, HB_PI2
WH_P, WH_PI, WH_PI12, WH_T, WH_TI

Predication

Per-lane predication

Source options

two double vector registers all in VRF or ARF

Destination options

Additional options

Intrinsics/operator

// unpredicated

void vstore(dvshortx v1, dvshortx v2, agen& a); // HB_P

void vstore(dvintx v1, dvintx v2, agen& a); // WH_P

void vstore_i(dvshortx v1, dvshortx v2, agen& a); // HB_PI
void vstore_i(dvintx v1, dvintx v2, agen& a); // WH_PI

void vstore_i2(dvshortx v1, dvshortx v2, agen& a); // HB_PI2
void vstore_i2(dvintx v1, dvintx v2, agen& a); // WH_PI2
void vstore_transp(dvintx v1, dvintx v2, agen& a); // WH_T
void vstore_transp_i(dvintx v1, dvintx v2, agen& a); // WH_TI

// per-lane predicated

void vstore(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_P
void vstore(dvintx v1, dvintx v2, agen& a, int p); //WH_P

void vstore_i(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_PI
void vstore_i(dvintx v1, dvintx v2, agen& a, int p); //WH_PI
void vstore_i2(dvshortx v1, dvshortx v2, agen& a, dpred p);//HB_PI2
void vstore_i2(dvintx v1, dvintx v2, agen& a, int p); //WH_PI2
void vstore_transp( dvintx v1, dvintx v2, agen& a, int p); //WH_T
void vstore_transp_i(dvintx v1, dvintx v2, agen& a, int p); //WH_TI

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is
skipped. Consumes lower K bits of Preg for K-lane predication.

Address update is always carried out.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 450



Instruction name QVST agen

See Transposing Load/Store for address calculation and pattern for T transpose
distribution.

9.94.7 VLDPerm Agen

Instruction name VLDPerm agen
Functionality Vector load + permute agen-based
Assembly format VLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, Vdst/Wdst
Type and bit width Type/distribution available:
HB_P, HBU_P,

For example:
VLDPermHB_P *AO++, V2, V1

Predication Not available

Source options Vsrc: single vector register in VRF or WRF specifying permutation pattern

Destination options Vdst/Wdst: single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vchar_load_perm( agen& agenl, vshortx src); // HB_P
vcharx vuchar_load_perm(agen& agenl, vshortx src); // HBU_P

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.
HB_P/HBU_P case:

512-bit is read from memory and treated like a 32 entries x 16-bit table. From the
single Halfword vector source, 5 LSBs of each of 16 Halfword lanes, bits 4:0, are
used to index the table to return 16 x 16-bit permutation outcome. Next higher
bit, bit 5, is used to conditionally replace outcome with zero when the bit is set.

Then, the 16 x 16-bit data is repartitioned as 32 x 8-bit and expanded every 8-bit
into 12-bit of space in the destination vector register, with sign-extension
performed for HB_P case, and zero-extension performed for HBU_P case.

For example, in case of VLDPermHBU_P (unsigned version), say memory location
pointed by the agen address contains these halfwords:

0x0123, 0x4567, 0x89AB, OXCDEF, ...
and Vsrc read as Halfword lanes contains:
OxT1, 0x0, Ox2, Ox3, ...
First the memory word would be permuted into
0x4567, 0x0123, Ox89AB, OxCDEF, ...
then byte by byte extended into
0x067, 0x045, 0x023, 0x001, OxOAB, 0x089, OxOEF, OxOCD ...
in the destination vector register.
The same memory and Vsrc contents with VLDPermHB_P (signed) would return
0x067, 0x045, 0x023, Ox001, OxFAB, OxF89, OXFEF, OXFCD ...

VLDPerm is supported in all 3 memory slots.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 451



9.9.4.8

DVLDPerm Agen

Instruction name

DVLDPerm agen

Functionality

Double vector load + permute agen-based

Assembly format

DVLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, DVdst/DWdst

Type and bit width

Type/distribution available:
H_P, W_P, HU_P, WU_P,
H_T, W_T, HU_T, WU_T,
HB_P, HBU_P

W_T2, WU_T2

For example:
DVLDPermH_P *AO++, V2, VO:V1

Predication

Not available

Source options

Vsrc: single vector register in VRF or WRF specifying permutation pattern

Destination options

DVdst/DWdst: double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvshortx dvshort_load_perm( agen& agenl, vcharx src); // H_P
dvintx dvint_load_perm( agen& agenl, vshortx src); // W_P

dvshortx dvushort_load_perm(agen& agenl, vcharx src); // HU_P
dvintx dvuint_load_perm( agen& agenl, vshortx src); // WU_P

dvshortx dvshort_load_perm_transp( agen& agenl1, vcharx src);//H_T
dvintx dvint_load_perm_transp( agen& agenl, vshortx src);//W_T

dvshortx dvushort_load_perm_transp(agen& agenl, vcharx src);//HU_T
dvintx dvuint_load_perm_transp( agen& agenl, vshortx src);//WU_T

dvcharx dvchar_load_perm( agen& agenl, vcharx src); // HB_P
dvcharx dvuchar_load_perm(agen& agenl, vcharx src); // HBU_P

dvintx dvint_load_perm_transp2( agen& agenl, vshortx src);//W_T2
dvintx dvuint_load_perm_transp2(agen& agenl, vshortx src);//WU_T2

//Float

dvfloatx dvfloat_load_perm( agen& agen1, vshortx src);
dvfloatx dvfloat_load_perm_transp( agen& agenl, vshortx src);
dvfloatx dvfloat_load_perm_transp2(agen& agenl, vshortx src);
dvhfloatx dvhfloat_load_perm( agen& agenl, vcharx src);
dvhfloatx dvhfloat_load_perm_transp(agen& agenl, vcharx src);

Additional details

Use Agen to supply address; address is post-modified according to multi-dimensional
(up to 6D) address modifier scheme.

Since we are returning double vector destination using single vector lane selection
source, we are using a smaller data type as lane selection than the destination.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 452




Instruction name

DVLDPerm agen

Word destination (W_P/WU_P/W_T/WU_T/W_T2/WU_T2):

512-bit is read from memory (consecutively for P distribution, transposed from 16 x
32-bit for T/T2 distribution) and treated like a 16 entries x 32-bit table. From the
single vector source, 4 LSBs of each of 16 Halfword lanes, bits 3:0, are used to index
the table to return 16 x 32-bit permutation outcome. Next higher bit, bit 4, is used to
conditionally replace outcome with zero when the bit is set.

The permutation outcome, 16 x 32-bit, is zero or sign extended to the Word type
double vector destination according to signed (W_P/W_T) or unsigned (WU_P/WU_T)
designation.

Halfword destination (H_P/HU_P/H_T/HU_T):

512-bit is read from memory (consecutively for P distribution, transposed from 32 x
16-bit for T distribution) and treated like a 32 entries x 16-bit table. From the single
vector source, 5 LSBs of each of 32 Byte lanes, bits 4.0, are used to index the table to
return 32 x 16-bit permutation outcome. Next higher bit, bit 5, is used to
conditionally replace outcome with zero when the bit is set.

The permutation outcome, 32 x 16-bit, is zero or sign extended to the Halfword type
double vector destination according to signed (H_P/H_T) or unsigned (HU_P/HU_T)
designation.

Permuted as Halfword into Byte destination (HB_P/HBU_P):

512-bit is read from memory consecutively (as only P distribution is supported) and
treated like a 32 entries x 16-bit table. From the single vector source, 5 LSBs of each
of 32 Byte lanes, bits 4.0, are used to index the table to return 32 x 16-bit
permutation outcome. Next higher bit, bit 5, is used to conditionally replace
outcome with zero when the bit is set.

The permutation outcome, 32 x 16-bit, is repartitioned as Byte lanes, 64 x 8-bit, and
then zero or sign extended into the Byte type double vector destination according to
signed (HB_P) or unsigned (HBU_P) designation.

Ordering of lanes for destinations shall be .lo components first then .hi components.
In other words, DVLDPermH_P with {0, 1, 2, .., 31} selection data shall behave like “_P”
distributed double vector load, DVLDH_P.

DVLDPerm is supported in all 3 memory slots.

See Transposing Load/Store for address calculation and pattern for transpose
distributions.

9.9.49

DVST_PLROUND Agen

Instruction name

DVST_PLROUND agen

Functionality

Double vector store agen-based with per-lane rounding

Assembly format

DVST <type>_PLRound_distr Vsrc1/Wsrc1, DVsrc2/DACsrc2, *A<id>++

Type and bit width

Type/distribution available:
H_P, W_P, HB_P, WH_P, WB_P,
H_PI, W_PI, HB_PI, WH_PI, WB_PI

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 453




Instruction name

DVST_PLROUND agen

For example:
DVSTH_PLRound_P WO, VO:V1, *AO++

Predication

Not supported

Source options

src1: single vector register in VRF/WRF to carry rounding information

src2: double vector register in VRF/ARF to carry data

Destination options

Additional options

Intrinsics/operator

void vstore_plround( vcharx s1, dvshortx s2, agen& al); // H_P
void vstore_plround( vshortx s1, dvintx s2, agen& al); // W_P
void vstore_hb_plround(vcharx s1, dvshortx s2, agen& al); // HB_P
void vstore_wh_plround(vshortx s1, dvintx s2, agen& al); // WH_P
void vstore_wb_plround(vshortx s1, dvintx s2, agen& al); // WB_P
void vstore_i_plround( vcharx s1, dvshortx s2, agen& al); // H_PI
void vstore_i_plround( vshortx s1, dvintx s2, agen& al); // W_PI
void vstore_hbi_plround(vcharx s1, dvshortx s2, agen& al); // HB_PI
void vstore_whi_plround(vshortx s1, dvintx s2, agen& al); // WH_PI
void vstore_wbi_plround(vshortx s1, dvintx s2, agen& al); // WB_PI

Additional details

Use Agen to supply address; address is post-modified according to multi-dimensional
(up to 6D) address modifier scheme.

Because we use a single vector to provide rounding parameters for storing of a
double vector, in the intrinsic functions, source 1 single vector data type is half the
size of the source 2 double vector data type, so we can match number of lanes.

Use 8 LSBs of source 1 to supply rounding/truncation parameters, overriding the
rounding/truncation configuration from Agen. Bit 7 indicates rounding (0) vs
truncation (1). Bits 6:0 specifies number of bits to round/truncate.

When number of bits to round/truncate exceeds the data source (src2) lane bit width,
outcome is O for rounding any value, truncating any non-negative value, and -1 for
truncating any negative value.

Note that rounding/truncation information in the single vector source 1 is ordered
sequentially as stored data in memory. For example, for Word type, with the P
distribution option, pairing of two sources are:

src1[0] - src2.lo[0], src1[1]-src2.lo[1], ..., src1[7] - src2.lo[7],

src1[8] - src2.hi[0], src1[9] - src2.hi[1], ..., src1[15] - src2.hi[7].

With the PI distribution option, pairing of two sources are:

src1[0] = src2.10[0], src1[1] - src2.hi[0], src1[2] = src2.lo[1], src1[3] - src2.hi[ 1],
.., src1[14] - src2.lo[7], src1[15] - src2.hi[7].

Per-lane rounding vector store is only available in the MO slot.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 454




9.9.5 Agen-Based Scalar Load/Store

9.9.5.1 Instruction Summary

Scalar load/store instructions:

Table 42. Agen-based scalar load/store instructions

Type available:
B,H,W

Function Assembly Format Comments
Scalar load agen- LD<type> *A<id>++, Rdst
based Type available:
B, BU, H, HU, W
Dual scalar load DLD<type> *A<id>++, Rdst1, Rdst2
agen-based Type available:
B, BU, H, HU, W
Scalar store agen- <pred> ST<type> Rsrc, *A<id>++
based pred = none, [P2.. P15], instruction level predication
Type available:
B,H,W
Dual scalar store <pred> DST<type> Rsrc1, Rsrc2, *A<id>++
agen-based pred = none, [P2.. P15], instruction level predication

Agen features supported and not supported for scalar load/store:

Distribution: not supported; dual register accesses consecutive items in memory

Type promotion/demotion: not supported; only single data type

Multi-dimensional addressing: supported
Circular buffer addressing: supported
Lane offset/transposition: not supported
Rounding: not supported

Saturation: not supported

9.9.5.2 LD Agen

Instruction name LD agen
Functionality Scalar load agen-based
Assembly format LD<type> *A<id>++, Rdst
Type and bit width Type available:

B, BU, H, HU, W
Predication not available

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 455




Instruction name

LD agen

Source options

Destination options

Single scalar register

Additional options

Intrinsics/operator

int int_load(agen& ageni);

unsigned int uint_load(agen& agen1);
short short_load(agen& agenl);

unsigned short ushort_load(agen& agent);
char char_load(agen& agenl);

unsigned char uchar_load(agen& ageni);
float float_load(agen& ageni);

hfloat hfloat_load(agen& agenl);

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

9.9.5.3

DLD Agen

Instruction name

DLD agen

Functionality

Dual scalar load agen-based

Assembly format

DLD<type> *A<id>++, Rdst1, Rdst2

Type and bit width

Type available:
B, BU, H, HU, W

Predication

not available

Source options

Destination options

Two scalar registers

Additional options

Intrinsics/operator

void int_load(agen& agenl, int &dst1, int &dst2);
void uint_load(agen& agenl1, uint &dst1, uint &dst2);
void short_load(agen& agen1, short &dst1, short &dst2);

void ushort_load(agen& agenl, unsigned short &dst1, unsigned short &dst2

void char_load(agen& agen1, char &dst1, char &dst2);

void uchar_load(agen& agenl1, unsigned char &dst1, unsigned char &dst2);

void float_load(agen& agenl, float &dst1, float &dst2);
void hfloat_load(agen& agenl, hfloat &dst1, hfloat &dst2);

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Two successive items in memory pointed by the Agen are loaded, the first item

into Rdst1, the second item into Rdst2.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 456



9.954 ST Agen

Instruction name ST agen
Functionality Scalar store agen-based
Assembly format <pred> ST<type> Rsrc, *A<id>++
Type and bit width Type available:

B, H,W
Predication Instruction level predication
Source options Single scalar register

Destination options

Additional options

Intrinsics/operator // unpredicated
void int_store(int src, agen& ageni);

void short_store(short src, agen& agenl);

void char_store(char src, agen& agenl);

void uint_store(unsigned int src, agen& agenl);
void ushort_store(unsigned short src, agen& agenl);
void uchar_store(unsigned char src, agen& agenl);
void float_store(float src, agen& agenl);

void hfloat_store(hfloat src, agen& agenl);

// predicated

void int_store(int src, agen& agenl, bool pred);

void short_store(short src, agen& agenl, bool pred);

void char_store(char src, agen& agenl, bool pred);

void uint_store(unsigned int src, agen& agen1, bool pred);
void ushort_store(unsigned short src, agen& agenl, bool pred);
void uchar_store(unsigned char src, agen& agenl, bool pred);
void float_store(float src, agen& agenl, bool pred);

void hfloat_store(hfloat src, agen& agenl, bool pred);

Additional details Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Note that when compile-time-constant O is used on the predicate argument, the
intrinsic would be compiled into update_agen(), which is equivalent in
functionality.

9.95.5 DST Agen

Instruction name DST agen

Functionality Dual scalar store agen-based
Assembly format <pred> ST<type> Rsrc1, Rsrc2, *A<id>++
Type and bit width Type available:
B, H,W
Predication Instruction level predication

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 457



Instruction name

DST agen

Source options

Two scalar registers

Destination options

Additional options

Intrinsics/operator

// unpredicated

void int_store(int src1, int src2, agen& agenl);

void short_store(short srci1, short src2, agen& ageni);

void char_store(char src1, char src2, agen& agenl);

void uint_store(unsigned int src1, unsigned int src2, agen& agenl);
void ushort_store(unsigned short src1, unsigned short src2, agen&
agent);

void uchar_store(unsigned char src1, unsigned char src2, agen& agenl);
void float_store(float src1, float src2, agen& al);

void hfloat_store(hfloat src1, hfloat src2, agen& al);

// predicated

void int_store(int src1, int src2, agen& ageni1, bool pred);

void short_store(short src1, short src2, agen& agenl, bool pred);

void char_store(char src1, char src2, agen& agenl, bool pred);

void uint_store(unsigned int src1, unsigned int src2, agen& agenl, bool
pred);

void ushort_store(unsigned short src1, unsigned short src2, agen& agent,
bool pred);

void uchar_store(unsigned char src1, unsigned char src2, agen& agent,
bool pred);

void float_store(float src1, float src2, agen& al, bool pred);

void hfloat_store(hfloat src1, hfloat src2, agen& al, bool pred);

Additional details

Use Agen to supply address; address is post-modified according to multi-
dimensional (up to 6D) address modifier scheme.

Two successive items are store to memory pointed by the Agen, the first item from
Rsrc1, the second item from Rsrc2.

Note that when compile-time-constant O is used on the predicate argument, the
intrinsic would be compiled into update_agen(), which is equivalent in functionality.

9.9.6  Parallel Lookup, Histogram, Vector Addressed
Store

9.9.6.1 Instruction Summary

Instructions for lookup, histogram and vector addressed store are shown as follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 458




Table 43 Parallel lookup, histogram, vector addressed store instructions

type-parallelism = {32H, 32HU, 16W, 16 WU}

Function Assembly Format Comments
Parallel lookup DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc), | Rbase should be 64-byte
DVdst/DWdst aligned, bits 5..0 are ignored.

Use DVsrc as indices.

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

type-parallelism = {32/16/8/4/2/1 B/BU, 16/8/4/2/1
H/HU, 8/4/2/1 W/WU}

VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst
type-parallelism = {32HB, 32HBU}

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst
type-parallelism = {16/8/4/2/1HB, 16/8/4/2/1HBU}

Rbase should be 64-byte
aligned, bits 5..0 are ignored.

Use Vsrc as indices.

Parallel 2-point DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc),
lookup DVdst

type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1
H/HU, 8/4/2/1 W/WU, 16/8/4/2/1 HB/HBU}

Lookup table[index] and
table[index+1] and return a
double vector

Parallel 2x2-pt DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc),
lookup DVdst/DWdst

type-parallelism =

{8/4/2/1 B/BU, 8/4/2/1 H/HU, 4/2/1 W/WU, 8/4/2/1
HB/HBU }

Lookup table[index],
table[index+1], table[line_pitch
+ index], table[line_pitch + index
+ 1] in a double vector

Parallel histogram DVHist_<type-parallelism> *(Rbase+DVsrc1),
DVsrc2, DVdst

DVHist_<type-parallelism> *(Rbase+DVsrc1),
DVsrc2

type-parallelism = {32H, 16W}

Rbase should be 64-byte
aligned, bits 5..0 are ignored.

Use DVsrc1 as indices, DVsrc2
as update (additive) values.

Optionally return bin value
before the update in DVdst

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2,
Vdst

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

type-parallelism = {16/8/4/2/1 H, 8/4/2/1 W}

Use Vsrc1 as indices, Vsrc2 as
update (additive) values.
Optionally return bin value
before the update in Vdst

Parallel OR DVHist_OR_<type-parallelism> *(Rbase+DVsrc1),
histogram DVsrc2, DVdst
DVHist_OR_<type-parallelism> *(Rbase+DVsrc1),
DVsrc2

type-parallelism = {32H, 16W}

Perform bitwise OR operation
instead of addition

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 459




Function Assembly Format Comments

type-parallelism = {16/8/4/2/1H, 8/4/2/TW}

VHist_OR_<type-parallelism> *(Rbase+Vsrc1), Perform bitwise OR operation
Vsrc2, Vdst instead of addition
VHist_OR_<type-parallelism> *(Rbase+Vsrc1),

Vsrc2

Vector addressed DVAST_<type-parallelism> DVsrc, *(Rbase+DVidx) Rbase should be 64-byte

store

aligned, bits 5..0 are ignored.

type-parallelism = {32H, 16W} Use DVidx as indices, DVsrc as

data to write.

9.9.6.2 DVLUT

Instruction name

DVLUT

Functionality

Double vector lookup

Assembly format

DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc), DVdst/DWdst

Type and bit width

type-parallelism = {32H, 32HU, 16W, 16 WU}

Same type applies to indices and table entries, but indices are always signed
even when unsigned type is used. Table entries are signed or unsigned
indicated in the type.

For example:

DVLUT_16W *(R4 + VO:V1), V2:V3

Predication

Not available

Source options

Base address: scalar register

Index: double vector register in VRF or WRF

Destination options

Double vector register in VRF or WRF

Additional options

Intrinsics/operator

dvshortx vlookup_32h( const short* thl, dvshortx idx);
dvshortx vlookup_32hu(cont unsigned short* tbl, dvshortx idx);
dvhfloatx vlookup_32hf(const hfloat* tbl, dvshortx idx);

dvintx vlookup_16w( const int* tbl, dvintx idx);
dvintx vlookup_16wu(const unsigned int* tbl, dvintx idx);
dvfloatx vlookup_16f( const float* tbl, dvintx idx);

Additional details

Use double vector to supply indices to lookup parallel tables. Rbase is forced
to be 64-byte aligned by ignoring its bits 5:0.

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.3 VLUT

Instruction name

VLUT

Functionality

Single vector lookup

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 460




Instruction name VLUT

Assembly format VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

Type and bit width type-parallelism =

{32/16/8/4/2/1B, 32/16/8/4/2/1BU, 16/8/4/2/1H, 16/8/4/2/THU,

8/4/2/1W, 8/4/2/1TWU}

Same type applies to indices and table entries, but indices are always signed
even when unsigned type is used. Table entries are signed or unsigned
indicated in the type.

For example:

VLUT_4W *(R4 + V0), V2

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vcharx vlookup_32b( const char* tbl, vcharx idx);
vcharx vlookup_32bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_16b( const char* tbl, vcharx idx);
vcharx vlookup_16bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_8b( const char* tbhl, vcharx idx);
vcharx vlookup_8bu( const unsigned char* tbl, vcharx idx);
vcharx vlookup_4b( const char* tbl, vcharx idx);
vcharx vlookup_4bu( const unsigned char* tbl, vcharx idx);
vcharx vlookup_2b( const char* tbl, vcharx idx);
vcharx vlookup_2bu( const unsigned char* tbl, vcharx idx);
vcharx vlookup_1b( const char* tbhl, vcharx idx);
vcharx vlookup_1bu( const unsigned char* tbl, vcharx idx);

vshortx vlookup_16h(const short* tbl, vshortx idx);
vshortx vlookup_16hu(const unsigned short* tbl,vshortx idx);
vshortx vlookup_8h(const short* thl, vshortx idx);
vshortx vlookup_8hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_4h(const short* tbl, vshortx idx);
vshortx vlookup_4hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_2h(const short* tbl, vshortx idx);
vshortx vlookup_2hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_t1h(const short* thl, vshortx idx);

vshortx vlookup_thu(const unsigned short* tbl, vshortx idx);

vintx vlookup_8w( const int* tbl, vintx idx);
vintx vlookup_8wu(const unsigned int* tbl, vintx idx);
vintx vlookup_4w( const int* tbl, vintx idx);
vintx vlookup_4wu(const unsigned int* tbhl, vintx idx);
vintx vlookup_2w( const int* tbl, vintx idx);
vintx vlookup_2wu(const unsigned int* tbl, vintx idx);
vintx vlookup_1w( const int* tbl, vintx idx);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 461



Instruction name

VLUT

vintx vlookup_1wu(const unsigned int* tbl, vintx idx);

vfloatx vlookup_8f(const float* tbl, vintx idx);
vfloatx vlookup_4f(const float* tbl, vintx idx);
vfloatx vlookup_2f(const float* tbl, vintx idx);
vfloatx vlookup_1f(const float* tbl, vintx idx);
vhfloatx vlookup_16hf(const hfloat* tbhl, vshortx idx);
vhfloatx vlookup_8hf( const hfloat* thl, vshortx idx);
vhfloatx vlookup_4hf( const hfloat* tbl, vshortx idx);
vhfloatx vlookup_2hf( const hfloat* tbl, vshortx idx);
vhfloatx vlookup_1hf( const hfloat* tbl, vshortx idx);

Additional details

Use first K lanes of a single vector to supply K indices to lookup K parallel
tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Returned table entries are placed on the first K lanes of the destination
vector register. Remaining lanes, if any, are returned 0.

Refer to Table Lookup for index bit width used in address calculation.

Instruction name

VLUT (looking up bytes with halfword indices)

Functionality

Single vector lookup

Assembly format

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst
VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst

Type and bit width

type-parallelism = {32/16/8/4/2/1HB, 32/16/8/4/2/THBU}

The first type letter indicates type of indices; indices are always signed. The
second type letter indicates type of table entries including signed/unsigned

In case of 32-way parallel lookup, 32 short indices require a double vector
source. For other parallelism, a single vector source is used.

For example:
VLUT_4HB *(R4 + V0), V2
VLUT_32HB *(R4 + VO:V1), V2

Predication

Not available

Source options

Rbase: scalar register
Vsrc: single vector register (1 ~ 16-way)

DVsrc: double vector register (32-way)

Destination options

Vdst: single vector register

Additional options

Intrinsics/operator

vcharx vlookup_32hb( const char* tbl,dvshortx idx);

vcharx
vcharx
vcharx
vcharx
vcharx
vcharx
vcharx
vcharx

vlookup_32hbu(const
vlookup_16hb( const
vlookup_16hbu(const
vlookup_8hb( const
vlookup_8hbu( const
vlookup_4hb( const
vlookup_4hbu( const
vlookup_2hb( const

unsigned

char* tbl,dvshortx idx);

char* tbl, vshortx idx);

unsigned
char*
unsigned
char*
unsigned
char*

char* tbl, vshortx
tbl, vshortx idx);
char* tbl, vshortx idx);
tbl, vshortx idx);
char* tbl, vshortx idx);
tbl, vshortx idx);

idx);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 462




Instruction name

VLUT (looking up bytes with halfword indices)

vcharx vlookup_2hbu( const unsigned char* tbl, vshortx idx);
vcharx vlookup_1hb( const char* tbl, vshortx idx);
vcharx vlookup_1hbu( const unsigned char* tbl, vshortx idx);

Additional details

Use first K lanes of a single vector to supply K indices to lookup K parallel
tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Returned table entries are placed on the first K lanes of the destination
vector register. Remaining lanes, if any, are returned O.

In the case of 32-way parallel byte lookup with double short vector indices,
the .lo component of double vector supplies the first 16 indices, the .hi
component of double vector supplies the last 16 indices.

Refer to Table Lookup for index bit width used in address calculation.

9.9.64

DVLUT_2PT

Instruction name

DVLUT_2PT

Functionality

Double vector two-point lookup

Assembly format

DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width

type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1 H/HU, 8/4/2/1 W/WU}

Same type applies to indices and table entries, but indices are always signed
even when unsigned type is used. Table entries are signed or unsigned
indicated in the type.

For example:
DVLUT_2pt_16HU *(R4 + V0O), V2:V3

Predication

Not available

Source options

Rbase: scalar register

Vsrc: single vector register

Destination options

DVdst: double vector register

Additional options

Intrinsics/operator

dvcharx vlookup_2pt_16b( const char* tbl, vcharx idx);
dvcharx vlookup_2pt_16bu(const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_8b( const char* tbl, vcharx idx);
dvcharx vlookup_2pt_8bu( const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_4b( const char* tbl, vcharx idx);
dvcharx vlookup_2pt_4bu( const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_2b( const char* tbl, vcharx idx);
dvcharx vlookup_2pt_2bu( const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_1b( const char* tbl, vcharx idx);
dvcharx vlookup_2pt_1bu( const unsigned char* tbl, vcharx idx);

dvshortx vlookup_2pt_16h( const short* tbl, vshortx idx);
dvshortx vlookup_2pt_16hu(const unsigned short* tbl, vshortx idx);
dvshortx vlookup_2pt_8h( const short* thl, vshortx idx);
dvshortx vlookup_2pt_8hu( const unsigned short* tbhl, vshortx idx);
dvshortx vlookup_2pt_4h( const short* tbhl, vshortx idx);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 463



Instruction name

DVLUT_2PT

dvshortx vlookup_2pt_4hu( const unsigned short* tbl, vshortx
dvshortx vlookup_2pt_2h( const short* tbhl, vshortx idx);
dvshortx vlookup_2pt_2hu( const unsigned short* tbl, vshortx
dvshortx vlookup_2pt_1h( const short* tbl, vshortx idx);
dvshortx vlookup_2pt_1hu( const unsigned short* tbl, vshortx

idx);
idx);
idx);

dvintx
dvintx
dvintx
dvintx
dvintx
dvintx
dvintx
dvintx

vlookup_2pt_8w( const int*
vlookup_2pt_8wu(const unsigned
vlookup_2pt_4w( const int*
vlookup_2pt_4wu(const unsigned
vlookup_2pt_2w( const int*
vlookup_2pt_2wu(const unsigned
vlookup_2pt_1w( const int*
vlookup_2pt_1wu(const unsigned

tbl,
int*
tbl,
int*
tbl,
int*
tbl,
int*

vintx idx);
tbl, vintx idx);
vintx idx);
tbl, vintx idx);
vintx idx);
tbl, vintx idx);
vintx idx);
tbl, vintx idx);

Additional details

Use first P lanes of a single vector to supply indices to look up P parallel
tables (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its
bits 5:0. Table[index] and the next entry in the table per parallel table are
returned in the low and high registers, respectively, in the first P lanes.
Remaining lanes are returned as zero.

Note that the parallelism indicates number of parallel sub-tables we have.
Number of data points returned is twice as many, as we look up 2 data points
from each subtable.

Refer to Table Lookup for index bit width used in address calculation.

For example, DVLUT_2pt_8W returns 2 data points from each of 8 subtables. Layout of
an 8-way-parallel word-type table and picking up data points via index vector {0, 1, 2, 3,
4,5, 4, 3%

TO[0]
To[2]
TO[4]
TO[6]

TO[1]
TO[3]
TO[5]
TO[7]

T1[0]
T1[2]
T1[4]
T1[6]

T1[1]
T1[3]
T1[5]
T1[7]

T2[0]
T2[2]
T2[4]
T2[6]

T2[1]
T2[3]
T2[5]
T2[7]

T3[0]
T3[2]
T3[4]
T3[6]

T3[1]
T3[3]
T3[5]
T3[7]

T4([0]
T4[2]
T4[4]
T4[6]

T4[1]
T4[3]
T4[5]
T4[7]

T5[0]
T5[2]
T5[4]
T5[6]

T5[1]
T5[3]
T5[5]
T5[7]

T6[0]
T6[2]
T6[4]
T6[6]

T6[1]
T6[3]
T6[5]
T6[7]

T7[0]
T7[2]
T7[4]
T7[6]

T7[01]
T7[3]
T7[5]
T7[7]

Instruction name

DVLUT_2PT (looking up bytes with halfword indices)

Functionality

Double vector two-point lookup

Assembly format

DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width

type-parallelism = {16/8/4/2/1 HB/HBU}

The first type letter indicates type of indices; indices are always signed. The
second type letter indicates type of table entries including signed/unsigned

For example:
DVLUT_2pt_4HB *(R4 + V0), V2:V3

Predication

Not available

Source options

Rbase: scalar register

Vsrc: single vector register

Destination options

DVdst: double vector register

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 464



Instruction name

DVLUT_2PT (looking up bytes with halfword indices)

Additional options

Intrinsics/operator

dvcharx vlookup_2pt_16hb( const char* tbl, vshortx idx);
dvcharx vlookup_2pt_16hbu( const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_8hb( const char* tbl, vshortx idx);
dvcharx vlookup_2pt_8hbu( const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_4hb( const char* tbl, vshortx idx);
dvcharx vlookup_2pt_4hbu( const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_2hb( const char* tbl, vshortx idx);
dvcharx vlookup_2pt_2hbu( const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_1hb( const char* tbl, vshortx idx);
dvcharx vlookup_2pt_1hbu( const unsigned char* tbl, vshortx idx);

Additional details

Use single vector to supply indices to lookup parallel tables in the first P
lanes (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its
bits 5:0. Table[index] and the next entry in the table per parallel table are
returned in the first P lanes respectively in the low and high parts of
destination double register. Remaining lanes are returned as zero.

Note that the parallelism indicates number of parallel sub-tables we have.
Number of data points returned is twice as many, as we look up 2 data points
from each subtable.

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.5

DVLUT_2X2PT

Instruction name

DVLUT_2X2PT

Functionality

Double vector two-by-two-point lookup

Assembly format

DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst/DWdst

Type and bit width

type-parallelism =
{8/4/2/1B/BU, 8/4/2/1H/HU, 4/2/1W/WU}

Same type applies to indices and table entries, but indices are always signed

even when unsigned type is used. Table entries are signed or unsigned indicated

in the type.
For example:
DVLUT_2x2pt_2W *(R4 + V0Q), V2:V3

Predication

Not available

Source options

Rbase: scalar register
Vsrc: single vector register

Implicit PL scalar register to derive line pitch

Destination options

DVdst: double vector register

Additional options

Intrinsics/operator

dvcharx vlookup_2x2pt_8b( const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_8bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_4b( const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_4bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_2b( const char* tbl, vcharx idx, int k);

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 465



Instruction name DVLUT_2X2PT

dvcharx vlookup_2x2pt_2bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_1b( const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_1bu(const unsigned char* tbl, vcharx idx, int k);

dvshortx vlookup_2x2pt_8h( const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_8hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_4h( const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_4hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_2h( const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_2hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_1h( const short* tbl, vshortx idx, int k);

dvshortx vlookup_2x2pt_thu(const unsigned short* tbl, vshortx idx, int k);

dvintx vlookup_2x2pt_4w( const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_4wu(const unsigned int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_2w( const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_2wu(const unsigned int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_1w(const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_lwu(const unsigned int* tbl, vintx idx, int k);

Additional details Use a single vector to supply indices to lookup parallel tables in the first P lanes
(P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Table[index], table[index+1], table[index + line_pitch], and table[index +
line_pitch + 1] are returned for each parallel table.

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low
part of destination double register. Table[index+ line_pitch] and table[index +
line_pitch + 1], are interleaved in the first 2*P lanes of the high part of
destination double register. Remaining lanes are returned as zero.

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, (32/P)*k+2 for
Halfword-type table, and (16/P)*k+2 for Word-type table, k being an integer >=0
and P = parallelism. The restriction ensures that the 2x2 points being read in
each subtable do not collide in memory banks (16-bit per bank). The integer k is
conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.

Note that the parallelism indicates number of parallel sub-tables we have.
Number of data points returned is 4 times as many, as we look up 2 x 2 = 4 data
points from each subtable.

It IS allowed to have k = PL = 0. In this case, for Hand W types, the lookup
behaves like looking up 4 consecutive items from the indexed item. For B type,
we would be fetching table[index], table[index+1], table[index+4],
table[index+5] in each subtable. The access pattern is such that it’s not obvious
how it might be used.

Refer to Table Lookup for index bit width used in address calculation.

For example, DVLUT_2x2pt_2W returns 4 data points from each of 2 subtables. Assume
PL = 1, line pitch = 16/2*1 + 2 = 10. The following diagram shows the layout of an 2-way-
parallel word-type table with line pitch of 10 elements, and where data points are picked
up from index vector {1, 13}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 466



A[O][0]|A[C][1TALOI[2]|A[0][3]

A[0][4] A[O][S]/A[O][6E] A[O][7]HB[OJ[O] BlOI[1]|B[0][2]|B[O][3]|B[O][4]|B[0][5]|BIO][6]|BIOIL7]

A[O][8]|A[C[9]ALTI[C]ALI][T]

A[l][2]A[l][3]A[1][4]A[1][5]”B[0][8] BlOl[9]|BL1][0]BI11[1]|BI11[2]|BL1I[3]BI11[41 B[ 11[5]

ALIBIADI7IALTI[B]ALTI[S]

AL2][OJJA[2][1]JA[2][2] A[2][3]”B[1 IlelBl117IBL118]BL11[9]|B[2][0]|B[2][1]|B[2][2]|B[2][3]

Al2][4]|A[2][5]/A[2][6]/A[2][7]

Al2][8]|A[2][9]|A[3][0] A[3][1]HB[2][4] B[2][5]B[2]1[6]B[2][7]B[2][8]|B[2][9]|B[3][C]|B[3][1]

Returned destination low part = {A[O][ 1], A[0O][2], B[1][3], B[1][4], O, O, O, O},

and high part = {A[1][1

1, Al][2], B[2](3], B[2][4], 0, 0, O, O}.

Instruction name

DVLUT_2X2PT (HB/HBU)

Functionality

Double vector two-by-two-point lookup

Assembly format

DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width

type-parallelism = {8/4/2/1 HB/HBU }

The first type letter indicates type of indices; indices are always signed. The
second type letter indicates type of table entries including signed/unsigned

For example:
DVLUT_2x2pt_2HB *(R4 + V0), V2:V3

Predication

Not available

Source options

Rbase: scalar register

Vsrc: single vector register

Destination options

DVdst: double vector register

Additional options

Intrinsics/operator

dvcharx vlookup_2x2pt_8hb( const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_8hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_4hb( const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_4hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_2hb( const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_2hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_1hb( const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_1hbu(const unsigned char* tbl,vshortx idx,int k);

Additional details

Use single vector to supply indices to lookup parallel tables in the first P lanes (P
= parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low
part of destination double register. Table[index + line_pitch] and table[index +
line_pitch + 1], are interleaved in the first 2*P lanes of the high part of
destination double register. Remaining lanes are returned as zero.

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, k being an integer > 0
and P = parallelism. The restriction ensures that the 2x2 points being read in
each subtable do not collide in memory banks (16-bit per bank). The integer k is
conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.
Note that with 8-bit unsigned number we can represent line pitch more than
16,000 8-bit data points, 8,000 16-bit data points, 4,000 32-bit data points,
which are more than sufficient for normal applications.

Note that the parallelism indicates number of sub-tables we have. Number of
data points returned is 4 times as many, as we look up 2 x 2 = 4 data points
from each subtable.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 467




Instruction name

DVLUT_2X2PT (HB/HBU)

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.6 DVHist

Instruction name

DVHist

Functionality

Double vector histogram

Assembly format

DVHist_<type-parallelism> *(Rbase+DVsrc1), DVsrc2, DVdst
DVHist_<type-parallelism> *(Rbase+DVsrc1), DVsrc2

Type and bit width

type-parallelism = {32H, 16W}

Same type applies to indices and table entries. Both indices and table entries are
signed.

Note that it is possible to maintain unsigned histogram, as histogram update
operation (addition) behaves the same way for signed or unsigned data. Just
that the pre-update bin read back data are always sign-extended in the
destination registers.

For example:
DVHist_16W *(R4 + VO:V1), V2:V3, V4:V5
DVHist_16W *(R4 + VO:V1), V2:V3

Predication

Not available

Source options

Rbase: scalar register
DVsrc1: double vector register

DVsrc2: double vector register

Destination options

DVdst: double vector register

or none

Additional options

Intrinsics/operator

dvshortx vhist_32h( short* hist, dvshortx idx, dvshortx upd);
dvintx vhist_16w( int* hist, dvintx idx, dvintx upd);

void vhist_simple_32h( short* hist, dvshortx idx, dvshortx upd);
void vhist_simple_16w( int* hist, dvintx idx, dvintx upd);

Additional details

Use DVsrc1 as indices and DVsrc?2 as weights for weighted histogram. The
indexed entries are updated by adding the corresponding weights. Pre-update
entries are optionally returned in DVdst.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

9.9.6.7 VHist

Instruction name

VHist

Functionality

Single vector histogram

Assembly format

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2, Vdst
VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 468




Instruction name

VHist

Type and bit width

type-parallelism = {16/8/4/2/1H, 8/4/2/1W}

Same type applies to indices and histogram entries. Both indices and histogram
entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update
operation (addition) behaves the same way for signed vs unsigned data. Just
that the pre-update bin read back data are always sign-extended in the
destination register.

For example:
VHist_4W *(R4 + VO), V1, V2
VHist_4W *(R4 + V0), V1

Predication

Not available

Source options

Rbase: scalar register
Vsrc1: single vector register

Vsrc2: single vector register

Destination options

Vdst: single vector register

or none

Additional options

Intrinsics/operator

vshortx vhist_16h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_8h( short* hist, vshortx idx, vshortx upd);
vshortx vhist_4h( short* hist, vshortx idx, vshortx upd);
vshortx vhist_2h( short* hist, vshortx idx, vshortx upd);
vshortx vhist_1h( short* hist, vshortx idx, vshortx upd);

vintx vhist_8w( int* hist, vintx idx, vintx upd);
vintx vhist_4w( int* hist, vintx idx, vintx upd);
vintx vhist_2w( int* hist, vintx didx, vintx upd)
vintx vhist_1w( int* hist, vintx idx, vintx upd);

void vhist_simple_16h(short* hist, vshortx idx, vshortx upd);
void vhist_simple_8h( short* hist, vshortx idx, vshortx upd);
void vhist_simple_4h( short* hist, vshortx idx, vshortx upd);
void vhist_simple_2h( short* hist, vshortx idx, vshortx upd);
void vhist_simple_1h( short* hist, vshortx idx, vshortx upd);
void vhist_simple_8w( int* hist, vintx idx, vintx upd);
void vhist_simple_4w( int* hist, vintx idx, vintx upd);
void vhist_simple_2w( int* hist, vintx idx, vintx upd);
void vhist_simple_1w( int* hist, vintx idx, vintx upd);

1

Additional details

Use Vsrc1 as indices and Vsrc2 as weights for weighted histogram. The indexed
entries are updated by adding the corresponding weights.

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram.
Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Pre-update entries are optionally returned in the first K lanes of Vdst. The
remaining lanes, if any, are returned O.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 469




9.9.6.8 DVHist_OR

Instruction name

DVHist_OR

Functionality

Double vector histogram with bitwise OR operation

Assembly format

DVHist_OR_<type-parallelism> *(Rbase+DVsrc1), DVsrc2, DVdst
DVHist_OR_<type-parallelism> *(Rbase+DVsrc1), DVsrc2

Type and bit width

type-parallelism = {32H, 16W}
Same type applies to indices and histogram entries. Both indices and histogram
entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update
operation (addition) behaves the same way for signed vs unsigned data. Just
that the pre-update bin read back data are always sign-extended in the
destination registers.

For example:

DVHist_OR_16W *(R4 + VO:V1), V2:V3, V4:V5

Predication

Not available

Source options

Rbase: scalar register
DVsrc1: double vector register

DVsrc2: double vector register

Destination options

DVdst: double vector register

or none (no-return/simple version)

Additional options

Intrinsics/operator

dvshortx vhist_or_32h( short* hist, dvshortx idx, dvshortx upd);
dvintx vhist_or_16w( int* hist, dvintx idx, dvintx upd);

void vhist_or_simple_32h( short* hist, dvshortx idx, dvshortx upd);
void vhist_or_simple_16w( int* hist, dvintx idx, dvintx upd);

Additional details

Use DVsrc1 as indices and DVsrc2 as updates. The indexed entries are updated
by bitwise-ORing the corresponding updates. Pre-update entries are optionally
returned in DVdst.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

9.9.69 VHist_OR

Instruction name

VHist_OR

Functionality

Single vector histogram with bitwise OR operation

Assembly format

VHist_OR_<type-parallelism> *(Rbase+Vsrc1), Vsrc2, Vdst
VHist_OR_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

Type and bit width

type-parallelism = {16/8/4/2/1H, 8/4/2/1W}

Same type applies to indices and histogram entries. Both indices and histogram
entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update
operation (bitwise OR) behaves the same way for signed vs unsigned data. Just

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 470




Instruction name

VHist_OR

that the pre-update bin read back data are always sign-extended in the
destination register.

For example:
VHist_OR_4W *(R4 + V0), V1, V2

Predication

Not available

Source options

Rbase: scalar register

Vsrc1: single vector register

Vsrc2: single vector register

Destination options

Vdst:

single vector register

or none (no-return/simple version)

Additional options

Intrinsics/operator

vshor
vshor
vshor
vshor
vshor

vintx
vintx
vintx
vintx

void
void
void
void
void

void
void
void
void

tx
tx
tx
tx
tx

vhist_or_8h(
vhist_or_4h(
vhist_or_2h(
vhist_or_1h(

int*
int*
int*
int#*

vhist_or_8w(
vhist_or_4w(
vhist_or_2w(
vhist_or_1w(

vhist_or_16h(short*
short*
short*
short*
short*

hist,
hist,
hist,
hist,

vhist_or_simple_16h(short*

vhist_or_simple_8h(
vhist_or_simple_4h(
vhist_or_simple_2h(
vhist_or_simple_1h(

vhist_or_simple_8w(
vhist_or_simple_4w(
vhist_or_simple_2w(
vhist_or_simple_1w(

short*
short*
short*
short*

int*
int#*
int#
int#*

hist,
hist,
hist,
hist,
hist,

vsh
vsh
vsh
vsh
vsh

vintx
vintx
vintx
vintx

hist,
hist,
hist,
hist,
hist,

hist,
hist,
hist,
hist,

ortx
ortx
ortx
ortx
ortx

idx,
idx,
idx,
idx,
idx,

idx,
idx,
idx,
idx,

vshortx
vshortx
vshortx
vshortx
vshortx

vintx
vintx
vintx
vintx

idx,
idx,
idx,
idx,

vshortx
vshortx
vshortx
vshortx
vshortx

vintx
vintx
vintx
vintx

idx,
idx,
idx,
idx,
idx,

vintx
vintx
vintx
vintx

vshortx
vshortx
vshortx
vshortx
vshortx
upd) ;
upd) ;
upd) ;
upd) ;

)

Additional details

Use Vsrc1 as indices and Vsrc2 as update.

biwise-ORing the corresponding updates.

The indexed entries are updated by

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Pre-update entries are optionally returned in the first K lanes of Vdst.
Remaining lanes, if any, are returned O.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 471




9.9.6.10 DVAST

Instruction name DVAST

Functionality Double vector addressed store

Assembly format <pred> DVAST_<type-parallelism> DVsrc1, *(Rbase+DVsrc2)
pred = none, [P2.. P15]

Type and bit width type-parallelism = {32H, 16W}

Same type applies to indices and entries in memory. The indices are signed,
whereas the entries in memory can be signed or unsigned, as memory store
behaves the same way for signed vs unsigned data.

For example:

[P3]1 DVAST_16W V2:V3, *(R4 + VO:V1)

Predication Per-lane predication

Source options Rbase: scalar register
DVsrc1: double vector register (as data)

DVsrc2: double vector register (as indices)

Destination options

Additional options

Intrinsics/operator void vast_32h(short* arr, dvshortx idx, dvshortx data,
int pred);
void vast_32hf(hfloatx* arr, dvshortx idx, dvhfloatx data, int pred);
void vast_16w(int* arr, dvintx idx, dvintx data, int pred);
void vast_16f(float* arr, dvintx idx, dvfloatx data, int pred);

Additional details Use DVsrc1 as data and DVsrc2 as indices, write each lane of DVsrc1 into
memory object indexed by a corresponding lane of DVsrc2.

Lowest K bits of pred argument is used to predicate K lanes.
Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 472



9.9.7 Misc Register Store

9.9.7.1 Instruction Summary

These instructions support debug functionality by storing out otherwise inaccessible
architecture registers to memory, so that debug controller can read the contents from

memory.

Table 44 Miscellaneous register store instructions

Function Assembly Format Comments
Store hardware STW HWLP.<reg>, *(Rbase+imm12) Use Rbase + (signed) imm12 as byte
loop register reg = LF, LS[0/1], LE[0/1], LC[0/1] address.

Data zero-padded in case of LF (2 bits)
Store Agen loop STH A<id>.I<level>, *(Rbase+imm12) Each variable is 16-bit
variable

99.72 STWHWLP

Instruction name

STW HWLP

Functionality

Store hardware loop register

Assembly format

STW HWLP.<reg>, *(Rbase+imm12)
reg = LF, LS[0/1], LE[O/1], LC[O/1]

Type and bit width

LF: 2-bit, zero-padded into 32-bit
LS/LE/LC: 32-bit

Predication

Not available

Source options

Specific HWLP register

Rbase: scalar register

Destination options

Additional options

Intrinsics/operator

not available

Additional details

This instruction is intended to be used in Debug State, injected through
debug client to query hardware loop registers through VMEM. In normal (non-
debug) programming, placement of STW HWLP in the following packets lead
to indefinite outcome:

e Intwo packets before RPT

e Inthe same packet as RPT

e Intwo delay slots following RPT
e Infirst 3 packets of loop body

e Inlast 3 packets of loop body

e Infirst 2 packets after the loop

Note that debug-injection of STW HWLP is not hindered, as pipeline is
flushed before and existing debug state.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 473




9.9.7.3 AgenLpv ST

Instruction name

AgenLpv ST

Functionality

Store Agen loop variable

Assembly format

STH A<id>.I<level>, *(Rbase+imm12)
id=0.7, level = 1..6

Type and bit width

16-bit

Predication

Not available

Source options

Specific Agen loop variable register

Rbase: scalar register

Destination options

Additional options

Intrinsics/operator

not available

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 474



Chapter 10. Decoupled Lookup Unit
(DLUT) Reference

10.1 Index and Output Data Format

To provide some degree of flexibility in data formatting without sacrificing
area/performance/power efficiency, DLUT supports a subset of address calculation
capability via a reduced set of agen, address generator, parameters. There is one set of
agen parameters for index read, and another set of agen parameters for output write.
Agen operation is similar to the agen in VPU instruction set, but some of the
configuration parameters are derived from other DLUT parameters:

Indices are always unsigned.

Table entries can be treated as signed or unsigned in post-lookup interpolation.
There is no bit width expansion from calculated output to memory, so the store itself
is agnostic to signed/unsigned data types.

Number of inner-loop iterations N1 and size of partial memory transactions are
derived from task length N1 and size of index/output as configured:
INDEX_AGEN_N1 = ((TASK_LEN_N1 * idx_dim) + (64/sizeof_idx — 1))/ (64/sizeof_idx);
INDEX_REMAINDER = (TASK_LEN_N1 * idx_dim) % (64/sizeof_idx);

OUTPUT_AGEN_NT = (TASK_LEN_N1 + (64/sizeof_entry - 1)) / (64/sizeof_entry);
OUTPUT_REMAINDER = TASK_LEN_N1 % (64/sizeof_entry);

idx_dim = 1 for 1D lookup/interpolation, and 2 for 2D lookup/interpolation. Note that
zero remainder means all read/write transactions are full, 64-byte, transactions.

Number of outer-loop iterations N2 are simply copied from task length N2:
INDEX_AGEN_N2 = OUTPUT_AGEN_N2 = TASK_LEN_N2;

Two-level address calculation capability is supported, so there are AMOD1 and
AMODZ2 parameters for each agen.

Transpose option is included to select among P (no transpose), T1, T2, T4, T8, T16,
T32, along with lane_ofst parameter to specify transpose line pitch.

In case of 2D lookup (with or without interpolation), X/Y indices can be element-wise
interleaved, or 32-byte interleaved (with 32 bytes of X then 32 bytes of Y). This is
analogous of VPU double vector load having deinterleaving option, or VPU double
vector store having interleaving option.

No rounding/saturation agen fields are supported.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 475



Note that auto-indexing mode uses the index stream to load parameters that drive DLUT
index generation, so it has a different data layout in the index stream. See 2D Lookup
with Interpolation with Auto Index Generation for details.

When INDEX_REMAINDER is non-zero, hardware handles partial index read memory
transactions correctly. For example, if INDEX_REMAINDER = 10 while full memory read
involves 16 indices (say idx_dim = 2 and index type = Halfword), the last 6 index lanes of
the last inner-loop iteration will be discarded.

When OUTPUT_REMAINDER is non-zero, hardware handles partial output write memory
transactions correctly. For example, if OUTPUT_REMAINDER = 5 while full memory write
involves 32 indies (say entry type = Halfword), the last 27 output lanes of last inner-loop
iterations are predicated off and not write any garbage values.

With element-wise interleaved X/Y format, the expected data layout for the first
transaction is:
X[@e] v[e] X[1] Y[1] X[2] Y[2] .. X[15] Y[15]
The last transaction is:
X[80] Y[80] X[81] Y[81] X[82] Y[82] X[83] Y[83] DCO DC1 .. DC23 (DC = don’t care)

With 32-byte interleaved X/Y format, the expected data layout for the first transaction
is:

X[e] X[1] X[2] .. X[15] Y[@] Y[1] Y[2] .. Y[15]
The last 32 indices is:

X[80] X[81] X[82] X[83] DCO .. DC11 Y[8@8] Y[81] X[82] X[83] DC12 .. DC23

Since index read and output write agen N1/N2 are derived from task length N1/N2, there
cannot be inconsistency in index data stream, between production and consumption,
and in output data stream, between production and consumption.

With N1/N2 derived from task length N1/N2, additional parameters for index read agen
are:

index_addr

index_amod1

index_amod?2

index_transp_mode

index_lane_ofst

index_interleave_format

Additional parameters for output write agen are:
output_addr
output_amod]1
output_amod?2
output_transp_mode
output_lane_ofst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 476



Transposing mode can be P (no transpose), T1 (halfword or word only), T2, T4, T8, T16
(byte or halfword only), or T32 (byte only). The “T” number (for example of 2 in T2)
indicates number consecutive elements before applying line pitch to go down to the
next row.

Disallowed type and transpose combinations shall be detected as incorrect
configuration. See Incorrect Task Configuration for handling.

Like VPU transposed load/store, the line pitch (in data elements) must comply with the
following constraint, with index/output_lane_ofst supplying the integer “k” in the line
pitch constraint.

Table 45 Index and output line pitch and transpose modes

LINE PITCH Transpose mode

Entry type T1 T2 T4 T8 T16 T32
Byte n/a 64k + 2 64k + 4 64k + 8 64k + 16 64k + 32
Halfword 32k + 1 32k +2 32k +4 32k +8 32k + 16 n/a
Word 16k + 1 16k +2 16k + 4 16k + 8 n/a n/a

With flexibility in the agen (even one trimmed down to 2 levels) together with various
transpose modes, it is quite difficult to visualize all possible data layout for index and
output. The following diagrams show two example layouts in P (no transpose) mode and
T1 mode.

Figure 14. DLUT index/output data layout

address nl address n2
—amodt—"—m A
| i N\
on__" S
amod?2 ampd
n2 * amod?2
N1y
[ )
Line pitch

Index/output layout non-transposed Index/output layout T1 transposed

In the un-transposed example layout above, parameter n1 specifies the width of the
rectangle data region (grey box), and parameter n2 specifies the height. In the
transposed example layout, parameter n1 specifies the height of width of the rectangle
data region (grey box), and parameter n2 specifies the width. In both cases, parameters
amod 1/amod?2 specify offset between address pointer updates (address pointers

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 477



expressed as dots in the diagram). Amod 1 specifies the address offset between
read/write memory transactions, and amod?2 specifies the address offset at end of the
inner loop (after index/output agen N1 transactions).

Index and output addressing shall have consistent address alignment requirements as
VPU load/store instructions. Byte/Halfword index/output shall be 16-bit aligned. Here we
consider byte data to be access 64 bytes per transaction so Agen address pointers
should be 16-bit aligned instead of being 8-bit aligned. Word index/output shall be 32-bit
aligned.

Address alignment is enforced by ignoring 1 or 2 LSBs of the agen address driving index
reads and output writes. That is, address = base and address += AMOD 1/AMOD2 steps
are calculated without AND masking. AND masking is applied as address goes to VMEM
for read/write, ignoring 1 LSB (aligned to halfword) for Byte/Halfword types and ignoring
2 LSBs (aligned to word) for Word type. This is consistent with VPU agen addressing
behavior when reading/writing Byte/Halfword/Word type double vector.

For example, say INDEX_ADDR is configured as Ox1001 and INDEX_AGEN_AMOD1 is
configured as Ox41 for a LOOKUP_2D task with Halfword index type. The first few
iterations of index agen base address and address used to read indices are as follows:

Iteration Agen base Read address (aligned to Halfword)
0 0x1001 0x1000
1 0x1042 0x1042
2 0x1083 0x1082
3 Ox10C4 0x10C4
4 Ox1105 Ox1104

Index and output agen address calculation shall behave the same as in VPU agen
address calculation (see 6.4.1) in that the selected AMOD is read as signed 18-bit
number does not encode large enough jump to go from one superbank primary region
into another superbank’s primary region. However, it is possible to walk through an
aliased region into another superbank, though it is strongly discouraged to address an
aliased region, as it may break software compatibility in the future.

Agen address update process can be expressed as:
lpend1 = (i1 == (agen_n1 - 1)) || (agen_n1 == 8);
lpend2 = (i2 == (agen_n2 - 1)) || (agen_n2 == @);

if (lpend1 && lpend2) {

amod = @; // stay at last data point
} else if (lpend1) {

i1 = @;

i2 = i2+1;

amod = amod?2;

} else {

i1 += 1;

amod = amod1;

b

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 478



addr += amod;

10.2 Table Data Format

Table data, the target of table lookups, should be a single data type, Byte, Halfword, or

Word, specified in the task configuration.

Table data format is specified via these task configuration parameters:
Task mode: 1D or 2D table
Entry type can be signed/unsigned Byte/Halfword/Word

X integer limit: linear (for 1D table) or X dimension limit (for 2D table)
Y integer limit: Y dimension limit (for 2D table)

Line pitch: for 2D table

Table pointer: starting address of the table, 64 bytes aligned

Table address offset: address offset per outer iteration; there are N1 inner iterations

and N2 outer iterations, 64 bytes aligned

The following diagrams show table organization with various parameters.

Figure 15. DLUT table data layout

Single 1D table

Single 2D table

A

Table pointer

integer limit

re

Table pointer

X integer limit

Y integer limit

N2 1D subtables

Line pitch

N2 2D subtables

Al

Table add

offset <

Table pointer

re

Table pointer
/[\

\2

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 479



The table pointer can vary among task_N2 rounds of lookup, by adding the table offset
after each round of task_N1 lookups.

The table data address shall be 512-bit or 64-byte aligned, to be consistent with VPU
lookup instructions. The alignment constraint applies to table base address and table
address offset.

Table size in any DLUT task is limited to one superbank, for the index calculation process
includes steps to map lookup accesses into the superbank where the table data address
resides. Note that this is different from index read and output write agen address
update, where it is possible to walk from one superbank into another superbank.

With the predicating off output write out-of-range handling option, the programmer can
construct multiple DLUT tasks to implement table being allocated in 2 or even 3
superbanks, by proper configuration of out-of-range option, X/Y offset and X/Y integer
limit.

For example, for a 2D lookup with interpolation with 150 rows x 400 columns of lookup
table, say only 100 table rows of would fit one superbank. We would place the last 51
table rows in the other superbank (to have 1 row of overlap between 2 subtables). We
would construct DLUT tasks as:

task1_param.out_of_range_hndl = OOR_EN_SENTINEL;
task1_param.X_offset = 0;

task1_param.Y_offset = 0;
task1_param.X_int_limit = 399;

task1_param.Y_int_limit = 99;

task1_param.table_addr = subtablel;

task1_param.next_task = &task2_param;

task2_param.out_of_range_hndl = OOR_EN_PRED_OFF;

task2_param.X_offset = 0;

task2_param.Y_offset = -99; // maps original row 99 to subtable2 row ©
task2_param.X_int_limit = 399;

task2_param.Y_int_limit = 50; // since original row 149 is the last valid row
task2_param.table_addr = subtable2;

task2_param.next_task = NULL;

Note that the same index buffer and output buffer are provided to both tasks, so there
is No preprocessing or postprocessing needed to separate indices or combine outputs.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 480



Figure 16. Example to leverage out-of-range handling to split a large table as
two sub-table lookups

Superbank A Superbank B
subtable [ 7owo
1
row 1 subtable2 1] row 99
row 99 ;‘:{.‘\\AI 149

With out-of-range handling configured as predicating off, potentially we can have every
lane of a write transaction being predicated off, particularly at the last write
transactions of the inner (task_length_N1) loop that can be partial transactions. The
current implementation does not optimize out such NULL write transactions. The
occurrence of such transactions is data dependent and should be infrequent if the use
case is well optimized.

10.3 Index Calculation

Index and lookup address calculation for the first 4 modes are described in the following
subsections.
Input and parameter bit width common to these modes are as follows:

index[i]: U16 or U32, use worst case U32

x_offset, y_offset: S32

frac_bits: 0~ 16

frac_mask = (1 << frac_bits) -1;// U16

round_add = (frac_bits ==0) ?70: (1 << (frac_bits-1)); //U16

tbl_addr: U20

line_pitch: U16

10.3.1 1D Lookup

In 1D lookup (without interpolation), DLUT shall perform for each data point iterated by
task_i2 in the outer loop and task_i1 in the inner loop:

x = index[task_i1] + x_offset; // U32 + S32 = S34
x_int = (round_trunc_mode == @) ? (x >> frac_bits)
: ((x + round_add) >> frac_bits); /] S34

x_in_range = (x_int >= @) && (x_int <= x_int_limit); // Boolean
out_of_range = out_of_range_enable && !x_in_range; // Boolean

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 481



lu_idx = x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, lookup
for that specific output is not performed, and either configured sentinel value is
returned instead, or writing of that output is predicated off.

When the task outer loop parameter task_length_N2 is greater than one, table pointer
advances with each round of task_length_N1 outcomes. The lookup index is scaled by
entry size and added to the table pointer as well. Note that we never switch superbank
(from the one configured in the task parameter) with the table pointer advancing or
entry indexing, as they only affect the lower 17 bits of the byte address (covering 128KB
inside a superbank).
entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset

+ lu_idx * sizeof_entry) & Ox1FFFF); // U20

The entry address is decomposed into superbank ID, row address, bank ID, and byte ID
(only for Byte-type entries):

entry_superbank = entry_addr[19:18]; // @ = superbank A, 1 =B, 2/3 =C

entry_row_addr = entry_addr[16:6]; // 11 bits covering 2K rows

entry_bank_id = entry_addr[5:1]; // 5 bits covering 32 banks

entry_byte_id = entry_addr[@]; // 1 bit covering 2 bytes

Although index data is unsigned, x_offset is signed, so index calculation involves signed
arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can be
negative or can exceed VMEM superbank address range. With the way entry address is
calculated, the lookup would wrap address back into the same superbank as configured
in the task parameter. This is consistent with VPU table lookup address wrapping
described in O.

10.3.2 1D Lookup with interpolation

Index calculation for 1D lookup with interpolation mode is the same as that of 1D lookup
mode, except:

We need to calculate the fraction part of the index to perform interpolation, so the
integer component is always calculated with truncation.

Out-of-range detection takes into account index value right on the last valid data
point with zero fraction.

x = index[task_i1] + x_offset; // U32 + S32 = S34
x_int = x >> frac_bits; // S34
x_frac = x & frac_mask; // U16
x_in_range = (x_int >= @) && ((x_int < x_int_limit) ||

((x_int == x_int_limit) && (x_frac == 0))); // Boolean
out_of_range = out_of_range_enable && !x_in_range; // Boolean
lu_idx = x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, the
two lookups for that specific output is not performed, and either configured sentinel
value is returned instead or, writing of that output is predicated off.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 482



Like the 1D lookup mode, we never switch superbank (from the one configured in the
task parameter) with the table pointer advancing or entry indexing:
entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
+ lu_idx * sizeof_entry) & Ox1FFFF); // U20

In addition, the entry address for the next table entry is calculated in order to look up
two items for interpolation. The next table entry shall be also in the same superbank:

entry_addr2 = (tbl_ptr & 0xC0000)
+ (entry_addr + sizeof_entry) & Ox1FFFF; // U20

How each entry address is decomposed into superbank ID, row address, bank ID, and
optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Again, although index data is unsigned, x_offset is signed, so index calculation involves
signed arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can
be negative or can exceed VMEM superbank address range. With the way entry address
is calculated, the lookup would wrap address back into the same superbank as
configured in the task parameter. This is consistent with VPU table lookup address
wrapping described in O.

10.3.3 2D Lookup

In 2D lookup (without interpolation), DLUT shall perform for each data point:

= index[2*task_i1] + x_offset; // U32 + S32 = S34
= index[2*task_i1+1] + y_offset; // U32 + S32 = S34
x_int = (round_trunc_mode == @) ? (x >> frac_bits) // S34
: ((x + round_add) >> frac_bits);
y_int = (round_trunc_mode == @) ? (y >> frac_bits) // S34
: ((y + round_add) >> frac_bits);
x_in_range = (x_int >= @) && (x_int <= x_int_limit); // Boolean
y_in_range = (y_int >= @) & (y_int <= y_int_limit); // Boolean
out_of_range = out_of_range_enable &% (!x_in_range || !y_in_range); //Boolean
lu_idx = y_int * line_pitch + x_int; /] S32

When out-of-range is detected, lookup for that specific output is not performed, and
either configured sentinel value is returned instead, or writing of that output is
predicated off.

Similar to the 1D lookup mode, we never switch superbank (from the one configured in
the task parameter) with the table pointer advancing or entry indexing:
entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
+ lu_idx * sizeof_entry) & Ox1FFFF); // U20

How each entry address is decomposed into superbank ID, row address, bank ID, and
optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 483



Again, although index data is unsigned, x_offset and y_offset are signed, so index
calculation involves signed arithmetic. When out-of-range detection is disabled, the
lookup index lu_idx can be negative or can exceed VMEM superbank address range. With
the way entry address is calculated, the lookup would wrap address back into the same
superbank as configured in the task parameter. This is consistent with VPU table lookup
address wrapping described in O.

10.3.4 2D Lookup with Interpolation

Index calculation for 2D lookup with interpolation mode is the same as that of 2D lookup
mode, except:

We need to calculate the X and Y fraction parts of the index to perform interpolation,
so the integer component is always calculated with truncation.

Out-of-range detection takes into account index value right on the last row or last
column of valid data region with zero fraction.

x = index[2*task_i1] + x_offset; // U32 + S32 = S34
y = index[2*task_i1+1] + y_offset; // U32 + S32 = S34
x_int = x >> frac_bits; /] S34
y_int = y >> frac_bits; // S34
x_frac = x & frac_mask; // U16
y_frac = y & frac_mask; // U16
x_in_range = (x_int >= @) && ((x_int < x_int_limit) ||
((x_int == x_int_limit) && (x_frac == @8))); // Boolean

y_in_range = (y_int >= @) && ((y_int < y_int_limit) ||

((y_int == y_int_limit) & (y_frac == 8))); // Boolean
out_of_range = out_of_range_enable &% (!x_in_range || !y_in_range); //Boolean
lu_idx = y_int * line_pitch + x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, the 4
lookups for that specific output is not performed, and either configured sentinel value is
returned instead, or writing of that output is predicated off.

Similar to the 1D lookup mode, we never switch superbank (from the one configured in
the task parameter) with the table pointer advancing or entry indexing:
entry_addr = (tbl_ptr & 9xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
+ lu_idx * sizeof_entry) & Ox1FFFF); // U208

In addition, address for 3 additional table entries is calculated to look up 2x2 = 4 items
for interpolation. These additional table entries shall be also in the same superbank:
entry_addr2 = (tbl_ptr & 0xC0000)

+ (entry_addr + sizeof_entry) & Ox1FFFF; // U208
entry_addr3 = (tbl_ptr & 0xC0000)

+ (entry_addr + line_pitch * sizeof_entry) & Ox1FFFF; // U20
entry_addr4 = (tbl_ptr & 0xC0000)

+ (entry_addr + line_pitch * sizeof_entry + sizeof_entry) & Ox1FFFF;//U20

How each entry address is decomposed into superbank ID, row address, bank ID, and
optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 484



Again, although index data is unsigned, x_offset and y_offset are signed, so index
calculation involves signed arithmetic. When out-of-range detection is disabled, the
lookup index lu_idx can be negative or can exceed VMEM superbank address range. With
the way entry address is calculated, the lookup would wrap address back into the same
superbank as configured in the task parameter. This is consistent with VPU table lookup
address wrapping described in O.

10.3.5 2D Lookup with Interpolation with Auto Index
Generation

The 2D lookup with interpolation with automatic index generation mode involves these

additional parameters:
AUTO_IDX_MODE: specifies whether it’s translation-only mode (index stream loads
x0/y0, 2 parameters per round of lookup/interpolation) or translation-scaling mode
(index stream loads x0/yOQ/step_x/step_y, 4 parameters per round of
lookup/interpolation) per round of lookup/interpolation.
AUTO_IDX_TRAVERSAL_DIR: specifies that index traversal going horizontally first
(when it’s 0) or vertically first (when it’s 1).

AUTO_IDX_PATCH_WIDTH (U8): specifies patch width
AUTO_IDX_PATCH_HEIGHT (U8): specifies patch height

Basically, DLUT in this mode instead of reading Task_len_N2 x Task_len_N1 pairs of
indices from VMEM, would read just Task_len_N2 sets of (2 or 4) parameters and
generate indices on the fly to drive lookup and interpolation.

DLUT hardware shall carry out the following process to generate indices for task_len_N1
outputs in the inner loop. task_len_N1 must match PATCH_WIDTH * PATCH_HEIGHT.
Also, we need PATCH_WIDTH >= 8 when traversing horizontally first, and
PATCH_HEIGHT >= 8 when traversing vertically first, to simplify index generation.

This process is for group size of 8, which applies for IDX_W index type and U16/S16
table entry type that we are supporting for auto-indexing mode.

In the normal (horizontally first) mode, hardware follows this behavior:

int xi[] = {0, 1, 2, 3, 4, 5, 6, 7};
int yi[] = {6, @, 6, 0, 6, 8, 6, 0};
y = replicate(y0); // all lanes initialized to y®@

X = x0 + xi * step_x; // lane i = x@ + i*step_x
for (i1 = @, i1 = @; i1 < N1; i1 += group_size) {
// proceed with address calculation with coordinate (x, y)
// update x, y for next group
adv_mask = (xi+8) >= PATCH_WIDTH; // boolean vector

yi += adv_mask; // add @ or 1
y += adv_mask * step_y; // add @ or step_y

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 485



valid_mask = yi < PATCH_HEIGHT; // mask out lanes in last group
xi += adv_mask ? (8 - PATCH_WIDTH) : 8;

x += adv_mask ? ((8 — PATCH_WIDTH) * step_x) : (8 * step_x);
}

Otherwise (in the vertically first mode), hardware follows this behavior:
int xi[] = {0, 6, @, @, ©, 6, 8, 0};

int yi[] = {e, 1, 2, 3, 4, 5, 6, 7};

X = replicate(x0); // all lanes initialized to x@

y = y0 + yi * step_y; // lane i = y@ + i*step_y

for (i1 = @, 11 = @; i1 < N1; i1 += group_size) {
// proceed with address calculation with coordinate (x, y)

// update x, y for next group
adv_mask = (yi+8) >= PATCH_HEIGHT; // boolean vector
xi += adv_mask; // add 0 or 1
x += adv_mask * step_x; // add @ or step_x
valid_mask = xi < PATCH_WIDTH; // mask out lanes in last group
yi += adv_mask ? (8 - PATCH_HEIGHT) : 8;
y += adv_mask ? ((8 — PATCH_HEIGTH) * step_y) : (8 * step.y);
}

When AUTO_IDX_MODE specifies translation-only mode, only xO/yO are loaded per round
of task_len_N1 outputs, hardware would derive step X/Y from frac_bits:

step_x = step_y = 1 << frac_bits

X/Y update is expressed for index traversal going horizontally first. The vertically first
option can be implemented by swapping the X/Y feeding rest of the address calculation.

Rest of the address calculation process, duplicate detection, conflict resolution, post
lookup interpolation, index/output agen (other than index agen N1/N2 derivation) all
operate the same way as in the common table lookup with and without interpolation
modes.

Index agen parameters should be derived from Task_len_NT, Task_len_N2, differently

than the normal lookup/interpolation modes:

INDEX_AGEN_N1 = (TASK_LEN_N2 * [2 or 4] + 64/sizeof_idx - 1)/ (64/sizeof_idx);
INDEX_REMAINDER = (TASK_LEN_N2 * [2 or 4]) % (64/sizeof_idx);
INDEX_AGEN_N2 = 1

Note that xO/y0 or xO/yO/step_x/step_y data in memory shall be interpreted consistently
with INDEX_DATA_TYPE (constrained to IDX_W for the auto-indexing mode), as
unsigned 32-bit words.
Other relevant parameters:
INDEX_ADDR specifies starting address of these parameters.
INDEX_AGEN_TRANSP_MODE should be O (no transposition).
INDEX_AGEN_LANE_OFST is not used.
INDEX_AGEN_AMOD? is not used.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 486



10.4 Duplicate Detection and
Consolidation

Before sending read/read-modify-write/write requests to VMEM, DLUT shall first detect
duplicate requests. Duplicate requests are consolidated for performance and power, and
the same return values are broadcast to the multiple return-value lanes as needed.

Note that the hardware has a certain window where duplicate detection works; not all
duplicates within a task are caught. The duplicate detection feature is for performance
and has no effect on the final outcome.

Duplicate detection logic does consume some power in operation. There is an enable bit
in the task parameter block to enable/disable duplicate detection/consolidation on the
task. Programmer should disable duplicate detection/consolidation only for DLUT tasks
that are expected to have very few duplicates.

10.5 Conflict Resolution and Lookup

After duplicate requests are detected and consolidated by voiding redundant requests,
the bank address of valid requests are compared, conflict detected, and DLUT hardware
issues read requests to complete the lookup as needed to the table in VMEM.

Not all individual lookups are performed due to out-of-range detection and duplicate
detection. For the sake of functionality description, we can say that hardware performs
1, 2, or 4 lookups as prescribed using the entry address(es) calculated for each output
not deemed out-of-range:

entry = * entry_addr; // all modes, the anchor entry

entry2 = * entry_addr2; // 1D or 2D interpolation, to the right of anchor

entry3 = * entry_addr3; // 2D interpolation only, down from anchor

entry4 = * entry_addr4; // 2D interpolation only, down-and-right from anchor

10.6 Post Lookup Interpolation

For 1D lookup with linear interpolation, DLUT performs for each output not deemed out-
of-range:

y_out = entry + round((entry2 - entry) * x_frac, frac_bits);

For 2D lookup with bilinear interpolation, DLUT performs for each output not deemed
out-of-range:

y0 = entry + round((entry2 - entry) * x_frac, frac_bits);

y1 = entry3 + round((entry4 - entry3) * x_frac, frac_bits);
y_out = y@ + round((y1 - y0) * y_frac, frac_bits);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 487



Note that x_frac and y_frac are extracted from frac_bits LSBs of x and y, so for
linear/bilinear interpolation to work correctly, round/trunc mode shall be set to
truncation.

In all lookup modes, when X or Y are out of range and out-of-range is enabled, either the
configured sentinel value is returned instead of interpolated value, or output write is
predicated off. Note that the out-of-range detection is performed in case of
interpolated lookup such that when any dependent entry (out of 2 or 2x2 entries) is out-
of-range, it's detected as out-of-range.

It's the programmer’s responsibility to set round/truncate mode and X/Y limit correctly
for the mode of operation performed. DLUT hardware shall just carry out lookup and
calculation with configuration parameters provided.

10.7 2D Conflict-free Lookup with
Interpolation

The 2D conflict-free bilinear interpolation mode allows DLUT to offload 2D-to-linear
index calculation, lookup, and post-lookup interpolation from VPU, reducing energy and
improving performance as well.

The following parameters are constrained for this 2D conflict-free lookup with
interpolation:

Task mode: 0x04 (2D conflict-free lookup with interpolation)

Entry data type: must be signed or unsigned Halfword

Index data type: must be unsigned Halfword or unsigned Word

Line pitch: must be 4k + 2 (k being any integer)
In this mode, table data is organized as 8-way parallel subtables with Halfword entries. It

is the same table organization as for VPU DVLUT_8H and DVLUT_2x2pt_8H instructions,
and is shown as follows with linear indexing for each subtable:

Figure 17. Table layout for VPU lookup instructions

TO[0..3] T1[0..3] T7[0..3]
TO[4..7] T1[4.7] T7[4.7]
TO[8..11] T1[8..11] T7[8..11]

For example, if each subtable has width of 9 and height of 4, we would pick line pitch =
4*2+2 = 10, and have the following table layout (p = pad, or don’t care value):

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 488



Figure 18. Table layout for DLUT 2D conflict-free lookup w/ interpolation

To[o][0] | TO[O][1] | TO[OI[2] | TO[O1[3] | T1[O][0] | T1[OI[1] | .. T7[0][3]
TO[O][4] | To[0][5] | To[O][6] | TO[O][7] | T1[0][4] | T1[O][5] T7[0][7]
To[ol[8] | p To[1][0] | TO[1][1] | T1[O][8] | p T70101]
TO[11[2] | TO[1]1[3] | TO[11[4] | TO[11[5] | T1[11[2] | T1[1][3] T7[1][5]
To[1][e] | To[1][7] | TO[1][8] | p Ti0ie] | T1107] P

To[2][0] | To[2][1] | TO[2][2] | TO[2][3] | T1[2][0] | T1[2][1] T7[2][3]
TO[2][4] | TO[2][5] | To[2][6] | TO[21[7] | T1[21[4] | T1[2][5] T7[2][(7]
To[2][8] | p TO[3][0] | TO[3][1] | T1[2][8] | p T7(3101]

Note that the line pitch is inside each subtable, which is 4 elements wide, instead of line
pitch in the full-width VMEM in the context of storing a 2D array in VMEM. In this case,
each subtable contains a 2D table, and the line pitch is needed to translate 2D indices
(x_int, y_int) into linear indices (lu_idx*) to perform lookups in each subtable.

With such table organization and such line pitch, each set of 2x2 lookups go to its own
set of 4 memory banks, and each of the 2x2 lookups goes to its own memory bank, so
there is no conflict, and no replication either.
Example:
line_pitch = 10. fraction_bits = 2.
At lane O of certain group, we get X index = 7,Y index = 5.
x_int=1,x_frac=3,y_int=1,y frac=1.
lu_idx=1*10+1=11.
lu_idx2=11+1=12.
lu_idx3=11+10=21.
lu_idx4=11+10+1=22.
We use 8-way parallel, halfword variation of the parallel table address calculation (from
0):
byte_offset[i] = ((index modulo K) + i*K) * M + floor(index / K)*64, for i = 08..N-1

where N = parallelism, K = stride, M = entry size in bytes.

It’s clearer in this context to translate the above to a halfword offset:
halfword_offset = (index modulo K) + i*K + floor(index / K)*32

In this case, parallelism N=8, data size M=2, stride K=4, and lane i = 0, so for the first of
the 2x2 lookups we have

halfword_offset = ((lu_idx modulo 4) + 0*4 + floor(lu_idx / 4) * 32
= (11 modulo 4) + floor(11/4)*32 = 3 + 2*32 = 67

For rest of the 2x2 lookups we have:

halfword_offset2 = (12 modulo 4) + floor(12/4)*32 = 0 + 3*32 = 96
halfword_offset3 = (21 modulo 4) + floor(21/4)*32 = 1 + 5*32 = 161
halfword_offset4 = (22 modulo 4) + floor(22/4)*32 = 2 + 5*32 = 162

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 489



We can see that the 2x2 lookups go to memory banks 3, 0, 1, 2 of the first subtable, due
to the 4k + 2 line pitch.

Index read agen should be configured appropriately to supply X/Y indices to perform
address calculation and post-lookup interpolation. Since index read transactions are
configured to read 64 bytes at a time, for Halfword indices, 16 pairs of X/Y indices are
read at a time to feed 2 cycles of lookup. For Word indices, 8 pairs of X/Y indices are
read at a time to feed one cycle of lookup.

Output write agen should be configured appropriately to write outputs. Since output
write transactions are configured to write 64 bytes or 32 halfwords at a time, the
hardware accumulates 4 cycles of lookup/interpolation to issue each output write.
Features supported in this mode are:

Out-of-range detection: supported.

Round mode: not relevant, as it only applies to lookup without interpolation.

Duplicate handling: not relevant, as subtables are separate so no duplicate lookups
are possible.

Task length N1/N2 and table address stepping: supported.

Index agen transposition modes: supported.

Index X/Y interleaving modes: per element and per 32B both supported.
Output agen transposition modes: supported.

Parameters involved and not involved for this mode of operation are summarized after
the task parameters detailed.

10.8 Table Reformatting

Table reformatting feature allows DLUT to offload the reorganizing of data from VPU,
reducing energy and sometimes improving performance as well.

As the reformatting is simply data movement without involving any arithmetic
processing on data, it is signed/unsigned and byte/halfword/word type agnostic. To
simplify hardware verification, only Halfword type is supported. Index type must be
unsigned Halfword, and entry type can be signed or unsigned Halfword. This is so the
derivation from task_len_N1/N2 to index/output_agen_N1/N2 can be consistent.

The following is the definition of a table reformatting task.
Input: accept N * P subtables, each is of length L and is stored in consecutive
memory region, with each subtable being LP (line pitch) entries apart. P =
2/4/8/16/32, referred to as the parallelism in VPU lookup instructions and DLUT task
definition. N is any integer, and basically an optional outer-loop number of iterations
and number of rows of parallel subtables.
DLUT is to reformat the table data and produce output: N blocks of P parallel
subtables across 512-bit (or 32 halfowrds) VMEM superbank memory width.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 490



Note that subtable length L does NOT have to be a multiple of (32/P). 32/P can be
regarded as “stride” in parallel subtable organization, number of entries each subtable
has in halfword-aligned 64 consecutive bytes. As hardware reads and writes P strides at
a time, or P*L halfwords. L not being a multiple of 32/P means P*L halfwords not being
32 halfwords = 64 byes aligned. Since partial index read and output write transactions
are supported in the common table lookup/interpolation modes, table reformatting
mode takes advantage of this to allow flexibility that may lead to memory footprint
saving.

The parallel subtable format is consistent with that of VPU 2/4/8/16/32-way parallel
lookup/histogram instructions, as well as DLUT conflict-free lookup mode. Please consult
Data Organization in Memory for VPU lookup/histogram data format.

Common table reformatting input/output data format is as follows:

Figure 19. Table reformatting input/output layout scheme

LP
L P

< r A \

-~ -
&Y
*p < 5
N*P N <
~ ]
32
Input to table reformatting Output of table reformatting

Table reformatting is basically accomplished through various transpose mode
configured in the index agen with appropriate N1, N2, AMOD 1, AMOD2 programming in
index and output agens.

Line pitch (LP in the diagram) is constrained to 32*k + 32/P, with k configured as the
transpose lane offset parameter.
The following are the parameters involved in a table reformatting task:

task_mode = table reformatting

index_type = unsigned halfword

entry_type = signed or unsigned halfword

task_len_N1 = P*L (index_agen_N1 = output_agen_N1 = P*L/32)

task_len_N2 = N (index_agen_N2 = output_agen_N2 = N)

index_addr = starting address of input (data to be reformatted)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 491



index_agen_amod1 = 64/P, advancing by one stride

index_agen_amod?2 = P*LP*2 - (L/(32/P) - 1) *(32/P)*2 = P*LP*2 - L*2 + 64/P
index_agen_transp_mode = T<32/P>

index_agen_lane_ofst = (LP - 32/P) / 32, the “k” in 32*k + 32/P
index_interleave_format = don’t care

out_addr = starting address of output (reformatted data)
out_agen_amod1 = 64

out_agen_amod2 = 64

out_agen_transp_mode = None

out_agen_lane_ofst = don’t care

next_task: points to parameters of next task, O to terminate the task sequence

Note that these are recommended values to accomplish the table reformatting task as
stated. Hardware just carries out index/output agen update as configured and passes
data from the load stream to the store stream without verifying various parameter

values.

For example, a table reformatting task with N =2, P = 4, L = 32, line pitch = 32*k + 32/P =
40 (thus k = 1) shall have the following input and output organization:

Figure 20. Table reformatting input/output layout example

Input:
TO[0..31] 8 entry skipped
T1[0.31] 8 entry skipped
T2[0..31] 8 entry skipped
T3[0..31] 8 entry skipped
T4[0..31] 8 entry skipped
T5[0..31] 8 entry skipped
T6[0..31] 8 entry skipped
T7[0..31] 8 entry skipped

Output:
TO[0..7] T1[0..7] T2[0..7] T3[0..7]
TO[8..15] T1[8..15] T2[8..15] T3[8..15]
TO[16..23] T1[16..23] T2[16..23] T3[16..23]
TO[24..31] T1[24.31] T2[24.31] T3[24.31]
T4[0..7] T5[0..7] T6[0..7] T7[0..7]
T4[8..15] T5[8..15] T6[8..15] T7[8..15]
T4[16..23] T5[16..23] T6[16..23] T7[16..23]
T4[24.31] T5[24..31] T6[24.31] T7[24.31]

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 492



10.9 VPU/DLUT Interface

VPU/DLUT interface consists of a set of coprocessor control/status registers similar to
how R5 would launch a VPU task. In VPU task launch, R5 software programs VPU
starting PC, programs DMA to supply/consume input/output data, then commands VPU
and DMA to go. In DLUT task launch, VPU software programs DLUT task parameter
pointer (for first parameter block, which links to the next parameter blocks and so on) in
the Coprocessor address space, allocates DLUT input/output regions in VMEM, then
command DLUT to go by asserting a GPO signal.

The following subsections describe task control/status registers in the coprocessor
address space, task parameter block data structure, and GPIO signaling.

10.9.1 Task Parameters

Task configuration parameters are stored in VMEM and have the following data
structure per task. Note that any unused encoding option (for example, task mode 6 ~
15) are reserved, and unused bit fields are ignored.

Table 46. DLUT task parameter data structure

Word/Field Byte Bits | Description
offset
TASK_INFO 0x00 Task basic information
MODE 30:28 | 0x00: LOOKUP_1D, 1D lookup (one common table)
0x01: LOOKUP_2D, 2D lookup (one common table)
0x02: INTERP_1D, 1D lookup with linear interpolation (one
common table)
Ox03: INTERP_2D, 2D lookup with bilinear interpolation
(one common table)
0x04: CONFLICT_FREE_2D_INTERP, conflict free 2D
lookup with bilinear interpolation, (Halfword entry type
only, 8 parallel tables)
Ox05: TABLE_REFORMAT, table reformatting
Ox06: INTERP_2D_AUTO_IDX, 2D lookup with
interpolation by using automatically generated index data
INDEX_DATA_TYPE 25:24 | Ox1:IDX_H, Halfword
0x2: IDX_W, Word
ENTRY_DATA_TYPE 22:20 | Ox0: S8, signed Byte

Ox1: S16, signed Halfword
0x2: S32, signed Word

Ox4: U8, unsigned Byte

0x5: U16, unsigned Halfword

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 493




Word/Field

Byte
offset

Bits

Description

0Ox6: U32, unsigned Word

OUT_OF_RANGE_ HANDLING

19:18

0O: disable
1: enable, return sentinel value for OOR lookup
2: enable, predicate off writing output for an OOR lookup

ROUND_MODE_NO_INTRP

17

O: truncate
1:round

Only applied to modes 0 & 1 (without interpolation)

DUPLICATE_HANDLING

16

Duplicate detection and consolidation
0: disabled

1: enabled

FRACTION_BITS

4.0

U5, number of fraction bits to round/truncate, O ~ 16.

X_INT_LIMIT

0x04

17:0

U18, upper limit of X integer, or linear index for 1D
lookup.

For example, if there are 480 valid columns in a 2D table,
or 480 valid entries in a 1D table, valid X integer range is O
~ 479, and this parameter should be configured as 479

Y_INT_LIMIT

0x08

17:0

U18, upper limit of Y integer.

For example, if there are 240 valid rows in a 2D table,
valid Y integer range is O ~ 239, and this parameter
should be configured as 239.

X_OFFSET

0x0C

31.0

S32, number to add to X indices, with same number of
fraction bits as input indices.

This is to translate between global coordinates to
local/tile coordinates.

Y_OFFSET

0x10

31.0

S32, number to add to Y indices, with same number of
fraction bits as input indices. This is to translate between
global coordinates to local/tile coordinates.

TASK_LEN

Ox14

N2

31:16

U16, number of rounds

N1

15:0

U16, number of elements to output per round of lookup

OOR_SENTINEL

0x18

31.0

Return value for out-of-range indices, use 8 LSBs (S8 or U8)
for Byte entry type, 16 LSBs (S16 or U16) for Halfword entry
type, all 32 bits (S32 or U32) for Word entry type.

TABLE_ADDR

0ox1C

19:6

U20, pointer to table, 64 bytes aligned

TABLE_ADDR_OFFSET

0x20

17:6

S18, address update between rounds of lookup, 64 bytes
aligned

TABLE_LINE_PITCH

0x24

15:0

U16. Note that this is in terms of number of table entries,
and it’s the line pitch itself, instead of providing k and line
pitch being 32*k+n.

For mode 4 (8 parallel table conflict-free lookup), line
pitch must be 4k + 2, k being any integer.

AUTO_IDX_CFG

0x28

Auto-indexing configuration

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 494




Word/Field Byte | Bits | Description
offset
MODE 20 0: Index stream loads starting X/Y per round of task_len_N1
outputs
1: Index stream loads starting X/Y and step scale X/Y per
round of task_len_N1 outputs
TRAVERSAL_DIR 16 0: Index traverses horizontally first, the raster-scan order,
1: Index traverses vertically first.
PATCH_WIDTH 15:8 | U8, patch width
PATCH_HEIGHT 7:0 U8, patch height
INDEX_AGEN_CFG 0x2C
TRANSP_MODE 30:28 | O0: None, no transposition
1:T1
2:T2
3:T4
4:78
5:T16
6:T32
INTERLEAVE_FORMAT 24 0 : element-wise interleaved
1: 32B interleaved
LANE_OFST 11.0 U12, for transposed access, specify “k” in line pitch
constraint 32k + t, t depending on transp_mode
TRANSP_MODE 30:28 | O0: None, no transposition
1:T1
2:T2
3:T4
4:78
5:T16
6:T32
INTERLEAVE_FORMAT 24 0 : element-wise interleaved
1: 32B interleaved
LANE_OFST 11:.0 U12, for transposed access, specify “k” in line pitch
constraint 32k + t, t depending on transp_mode
OUTPUT_AGEN_CFG 0x30
TRANSP_MODE 30:28 | O: no transposition
1:T1
2:T2
3: T4
4:T8
5:T16
6:T32

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 495




Word/Field Byte | Bits | Description
offset
LANE_OFST 11:0 U12, for transposed access, specify “k” in line pitch

constraint 32k + t, t depending on transp_mode
Reserved_1 0x34
Reserved_2 0x38
Reserved_3 0x3C
INDEX_ADDR 0x40 19:0 | U20, pointer to index array
INDEX_AGEN_AMOD1 0x44 17:0 S18, index address modifier for inner iterations
INDEX_AGEN_AMOD?2 0x48 17:0 S18, index address modifier for outer iterations
OUTPUT_ADDR 0x4C 19:0 U20, pointer to output
OUTPUT_AGEN_AMODI1 0x50 17:0 | S18, output address modifier for inner iterations
OUTPUT_AGEN_AMODZ2 0x54 17:0 S18, output address modifier for outer iterations
Reserved_4 0x58
NEXT_TASK Ox5C 19:2 | U20, pointer to next task configuration data, zero for last

task, 4 bytes aligned

Parameters relevant to various task modes are tabulated as follows. Blank entries are
not used, and values are “don’t care.” Constrained values are also shown.

Table 47. DLUT parameter usage and constraints

Parameter LU_1D | LU_2D | INTRP | INTRP | CF_INTRP | TBL_ INTERP
_1D _2b _2b RFMT _2D_AUTO

_IDX
MODE 0 1 2 3 4 5 6
INDEX_DATA_TYPE Yes Yes Yes Yes Yes IDX_H IDX_W

or
IDX_W

ENTRY_DATA_TYPE Yes Yes Yes Yes S16/U16 S16/U16 | S16/U16
OUT_OF_RANGE_ HANDLING Yes Yes Yes Yes Yes disable Yes
ROUND_MODE_NO_INTRP Yes Yes
DUPLICATE_HANDLING Yes Yes Yes Yes Yes
FRACTION_BITS Yes Yes Yes Yes Yes 0 Yes
X_INT_LIMIT Yes Yes Yes Yes Yes Yes
Y_INT_LIMIT Yes Yes Yes Yes
X_OFFSET Yes Yes Yes Yes Yes 0 Yes
Y_OFFSET Yes Yes Yes 0] Yes
TASK_LEN N2 Yes Yes Yes Yes Yes Yes Yes
TASK_LEN N1 Yes Yes Yes Yes Yes Yes must

match

PW*PH
OOR_SENTINEL Yes Yes Yes Yes Yes Yes

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 496




Parameter LU_TD | LU_2D | INTRP | INTRP | CF_INTRP | TBL_ INTERP
_1D _2D _2D RFMT _2D_AUTO
_IDX
TABLE_ADDR Yes Yes Yes Yes Yes Yes
TABLE_ADDR_OFFSET Yes Yes Yes Yes Yes Yes
TABLE_LINE_PITCH Yes Yes Yes (4k+2) Yes
INDEX_ADDR Yes Yes Yes Yes Yes Yes Yes
INDEX_AGEN_TRANSP_MODE Yes Yes Yes Yes Yes Yes 0
INDEX_INTERLEAVE_FORMAT Yes Yes Yes 0 0
INDEX_AGEN_LANE_OFST Yes Yes Yes Yes Yes Yes
INDEX_AGEN_AMOD1 Yes Yes Yes Yes Yes Yes Yes
INDEX_AGEN_AMOD?2 Yes Yes Yes Yes Yes Yes
OUTPUT_ADDR Yes Yes Yes Yes Yes Yes Yes
OUTPUT_AGEN_TRANSP_MODE | Yes Yes Yes Yes Yes Yes Yes
OUTPUT_AGEN LANE_OFST Yes Yes Yes Yes Yes Yes Yes
OUTPUT_AGEN_AMODI1 Yes Yes Yes Yes Yes Yes Yes
OUTPUT_AGEN_AMOD?2 Yes Yes Yes Yes Yes Yes Yes
NEXT_TASK Yes Yes Yes Yes Yes Yes Yes
AUTO_IDX_CFG Yes

10.9.2 Interaction Sequence

VPU software is expected to interact with DLUT with the following sequence:

Prepare task parameters in VMEM.

Make sure previous task interaction is done, so that both VPU_DLUT_START
(GPO[10]) and DLUT_VPU_DONE (GPI[10]) signals are low.

Write starting address of task parameters in VPU_DLUT_TASK register.

Assert VPU_DLUT_START

Go on to execute other tasks, and when DLUT outcome is needed (no more
independent tasks to run), executes WFE_GPI to wait for DLUT task completion in
low power mode

DLUT executes requested lookup tasks; there can be multiple tasks per interaction.
DLUT asserts DLUT_VPU_DONE.

VPU, upon sensing assertion of DLUT_VPU_DONE, resumes operations, de-asserts
VPU_DLUT_START before go on to execute the next task.

DLUT, upon sensing de-assertion of VPU_DLUT_START, de-asserts DLUT_VPU_DONE
to complete the current round of interaction.

Two instances of typical VPU/DLUT interaction is shown in the following diagram:

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 497



Figure 21. VPU/DLUT interaction timing diagram

VPU processing \/ VPU_T1 \WFE_GPI / VPU_T2

\
VPU_DLUT_START | \ /] o
DLUT_VPU_DONE [\ / \

\

DLUT processing / DLUT_T1 \ / DLUT_T2
DLUT_VPU_ " \py waIT_ DLUT_VPU_ iyt wAIT
BOTH BUSY  top pryt BOTH BUSY  tor ypy

VPU is the master in the interaction. Before VPU_DLUT_START is asserted, software
should ensure that:

Configuration parameters for the requested DLUT tasks are ready in VMEM for DLUT
to consume.

Input index and table data for these tasks are either already in VMEM for DLUT to
consume, or they will be ready when DLUT gets to the task that consumes the data
by nature of task sequencing.

Space needed for DLUT to write lookup/interpolation outcome for these tasks, are
either all available in VMEM for DLUT to write, or they will be available when DLUT
gets to the task that writes the outcome by nature of task sequencing.

DLUT executes requested tasks sequentially, so it is possible to have data and/or space
dependency among DLUT tasks in the same sequence. Task i output can be safely
consumed as task i+1 input, and task i input, if not dependent upon by subsequent
tasks, can be overwritten by a subsequent task.

For example, we can have one task performing table reformatting, and the very next
lookup task using the reformatted table.

If it also allowed to have space dependency within one task. For example, if the index
and outcome group pitches are programmed appropriately, we can overwrite
lookup/interpolation outcome onto the index array, if the index data is only consumed
once and never needed again.

In case VPU software does not follow the recommended protocol, and de-asserts
VPU_DLUT_START before DLUT completed the task(s) and asserts DLUT_VPU_DONE,
DLUT detects the issue and error-halt, as described in 10.9.4

DLUT internally has multiple stages of processing. Processing of a sequence of two
tasks is shown in the following diagram:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 498



Figure 22. DLUT processing stages

DLUT busy

Idle

Config Execute Drain | Config Execute Drain | Idle

DLUT execute task 1 DLUT execute task 2

10.9.3 Incorrect Task Configuration

DLUT incorrect task configuration is defined as

Having a parameter value outside valid range.

For example, task mode is defined as a 3-bit field, with values O ~ 5 mapped to
valid modes, and values 6 ~ 7 being reserved. A task configured with task mode 6
~ 7 is deemed as having incorrect configuration.

As another example, a number of fraction bits is supposed to be O ~ 16 in the 5-

bit parameter, so values 17 ~ 31 are invalid. A task configured with number of
fraction bits being 17 ~ 31 is deemed having incorrect configuration.

Having a parameter value not allowed for the operation mode.

In a 2D conflict-free lookup with interpolation task, index type not being unsigned
Halfword or unsigned Word, or entry type not being signed or unsigned Halfword.
In a 2D conflict-free lookup with interpolation task, line pitch not being 4k + 2, k
being any integer.

In a table reformatting task, index type not being unsigned Halfword, or entry
type can be signed or unsigned Halfword.

In a table reformatting task, out-of-range handling not being disabled,
fraction_bits, X offset, Y offset not being zero.

In a table reformatting task, index interleave format not being element-wise
interleaved.

In auto-indexing mode, index type not being IDX_W, index TRANSP_MODE not
being None, index interleave format not being element-wise interleaved.

Having disallowed index/entry type and transpose mode combination in agen:

Byte with T1 transpose is not allowed.
Halfword with T32 transpose is not allowed.
Word with T16 and T32 transpose is not allowed.

Having inconsistent/conflicting parameters:

In auto-indexing mode, task_len_N1 not matching PATCH_WIDTH *
PATCH_HEIGHT.

In auto-indexing mode, when traversing horizontally first, PATCH_WIDTH < 8.
In auto-indexing mode, when traversing vertically first, PATCH_HEIGHT < 8.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 499



Handling of incorrect configuration is described in the next subsection.

The following cases of parameter configuration seem “strange”, but are NOT considered
incorrect configuration, meaning hardware would carry out the task as configured,
mostly because it would be cumbersome to detect:

Having nonzero value in an unused bit location. For example, parameter word O bit 3
is not used (between task mode and index type), so a task configured with nonzero
value there does not cause incorrect behavior, nor trigger configuration error.

Having nonzero value in an unused bit field for that operating mode. For example, Y-
related fields are not used for 1D lookup (with or without interpolation) modes. Such
fields are simply ignored, so nonzero values there does not cause incorrect behavior,
nor trigger configuration error.

Starting address for index/table/output or next task parameter block not aligned to
required address alignment. Address alignment is forced by hardware ignoring 1, 2,
or 6 LSBs of the byte address from agen base. This is consistent with address
alignment handling in VPU load/store instructions (see Memory Address Alignment).

In a table reformatting task, normally we use None (no transposition) in one end and
a transposition mode (T1/T2 etc) in the other end. If we have None-to-None or
Transpose-to-Transpose combinations, the agen programming is likely to be
incorrect. However, hardware in table reformatting will just perform input read and
output write as configured by the agen parameters, not checking for transpose
combinations between read and write.

Infinite task sequence by task parameter blocks forming a cycle. It is most likely
incorrectly programmed, but the hardware does not have an easy way to detect such
a condition. In this case, DLUT would not terminate, and VPU software would wait
forever in the WFE_GPI state. The R5 processor runs an RTOS and is able to detect
and handle such error conditions.

10.9.4 DLUT Execution States, Error Handling, Halt
and Debug

10.9.4.1 Normal Execution Behavior and Conceptual State
Diagram
Upon reset, DLUT execution state becomes idle.

After VPU asserts VPU_DLUT_START to start DLUT operation, DLUT execution state
becomes busy.

After DLUT completes configured task sequence, DLUT asserts DLUT_VPU_DONE and
execution state returns to being idle. DLUT_VPU_DONE is asserted until
VPU_DLUT_START is deasserted.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 500



DLUT execution state transition behavior can be described by the following conceptual
state diagram. Transitions other than normal execution, between idle/done and busy,
shall be explained in the following subsections.

Figure 23. DLUT execution state conceptual state diagram

reset
VPU reads/writes
VPU unhalts DLUT_STATUSO
DLUT and
an Idle/done l/p(,
next task == o, e
Ly 90
NUL 7,
1 \S]‘ 7;
Ay, Mg
(/30
Task Error-halted:
sequence incorrect config
done
665‘05\4\
X
< e>?’(pcﬁ"‘e(’s\
;| o e @
a"‘)«\
Q Error-halted:
Busy .
Before task missed event
sequence is

done, START |

10.9.4.2 Error Handling

In case of an incorrectly configured task, DLUT would execute (correctly configured)
proceeding tasks to completion, change execution state from “1: busy” to “2: halted due
to incorrect configuration”, show number of tasks completed successfully, say K, raise
DLUT_VPU_DONE, and show pointer to task parameter for the incorrectly configured
task, which is task K+1.

In case of a missed event, defined as VPU_DLUT_START being asserted to start a DLUT
task sequence, then deasserted prematurely, before DLUT asserts DLUT_VPU_DONE to
convey that the sequence is completed. This is in violation of the protocol and can lead
to race conditions in the VPU/DLUT interaction. DLUT records the issue, and after the
currently executing task is completed, raises DLUT_VPU_DONE and goes to error-halted
state, showing execution state being “3: halted due to missed event”. The number of
tasks completed, and current task parameter pointer shown in status registers, shall be
dependent on when the missed event was detected with respect to the tasks being
executed. If number of tasks completed is shown as K, it’s possible for task parameter
pointer to point to task K, in case missed event was detected when task K is being
executed, and next task not yet parsed, of it can point to task K+1, in case missed event

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 501



was detected when task K is just finished, task K+1 parameters are parsed but task K+1
execution not yet started.

In both error cases, DLUT stays in the appropriate error-halted state until VPU software
acknowledges the error by reading DLUT_STATUSO.EX_STATE and writing the same
value (2 or 3) back to the same register address. Such write would clear DLUT execution
state to (0: idle or done) and get DLUT ready for next task launch. Until such a write,
DLUT status registers showing execution state, number of tasks completed and pointer
to task parameter, as well as DLUT_VPU_DONE (having been raised to high) all remain
unchanged.

For anincorrectly configured task error, there is precise definition of which is the first
task being incorrectly configured, so number of tasks completed and pointer to
parameter of currently executing task shall be kept consistent. For example, if task 1
(being starting task of the sequence) and 2 are fine and task 3 is incorrectly configured,
DLUT shall complete the first 2 tasks, signals DLUT_VPU_DONE, show 2 tasks completed
and points to parameter block of task 3.

For missed event errors, hardware detects the error but runs current task to completion,
so if it's detected during execution of task 3, task 3 is completed, DLUT signals
DLUT_VPU_DONE, and status registers show 3 tasks completed and points to parameter
block of task 3, thereby keeping these two status registers consistent. However, there is
no precise way to predict when hardware detects the error relative to task sequence
execution, so it is not feasible to predict exactly how many tasks will be completed if a
missed event occurs after a set time after kicking of a task sequence, even if the task
sequence is fully known (parameters and index/table data). This is because DLUT can be
stalled by VPU and DMA upon VMEM superbank contentions.

DLUT incorrect configuration and DLUT missed event are among VPS error clauses, and
in VPS error handling, each clause can be configured to error-halt both VPU and DLUT, or
to continue with VPU execution.

Both kinds of DLUT errors are recoverable through normal VPU software interaction,
unlike VPU error-halt, which can only be recovered by VPS-level reset that resets both
VPU and DLUT. Thus, if deemed appropriate by the programmer, VPU software can carry
out quicker recovery from DLUT errors, as opposed to PVA-level reset which will take
longer.

10.9.4.3 RS5 Halt/Unhalt

We provide a mechanism for R5 processors to halt/unhalt VPU. Halting means
suspension of operation, and unhalting means resume of operation. Halting and
subsequent unhalting should not alter the eventual outcome. Both VPU and DLUT are
NOT expected to suspend operation immediately, but to do so when it’s convenient to
do so. VPU has a processor pipeling, so it would suspend after its pipeline is drained.
DLUT is a decoupled engine with multiple stages pipelined together and configured to
process a task at a time, each task producing task_len_N1 x task_len_N2 outputs, and
it’s only convenient to suspend after the current task is done.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 502



In case VPU is halted from R5 writing VPS Config register to halt VPU, VPU, after it has
halted, forwards the halt request to DLUT. DLUT handling is as follows:

If DLUT is idle, it remains idle.
If DLUT has already error-halted from a previous task, it remains error-halted.

Otherwise (DLUT is processing a task), DLUT would attempt to run that task to
completion.

After the task is completed without error, DLUT goes to Halted execution state.
In case an error occurs, DLUT goes to Error-Halted execution state

When VPU is subsequently unhalted by R5, VPU requests DLUT to unhalt:
If DLUT is idle, it remains idle.
If DLUT is error-halted, it remains error-halted.
Otherwise (DLUT is in Halted state), it moves on to process the next task.
If there is no next task it becomes idle
Otherwise, it becomes busy processing the next task.
The VPS config register VPS_STATUS.EXE_STATE showing halted when VPU has been

halted, and it’s possible that DLUT would remain active/busy for a while, until current
task is completed or terminated with error.

10.9.4.4 Debug Mode

In case VPU enters debug mode, DLUT continues to execute until configured task
sequence is completed and raises DLUT_VPU_DONE. This is consistent with DMA’s
handling of VPU entering debug mode.

10.9.5 Other Control/Status Registers

DLUT contributes one VPS error cause, DLUT incorrect task configuration. See 13.2 for
details.

DLUT contributes a few counters to the VPS performance monitor feature. See PVA VPS
IAS VPS Register Spec for details.

DLUT is part of VPS, and its clock gating behavior shall be consistent with VPS clock
gating behavior. See PVA VPS IAS VPS Register Spec for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 503



Chapter 11. Register Spec

11.1 VPS Coprocessor Registers

The VPS Coprocessor registers are, in general, accessible by VPU coprocessor read/write
instruction.

The Revision ID register is described in the following subsection. The DLUT
control/status registers are described in DLUT Task Control/State Registers.

11.1.1 Revision ID Register

The revision ID register is read-only. The purpose of the revision ID is to allow VPU
software to read and differentiate among versions. revisions and instances of VPU
module when needed.

Tie-in at PVA module boundary drives PVA_ID. Tie-in at VPS module boundary drives the
VPU_ID. PVA revision and release IDs are identical copies from PVA-top level PVA_CFG
registers.

Table 48. VPU revision ID register

Register/Field RW | Bits Reset | Description

REVISION_ID Revision ID register

0x200

PVA_INST_ID R 31:28 0/1 PVA instance ID
0: PVAO
1: PVA1

VPU_INST_ID R 27:24 0/1 VPU instance ID
0: VPUO
1: VPU1

REV_ID R 23:20 2 PVA revision ID, matching
PVA_CFG_PVA_ID.PVAREVID
1: T19x PVA 1.0
2: T23x PVA 2.0

REL_ID R 15:0 0x36 PVA release ID, matching
PVA_CFG_PVAREL_ID.PVAREL_REV

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 504



11.1.2 DLUT Task Control/Status Registers

There exists configuration and status registers on the VPU’s coprocessor space. VPU
software can read/write these registers via the CP_LD and CP_ST instructions.

Table 49. VPU DLUT task control/status registers

Register/Field RW | Bits Reset | Description

VPU_DLUT_TASK VPU-DLUT task configuration

0x800

CFG_ADDR RW | 19:2 0 Configuration byte address in VMEM for

DLUT to execute for the next task.

A byte address is to be written to the
32-bit register. 2 LSBs are non-writable
and thus dropped, enforcing the 32-bit
alignment. 12 MSBs are non-writable,
since VMEM has an address range of 1
MB (20-bit byte address).

DLUT_STATUSO DLUT execution status O
0x804
EX_STATE RW | 2:0 0 Execution state

O: idle or done

1: busy

2: error-halted due to incorrect
configuration

3: error-halted due to missed event
4: halted (by R5 halt, to resume later)

Upon DLUT being in error-halted state (2
or 3), before the next DLUT task can be
started, VPU software should read this
register and write the contents back to
this register to return the status to

idle/done.
DLUT_STATUS1 DLUT execution status 1
0x808
NTASKS_CMPLTD R 7:0 0 Number of tasks completed in current

task launch (writing of CFG_ADDR).
This would clear upon task launch and
increment by 1 at a time as DLUT
completes tasks.

This would stay at number of tasks
configured when EX_STATE = done.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 505



Register/Field RW | Bits Reset | Description
In case number of tasks configured
exceeds 255, instead of rolling over to O,
the count would saturate to 255.

DLUT_CURR_TASK

0x80C

PARAM_ADDR R 19:2 0 VMEM address of task parameter block

that DLUT is executing

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 506



Chapter 12. General Purpose
Input/Output

12.1 VPU/DMA Control Interface

VPU/DMA control interfaces include:
VPU-DMA start event signaling
DMA-VPU done event signaling

VPU has 32-bit General Purpose Input (GPI) for DMA-VPU event signaling, and 32-bit
General Purpose Output (GPO) for VPU-DMA event signaling. VPU/DMA event signaling
is described in detail in the PVA DMA IAS, and is summarized here.

The VPU signals DMA to start DMA transfer for read (reading from system memory to
VMEM), store (writing from VMEM to system memory), and config (reading address/data
pairs in VMEM to configure registers and descriptors), and DMA signals back when the
transfer is completed.

Table 50. VPU/DMA control signal list

Signal Driver GPIO Notes

vpu_dma_read_start[6:0] VPU GPO[22:16] Start DMA read from external mem into
VMEM, action upon positive edge. VPU
software asserts to send the request,
and deasserts upon detecting the
corresponding DONE signals.

vpu_dma_store_start[6:0] VPU GPO[29:23] Start DMA store to external mem from
VMEM, action upon positive edge. VPU
software asserts to send the request,
and deasserts upon detecting the
corresponding DONE signals.

vpu_dma_config_start VPU GPO[4] Start DMA write config space from
addr/data pairs in VMEM, action upon
positive edge. VPU software asserts to
send the request, and deasserts upon
detecting the corresponding DONE
signals.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 507



Signal Driver GPIO Notes
dma_vpu_read_done[6:0] DMA GPI[22:16] DMA read done, level, cleared upon
corresponding read_start being
deasserted
dma_vpu_store_done[6:0] DMA GPI[29:23] DMA store done, level, cleared upon
corresponding store_start being
deasserted
dma_vpu_config_done DMA GPI[4] DMA config done, level, cleared upon
vpu_dma_config_start being deasserted
dma_hwseqstart_vpu DMA GPI[15] DMA HWSeq start, DMA telling VPU to
start processing a tile
DMA GPI[14]
vpu_hwseqdone_dma VPU GPOI[15] VPU HWSeq done, VPU telling DMA that
processing is done for a tile
VPU GPO[14]

12.2 Summary of GPI/GPO Signals

A few additional GPI/GPO signals are used for debug and performance monitoring. Full
GPI/GPO allocation is as follows.

Table 51. VPU GPI/GPO signal list

GPIO Signal Driver Receiver | Value | Notes
after
reset
GPI[29:23] dma_vpu_store_done[6:0] DMA VPU 0
GPI[22:16] dma_vpu_read_done[6:0] DMA VPU 0
GPI[15:14] dma_vpu_hwsegs DMA VPU 0
GPI[10] dlut_vpu_done DLUT VPU 0 DLUT telling VPU it’s done
GPI[9] icache2vpu_config I-cache VPU 1
_invalidate_rdy
GPI[8] vps_sw_event SEC VPU 0
GPI[7] icache2vpu_gpio_invalidate_ | I-cache VPU 1
all_rdy
GPI[6] icache_vpu_prefetch_done I-cache VPU 1
GPI[5] icache_vpu_prefetch_rdy I-cache VPU 1
GPI[4] dma_vpu_config_done DMA VPU 0
GPI[O] vpu_cntlin_debug VPU VPU Debug control in, loop back from
GPOI[30] vpu_cntlout_debug

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 508




GPIO Signal Driver Receiver | Value | Notes
after
reset

GPO[31] vpu_testfail_debug VPU n/a 0 Test done pass/fail signaling for
simulation & debug, O = pass, 1 =
fail, connected to testbench

GPO[30] vpu_cntlout_debug VPU VPU 0 Debug control out

GPI[0]

GPO[29:23] vpu_dma_store_start[6:0] VPU DMA 0

GPO[22:16] vpu_dma_read_start[6:0] VPU DMA 0

GPO[15:14] vpu_dma_hwseq VPU DMA 0

GPO[10] vpu_dlut_start VPU DLUT 0 VPU telling DLUT to start

GPO[4] vpu_dma_config_start VPU DMA 0

GPO[3] vpu_perf_monitor_en VPU VPS 0 VPU software drives this pin to 1:

config enable or O: disable performance

monitor counters for optional
kernel/loop level control

GPO[2] vpu_start_r5 VPU SEC

GPO[1] vpu2icache_gpio_invalidate_ | VPU I-cache

all

GPOI[0] vpu_stimwd_debug VPU n/a 0 STIM window, for power test
case simulation & debug,
connected to testbench

Note that GPI reset values are driven by various driver modules outside VPU, so the reset
values are applied when the corresponding module (DMA or SEC) is reset. I-cache and

DLUT are reset with VPU. Unused GPIs are tied to O.

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 509




Chapter 13. Design for Test and Safety

13.1 Debug Features

The VPU has a CoreSight/APB-based debug interface that is hooked up to system-level
JTAG interface and is accessible through JTAG or through CPU software. The VPU
debug features are:
Enter/exit debug state.
Read program memory.
Invalidate I-cache. Debug writing program memory is implemented by writing to
system memory then invalidate |-cache, which drives I-cache to refetch from system
memory.
Read/write VMEM.
Directly feed the instruction word to be executed.
Read/write processor registers, including PC, scalar/vector register file, HW loop
control registers, predicate register file, and agen config register file (through
injection of instruction sequence to store the relevant register into VMEM then
reading VMEM).
Read/write GPO, read GPI (through injection of instruction sequence).
Read/write PC (through injection of instruction sequence).
Read/write SES (shadow execution state) register. The VPU execution state (active,
WFE_R5, WFE_GPI, error-halted, or halted) before transitioning into debug state is
saved in this register. It is read/write accessible by debug software via
OCD_LD/OCD_ST instructions and can be changed to drive VPU to a different state
after exiting the debug state.
Read/write DLUT configuration/status registers via CPLD/CPST.
Single step execution.
24 watch or break points (combined, for example we can configure them into 18
watch points and 6 break points.
Hardware break points: when PC matches one of the configured break point PC
values, VPU enters debug state.

Single watch points: when VMEM read or write (need to specify which direction)
address from designated load/store slot matches with one of the configured
addresses, VPU enters debug state. (Only starting address, not an address range

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 510



in case of vector load/store, so only matches starting/base address in case of
transposition and histogram; table lookup is read-only access so is not covered)

Range watch points: Two single watch points can be configured as lower/upper
bounds of an address range. Reading or writing with any base address in the
range would trigger the request to enter VPU into debug state.

Each watch point is specified as a full 32-bit byte address, with designation of
load/store and which memory slot (MO/M1/M2). A single watch point on IDE does
not specify memory slot and costs 3 watch point resources. A range watch point
on IDE costs 6 watch point resources.
Note that watch point does not capture aliased accesses. For example, any binary
address xxxx_xxxx_xxxx_00xx_0100_0000_0000_0000 maps to address
0x4_0000, so a watch point on Ox4_0000 does not capture accesses to
0x14_0000, which also maps to the same physical address.
SW break points (unlimited), program contents substituted with SWBRK instruction,
upon execution of which, VPU is instructed to enter debug state.

SWBRK being executed when DBGEN = 1 will transition VPU to the debug state.

SWBRK being executed when DBGEN = O constitutes an illegal debug error and is
captured in error logging (see Soft Error Cases and Handling), with the option to
either continue execution (treating SWBRK as NOP) or error-halt.

Cross-trigger input/output, to optionally allow other processors enter/exit debug to
cause VPU to enter/exit debug, and vice versa.

First 64 bytes of VMEM is reserved for debug software as staging area to query and
save/restore registers or VMEM data.

13.2 Soft Error Cases and Handling

VPU has the following features to detect various “soft” errors, so named because most
likely they occur during software development, so these features can be regarded as
design-for-test and debug features:

lllegal instruction detection
Scalar divide by zero error
Floating-point invalid outcome
lllegal debug
lllegal instruction from alignment stage
DLUT task incorrect configuration
Coprocessor load/store access error
DLUT missed event
Each error case is configurable whether to error-halt in the ERR_HNDL_CFG register.

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in
PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 511



controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator.

Error handling and context capture for each soft error follows.

Table 52. VPU soft error cases and handling

Error case lllegal instruction
Where/when it is VPU instruction decode stages.
detected

The decode stage detects illegal instruction in each 32-bit instruction for scalar, vector,
math units.

Error handling

The erroneous instruction is sent down the pipeline.

VPU enters Error-halted state right after the erroneous instruction when configured so
in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

A dedicated interrupt, invalid_instruction_error, is always sent independently of the
ERR_HNDL_CFG setting.

Context captured

PC and timestamp.

SEC signal

vpu_sec_illinstr_uncorrerr

Additional details

Error case

Scalar divide by zero

Where/when it is
detected

Scalar divider unit, when zero divisor is supplied for a divide operation.

Error handling

Max unsigned int value (OxFFFF_FFFF) is returned as the quotient.
VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

Error case

Floating-point invalid

Where/when it is
detected

Scalar and vector FP unit, when invalid (NaN) outcome is generated.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 512




Error case

lllegal debug

Where/when it is
detected

VPU executing a SWBRK (software break point) instruction when debug is disabled on
the debug interface.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG. Otherwise,
VPU ignores the SWBRK instruction, treating it as an NOP instruction.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

Error case

lllegal instruction from alignment stage

Where/when it is
detected

VPU alignment stage detects illegal instruction.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

Error case

DLUT task incorrect configuration

Where/when it is
detected

DLUT executes a task that is incorrectly configured.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

DLUT terminates task sequence upon detection by asserting DLUT_VPU_DONE, and
shows execution state as error-halted to incorrect configuration.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

Timestamp.

SEC signal

n/a

Additional details

Error case

Coprocessor access error

Where/when it is
detected

Coprocessor load/store instruction reading from a invalid/reserved address, or writing
to a read-only or invalid/reserved address.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

Orin PVA VPU Programmer’s Guide

SWE-PVA-076-PGRF | 513




Error case

DLUT missed event

Where/when it is
detected

VPU_DLUT_START is de-asserted before DLUT_VPU_DONE (GPI) is asserted.

Error handling

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

DLUT terminates task sequence when current task is completed, by asserting
DLUT_VPU_DONE, and shows execution state as error-halted to missed event.

SEC, when properly configured, detects VPU execution transition into Error-Halted state
and sends an interrupt to R5.

Context captured

PC and timestamp.

SEC signal

n/a

Additional details

13.3 Safety Features

VPS has the following error handling as safety features. These errors most likely
originated from some permanent or transient hardware fault:

lllegal instruction

I-cache ECC single-bit error (correctable)

|-cache ECC double-bit error (uncorrectable)

VMEM per-byte parity error

Note that divide-by-0 and floating-point invalid detection are not safety features, but
design-for-test/debug features.

lllegal instruction error source is configurable whether to error-halt in the
ERR_HNDL_CFG register.

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in
PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt
controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator.

Safety-related error handling and context capture for each error follows.

Table 53. VPU safety error cases and handling

Error case

I-cache ECC single-bit error

Where/when it is
detected

I-cache reading an entry upon request from VPU instruction fetch

Error handling

Erroneous instruction word is corrected on the fly before returning it to VPU instruction
fetch/align unit.

An error interrupt is sent by I-cache to SEC. R5 software can choose to either

A) Respond to the interrupt, invalidate the cache line (hopefully before a 2" error
occurs), or

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 514




Error case

I-cache ECC single-bit error

B) Ignore the interrupt.

Note that VPU continues execution in this case.

Context captured

None

SEC signal

icache_memr_sec_correrr

Additional details

ECC is applied on 32 bytes basis.

The corrected data will arrive at the VPU fetch/align unit on cycle later. The VPU
fetch/align unit would invalidate the erroneous instruction data and send one cycle of
bubble down the pipeline.

Error case

I-cache ECC double-bit error

Where/when it is
detected

I-cache reading an entry upon request from VPU instruction fetch

Error handling

An error interrupt is sent by I-cache to SEC. R5 software can choose to either
A) Halt/reset VPU immediately, or

B) Give VPU a chance (until watchdog timer expires) to run to task completion.

VPU continues, decoding/executing returned instruction data from I-cache.

Context captured

None

SEC signal

icache_memr_sec_correrr

Additional details

ECC is applied on 32 bytes basis

Error case

VMEM parity error

Where/when it is
detected

VMEM reading an entry upon request from VPU or external host (DMA, R5 or outside-
PVA host)

Error handling

Erroneous data is retuned to VPU or external host.
VPU continues execution.

An error interrupt is sent to SEC. R5 software can choose to respond to the interrupt or
ignore it.

Context captured

None

SEC signal

vmem_memr_sec_dperr

Additional details

Parity is applied per byte

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 515




Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the
information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document
is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time
without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such
inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of
each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information
contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the
application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability
of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA
accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY,
AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’'s aggregate and cumulative liability
towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUPVA, Orin, Thor are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables
are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm

Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm Limited. All other brands or
product names are the property of their respective holders. "Arm" is used to represent ARM Holdings plc; its operating company Arm Limited; and the
regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany
GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright
© 2025 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 <

http://www.NVIDIA.com NVIDIA



http://www.nvidia.com/

