

 SWE-PVA-076-PGRF | May 2025

Orin PVA VPU Programmer’s Guide

Programmer Reference

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | ii

Review Status

Title Orin PVA VPU Programmers Guide-P

Author chingh

Revision May 29, 2025

Reviewers jsankaran, nshigihalli

Status Completed

Reviewed in NVIDIA CR #23918

Document History

SWE-PVA-076-PGRF

Version Date Authors Description of Change

0.5.1 May 15, 2025 chingh > Branched from

Orin_PVA_VPU_Programmings_Guide.docx into

Orin_PVA_VPU_Programmers_Guide_pub.docx.

> Restarted version number from 0.5.1, removed

Proprietary/NDA tagging and cleaned up documentation

control section.

> Revised interpolated lookup example code to use PVA

SDK Sampler API functions, in 8.5.4.

0.5.2 May 22, 2025 chingh > Cindy Wilkinson imported into new template

> Fixed footer and fixed some English mistakes in Chapters

1 through 4

> Refined description of partitioning a task into sub-tasks

for concurrent prefetch and execution, in 4.1.2

> Removed reference to VPU config DMA feature for

instruction cache invalidation for an address range, since

it’s not supported by PVA SDK, in 4.1.3.

0.5.3 May 22, 2025 chingh > Revised DLUT programming example to one included in

Thor PVA VPU Programmer’s Guide, since the Thor version

has gone through review involving PVA SW team

members, in 8.5.4.

0.5.4 May 23, 2025 chingh > Propagated applicable revisions suggested from Thor PVA

VPU Programmer’s Guide review (#15825) to the Orin

version, various sections.

0.5.5 May 28, 2025 chingh > Added review table

> Per CR comments, remove references to PVA User’s

Guide, in 2, 2.2

> Per CR comments, fixed VPS block diagram, in 2.3

> Per CR comments, removed references to shallow pipeline

& IA models, in 2.4

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | iii

Version Date Authors Description of Change

> Per CR comments, elaborated Superbanks A/B/C, in 5.3

> Fixed code indentation issues, in chapter 8 sections.

> Fixed instruction report white spaces so that execution

count and cycle count numbers line up vertically, in

chapter 8 sections.

> Per CR comments, fixed instruction detail table

indentation and width, in chapter 9 sections

0.5.6 May 28, 2025 chingh > Fixed typos and issues identified from Thor version

review, various sections

1.0 May 29, 2025 chingh > CR completed, administrative update to fill review status

as Completed

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | iv

Table of Contents

Chapter 1. Introduction ... 12

1.1 Document Scope .. 12

1.2 References .. 12

1.2.1 Related External Documents .. 12

1.2.2 Related NVIDIA-Internal Documents ... 12

1.3 Glossary and Acronyms ... 12

Chapter 2. Architecture Overview ... 14

2.1 PVA ... 14

2.2 DMA ... 14

2.3 VPS ... 15

2.4 VPU Processor Models and Differences ... 16

Chapter 3. VPU Core ... 18

3.1 Block Diagram .. 18

3.2 Processor Front End ... 19

3.3 Register Files .. 19

3.4 Scalar Unit ... 20

3.5 Vector Unit .. 21

3.6 Load/Store Unit ... 21

Chapter 4. VPU Instruction Cache (I-Cache) ... 22

4.1 Overview ... 22

4.2 Functionality ... 22

4.2.1 Preemption .. 23

4.2.2 Prefetch .. 23

4.2.3 Invalidation ... 24

4.2.4 ECC (Single-Bit-Error-Correct Double-Bit-Error-Detect) 24

Chapter 5. VPU Vector Memory (VMEM) .. 26

5.1 Overview ... 26

5.2 VMEM Interface (VMEM I/F)... 27

5.3 VMEM Superbanks .. 29

5.4 Memory Banking and Read/Write Access Patterns ... 30

5.5 Load Data Cache ... 32

5.6 Memory Allocation among VMEM Superbanks .. 33

Chapter 6. VPU Instruction Set Architecture ... 34

6.1 Processor Architecture .. 34

6.1.1 Key Features ... 34

6.1.2 Program and Data Memory Spaces ... 35

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | v

6.1.3 Architecture Registers .. 36

6.1.4 Control Instructions ... 40

6.1.5 C Function Calling Convention ... 42

6.1.6 Processor Execution States .. 42

6.2 Overview of Scalar/Vector Math Instructions .. 44

6.2.1 Scalar Integer Math Instructions .. 45

6.2.2 Scalar Predicate Instructions ... 45

6.2.3 Vector Math Instruction General Rules .. 45

6.2.4 Scalar/Vector Floating-Point Math Instructions .. 53

6.3 Memory Operations ... 59

6.3.1 Memory Coherency .. 59

6.3.2 Memory Address Alignment ... 60

6.3.3 Memory Address Range Constraints .. 61

6.3.4 Scalar Data Types ... 62

6.3.5 Vector Data Types and Promotion/Demotion ... 62

6.3.6 Vector Load/Store Distribution Options .. 64

6.3.7 Transposing Load/Store ... 66

6.3.8 Parallel Lookup, Histogram and Vector-Addressed Store 71

6.4 Address Generator Features ... 77

6.4.1 Multi-Dimensional Address Calculation ... 78

6.4.2 Automatic Predication .. 80

6.4.3 Rounding and Saturation ... 81

6.4.4 Min and Max Value Collection .. 83

6.4.5 Save and Restore to/from Memory.. 84

6.4.6 Circular Buffer Addressing .. 84

Chapter 7. Decoupled Lookup Unit (DLUT) .. 88

7.1 Overview ... 88

7.2 DLUT Features ... 89

7.3 Task Structure and Operation Modes .. 90

7.4 Task Sequencing and VPU/DLUT Interaction .. 91

Chapter 8. Programming Examples ... 92

8.1 Typical Test Case Organization ... 92

8.2 1D Array Addition ... 93

8.2.1 Scalar Code .. 93

8.2.2 Optimization 1: Vectorized Code ... 95

8.2.3 Optimization 2: Unroll and Pipeline the Loop ... 97

8.3 2D Array Addition ... 100

8.3.1 Scalar Code .. 100

8.3.2 Optimization 1: Vectorized, Unrolled and Pipelined Loop 102

8.3.3 Optimization 2: Leveraging Agen to Collapse Nested Loops 105

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | vi

8.3.4 Performance Across 2D Array Dimensions .. 109

8.4 2D Convolution .. 109

8.4.1 Scalar Code .. 109

8.4.2 Optimization 1: Vectorized and Agen Optimized Loop 112

8.4.3 Optimization 2: Leveraging Denser MAC Instruction 120

8.4.4 Further Optimization for Power .. 125

8.5 Interpolated 2D Lookup ... 127

8.5.1 Scalar Code .. 127

8.5.2 VPU Parallel Lookup ... 128

8.5.3 VPU Parallel Lookup in Two Loops.. 130

8.5.4 Leveraging DLUT ... 132

Chapter 9. Instruction Set Reference ... 135

9.1 VPU Changes from Xavier to Orin ... 135

9.2 VPU Math Operation Throughput .. 137

9.2.1 Multiply/MAC Instructions .. 137

9.2.2 MAC-Related Instructions ... 139

9.2.3 Other Accelerated Vector Math Instructions .. 140

9.2.4 Scalar/Vector Floating-point Instructions ... 141

9.2.5 Scalar Integer Math Instructions .. 142

9.3 VPU Compatibility .. 144

9.3.1 Compatibility Exceptions ... 144

9.3.2 Removed/Emulated Instructions .. 145

9.4 Instruction Execution Ordering .. 145

9.4.1 Processor Pipeline .. 145

9.4.2 Default/General Behavior ... 146

9.4.3 Delay Slots for Branch Instructions ... 147

9.4.4 Exception for Instructions Accessing Address Generator 147

9.4.5 Exception for Instructions Accessing HW Loop Registers 148

9.4.6 Exception for Instructions Accessing FP Invalid Flag 149

9.4.7 Hardware Stalls to Comply with Sequential Execution Order 150

9.5 Instruction Predication .. 151

9.5.1 Instruction-Level Predication for Register Moves ... 151

9.5.2 Instruction-Level Predication for Vector Math ... 151

9.5.3 Predication for Load/Store .. 152

9.6 Control Instructions .. 154

9.6.1 Instruction Summary ... 154

9.6.2 Branch/Jump/Call Delay Slots .. 156

9.6.3 Jump and Link (JAL, JALR) .. 157

9.6.4 Jump (J, JR) ... 158

9.6.5 Conditional Branch (BEQZ, BNEZ) ... 159

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | vii

9.6.6 Software Break Point (SWBRK) ... 159

9.6.7 Hardware Zero-Overhead Loop (RPT) ... 160

9.6.8 General Purpose Output (GPO_*) .. 161

9.6.9 General Purpose Input (GPI_RD) ... 164

9.6.10 Wait for GPI Event (WFE_GPI) .. 164

9.6.11 Wait for R5 Event (WFE_R5) ... 165

9.6.12 Signal R5 (SIG_R5) ... 165

9.6.13 Performance Counter (ENABLE/RD_TSC) ... 166

9.6.14 Floating-Point Invalid Flag ... 167

9.6.15 OCD Load/Store ... 168

9.6.16 Configure VMEM Superbanks (CFG_VMEM_SBA/B/C) 168

9.6.17 Coprocessor Control/Status Register Load/Store ... 169

9.6.18 Memory Fence .. 170

9.7 Scalar ALU Instructions ... 171

9.7.1 ALU RRR Instructions .. 171

9.7.2 ALU RIR Instructions .. 182

9.7.3 Long Multiplication Instructions ... 193

9.7.4 Predicate Instructions ... 195

9.7.5 Scalar Floating-point Instructions .. 202

9.7.6 Other Scalar ALU Instructions ... 225

9.8 Vector ALU Instructions .. 232

9.8.1 Move Instructions ... 232

9.8.2 Vector OP11 Instructions .. 239

9.8.3 Vector OP12 Instructions .. 254

9.8.4 Vector OP21 Instructions .. 263

9.8.5 Vector OP22 Instructions .. 295

9.8.6 Vector OP31 Instructions .. 300

9.8.7 Vector Multiply-Add Instructions ... 326

9.8.8 Vector Floating-point Instructions ... 370

9.8.9 Vector Misc Instructions .. 405

9.9 Load/Store Instructions ... 414

9.9.1 Scalar Load/Store .. 414

9.9.2 Scalar-Based Vector Load/Store ... 417

9.9.3 Agen Configuration .. 423

9.9.4 Agen-Based Vector Load/Store ... 436

9.9.5 Agen-Based Scalar Load/Store .. 455

9.9.6 Parallel Lookup, Histogram, Vector Addressed Store 458

9.9.7 Misc Register Store .. 473

Chapter 10. Decoupled Lookup Unit (DLUT) Reference .. 475

10.1 Index and Output Data Format... 475

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | viii

10.2 Table Data Format ... 479

10.3 Index Calculation .. 481

10.3.1 1D Lookup .. 481

10.3.2 1D Lookup with interpolation ... 482

10.3.3 2D Lookup .. 483

10.3.4 2D Lookup with Interpolation... 484

10.3.5 2D Lookup with Interpolation with Auto Index Generation............................ 485

10.4 Duplicate Detection and Consolidation ... 487

10.5 Conflict Resolution and Lookup ... 487

10.6 Post Lookup Interpolation .. 487

10.7 2D Conflict-free Lookup with Interpolation .. 488

10.8 Table Reformatting ... 490

10.9 VPU/DLUT Interface .. 493

10.9.1 Task Parameters .. 493

10.9.2 Interaction Sequence .. 497

10.9.3 Incorrect Task Configuration ... 499

10.9.4 DLUT Execution States, Error Handling, Halt and Debug 500

10.9.5 Other Control/Status Registers .. 503

Chapter 11. Register Spec .. 504

11.1 VPS Coprocessor Registers.. 504

11.1.1 Revision ID Register.. 504

11.1.2 DLUT Task Control/Status Registers .. 505

Chapter 12. General Purpose Input/Output .. 507

12.1 VPU/DMA Control Interface ... 507

12.2 Summary of GPI/GPO Signals ... 508

Chapter 13. Design for Test and Safety ... 510

13.1 Debug Features ... 510

13.2 Soft Error Cases and Handling.. 511

13.3 Safety Features ... 514

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | ix

List of Figures

Figure 1. VPU Subsystem (VPS) block diagram ... 16

Figure 2. VPU core block diagram ... 18

Figure 3. VMEM block diagram ... 27

Figure 4. VMEM access pattern examples for consecutive accesses 31

Figure 5. VMEM transposed access pattern examples .. 31

Figure 6. VMEM access pattern examples for parallel table lookup and histogram 32

Figure 7. AGEN data format in memory .. 38

Figure 8. VPU execution state diagram .. 43

Figure 9. Access patterns of transposition modes T and T2 ... 69

Figure 10. Access patterns of transposition modes T4, T8, T16 and T32 70

Figure 11. Parallel lookup, histogram and VAST data organization for various types and

parallelism .. 71

Figure 12. Workaround for vector accesses across circular buffer boundary 87

Figure 13. VPU processor pipeline .. 146

Figure 14. DLUT index/output data layout .. 477

Figure 15. DLUT table data layout ... 479

Figure 16. Example to leverage out-of-range handling to split a large table as two sub-

table lookups ... 481

Figure 17. Table layout for VPU lookup instructions ... 488

Figure 18. Table layout for DLUT 2D conflict-free lookup w/ interpolation 489

Figure 19. Table reformatting input/output layout scheme .. 491

Figure 20. Table reformatting input/output layout example ... 492

Figure 21. VPU/DLUT interaction timing diagram .. 498

Figure 22. DLUT processing stages .. 499

Figure 23. DLUT execution state conceptual state diagram .. 501

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | x

List of Tables

Table 1. Support of scalar/vector operations in register files ... 20

Table 2. VPU I-cache characteristics .. 22

Table 3. VMEM address map ... 29

Table 4. VLIW instruction format .. 35

Table 5. Little Endian layout of various data types .. 51

Table 6. FP add/subtract/multiply corner cases .. 54

Table 7. FP multiply-add/subtract corner cases .. 55

Table 8. FP multiply corner cases in Gen-1 and Gen-2 VPU .. 56

Table 9. FP/INT conversion corner cases .. 57

Table 10. Scalar load/store data types .. 62

Table 11. Scalar-based vector load/store data types .. 63

Table 12 Agen-based vector load/store data types ... 63

Table 13. Line pitch constraint for various transposition modes ... 67

Table 14. Table lookup 2-point and 2x2-point support... 73

Table 15. Histogram support .. 75

Table 16. Vector addressed store support .. 75

Table 17. Performance optimization across array dimensions ... 109

Table 18. Multiply/MAC instructions .. 137

Table 19. Scalar/vector load/store predication support... 152

Table 20. Vector register predicated vector store variations .. 153

Table 21. Control instructions .. 155

Table 22. Scalar ALU RRR instructions .. 171

Table 23. Scalar ALU RIR instructions .. 182

Table 24. Scalar ALU long multiply instructions .. 193

Table 25. Scalar predicate instructions .. 196

Table 26. Scalar floating-point instructions .. 202

Table 27. Other scalar ALU instructions ... 225

Table 28 Scalar/vector move instructions ... 232

Table 29 vector register move support matrix .. 233

Table 30. Vector OP11 instructions ... 239

Table 31. Vector OP12 instructions ... 254

Table 32 Vector OP21 instructions .. 263

Table 33. Vector OP22 instructions ... 295

Table 34 Vector OP31 instructions .. 300

Table 35. Vector multiply-add instructions ... 330

Table 36. Vector floating-point instructions ... 370

Table 37. Vector miscellaneous instructions .. 405

Table 38. Scalar load/store instructions ... 414

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | xi

Table 39. Scalar-based vector load/store instructions ... 417

Table 40. Agen config instructions ... 423

Table 41. Agen-based vector load/store instructions ... 436

Table 42. Agen-based scalar load/store instructions .. 455

Table 43 Parallel lookup, histogram, vector addressed store instructions 459

Table 44 Miscellaneous register store instructions ... 473

Table 44 Index and output line pitch and transpose modes .. 477

Table 45. DLUT task parameter data structure ... 493

Table 46. DLUT parameter usage and constraints ... 496

Table 47. VPU revision ID register ... 504

Table 48. VPU DLUT task control/status registers ... 505

Table 49. VPU/DMA control signal list ... 507

Table 50. VPU GPI/GPO signal list ... 508

Table 51. VPU soft error cases and handling .. 512

Table 52. VPU safety error cases and handling ... 514

 SWE-PVA-076-PGRF | May 2025

Chapter 1. Introduction

1.1 Document Scope
This document serves as a Programmer’s Guide for PVA VPU. It covers VPU processor

architecture, instruction set overview, example code, and instruction details.

1.2 References

1.2.1 Related External Documents
> PVA SDK Documentation

1.2.2 Related NVIDIA-Internal Documents
> PVA VPS IAS

> PVA Cluster IAS

> PVA DMA IAS

> PVA L1 RAMIC IAS

> PVA VPS MAS

> PVA DLUT MAS

1.3 Glossary and Acronyms
CV Computer vision, field of study and application to recover 3D and motion

information from camera views.

PVA Programmable vision accelerator, a unit in Orin that accelerates computer vision

algorithms in autonomous driving use cases, includes VPU, DMA, and Cortex R5 RISC

processor.

SEC Safety and Event Control at PVA top level. It collects safety error events in PVA,

logs, aggregates, and forwarded as interrupts to the Cortex R5 processor.

VPU Vector processing unit, the main data processing engine in PVA.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 13

VMEM VPU vector memory, the local/L1 data memory for VPU, also shared with DMA and

DLUT

DMA Direct memory access, a hardware block in charge of copying data between local

memory and some other space in the system, which can be on-chip memory or

system memory/DDR.

DLUT Decoupled lookup unit

VPS VPU subsystem, including VPU, its I-cache, DLUT and VMEM

Host1X Command and synchronization unit that works with CPU, image/video processing

and computer vision engines

ISP Image Signal Processor, processes camera images

VIC Video and Image Compositor, capable of affine/perspective image transformation

and format conversion

OFA Optical Flow Accelerator, capable of dense optical flow and stereo disparity

DLA Deep Learning Accelerator

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 14

Chapter 2. Architecture Overview

A high-level overview of PVA, DMA, and VPS architecture is given in this chapter. For

more in-depth coverage of PVA architecture and DMA programming details, please

consult PVA SDK documentation.

2.1 PVA
PVA (programmable vision accelerator) is a computer vision (CV) processor targeting

Autonomous Driving (AD) applications, including camera, LiDAR, RADAR processing and

sensor fusion. PVA includes a control processor, Cortex R5, 2 copies of vector processing

subsystems (VPS) as data processing engines, and 2 copies of directed memory access

(DMA) as data movement engines. Orin PVA also includes an L2 SRAM memory to be

shared between the 2 sets of VPS and DMA.

The Cortex R5 processor interacts with other SOC components (for example, ISP, VIC,

OFA, DLA) through Host1X for control and synchronization at the subframe-application

level. R5 configures the VPUs and DMAs at the task level.

The VPUs act like coprocessors in system-level programming model. For each VPU task,

R5 configures DMA, optionally prefetches VPU program into VPU I-cache, and kicks off

each VPU-DMA pair to process a task that runs for typically hundreds of micro-seconds

to a few mini-seconds. Each VPU and DMA pair synchronize between themselves on tile

granularity, and there are typically tens to hundreds of tiles per task.

For Orin, the second generation of PVA, we have one PVA having 2 VPUs, each VPU

having 2 symmetrical vector functional units of 384-bit data path each.

For memory operations we have 3x32x16-bit throughput, having 3 memory slots and 3

superbanks, each superbank comprising of 32 banks of 16-bit-wide memories, and each

superbank can perform both read and write in the same clock cycle.

2.2 DMA
DMA moves data among external memory, PVA L2 memory, the 2 VMEMs (one in each

VPS), R5 TCM (tightly coupled memory), DMA descriptor memory, and PVA-level config

registers.

Orin DMA contains the following resources

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 15

> 16 channels, each channel can be configured to move data from a source to a

destination. The 16 channels work in parallel and can be optionally coordinated

through programming.

> 64 descriptors, each descriptor includes up to 5 dimensions to advance

source/destination address pointers. Descriptors can work in parallel or in sequence

through programming.

> A set of internal buffers (ADB and VDB) to be allocated among channels. ADB, AXI

data buffer, is for storing data read from the external memory controller temporarily,

and VDB, VMEM data buffer, is for storing data read from the VMEM temporarily.

Please consult PVA SDK documentation for additional details in DMA programming.

2.3 VPS
The VPU Subsystem (VPS) consists of the following major components:

> VPU core, the processor and main block of VPS.

> VPU instruction cache (I-cache) supplies instruction words to VPU and maintains

temporary instruction storage, with prefetch/invalidation support and with interface

to the system memory through MC interconnects.

> VPU vector memory (VMEM) houses data memory and supports various complex

memory access functionalities, including transposition, table lookup, histogram, and

vector addressed stores. It also supports accesses from outside-VPS hosts like DMA

and R5, to allow data exchange with R5 and other system-level components.

> DLUT, decoupled lookup coprocessor, offloads lookup and interpolation tasks from

VPU

Each major component will be described in more detail in subsequent chapters.

The following block diagram of VPS shows the major components in VPS and how they

are connected.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 16

Figure 1. VPU Subsystem (VPS) block diagram

512-bit SRAM 512-bit SRAM 512-bit SRAM

VPU

VMEM
Super-
Bank 0

(128KB)

Super-
Bank 1

(128KB)

Super-
Bank 2

(128KB)

16KB I-Cache

VPU Config

VMEM
Config

Interrupts to
Cortex R5

Events to/
from DMA

256 bit AXI

Arbitration

512 bit SRAM

To Instruction/Data
MC Interconnect

Arbitrated among
DMA, R5, SOC

VPS

Debug

APB
config

IC config

GPIO

DLUT

512-bit SRAM

32-bit APB

Events

2.4 VPU Processor Models and

Differences
To facilitate model development as well as application software development, a number

of VPU processor models have been constructed.

The most accurate model is the deep pipeline (Working) model. The VPU working model

instruction set simulator (ISS) shall be cycle accurate with VPU processor inside Orin

silicon.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 17

There is a Native compilation model generated by the ASIP tool suite from the shallow

pipeline model. It is mostly an application development platform. It is a collection of

header files and C library that allows application code to be compiled in generic (thus

named Native) environments, including Linux GCC and Windows Microsoft Visual Studio.

It is functionally accurate with hardware for math operations. In memory operations it is

mostly functionally accurate with hardware, but there are exceptions.

Because Native is compiled in a generic compute platform, there is no hard limit in data

memory footprint, so is useful for early-stage software development. In this platform

VPU code can access almost unlimited amount of memory, to directly process a whole

frame of image, as opposed to processing one tile at a time through DMA.

Note that, depending on the physical memory size of the compute platform it is run on,

large enough memory usage in Native simulation may still lead to excessive thrashing

and slowdown.

Differences in behavior between Native compilation environment and final product,

which is deep pipeline ISS and silicon are:

> There is no notion of clock cycles in Native compilation, thus Time Stamp Counter is

not functional.

> There is no forced memory address alignment to 16-bit/32-bit with load/store of

short/int types (see Memory Address Alignment).

> There is no forced memory address alignment to 512-bit with lookup, histogram, or

vector-addressed stores (see Memory Address Alignment).

> There is no forced memory address alignment to 512-bit with agen circular buffer

feature (see Circular Buffer Addressing).

> General purpose input and output (GPIO) in Native is non-functional, toggling GPO

ignored and reading GPI returns 0. In ISS, the subset of GPIO pins that connect to

the decoupled lookup coprocessor (DLUT) are functional for interaction between VPU

and DLUT.

In working model ISS, the decoupled lookup table coprocessor (DLUT) is simulated

functionally accurately (bit-exact), but is currently only cycle approximate, NOT cycle-

accurate.

Although PVA-level simulator incorporating R5, DMA, VPU, DLUT component simulators

does incorporate budgetary system-level latency, for example external memory

controller latency, but it does not model components outside PVA so cannot predict

actual latency. Thus, PVA-level simulation, even when incorporating cycle-accurate VPU

working ISS, is NOT cycle-accurate with silicon when the simulation involves outside-VPU

interactions, for example, reading from or writing to external memory.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 18

Chapter 3. VPU Core

3.1 Block Diagram

Figure 2. VPU core block diagram

Memory Units

PCU

Instruction
Cache

Instruction Fetch &
Align Unit

Decode & Hazards

Program Control
Unit (PCU)

On-Chip Debug
(OCD)

CoreSight

Vector RF (32x384-bit)

M0 M1 M2V1V0S1S0

Vector Units

Vector
SIMD

Math-0

Vector
SIMD

Math-1

AGU-0 AGU-1 AGU-2

Load-0
Distr

Load-1
Distr

Load-2
Distr

AGEN-
0

Store-0
Rnd &

Sat

Store-1
Rnd &

Sat

Store-2
Rnd &

Sat

VMEM

Scalar RF (32x32-bit)

Scalar Units

Scalar
Math-0

Branch

Scalar
Math-1

GPIO

Pred Divide

VPU

AGEN-
1

AGEN-
2

AGEN RF
(8x620-bit)

Working RF (32x384-bit)

Accumulator RF (32x384-bit)

VPU Coprocessor
(DLUT)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 19

The VPU core is a vector SIMD VLIW DSP optimized for computer vision. It fetches

instructions through the I-cache, and accesses data through the vector memory

(VMEM). Major components inside VPU core are

> Processor front end including config/status interface and PC control

> Register files

> Scalar unit with two scalar ALUs

> Vector unit with two vector ALUs

> Memory unit with 3 load/store units and address generators

3.2 Processor Front End
The VPU instruction format is a 7-way VLIW, consisting of:

> 2 scalar operation slots (s0/s1)

> 2 vector operation slots (v0/v1)

> 3 memory slots (m0/m1/m2)

Each instruction is encoded in 32-bit, and the instruction encoding supports variable-

length instructions, thus each execution packet contains between 1 and 7 32-bit words.

The compressed instruction stream is decompressed to full 7 instructions per packet

and dispatched to the scalar, vector, and memory units.

Example of compressed instruction packet:

ADD R1, R2, R3 || LDW *R4[20], R5

Corresponding decompressed instruction packet:

ADD R1, R2, R3 || s1_NOP || v0_NOP || v1_NOP || LDW *R4[20], R5 || m1_NOP || m2_NOP

The front end of the processor includes an interface to the instruction cache, 2-level

hardware loops, loop instruction buffer, and fetch/decode stages of the processor

pipeline.

The front end includes illegal instruction detection, both while expanding compressed

variable-length instruction packet into full 7-instruction packet using leading few bits of

each 32-bit instruction, and while decoding entire 32-bit instruction in

scalar/vector/memory units.

3.3 Register Files
The following register files are in the VPU core:

> Scalar register file (Scalar RF): 32 entries x 32-bit

> Predicate register file (Predicate RF): 16 entries x 32-bit

> Main vector register file (VRF): 32 entries x 384-bit

> Working register file (WRF): 32 entries x 384-bit

> Extended accumulator register file (XARF): 32 entries x 512-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 20

• Accumulator register file (ARF): 32 entries x 384-bit, part of XARF

> Agen register file: 8 entries x 620-bit

The vector register files VRF, WRF and ARF support the following data types:

> Word: each 384-bit entry is logically partitioned into 8 lanes x 48-bit

> Halfword: each 384-bit entry is logically partitioned into 16 lanes x 24-bit

> Byte: each 384-bit entry is logically partitioned into 32 lanes x 12-bit

XARF register file supports

> Word: each 512-bit entry partitioned into 16 lanes x 32-bit (for VFilt4x2x2BBW,

VDotP4BBW, VDotP4x2BBW instructions)

> Halfword: each 512-bit entry partitioned into 32 lanes x 16-bit (for VXNorAnd8x4x2

instruction)

Support of operations in various register files is tabulated as follows:

Table 1. Support of scalar/vector operations in register files

 Scalar RF Predicate RF VRF WRF ARF/XARF

Scalar math Yes Yes, as src or

dst of a few

Instruction

level

predication

 Yes

Per-lane

predication

 Yes V0~V15

Vop11/12 Yes Yes

Vop21 Yes, as src2 Yes Yes

Vop31 some, as src2 Yes some

Vop31_CA,

MAC

some, as src2 Yes, P0~P15

as predicate

Yes, as src1,

src2, dst

some, as

src2

Yes, as dst,

src3dst

FP Yes Yes Yes

Load

destination

Yes Yes Yes

Store source Yes Yes Yes

3.4 Scalar Unit
The scalar unit supports conventional scalar RISC instruction set, executing up to 2

scalar operations per cycle.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 21

32-bit integer/fixed-point as well as 16/32-bit floating-point Add, Sub, Mul, MAdd,

compare operations are supported through instructions. Some FP32 math functions

(square root, reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various

FP/INT conversions are supported as well.

3.5 Vector Unit
The vector unit executes up to 2 vector math instructions per cycle. Various integer

arithmetic and logic operations are implemented in the vector unit, with support for

Byte (extended to 12-bit), Halfword (extended to 24-bit) and Word (extended to 48-bit)

data types. Bitwise logic operations are also supported.

In addition to conventional arithmetic/logic operations, some larger or complex

operations (e.g., 3-input min/max/median) as well as FP32/FP16 operations Add, Sub,

Mul, MAdd, and compare are supported. Some FP32 math functions (square root,

reciprocal, reciprocal of square root, exp2, log2, sin, cos, tanh) and various FP/INT

conversions are supported as well.

3.6 Load/Store Unit
The load/store unit supports up to 3 load/store instructions per cycle. Word, Halfword,

Byte, and selected promotion/demotion options are supported. For load, both

signed/unsigned flavors are supported. Source and destination can be single scalar

register, double scalar register, single vector register, or double vector register. Quad-

vector-register store is also available to facilitate key filtering benchmarks. Load/store

unit also supports various data distributions.

In Orin we have added load-and-permute instructions to manipulate/reorganize data

from a double vector in memory to a double vector register destination in any

permutation pattern. This enables various data access patterns to be efficiently carried

out through such instructions.

In general, we would like memory transactions from load/store instructions to be

executed in order through memory dependency checking and dynamic stalling. The VPU

has a rich set of load/store features, and for some features it is cost prohibitive to

implement the dependency checking. Scalar load/store instructions as well as

consecutive-location vector load/store are included in the dependency checking, so they

are guaranteed to execute in order. Transposing load/store, parallel table lookup, parallel

histogram, and vector addressed stores are excluded in the checking, so they are not

guaranteed to execute in order. A MemFence instruction is available to serialize memory

transactions that hardware dependency checking does not cover. See Memory

Coherency for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 22

Chapter 4. VPU Instruction Cache (I-

Cache)

4.1 Overview
The VPU Instruction Cache (I-cache) supplies instruction data to the VPU when

requested, requests missing instruction data from system memory, and basically

maintains temporary instruction storage for the VPU. It also implements the prefetch

command to reduce cache misses, as well as the invalidation command as needed for

error correction and debug.

Having an instruction cache allows for large total code size to be stored in the system

memory, while having small physical memory footprint for area efficiency.

4.2 Functionality
The following table captures the characteristics of the I-cache.

Table 2. VPU I-cache characteristics

Characteristic Configuration

Capacity 16KB

Associativity 2-way

Instruction width 256-bit

Instruction alignment 256-bit

Block size 128 bytes

Replacement policy LRU

Write policy None (I-cache read only)

Hit under miss (nonblocking, if/when VPU

requests another instruction word that’s

available, go ahead and return hit)

No, fetch interface is in-order, so after a miss, if

following fetch request hits, it’s not possible to

indicate so.

Miss under miss (if/when VPU requests

another instruction word that’s unavailable,

request for that cache line as well)

Yes (request/ready pipelining allows following fetch

request to be conveyed, and if it’s a miss involving

another cache line, request can be sent out as well)

Hit latency 2 cycles

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 23

Characteristic Configuration

Prefetch (software request to fetch cache

lines ahead of execution)

Yes, up to full cache capacity in a single R5/VPU

interaction. Depending on outstanding transaction

allocation may request in batches

Interface for misses 256-bit AXI, AR, R channels only

Prefetch request from R5 and VPU Yes, will have separate config register entries for

concurrency

Prefetch and fetch concurrency Yes, giving fetch higher priority

ECC single error correction Yes, corrected on the fly and sent back to VPU

ECC single/double error detection Single errors are corrected but correction not

written back to cache; single error handling

software should invalidate cache line to initiate

refetch when the line is requested again.

Double errors are detected but not corrected.

Invalidation from R5 Yes, configurable address range

Invalidation from VPU Yes, configurable address range

4.2.1 Preemption

The VPU fetch/align unit fetches ahead of execution, and thus may request some

instruction data, but in the next few cycles branches to another PC location that renders

the previous request unnecessary. In such cases, the fetch/align unit cancels a previous

request and issues a request for the new PC location. This feature is called preemption

and is particularly useful when one of the no-longer-needed requests triggered a cache

miss. VPU execution would be stalled if hardware does not have the capability to cancel

such requests.

The I-cache handles preemption by clearing the preempted request from the pipeline. In

case the preempted request has been sent to the MC, the MC read request is not

affected, and returned data from MC would be written to a cache line normally, possibly

evicting instruction data on that cache line.

4.2.2 Prefetch

Prefetch capability is provided to both the R5 and the VPU. They use separate register

entries and command queues to avoid any race conditions, although SW on both sides

should be coherent and not attempt to request prefetch or invalidation at the same

time.

When a program for a task fits the I-cache, the R5 should prefetch the whole task, then

start VPU at its task PC. The VPU may initially see instruction-cache misses until the

whole task is loaded.

When program for a task does not fit the I-cache, we recommend that the task code is

partitioned into subtasks for concurrent execution and prefetch. Given the 2-way set

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 24

associativity characteristics of instruction cache and the cache capacity of 16KB, each

subtask should ideally be under 8KB.

The R5 should prefetch just the first subtask before starting the VPU task. VPU code

for a subtask should prefetch the next subtask at the appropriate time so that ideally

the prefetch is hidden behind execution.

R5 SW should not start requesting prefetch for VPU’s next task until VPU has completed

its current task and is idle. This also ensures prefetches from R5 and VPU do not

contend for cache lines.

4.2.3 Invalidation

The I-cache supports two concurrent invalidation interfaces through the config

registers; one designated for R5 and the other designated for VPU. Each invalidation

interface can selectively invalidate an address range or the whole cache.

Invalidating the whole cache by VPU is supported via GPO sideband signaling (see

Summary of GPI/GPO Signals). Invalidating an address range by VPU is currently not

supported by software.

Invalidation can be used to provide a clean slate for I-cache at the beginning of every

task, and the R5 should be the one invalidating the entire cache.

Invalidation can also be used to handle I-cache single error detection. When a single

error is detected (when the VPU requesting instruction(s) that contains an error), the I-

cache sends the corrected instruction data back to VPU but does not write the

corrected instruction data back to the I-cache’s memory. The R5 software handling I-

cache single error detection should invalidate the cache line to cause the line to be

refreshed from DRAM, which we assume is ECC protected as well and contains the

correct program data.

Invalidation is also needed for VPU debug software breakpoint, which is implemented by

substituting code data at selected break point with SWBRK, software breakpoint

instruction. As I-cache is read-only, code change is implemented by altering the code

image in external memory and invalidating the corresponding cache line.

4.2.4 ECC (Single-Bit-Error-Correct Double-Bit-

Error-Detect)

To reduce fault rate against memory cell transient faults, the VPU I-cache is protected

by single bit error correction, double bit error detection scheme.

A single-bit error within a 256-bit instruction word is corrected on the fly, and an error

event is sent to the PVA top-level SEC block, and from there it is forwarded to R5 and

optionally to system-level error collator.

A double-bit error within a 256-bit instruction word is detected but not corrected. An

error event is sent to the PVA top-level SEC block, and from there it is forwarded to R5

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 25

and optionally to system-level error collator. The erroneous instruction word is return to

VPU, which continues to be executed.

Optionally, I-cache can be configured to suspend upon detection of double bit error, until

R5 software comes in to query I-cache for the error and reset VPS. This feature may be

useful during software development phase to differentiate RAM soft error from other

error sources.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 26

Chapter 5. VPU Vector Memory (VMEM)

5.1 Overview
VPU vector memory (VMEM) houses local data memory for VPU to access so it can

implement various image processing and computer vision algorithms efficiently. VMEM

supports various complex memory access patterns from VPU, including consecutive

read/write of various lengths, transposition, table lookup, histogram, vector addressed

stores. It also supports accesses from outside-VPS hosts like DMA and R5, to allow data

exchange with R5 and other system-level components.

VMEM includes VMEM I/F arbitration block and three VMEM superbanks of 128KB each.

Each superbank incorporates dual port memory and supports one read AND one write

per cycle. VMEM I/F arbitrates reads and writes separately for each superbank.

The VPU vector memory block diagram is as follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 27

Figure 3. VMEM block diagram

VPU Memory Units

VMEM I/F

SuperBank-0
(128KB)

512

VMEM

Non-VPU Clients
(via RAMIC)

SuperBank-1
(128KB)

SuperBank-2
(128KB)

512 512

DLUT

5.2 VMEM Interface (VMEM I/F)
The VMEM I/F block performs arbitration among VPU load/store and external requests

(including DMA), and handles histogram read-modify-write requests. Memory arbitration

is carried out in superbank granularity and parallel between reads and writes. We have a

fixed priority scheme as follows:

Read priority (highest to lowest)

> External (including DMA) read request-high

> VPU M0 load (including table lookup and histogram read)

> VPU M1 load

> VPU M2 load

> Stream0 read (DLUT lookup)

> Stream1 read (DLUT index/config)

> External (including DMA) read request-low

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 28

Write priority (highest to lowest)

> Histogram write

> External (including DMA) write request-high

> VPU M0 store

> VPU M1 store

> VPU M2 store

> Stream0 write (DLUT output)

> External (including DMA) write request-low

We have VPU load/store prioritized over stream read/write in VMEM arbitration. Stream

read/write are driven by coprocessors. Normally coprocessors should have stream

buffers so performance may not be affected by occasional stalls. In comparison,

arbitration loss in VPU is likely to lead to performance loss.

Ideally, programmers should allocate memory objects to avoid VPU processing and

coprocessor processing to compete for any superbank read/write. When that is not

possible, programmers should consider coprocessor VMEM traffic and allocate memory

objects to minimize VMEM contentions.

The cases when there are read(s) and write(s) in near execution packets to near address

ranges in the memory are governed by memory coherency handling and are discussed

separately in Memory Coherency. Here we are discussing VMEM arbitration for memory

read/write transactions being executed at the same clock cycle.

Multiple memory transactions at the same clock cycle and going to the same superbank

are executed sequentially following the above arbitration priority, when they are all reads

or all writes. Mixed read/write cases (in the same execution packet) are:

> RW: Execute both in parallel, read will return the previous value

> RWW: Carry out the read and the first write in parallel, then the second write. The

read will return the previous value,

> RRW: Carry out the first read, then the second read and the write in parallel. Both

reads return the previous value.

A 2-bit QoS signal is sent with each external request, and the QoS is translated into a

time-out count via VMEM config registers. Each external request is initially assigned to

the external-low priority. If/when the request waits out the time-out count, it’s escalated

to the external-high priority, which prompts it to be served at next available cycle, thus

ensuring some (configurable) minimal BW to VMEM for each QoS level.

The VPU supports memory accesses (table lookup, histogram, vector-addressed store,

transposing load/store) that can potentially span a large address range. As each memory

access is routed to a selected superbank based on the base address, no single memory

access can straddle multiple superbanks.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 29

5.3 VMEM Superbanks
The three memory superbanks appear as three memory regions in the VPU memory

map, differentiated by high address bits to allow programmers to allocate, based on

memory footprint and BW needs.

One simple way to allocate VMEM superbanks and avoid contention is

 Superbank A write = DMA

 Superbank A read = VPU

 Superbank B read/write = VPU

 Superbank C write = VPU

 Superbank C read = DMA

This allows DMA to move data from system memory to Superbank A. VPU code would

read that data for processing, and can use Superbank B for intermediate outcome, and

write final outcome to Superbank C. DMA would then move data from Superbank C to

system memory. The DMA input and output buffers can be ping-ponged to allow

simultaneous read/write by VPU and DMA, without causing any contention.

This ideal, contention-free allocation scheme is only possible when DLUT is not involved,

and DMA input/output buffer as well as intermediate buffers fit the 3 superbanks

respectively.

When the buffer sizing does not work out, or when DLUT is involved, one will need to

allocate buffers among superbanks carefully to minimize contention among the VPU,

DMA and DLUT.

Each superbank has 128KB of capacity each. Each superbank sits in 256KB of space to

allow for future expansion. 1 MB is allocated for the 3 superbanks (384KB total

capacity). Address aliasing in the 1 MB space is as shown in the following table.

Table 3. VMEM address map

Byte address Memory Primary/Alias

0x00000 ~ 0x1FFFF Superbank A first 128KB Primary

0x20000 ~ 0x3FFFF Superbank A second 128KB Alias

0x40000 ~ 0x5FFFF Superbank B first 128KB Primary

0x60000 ~ 0x7FFFF Superbank B second 128KB Alias

0x80000 ~ 0x9FFFF Superbank C first 128KB Primary

0xA0000 ~ 0xBFFFF Superbank C second 128KB Alias

0xC0000 ~ 0xDFFFF Superbank C third 128KB Alias

0xE0000 ~ 0xFFFFF Superbank C last 128KB Alias

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 30

Note: Address aliasing is a side effect of address decoder logic and should not be taken

advantage of in the software, as it is possible to set up address watch point via debugger

to detect out-of-valid-range memory read/write and trigger error interrupts to PVA-top

Cortex R5 processor.

Future generation hardware may change physical memory sizes and memory address

mapping. Best practice for VPU software is to use A/B/C memory region naming (for

example, chess_segment(A/B/C)) instead of hard-coding memory addresses, and to avoid

using the alias memory regions.

5.4 Memory Banking and Read/Write

Access Patterns
Each VMEM superbank consists of 32 banks of 16-bit wide RAMs. Each of the 32

memory banks are independently addressable per clock cycle. This enables a rich set of

access patterns:

> Read/write one byte on any byte alignment

> Read/write one 16-bit half-word on any half-word alignment

> Read/write one 32-bit word on any word alignment

> Read/write 8 or 16 consecutive 32-bit words from any half-word alignment.

> Read/write 16, 24 or 32 consecutive 16-bit half-words from any half-word alignment

> Read/write 32 consecutive 8-bit bytes from any byte alignment

> Read/write 64 consecutive 8-bit bytes from any half-word alignment (starting odd

byte is not supported, and shall be forcefully aligned to an even byte)

> Read/write in various transposed addressing patterns.

> Read/write independent memory rows in each 16-bit bank, leveraged by parallel table

lookup, parallel histogram, and vector addressed store.

Various transposed load/store options, parallel table lookup, histogram, and vector

addressed store options are discussed later. This is just describing access patterns from

VMEM hardware capability point of view.

Example access patterns are shown in the following figures.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 31

Figure 4. VMEM access pattern examples for consecutive accesses

Figure 5. VMEM transposed access pattern examples

<8b>

B0

B1

B2

B3

B4

…

B29

B30

B31

H3

H4

H31

W14

W15

H0

H1

H2

H29

H30

…

Bank 30 Bank 31

<- 16b ->

W0

W1

…

Bank 0 …Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

<8b> <-- 16b -->

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B58 B59 B60 B61

B62 B63

H31

...

...

H0 H1 H2 H3 H4 H30

Bank31

W0 W1 ...

W15

W14

Bank30...

H29

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 32

Figure 6. VMEM access pattern examples for parallel table lookup and histogram

5.5 Load Data Cache
Each VMEM memory bank contains a load data cache for power reduction. VPU

processor pipeline including load timing accommodate both cache-hit and cache-miss

cases. The cache can be enabled or disabled (see 9.6.16 for details) on a superbank

granularity.

The load cache, when enabled, only caches the following types of memory read

transactions:

> Single/double vector load of 32-byte or 64-byte consecutive data

The following types of memory read transactions are ignored by the load cache:

> Single vector WX-type load (48-byte transaction)

> Single/double vector S (scalar) and C2 (circulating 2 items) distributions

> Scalar register loads

> Lookups

> DMA reading VMEM

> DLUT reading VMEM

When enabled, the load cache monitors ALL memory transactions to invalidate cache

entries when there’s a hit, including

> Scalar/vector stores

> Histogram/VAST operations

<8b> <-- 16b -->

H30

B_TBL B31

B1 B3

B0

B2 B4 B30

B5

H0

H31

H2

...

W_TBL W2

...

W15

H_TBL H5

H1

H3 ...

W0

H4

Bank5 ... Bank30 Bank31Bank0 Bank1 Bank2 Bank3 Bank4

W1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 33

> DMA writing VMEM

> DLUT writing VMEM

When cache is enabled and cache hit occurs, load data is retrieved from the cache and

memory read transaction is not issued, saving some power. When the cache is enabled

and a cache miss occurs, there is no performance penalty, but there is a small power

penalty. Thus, enable/disable control is exposed to the programmer for power

optimization. Load data cache should be enabled when there are repeated accesses to

small localities, like in the case of filtering, and should otherwise be disabled.

5.6 Memory Allocation among VMEM

Superbanks
VPU application code may use storage specifiers {DMb, RAM_Ab, RAM_Bb, RAM_Cb},

together with chess_segment(A/B/C) and optional alignment constraint to allocate

scalar or array variables onto specific superbank.

Using RAM_Ab, RAM_Bb, RAM_Cb with chess_segment(A/B/C) causes the linker to

allocate variable to superbank A, B, or C, respectively

Example 1:

short chess_storage(RAM_Ab % 512: chess_segment(A)) foo[256];

This allocates foo as a 256-element short array on superbank A with 512-byte alignment.

Example 2:

char chess_storage(RAM_Bb % 512: chess_segment(B)) bar[256];

This allocates bar as a 256-element char array on superbank B with 512-byte alignment.

Example 3:

int chess_storage(DMb % 4) more_foo[256];

Using DMb storage specifier causes the linker to allocate such variables to superbank A

first, followed by B, then C, where it fits. Reserved regions between superbanks are

skipped automatically. This allocates more_foo as a 256-element int array with 4-byte

alignment in one of the superbanks.

Example 4:

int more_bar[128];

Not using any storage specifier causes the linker to allocate the variable to global

memory (_global segment in BCF file). Application project can supply a custom BCF file

to place _global segment in a valid memory range. Otherwise, the default BCF file applies

and places _global segment in superbank A.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 34

Chapter 6. VPU Instruction Set

Architecture

6.1 Processor Architecture

6.1.1 Key Features

The VPU instruction set architecture has the following key features:

> VLIW and Wide SIMD vector processor, with multiple operations and multiple

load/store slots.

> Multi-dimension address generation (6 dimensions).

> Multiple levels of zero-overhead hardware looping (2 levels).

> Instruction-level predication of certain vector operation, scalar load/store, vector

load.

> Lane predication for vector store.

> Loop collapsing to reduce overhead across data block and filter kernel dimension,

enabled by address generation and predication.

> Reduced code size and library construction effort for filtering and other windowing

operations, enabled by zero-overhead nested looping through loop collapsing.

> Memory banking and parallel lookup, histogram, and vector addressed store.

> Memory bank address calculation to implement transposed vector load/store for

various transposition options.

> Circular buffer addressing for memory-copy-free data/compute reuse.

> Rich set of load and store data distribution patterns.

> Vector load with permutation of loaded data.

> Vector-lane predication of selected store operations.

> Protected pipeline with sequential execution (except branch delay slots) and

hardware dependency stalling.

The VPU instructions are scheduled in the following 7-way VLIW format. Each

instruction word is 32-bit long, and up to 7 instruction words can be executed together

as an execution packet.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 35

Table 4. VLIW instruction format

S0 S1 V0 V1 M0 M1 M2

Scalar

operation or

Control

(branch, call,

return, SW

breakpoint)

Scalar

operation

Vector

operation

Vector

operation

Load/store, scalar

or vector,

lookup, histogram,

vector-addressed

stores

Load/store,

scalar or

vector

Load/store,

scalar or

vector

Variable-length packet encoding is supported, so that NOP (no operation) instructions

are skipped and not taking up any code space. There is an exception though. Compiler

may insert NOPs intentionally to align branch target, beginning of function, etc.,

execution packets to reduce branch penalty.

In general, control instructions are available only in S0 slot. Scalar operations are

available in both scalar slots. Vector operations are available in both vector slots.

Memory operations are available in all 3 memory slots, except lookup, histogram, and

vector-addressed store are available only in M0. Additional details:

> Agen save/restore instructions are available only in M0 slot.

> Quad-vector store instructions are available only in M0 slot.

> Per-lane predicated store instructions via vector register file are available only in M0

slot.

> Per-lane rounding store (double vector only) instructions are available only in M0 slot.

6.1.2 Program and Data Memory Spaces

Program memory space is 32-bit byte address, with valid range [0 , 2^32 – 4], as

instruction words are 32-bit each.

Data memory space is 20-bit byte address that spans 1MB, but only valid inside each of

three 128KB superbanks, for a total of 384KB of physical memory. Please see VMEM

Overview for the memory map.

Access outside the valid range would be wrapped back to the valid range. See Section

VMEM Superbanks for details in address mapping. Programmers should not take

advantage of this address wrapping, as data memory footprint and layout can change in

the next generation.

Reading uninitialized memory locations WILL NOT be detected as an error but can

trigger parity error. It’s too expensive to implement such detection or automatic

initialization in hardware. It is software’s responsibility to either initialize the entire

VMEM at the start of task or avoid referencing uninitialized memory locations.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 36

6.1.3 Architecture Registers

6.1.3.1 Control and Scalar Registers

Program counter (PC), counting in 32-bit granularity so PC = 1 means byte address of 4.

VPU program space is 2^32 bytes, due to tool-chain constraints, and hardware conforms

to this constraint. Although PC appears as a 32-bit register, upper 2 bits are not used.

Upon task launch, VPU gets a starting PC specified in a 32-bit byte address config

register by dropping lower 2 bits of the register. Also, the interface between VPU and I-

cache carries 27-bit address in 256-bit (32-byte) granularity.

> Scalar registers R0..R31, 32-bit each. Special registers among them: R0 = constant

zero

> SP (stack pointer) = R1

> LR (link register) = R15

> Global data page pointer = R16

> PL (64-bit product’s low 32-bit, also quotient for DIV) = R12

> PH (64-bit product’s high 32-bit, also remainder for DIV) = R13

All scalar registers are reset to 0.

Compiler is instructed to treat R0 as constant 0 and not modify R0. User assembly

program can use R0 as a normal register and write non-zero to R0, but this would break

compiled code so is highly inadvisable.

Stack grows by incrementing the stack pointer, so items in the local frame (already in

the stack) are located with negative offset from the stack pointer. For example, the last

int32 word pushed into the stack occupies SP – 4 ~ SP – 1 byte addresses, so is

addressed by its starting byte address SP – 4. Compiled code uses load/store with base +

immediate offset addressing mode to address items on the stack, and the immediate

offset has range of [-2048, 2047]. Thus, if we use the stack pointer register R1 to

represent the stack pointer itself, local frame size is limited to 2048 bytes.

In the model’s compiler setting, we tell compiler to put an offset of -2048 between the

logical stack pointer and the actual stack pointer register R1. In other words, we set

SP_register (R1) = SP – 2048. This allows any local frame to take as much as 4096 bytes,

thereby doubling the local frame size. This is because SP_reg + [-2048, 2047] = SP –

2048 + [-2048, 2047] = SP + [-4096, -1].

Hardware looping registers:

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (which is encoded as binary “11”).

> LS[0..1]: 32-bit loop start PC, reset to 0

> LE[0..1]: 32-bit loop end PC, reset to 0

> LC[0..1]: loop count, 32-bit, reset to 1

There is also a predicate register file to support instruction predication:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 37

> Predication registers: P2..P15 each 32-bit (P0, P1 are unconditional), reset to -1 (all

ones)

Additional miscellaneous registers are:

> GPI: general purpose input register, 32-bit

> GPO: general purpose output register, 32-bit, reset to 0

> TSC: Free running timestamp counter for performance instrumentation, 64-bit, reset

to 0

> INV: floating-point invalid flag, 1-bit, reset to 0

> CFG_VMEM: 3 x 32-bit, 32-bit for each superbank, bit 0 for load cache enable, bits

31..1 reserved, reset to 0

6.1.3.2 Vector Registers

There are 3 vector register files: the main vector register file V0..V31; the working

register file W0..W31; and the accumulator register file AC0..AC31. Each register 384-bit

and can be partitioned as follows:

> 8 lanes x 48-bit (extended word, vintx)

> 16 lanes x 24-bit (extended half-word, vshortx)

> 32 lanes x 12-bit (extended byte, vcharx)

In addition, there is an extension register file, XRF, that extends precision of ARF on a

lane-by-lane basis. It’s used in selected MAC operation (VFilt4x2x2BBW) with 16 lanes x

32-bit per vector register entry, with lower 24-bit supplied by ARF, upper 8-bit supplied

by XRF. The extended accumulator register file, XARF, XAC0..XAC31, is partitioned as

> 16 lanes x 32-bit (Further extended half-word, xvshortx)

> 32 lanes x 16-bit (Further extended byte, xvcharx)

VRF and WRF have extensive bypassing to reduce load-to-math and math-to-math

latencies. ARF is accessible as accumulators. Compiler maps source code variables to

these register files according to latency requirement and register capacity constraints.

Vector registers are not cleared during reset; it is software’s responsibility to initialize

each register before its value can be used.

6.1.3.3 Agen Registers

Each unit of the agen register file AGEN[0..7] has the following fields:

> Addr (32-bit, but only lower 20 bits are used in address calculation), reset to 0

> Transposition lane offset (12-bit), reset to 0

> Rounding/truncation option and number of bits (8-bit), reset to 0 (no rounding)

> Saturation option (2-bit), reset to 0 (saturation disabled)

> min/max option (2-bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 38

> Auto predication off (1-bit), reset to 0, indicating agen loop has gone past max

iteration count in all levels, so that subsequent stores should be automatically

predicated off, overriding predicate register (or predicate vector register).

> Number of iterations (6 x 16-bit), reset to 1

> Address modifiers (6 x 18-bit), reset to 0

> Circular buffer start and size (2 x 16-bit), reset to 0

> Saturation parameters (4 x 32-bit), reset to 0

> Loop variables (6 x 16-bit), reset to 0

> Min/max values (2 x 32-bit), reset to 0, and initialized to signed/unsigned 32-bit

MAX/MIN values depending on min/max option

Each Agen register has a parameter configuration portion, basically the first 16 words or

512-bit in memory and 428-bit in register (difference comes from 6 address modifiers,

32-bit in memory versus 18-bit in register). The last 6 words or 192-bit holds loop

variables, auto_predicate_off and min/max values.

Agen configuration can be stored in memory in 512-bit, and when it’s read back, loop

variables and min/max values are reset, and this is useful to save and restore Agen

configuration. In Orin there are instructions to save/restore the remaining part of Agen.

The entire register entry can be copied from one agen register to another as well.

Data organization of the agen configuration in memory (from Agen configuration save,

AgenCfgST) is as follows.

Figure 7. AGEN data format in memory

Word 31 0

0 Addr

1
reserved

(4-bit)
minmax

_opt (2-bit)
sat_opt (2-

bit)
round/truncate opt

and bits (8-bit)

reserved

(4-bit)) lane_offset (12-bit)

2 N2 (16-bit) N1 (16-bit)

3 N4 (16-bit) N3 (16-bit)

4 N6 (16-bit) N5 (16-bit)

5 reserved (14 upper bits) MOD1 (18 LSBs)

6 reserved (14 upper bits) MOD2 (18 LSBs)

7 reserved (14 upper bits) MOD3 (18 LSBs)

8 reserved (14 upper bits) MOD4 (18 LSBs)

9 reserved (14 upper bits) MOD5 (18 LSBs)

10 reserved (14 upper bits) MOD6 (18 LSBs)

11 CB_SIZE (16-bit) CB_START (16-bit)

12 SAT_LIM_LOW (comparison)

13 SAT_VAL_LOW (replacement)

14 SAT_LIM_HIGH (comparison)

15 SAT_VAL_HIGH (replacement)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 39

The rest of Agen data structure (6 x 32-bit = 192 bits) in the Agen register file, not

directly visible but can be accessed one loop variable at a time through STH

A<id>.I<level>:

In the data structure, ignored fields, basically upper bits of each address modifier, are

writable via CfgAgen Mod instruction as well as CfgAgenLD instruction, but are not

utilized in the address calculation.

Reserved fields are initialized to zero in InitAgen. They are not modifiable via any

CfgAgen instructions and not utilized in any Agen functionality. Through CfgAgenLD, if

corresponding contents in memory are non-zero, zero will be loaded into Agen data

structure instead. When CfgAgenST is used to store out the whole Agen data structure,

corresponding bits in memory will show zeros.

6.1.3.4 Floating-point Invalid Flag

To facilitate development of floating-pointing applications, in VPU we have a Boolean

flag to for floating-point invalid, invalid_flag, that captures any invalid outcome (NaN)

from FP32/FP16 operations. It’s a sticky bit, so that when there is any invalid outcome

from S0/S1/V0/V1 slots (as we support scalar as well as vector floating-point), the bit is

set.

invalid_flag |= s0_invalid | s1_invalid | v0_invalid | v1_invalid

There are a pair of MOV instructions to move invalid_flag to/from scalar register, so that

the flag can be cleared at beginning of applications and collected (and perhaps cleared)

at key points in the application to check for unexpected outcomes.

Please see Exception for Instructions Accessing FP Invalid Flag for instruction execution

ordering exceptions around FP invalid flag. Please see Floating-Point Invalid Flag for

MOV instructions for FP invalid flag.

Note that the invalid flag read-modify-write dependency is hidden from the compiler, so

that compiler can freely reorder, combine, and even optimize out unnecessary FP

operations to achieve better performance. If, for whatever reason, certain FP operations

should not be optimized out even when they are unnecessary, developer can add

chess_keep_dead() compiler directive on the variable assigned to the FP operations.

Word 31 0

16 I2 (16-bit) I1 (16-bit)

17 I4 (16-bit) I3 (16-bit)

18 I6 (16-bit) I5 (16-bit)

19 reserved (31-bit)
auto pred off

(1-bit)

20 min_val (32-bit)

21 max_val (32-bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 40

For example,

 float var3 = fadd(var1, var2);
 chess_keep_dead(var3);
 // no subsequent use of vars

6.1.4 Control Instructions

Control instructions include the following:

> Flow control instructions include jump, jump-and-link (call), and conditional branch.

> Zero-overhead hardware loop instruction

> Memory fence instruction

> Miscellaneous hardware control instructions involving GPI, GPO, coprocessor

load/store, R5 interaction, time stamp counter, floating-point invalid flag, and load

data cache

> Debug instructions

Control instructions are only supported on the S0 slot.

There are 2 delay slots following jump, jump-and-link, conditional branch, and hardware

loop. For jump and branch, there are additional 2 to 3 cycles of gap before the first

execution packet of the jump target can be executed, due to the fetch latency.

Memory fence takes variable number of cycles, up to 8 cycles, as it is stalled until

preceding memory writes are committed to memory, to ensure memory coherency.

Hardware control instructions that interact with other hardware components (GPI, GPO,

WFE_GPI/R5, SIG_R5, CPLD, CPST) take up to 16 cycles to execute, so that all preceding

instructions complete their execution, to avoid any synchronization issues.

For example, VPU software might write some value in VMEM before toggling a GPO bit

that triggers a DMA transfer to read from VMEM, so it’s only prudent to allow the

memory write to be completed before the GPO bit is toggled.

6.1.4.1 Hardware Looping

VPU supports 2 levels of zero-overhead hardware loops through the hardware loop

instruction (RPT) and the following hardware looping registers:

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (encoded as binary “11”) to mean not being in any loop

> LS[0..1]: 32-bit loop start PC, reset to 0

> LE[0..1]: 32-bit loop end PC, reset to 0

> LC[0..1]: loop count, 32-bit, reset to 1

Behavior of hardware loop (RPT) that encodes a scalar register and an immediate value:

• LF++;

• LC[LF] = scalar register value, for the loop iteration count.

• LS[LF] = starting PC = PC(3 execution packets from RPT)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 41

• LE[LF] = ending PC = PC(2 execution packets from RPT) + immediate

Hardware looping is carried out by RPT updating LF and corresponding LC, LF, LE entries,

and by monitoring PC against LE[LF], the ending PC of current loop level.

LF is initialized to -1, so when RPT is first executed, LC[0], LS[0], LE[0] are filled.

Conditional branch-back from loop-end PC is carried out via:

if (LF >= 0) {
 if (PC == LE[LF]) {
 if (LC[LF] == 1) {
 LF--;
 } else {
 LC[LF]--;
 branch_target = LS[LF]; // take branch right away
 // end-of-loop branch back has no delay slots
 }
 }
}

All these steps – detecting end of the loop body by matching PC against LE, checking

the loop count register LC, making the decision to branch back to beginning of loop

body (LS) or to decrement LC then fall out of the loop – occur in the background without

incurring any explicit instruction, thus they feature zero-overhead looping.

There is a hardware loop buffer to store the first 3 execution packets of the loop body,

so that branching back from loop-end to loop-start does not suffer the usual 2 ~ 3

cycles of pipeline bubble. Loop execution goes seamlessly from one iteration to the next

iteration.

With the preceding hardware looping implementation, when nested hardware loops are

used (up to 2 levels), the 2 loop levels should not share the same ending PC.

Consequently, an NOP may be inserted by the compiler when there is no active

processing between the end of two loop levels. For example:

add__sint_add___sint___sint___sint
 104 RPT R6,#7 || LHI #0,R7
 106 ADD R5,R4,R5 || ADDI R4,#0, R2
 108 LHI #0,R5 || ADD R5,R6,R3
 110 RPT R2,#1 // outer loop starts
 111 NOP
 112 NOP
 113 ADD R5,R4,R5 || ADD R3,R7,R7 // innerloop starts/ends
 115 NOP // outer loop ends
 116 JR R15
 117 SUB R7,R5,R2
 118 NOP

In this example, the outer loop starts at PC 110, the inner loop starts at 113, two delay

slots after the corresponding RPT instruction.

The immediate field of RPT encodes the PC difference between the 2nd delay slot (just

before entering the loop) and the last packet of the loop. In the example above, the

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 42

outer loop ends at PC 115, so the RPT immediate field encodes 115 – 108 = 7. The inner

loop ends at 113, so the RPT immediate field encodes 113 – 112 = 1.

Currently, the compiler does not generate code that branches into the middle of an

execution packet, or into a delay slot of any execution-control instruction. Moreover, an

assembly program that has such behavior would be rejected by the loader so it would

not simulate. Due to the tool chain restriction, hardware behavior when supplied with

such an assembly program is declared undefined.

In the case of nested hardware loops, the inner loop RPT shall not be placed in a delay

slot of the outer loop RPT, as it complicates the VPU execution controller to support

such looping structure. Compiler does not generate such a code sequence.

6.1.5 C Function Calling Convention

C functions shall adopt the following calling convention:

> Stack pointer = R1

> Link register = R15

> Global data page pointer = R16

> Scalar argument registers: R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14

> Scalar return value registers: R2, R3

> Vector argument registers: V0, V1, V2, V3, V4, V5, V6, V7

> Vector return value registers: V8, V9

> Double vector argument registers: V0:V1, V2:V3, V4:V5, V6:V7

> Double vector return value registers: V8:V9

In subsequent generations of VPU, it is likely that scalar and/or vector register file may

be expanded, and the C function calling convention may change. No assembly backward

compatibility is expected.

6.1.6 Processor Execution States

VPU execution state diagram is shown in the following figure. Description of the states,

various state transitions and conditions follow the figure.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 43

Figure 8. VPU execution state diagram

reset

Halted

! reset

Reset
WFE
_R5

WFE
_GPI

Debug

Error-
Halted

Active
WFE_R5 instr

From any state

r5_vpu_start r5_vpu_halt

! r5_vpu_halt

ocd_
req ocd_

req
ocd_
reqocd_

req

ocd_
req or

SWBRK

General priority for state transition, where applicable, is reset > VPU instruction > error >

debug > VPS register programming (halt/unhalt/r5_vpu_start) > VPU internal

state/detection.

Reset state: When reset is asserted, whatever state VPU is in, it shall transition to the

Reset state. De-asserting reset signal would transition VPU to WFE_R5 state.

Debug state: When the ocd_req signal in VPU debug interface is asserted, VPU would

transition from any state except the Reset state to the Debug state. The state VPU

transitions from is saved in a shadow execution state (SES) register. If/when resuming

execution is desired, it is debugger software’s responsibility to restore VPU to the

interrupted state (including all VMEM and register contents, except for first 64 bytes of

VMEM), then de-assert ocd_req to allow VPU to resume execution by going to the state

saved in the SES. Debugger software can optionally change the SES before de-asserting

ocd_req to redirect VPU to a different state from the interrupted execution state. Please

see 13.1 for details on debug features.

WFE_R5 state: This is when VPU is waiting for R5 to provide a starting PC

(R5_vpu_start_PC). Once R5 writes the starting PC then writes 1 to the R5_vpu_start

register field, VPU transitions out of WFE_R5 state and jumps to the starting PC. VPU

software normally terminates a subframe-level task with WFE_R5 instruction, which

takes VPU back to this state.

Active state: VPU normal execution is in the active state. From active state, VPU can be

temporarily halted by vpu_halt register been written 1, to transition to the Halted state.

VPU can transition to debug state by debug controller asserting ocd_req, or by

executing SWBRK instruction. VPU can execute a WFE_R5 instruction to go to the

WFE_R5 state. VPU can execute a WFE_GPI instruction to go to the WFE_GPI state.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 44

Upon hardware error and when the error source is configured to error-halt, VPU goes to

the Error-Halted state.

Priority on conditions to transition from active state is reset > error -> debug >

r5_vpu_halt > instruction. Instructions can be WFE_R5 or WFE_GPI. Since both are

control slot (S0) instructions, only one can be executed at any time.

WFE_GPI state: VPU executing a WFE_GPI instruction would transition VPU to this state.

WFE_GPI allows a mask value and a match value as arguments, and hardware logic keeps

VPU in this state until (GPI & mask) == match, upon which VPU is transitioned back to

the Active state.

Note: WFE_GPI is not exclusive to interaction with DMA; it can be used for checking

availability of I-cache prefetch and/or invalidate.

Halted state: R5 can temporarily halt VPU by writing 1 to the vpu_halt register field.

When the field is written 0, VPU would go back to the Active state and resume

execution. This mechanism can be used by R5 software to pause VPU execution upon

watch-dog timer expiration, so VPU state can be saved for further diagnosis.

Error-Halted state: When one of the error conditions occurs and it’s configured to error-

halt in error handling (see 13.2, and for further details please see PVA VPS IAS), VPU is

transitioned to the Error-Halted state. From this state, the debugger can drive the

execution state to Debug, or R5 can reset VPU.

The transition from WFE_GPI and WFE_R5 to Error-halted. It is possible for an

instruction causing the error to be close enough to WFE_GPI/WFE_R5 instruction that

the execution state is temporarily transitioned to WFE_GPI/WFE_R5 states before

ending up in Error-halted state.

6.2 Overview of Scalar/Vector Math

Instructions
With VPU execution packets organized as 7-way VLIW, it is most convenient to describe

the instructions in terms of instruction set grouping.

> Control instructions can only be placed in the first scalar slot, S0.

> Scalar math instructions can be placed in either of the scalar slots, S0 and S1.

> Vector math instructions can be placed in either of the vector math slots, V0 and V1.

These 2 slots are symmetrical in functionality.

> Certain memory operations can only be placed in the first memory slot, M0.

> The remaining memory operations can be placed in any of the 3 memory slots, M0,

M1 and M2.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 45

This is a brief overview of scalar and vector math instructions, including general

functionality description and latency. For a more detailed description of each instruction,

consult Chapter 9 Instruction Set Reference. Memory instructions are better

understood after some coverage on memory banking and address generator features.

The latency number of cycles specified in the following sub-sections are for back-to-

back execution of the same class of instructions; for example, scalar integer math to

scalar integer math. Latency across different classes of instructions is outside the scope

of the VPU Programmer’s Guide.

6.2.1 Scalar Integer Math Instructions

We support common arithmetic and logic operations in both scalar slots.

> Integer addition, subtraction, compare, and, or , exclusive or, sign/zero-extend

> Integer shift left/right, signed/unsigned min/max

> Integer multiplex (C select operator), shift-and-add, compare within, bit count

> 32-bit x 32-bit multiplication, keeping 32-bit product

> Signed/unsigned 32-bit x signed/unsigned 32-bit multiplication, keeping 64-bit

product

> Integer division, taking up to 33 cycles depending on the dividend bit width

All scalar integer math instructions except for integer division have 1 cycle of latency.

6.2.2 Scalar Predicate Instructions

VPU has a predicate register file, and some vector math instructions are predicated,

those with _CA postfix, to support periodically Clearing Accumulator in a filtering

application for example. We support instructions to move between the predicate

register file and scalar register file, as well as a few variations of modular increment

instructions for periodic predication.

All predicate instructions have 2 cycles of latency.

6.2.3 Vector Math Instruction General Rules

We support many vector integer math instructions. There are multiple ways to group

them into digestible chunks. The relevant section in the Instruction Reference chapter

categorizes instructions by number of input/output operands. Here we categorize

instructions by functionality:

> ALU instructions: move, bitwise and/or/exclusive-or/not, bitwise 3-input and/or,

logical and/or/not, promote/demote, Hamming distance. All but Hamming distance

have 1 cycle of latency; Hamming distance has 3 cycles of latency.

> Bit manipulation instructions: bit reverse, bit count, bit interleave/deinterleave, most

significant bit detection. All have 1 cycle of latency.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 46

> Compare instructions: 2/3-input min/max, 3-input median, min/max with LT/GT flag,

Compare GE/GT/LE/LT/EQ/NE, multiplex (C select operator), 2-in/out sort, sort with

payload, horizontal min/max. All have 1 cycle of latency.

> Add/Subtract: 1-cycle latency instructions are negation, sign-magnitude, apply sign,

add/sub. 2-cycle latency instructions are add2sub (A+B-C), absolute difference, sum

of absolute differences (SAD).

> Shift instructions: shift (left or right), shift-or, shift-add, shift right, shift left, round,

extract bits, split bit sections, normalization. All have 2 cycles of latency.

> Permutation instructions: permute, collate index, expand index, compare bit-pack,

bit unpack, bit transpose, select lane, SGM min-path-cost. All have 4 cycles of

latency.

> MAC (multiply-accumulate) instructions: multiply, multiply-add, multiply-subtract,

2/4/2x2/4x2-term dot-product, 4/4x2/4x2x2-term filtering, blending, complex

multiply, sum of squares, square of sum, 2x2 determinant, 8x4x2 term exclusive-not-

or-add. All have 3 cycles of latency.

6.2.3.1 Extended Precision

The vector unit executes up to 2 vector operations per clock cycle. Various vector ALU

instructions are available. A 32-entry 384-bit vector register file (VRF), a 32-entry 384-bit

working register file (WRF) and a 32-entry 384-bit accumulator vector register file (ARF)

supply the operands and store the outcomes.

There is a 128-bit extension for the ARF to extend each entry to 512-bit wide. The

extended accumulator register file (XARF) is accessible only from selected MAC

operation, VXNorAdd8x4x2, VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW, and store

operations.

Each 384-bit entry in VRF/WRF/ARF is logically partitioned into 32 x 12-bit (extended

byte), 16 x 24-bit (extended halfword), or 8 x 48-bit (extended word). Each 512-bit entry

in XARF is logically partitioned into 32 x 16-bit (short), or 16 x 32-bit (word).

VPU vector math instructions operate on extended precisions. Extended byte is 12-bit,

versus standard byte being 8-bit. Extended halfword is 24-bit, versus standard halfword.

Extended word is 48-bit, versus standard word being 32-bit.

The idea is that normally in C code, variables and arrays are declared with standard

element type of char/uchar (8-bit), short/ushort (16-bit), and int/uint (32-bit). VPU

compute kernels use signed or unsigned loads to load data from VMEM and sign-extend

or zero-extend the values to place into destination vector registers. Processing occurs in

the vector datapath via vector math instructions, reading from and writing back into

vector register files. Eventually when a suitable chunk of the compute kernel is

completed, results are written back to VMEM in standard precision.

It is possible for VPU programs to store the intermediate outcome in extended precision

and load them back into vector register file. This can be through an extended-type

load/store in the code or can be through the compiler automatically spilling vector

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 47

variables onto the stack, when size of variables involved in a compute kernel exceeds size

of the vector register files (VRF/WRF/ARF/XARF).

In general, we would like to avoid spilling vector variables into the stack, as it generally

degrades performance and consumes higher power consumption. Programmer should

reduce size of variables involved in the computation by breaking up the computation in a

loop into multiple loops, or by reducing the unrolling factor in the unroll_loop pragma.

Note that lane partitioning does not involve any conversion instruction but is

accomplished via each vector math instruction specifying what precision it operates on.

Vector math instructions are either type-agnostic – for example, bitwise operations – or

have a type designation that can be:

> W: 48-bit word

> H: 24-bit half-word

> B: 12-bit byte

> W: 32-bit standard word in VFilt4x2x2BBW, VDotP4BBW, VDotP4x2BBW

For example, in VAddH, single vector addition half-word, the ‘H’ specifies that it operates

on extended halfword precision and thus treats each source and destination vector

register entry as 16 lane x 24-bit. Some instructions involve operands with multiple

precisions. For example, VFilt4x2x2BBW involves extended byte (12-bit) source operands

as well as word (32-bit) accumulator operand (which is both source and destination).

Many vector math instructions support one of the source operands coming from a

scalar register, depending on the operation type, appropriate number of lower bits

(number of bits specified in the operation) are extracted, or entire 32-bit value is signed-

extended, then broadcast to all lanes to participate in the vector operation specified.

6.2.3.2 Signed/Unsigned Handling

Note: There are no signed/unsigned designations in vector math instructions. All vector

arithmetic operations where signed/unsigned make a difference, including comparison,

min/max, right-shift, round, etc., are performed as signed operations.

Signed and unsigned data may be stored in memory. Programmers are responsible for

choosing signed/unsigned data type in the load instructions to read data into vector

register file. Signed data type load (for example, VLDB) would cause the 8/16/32-bit data

items in memory to be sign-extended to the 12/24/48-bit lanes in a vector register.

Unsigned data type load (for example, VLDBU) would cause the 8/16/32-bit data items in

memory to be zero-padded to the 12/24/48-bit lane in a vector register.

For storing data back to memory, writing to memory itself is type-agnostic; however, if

it’s an agen-based store, and rounding and/or saturation features are enabled, be aware

that right-shift in store-path rounding is performed as signed right-shift, and

comparisons in store-path saturation are performed as signed comparison. Thus, if a

programmer intends to use full range of extended precision (12/24/48-bit) to store

unsigned data, store-path rounding and saturation features should be disabled.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 48

6.2.3.3 Data Types and Corresponding Bit Widths

Unless otherwise noted, the following lane partitioning scheme is followed in vector

register:

> Word: 8 lanes x 48-bit, lane 0 in Vreg[47:0], lane 1 in Vreg[95:48], etc

> Half-word: 16 lanes x 24-bit, lane 0 in Vreg[23:0], lane 1 in Vreg[47:24], etc

> Byte: 32 lanes x 12-bit, lane 0 in Vreg[11:0], lane 1 in Vreg[23:12], etc

> No type: bitwise operation on whole 384-bit

> Standard Word: 16 lanes x 32-bit in XARF, lane 0 in XACreg[31:0], lane 1 in

XACreg[63:32], etc.

Where a scalar register is used as an operand (can be src2 or src3), the general scalar

operand bit width usage behavior is

> Word: whole 32-bit sign extended to 48-bit and broadcast to 8 x 48-bit lanes

> Half-word: lowest 24-bit broadcast to 16 x 24-bit lanes

> Byte: lowest 12-bit broadcast to 32 x 12-bit lanes

> No type: not applicable, as no-type operations do not allow scalar as operand

Exceptions to the above are stated in the specific instruction description. For example,

for bitwise operations it makes more sense to zero-extend in case of Word type rather

than sign-extend. As another example, VBitUnpk instruction uses its scalar operand one

bit per lane, so it’s 8-bit for Word type, 16-bit for Halfword type, and 32-bit for Byte

type.

Some ALU instructions do not use the full lane, but just 8/16/32 or 9/17/33 LSBs of the

lane, and they are specifically marked as such in the instruction table. Multiply and

multiply-add/subtract and bit reverse are in this category.

6.2.3.4 Internal Bit Widths and Overflow

Arithmetic datapath implementing various instructions employ sufficient precision so

that the functionality can be modeled as having infinite precision, but the final outcome

is presented in the specified output width, so the hardware is not responsible for

outcome overflow.

This style of functionality specification does not pin down internal details, leaving

implementation flexible, while clearly defining the end-to-end behavior. The

implementation flexibility allows sharing logic among various data types.

For example, VAdd adds 2 operands in each Byte/Half-word/Word lane. In case of Byte

lane, inputs are 12-bit signed and output is 12-bit signed, and internal processing width

can be any bit width greater than or equal to 12, so internally we can have

> 32 x 12-bit adders + 16 x 24-bit adders + 8 x 48-bit adders, each data type operates

in separate datapath,

> 8 x 48-bit adders + 8 x 24-bit adders + 16 x 12-bit adders, carrying out half of half-

word addition in 48-bit datapath, and half of byte addition in 24-bit and 48-bit

datapaths, or

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 49

> 32 x 12-bit adders with carry logic to conditionally string together 24-bit and 48-bit

additions based on type designation of the instruction.

For certain instructions, we do need internal bitwidth to be expanded to avoid internal

overflow, but this does not mean the output would not overflow. VAbsDif and VSAD_CA

are such instructions. Again, outcome is as if we use infinite arithmetic precision but

only present the specified bit width to the output.

There is no out-of-range or overflow detection in VPU, and there is no automatic

saturation. There is, however, free (not costing extra cycle) saturation in Agen-based

vector store.

6.2.3.5 Application Vector Data Types

Various data types are referred to in the intrinsic field.

Note: Extended width types are all signed.

> vint: 8 x 32-bit vector (in memory)

> vuint: 8 x 32-bit vector (in memory, unsigned)

> dvint: 16 x 32-bit vector (in memory)

> dvuint: 16 x 32-bit vector (in memory, unsigned)

> vintx: 8 x 48-bit vector (mapped to register)

> dvintx: 16 x 48-bit vector (mapped to register)

> vfloat: 8 x 32-bit FP32 vector (in memory)

> dvfloat: 16 x 32-bit FP32 vector (in memory)

> vfloatx: 8 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)

> dvfloatx: 16 x 48-bit FP32 vector (mapped to register, sign-extended from FP32)

> vshort: 16 x 16-bit vector (in memory)

> vushort: 16 x 16-bit vector (in memory, unsigned)

> dvshort: 32 x 16-bit vector (in memory)

> dvushort: 32 x 16-bit vector (in memory, unsigned)

> vshortx: 16 x 24-bit vector (mapped to register)

> dvshortx: 32 x 24-bit vector (mapped to register)

> xvshortx: 16 x 32-bit vector (mapped only to XARF)

> dxvshortx: 32 x 32-bit vector (mapped only to XARF)

> vhfloat: 16 x 16-bit FP16 vector (in memory)

> dvhfloat: 32 x 16-bit FP16 vector (in memory)

> vhfloatx: 16 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)

> dvhfloatx: 32 x 24-bit FP16 vector (mapped to register, sign-extended from FP16)

> vchar: 32 x 8-bit vector (in memory)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 50

> vuchar: 32 x 8-bit vector (in memory, unsigned)

> dvchar: 64 x 8-bit vector (in memory)

> dvuchar: 64 x 8-bit vector (in memory, unsigned)

> vcharx: 32 x 12-bit vector (mapped to register)

> dvcharx: 64 x 12-bit vector (mapped to register)

> xvcharx: 32 x 16-bit vector (mapped only to XARF)

> dxvcharx: 64 x 16-bit vector (mapped only to XARF)

There are two floating-point formats supported, FP32 and FP16. In vfloatx/dvfloatx,

each 48-bit element contains one FP32 number with sign extended to fill the upper 16

bits. In vhfloatx/dvhfloatx, each 24-bit lane element contains one FP16 number with sign

extended to fill the upper 8 bits.

For predication of lanes in vector stores, we use

• int: 8/16/32 bits of predication, mapped to one predicate register

• dpred: 64 bits of predication, mapped to two predicate registers

6.2.3.6 Data Ordering in Single and Double Vector Registers

Double vector data types have twice as many elements as the corresponding single

vector data type. In vector register allocation, compiler would allocate even/odd register

pairs (for example V2:V3) for double vector data type variables.

There are two schemes of element ordering in a double vector:

> Sequential: take dvintx for example, ascending elements are stored in dv.lo[0],

dv.lo[1], …, dv.lo[7], dv.hi[0], dv.hi[1], …, dv.hi[7]

> Interleaved: take dvintx for example, ascending elements are stored in dv.lo[0],

dv.hi[0], dv.lo[1], dv.hi[1], …, dv.lo[7], dv.hi[7]

The interleaved format is the way physical design works, so it is supported throughout

the instruction set. The sequential format is available only in load/store instructions and

selected vector math operations.

Vector math operations mixing single and double vectors, typically due to 2x width

expansion like VMulHHW, use deinterleaved ordering:

src1 a[0] a[1] a[2] a[3] … a[14] a[15]

src2 b[0] b[1] b[2] b[3] b[14] b[15]

dst.lo a[0] * b[0] a[2] * b[2] a[14] * b[14]

dst.hi a[1] * b[1] a[3] * b[3] a[15] * b[15]

Vector demotion operations have both sequential (VDemote) and interleaving

(VDemote_I) flavors, but promotion operation only has deinterleaving flavor

(VPromote_DI).

See Vector Load/Store Distribution Options for sequential vs interleaving/deinterleaving

flavors in load/store operations involving double and quad vectors.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 51

6.2.3.7 Endianness

VPU adopts the Little Endian memory organization. In Little Endian, lower bytes are

stored into lower addresses than upper bytes. For example, a vint vector {2, 3, 4, 5, 6, 7,

8, 9} in memory would look the same as a vshort vector {2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,

9, 0} in memory, or as a vchar vector {2, 0, 0, 0, 3, 0, 0, 0, …, 9, 0, 0, 0} in memory.

Table 5. Little Endian layout of various data types

Word 0 1 2 7

Content 2 3 4 9

Halfword 0 1 2 3 4 5 … 14 15

Content 2 0 3 0 4 0 9 0

Byte 0 1 2 3 4 5 6 7 8 9 10 11 … 28 29 30 31

Content 2 0 0 0 3 0 0 0 4 0 0 0 9 0 0 0

The same Little Endianness is also observed in the lanes of vector registers. For example,

a register holding vintx vector {2, 3, 4, 5, 6, 7, 8, 9} also has the same contents of another

register holding vshortx vector {2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0}. More generally,

word lane i would occupy the same 48-bit section of storage in a vector register as short

lanes 2*i and 2*i+1, with lane 2*i taking the lower 24-bit of that 48-bit section.

6.2.3.8 Intrinsic Functions/Operators Support

Most vector math instructions support single vector operands and have intrinsic

functions or operators with single vector data type operands, for example, VBitRev

instruction has the following single vector intrinsic functions:

vintx vbitreverse(vintx src);
vshortx vbitreverse(vshortx src);
vcharx vbitreverse(vcharx src);

For such instructions, double vector pseudo intrinsic functions/operators are also

available to map to a pair of instructions, for example:

dvintx dvbitreverse(dvintx src);
dvshortx dvbitreverse(dvshortx src);
dvcharx dvbitreverse(dvcharx src);

The convention is to prefix the intrinsic function names with “d” so that it reads

dv<something>.

Selected vector math instructions allow scalar operand to be broadcast to each lane

before the operation takes place. Their intrinsic functions/operators support such

operand type combinations as well. For example, for VAbsDif we support:

vintx vabsdif(vintx src1, vintx src2);
vshortx vabsdif(vshortx src1, vshortx src2);
vcharx vabsdif(vcharx src1, vcharx src2);
vintx vabsdif(vintx src1, int src2);
vshortx vabsdif(vshortx src1, int src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 52

vcharx vabsdif(vcharx src1, int src2);

For such instructions, double vector pseudo intrinsics are also supported, for example:

dvintx dvabsdif(dvintx src1, dvintx src2);
dvshortx dvabsdif(dvshortx src1, dvshortx src2);
dvcharx dvabsdif(dvcharx src1, dvcharx src2);
dvintx dvabsdif(dvintx src1, int src2);
dvshortx dvabsdif(dvshortx src1, int src2);
dvcharx dvabsdif(dvcharx src1, int src2);

Note that in each function, the same int-type scalar operand is shared between the two

single vectors.

A subset of vector math instructions has cross-lane dependency. For example, VMaxR

does max reduction across 8 extended word lanes, 16 extended halfword lanes, or 32

extended byte lanes. For such instructions there is no double vector pseudo intrinsic

support to avoid confusion.

Another subset of vector math instructions involved mixed size operands (between

single and double vectors), for example, VMulBBH has two single vector vcharx type

inputs, and its output is a double vector dvshortx type output. As we do not support

quad vector data types, there is no double vector pseudo intrinsic support as well, and

the intrinsics/operator field is similarly noted.

We also support various re-interpret type intrinsic functions:

Functionality Intrinsic

Reinterpret as vcharx vcharx as_vcharx (<vtype>);

Reinterpret as vshortx vshortx as_vshortx (<vtype>);

Reinterpret as vintx vintx as_vintx (<vtype>);

Reinterpret as vfloatx vfloatx as_vfloatx (<vtype>);

Reinterpret as vhfloatx vhfloatx as_vhfloatx(<vtype>);

Reinterpret as dvcharx dvcharx as_dvcharx (<dvtype>);

Reinterpret as dvshortx dvshortx as_dvshortx(<dvtype>);

Reinterpret as dvintx dvintx as_dvintx (<dvtype>);

Reinterpret as dvfloatx dvfloatx as_dvfloatx(<dvtype>);

Reinterpret as dvhfloatx dvhfloatx as_dvhfloatx(<dvtype>);

With any of such re-interpret type intrinsics, there is no change in the variable value. The

raw data is simply reinterpreted. For example, applying as_vshortx() on a vintx variable

reinterpret each 48-bit lane i as a pair of 24-bit lanes 2*i and 2*i+1, lower 24-bit as the

even lane, upper 24-bit as the odd lane.

For instructions sharing the same register entries (VRF, WRF, ARF) as source and

destination, also known as read-modify-write operands, we expose functionality to the

compiler in the form of intrinsic functions with return values.

For example, vector multiply-add of Byte type has this intrinsic function prototype:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 53

 vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);

instead of

 void vmaddb(vcharx src1, vcharx src2, vcharx & src3dst, u3imm rnd_opt, int pred);

The rationale for this choice is that return-value functions are more readable in

application code.

Since such instructions normally have accumulator-like behavior, we expect

programmers to use the same variable in the src2 fields as well as receiving return value

of the function; for example:

 acc = vmaddb(data, coef, acc, RND_R7, pred);

When the intrinsic functions are used this way, compiler usually achieves efficient

register allocation without incurring additional register movements.

6.2.4 Scalar/Vector Floating-Point Math

Instructions

The following floating-point instructions are supported in scalar and vector slots:

> FP16/FP32 add, subtract, multiply, multiply-add, multiply-subtract

> FP16/FP32 compare LT/LE/GT/GE/EQ/NE

> FP32 transcendental functions: square root, reciprocal, reciprocal of square root,

log/exp base 2, sine, cosine, tanh

> Conversion functions among FP16/FP32/INT16 and INT32. FP-to-INT conversions

include rounding and truncation options, and FP16-to/from-INT conversion includes

fraction bit width to support fixed-point processing.

Scalar floating-point instructions have 2 latency cases. Scalar floating-point comparison

instructions have 1 cycle of latency and remaining scalar floating-point instructions have

4 cycles of latency.

Vector floating-point has 3 latency cases. Vector floating-point comparison has 1 cycle

of latency, conversion between FP16 and FP32 has 2 cycles of latency, and the

remaining vector floating-point instructions have 3 cycles of latency.

VPU is an embedded processor that does not support exceptions. As an alternative, the

floating-point invalid flag can be polled and set/reset by code explicitly.

The following features are also not supported:

> errno macro

> math_handling macro

> MATH_ERRNO macro

> MATH_ERREXCEPT macro

> EDOM or domain error

> ERANGE or poll error

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 54

6.2.4.1 FP Math Corner Cases

FP math outcome for various corner cases, x being a non-zero regular FP number:

Table 6. FP add/subtract/multiply corner cases

FAdd:

src1

-x

zero

src2

-zero

inf

-inf

NaN

x zero x x inf -inf NaN

zero -x zero zero inf -inf NaN

-zero -x zero -zero inf -inf NaN

inf inf inf inf inf NaN NaN

-inf -inf -inf -inf NaN -inf NaN

NaN NaN NaN NaN NaN NaN NaN

FSub:

src1

x

zero

src2

-zero

inf

-inf

NaN

x zero x x -inf inf NaN

zero -x zero zero -inf inf NaN

-zero -x -zero zero -inf inf NaN

inf inf inf inf NaN inf NaN

-inf -inf -inf -inf -inf NaN NaN

NaN NaN NaN NaN NaN NaN NaN

FMul:

src1

1

-1

zero

src2

-zero

inf

-inf

NaN

1 1 -1 zero -zero inf -inf NaN

-1 -1 1 -zero zero -inf inf NaN

zero zero -zero zero -zero NaN NaN NaN

-zero -zero zero -zero zero NaN NaN NaN

inf inf -inf NaN NaN inf -inf NaN

-inf -inf inf NaN NaN -inf inf NaN

NaN NaN NaN NaN NaN NaN NaN NaN

The outcome of FMAdd(a, b, c) follows that of FAdd(FMul(a, b), c) for the above corner

cases. Outcome of FMSub(a, b, c) follows that of FAdd(FMul(-a, b), c) for the corner

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 55

cases. For FMAdd, when multiplication a * b results in number too small to represent

even as denormal, the product is represented as +zero or -zero, before the addition is

performed. Similarly for FMSub with multiplication -a * b.

For combination of src2/src3 being zero/-zero , FMAdd and FMSub outcomes are:

Table 7. FP multiply-add/subtract corner cases

src1 src2 src3 FMAdd FMSub

pos zero zero zero zero

pos zero -zero zero -zero

pos -zero zero zero zero

pos -zero -zero -zero zero

neg zero zero zero zero

neg zero -zero zero -zero

neg -zero zero zero zero

neg -zero -zero -zero zero

Note: These corner cases apply to scalar and vector, hfloat (FP16) and float (FP32) types.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 56

FP multiply corner cases:

Table 8. FP multiply corner cases

src1 src2 FMul

zero -zero -zero

-zero zero -zero

zero neg -zero

neg zero -zero

-zero pos -zero

pos -zero -zero

6.2.4.2 FP MUFU Instruction Corner Cases

Corner cases of reciprocal, square root, reciprocal square root, exp2, log2, sine, cosine

and tanh functions are documented in the corresponding instruction details.

6.2.4.3 FP Comparison Corner Cases

FP comparison always returns integer 0 (false) or 1 (true), and works as if FP numbers

are placed into these categories that have strict ordering:

-inf < negative FP numbers < -0 == 0 < positive FP numbers < inf

Negative FP numbers and positive FP numbers compare normally.

Behavior of comparison involving inf or -inf is:

> inf is equivalent to inf, thus inf cmp_op inf is true for {==, <=, >=} and false for others

> -inf is equivalent to -inf, thus -inf cmp_op -inf is true for {==, <=, >=} and false for

others

Behavior of comparison involving NaN is

> NaN cmp_op anything (including NaN itself) is false, for cmp_op = {<, <=, >, >=, ==}.

> NaN != anything (including NaN itself) is true.

Note that FP comparison produces an integer outcome, so it DOES NOT output NaN or

set the sticky invalid status bit.

Note that the above behavior and corner cases apply both to scalar and vector, hfloat

(FP16) type and float (FP32) type.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 57

6.2.4.4 FP Conversion Corner Cases

FP conversion can produce +/- Inf in case of converting int24/int32/int48/fp32 into fp16

and can produce NaN in case of conversion between fp32 and fp16. However, FP

conversion DOES NOT set the sticky invalid status bit even when outcome is NaN.

The following table shows scalar and vector floating-point conversion corner cases:

Table 9. FP/INT conversion corner cases

Conversion Function +/- Inf NaN

INT_FP
VINT_FP

Output +/- Inf not possible, as

INT32_MIN / INT32_MAX can

be presented in normal FP32

numbers

Output NaN is not possible

INT_FP16
VINT_FP16

Output +/- Inf is possible from

values not representable in

FP16

Output NaN is not possible

VINTX_FP Output +/- Inf not possible, as

INT48_MIN / INT48_MAX can

be presented in normal FP32

numbers

Output NaN is not possible

VINT24_FP16 Output +/- Inf is possible from

values not representable in

FP16

Output NaN is not possible

FP_INT_Trunc/Round
VFP_INT_Trunc/Round

Input +/- Inf converts to output

INT32_MIN / INT32_MAX

Input NaN converts to output

INT32_MIN / INT32_MAX

FP16_INT_Trunc/Round
VFP16_INT_Trunc/Round

Input +/- Inf converts output

INT32_MIN / INT32_MAX

Input NaN converts to output

INT32_MIN / INT32_MAX

VFP_INTX_Trunc/Round Input +/- Inf converts to output

INT48_MIN / INT48_MAX

Input NaN converts to output

INT48_MIN / INT48_MAX

VFP16_INT24_Trunc/Round Input +/- Inf converts to output

INT24_MIN / INT24_MAX

Input NaN converts to output

INT24_MIN / INT24_MAX

FP_FP16
VFP_FP16

Output +/- Inf is possible from

+/- Inf and values not

representable in FP16

Input NaN converts to output

NaN

FP16_FP
VFP16_FP

Input +/- Inf converts to output

+/- Inf

Input NaN converts to output

NaN

6.2.4.5 FP Conversion to/from Fixed-Point Formats

Some of the VPU scalar/vector FP/Integer conversion instructions support fixed-point

conversion by having an argument that conveys qbit of the fixed-point format.

Fixed-point format is one that represents a number having fixed integer and fraction

widths using integer representation. There is a qbit configuration parameter, sometimes

referred to simply as Q, as in Q8, Q15, and so on, that programmer maintains in software

to indicate width of the fraction portion. Qbit can be viewed as the bit position of an

imaginary radix point, or boundary between integer bits and fraction bits.

Normally, variables in the same block of computation share the same qbit, so that fixed-

point addition and subtraction are performed the same way as integer addition and

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 58

subtraction. Fixed-point multiplication is performed as integer multiplication followed by

rounding to get back the same qbit configuration, or a different qbit configuration if

desirable in the application.

To convert a floating-point number to a fixed-point, we multiply the floating-point

number by 2^qbit. To convert from fixed-point to floating-point, we divide the fixed-

point number by 2^qbit.

For example, numbers 1.125 and 5.0625 are represented in fixed-point with qbit = 8 as

1.125 * 2^8 = (1 + 1/8) * 256 = 256 + 32 = 288, and 5.0625 * 2^8 = (5 + 1/16) * 256 = 1280

+ 16 = 1296.

The sum of the two numbers, 1.125 + 5.0625 = 6.1875, can be carried out as 288 + 1296

= 1584, and converted back to floating-point as 1584 / 256 = 6.1875.

With qbit argument as part of the conversion, the multiplication or division by 2^qbit is

performed in hardware as part of the conversion, expanding precision and dynamic

range internally in the process, and bring some acceleration to the conversion process.

Not all FP/INT conversions support the qbit argument though. Basically, only a

conversion involving FP16 has this feature. FP16 format has relatively limited dynamic

range, as its 5 bits of exponent gives +/- 14 range in the exponent in regular (not

denormal) FP16 numbers. There are cases where the multiplication or division by 2^qbit

involved, if carried out in FP16 math would have caused the number to become +/- Inf in

FP16, and if carried out in integer would have overflown the integer representation.

Without a qbit argument as part of the conversion, the programmer would have to go

through FP32, that is, FP16 → FP32 → multiply 2^qbit in FP32 → Integer, or Integer →

FP32 → multiply by 2^-qbit in FP32 → FP16, and would have taken much longer.

For example, the number 128.0 represented in Q8 fixed-point is integer 0x8000, or 2^15.

It’s representable in INT32 or INT24 (vector extended short lane). If we convert this

number from fixed-point to FP16 using standard (no-qbit) conversion and FP16 math,

we will convert it first to FP16 then multiplying by 2^-8 in FP16. The first step of

converting INT24 or INT32 0x8000 to FP16 would result in +Inf (positive infinity), then

+Inf * 2^-8 = +Inf. For this example, it seems we would want to first divide by 2^8 in

INT24/INT32, before performing the standard INT24/INT32 to FP16 conversion.

However, in general doing that would throw away fractional information that we work

hard to obtain and would like to preserve as much and as long as possible in the

computation.

Conversely, if we convert 128.0 represented in FP16 to Q8 fixed-point with standard (no-

qbit) conversion and FP16 math, we see issues. 128.0 itself we can represent just fine in

FP16. However, the multiplying by 2^qbit = 2^8 involved, if performed in FP16, we would

see intermediate result becoming +Inf and cannot proceed to be accurately converted to

Q8 fixed-point. For this example, it would work if we converted 128.0 in FP16 to

INT24/INT32, then we left-shift by 8 bits in INT24/INT32. However, in this process we

also throw away fractional portion of the input number, so it would not accurately

convert, for example, 128.25, to fixed-point.

Converting FP32 to/from fixed-point would not have the same issue, as FP32 with its 8-

bit exponent supports wider dynamic range, -126 ~ +126, much wider than integer side,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 59

so inputs that cause intermediate outcome to become +/-Inf would cause the final

converted outcome to be saturated to MAX/MIN integer value for that destination bit

width, so there is no loss of information if the multiplying/dividing by 2^qbit is

performed in FP32 before/after conversion to/from integer.

6.3 Memory Operations

6.3.1 Memory Coherency

There is memory dependency detection logic to stall the processor pipeline to keep

memory coherent.

For this discussion, it is helpful to define coherent vs non-coherent memory operations.

Non-coherent memory operations:

> Transposing load/store

> Table lookup (load)

> Histogram (load and store)

> Vector-addressed store

Coherent memory operations: all other load/store. Each such load/store accesses

consecutive memory contents whose size range from one byte to 64 bytes.

The non-coherent accesses are non-consecutive and thus have a wide address range, so

it is too expensive to comprehend in the memory dependency stalling logic. Memory

access for load is in EX5 stage, whereas memory access for store is later in EX9 stage.

Thus, there should be 5 execution packets of separation between storing an item to

memory before the loading of that element should be scheduled.

When a coherent store and the subsequent coherent load are detected by hardware to

have “close enough” addresses and do not have enough execution packet separation in

the code, processor will stall the load to create the separation, so that load would return

memory contents after the store. The checking and stalling mechanism keeps the

memory operations coherent, or consistent with sequential execution.

To reduce timing pressure, the address checking is simplified (exact for scalar load/store

but use just starting row address for vector load/store) and is conservative. Thus,

sometimes, a load can be stalled unnecessarily until memory transaction from a previous

store is completed.

In case either or both memory operations are non-coherent, there is not enough

execution packet separation, and even when there are overlaps in addresses, processors

will not stall, causing RAW (read after write) and WAW (write after write) hazards. WAW

does not happen between normal store and vector-addressed-store, but can happen

between normal store and histogram update, as they occur on different pipeline stages.

To help achieve this separation between non-coherent memory operations, in Orin we

have added a memory fence instruction (MemFence) that can be used to avoid memory

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 60

coherency issues. The MemFence instruction would inject stalls until all preceding

memory store operations are committed. It is a broad (works on all memory operations)

and blind (not based on address) fence, so should be used judiciously, otherwise

performance may degrade too much.

Note that there is also available a compiler pragma chess_memory_fence() that works

similarly as the MemFence instruction. With chess_memory_fence(), compiler inserts as

many NOPs as necessary to ensure that memory store operations before the fence are

committed before memory operations after the fence can start. One advantage over

MemFence instructions is that each MemFence instruction simply inserts stall cycles,

and with chess_memory_fence(), the compiler is supposed to schedule useful work when

it’s possible, so that some useful work may be accomplished while memory operations

after the fence are delayed.

Histogram read/write has its own per-bank bypass mechanism (covering only histogram

read/write) to implement correct histogram operation despite VMEM latency.

There is RAW hazard detection and handling built-in for the histogram functionality to

ensure memory coherency among histogram updates. Note that there is no hazard

detection between histogram read/write versus any other load/store accesses, thus the

“non-coherent” memory operation designation for histogram.

6.3.2 Memory Address Alignment

Various scalar/vector load/store shall comply with the address alignment constraint and

misalignment handling.

In the case of demoting/promoting load/store, we determine alignment based on the

data type in memory, versus the data type in register file. For example, QVSTHB, quad

vector demoting store from Halfword to Byte, is considered Byte-type store regarding to

address alignment.

> Byte-type load/store:

• Scalar load/store LDB, STB (based-offset, post-modify, agen-based) are 8-bit

aligned.

• Single vector (32 x 8-bit) load/store VLDB, VSTB (based-offset, post-modify, agen-

based) are 8-bit aligned.

• Double vector (64 x 8-bit) load/store DVLDB, DVSTB (post-modify, agen-based)

are 16-bit aligned.

• Promoting/demoting load/store resulting in 32 x 8-bit memory access, VLDBH,

VLDBW, DVSTHB, are 8-bit aligned.

• Demoting store resulting in 64 x 8-bit memory access, QVSTHB, are 16-bit

aligned.

> Halfword-type scalar/vector load/store shall be 16-bit aligned.

> Word-type scalar/vector load/store shall be 32-bit aligned.

> Extended-word type vector load/store can be leveraged for extended

Byte/Halfword/Word types (12/24/48-bit), shall be 16-bit aligned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 61

> Table lookup, histogram, vector-addressed store base address should be 512-bit

aligned, so each 8-bit element is 8-bit aligned, 16-bit element 16-bit aligned, and 32-

bit element 32-bit aligned.

• VLUT_*, DVLUT_*

• VHIST_*, DVHIST_*

• DVAST_*

> Agen configuration (512-bit) load/store should be 32-bit aligned.

> AgenCfgLD, AgenCfgST

> Lane predicated vector stores would behave, in terms of address alignment, as

unpredicated vector stores.

> Unsigned load would behave as the corresponding signed load (keeping all other

attributes the same), in terms of address alignment.

The hardware enforces the alignment constraint by forcing the lowest {1, 2, 6} bits of

the byte address to zero, based on the alignment requirement being 16-bit, 32-bit, or

256-bit. For 8-bit address alignment, the byte address is not altered.

6.3.3 Memory Address Range Constraints

Load/store addresses should be in valid range consistent with the address map:

> Superbank A: 0x00000 ~ 0x1FFFF

> Superbank B: 0x40000 ~ 0x5FFFF

> Superbank C: 0x80000 ~ 0x9FFFF

Any single-item load/store should have base address inside the valid range. Any multiple-

item load/store should have base address sufficiently away from the end of each

superbank range, such that no data item would fall out of the valid range. For example,

software should avoid issuing a load or store starting 0x1FFE0 and spanning more than

32 bytes. An exception is lane-predicated store, if prediction is off for the part of store

data going outside the valid range.

In case a multiple-item load/store falls partially or fully outside the valid range, hardware

wraps around the access so that the part of load/store falling outside the valid range is

mapped back in, to the superbank indicated by the base address.

In case the base address goes outside the valid range, hardware determines the

superbank by:

> Address bits 19:18 == “00” → Superbank A

> Address bits 19:18 == “01” → Superbank B

> Address bits 19:18 == “10” or “11” → Superbank C

However, software should not take advantage of such a wrap-around, as address map

changes in future generations can change the address wrap-around and make the

software not work.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 62

6.3.4 Scalar Data Types

Byte, half-word and word types are supported. Signed/unsigned flavors of load for byte

and half-word are supported to properly sign or zero-extend into 32-bit scalar register

entry. Store operations are signed/unsigned agnostic so there is just one flavor.

Table 10. Scalar load/store data types

Element type
Size in

memory

Size in scalar

register

Memory

alignment

B/BU: signed/unsigned byte 8-bit 32-bit 8-bit

H/HU: signed/unsigned half-word 16-bit 32-bit 16-bit

W/WU: signed/unsigned word 32-bit 32-bit 32-bit

Note that hardware does not tag each scalar register carrying signed or unsigned data,

where behavior is different, signed and unsigned flavors of scalar math operations are

offered, so programmer should choose signed/unsigned flavors in scalar load and scalar

math operations appropriately.

6.3.5 Vector Data Types and Promotion/Demotion

Scalar-based load/store can have immediate offset (10-bit) or can be post-modified with

a second scalar register. Only parallel distribution mode is available, loading 256-bit or

512-bit from memory to write into single or double vector register, or storing single or

double vector register into 256-bit or 512-bit in memory. The WX type allows storing the

raw bits tightly packed as 384-bit, and can be used to load/store B, H, or W-type vector

registers.

Data types supported for scalar-based vector load/store:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 63

Table 11. Scalar-based vector load/store data types

Element type
Vector

size
Size in memory

Size in vector

register

Memory

alignment

B/BU:

signed/unsigned byte

single 32 x 8-bit

vchar/vuchar

32 x 12-bit

vcharx

8-bit

double 2 x 32 x 8-bit

dvchar/dvuchar

2 x 32 x 12-bit

dvcharx

16-bit

H/HU:

signed/unsigned half-

word

single 16 x 16-bit

vshort/vushort

16 x 24-bit

vshortx

16-bit

double 2 x 16 x 16-bit

dvshort/dvushort

2 x 16 x 24-bit

dvshortx

16-bit

W/WU:

signed/unsigned

word

single 8 x 32-bit

vint/vuint

8 x 48-bit

vintx

32-bit

double 2 x 8 x 32-bit

dvint/dvuint

2 x 8 x 48-bit

dvintx

32-bit

WX: extended

precision (VRF, WRF)

single 8 x 48-bit

vintx

8 x 48-bit

vintx

32-bit

Agen-based load/store offers more flexibility in data types. In addition to standard data

bytes, some types of promotion and demotion cases are supported.

Note that Load-Permute instruction type designations DVLDPermHB/HBU are not

included, as these type designations refer to data types in processing steps, permute as

Halfword and zero/sign extend as Byte, and are not indicating type demotion

functionality.

Table 12 Agen-based vector load/store data types

Type name Size in memory
Size in vector

register

Memory

alignment

B/BU: signed/unsigned byte load

B: signed byte store

single: 32 x 8-bit

vchar/vuchar

double: 64 x 8-bit

dvchar/dvuchar

32 x 12-bit

vcharx

2x 32 x 12-bit

dvcharx

single: 8-bit

double: 16-bit

H/HU: signed/unsigned half-word

load

H: signed half-word store

single: 16 x 16-bit

vshort/vushrot

vhfloat

double: 32 x 16-bit

dvshort/dvushort

dvhfloat

16 x 24-bit

vshortx

vhfloatx

2x 16 x 24-bit

dvshortx

dvhfloatx

16-bit

W/WU: signed/unsigned word load

W: signed word store

single: 8 x 32-bit

vint/vuint

8 x 48-bit

vintx

32-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 64

Type name Size in memory
Size in vector

register

Memory

alignment

vfloat

double: 16 x 32-bit

dvint/dvuint

dvfloat

vfloatx

2x 8 x 48-bit

dvintx

dvfloatx

BH/BHU: byte to half-word

promoting load

double: 32 x 8-bit

vchar/vuchar

2x 16 x 24-bit

dvshortx

8-bit

BW/BWU: byte to word promoting

load

double: 16 x 8-bit

n/a (half of vchar/vuchar)

2x 8 x 48-bit

dvintx

8-bit

HW/HWU: half-word to word

promoting load

double: 16 x 16-bit

vshort/vushort

2x 8 x 48-bit

dvintx

16-bit

BH: extended byte to half-word

promoting store

single: 32 x 16-bit

dvshort

32 x 12-bit

vcharx

16-bit

HW: extended half-word to word

promoting store

single: 16 x 32-bit

dvint

16 x 24-bit

vshortx

32-bit

HB: half-word to byte demoting

store

quad: 64 x 8-bit

dvchar

double: 32 x 8-bit

vchar

4 x 16 x 24-bit

2 x dvshortx

2 x 16 x 24-bit

dvshortx

16-bit

WH: word to half word demoting

store

quad: 32 x 16-bit

dvshort

double: 16 x 16-bit

vshort

4 x 8 x 48-bit

2x dvintx

2 x 8 x 48-bit

dvintx

16-bit

WH: word to half word demoting

store from DXAC

double: 32 x 16-bit dvshort 2 x 16 x 32-bit

dxvshortx

16-bit

WX: single vector register full 384-

bit load/store

(no rounding and saturation

support)

single: 8 x 48-bit

vintx

8 x 48-bit

vintx

16-bit

W: single XARF full 512-bit store single: 16 x 32-bit

xvshortx

16 x 32-bit

xvshortx

32-bit

While in scalar/vector math we use “F” and “HF” type designation to denote float and

hfloat data types, in memory operations, float and hfloat are treated like int and short

respectively and are thus mapped to “W” and “H” type designations.

6.3.6 Vector Load/Store Distribution Options

Various data distribution options are supported for vector load/store:

> S: scalar (load 1 element and broadcast to all lanes, store first lane), single register

(storing first lane of vector register) or double register (storing first lane of .lo single

vector and first lane of .hi single vector)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 65

> P: parallel (1-to-1), single or double register

> T: transposing, having constant offset between elements, single or double register

> PDI: parallel double register deinterleaving (load-only)

> PI: parallel double register interleaving (store-only)

• parallel quad register 4-way interleaving (store-only)

> TDI: transposing double register deinterleaving (load-only)

> TI: transposing double register interleaving (store-only)

> PI2: alternate form of quad register interleaving (store-only)

> C2: circulate between 2 data points, single register (load only)

> T2: transposing after every pair of elements (double Word vector load/store)

> T2DI/T2I: T2 with deinterleaving load or with interleaving store (double Word vector

load/store, double Halfword vector load)

> T4: transpose every 4 data elements

> T8: transpose every 8 data elements

> T16: transpose every 16 data elements

> T32: transpose every 32 data elements

Interleaving/deinterleaving is to offer data access flexibility as well as to deal with MAC

datapath interleaving in the lane-expanding cases. For double-register deinterleaving

load, we take memory items and interleave (deal) into the two vector registers. For

double-register interleaving store, we interleave (shuffle) data from two vector registers

to sequential items in the memory. For quad-register interleaving store, we interleave

each pair, then between the two pairs.

For example, “QVSTWH_P V0:V1, V2:V3, *A0++” would store out (indexing word lanes of

each register):

V0[0], V0[1], …, V0[7], V1[0], V1[1], …, V1[7],
V2[0], V2[1], …, V2[7], V3[0], V3[1], …, V3[7]

The 4-way interleaving version, QVSTWH_PI V0:V1_V2:V3 would store out:

V0[0], V2[0], V1[0], V3[0], V0[1], V2[1], V1[1], V3[1], …, V0[7], V2[7], V1[7], V3[7]

where the lowest 16-bit of each word lane is stored out in half-word spacing.

The 4-way interleaving QVSTHB_PI V0:V1, V2:V3 has a similar data pattern, with input

elements pulled from half-word (24-bit) lanes and stored out as bytes.

V0[0], V2[0], V1[0], V3[0], V0[1], V2[1], V1[1], V3[1], …, V0[15], V2[15], V1[15], V3[15]

Alternative interleaving pattern in QVSTWH_PI2 V0:V1, V2:V3, each element being 48-bit

input from register, 16-bit output in memory:

V0[0], V1[0], V0[1], V1[1], … , V0[7], V1[7], V2[0], V3[0], V2[1], V3[1], … , V2[7], V3[7]

Alternative interleaving pattern in QVSTHB_PI2 V0:V1, V2:V3, each element being 24-bit

input from register, 8-bit output in memory:

V0[0], V1[0], V0[1], V1[1], … , V0[15], V1[15], V2[0], V3[0], V2[1], V3[1], … , V2[15], V3[15]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 66

Another way to compare with the “_P” distribution option is to look at V0, V1, V2, V3

each as an 8 (in case of WH type) or 16 (in case of HB type) -element array.

> QVST*_P stores out V0 + V1 + V2 + V3, “+” being concatenation.

> QVST*_PI stores out interleave(interleave(V0, V1), interleave(V2, V3)).

> QVST*_PI2 stores out interleave(V0, V1) + interleave(V2, V3).

A load with “C2” distribution, for example, “VLDW_C2 *A0++, V0” would read the first 2

32-bit words from the location pointed by agen A0, say x[0] and x[1], and distribute

them such that

V0 = {x[0], x[1], x[0], x[1], x[0], x[1], x[0], x[1]}, seen as word (48-bit) lanes.

6.3.7 Transposing Load/Store

Transposing load/store accesses array elements vertically when the memory contents is

viewed with the configured line pitch. Here, line pitch is defined by number of elements.

Six transposition modes are supported, designated as T, T2, T4, T8, T16 and T32. T is the

normal transposition mode, and is supported broadly, for all Byte/Halfword/Word types

and various promotion/demotion types, single and double vector load/store. T<n>

transposition, n being a power of 2 from 2 to 32, reads/writes n consecutive data points

before applying the line pitch address offset.

Not all line pitch values are possible. Constraints on the line pitch are dependent on the

data type and the transposition mode, as shown in the following table.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 67

Table 13. Line pitch constraint for various transposition modes

Trans-

position

mode

Single/double vector - type - load/store Line pitch

constraint

Programmed

into

lane_ofst

(12-bit

unsigned)

T Single/double Word load (32-bit → 48-bit)

Single/double Word store (48-bit → 32-bit)

Single HW promoting store (24-bit → 32-bit)

16k + 1

k

 Single/double Halfword load (16-bit → 24-bit)

Single/double Halfword store (24-bit → 16-bit)

Double HW promoting load (16-bit → 24-bit)

Double BH promoting store (12-bit → 16-bit)

Double/quad WH demoting store (48-bit → 16-bit)

32k + 1

k

 Single Byte load (8-bit → 12-bit)

Single Byte store (12-bit → 8-bit)

Double BH promoting load (8-bit → 24-bit)

Double BW promoting load (8-bit → 48-bit)

Double/quad HB demoting store (24-bit → 8-bit)

64k + 2

k

T2 Double Word load (32-bit → 48-bit)

Double Word store (48-bit → 32-bit)

16k + 2

k

Double Halfword load (16-bit → 24-bit)

Double Halfword store (24-bit → 16-bit)

32k + 2 k

T4 Double Halfword load (16-bit → 24-bit)

Double Halfword store (24-bit → 16-bit)

32k + 4 k

T8 Double Word load (32-bit → 48-bit)

Double Word store (48-bit → 32-bit)

16k + 8

k

Double Halfword load (16-bit → 24-bit)

Double Halfword store (24-bit → 16-bit)

32k + 8 k

T16 Double Halfword load (16-bit → 24-bit)

Double Halfword store (24-bit → 16-bit)

32k + 16

k

T32 Double Byte load (8-bit → 12-bit)

Double Byte store (12-bit → 8-bit)

64k + 32

k

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like

normal (consecutive) load/store in address calculation. Behavior is still different than

normal (consecutive) load/store, in the sense that degenerate transposing memory

transactions are still noncoherent and can be used intentionally to avoid unnecessary

memory stalls. Please see Memory Coherency for details.

In case there is a type promotion or demotion in transposing load/store, it’s the data

type in memory that dictates which line pitch constraint to use.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 68

For Byte type we only support single vector T transposition load/store. For Halfword and

Word types, both single vector and double vector T transposition load/store are

supported.

In general, transposing load/store calculates byte addresses for each element as follows

for the normal transposition (T):

M = data size in bytes, 1, 2 or 4 for Byte/Halfword/Word type
P = (M == 1) ? (64*K + 2) : (64*K + M) // line pitch in bytes, K provided by agen lane_ofst
byte_address[i] = (base & SUPERBANK_SELECT)
 + alias_within_superbank((base + i*P), i = 0 .. num_lanes – 1

With this address calculation, adjacent lanes are P (pitch in bytes) apart in memory.

The first term of byte address is for superbank selection, which is affected only by the

base address, not by any index. As each superbank occupies 256KB of space (256K =

2^18), including aliased region, and we have 4 superbanks, we look at bits 19 and 18 of

byte address to select superbank:

SUPERBANK_SELECT = 0xC0000

For the T2 element-pair transposition, we carry out the following address calculation:

M = 2 for Halfword type, 4 for Word type
P = 64*K + 2*M // line pitch in bytes, K provided by agen lane_ofst
byte_address[2*i] = (base & SUPERBANK_SELECT)
 + alias_within_superbank ((base & BASE_MASK) + i*P)
byte_address[2*i+1] = (base & SUPERBANK_SELECT)
 + alias_within_superbank ((base & BASE_MASK) + i*P + M)
 i = 0 .. num_lanes/2 – 1, where BASE_MASK = 0x1FFC0.

With this address calculation, adjacent lanes are alternately M and 64*K+M apart in

memory.

The following diagram shows examples of T and T2 transposition access patterns. Note

that for Byte type, we write either all even bytes of every halfword or all odd bytes of

every halfword, depending on the LSB of byte address.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 69

Figure 9. Access patterns of transposition modes T and T2

T4, T8, T16, and T32 transposition modes are supported in selective load/store

instructions. Halfword type is more heavily used than the other types in computer vision,

and double vector load/store leverages full throughput of VMEM, so double vector

Halfword load/store supports all the transposition modes. Other type-transposition

combinations are supported where there is demand among use cases.

In general, line pitch in bytes for T<n> transposition is derived as

 P = 64 * lane_offset + n * sizeof_data_type

The access pattern is that we would access consecutively n data elements before taking

the line pitch address offset to move down to the next line.

The following diagram shows H_T4, H_T8, H_T16, B_T32 transposition access pattern.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 70

Figure 10. Access patterns of transposition modes T4, T8, T16 and T32

The unsigned 12-bit lane offset is applied up to 31 times among the transposition

options of a load/store instruction, and line pitch is 64 bytes times the lane offset, so

the full range of unsigned 12-bit lane offset value can lead the raw address to map far

outside the superbank the base address is pointed to. The extreme case is with single-

vector byte-type T transpose, 31 * (64 * 4095 + 2), almost 8 Mega Bytes (with Mega

being 1024^2).

It is allowed to program k = lane_ofst = 0, so that the transposing load/store behaves like

normal (consecutive) load/store in address calculation in all cases except for byte-type T

transposing load/store. Because we have 16-bit memory banks, byte-type T transposing

load/store with zero lane offset would be reading/writing every-other byte instead of

consecutive bytes.

In cases where address patterns of degenerate transposing load/store are identical with

that of normal/consecutive load/store, the exact behavior is still different, in the sense

that degenerate transposing memory transactions are still non-coherent transactions

from memory coherence stall logic point of view, meaning there is no address proximity

checks to stall memory transactions automatically. In certain cases, the degenerate

transposing load/store can be used intentionally to avoid memory coherency stalls, but

programmers should be extremely careful with its use.

The alias_within_superbank function in address calculation keeps subsequent accesses

within one superbank. Only in B_T32/H_T16/W_T8 distribution options, where the line

pitch is applied only once, would we make use of almost-full range of lane offset. It’s also

for future extension of VMEM capacity. Programmers are strongly discouraged to

intentionally allow address to go outside physical memory and rely on address aliasing in

the hardware. Such code may not work in the future when address map changes.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 71

6.3.8 Parallel Lookup, Histogram and Vector-

Addressed Store

PVA supports parallel table lookup and histogram through table/bin replication, taking

advantage of the memory banking organization in VMEM superbanks.

Vector-addressed store, also called reverse parallel lookup, takes a scalar base address

(512-bit = 64-byte aligned), a vector of indices, a vector of data values, and writes the

data values into the indexed entries. Often, per-lane predication is required to perform

store on selected lanes.

Table lookup:

> 1/2/4/8/16 x W/WU word index, word table entry

> 1/2/4/8/16/32 x H/HU halfword index, halfword table entry

> 1/2/4/8/16/32 x B/BU byte index, byte table entry

> 1/2/4/8/16/32 x HB/HBU halfword index, byte table entry

Histogram:

> 1/2/4/8/16 W word index, word histogram bin

> 1/2/4/8/16/32 H halfword index, halfword histogram bin

Vector-addressed store:

> 16W word index, word store data

> 32H halfword index, halfword store data

Note that only memory slot 0, M0, supports lookup, histogram, and vector-addressed

store features.

6.3.8.1 Data Organization in Memory

Table/histogram/VAST data organization is as follows:

Figure 11. Parallel lookup, histogram and VAST data organization for various

types and parallelism

16-parallel Word-type:

T0[0] T1[0] … T15[0]

T0[1] T1[1] … T15[1]

…

8-parallel Word-type:
T0[0..1] T1[0..1] … T7[0..1]

T0[2..3] T1[2..3] … T7[2..3]

…

4-parallel Word-type:

T0[0..3] T1[0..3] … T3[0..3]

T0[4..7] T1[4..7] … T3[4..7]

…

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 72

2-parallel Word-type:
T0[0..7] T1[0..7]

T0[8..15] T1[8..15]

…

1-parallel Word-type:

T0[0..15]

T0[16..31]

…

32-parallel Half-word-type:
T0[0] T1[0] T2[0] … T31[0]

T0[1] T1[1] T2[1] … T31[1]

…

16-parallel Half-word-type:

T0[0..1] T1[0..1] … T15[0..1]

T0[2..3] T1[2..3] … T15[2..3]

…

8-parallel Half-word -type:
T0[0..3] T1[0..3] … T7[0..3]

T0[4..7] T1[4..7] … T7[4..7]

…

4-parallel Half-word -type:
T0[0..7] T1[0..7] … T3[0..7]

T0[8..15] T1[8..15] … T3[8..15]

…

2-parallel Half-word -type:

T0[0..15] T1[0..15]

T0[16..31] T1[16..31]

…

1-parallel Half-word -type:
T0[0..31]

T0[32..63]

…

32-parallel Byte-type:

T0[0..1] T1[0..1] T2[0..1] … T31[0..1]

T0[2..3] T1[2..3] T2[2..3] … T31[2..3]

…

16-parallel Byte -type:
T0[0..3] T1[0..3] … T15[0..3]

T0[4..7] T1[4..7] … T15[4..7]

…

8-parallel Byte -type:

T0[0..7] T1[0..7] … T7[0..7]

T0[8..15] T1[8..15] … T7[8..15]

…

4-parallel Byte -type:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 73

T0[0..15] T1[0..15] … T3[0..15]

T0[16..31] T1[16..31] … T3[16..31]

…

2-parallel Byte -type:
T0[0..31] T1[0..31]

T0[32..63] T1[32..63]

…

1-parallel Byte -type:

T0[0..63]

T0[64..127]

…

6.3.8.2 Table Lookup

VMEM Superbanks support parallel table lookup with the following data element size

and parallelism combinations:

> For byte element size, 1/2/4/8/16/32 ways of parallelism

> For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism

> For word (32-bit) element size, 1/2/4/8/16 ways of parallelism

The VPU sends a table base address (512-bit or 64-byte aligned) and an index vector to

the VMEM interface (VMEM I/F). The VPU also sends along addressing mode (to convey

that it’s a table lookup transaction), element size and parallelism as sideband signals. The

first K elements of the index vector are consumed for K-way lookup; the rest are

ignored.

The VMEM I/F decodes the upper bits of the base address and forwards all signals

pertaining to the lookup access to the addressed superbank.

The superbank carries out the lookup, extracts the K table entries from memory

according to the base address and the index vector, and sends an outcome vector

through the VMEM I/F back to the VPU. The first K elements of the outcome vector are

consumed by the VPU; the rest are ignored.

The 32 16-bit memory banks are divided evenly to support the various lookup

parallelisms. For example, for 4-way word-size lookup, the 32 memory banks are evenly

divided into 4 parallel tables, with each table residing in 8 16-bit memory banks. Please

see Section 6.3.8.1 for table data organization for various data type and parallelism

combinations.

In Gen-2 VPU we have added 2-point lookup and 2x2-point lookup.

Table 14. Table lookup 2-point and 2x2-point support

Instruction Memory object Index vector Outcome vector

VLUT_*B

VLUT_2pt_*B

VLUT_2x2pt_*B

signed byte (8-bit) sign-extended from byte

lane (12-bit)

signed byte (12-bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 74

Instruction Memory object Index vector Outcome vector

VLUT_*BU

VLUT_2pt_*BU

VLUT_2x2pt_*BU

unsigned byte (8-bit) sign-extended from byte

lane (12-bit)

signed byte (12-bit)

[D]VLUT_*H

[D]VLUT_2pt_*H

[D]VLUT_2x2pt_*H

signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit)

signed half-word (24-bit)

[D]VLUT_*HU

[D]VLUT_2pt_*HU

[D]VLUT_2x2pt_*HU

unsigned half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit)

signed half-word (24-bit)

[D]VLUT_*W

[D]VLUT_2pt_*W

[D]VLUT_2x2pt_*W

signed word (32-bit) Up to 15 LSBs from word

lane (48-bit)

signed word (48-bit)

[D]VLUT_*WU

[D]VLUT_2pt_*WU

[D]VLUT_2x2pt_*WU

unsigned word (32-bit) Up to 15 LSBs from word

lane (48-bit)

signed word (48-bit)

VLUT_*HB

VLUT_2pt_*HB

VLUT_2x2pt_*HB

signed byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit)

signed byte (12-bit)

VLUT_*HBU

VLUT_2pt_*HBU

VLUT_2x2pt_*HBU

unsigned byte (8-bit) Up to 17 LSBs from half-

word lane (24-bit)

signed byte (12-bit)

6.3.8.3 Histogram

VMEM Superbanks support parallel histogram with the following data element size and

parallelism combinations:

> There is no byte element size support

> For half-word (16-bit) element size, 1/2/4/8/16/32 ways of parallelism

> For word (32-bit) element size, 1/2/4/8/16 ways of parallelism

Since each superbank supports one read transaction and one write transaction per

cycle, histogram reads and writes are pipelined, to achieve up to 32 histogram updates

per cycle, in case of 32-way half-word case.

The VPU sends a histogram base address (512-bit or 64-byte aligned), an index vector

and an update vector to the VMEM interface (VMEM I/F). The VPU also sends along

addressing mode (to convey that it’s a histogram transaction), element size and

parallelism as sideband signals. The first K elements of the index vector and the update

vector respectively are consumed for K-way histogram; the rest are ignored.

The VMEM I/F decodes the upper bits of the base address and forwards all signals

pertaining to the histogram access to the addressed superbank.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 75

The superbank carries out the histogram update, reads the K histogram bins from

memory according to the base address and the index vector, adds the update vector to

the bins, writes the updated bins back to memory (where each bin came from), and

sends the before-update bins as an outcome vector through the VMEM I/F back to the

VPU. The first K elements of the outcome vector are consumed by the VPU; the rest are

ignored.

The 32 16-bit memory banks are divided evenly to support the various histogram

parallelisms. For example, for 4-way word-size histogram, the 32 memory banks are

evenly divided into 4 parallel histograms, with each histogram residing in 8 16-bit

memory banks. See Data Organization in Memory for histogram data organization for

various data type and parallelism combinations.

Compared to conventional/normal histogram, VPU parallel histogram feature

implements weighted histogram (by allowing an update vector to be added instead of

only incrementing by one), and supports bin value read-back, which is useful in sorting

and decision tree applications to bin records or features for further processing.

Table 15. Histogram support

Instruction
Memory object (input &

outcome)
Index & weight vectors Outcome vector

[D]VHIST_*H signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit)

signed half-word (24-bit)

[D]VHIST_*W signed word (32-bit) Up to 15 LSBs from word

lane (48-bit)

signed word (48-bit)

[D]VHIST_OR_*H signed half-word (16-bit) Up to 16 LSBs from half-

word lane (24-bit)

signed half-word (24-bit)

[D]VHIST_OR_*W signed word (32-bit) Up to 15 LSBs from word

lane (48-bit)

signed word (48-bit)

6.3.8.4 Vector Addressed Store

VMEM Superbanks support vector addressed store, which is also called reverse lookup,

since instead of reading back indexed entries, data is written to the indexed entries. We

support the maximal parallelism, 32 half-word and 16-word configurations.

Table 16. Vector addressed store support

Instruction Memory object

(outcome)

Index & data vectors Outcome

vector

DVAST_32H signed half-word (16-bit) 11 LSBs from half-word

lane (24-bit)

n/a

DVAST_16W signed word (32-bit) 11 LSBs from word lane

(48-bit)

n/a

Basically, each index lane is sign-extended where insufficient to cover a whole

superbank, otherwise appropriate number of LSBs taken to cover a whole superbank.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 76

When we are extending, it’s always sign-extended, as opposed to complying with

signed/unsigned designation in the lookup instruction (which is used to sign/zero-extend

table/histogram entry).

In the case of byte indices (which is normally for byte entries), since a superbank has

128KB, 17 bits are needed for 1-way lookup, 16 bits for 2-way lookup (each way

containing 64KB), and so on, to 12 bits needed for 32-way lookup (each way containing

4KB). We would sign-extend from 12-bit byte lane.

For the conventional lookup providing starting address of the table as the base, byte-

indexed lookup can only cover 2KB for 1-way, 4KB for 2-way, and so on, to 64KB for 32-

way. Due to the limited table size coverage, we also support using halfword indices for

byte-entry table lookup.

In the case of halfword and word entry (which is only possible to go with halfword and

word indices), we have more than sufficient bit width in each index lane to cover a full

superbank, so only an appropriate number of LSBs are used. The address calculation is

signed/unsigned agnostic (except when we need to sign/zero-extend for the case of

byte indices), so it’s safe to treat indices as unsigned, which is how table lookup is

naturally implemented.

In case of VAST, only maximal parallelism is supported for each type (32H and 16W), so

the index is used to point to each 64-byte-aligned wide memory word. Thus, there is just

one bit width used, 11-bit, as superbank size 128KB is 2K x 64B.

The superbank to access is determined solely by the base address. There is no out-of-

bound memory access detection; large index values can cause the resulting address to

land outside the intended table or histogram object in the same superbank in VMEM.

Also, taking some LSBs of the indices, ignoring upper bits, is essentially performing

index wrap-around in the same superbank, but not in the table/histogram/VAST-object,

as there is no way to indicate size of the table/histogram/VAS-object to the processor. It

is the programmer’s responsibility to ensure that lookup/histogram/VAST operations do

not index outside the intended memory range or suffer the consequences.

For example, a 4KB 32-way H-type lookup table has only 4KB/2/32 = 64 entries in each

sub-table. If/when the base address is the starting address of the table, in conventional

non-negative indexing, only [0, 63] in index range makes sense. If the base address is

right in the middle of the table (starting address + 2KB), for a symmetrical signed

indexing, only [-32, 31] range makes sense. A whole superbank can be reached by the

lookup, with up to 128KB/2/32 = 2K entries. An index value of 2048 would behave the

same as 0, and full range of index values in 24-bit vector lane would wrap 8192 times

(ignoring upper 14 bits) around the superbank and can access data outside the allocated

4KB table.

Address Calculation

Parallel lookup, histogram, and vector address store addressing involves taking the

prescribed number of indices, separating the indices into vertical and horizontal

components, and accessing the table entry with the vertical/horizontal indices in the

appropriate sub-table.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 77

For example, 4-way parallel lookup of byte type would organize the table memory as 4

banks of 16 entries wide sub-tables, using the 4 LSBs of index horizontally within the

row of 16 entries fetched for a sub-table, and the upper bits vertically to pick the row.

Address calculation for the parallel lookup can be expressed as:

 lut_out[i] = table[(index[i] & 0xF) + i*16 + (index[i]>>4)*64], for i = 0..3

In general, for M bytes-per-point data type, N-way parallel lookup, we calculate stride K =

(64/M)/N = 64/(M*N) = number of entries per table on the same memory line (512 bits =

64 bytes per line). Hardware accesses table entries at byte addresses

 byte_offset[i] = ((index[i] modulo K) + i*K) * M + floor(index[i] / K)*64, for i = 0..N-1

Essentially, the table index is partitioned into two pieces, the modulo K piece for

indexing consecutive entries in a memory line, and the quotient divided by K piece for

addressing memory lines. As K is a power of two (since parallelism N, data size M and 64

are all powers of two), the modulo and the divide operations are implemented as bitwise

AND and right shift.

 byte_address[i] = (base & SUPERBANK_SELECT)
 + ((base & BASE_MASK) + byte_offset[i]) & SUPERBANK_MASK

The first term of byte address is for superbank selection, which is affected only by the

base address, not by any index. For the first generation, we have

SUPERBANK_SELECT = 0xC0000
BASE_MASK = 0x1FFC0,
SUPEBANK_MASK = 0x1FFFF.

For two-point lookup, DVLUT_2pt, up to 16 indices (consistent with the parallelism

designation) are used to calculate byte_offset and byte_address described above. Then,

same number of additional indices, index[i] + 1, go through the same calculation to

perform up to 32 lookups per DVLUT_2pt instruction. See 9.9.6.4 DVLUT_2pt instruction

description for details.

For 2x2-point lookup, DVLUT_2x2pt, up to 8 indices (consistent with the parallelism

designation) are used to calculate byte_offset and byte_address described above. Then,

3 times the number of additional indices, index[i] + 1, index[i] + LP, index[i] + LP + 1, go

through the same calculation to perform up to 32 lookups per DVLUT_2pt instruction.

LP here is line pitch and is derived from the PL register. See 9.9.6.5 DVLUT_2x2pt

instruction description for details.

Vector addressed store is also called reverse lookup, as instead of retrieving indexed

entries from memory, write values are to be written to the indexed locations. It is useful

for list-based processing.

6.4 Address Generator Features
Address generator, or agen, is a unique feature in VPU instruction set architecture. Agen

moves much of the multi-dimensional address calculation prominent in image and vision

processing to the background and carried out by hardware, improving performance and

power in common image and vision processing.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 78

6.4.1 Multi-Dimensional Address Calculation

Agen configuration includes address generator and various other load/store parameters

to accelerate regular load/store operations.

Each address generator supports up to 6-dimensional address calculation with its own

set of n1..n6 number of iteration parameters, amod1..amod6 address modifiers, and loop

variables i1..i6. Agen can be viewed as supporting 6-level nested for loop, with level 1 is

being the inner-most loop, and level 6 being the outer-most loop.

For cases when we do not need all 6 dimensions, the convention is to use the lower-

numbered variables and set the higher-numbered variables to default values. For

example, 2D agen should have

 n3 = n4 = n5 = n6 = 1
 amod3 = amod4 = amod5 = amod6 = 0

The Agen supports 6-dimensional address calculation by realizing this function:

address(i1, i2, i3, i4, i5, i6) = base + item_size * (i1*w1 + i2*w2 + i3*w3 + i4*w4 + i5*w5 +
i6*w6),

In this example, w1..w6 are the weights we place on the loop variables i1..i6. We can also

visualize w1..w6 as the step amount, in data elements, for each dimension.

Instead of the programmer providing the weights and hardware computing the address

via the sum of products expression, the programmer should provide the address

modifiers (amod1~amod6), which is the delta of one address to the next address as the

6-dimensional iterator is advanced.

The address modifiers should be calculated as follows:

> Inside i1 loop: amod1 = w1.

> When i1 is reset and i2 is incremented: amod2 = w2 – (n1 – 1)*w1.

> When i1 and i2 are reset and i3 is incremented: amod3 = w3 – (n2 – 1) * w2 – (n1 –

1)*w1.

> When i1, i2 and i3 are reset and i4 is incremented: amod4 = w4 – (n3 – 1)*w3 – (n2 – 1)

* w2 – (n1 – 1)*w1.

> When i1, i2, i3 and i4 are reset and i5 is incremented: amod5 = w5 – (n4 – 1)*w4 – (n3 –

1)*w3 – (n2 – 1) * w2 – (n1 – 1)*w1.

> When i1, i2, i3, i4 and i5 are reset and i6 is incremented: amod6 = w6 – (n5 – 1)*w5 –

(n4 – 1)*w4 – (n3 – 1)*w3 – (n2 – 1) * w2 – (n1 – 1)*w1.

As the above expressions are tedious to program, there is a set of agen wrapper macros

to translate from n1..n6 and w1..w6 into amod1..amod6. Example of programming with

agen wrapper will be given in Optimization 2: Leveraging Agen to Collapse Nested Loops.

Agen data structure includes address modifiers as 18-bit fields, and CfgAgen Mod

instruction reads 32-bit from the source scalar register and stores only 18 LSBs,

dropping the upper 14 bits. Addresses generated from each agen is supposed to be

confined within a superbank (128KB = 2^17), so address calculation does not require

upper 14 bits.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 79

Behavior of agen-based load/store is post-increment. Data is accessed from the current

address and type, distribution option, etc., configuration. Then the address and loop

variables i1..i6 are advanced, and address modifier chosen, according to following

pseudo code:

 lpend1 = (i1 == (n1 - 1)) || (n1 == 0);
 lpend2 = (i2 == (n2 - 1)) || (n2 == 0);
 lpend3 = (i3 == (n3 - 1)) || (n3 == 0);
 lpend4 = (i4 == (n4 - 1)) || (n4 == 0);
 lpend5 = (i5 == (n5 - 1)) || (n5 == 0);
 lpend6 = (i6 == (n6 - 1)) || (n6 == 0);

if (lpend1 && lpend2 && lpend3 && lpend4 && lpend5 && lpend6) {
 amod = 0; // stay at last data point
} else if (lpend1 && lpend2 && lpend3 && lpend4 && lpend5) {
 i1 = i2 = i3 = i4 = i5 = 0;
 i6 = i6+1;
 amod = amod6;
} else if (lpend1 && lpend2 && lpend3 && lpend4) {
 i1 = i2 = i3 = i4 = 0;
 i5 = i5+1;
 amod = amod5;
} else if (lpend1 && lpend2 && lpend3) {
 i1 = i2 = i3 = 0;
 i4 = i4+1;
 amod = amod4;
} else if (lpend1 && lpend2) {
 i1 = i2 = 0;
 i3 = i3+1;
 amod = amod3;
} else if (lpend1) {
 i1 = 0;
 i2 = i2+1;
 amod = amod2;
} else {
 i1 = i1 + 1;
 amod = amod1;
}

If the agen functionality is implemented in scalar operations, it would take potentially

many instructions.

Agen address calculation is post-modify. When executing an agen-based load/store

operation, the lower 20-bit of Agen address field is used to address the load/store, amod

is calculated as described above, address (unsigned 20-bit) is added with amod (signed

18-bit).

Consider the VMEM address map (see 5.3). In agen address update, it is NOT possible to

jump from one superbank’s primary region into another superbank’s primary region,

since the gap is 128KB, 2^17 bytes, thus minimal distance 2^17 + 1, while signed 18-bit

of amod can encode a range of -2^17 ~ (2^17 – 1). It IS possible, however, for an agen

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 80

address to walk from one primary region to an aliased region, then onward into another

superbank primary region. This is, however, strongly discouraged, as it may break

software compatibility in the future.

See Circular Buffer Addressing for additional address calculation steps when circular

buffer is configured.

With the reset default values of Addr = 0, amodi = 0, Ni = 1 and Ii = 0, uninitialized agen

would have address fixed at 0 when it’s used in agen-based load/store.

Additionally, Ni = 0 is treated like Ni = 1 with the way end-of-loop is detected, and

maximal iteration count for any loop level is 65535.

Agen configuration also includes an optional lane_offset field for transposing load/store.

For the basic T transposition mode, the lane_offset field provides a row offset scaled by

the lane number. For lane i, relative to linear/consecutive access, the address offset is i *

lane_offset * 64 Bytes.

See Transposing Load/Store for use of lane_offset in address calculation across various

transposition modes.

6.4.2 Automatic Predication

When all loop variables reach their ending count, meaning the agen has executed the

prescribed number of load/stores, all loop variables are stuck at the ending count. Any

subsequent load with that Agen would repeat reading at the ending address. Any

subsequent store with that Agen will be predicated off.

For example, for an Agen with N1 = 4, N2 = N3 = N4 = N5 = N6 = 1, its loop variable and

predicate off status with respect to execution of the relevant load/store is as follows:

 I1 I2 I3 I4 I5 I6 auto_pred_off

Initial state 0 0 0 0 0 0 0

after 1 execution 1 0 0 0 0 0 0 (1st store allowed)

after 2 executions 2 0 0 0 0 0 0 (2nd store allowed)

after 3 executions 3 0 0 0 0 0 0 (3rd store allowed)

after 4 executions 3 0 0 0 0 0 1 (4th store allowed)

after 5 executions 3 0 0 0 0 0 1 (5th store blocked)

We can think of the auto_pred_off as an overflow bit of the Agen loop variables updated

after the execution (like Agen loop variables), but its predication effect applies on the

next memory store transaction.

This agen automatic predication works as an override of programmer-specified

predication on vector or scalar store via predicate register or vector register. When

auto_pred_off is 0, programmer-specified predication mechanism applies. When

auto_pred_off is 1, entire memory write transaction is blocked.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 81

The agen automatic predication does not affect loads. Any scalar or vector load using an

Agen with exceeded iteration count (thus auto_pred_off = 1) will still have its memory

transaction carried out and destination register write occurred, albeit with address stuck

at the last valid address so memory read-back value should remain the same (except

if/when there’s another party, VPU, DLUT or DMA, writing to that address).

The use case for this feature is loop unrolling. Often VPU code uses pragma

chess_unroll_loop(K) to indicate to compiler that the loop is to be unroll K times, for

software pipelining.

 for (i=0; i<niter; i++) chess_unroll_loop(K)
 {
 // loop body
 }

It is not required that iteration count (niter in the above example) be a multiple of K.

Compiler generates code to check, and break up the loop into a “multiple” loop and a

“remainder” loop to ensure that the generated code executes correctly.

If/when the programmer is certain that the iteration count is indeed a multiple of K,

another pragma, chess_unroll_loop_assuming_multiple(K), can be used. This

pragma instructs compiler not to generate code to compute/check niter modulo K, and

to not to generate the “remainder” loop.

The automatically predicate-off feature may allow

chess_unroll_loop_assuming_multiple(K) to be used whether niter is a multiple

of K, resulting in smaller code size and lower loop overhead.

 quotient_ceil = (niter + K – 1) / K; // ceiling (niter / K)
 for (i=0; i< quotient_ceil * K; i++) chess_unroll_loop_assuming_multiple(K)
 {
 // loop body
 }

This technique works for most common loops where outcomes are stored out in the

loop, so extra iterations, as long as stores are predicated off, do not affect the outcome.

When there is accumulation over loop iterations using vector or scalar register, the Agen

automatic predication feature does not quite work, as the predication applies only to

stores, not to register writes. Also, the store must be driven by Agen, as there’s no way

to specify an ending iteration count using scalar-based (base + offset or post-modify)

stores.

6.4.3 Rounding and Saturation

Agen-based store includes rounding and saturation features. Values from register file

are first rounded, then saturated.

There are corresponding Agen configuration fields to convey the parameters:

> Rounding field includes 1-bit for round/truncation option and 7-bit for number of bits

to round/truncate

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 82

> Saturation low/highs limit and values

> Saturation option field indicates whether saturation is enabled, and whether

saturation limits are treated as signed or unsigned

When the number of bits to round/truncate exceeds source lane width (B=12, H=24,

W=48), rounding leads to zero for all inputs, and truncation leads to zero for

zero/positive inputs, and to -1 for negative inputs.

Rounding is performed by adding 1 to the bit position one bit lower than the bit count.

For example, if we are rounding off 3 bits, we add (1 << 2) then right-shift by 3 bits.

Truncation is performed by right-shift alone. Examples:

> round(6, 1) = (6 + (1 << 0)) >> 1 = 7 >> 1 = 3

> round(6, 2) = (6 + (1 << 1)) >> 2 = 8 >> 2 = 2

> round(-6, 3) = (-6 + (1 << 2)) >> 3 = -2 >> 3 = -1

> truncate(6, 1) = 6 >> 1 = 3

> truncate(6, 2) = 6 >> 2 = 1

> truncate(-6, 3) = -6 >> 3 = -1

For saturation, we support 4-parameter saturation. When enabled, hardware carries out

the following:

store_val = (reg_val < SatLimLo) ? SatValLo : ((reg_val > SatLimHi) ? SatValHi : reg_val);

In this case, reg_val is 12/24/48-bit signed. SatLimLo and SatLimHi are sign/zero-

extended from 32-bit values in Agen configuration. We have a 2-bit saturation option

SatOpt to indicate whether to sign or zero extend the 32-bit configuration values. Note

that vector lane values are always read as signed.

Rounding and saturation steps are performed with bit width accommodating both the

data source bit width (12/24/48-bit lane width in vector registers) and comparison values

(signed/unsigned 32-bit). Consequently,

> For promoting stores (12-bit into 16-bit, 24-bit into 32-bit), the source data values

are in representation range of signed 12-bit or 24-bit.

> In the case of comparison values, SatLimLo and/or SatLimHi, exceed the source data

representation range, reg_val < SatLimLo would never happen, so the source data is

unchanged for that saturation bound. For example, SatLimLo (signed) = -

0x8000_0000 when source data is 12-bit, having representation range [-0x800,

0x7FF], reg_val < SatLimLo is always false.

For extended word type source data (48-bit), and when saturation is enabled, the

comparison is carried out correctly as if it’s carried out in signed 48-bit. For example,

when reg_val = -0x8000_0000_0000 (min value in signed 48-bit) and SatLimLo

(signed) = -0x8000_0000 (min value in signed 32-bit), reg_val < SatLimLo is true and

the replacement occurs.

The saturation replacement values SatValLo and SatValHi are configured as 32-bit

numbers. When the memory store type is 8-bit or 16-bit, and the replacement occurs,

only the 8 or 16 LSBs of SatValLo or SatValHi are written out to memory; the upper 24 or

16 bits are ignored.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 83

Rounding and saturation features are not available for these cases:

> WX type: can be 8 x 48-bit, 16 x 24-bit, or 32 x 12-bit

> W type on single vector XARF: 16 x 32-bit

Double-vector XARF store does include rounding and saturation.

Rounding and saturation operations are performed as integer operations, so if enabled

on floating-point (FP32 or FP16) type store, they would interpret floating-point binary

values as 48-bit/24-bit integer values, so the resulting values being stored may not make

sense.

6.4.4 Min and Max Value Collection

There is a min and max value collection feature in agen-based scalar/vector stores.

Min/max collection occurs after rounding/saturation and is predicated upon the lane

being stored to the memory.

There is a 2-bit min/max option to encode

> 0: disable (default)

> 1: disable

> 2: enable for signed min/max

> 3: enable for unsigned min/max

This includes a 32-bit MinVal (min value) and a 32-bit MaxVal (max value) in the Agen

register file.

Upon agen initialization, min/max option is initialized to 0 (disabled), and min/max values

are initialized to 0.

Upon configuring the min/max option to 2 (enabled for signed min/max), the min value is

initialized to MAX_INT32 = 0x7FFF_FFFF. The max value is initialized to MIN_INT32 =

0x8000_0000.

Upon configuring the min/max option to 3 (enabled for unsigned min/max), the min value

is initialized to MAX_UINT32 = 0xFFFF_FFFF. The max value is initialized to MIN_UINT32 =

0.

Upon configuring the min/max option to 0 or 1 (disabled), the min/max values are reset

to 0.

The min/max option is in the first 512-bit part of the Agen config, so is saved with

AgenCfgST, and restored with AgenCfgLD. Upon AgenCfgLD, min/max values are

initialized according to min/max option.

The min/max values are in the second part of the Agen config, so is saved with

AgenCfgST_p2 and restored with AgenCfgLD_p2.

Note that with AgenCfgLD_p2, min/max values are loaded as-is from memory without

checking to see if they make sense:

1. Min value can be larger than Max value according to the signed/unsigned option

designated in MinMaxOpt.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 84

2. Min value and/or Max value may fall outside the valid range of signed/unsigned

option designated in MinMaxOpt and data type previously used agen-based store

associated with the specific Agen.

3. Max/Max values can be non-zero, though MinMaxOpt indicates min/max collection is

disabled.

(1) and (2) are because:

> The initialized values for Min/Max values are type-blind, and in fact fall out of valid

char and short ranges in 3 of the 4 possible values (INT32MAX, INT32MIN,

UINT32MAX).

> Agen data structure is type-neutral and does not record type of data being stored.

Because we cannot guarantee that min/max values make sense when min/max collection

feature is enabled, we don’t attempt to correct min/max values when the feature is

disabled, presumably min/max values are not useful to the application in such cases.

Upon every Agen-based store (scalar or vector), if min/max feature is enabled, signed or

unsigned min and max operations are carried out, so that the MinVal and MaxVal fields

maintain the min and max values across all stored data. They can be read out after

processing to query min and max values.

The min/max collection excludes WX type stores, and that if enabled on floating-point

(FP32 or FP16) type store, would interpret floating-point binary values as 32-bit/24-bit

integer values, so the resulting min/max values may not make sense. This is with

rounding/saturation steps before min/max collection being disabled. If either rounding

or saturation is enabled, input to min/max collection may not make sense.

6.4.5 Save and Restore to/from Memory

Once individual parameters in an agen are configured, the collection of all parameters

can be saved to memory via AgenCfgST and restored back via AgenCfgLD. This allows

calculation of parameters to be carried out during application initialization and be quickly

restored to configure the agens during regular tile processing.

Reserved fields are written as zeros initialized to zero in InitAgen. They are not

modifiable via any CfgAgen instructions and not utilized in any Agen functionality.

Through CfgAgenLD, if corresponding contents in memory are non-zero, zero will be

loaded into Agen data structure instead. When CfgAgenST is used to store out the

whole Agen data structure, corresponding bits in memory will show zeros.

Consult Instruction Execution Ordering for various execution order exceptions regarding

various instructions accessing Agen.

6.4.6 Circular Buffer Addressing

PVA supports circular buffer addressing to facilitate data reuse. Circular buffer

addressing is available in agen-based load/store instructions by configuring optional

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 85

circular buffer starting address (cbuf_sa) and circular buffer size (cbuf_sz) parameters in

the unit. Circular buffer is enabled when cbuf_sz is configured to be a nonzero value.

There’s alignment constraint (consistent between DMA and VPU) that circular buffer

should be 64-byte aligned. We allocate 16-bit for the starting address and the size

parameters. We apply 6-bit up-shift before interpreting the parameters as a byte

addressed to enforce the alignment.

Address is folded into the circular buffer via the following pseudo-code:

 CB_start = cbuf_sa << 6;
 CB_size = cbuf_sz << 6;
address = CB_start + ((address – CB_start) % CB_size);
// % = modulo operator, returns 0..CB_size-1

The circular buffer address calculation above is applied whenever agen-based load/store

updates its address when each instance of such instruction is executed. The sequence

of operations is as follows:

1. Prescribed load/store using the current address.

2. Address update using address modifiers, loop iteration count, and loop variables (see

Multi-Dimensional Address Calculation).

3. When circular buffer is enabled, address is folded back to [CB_start,

CB_start+CB_size-1] if it falls out of the range.

With circular buffer enabled (size > 0), address parameters should be constrained as

follows:

> Base address and circular buffer should be inside a superbank.

> Base address should be within the buffer, i.e., CB_start <= base_addr < CB_start +

CB_size.

Any address modifier must not have magnitude (absolute value) larger than the circular

buffer size; i.e., |AMOD[i]| <= CB_size.

When circular buffer is enabled, every AGEN address update would be checked to see if

it falls out of the circular buffer. If it falls under (addr < CB_start), it is adjusted with +

CB_size. If it falls over (addr >= CB_start + CB_size), it is adjusted with – CB_size. If

afterward it still falls out of the circular buffer, no error is reported. Note that when

Agen parameters are properly constrained, this should not happen.

Details of circular buffer address calculation are as follows (this information is intended

for verification, where parameters outside normal programming constraints may be

used):

> Lower 20 bits of the AGEN address field is read as an unsigned number, addr

> addr is added with amod, lower 18 bits of one of the 6 address modifiers selected for

this address increment. The addition outcome is kept as a signed 21-bit number,

addr1, as the normally updated address without circular buffering

> Lower 14 bits of cbuf_start (Agen field) is left-shifted 6 bits to become CB_start (20-

bit)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 86

> Lower 14 bits of cbuf_size (Agen field) is left-shifted 6 bits to become CB_size (20-

bit)

> addr2 = addr1 + CB_size, which is addr1 wrapped forward, kept as signed 21-bit

number

> addr3 = addr1 – CB_size, which is addr1 wrapped backward, kept as signed 21-bit

number

> If amod is negative:

• If addr1 is less than CB_start, meaning the negative address update makes it fall

before circular buffer’s start address, wrapped_addr is assigned addr2 (addr1

wrapped forward)

• Otherwise, wrapped_addr is assigned addr1

> Otherwise:

• If addr1 is greater than or equal to CB_size + CB_start, meaning the positive

address update makes it fall after circular buffer’s end address, wrapped_addr is

assigned addr3 (addr1 wrapped backward)

• Otherwise, wrapped_addr is assigned addr1

> Lower 20 bits of wrapped_addr is read as an unsigned number and written back zero-

extended to the 32-bit AGEN address field.

Circular buffer addressing is NOT applied inside a single memory transaction of

single/double vector load/store. Thus, either vector load/store should avoid crossing the

circular buffer boundary, or there should be software workaround.

One software workaround scheme where DMA supplies data to the circular buffer, and

VPU consumes the data, is to allocate additional 64 bytes after the circular buffer as

work-around areas. Before VPU starts consuming data in the circular buffer, the first 64

bytes of circular buffer data should be copied to fill the 64 bytes work-around area. This

work-around only covers linear (consecutive) accesses though, not transposing

load/store, table lookup, or histogram.

There is no easy workaround when VPU supplies data into the circular buffer, and DMA

consumes it. Misaligned data access generally comes from spatial dependency and is

only in reading data. It is usually feasible to size output block dimension so that data

writes are compliant with reasonable alignment constraints. Thus, there is usually no

need for such a workaround.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 87

Figure 12. Workaround for vector accesses across circular buffer boundary

Superbanks are not consecutive in the data memory space (128KB in 256KB space). In

normal application, circular buffer should not go out of any superbank. When it does, the

address is wrapped around and mapped back to one of the VMEM superbanks without

any error interrupt being raised.

Circular Buffer

(256B aligned)

64B

64B

copy

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 88

Chapter 7. Decoupled Lookup Unit

(DLUT)

In this chapter, an overview of the Decoupled Lookup Unit (DLUT) is provided. For a

programming example, refer to Leveraging DLUT.

7.1 Overview
For Orin VPU, we extended VPU instruction set functionality in various areas within the

scope of an embedded vector SIMD machine. There is one area that we cannot extend in

this scope, that is resolving memory bank conflict in parallel lookup operations.

In the VPU instruction set, we do have various parallel lookup instructions (2/4/8/16/32-

way parallelism), but these instructions require that we have correspondingly that many

tables so that there is inherently no memory bank conflict. These tables are sometimes a

replication of one table, and sometimes different tables, depending on the application.

For example, in image warping we transform one image tile at a time, and parallel lookup

is only possible if we replicate it from that one image tile. For example, in the feature

tracker, we perform gradient descent on many patches of an image, and parallel lookup

can be performed on the many patches in parallel, if the patches are reformatted into

parallel table organization. Either way, table lookup parallelism is constrained by memory

footprint taken up by the parallel tables.

In applications involving table lookup, we often wish to perform parallel lookup with

certain throughput, while we cannot afford memory footprint to replicate one table that

many times, or load that many parallel tables into memory. Ideally, we want the

processor to allow parallel lookup with just one copy of the table as part of the

instruction set. However, such memory operations would result in data-dependent

memory bank conflicts in execution. For example, 32-way parallel halfword lookup with

one copy of the take may take up to 32 cycles just to carry out reading the table entries,

if all 32 lanes happen to go to the same memory bank. VPU can handle some degree of

data-dependent memory conflict, naming at superbank level. Handling memory bank

level conflicts is simply too difficult to accomplish in an embedded processor pipeline

with limited pipeline depth.

The decoupled lookup unit (DLUT) is architected to provide this functionality outside the

processor pipeline and can operate concurrently and independently with the processor

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 89

pipeline, thus the term “decoupled unit”. The DLUT carries out parallel lookup with one

common table by executing as many lookups in a cycle as it can in a decoupled pipeline.

Besides parallel lookup with one common table, DLUT also supports one configuration of

contention free lookup/interpolation, which is most helpful in accelerating target

workload in the Orin SOC plan. Although the functionality is supported in the VPU

processor, but by adding this to DLUT, we offload VPU processing cycles so there are

advantages in performance and power.

DLUT also supports table reformatting needed to bridge between DMA and DLUT or VPU

lookup operations. Again, the table reformatting can be accomplished at the same

throughput by the VPU processor, but by adding this to DLUT, we offload VPU

processing cycles so there is advantages in performance and power, and the

functionality in DLUT leverages datapath we need to have anyway for the main lookup

functionality, so does not pose much area or power increase, just minor engineering

effort.

7.2 DLUT Features
The DLUT provides these operation modes:

> 1D lookup

> 2D lookup

> 1D lookup and linear interpolation

> 2D lookup and bilinear interpolation

> Table reformatting

> Conflict free 2D lookup and bilinear interpolation (from parallel copies of table)

> 2D lookup and bilinear interpolation with auto-indexing, where the index data need

not be supplied; indices are generated by DLUT from a few parameters

Other DLUT features:

> 1D/2D lookup from one common table, with conflict detection/resolution

> Optional integer only or fixed-point integer + fraction indices, via configurable

number of fractional bits

> Out-of-range sentinel return value

> Out-of-range predicate off output write

> Configurable X/Y offset to translate between global coordinates and local

coordinates

> Indices can be unsigned 16-bit, or 32-bit (each X or Y in case of 2D lookup)

> Table entries (and output) can be 8-bit, 16-bit, or 32-bit, signed or unsigned, and

entry data type is independent of index data type

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 90

7.3 Task Structure and Operation Modes
We define a DLUT task as producing N2 * N1 outputs through lookup and optional post-

lookup interpolation. A trimmed down agen (address generator) drives addressing of

index read, and another agen drives output write. The table pointer can step linearly in

the outer dimension of N2, so one task can be regarded as N2 rounds of lookup, with

one table producing N1 outputs per round. These N2 rounds of lookup of one task share

the same parameter block that specifies index/output data type, index read agen,

output write agen, and so on.

Besides table lookup and post-lookup interpolation, DLUT also supports conflict-free 2D

lookup with bilinear interpolation, and various table reformatting as separate tasks.

DLUT supports the following operation modes:

> 1D lookup: from linear indices, optionally perform rounding or truncation to convert

to integer indices and 1D table lookup.

> 2D lookup: from 2D indices, optionally perform rounding or truncation to convert to

integer indices and 2D table lookup

> 1D lookup with linear interpolation

> 2D lookup with bilinear interpolation

> 2D conflict-free lookup with bilinear interpolation, 32-bit index and 16-bit entry only

> Table reformatting

> 2D lookup and bilinear interpolation, with automatic index generation that supports

starting X/Y and scaling step per round of lookup

DLUT in operation utilizes 3 memory streams, index read stream, lookup read stream,

and output write stream. To simplify hardware design/verification, encourage efficient

operation, and simplify DLUT/VPU/DMA interaction, each stream is tied to the superbank

each task is configured with. Thus, address modification due to agen update and/or

table address offset is performed in bits 17:0 of the respective address pointers, leaving

bits 19:18 that identifies the superbank unchanged from the task-configured addresses.

Tor better DLUT performance, index and lookup should not be in the same superbank.

However, such an allocation does not affect the correctness of the outcome.

We define DLUT group size being the number of outputs per clock the hardware can

achieve ideally, when there is no conflict. The group size is basically set by either index

read throughput or lookup throughput, as output write throughput is never lower than

lookup throughput.

Group size for various modes is as follows:

> 1D/2D lookup (without interpolation): 32 for Byte/Halfword entries, 16 for Word

entries.

> 1D lookup with interpolation: 16 for Byte/Halfword entries, 8 for Word entries.

> 2D lookup with interpolation: 8 for Byte/Halfword entries, 4 for Word entries.

> 2D conflict-free lookup with interpolation: 8 (since only Halfword entry type is

supported).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 91

> Table reformatting: 32 (since Halfword type is assumed).

Note that it is NOT required that the inner-loop output size, N1, should be a multiple of

group size. Hardware handles optional partial-group operation in the last inner iteration

by invalidating various index read, lookup, and output write lanes not being utilized. Note

that even when task length N1 is a multiple of group size, we can still have partial

transactions in index read and/or output write.

7.4 Task Sequencing and VPU/DLUT

Interaction
DLUT execution time is dependent on bank conflict within the indices, so it is not

constant. While it is possible to establish the average execution time given random

number distribution of the indices, the actual execution time can be drastically different.

For example, a task of 32 Halfword lookups can take between 1 and 32 cycles to

execute, excluding any control and pipelining overhead.

In applications there can be multiple dependent or independent lookup tasks that we

would like DLUT to execute sequentially, while VPU is executing some other compute

tasks. Since DLUT execution time is data dependent and can be drastically different, it is

not convenient for VPU to “check on” DLUT between compute tasks and kick off the

next DLUT task one at a time. To facilitate parallel execution, we architect the DLUT

interface to facilitate task sequencing.

VPU software prepares task parameters, allocate input/output regions, for multiple

tasks at a time, and go through one interaction with DLUT. Parameters for each task is a

fixed-sized data structure that links to the next task.

DLUT carries out the configured tasks sequentially without overlap. Each task is

processed to completion (last output written) before the next task is started (first index

read) to simplify hardware implementation.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 92

Chapter 8. Programming Examples

In this chapter, we show a few relatively simple programming examples. The profiling

instruction reports were generated at the time of the writing, and may not be accurate

later, as the performance is subject to processor model revisions and ASIP tool updates.

8.1 Typical Test Case Organization
A recommended way to organize test source files for a typical algorithm/application VPU

standalone test case, for example, array_add, is to have these source files:

> array_add.prx project file listing source files, header include paths,

compiler settings, etc.

> array_add_test.c: containing main function and global input/output arrays

> array_add_ref.c reference function, typically written in plain/scalar C code

> array_add_ref.h reference function header

> array_add_opt.c optimized function

> array_add_opt.h optimized function header

The VPU standalone test case typically used to develop/optimize compute kernels. For

developing a PVA application including DMA, one should follow the cuPVA development

flow.

A sample testbench code in array_add_test.c follows:

#include "stdio.h"
#include "string.h"

#define TEST_SZ 4096

int chess_storage(RAM_Ab:chess_segment(A)) in1[TEST_SZ];
int chess_storage(RAM_Bb:chess_segment(B)) in2[TEST_SZ];
int chess_storage(RAM_Cb:chess_segment(C)) out_ref[TEST_SZ];
int chess_storage(RAM_Cb:chess_segment(C)) out_opt[TEST_SZ];

int main()
{
 test_mem_fill_int(in1, TEST_SZ, 0x80000000, 0x7FFFFFFF);
 test_mem_fill_int(in2, TEST_SZ, 0x80000000, 0x7FFFFFFF);
 memset(out_opt, 0, sizeof(out_opt));

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 93

 array_add_ref(in1, in2, out_ref, TEST_SZ);
 array_add_opt(in1, in2, out_opt, TEST_SZ);

 int fail = memcmp(out_ref, out_opt, sizeof(out_ref));
 return fail;
}

The arrays are allocated with chess_storage() pragma. In a VPU programming

environment, the VMEM L1 data memory, which consists of 3 superbanks each 128KB, is

a precious resource, so typically programmers would allocate manually into the 3

superbanks in a matter that minimize bank conflict during VPU compute kernel

execution. See Memory Allocation among VMEM Superbanks about details in VMEM

superbanks and storage specifiers.

For this specific compute kernel, array addition, we need 2 inputs being in different

superbanks. The output array must be in a third superbank in Gen-1 VPU, since in Gen-1

VMEM, each superbank has one memory port that can support read or write, but not

both. In Gen-2 VPU, the output array can be in any superbank since each VMEM

superbank has one read port and one write port.

DMA and DLUT share VMEM superbanks as well, so can potentially conflict with VPU

compute kernel accessing VMEM superbanks. In Gen-2 VPU, one can take advantage of

the one-read-one-write ports of VMEM superbank to reduce conflicts. This is because

typically we have the producer/consumer relationship between each pair of masters

transmitting one array of data.

Typically, in the main program, input arrays are initialized with random values, and

optimized outcome array is initialized to zero. Then, the reference function is called to

produce expected outcome array, the optimized function is called to produce optimized

outcome. Finally, the two arrays are matched to verify that optimized function carries

out the intended functionality, and because of the matching, the convention being zero

indicates pass, non-zero indicates fail, is returns from main().

8.2 1D Array Addition
We shall use a one-dimension array addition function to illustrate the process of taking

some plain C code, and revise it step by step to achieve full performance.

8.2.1 Scalar Code

We start with the same code as the one shown in Hardware Looping to showcase the

hardware looping feature. We often call this the scalar code, as the code is written

without using vector data type, vector operation intrinsic functions, or vector load/store

intrinsic functions. The code is translated into scalar math and scalar load/store

instructions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 94

//***
// Function implemented with normal/scalar C code
//***
void array_add_ref(int * A, int * B, int * C, int len)
{
 for (int i=0 ; i<len; i++)
 {
 C[i] = A[i] + B[i];
 }
}

Instead of assembly listing, the profiling instruction report is shown next. The report has

performance information annotated besides the assembly listing, so it is a lot more

convenient to assess performance with, than assembly listing. There is also function-

level PC range, code size, and cycle/instruction count information that are quite useful.

Some manual editing is done on the generated report to shorten labels and various

fields so that the report can easily fit the page width for readability. Somehow tool

generated instruction reports omit labels, and they are manually added back to make

better sense of the control flow.

Function detail: array_add_ref void_array_add_ref___P__sint___P__sint___P__sint___sint

 Low PC : 56
 High PC : 71
 Size in program memory: 16
 Cycle-count : 14352 (15.31%)
 Instruction-count : 6154 (7.63%)
 Instruction Coverage : 100.00%

 PC Assembly Exe-cnt Cycs
---- -- ------- -------
 56 CMPLEI R7,#0,R2 1 5
 57 BNEZ R2,#TGT_Fvoid_array_add_ref_12 1 1
 58 NOP 1 1
 59 NOP 1 1
 60 RPT R7,#LE_Fvoid_array_add_ref_11 1 1
 61 ORI R0,#4,R2 1 1
 62 NOP || NOP 1 1
 64 LDW *R4+=R2,R8 || LDW *R5+=R2,R3 2048 10240
 66 ADD R3,R8,R9 2048 2048
.label LE_Fvoid_array_add_ref_11
 67 STW R9,*R6+=R2 2048 2048
.label TGT_Fvoid_array_add_ref_12
 68 JR R15 1 1
 69 NOP 1 1
 70 NOP || NOP 1 3

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 95

The number in the ‘Exe-Cnt’ column is execution count, or how many times that specific

packet was executed, and number in the ‘Cycles’ column is the cycle count. Where the

two numbers differ, usually the cycle count is an integer multiple of the execution count,

with the ratio being the number of cycles each instance of the packet takes to execute,

usually due to stalling in the execution.

By looking at either number, one can quickly tell the loop body from the rest of the code,

as the loop body is iterated many times. In this example, the loop is iterated 2048 times,

so each execution packet in the loop body is executed 2048 times.

The loop body consists of 4 instructions in 3 execution packets, performing,

respectively, 2 loads, 1 operation, and 1 store, exactly as implied in the source code. In

general, plain C code compiles cleanly into scalar instructions.

The first packet of the loop body is taking 10240 cycles to execute 2048 times, so 5

cycles each time. Note that the stalled execution packet is executing 2 parallel loads, and

the very next packet is adding up the 2 destination registers of the loads. The stalling is

due to the load-to-use latency of 5 cycles.

Also, the code has conditional branches, BNEZ, although the branch is not taken

(otherwise the loop is completely bypassed and would get zero execution and cycle

counts). The conditional branch is there in the assembly to guard against the case when

the len (length) argument is zero, to truly implement the correct behavior of the C-

language for loop.

Performance from this plain C code is quite poor, taking 5+1+1 = 7 cycles per iteration,

with exactly one addition operation achieved per iteration. The whole function execution

takes 14,352 cycles. In subsequent sections we will show how performance can be

drastically improved.

8.2.2 Optimization 1: Vectorized Code

We make our first optimization revision by replacing scalar processing with vector

processing, as shown in the following code:

//***
// Optimization 1: vectorization
//***
void array_add_opt1(int * A, int * B, int * C, int len)
{
 int vecw = chess_elementsof(dvintx);
 dvint * vptrA = (dvint *) A;
 dvint * vptrB = (dvint *) B;
 dvint * vptrC = (dvint *) C;
 dvintx vA, vB, vC;

 for (int i=0 ; i<len/vecw; i++)
 {
 vA = sign_extend(*vptrA++);
 vB = sign_extend(*vptrB++);
 vC = vA + vB;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 96

 *vptrC++ = extract(vC);
 }
}

We use a pragma chess_elementsof(dvintx) to acquire the vector width, as the number

of elements in the dvintx type. Since source/destination arrays are of int type, we would

use dvint as the vector data type in memory, and dvintx as the vector data type in

register file. The two data types have the same number of elements, so it’s just as valid

to code vecw = chess_elementsof(dvint).

We cast each source and destination array points to dvint pointers, and declare vector

variables vA, vB, vC, of dvintx type.

In the loop body, we perform signed vector loads via sign_extend() intrinsic function with

vector pointer dereferencing with post-increment. Sign_extend is thus named to

indicate that we are sign-extending from standard int (32-bit) type into extended word

(48-bit) type for each element of the array.

We load the two source operands vA and vB, we add them up into vC, and we store out

vC. The store is coded as vector pointer dereferencing and the extract() intrinsic

function. Exact is thus names to indicate that we are extracting part of the extended

word (48-bit) in each vector lane into a standard int type (32-bit) before storing into

memory.

The generated (and cosmetically, manually edited) profiling instruction report that

shows compiled assembly with execution count and cycle count information is as

follows:

Function detail: array_add_opt1 void_array_add_opt1___P__sint___P__sint___P__sint___sint

 Low PC : 72
 High PC : 95
 Size in program memory: 24
 Cycle-count : 1044 (1.11%)
 Instruction-count : 398 (0.49%)
 Instruction Coverage : 100.00%

 PC Assembly Exe-cnt Cycs
---- --- ----------- -------
 72 SRAI R7,#31,R2 1 1
 73 ANDI R2,#15,R2 1 1
 74 ADD R2,R7,R7 1 1
 75 SRAI R7,#4,R2 1 1
 76 CMPLEI R2,#0,R7 1 5
 77 BNEZ R7,#TGT_Fvoid_array_add_opt1_15 1 1
 78 NOP 1 1
 79 NOP 1 1
 80 RPT R2,#LE_Fvoid_array_add_opt1_14 1 1
 81 ORI R0,#64,R7 1 1
 82 NOP 1 1
 83 DVLDW_P *R4+=R7,V2:V3|| DVLDW_P *R5+=R7,V0:V1 128 768
 85 VAddW V2:V3,V0:V1,V4:V5 128 128

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 97

.label LE_Fvoid_array_add_opt1_14
 86 DVSTW_P V4:V5,*R6+=R7 128 128
.label TGT_Fvoid_array_add_opt1_15
 87 JR R15 1 1
 88 NOP 1 1
 89 NOP || NOP || NOP || NOP || NOP || NOP || NOP 1 3

The vectorized function takes 1044 cycles to execute and is about 13.7x the

performance of the scalar code. Essentially, we gain a speedup of 16x by processing a

dvint, 16 elements of 32-bit, per iteration, but the loop executes 6+1+1 = 8 cycles per

iteration, versus 7 cycles per iteration in the scalar loop, so we give back some of the

speedup from vectorization.

The compiled assembly is still relatively clean, and the loop body still has 4 instructions in

3 execution packets. The 4 instructions are respectively 2 vector loads, one vector

addition, and one vector store. Here the de-reference of pointer with post-increment in

the C code maps perfectly to the vector load/store instructions.

The higher stall count in the first execution packet of the loop body, 6 cycles in the

vectorized loop, versus 5 cycles in the scalar loop, is due to processor pipelining. Vector

addition happens to have its source operands forwarded from the load unit one cycle

later than scalar addition can forward its source operands, so load-to-use latency for

vector operations is one cycle longer.

8.2.3 Optimization 2: Unroll and Pipeline the Loop

Next, we tackle the inefficiency caused by load-to-use latency, as shown in the following

optimized code:

//***
// Optimization 2: pipelining & unrolling
//***
void array_add_opt2(int * A, int * B, int * restrict C, int len)
{
 int vecw = chess_elementsof(dvintx);
 dvint * vptrA = (dvint *) A;
 dvint * vptrB = (dvint *) B;
 dvint * restrict vptrC = (dvint *) C;
 dvintx vA, vB, vC;

 for (int i=0 ; i<len/vecw; i++) chess_unroll_loop(8)

 chess_prepare_for_pipelining chess_loop_range(16,)
 {
 vA = sign_extend(*vptrA++);
 vB = sign_extend(*vptrB++);
 vC = vA + vB;
 *vptrC++ = extract(vC);
 }
}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 98

We cannot significantly reduce the latency. What we can do is to fill the pipeline with

useful work while the latency is played out. Technique to do that is called software

pipelining, and is enabled by the 3 pragma annotated on the for statement:

> chess_unroll_loop(8) tells the compiler to replicate the loop body 8 times and adjust

the loop iteration count accordingly, by dividing it by 8.

> chess_prepare_for_pipelining tells the compiler to software pipeline this loop,

causing the loop body code (which could be the original loop contents or already

replicated through loop unrolling) to be folded and scheduled into multiple iterations,

and consequently there will be a prolog of the loop and an epilog of the loop.

Often, chess_unroll_loop() and chess_prepare_for_pipelining pragmas go hand-in-

hand. Most loops would need both pragmas to achieve the best performance.

> chess_loop_range(16,) tells the compiler that this loop is guaranteed (by the

programmer) to run at least 16 iterations. This pragma causes generated code to do

without the “what if len is zero” checking and conditional branch, resulting in a more

streamlined control flow in the compiled assembly.

One other thing to point out is the keyword restrict on address pointers C and vC that

we use to write back to memory. This restrict keyword is telling the compiler that it is

safe to perform these writes in any order relative to other memory reads and/or writes.

Without the restrict keyword, compiler cannot overlap multiple instances of the original

load/store operations to software-pipeline the loop effectively.

The corresponding profiling instruction report is shown next.

Function detail: array_add_opt2 void_array_add_opt2___P__sint___P__sint___P__sint___sint

 Low PC : 96
 High PC : 167
 Size in program memory: 72
 Cycle-count : 141 (0.15%)
 Instruction-count : 139 (0.17%)
 Instruction Coverage : 100.00%

 PC Assembly Exe-cnt Cycs
---- ---------- --- ------- -----
 96 SRAI R7,#31,R2 1 1
 97 ORI R0,#64,R2 || ANDI R2,#15,R3 1 1
 99 ADD R3,R7,R7 1 1
 100 SRAI R7,#7,R7 || DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27 1 1
 103 ADDI R7,#-1,R7 || DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19 1 1
 106 DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11 1 1
 108 DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3 1 1
 110 DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1 1 1
 112 DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9 1 1
 114 RPT R7,#LE_Fvoid_array_add_opt2_54 1 1
 115 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17 1 1
 118 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2||
 DVLDW_P *R5+=R2,V24:V25 1 1
 122 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R4+=R2,V30:V31|| DVLDW_P *R5+=R2,V26:V27||

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 99

 DVSTW_P V18:V19,*R6+=R2 15 15
 126 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R4+=R2,V22:V23|| DVLDW_P *R5+=R2,V18:V19||
 DVSTW_P V10:V11,*R6+=R2 15 15
 130 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R4+=R2,V14:V15|| DVLDW_P *R5+=R2,V10:V11||
 DVSTW_P V2:V3,*R6+=R2 15 15
 134 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R4+=R2,V6:V7|| DVLDW_P *R5+=R2,V2:V3||
 DVSTW_P V0:V1,*R6+=R2 15 15
 138 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R4+=R2,V4:V5|| DVLDW_P *R5+=R2,V0:V1||
 DVSTW_P V8:V9,*R6+=R2 15 15
 142 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R4+=R2,V12:V13|| DVLDW_P *R5+=R2,V8:V9||
 DVSTW_P V16:V17,*R6+=R2 15 15
 146 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R4+=R2,V20:V21|| DVLDW_P *R5+=R2,V16:V17||
 DVSTW_P V28:V29,*R6+=R2 15 15
 150 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R4+=R2,V28:V29|| DVSTW_P V24:V25,*R6+=R2||
 DVLDW_P *R5+=R2,V24:V25 15 15
 154 VAddW V14:V15,V10:V11,V10:V11|| DVSTW_P V18:V19,*R6+=R2 1 1
 156 VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11,*R6+=R2 1 1
 158 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R6+=R2 1 1
 160 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R6+=R2 1 1
 162 JR R15 || VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R6+=R2 1 1
 165 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R6+=R2 1 1
 167 DVSTW_P V28:V29,*R6+=R2 1 3

This optimized function takes just 141 cycles to execute and achieves 7.4 times the

performance of the previous code, which is vectorized but not yet software pipelined. If

we compare it to the original plain C code, the speedup is 101.8 times.

This loop has a theoretical max throughput of one dvint vector addition, 16 lanes x 32-

bit, per clock cycle. It’s bounded by each dvint vector operation needing 2 loads and 1

store for input/output, saturating the 3 superbanks x 512-bit of VMEM bandwidth.

Vector math throughout for addition is one dvintx addition per vector slot, so in this

loop, vector math is only 50% utilized. Each execution packet in the loop body is packed

with one VAddW (double vector addition), 2 DVLDW (double vector load word type), and

one DVSTW (double vector store word type), confirming the math and memory

utilization.

In terms of efficiency, 128/141 = 91%. Overhead comes from 13 cycles spent setting up

the local frame on the stack, extracting arguments from the stack, setting up the loop,

and finally for 2 cycles of pipeline bubble from executing a return instruction (JR R15) to

the caller.

In reference to the loop unrolling factor: performance-wise, it’s not necessary to unroll 8

times. It is convenient to constrain a compute function to limit loop iteration count to a

power of 2, thus unrolling by 2, 4, 8, is more convenient than unrolling by 5, 6, 7, etc. The

minimal number of times to unroll a loop depends on how much vacancy there is in a

single iteration due to load to use latency and sometimes also vector math operation

latency. With compiler and ISS (instruction set simulator), one can just experiment with

different unrolling factors and find a factor that works.

For a simple, single-operation loop like in the array addition example, we need to unroll 6

times to achieve optimal performance. If unrolling by K times achieves the optimal

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 100

performance, unrolling more than K times should achieve the same performance, but

would cause the compiled code size to grow. VPU Instruction Cache has a set capacity,

16K Bytes for the Orin generation, so we should not unnecessarily increase the code

size.

8.3 2D Array Addition
Next, we shall use a two-dimension array addition function to illustrate how we leverage

the multi-dimensional address calculation feature of agens to collapse nested for loops

to minimize looping overhead and achieve optimal performance.

8.3.1 Scalar Code

The following code implements a two-dimension array addition.

//***
// Function implemented with normal/scalar C code
//***
void array2d_add_ref(int * A, int * B, int * C,
 int blkw, int blkh,
 int lofst_A, int lofst_B, int lofst_C)
{
 for (int i=0 ; i<blkh; i++)
 for (int j=0 ; j<blkw; j++)
 {
 C[i * lofst_C + j] = A[i * lofst_A + j] + B[i * lofst_B + j];
 }
}

As each source and operand array is two dimensional, in the function’s arguments we

convey block width and block height of the computation, and line offset for each

operand array. This function uses two levels of nested for loops to iterate through rows

and columns. In the loop body, the statement carrying out the addition operation

indexes into each operand array with two-dimensional indexing to acquire each input

data element and to store each output data element.

Compiled assembly, along with execution count and cycle count is shown next:

Function detail: array2d_add_ref
void_array2d_add_ref___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint

 Low PC : 168
 High PC : 199
 Size in program memory: 32
 Cycle-count : 14438 (13.01%)
 Instruction-count : 6218 (7.16%)
 Instruction Coverage : 100.00%

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 101

PC Assembly Exe-cnt Cycs
---- -- ------- ------
 168 CMPLE R7,R0,R2 || CMPLE R8,R0,R3 1 5
 170 BNEZ R3,#TGT_Fvoid_array2d_add_ref_23 1 1
 171 NOP 1 1
 172 NOP 1 1
 173 RPT R8,#LE_Fvoid_array2d_add_ref_22 1 1
 174 ORI R0,#4,R3 1 1
 175 NOP 1 1
 176 BNEZ R2,#TGT_Fvoid_array2d_add_ref_20 8 8
 177 NOP 8 8
 178 NOP 8 22
 179 RPT R7,#LE_Fvoid_array2d_add_ref_19 8 8
 180 ORI R6,#0,R13 8 8
 181 MOV R5,R8 || MOV R4,R12 || NOP 8 16
 184 LDW *R12+=R3,R17 || LDW *R8+=R3,R14 2048 10240
 186 ADD R14,R17,R18 2048 2048
.label #LE_Fvoid_array2d_add_ref_19
 187 STW R18,*R13+=R3 2048 2048
.label TGT_Fvoid_array2d_add_ref_20
 188 SLLIADD R10,#2,R5,R5|| SLLIADD R9,#2,R4,R4 8 8
.label LE_Fvoid_array2d_add_ref_22
 190 SLLIADD R11,#2,R6,R6 8 8
.label TGT_Fvoid_array2d_add_ref_23
 191 JR R15 1 1
 192 NOP 1 1
 193 NOP || NOP || NOP || NOP || NOP || NOP || NOP 1 3

The block width and height are configured as 256 and 8 respectively. The execution

count numbers show execution packets that are outside the loops (those with execution

count of 1), between the loops (those with execution count of 8), and inside the inner-

most loop (those with execution count of 2048).

Compared to the one-dimensional array addition with the same number of element-wise

additions, this function takes 14438 – 14352 = 86 cycles longer, or 0.6% slower. We can

look at these additional number cycles as the cost of performing two-dimensional

addressing. This cost strongly depends on the block width and height.

The additional number of cycles (86) depends only on the block height, as the compiled

code has a fixed number of instructions between loop levels, and they are executed 8

times in this case because the outer loop is iterated 8 times.

The proportion of cycles (0.6%) spent between the loops roughly depends only on the

block width. The compiled code has a fixed number of instructions in the innermost loop

body as well, which is executed block_width * block_height = 2048 times. Thus,

proportion of time spent between loop levels is some (K1 * block_height) / (K2 *

block_width * block_height) = K1 / (K2 * block_width) = K3 / block_width. The wider the

block width, the smaller proportion of time spent between loop levels.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 102

In this code example, we do not see a large proportion of time spent handling two-

dimensional addressing, but this is due to the block width being large enough for the

inner loop to be unrolled 8 times and with sufficient iteration count to support the

unrolling, as 16 * 16 = 256. If the block width is less than 256, we would see a larger

proportion of processing time spent on two-dimensional addressing. Later in

Performance Across 2D Array Dimensions, we will show cycle counts across different

block dimension configurations.

8.3.2 Optimization 1: Vectorized, Unrolled and

Pipelined Loop

Here we apply the vectorization and unrolling/pipelining techniques shown in

Optimization 1: Vectorized Code and Optimization 2: Unroll and Pipeline the Loop

respectively on the two-dimensional addition function.

//***
// Optimization 1: vectorized, unrolled and pipelined
//***
void array2d_add_opt1(int * A, int * B, int * restrict C,
 int blkw, int blkh,
 int lofst_A, int lofst_B, int lofst_C)
{
 dvintx vA, vB, vC;
 int idx_A, idx_B, idx_C;
 int vecw = chess_elementsof(dvint);
 dvint * vptrA = (dvint *) A;
 dvint * vptrB = (dvint *) B;
 dvint * restrict vptrC = (dvint *) C;

 for (int i=0 ; i<blkh; i++)
 {
 for (int j=0 ; j<blkw/vecw; j++) chess_loop_range(16,)
 chess_unroll_loop(8) chess_prepare_for_pipelining
 {
 vA = sign_extend(*vptrA++);
 vB = sign_extend(*vptrB++);
 vC = vA + vB;
 *vptrC++ = extract(vC);
 }
 A += lofst_A;
 B += lofst_B;
 C += lofst_C;
 vptrA = (dvint *) A;
 vptrB = (dvint *) B;
 vptrC = (dvint *) C;
 }
}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 103

We still need nested for loops to iterate horizontally and vertically. After the inner loop,

between loop levels, there is an update of pointers to adjust for the line offset so we can

start the next row coming back to the inner loop.

The chess_loop_range, chess_unroll_loop, and chess_prepare_for_pipelining pragmas are

applied only to the inner loop, as it is generally not improving performance to apply them

on the outer loop as well.

The profiling instruction report is shown next:

Function detail: array2d_add_opt1
void_array2d_add_opt1___P__sint___P__sint___P__sint___sint___sint___sint___sint___sint

 Low PC : 200
 High PC : 287
 Size in program memory: 88
 Cycle-count : 226 (0.20%)
 Instruction-count : 204 (0.23%)
 Instruction Coverage : 100.00%

 PC Assembly Exe-cnt Cycs
---- --- ------- ------
200 CMPLEI R8,#0,R2 1 5
 201 BNEZ R2,#TGT_Fvoid_array2d_add_opt1_82 1 1
 202 NOP 1 1
 203 NOP 1 1
 204 SRAI R7,#31,R3 1 1
 205 ANDI R3,#15,R3 1 1
 206 RPT R8,#LE_Fvoid_array2d_add_opt1_81 || ADD R3,R7,R7 1 1
 208 SRAI R7,#7,R7 1 1
 209 ORI R0,#64,R2 || ADDI R7,#-1,R7 1 1
 211 MOV R5,R3 || MOV R4,R12 8 16
 213 DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27 8 8
 215 DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19 8 8
 217 DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11 8 8
 219 DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3 8 8
 221 DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1 8 8
 223 RPT R7,#LE_Fvoid_array2d_add_opt1_62 || DVLDW_P *R12+=R2 8 8
 226 ORI R6,#0,R8 || VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21||
 DVLDW_P *R3+=R2,V16:V17 8 16
 230 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2||
 DVLDW_P *R3+=R2,V24:V25 8 8
 234 VAddW V14:V15,V10:V11,V10:V11|| DVLDW_P *R12+=R2,V30:V31|| DVLDW_P *R3+=R2,V26:V27||
 DVSTW_P V18:V19,*R8+=R2 8 8
 238 VAddW V6:V7,V2:V3,V2:V3|| DVLDW_P *R12+=R2,V22:V23|| DVLDW_P *R3+=R2,V18:V19||
 DVSTW_P V10:V11,*R8+=R2 8 8
 242 VAddW V4:V5,V0:V1,V0:V1|| DVLDW_P *R12+=R2,V14:V15|| DVLDW_P *R3+=R2,V10:V11||
 DVSTW_P V2:V3,*R8+=R2 8 8
 246 VAddW V12:V13,V8:V9,V8:V9|| DVLDW_P *R12+=R2,V6:V7|| DVLDW_P *R3+=R2,V2:V3||
 DVSTW_P V0:V1,*R8+=R2 8 8
 250 VAddW V20:V21,V16:V17,V16:V17|| DVLDW_P *R12+=R2,V4:V5|| DVLDW_P *R3+=R2,V0:V1||

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 104

 DVSTW_P V8:V9,*R8+=R2 8 8
 254 VAddW V28:V29,V24:V25,V28:V29|| DVLDW_P *R12+=R2,V12:V13|| DVLDW_P *R3+=R2,V8:V9||
 DVSTW_P V16:V17,*R8+=R2 8 8
 258 VAddW V30:V31,V26:V27,V24:V25|| DVLDW_P *R12+=R2,V20:V21|| DVLDW_P *R3+=R2,V16:V17||
 DVSTW_P V28:V29,*R8+=R2 8 8
.label LE_Fvoid_array2d_add_opt1_62
 262 VAddW V22:V23,V18:V19,V18:V19|| DVLDW_P *R12+=R2,V28:V29|| DVSTW_P V24:V25,*R8+=R2||
 DVLDW_P *R3+=R2,V24:V25 8 8

 266 SLLIADD R9,#2,R4,R4|| SLLIADD R10,#2,R5,R5|| VAddW V14:V15,V10:V11,V10:V11||
 DVSTW_P V18:V19,*R8+=R2 8 8
 270 SLLIADD R11,#2,R6,R6|| VAddW V6:V7,V2:V3,V2:V3|| DVSTW_P V10:V11,*R8+=R2 8 8
 273 VAddW V4:V5,V0:V1,V0:V1|| DVSTW_P V2:V3,*R8+=R2 8 8
 275 VAddW V12:V13,V8:V9,V8:V9|| DVSTW_P V0:V1,*R8+=R2 8 8
 277 VAddW V20:V21,V16:V17,V16:V17|| DVSTW_P V8:V9,*R8+=R2 8 8
 279 VAddW V28:V29,V24:V25,V28:V29|| DVSTW_P V16:V17,*R8+=R2 8 8
.label LE_Fvoid_array2d_add_opt1_81
 281 DVSTW_P V28:V29,*R8+=R2 8 8
.label TGT_Fvoid_array2d_add_opt1_82
 282 JR R15 1 1
 283 NOP 1 1
 284 NOP || NOP || NOP || NOP 1 3

It is not easy to spot the inner loop from the report, as the execution counts are 8 for

both between-loop packets and inner loop packets. This is because of the inner-loop is

unrolled 8 times, and with prolog and epilog together executing unrolled loop once, the

actual inner loop body is executed just once, as 256 / (8 * chess_elementsof(dvint)) – 1 =

256 / 128 – 1 = 1. Blank lines are manually inserted to better visualize the innermost

loop.

There is still a significant speedup from the scalar code, 14438/226 = 64.9 times. The

inner loop is still packed with 1 VAddW, 2 DVLDW, and 1 DVSTW per execution packet, in

all 8 execution packets.

The use of nested for loops and clock cycles spent between loop levels does add to the

overhead. Compared to the ideal time spent, which is (256 * 8) / 16 = 128 cycles, the

function execution time is only 128/226 = 57% efficient. There is relatively high overhead

to handle 2D addressing, versus 91% efficient in the 1D array addition case.

As argued in the previous section, on scalar code performance, proportion of time spent

between loop levels is mostly a function of the inner-loop iteration count. In the

configuration where profiling instruction report is generated, we operate on 8 tall x 256

wide arrays. If it’s not as “short-and-wide” in aspect ratio, say it’s 16 tall x 128 wide or 32

tall x 64 wide, we don’t have sufficient number of iterations for the inner-most loop to

fully unroll and pipeline, and we have smaller iteration count on the inner loop, and both

would contribute to reducing the overall efficiency of the code.

In Performance Across 2D Array Dimensions we will present function cycle count across

various 2D array dimensions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 105

8.3.3 Optimization 2: Leveraging Agen to Collapse

Nested Loops

In this section, we tackle the performance degradation from two-dimensional

addressing.

In image and vision processing, we often need an even higher dimension of address

calculation. For example, in 2D convolution, we have 2 dimensions from producing some

block-width x block-height of output block, and we have kernel-width x kernel-height

looping to perform convolution between points in the 2D convolution kernel and 2D

neighborhood around each output pixel. The address generator, or agen, feature is there

to support up to 6 dimensions of address calculation.

The following optimized code shows how agens are configured and utilized for the 2D

array addition function:

//***
// Optimization 2: leverage agen, initialization
//***
void array2d_add_opt2_init(int * A, int * B, int * C,
 int blkw, int blkh,
 int lofst_A, int lofst_B, int lofst_C,
 int * niter, AgenCFG * agen_ptr)
{
 int vecw = chess_elementsof(dvint);
 dvintx vA, vB, vC;
 agen in0, in1, out;
 short niter1 = blkw/vecw;
 short niter2 = blkh;
 * niter = niter1 * niter2;
 agen_wrapper_t wrapper;

 in0 = init(A);
 wrapper.size = sizeof(int);
 wrapper.n1 = niter1;
 wrapper.n2 = niter2;
 wrapper.s1 = vecw;
 wrapper.s2 = lofst_A;
 INIT_AGEN2(in0, wrapper);

 in1 = init(B);
 wrapper.size = sizeof(int);
 wrapper.n1 = niter1;
 wrapper.n2 = niter2;
 wrapper.s1 = vecw;
 wrapper.s2 = lofst_B;
 INIT_AGEN2(in1, wrapper);

 out = init(C);
 wrapper.size = sizeof(int);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 106

 wrapper.n1 = niter1;
 wrapper.n2 = niter2;
 wrapper.s1 = vecw;
 wrapper.s2 = lofst_C;
 INIT_AGEN2(out, wrapper);

 chess_separator_scheduler();

 *agen_ptr++ = extract_agen_cfg(in0);
 *agen_ptr++ = extract_agen_cfg(in1);
 *agen_ptr++ = extract_agen_cfg(out);
}

//***
// Optimization 2: leverage agen
//***
void array2d_add_opt2(int niter, AgenCFG * agen_ptr)
{
 agen_A in0 = init_agen_A_from_cfg(*agen_ptr++);
 agen_B in1 = init_agen_B_from_cfg(*agen_ptr++);
 agen_C out = init_agen_C_from_cfg(*agen_ptr++);
 dvintx vA, vB, vC;

 for (int i=0 ; i<niter; i++) chess_loop_range(16,)

 chess_unroll_loop(8) chess_prepare_for_pipelining
 {
 vA = dvint_load(in0);
 vB = dvint_load(in1);
 vC = vA + vB;
 vstore(vC, out);
 }
}

There are 2 functions, array2d_add_opt2_init() and array2d_add_opt2(). Agen parameter

calculation and configuration is placed in an “init” function meant to be called just once

or twice per application. By separating out the agen parameter calculation and

configuration portion, we reduce the per-tile computation time.

The configured agens are saved to memory via the AgenCfgST instruction (see

AgenCfgST) one at a time, and are restored from memory via AgenCfgLD instruction

(see AgenCfgLD) one at a time before the compute loop.

In the init function, we still must calculate inner loop number of iterations, niter1, and

outer loop number of iterations, niter2, but they are not used to iterate nested for loops.

Instead, they are used in agen programming, as it’s agen that needs to know about

these iteration counts to carry out the 2D addressing. Product of niter1 and niter2, niter,

is returned to the main function, to supply to the compute function to iterate the

collapsed for loop.

In the init function, we declare wrapper variable of agen_wrapper_t type. Using agen

wrapper allows the programmer to specify the step size of various dimensions and use

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 107

macros like INIT_AGEN2 to carry out the complex expressions (see 6.4.1) to calculate the

address modifiers, instead of coding the complex expressions directly. In general, we

pre-determine dimension needed in the agens, say K dimensions, we program wrapper

n1..nk, s1..sk, and then call INIT_AGENk to complete the agen programming.

There is a straightforward producess to convert the indexing expression in the scalar

code into the step parameters s1..sk for the wrapper. For example, array A is indexed in

the scalar code as:

 A[i * lofst_A + j]

We map the inner loop variable j into loop level 1 of agen, and outer loop variable i into

loop level 2.

Furthermore, in the process of vectorizing the 2D array addition, we process one dvint at

a time, so the original indexing should be converted into loading from

 A + i2 * lofst_A + i1 * vecw

with vecw = chess_elementsof(dvint). We take the vectorized indexing expression and

basically fill step parameters s1..sk with whatever scaling factor is being multiplied with

the corresponding loop variable i1..ik. Thus, we program them as

 wrapper.s1 = vecw;
 wrapper.s2 = lofst_A;

In the loop body, loading through agen-based load is performed via intrinsic function

dvint_load(agen), and storing through agen-based store is performed via intrinsic

function vstore(variable, agen). vstore() function is type-overloaded to handle various

vector data types.

The 2 agens for load, in0 and in1, and the one agen for store, out, are declared as

variables of agen_A/B/C types respectively. These _A/B/C suffixes are to denote

superbank A/B/C. They do not really need to match the actual pointer values being in

superbank A/B/C, but are there to guide compiler scheduling, so that we don’t load from

the same superbank to store to the same superbank multiple times in an execution

packet and cause unnecessary performance degradation.

With the agen taking up the 2D address calculation, we can collapse the 2 levels of

nested for loops into just one level and run it niter = niter1 * niter2 times. This also helps

with unrolling and software pipelining, as the number of iterations being a multiple of 8

and being at least 16 are now constraints on the overall loop iteration count, and can

apply to more array dimension cases.

The profiling instruction report is shown next:

Function detail: array2d_add_opt2 void_array2d_add_opt2___sint___Pdvuint

 Low PC : 344
 High PC : 415
 Size in program memory: 72
 Cycle-count : 146 (0.13%)
 Instruction-count : 141 (0.16%)
 Instruction Coverage : 100.00%

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 108

 PC Assembly Exe-cnt Cycs
---- --- ------- -----
 344 ORI R0,#64,R4 || SRAI R4,#3,R2 1 1
 346 ADDI R2,#-1,R2 1 1
 347 AgenCfgLD *R5+=R4,A0 1 1
 348 AgenCfgLD *(R5+0),A2 1 1
 349 AgenCfgLD *(R5+64),A1 1 4
 350 DVLDW_P *A0++,W12:W13 1 1
 351 DVLDW_P *A0++,V10:V11|| DVLDW_P *A2++,V14:V15 1 1
 353 DVLDW_P *A0++,V6:V7|| DVLDW_P *A2++,W8:W9 1 1
 355 DVLDW_P *A0++,V2:V3|| DVLDW_P *A2++,W4:W5 1 1
 357 DVLDW_P *A0++,V0:V1|| DVLDW_P *A2++,W0:W1 1 1
 359 DVLDW_P *A0++,V4:V5|| DVLDW_P *A2++,W2:W3 1 1
 361 RPT R2,#LE_Fvoid_array2d_add_opt2_54|| DVLDW_P *A2++,W6:W7 1 1
 363 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A0++,V8:V9|| DVLDW_P *A2++,W10:W11 1 1
 366 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A0++,V12:V13|| DVLDW_P *A2++,W14:W15||
 DVSTW_P V16:V17,*A1++ 1 1
 370 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19,*A1++|| DVLDW_P *A0++,W12:W13||
 DVLDW_P *A2++,V14:V15 15 15
 374 VAddW V2:V3,W0:W1,V22:V23|| DVLDW_P *A0++,V10:V11|| DVLDW_P *A2++,W8:W9||
 DVSTW_P V20:V21,*A1++ 15 15
 378 VAddW V0:V1,W2:W3,V24:V25|| DVLDW_P *A0++,V6:V7|| DVLDW_P *A2++,W4:W5||
 DVSTW_P V22:V23,*A1++ 15 15
 382 VAddW V4:V5,W6:W7,V26:V27|| DVLDW_P *A0++,V2:V3|| DVLDW_P *A2++,W0:W1||
 DVSTW_P V24:V25,*A1++ 15 15
 386 VAddW V8:V9,W10:W11,V28:V29|| DVLDW_P *A0++,V0:V1|| DVLDW_P *A2++,W2:W3||
 DVSTW_P V26:V27,*A1++ 15 15
 390 VAddW V12:V13,W14:W15,V30:V31|| DVLDW_P *A0++,V4:V5|| DVLDW_P *A2++,W6:W7||
 DVSTW_P V28:V29,*A1++ 15 15
 394 VAddW W12:W13,V14:V15,V16:V17|| DVLDW_P *A0++,V8:V9|| DVLDW_P *A2++,W10:W11||
 DVSTW_P V30:V31,*A1++ 15 15
.label LE_Fvoid_array2d_add_opt2_54
 398 VAddW V10:V11,W8:W9,V18:V19|| DVLDW_P *A0++,V12:V13|| DVLDW_P *A2++,W14:W15||
 DVSTW_P V16:V17,*A1++ 15 15
 402 VAddW V6:V7,W4:W5,V20:V21|| DVSTW_P V18:V19,*A1++ 1 1
 404 VAddW V2:V3,W0:W1,V22:V23|| DVSTW_P V20:V21,*A1++ 1 1
 406 VAddW V0:V1,W2:W3,V24:V25|| DVSTW_P V22:V23,*A1++ 1 1
 408 VAddW V4:V5,W6:W7,V26:V27|| DVSTW_P V24:V25,*A1++ 1 1
 410 JR R15 || VAddW V8:V9,W10:W11,V28:V29|| DVSTW_P V26:V27,*A1++ 1 1
 413 VAddW V12:V13,W14:W15,V30:V31|| DVSTW_P V28:V29,*A1++ 1 1
 415 DVSTW_P V30:V31,*A1++ 1 3

Now the loop body stands out, as there is just one loop level. Scalar code before the loop

is relatively terse, as agen parameter calculation and configuration is moved to the init

function, which takes 51 cycles (not shown here). We don’t add these cycles to the tile

compute function cycle count, as the init function is run just once per application.

It takes just 146 cycles to run the per-tile compute function, compared to 226 cycles in

the vectorized and unrolled/pipelined version that still needs to deal with 2D address

calculation. In this version, agen hardware takes care of 2D address calculation in the

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 109

background, so we are not spending any clock cycle. The efficiency of this code is

128/146 = 88%.

8.3.4 Performance Across 2D Array Dimensions

We vary the array dimension and collect cycle count, as follows. For optimization 1 and 2,

efficiency ratios vs ideal cycle counts are also shown in parenthesis.

Table 17. Performance optimization across array dimensions

Array

Height

Array

Width

Scalar code

cycles

Optimization 1

(vector,

unroll/pipeline) cycles

(efficiency %)

Optimization 2 (vector,

unroll/pipeline, agen)

cycles (efficiency %)

4 512 14,394 186 (69%) 146 (88%)

8 256 14,438 226 (57%) 146 (88%)

16 128 14,526 322 (40%) 146 (88%)

16 512 57,534 690 (74%) 530 (97%)

32 256 57,710 850 (60%) 530 (97%)

64 128 58,062 1,234 (41%) 530 (97%)

We can see that optimization 2 code’s performance is not at all sensitive to block width

versus height changes, only to the total number of data points, and efficiency is good.

Scalar code performance is a weak function of the block width, wider blocks perform

slightly better. Optimization 1 code’s performance is better than scalar code, but is

worse than optimization 2 code’s performance, and the narrower the block width, the

worse off it gets.

8.4 2D Convolution
Next, we see how 2D convolution, a common image processing step, is accelerated by

leveraging the multi-dimension address calculation feature of agens, along with store-

path rounding and predicated vector math instructions.

8.4.1 Scalar Code

A straightforward implementation of 2D convolution is as follows.

//***
// Filter implemented with natural C code to do 2D addressing
//***
void filter_short_ref(short *data, short *coef, short *out,
 int kw, int kh, int qbits, int blkw, int blkh,
 int lofst_data, int lofst_out)
{

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 110

 short sdata;
 short scoef;
 int prod;
 long long acc;

 int rnd_add = (qbits == 0) ? 0 : (1 << (qbits-1));

 for (int i4=0 ; i4<blkh; i4++)
 for (int i3=0 ; i3<blkw; i3++) {
 acc = 0;
 for (int i2=0 ; i2<kh; i2++)
 for (int i1=0 ; i1<kw; i1++) {
 sdata = data[(i4 + i2)*lofst_data + i3 + i1];
 scoef = coef[i2*kw + i1];
 prod = sdata * scoef;
 acc += prod;
 }
 acc = (acc + rnd_add) >> qbits;
 out[i4*lofst_out + i3] = acc;
 }
}

The function carries out 2D convolution with 4 levels of nested for loop. The 4 levels of

looping are needed to drive indexing of data and coefficient arrays and output array.

Data indexing has 4 dimensions, horizontally and vertically to traverse in the kw x kh

neighborhood to perform dot-product with the coefficient array, and then horizontally

one vector width at a time, vertically one row at a time, to produce the 2D array output.

Coefficient and output each have 2 dimensions of indexing.

There are statements between the outer 2 loop levels and the inner 8 loop levels. Before

entering the inner 2 loop levels, we clear the accumulator. After exiting the inner 2 loop

levels, having already accumulated kw * kh products to the accumulator, we perform

rounding on the accumulated sum then store the rounded outcome to the output array.

The profiling instruction report of this scalar code is as follows:

Function detail: filter_short_ref void_filter_short_ref_ ...

 Low PC : 56
 High PC : 143
 Size in program memory: 88
 Cycle-count : 285663 (71.77%)
 Instruction-count : 191024 (73.10%)
 Instruction Coverage : 94.92%

 PC Assembly Exe-cnt Cycs
 --- -- ------- ------
 56 ADDI R9,#-1,R2 || ADDI R1,#20,R1 1 1
 58 CMPEQ R9,R0,R19 || ORI R0,#1,R3 1 1
 60 SLL R3,R2,R2 || CMPLTI R9,#32,R13|| STW R13,*(R1+2036) 1 1
 63 ADDI R9,#-32,R18 || CMPLEI R7,#0,R14|| STW R10,*(R1+2028) 1 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 111

 66 ORI R0,#2,R20 || ORI R0,#32,R3 1 1
 68 J #__ll4_void_filter_short_ref || ORI R0,#0,R23 1 1
 70 SUB R3,R9,R2 || MUX R19,R0,R2,R17|| STW R11,*(R1+2032) 1 1
 73 SRAI R17,#31,R15 || CMPLEI R8,#0,R3|| STW R15,*(R1+2040) 1 3
 76 J #__ll3_void_filter_short_ref 32 32
 77 SLLIADD R10,#1,R6,R10 32 32
 78 ORI R0,#0,R22 || MOV R6,R11 32 96
 80 BNEZ R3,#TGT_J_Fvoid_filter_short_ref_81 2048 2048
 81 ADD R4,R22,R24 2048 2048
 82 NOP 2048 2048
 83 RPT R8,#TGT_Fvoid_filter_short_ref_48 2048 2048
 84 LHI #0,R28 2048 2048
 85 ORI R0,#0,R23 || MOV R5,R25 2048 2048
 87 BNEZ R14,#TGT_Fvoid_filter_short_ref_48 6144 6144
 88 NOP 6144 6144
 89 NOP 6144 14336
 90 RPT R7,#LE_Fvoid_filter_short_ref_46 6144 6144
 91 MOV R24,R27 || MOV R25,R26 6144 6144
 93 NOP 6144 6144
 94 LDH *R27+=R20,R30 || LDH *R26+=R20,R29 18432 92160
 96 MUL R29,R30,R30 18432 18432
 97 ADD R23,R30,R30 || SRAI R30,#31,R31 18432 18432
 99 ORI R30,#0,R21 18432 18432
 100 ADD R28,R31,R30 || CMPLTU R30,R23,R31 18432 18432
 102 MOV R21,R23 || ADD R30,R31,R28 18432 18432
 104 SLLIADD R12,#1,R24,R24|| SLLIADD R7,#1,R25,R25 6144 6144
 106 ADD R15,R28,R25 || ADD R17,R23,R24 2048 2048
 108 SRL R24,R9,R23 || CMPLTU R24,R23,R26 2048 2048
 110 ADDI R22,#2,R22 || ADD R25,R26,R25 2048 2048
 112 SRA R25,R18,R25 || SLL R25,R2,R26 2048 2048
 114 OR R23,R26,R23 2048 2048
 115 MUX R13,R23,R25,R23 2048 2048
 116 MUX R19,R24,R23,R23 2048 2048
 117 STH R23,*R11+=R20 2048 2048
 118 CMPLTU R11,R10,R23 2080 10400
 119 BNEZ R23,#TGT_Fvoid_filter_short_ref_24 2080 2080
 120 NOP 2080 2080
 121 NOP 2080 6176
 122 SLLIADD R12,#1,R4,R4|| LDW *(R1+2044),R23 32 32
 124 LDW *(R1+2036),R22 32 32
 125 LDW *(R1+2032),R11 32 32
 126 LDW *(R1+2028),R10 32 64
 127 ADDI R23,#1,R23 32 32
 128 SLLIADD R22,#1,R6,R6 32 32
 129 CMPLT R23,R11,R11 33 165
 130 BNEZ R11,#TGT_Fvoid_filter_short_ref_20 33 33
 131 STW R23,*(R1+2044) 33 33
 132 NOP 33 97
 133 LDW *(R1+2040),R4 1 8

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 112

 134 JR R4 1 1
 135 ADDI R1,#-20,R1 1 1
 136 NOP 1 3
 137 J #TGT_Fvoid_filter_short_ref_50 0 0
 138 ORI R0,#0,R28 || ORI R0,#0,R23 0 0
 140 NOP || NOP || NOP || NOP 0 0

The function takes 285,663 cycles to compute a 64 wide x 32 tall outputs worth of 2D

convolution, about 140 cycles per output, or about 15 cycles per data-coefficient

product. From the rising then falling numbers in the execution count and cycle count, we

can tell where the boundaries of 4 levels of for loop are.

In the innermost loop with execution count of 18432 (which is 64 * 32 * 9), we have a 10

cycle loop, as (92160 + 5*18432) / 18432 = 10. These 10 cycles are from 5 cycles of load

and latency, multiply, add, then a few cycles to perform array indexing needed for the

inner-most loop.

Later in the optimized code, we will see how various VPU instructions and agen features

are leveraged, so that we perform all these, loading data/coefficient, multiply-add, index

update, and in vectorized form so doing a double short vector worth thus 32 sets of

these, in one cycle. Moreover, the 4 nested for loops are collapsed into one single loop,

with periodic accumulator initialization and rounding and storing of output all absorbed

into the loop body.

8.4.2 Optimization 1: Vectorized and Agen

Optimized Loop

As we have learned in Optimization 2: Leveraging Agen to Collapse Nested Loops,

besides vectorization and loop unrolling, software pipelining, we can leverage multi-

dimensional addressing capability of agens to collapse nested for loops. The following

example code includes two functions. There’s an initialization function to

calculate/configure agen parameters and save the agen configurations to memory. Then

there is a run-time compute function to restore the agens and run the filtering loop.

//***
// Filter optimized, initialization function
//***
void filter_short_opt1_init(short *data, short *coef, short* restrict out,
 int kw, int kh, int qbits, int blkw, int blkh,
 int lofst_data, int lofst_out, int * niter_ptr,
 AgenCFG * cfg_ptr)
{
 int vecw = chess_elementsof(dvshort);
 short niter1 = kw;
 short niter2 = kh;
 short niter3 = blkw/vecw;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 113

 short niter4 = blkh;
 * niter_ptr++ = niter1 * niter2 * niter3 * niter4;
 * niter_ptr = niter1 * niter2;
 agen data_agen, coef_agen, out_agen;
 agen_wrapper_t wrapper;

 data_agen = init((vshort*) data);
 wrapper.size = sizeof(short);
 wrapper.n1 = kw;
 wrapper.n2 = kh;
 wrapper.n3 = blkw/vecw;
 wrapper.n4 = blkh;
 wrapper.s1 = 1;
 wrapper.s2 = lofst_data;
 wrapper.s3 = vecw;
 wrapper.s4 = lofst_data;
 INIT_AGEN4(data_agen, wrapper);

 coef_agen = init((vshort*)coef);
 wrapper.size = sizeof(short);
 wrapper.n1 = kw * kh;
 wrapper.n2 = (blkw/vecw) * blkh;
 wrapper.s1 = 1;
 wrapper.s2 = 0;
 INIT_AGEN2(coef_agen, wrapper);

 out_agen = init((vshort*)out);
 wrapper.size = sizeof(short);
 wrapper.n1 = kw * kh;
 wrapper.n2 = blkw/vecw;
 wrapper.n3 = blkh;
 wrapper.s1 = 0;
 wrapper.s2 = vecw;
 wrapper.s3 = lofst_out;
 INIT_AGEN3(out_agen, wrapper);
 out_agen.round = qbits;

 chess_separator_scheduler();

 *cfg_ptr++ = extract_agen_cfg(data_agen);
 *cfg_ptr++ = extract_agen_cfg(coef_agen);
 *cfg_ptr++ = extract_agen_cfg(out_agen);
}

//***
// Filter optimized, run-time compute function
//***
void filter_short_opt1(int * niter_ptr, AgenCFG * cfg_ptr)
{

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 114

 int count_madd = 0;
 int count_store = 1;
 int pred_madd = 0;
 int pred_store = 0;
 int niter = * niter_ptr++;
 int niter_in = * niter_ptr;
 dvshortx dvdata;
 int coef;
 dvintx dvacc0, dvacc1;

 agen_A data_agen = init_agen_A_from_cfg(*cfg_ptr++);
 agen_B coef_agen = init_agen_B_from_cfg(*cfg_ptr++);
 agen_C out_agen = init_agen_C_from_cfg(*cfg_ptr++);

 chess_separator_scheduler();

 for (int i=0; i<niter; i++) chess_prepare_for_pipelining
 chess_unroll_loop(8) chess_loop_range(16,) {

 dvdata = dvshort_load_di(data_agen);

 coef = short_load(coef_agen);

 dvacc0 = vmaddhw(dvdata.lo, coef, dvacc0, VPU_ROUND_0, pred_madd);
 dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_0, pred_madd);

 vstore_i(dvacc0, dvacc1, out_agen, pred_store);

 count_madd = (count_madd == niter_in-1) ? 0 : (count_madd + 1);
 pred_madd = (count_madd!=0) ? (int)0xFFFFFFFF : 0;
 count_store = (count_store == niter_in-1) ? 0 :(count_store + 1);
 pred_store = (count_store==0) ? (int)0xFFFFFFFF : 0;
 }
}

Agen programming for data, coefficients and outputs follow the nested loop iteration

counts and data, coefficient, and output indexing in the scalar code.

Nested for loops in the scalar code:

 for (int i4=0 ; i4<blkh; i4++)
 for (int i3=0 ; i3<blkw; i3++) {
 ...
 for (int i2=0 ; i2<kh; i2++)
 for (int i1=0 ; i1<kw; i1++) {
 ...
 }
 ...
 }

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 115

Let’s compare the data indexing in the scalar code:

 sdata = data[(i4 + i2)*lofst_data + i3 + i1];

with data agen programming:

 data_agen = init((vshort*) data);
 wrapper.size = sizeof(short);
 wrapper.n1 = kw;
 wrapper.n2 = kh;
 wrapper.n3 = blkw/vecw;
 wrapper.n4 = blkh;
 wrapper.s1 = 1;
 wrapper.s2 = lofst_data;
 wrapper.s3 = vecw;
 wrapper.s4 = lofst_data;
 INIT_AGEN4(data_agen, wrapper);

The iteration counts are translated directly to the iteration counts in data agen

programming, except that in i3 loop, we run for blkw/vecw iterations instead of blkw,

due to computing vecw elements of the output array in parallel through the

vectorization process. The step amount is adjusted accordingly to vecw elements

instead of one.

Coefficient indexing in the scalar code:

 scoef = coef[i2*kw + i1];

Coefficient agen programming:

 coef_agen = init((vshort*)coef);
 wrapper.size = sizeof(short);
 wrapper.n1 = kw * kh;
 wrapper.n2 = (blkw/vecw) * blkh;
 wrapper.s1 = 1;
 wrapper.s2 = 0;
 INIT_AGEN2(coef_agen, wrapper);

In this instance, we lump the scalar for loops i1 and i2 into just one dimension in

coefficient agen. This is because coefficient indexing just advance by one element per

iteration in the inner 2 loop levels. In coefficient agen programming we can just use one

loop level with the combined number of iterations kw * kh to comprehend the inner 2

loop levels in the scalar code.

In the scalar code, coefficient indexing has no i3 or i4 components, the two outer loop

variables. Consequently, coefficient addressing just repeats the same pattern when we

iterate the outer loops. In agen programming, we accomplish this repeating pattern by

configuring an outer dimension n2 parameter to the combined iteration count of the

two outer loops, (blkw/vecw) * blkh, and with step amount s2 configured to 0.

Output indexing in the scalar code:

 out[i4*lofst_out + i3] = acc;

Output agen programming:

 out_agen = init((vshort*)out);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 116

 wrapper.size = sizeof(short);
 wrapper.n1 = kw * kh;
 wrapper.n2 = blkw/vecw;
 wrapper.n3 = blkh;
 wrapper.s1 = 0;
 wrapper.s2 = vecw;
 wrapper.s3 = lofst_out;
 INIT_AGEN3(out_agen, wrapper);
 out_agen.round = qbits;

In the scalar code, output is stored out between the inner 2 loops and outer 2 loops, as

in the inner 2 loops we are accumulating the products between data points and

coefficients, and only when we are out of the inner 2 loops, we are ready to store the

outcome to memory.

In the optimized code, the store is placed in the loop body instead of in an outer loop. Of

course, it is functionally correct to move the store to the outer loop. but doing that

would introduce much loop prolog/epilog time between loop levels and slow down the

processing significantly. It is possible to avoid more of the loop prolog/epilog overhead if

we fully unroll by kw * kh iterations so that the revised code has again single loop level,

but doing that would hard-wire the code to a fixed convolution kernel size (if not kw x kh,

at least the product kw * kh), which will have impact in code size if an application

requires more than one convolution kernel size.

By moving the store inside the loop, we need to make two changes in the code. One is

that the store should be predicated to execute periodically, once per kw * kh iterations.

The other is that we need to change the output agen programming.

Store predication is accomplished through calculation of the predicate flag pred_store in

the optimized code:

 count_store = (count_store == niter_in-1) ? 0 : (count_store + 1);
 pred_store = (count_store==0) ? (int)0xFFFFFFFF : 0;

The count_store is initialized to 1, and pred_store to 0, outside the loop. Inside the loop,

count_store is modularly incremented, meaning it is incremented by 1 each time, until it

reaches niter_in – 1, whereas it is reset to 0. pred_store flag is set -1 when count_store

is zero and otherwise is set 0. With these statements, we implement a periodic

pred_store with the following pattern:

 0 0 … 0 1 0 0 … 1 …

Here, the period is niter_in, which is calculated in the initialization function to be kw * kh

and stored to memory and restored in the run-time function. This achieves the objective

of storing out once at the end of each period of kw * kh executions of the store.

These two lines of code involve many scalar operations, so it seems time-consuming to

execute. To avoid predication becoming the bottleneck in compute loops, we have

architected our predicate instructions to implement common periodic predication

patterns, so these 2 lines of code map to just one predicate instruction, MODINC_NOTP.

The “NOT” comes from the predication being derived negatively from the counter (true

when counter is zero).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 117

The output agen programming is also adjusted to account for placing the store inside

the loop. An inner dimension n1 is inserted before the outer 2 dimensions iterating over

output horizontally one vector width at a time, and vertically one row at a time. The inner

dimension n1 is iterated kw * kh times with zero stepping, to implement a pattern that

keeps the address static for kw * kh executions of the store before each advancement

of the address.

The outer 2 dimensions of the output agen follow that of the scalar code, except that

horizontally we are advancing by vector width at a time, due to vectorization, and

vertically one row at a time.

The fact that we need an inner dimension for the output agen has to do with how

predicated store is executed in the pipeline. In the processor pipeline, we need all

memory operation to have address calculation early in the pipeline to deal with memory

latency. Agen update is part of address calculation and thus is executed early and

unconditionally even when there is predication on the store. The store predicate that

controls whether a memory write is taking place is evaluated later in the pipeline, just in

time to drive out to the VMEM interface along with data to be stored.

Similar predication is needed to implement accumulator initialization, which is also

executed between loop levels. Through these 2 statements we implement another

periodic predicate signal, pred_madd:

 count_madd = (count_madd == niter_in-1) ? 0 : (count_madd + 1);
 pred_madd = (count_madd!=0) ? (int)0xFFFFFFFF : 0;

Both count_madd and pred_madd are initialized to 0 outside the loop. The pred_madd

signal implemented has this pattern:

 0 1 1 … 1 0 1 1 … 1 …

Here, the period being also niter_in = kw * kh, matching the period of pred_store.

pred_madd goes into the argument of vmaddhw, which is mapped to the predicated

vector multiply-add instruction VMAddHHW_CA. When predicate is 0, the instruction

does just multiplication, and when the predicate is non-zero, the instruction does

multiply-add. Thus, the pred_madd pattern drives the MAC instruction to clear the

accumulators for the first iteration in a period of kw * kh iterations.

These two lines of optimized code producing the pred_madd signal, although looking

expensive, are mapped into just one predicate instruction, MODINCP.

Optimized code has loop body as follows:

 dvdata = dvshort_load_di(data_agen);
 coef = short_load(coef_agen);
 dvacc0 = vmaddhw(dvdata.lo, coef, dvacc0, VPU_ROUND_0, pred_madd);
 dvacc1 = vmaddhw(dvdata.hi, coef, dvacc1, VPU_ROUND_0, pred_madd);
 vstore_i(dvacc0, dvacc1, out_agen, pred_store);

Note the use of deinterleaving load, dvshort_load_di(), and interleaving store, vstore_i().

They are a matched pair to deal with data ordering when we use expanding MAC

instructions, in this case VMAddHHW_CA, to produce outcome.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 118

The expanding MAC instruction VMAddHHW_CA performs 17-bit x 17-bit multiplications

(rather than 16-bit, so we can handle both signed 16-bit and unsigned 16-bit

multiplication) and accumulates in 48-bit accumulators, to account for both product bit

width and room for dynamic range growth in accumulating multiple products.

Here coefficients are loaded to a scalar variable/register, one at a time, and the scalar

register is fed directly to the VMAddHHW_CA instruction and broadcast to all vector

lanes performing the mutiply-add. In most vector math instructions, we support scalar

source 2 operand optionally.

The profiling instruction report is as follows:

Function detail: filter_short_opt1 void_filter_short_opt1___P__sint___Pdvuint

 Low PC : 232
 High PC : 359
 Size in program memory: 128
 Cycle-count : 597 (0.15%)
 Instruction-count : 593 (0.23%)
 Instruction Coverage : 100.00%

 PC Assembly Exe-cnt Cycs
 --- --- ------- -----
 232 ORI R0,#64,R3 || LDW *(R4+4),R2 || LDW *(R4+0),R4 1 2
 235 AgenCfgLD *R5+=R3,A0 1 1
 236 AgenCfgLD *(R5+64),A2 1 2
 237 AgenCfgLD *(R5+0),A1 1 1
 238 ORI R0,#0,R5 || SRAI R4,#3,R4 1 1
 240 ADDI R2,#-1,R2 || ADDI R4,#-1,R13 1 1
 242 ORI R0,#1,R4 || MOVSP R5,P2 1 1
 244 MOVP P2,P9 || DVLDH_PDI *A0++,V12:V13 1 1
 246 DVLDH_PDI *A0++,V8:V9 1 1
 247 LDH *A1++, R11 || DVLDH_PDI *A0++,V4:V5 1 1
 249 LDH *A1++, R9 || DVLDH_PDI *A0++,V0:V1 1 1
 251 LDH *A1++, R7 || DVLDH_PDI *A0++,V2:V3 1 1
 253 LDH *A1++, R3 || DVLDH_PDI *A0++,V6:V7 1 1
 255 LDH *A1++, R6 1 1
 256 RPT R13,#LE_Fvoid_filter_short_opt1___P__sint___Pdvuint_89|| LDH *A1++, R8 || 1 1
 258 MODINCP R2,R5,P10 || NOP || [P9] VMAddHHW_CA V13,R11,AC0:AC1||
 [P9] VMAddHHW_CA V12,R11,AC2:AC3 || DVLDH_PDI *A0++,V10:V11|| LDH *A1++, R10 1 1
 265 MODINC_NOTP R2,R4,P4||MODINCP R2,R5,P3||[P10] VMAddHHW_CA V9,R9,AC0:AC1||
 [P10] VMAddHHW_CA V8,R9,AC2:AC3||[P2] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 LDH *A1++, R12||DVLDH_PDI *A0++,V14:V15 1 1
 272 MODINCP R2,R5,P14 ||MODINC_NOTP R2,R4,P5||[P3] VMAddHHW_CA V4,R7,AC2:AC3||
 [P3] VMAddHHW_CA V5,R7,AC0:AC1||[P4] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V12:V13||LDH *A1++,R11 71 71
 279 MODINCP R2,R5,P5 ||MODINC_NOTP R2,R4,P6||[P14] VMAddHHW_CA V0,R3,AC2:AC3||
 [P14] VMAddHHW_CA V1,R3,AC0:AC1||[P5] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V8:V9||LDH *A1++,R9 71 71
 286 MODINCP R2,R5,P13 ||MODINC_NOTP R2,R4,P7||[P5] VMAddHHW_CA V2,R6,AC2:AC3||

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 119

 [P5] VMAddHHW_CA V3,R6,AC0:AC1||[P6] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V4:V5||LDH *A1++,R7 71 71
 293 MODINCP R2,R5,P7 ||MODINC_NOTP R2,R4,P15||[P13] VMAddHHW_CA V6,R8,AC2:AC3||
 [P13] VMAddHHW_CA V7,R8,AC0:AC1||[P7] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V0:V1||LDH *A1++,R3 71 71
 300 MODINCP R2,R5,P11 ||MODINC_NOTP R2,R4,P8||[P7] VMAddHHW_CA V10,R10,AC2:AC3||
 [P7] VMAddHHW_CA V11,R10,AC0:AC1||[P15] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V2:V3||LDH *A1++,R6 71 71
 307 MODINC_NOTP R2,R4,P12||MODINCP R2,R5,P9||[P11] VMAddHHW_CA V14,R12,AC2:AC3||
 [P11] VMAddHHW_CA V15,R12,AC0:AC1||[P8] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V6:V7||LDH *A1++,8 71 71
 314 MODINCP R2,R5,P10 ||MODINC_NOTP R2,R4,P2||[P9] VMAddHHW_CA V13,R11,AC0:AC1||
 [P9] VMAddHHW_CA V12,R11,AC2:AC3||[P12] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V10:V11||LDH *A1++,R10 71 71
 321 MODINCP R2,R5,P3 ||MODINC_NOTP R2,R4,P4||[P10] VMAddHHW_CA V8,R9,AC2:AC3||
 [P10] VMAddHHW_CA V9,R9,AC0:AC1||[P2] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++||
 DVLDH_PDI *A0++,V14:V15||LDH *A1++,R12 71 71
 328 MODINCP R2,R5,P14 || MODINC_NOTP R2,R4,P5|| [P3] VMAddHHW_CA V4,R7,AC2:AC3||
 [P3] VMAddHHW_CA V5,R7,AC0:AC1|| [P4] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 333 MODINC_NOTP R2,R4,P6|| MODINCP R2,R5,P5|| [P14] VMAddHHW_CA V1,R3,AC0:AC1||
 [P14] VMAddHHW_CA V0,R3,AC2:AC3|| [P5] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 338 MODINC_NOTP R2,R4,P7|| MODINCP R2,R5,P13|| [P5] VMAddHHW_CA V3,R6,AC0:AC1||
 [P5] VMAddHHW_CA V2,R6,AC2:AC3|| [P6] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 343 MODINC_NOTP R2,R4,P15|| MODINCP R2,R5,P7|| [P13] VMAddHHW_CA V7,R8,AC0:AC1||
 [P13] VMAddHHW_CA V6,R8,AC2:AC3|| [P7] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 348 MODINC_NOTP R2,R4,P8|| MODINCP R2,R5,P11|| [P7] VMAddHHW_CA V11,R10,AC0:AC1||
 [P7] VMAddHHW_CA V10,R10,AC2:AC3|| [P15] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 353 JR R15 1 1
 354 MODINC_NOTP R2,R4,P12|| [P11] VMAddHHW_CA V14,R12,AC2:AC3||
 [P11] VMAddHHW_CA V15,R12,AC0:AC1|| [P8] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 1
 358 NOP || [P12] QVSTWH_PI AC2:AC3,AC0:AC1,*A2++ 1 3

The loop body is scheduled optimally into 8 cycles, packing 2 scalar predicate

instructions, 2 vector math instructions, and 3 memory operations (2 loads and 1 store)

in every execution packet.

The loop prolog starting well ahead of the loop body, and the loop epilog ending well

after the loop body, as the loop is unrolled 8 times and software pipelined.

The optimized function completes the same 64 wide x 32 tall output convolution task in

597 cycles. There is an almost 480x speedup compared to 285,663 cycles by the scalar

code.

Next, we will see how we leverage a denser MAC instruction, VFilt4x2HHW_CA, to

achieve further speedup.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 120

8.4.3 Optimization 2: Leveraging Denser MAC

Instruction

In VPU instruction set, besides vector multiply-add, we have denser MAC instructions.

For 16-bit data, we have:

> VDotP2HHW_CA 2-term dot-product

> VDotP4 _CA 4-term dot-product

> VDotP4x2_CA 2 sets of 4-term dot-product

> VFilt4HHW_CA 4-tap filtering

> VFilt4x2HHW_CA 2 sets of 4-tap filtering

Of these, VDotP* instructions are suitable for dot-product. VFilt4HHW_CA delivers 4

MACs per halfword lane is very useful for 2D convolution.

We do have VFilt4x2HHW_CA that delivers 8 MACs per halfword lane so it has 2x raw

MAC throughput of VFilt4HHW_CA. However, VFilt4x2HHW is more suitable for CNN or

filter banks, where multiple output planes are produced. It is possible to leverage it for

2D convolution where a single output plane is produced, but there is some

preprocessing and postprocessing steps involved to reformat data and output, and to

avoid spending VPU cycles on pre- and post-processing, we will have to configure DMA

to perform the reformatting while transferring data in and out of VMEM, so

construction of the test case is much more involved.

VFilt4HHW_CA performs horizontal 4-tap filtering on 16 lanes of 16-bit

data/coefficients and accumulates sum of products in 16 lanes of 48-bit accumulators.

To leverage VFilt4HHW_CA, we need to zero-pad the coefficients horizontally into

multiple of 4 kernel width.

Compared to VMAddHHW_CA that performs one MAC per halfword lane, VFilt4HHW_CA

performs 4 MACs per halfword lane, so we need to feed 4 data points and 4 coefficient

points to each lane to feed the MACs. The way we accomplish this, on the data feed, is

to leverage the sliding-window dependency and provide 2 single vectors of data loaded

with overlapping data. On the coefficient feed, we take advantage of the fact that in

convolution we use the same filter kernel for all output data points to share coefficients

within each group of lanes.

From instruction details in VFILT4_CA, we see that the intrinsic for VFilt4HHW_CA:

dvshortx vfilt4_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx src3dst, int pred);

This requires that data, coefficients, accumulators within each group of 4 lanes being

laid out as:

src1a D[0] D[1] D[2] D[3]

src1b D[4] D[5] D[6] D[7]

src2 C[0] C[1] C[2] C[3]

src3dst.lo ACC[0] ACC[2]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 121

src3dst.hi ACC[1] ACC[3]

In each group of 4 lanes, the instructions are carried out:

ACC[0] += D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3];

ACC[1] += D[1] * C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3];

ACC[2] += D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3];

ACC[3] += D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3];

Like the other examples, we want to double-up vector math to take advantage of the

double vector load/store throughput. Thus to feed 2 VFilt4HHW_CA instructions placed

on both vector slots of the same execution packet, we would load from the data array 2

double vectors with 4 element offset for data, and either use VLDPerm to load from the

coefficient array 4 elements and create the 4-term repeating pattern in the coefficient

single vector, or we reformat the coefficients outside the compute kernel function to

create this pattern.

However, if we use 2 loads for data, 1 load for coefficient, to feed the MACs, and

together with predicated store to write outcome to VMEM when all product terms are

accumulated, we spend 4 memory operations to feed 2 vector math operations, and

would not be able to execute optimally as it would become memory-bound. To reduce

the memory-to-vector-math ratio, we reuse data between 2 output rows; essentially

working on 2 double vectors worth of output at a time, and the 2 double vectors are

mapped to even and odd rows of the output array. By working on 2 rows of output at a

time, we will also to zero-pad coefficients vertically and perform the 3x3 FIR filtering as

4x4 FIR filtering.

Derivation for number of iterations and step parameters for the agen is similar to the

other examples, so here we shall just show program listings and profiling instruction

report.

The filter_16b_filt4_init() function:

void filter_16b_filt4_init(short *data, short *coef, short* restrict out,
 int kw, int kh, int qbits, int blkw, int blkh,
 int lofst_data, int lofst_out,
 AGEN_PTR * agen_cfg, int * niter, int * niter_in)
{
 int vecw = chess_elementsof(dvshort);
 short niter1 = (kw+3)/4;
 short niter2 = kh+1;
 short niter3 = blkw/vecw;
 short niter4 = blkh/2;
 agen_wrapper_t wrapper0, wrapper1, wrapper2;

 *niter = niter1 * niter2 * niter3 * niter4;
 *niter_in = niter1 * niter2;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 122

 agen a0 = init((dvshort*)data);
 wrapper0.size = sizeof(short);
 wrapper0.n1 = 2;
 wrapper0.n2 = niter1;
 wrapper0.n3 = niter2;
 wrapper0.n4 = niter3;
 wrapper0.n5 = niter4;
 wrapper0.s1 = 4;
 wrapper0.s2 = 4;
 wrapper0.s3 = lofst_data;
 wrapper0.s4 = vecw;
 wrapper0.s5 = 2 * lofst_data;
 INIT_AGEN5(a0, wrapper0);

 agen a1 = init((vshort*) coef);
 wrapper1.size = sizeof(vshort);
 wrapper1.n1 = 2 * niter1 * niter2;
 wrapper1.n2 = niter3 * niter4;
 wrapper1.s1 = 1;
 wrapper1.s2 = 0;
 INIT_AGEN2(a1, wrapper1);

 agen a2 = init((dvshort* restrict) out);
 wrapper2.size = sizeof(short);
 wrapper2.n1 = niter1 * niter2;
 wrapper2.n2 = niter3;
 wrapper2.n3 = niter4;
 wrapper2.s1 = 0;
 wrapper2.s2 = vecw;
 wrapper2.s3 = 2 * lofst_out;
 INIT_AGEN3(a2, wrapper2);
 a2.round = qbits;

 agen a3 = a2;
 a3.a = (vint * restrict) (out + lofst_out);

 *agen_cfg++ = a0.get_cfg();
 *agen_cfg++ = a1.get_cfg();
 *agen_cfg++ = a2.get_cfg();
 *agen_cfg++ = a3.get_cfg();
}

The filter_16b_filter_exec() function, noting how the pair of double vectors for data are

reused for 2 sets of accumulators.

void filter_16b_filt4_exec(AGEN_PTR * agen_cfg, int niter, int niter_in)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 123

{
 dvshortx vdata0, vdata1;
 vshortx vcoef0, vcoef1;
 dvintx vacc0, vacc1;
 dvintx vacc2, vacc3;
 int count_madd = 0;
 int count_store = 1;
 int pred_madd = 0;
 int pred_store = 0;
 agen a0 = a0.expand_cfg(*agen_cfg++);
 agen a1 = a1.expand_cfg(*agen_cfg++);
 agen a2 = a2.expand_cfg(*agen_cfg++);
 agen a3 = a3.expand_cfg(*agen_cfg++);

 chess_separator_scheduler();

 for (int i=0; i<niter; i++) chess_prepare_for_pipelining
 chess_unroll_loop(4) chess_loop_range(12,)
 {
 vdata0 = dvshort_load(a0);
 vdata1 = dvshort_load(a0);
 vcoef0 = vshort_load(a1);
 vcoef1 = vshort_load(a1);

 vacc0 = vfilt4_hhw(vdata0.lo, vdata1.lo, vcoef0, vacc0, pred_madd);
 vacc1 = vfilt4_hhw(vdata0.hi, vdata1.hi, vcoef0, vacc1, pred_madd);

 vacc2 = vfilt4_hhw(vdata0.lo, vdata1.lo, vcoef1, vacc2, pred_madd);
 vacc3 = vfilt4_hhw(vdata0.hi, vdata1.hi, vcoef1, vacc3, pred_madd);

 vstore_i2(vacc0, vacc1, a2, pred_store);
 vstore_i2(vacc2, vacc3, a3, pred_store);

 }
}

The profiling instruction report of the _exec function is as follows.

Function detail: filter_16b_filt4_exec void_filter_16b_filt4_exec___Pdvuint___sint___sint

Low PC : 168
High PC : 279
Size in program memory: 112
Cycle-count : 279 (5.41%)
Instruction-count : 276 (9.98%)
Instruction Coverage : 100.00%

PC Assembly Exe-cnt Cycs
--- --- ------- ----
168 ORI R0,#64,R7 1 2
169 AgenCfgLD *R4+=R7,A0 1 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 124

170 AgenCfgLD *R4+=R7,A1 1 1
171 AgenCfgLD *(R4+64),A2 1 1
172 AgenCfgLD *(R4+0),A3 1 1
173 GPO_SETLI #1 1 1
174 ORI R0,#0,R7 || SRAI R5,#2,R5 1 1
176 ADDI R5,#-1,R4 || DVLDH_P *A0++,V10:V11 1 1
178 VLDH_P *A1++,W6 || DVLDH_P *A0++,V12:V13 1 1
180 VLDH_P *A1++,W4 || DVLDH_P *A0++,V2:V3 1 1
182 VLDH_P *A1++,W2 || DVLDH_P *A0++,V4:V5 1 1
184 VLDH_P *A1++,W1 || DVLDH_P *A0++,V0:V1 1 1
186 VLDH_P *A1++,W0 || DVLDH_P *A0++,V6:V7 1 1
188 RPT R4,#LE_Fvoid_filter_16b_filt4_exec || VLDH_P *A1++,W3 1 1
190 MOVSP R7,P6 || ADDI R6,#-1,R6 || DVLDH_P *A0++,V8:V9|| VLDH_P *A1++,W5 1 1
194 MOVP P6,P2 || ORI R0,#1,R5 || [P6] VFilt4HHW_CA V11,V13,W6,AC0:AC1||
 [P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3 || DVLDH_P *A0++,V14:V15|| VLDH_P *A1++,W7 1 1
200 MODINCP R6,R7,P7 || [P6] VFilt4HHW_CA V11,V13,W4,AC4:AC5||
 [P6] VFilt4HHW_CA V10,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++||
 DVLDH_P *A0++,V10:V11|| VLDH_P *A1++,W6 31 31
206 MODINC_NOTP R6,R5,P4|| [P7] VFilt4HHW_CA V3,V5,W2,AC0:AC1||
 [P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++||
 DVLDH_P *A0++,V12:V13|| VLDH_P *A1++,W4 31 31
212 MODINCP R6,R7,P8 || [P7] VFilt4HHW_CA V3,V5,W1,AC4:AC5||
 [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7 || [P4] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++||
 DVLDH_P *A0++,V2:V3|| VLDH_P *A1++,W2 31 31
218 MODINC_NOTP R6,R5,P5|| [P8] VFilt4HHW_CA V1,V7,W0,AC0:AC1||
 [P8] VFilt4HHW_CA V0,V6,W0,AC2:AC3 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++||
 DVLDH_P *A0++,V4:V5|| VLDH_P *A1++,W1 31 31
224 MODINCP R6,R7,P9 || MODINC_NOTP R6,R5,P3|| [P8]VFilt4HHW_CA V1,V7,W3,AC4:AC5||
 [P8] VFilt4HHW_CA V0,V6,W3,AC6:AC7 || [P5] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++||
 DVLDH_P *A0++,V0:V1|| VLDH_P *A1++,W0 31 31
231 MODINC_NOTP R6,R5,P2|| MODINCP R6,R7,P6|| [P9]VFilt4HHW_CA V9,V15,W5,AC0:AC1||
 [P9] VFilt4HHW_CA V8,V14,W5,AC2:AC3 || [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++||
 DVLDH_P *A0++,V6:V7|| VLDH_P *A1++,W3 31 31
238 [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5|| [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7 ||
 [P3] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++|| DVLDH_P *A0++,V8:V9|| VLDH_P *A1++,W5 31 31
243 [P6] VFilt4HHW_CA V11,V13,W6,AC0:AC1|| [P6] VFilt4HHW_CA V10,V12,W6,AC2:AC3||
 [P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++|| DVLDH_P *A0++,V14:V15|| VLDH_P *A1++,W7 31 31
248 MODINCP R6,R7,P7|| MODINC_NOTP R6,R5,P4||[P6]VFilt4HHW_CA V11,V13,W4,AC4:AC5||
 [P6]VFilt4HHW_CA V10,V12,W4,AC6:AC7 || [P2] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++ 1 1
253 MODINC_NOTP R6,R5,P5|| MODINCP R6,R7,P8|| [P7] VFilt4HHW_CA V2,V4,W1,AC6:AC7||
 [P7]VFilt4HHW_CA V3,V5,W1,AC4:AC5 || [P2] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++ 1 1
258 MODINC_NOTP R6,R5,P3|| MODINCP R6,R7,P9|| [P7] VFilt4HHW_CA V2,V4,W2,AC2:AC3||
 [P7]VFilt4HHW_CA V3,V5,W2,AC0:AC1 || [P4] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++ 1 1
263 [P8] VFilt4HHW_CA V0,V6,W3,AC6:AC7|| [P8] VFilt4HHW_CA V1,V7,W3,AC4:AC5||
 [P4] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++ 1 1
266 [P8] VFilt4HHW_CA V0,V6,W0,AC2:AC3|| [P8] VFilt4HHW_CA V1,V7,W0,AC0:AC1||
 [P5] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++ 1 1
269 [P9] VFilt4HHW_CA V8,V14,W7,AC6:AC7|| [P9] VFilt4HHW_CA V9,V15,W7,AC4:AC5||
 [P5] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++ 1 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 125

272 [P9] VFilt4HHW_CA V8,V14,W5,AC2:AC3|| [P9] VFilt4HHW_CA V9,V15,W5,AC0:AC1||
 [P3] QVSTWH_PI2 AC6:AC7,AC4:AC5,*A2++ 1 1
275 [P3] QVSTWH_PI2 AC2:AC3,AC0:AC1,*A3++ 1 1
276 GPO_CLRLI #1 1 1
277 JR R15 1 1
278 NOP 1 1
279 NOP 1 3

The vector slots are fully utilized in the loop body, executing a pair of MAC instructions

(VFilt4HHW) in every execution packet. Also, the 3 memory slots are also packed with

one double vector load for data, one single vector load for coefficients, and one quad

vector store. We could have loaded coefficients with a double vector load and left the

memory slots less utilized. The key is that, if possible, we want to saturate the vector

math slots to achieve the best performance. If to achieve full vector math utilization, we

need to saturate memory slots as well, that’s OK; however, if possible, if we can achieve

full vector math utilization with less memory slots utilization, we would achieve better

power efficiency as well.

The loop body portion executes for 8 * 31 = 248 cycles, compared with 8*71 = 568 cycles

in the VMAdd implementation. The 4x MAC density is diluted somewhat from

implementing 3x3 FIR filter as 4x4 FIR; 4 * 9 / 16 = 2.25x speedup. For larger FIR kernel,

the diluting would not be as bad.

8.4.4 Further Optimization for Power

The proceeding programming examples are about techniques in performance

optimization. While reducing processing time often leads to reduction in the energy

exerted to implement specific functions, there are additional techniques one can follow

to further optimize for power.

VPU has load data cache features that can help reduce power when used correctly. Load

data cache reduces power consumption by bypassing VMEM superbank read for the

memory banks that are read with the same row address. In a 2D convolution, both data

and coefficient read may be implemented to have such address patterns and can

leverage load data cache feature. In the 2D convolution optimization 1 and optimization

2 examples, we already have data read address pattern that works for load data cache.

Optimization 1 data agen initialization:

 wrapper0.size = sizeof(short);
 wrapper.n1 = kw;
 wrapper.n2 = kh;
 ...
 wrapper.s1 = 1;
 wrapper.s2 = lofst_data;

For data read in optimization 1 agen innermost i1 loop, we move the read pointer 1 pixel

at a time for kw reads from the agen, and each read is a double vector read. Enabling

load data cache for data agen can save (kw-1)*31 out of every kw*32 memory bank read

transactions for data read. In the next i2 loop, we move data pointer by one row of data,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 126

which is usually greater than 64 bytes (as we vectorize processing we should process

minimally the vector width).

Optimization 2 data agen initialization:

 wrapper0.size = sizeof(short);
 wrapper0.n1 = 2;
 wrapper0.n2 = niter1; // (kw+3)/4
 wrapper0.n3 = niter2; // kh+1
 ...
 wrapper0.s1 = 4;
 wrapper0.s2 = 4;
 wrapper0.s3 = lofst_data;

For data read in optimization 2 agen innermost i1 loop, we move the read pointer 4 pixels

at a time for 2 reads from the agen, and again each read is a double vector read.

Enabling load data cache can save 1*28 out of every 2*32 memory bank read

transactions. In case kw > 4, the pointer moves by 4 pixels, and there is further power

saving.

For coefficients read in optimization 1, coefficients are read one element at a time into a

scalar register. Scalar reads are not cached (see Load Data Cache), so optimization 1

coefficient read does not work for load cache.

Optimization 2 coefficient agen initialization:

 wrapper1.size = sizeof(vshort);
 wrapper1.n1 = 2 * niter1 * niter2;
 wrapper1.n2 = niter3 * niter4;
 wrapper1.s1 = 1;
 wrapper1.s2 = 0;

For coefficient read in optimization 2, coefficients are reformatted outside the filtering

loop so that in the filtering loop coefficients are read one single vector at a time (vshort)

without repetition, so the pattern does not work for load cache.

It is possible to leverage load cache, but we will have to change the coefficient

reformatting loop. To simplify the filtering loop in the example, we have the coefficient

reformatting loop create the 2-output-rows-at-a-time zero-padded coefficient array

AND repeated 4 times, as there are 4 4-lane groups in a single vector of halfwords. If we

revise the coefficient reformatting loop to not repeat the coefficient data 4 times and

revise the filtering loop to use VLDPerm to load and permute the coefficients with

appropriate permutation pattern, we can leverage load data cache for coefficient reads

as well, and further reduce power consumption for 2D convolution.

For example, if we have 3x3 filtering (kw = kh = 3), current optimization 2 code

coefficient reformatting loop would produce:

coef[] = {C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, // out 0 row 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // out 1 row 0
 C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, // out 0 row 1
 C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, C0, C1, C2, 0, // out 1 row 1
 C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, // out 0 row 2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 127

 C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, C3, C4, C5, 0, // out 1 row 2
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // out 0 row 3
 C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0, C6, C7, C8, 0};// out 1 row 3

To leverage load data cache for coefficients, we would skip the 4-time repetition, so that

the reformatted coefficients would be:

coef[] = {C0, C1, C2, 0, // out 0 row 0
 0, 0, 0, 0, // out 1 row 0
 C3, C4, C5, 0, // out 0 row 1
 C0, C1, C2, 0, // out 1 row 1
 C6, C7, C8, 0, // out 0 row 2
 C3, C4, C5, 0, // out 1 row 2
 0, 0, 0, 0, // out 0 row 3
 C6, C7, C8, 0};// out 1 row 3

Load data cache is enabled on a per VMEM superbank basis, so to have effective

caching, we would need data and coefficient arrays be allocated in different VMEM

superbanks. Otherwise, the load cache would be threshing from data, and coefficient

reads giving different row addresses to the same memory banks, and the cache would

have poor hit rate. When load data cache is enabled and when the read data pattern has

few repeated read to the memory banks, we may end up consuming higher power, from

additional activity in recording/matching the memory bank row addresses.

8.5 Interpolated 2D Lookup
In computer vision, we sometimes need to perform interpolated 2D lookup, typically to

resize an image, to undistort an image, or to warp an image patch for object tracking.

Most common interpolation scheme is bilinear interpolation. VPU instruction set

includes instructions that accelerate interpolated 2D lookup.

In this example, we shall look at scalar/reference code, VPU optimized code, and code

leveraging the DLUT (decoupled lookup table unit) to perform interpolated 2D lookup.

Here we skip the profiling instruction report.

8.5.1 Scalar Code

The following is the scalar/reference function performing interpolated 2D lookup:

//***
// interpolate_lookup2d_ref
// 2D table tblw wide
// index X/Y interleaved
//***
void interpolated_lookup2d_ref(int tblw, int len_out, int frac_bits,
 short * tbl, short * idx, short * out)
{
 int x, y, int_x, int_y, frac_x, frac_y;
 int lu_idx, entry0, entry1, entry2, entry3;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 128

 int out01, out23, out0123;
 int frac_mask = (1 << frac_bits) - 1;
 int rnd_add = 1 << (frac_bits - 1);

 for (int i = 0; i < len_out; i++) {
 x = *idx++;
 y = *idx++;
 int_x = x >> frac_bits;
 int_y = y >> frac_bits;
 frac_x = x & frac_mask;
 frac_y = y & frac_mask;
 lu_idx = int_y * tblw + int_x;
 entry0 = tbl[lu_idx];
 entry1 = tbl[lu_idx + 1];
 entry2 = tbl[lu_idx + tblw];
 entry3 = tbl[lu_idx + tblw + 1];
 out01 = entry0 + (((entry1 - entry0) * frac_x + rnd_add) >> frac_bits);
 out23 = entry2 + (((entry3 - entry2) * frac_x + rnd_add) >> frac_bits);
 out0123 = out01 + (((out23 - out01) * frac_y + rnd_add) >> frac_bits);
 *out++ = out0123;
 }
}

The index data is X/Y interleaved. Each element (carrying either X or Y) is a fixed-point

number with number of fraction bits being frac_bits.

The reference code reads X & Y indices, separates out integer and fraction components,

calculates a linear index using the integer X & Y components, performs the 2x2 lookup,

then uses the fraction X & Y components to perform bilinear interpolation to produce

one output value. Notice how we perform horizontal interpolation to blend entry0 with

entry1 to produce out01, and entry2 with entry3 to produce out23. Then we perform

vertical interpolation to blend out01 and out23 to produce the final output.

This scalar/reference function takes 63,504 cycles to produce 2048 outputs

interpolating from a 66 x 34 image patch, averaging 31 cycles per output.

8.5.2 VPU Parallel Lookup

VPU has parallel lookup instructions to perform 2x2 lookup, up to a parallelism of 8. To

leverage such instructions, we will need to replicate the original table containing the

image patch 8 times.

Given the replicated lookup table, VPU optimized function performing interpolated 2D

lookup is as follows:

void interpolated_lookup2d_opt(int tblw, int len_out, int frac_bits,
 short * tbl, short * idx, short * restrict out)
{
 dvshortx vidx;
 dvshortx bitpos;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 129

 bitpos.lo = replicateh(frac_bits);
 bitpos.hi = replicateh(frac_bits);
 dvshortx xy_int, xy_frac, xy_frac_norm;
 vshortx lu_idx, lu_idx_even, lu_idx_odd;
 dvshortx entry_even, entry_odd;
 vshortx out01, out23, out0123;
 int lsh_bits = 15 - frac_bits;
 int lp_k = tblw/4;
 short even_arr[] = {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1};
 short odd_arr[] = {1, 3, 5, 7, 9, 11, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1};
 vshortx pat_even = zero_extend(*((vushort *) even_arr));
 vshortx pat_odd = zero_extend(*((vushort *) odd_arr));
 int niter = len_out/16;
 agen_A aidx = init_A(idx);
 aidx.n1 = niter;
 aidx.mod1 = sizeof(dvshort);
 agen_C aout = init_C(out); // write 16 at a time
 aout.n1 = niter;
 aout.mod1 = sizeof(vshort);
 short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =
 (short chess_storage(DMb%64:chess_segment(B)) *) tbl;
#define UNROLL1 7
 // round up to multiple of unrolling factor
 niter = ((niter + UNROLL1 - 1)/UNROLL1) * UNROLL1;

 for (int i = 0; i < niter; i++) chess_prepare_for_pipelining
 chess_unroll_loop(UNROLL1) chess_loop_range(3 * UNROLL1,)
 {
 vidx = dvshort_load_di(aidx); // x/y intrlv -> lo/hi
 dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y
 lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);
 // int_y * tblw + int_x
 xy_frac_norm = xy_frac << lsh_bits;
 lu_idx_even = vpermute(lu_idx, pat_even); // 0, 2, 4, ..., 14
 lu_idx_odd = vpermute(lu_idx, pat_odd); // 1, 3, 5, ..., 15
 entry_even = vlookup_2x2pt_8h(tbl_ptr, lu_idx_even, lp_k);
 entry_odd = vlookup_2x2pt_8h(tbl_ptr, lu_idx_odd, lp_k);
 out01 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);
 out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);
 out0123 = vblend(out01, out23, xy_frac_norm.hi);
 vstore(out0123, aout);
 }
}

The use of vpermute() to reorganize elements in lu_idx vector to separate even and odd

data points. Unfortunately, this is needed to work with vlookup_2x2pt_8h, as only 8 data

points are needed in each index vector of vshortx type (which holds 16 lanes). After the

8 even/odd data points, rest of the lanes are zero-filled, by padding -1 in the even_arr[]

and odd_arr[] arrays.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 130

The loop has the following vector math operations:

> 2x vsplitbits

> vmaddh

> 2x vsla

> 2x vpermute

> 2x vhblend_i

> vblend

That’s 10 operations, so we would say the SOL (speed of light/ideal) performance is 5

cycles per iteration.

Unrolling factors from 4 to 8 are tried, and with 7x loop unrolling, we found the best

performance at 39 cycles per iteration, or 5. 57 cycles per original iteration.

The compiler often, but not always, achieves SOL performance. The loop body has

relatively long latency due to cascading of long math and lookup latencies (vmaddh →

vpermute → vlookup) and would need to unroll more to allow compiler to pack the vector

math slots but unrolling more leads to more challenging register allocation.

The optimized function executes for 805 cycles for the same test configuration (2048

outputs, 66 x 34 image patch). This translates to 0.393 cycle per output, and roughly

78.9x speedup over scalar/reference function.

8.5.3 VPU Parallel Lookup in Two Loops

One optimization strategy we can try when we have a long string of math operations in

the loop is to break it into 2 loops. For the VPU parallel lookup code 1 in the previous

section, there is another advantage in breaking up the loop into two, in that the

permutation operation in vector math we can get for free (of vector math operations) by

leveraging the load with permute instruction. The resulting code is as follows:

void interpolated_lookup2d_opt2(int tblw, int len_out, int frac_bits,
 short * tbl, short * idx, short * temp_buf_idx,
 short * temp_buf_frac, short * out)
{
 dvshortx vidx;
 dvshortx bitpos;
 bitpos.lo = replicateh(frac_bits);
 bitpos.hi = replicateh(frac_bits);
 dvshortx xy_int, xy_frac, xy_frac_norm;
 vshortx lu_idx;
 dvshortx dv_lu_idx;
 dvshortx entry_even, entry_odd;
 vshortx out01, out23, out0123;
 int lp_k = tblw/4;
 char perm_pat_arr[] = {0, 2, 4, 6, 8, 10, 12, 14, -1,-1,-1,-1,-1,-1,-1,-1,
 1, 3, 5, 7, 9, 11, 13, 15, -1,-1,-1,-1,-1,-1,-1,-1};
 vcharx perm_pat = sign_extend(*((vchar *) perm_pat_arr));
 short chess_storage(DMb%64:chess_segment(B)) * tbl_ptr =

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 131

 (short chess_storage(DMb%64:chess_segment(B)) *) tbl;

 int niter = len_out/16;
 agen_A aidx = init_A(idx); // read 16 X + 16 Y at a time
 aidx.n1 = niter;
 aidx.mod1 = sizeof(dvshort);
 agen_C atemp_idxw = init_C(temp_buf_idx); // write 16 indices at a time
 atemp_idxw.n1 = niter;
 atemp_idxw.mod1 = sizeof(vshort);
 agen_C atemp_fracw = init_C(temp_buf_frac);// write 16 dX + 16 dY at a time
 atemp_fracw.n1 = niter;
 atemp_fracw.mod1 = sizeof(dvshort);
 agen_C atemp_idxr = init_C(temp_buf_idx); // read 16 indices at a time
 atemp_idxr.n1 = niter;
 atemp_idxr.mod1 = sizeof(vshort);
 agen_C atemp_fracr = init_C(temp_buf_frac);// read 16 dX + 16 dY at a time
 atemp_fracr.n1 = niter;
 atemp_fracr.mod1 = sizeof(dvshort);
 agen_C aout = init_C(out); // write 16 outputs at a time
 aout.n1 = niter;
 aout.mod1 = sizeof(vshort);
 chess_separator_scheduler();

#define UNROLL2 6
#define UNROLL3 5
 // round up to multiple of unrolling factor
 int niter1 = ((niter + UNROLL2 - 1)/UNROLL2) * UNROLL2;
 int niter2 = ((niter + UNROLL3 - 1)/UNROLL3) * UNROLL3;

 for (int i = 0; i < niter1; i++) chess_prepare_for_pipelining
 chess_unroll_loop(UNROLL2) chess_loop_range(3 * UNROLL2,)
 {
 vidx = dvshort_load_di(aidx); // x/y intrlv -> lo/hi
 dvsplitbits(vidx, bitpos, xy_int, xy_frac); // lo=x, hi=y
 xy_frac_norm = xy_frac << (15 - frac_bits); // lo=x, hi=y
 lu_idx = vmaddh(xy_int.hi, tblw, xy_int.lo, (vpu_primitive::u3) 0);
 // int_y * tblw + int_x
 vstore(xy_frac_norm, atemp_fracw); // 16 dX + 16 dY
 vstore(lu_idx, atemp_idxw); // 16 IDX
 }

 chess_separator_scheduler();

 for (int i = 0; i < niter2; i++) chess_prepare_for_pipelining
 chess_unroll_loop(UNROLL3) chess_loop_range(3 * UNROLL3,)
 {
 dv_lu_idx = dvshort_load_perm(atemp_idxr, perm_pat); // 8 even + 8 odd
 xy_frac_norm = dvshort_load(atemp_fracr); // 16 dX + 16 dY
 entry_even = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.lo, lp_k);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 132

 entry_odd = vlookup_2x2pt_8h(tbl_ptr, dv_lu_idx.hi, lp_k);
 out01 = vhblend_i(entry_even.lo, entry_odd.lo, xy_frac_norm.lo);
 out23 = vhblend_i(entry_even.hi, entry_odd.hi, xy_frac_norm.lo);
 out0123 = vblend(out01, out23, xy_frac_norm.hi);
 vstore(out0123, aout);
 }
}

The two inner loops the following vector math operations, respectively:

> 2x vsplitbits

> vmaddh

> 2x vsla

> 2x vhblend_i

> vblend

After adding loads and stores to both loops to make them work, the resulting first loop

is still vector math-bound at SOL of 2.5 cycles per iteration. The second loop becomes

M0-slot and lookup-bound, at SOL of 2 cycles per iteration.

Again, unrolling factors from 4 to 8 are tried, and with 6x loop unrolling, we found the

best performance at 17 cycles per iteration, or 2.83 cycles per original iteration. The

second loop is 5x unrolled at 10 cycles per iteration, or 2 cycles per original iteration,

meeting SOL.

The optimized function executes for 748 cycles for the same test configuration (2048

outputs, 66 x 34 image patch). The difference in inner-loop performance, 2.83 + 2 = 4.83

cycles per iteration versus 5.57 cycles per iteration, can lead to a bigger gap in cycle

count if there is a bigger workload.

In breaking up the long sequence math into two loops, we achieve slightly faster

compute function, but we also incur greater power consumption by having more VMEM

read/write for the same application. The two-loop solution is also likely to have larger

code size, which can lead to higher I-cache misses in an application. There are pros and

cons in this implementation.

8.5.4 Leveraging DLUT

Interpolated 2D lookup is one of the operation modes supported by DLUT. To leverage

DLUT, we need to leverage Sampler APIs in PVA SDK. For this particular problem, we

configure the DLUT task with:

#include <cupva_device.h>

void dlut_setup_interp2D(CupvaSampler *restrict sampler,
 int tblw, int tblh, int len_out, int frac_bits,
 short * tbl, short * idx, short * out)
{
 CupvaSamplerInput2D const sampler_tbl = {

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 133

 .data = tbl,
 .type = SAMPLER_INPUT_TYPE_S16,
 .width = tblw,
 .height = tblh,
 .linePitch = tblw,
 .outOfRangeMode = SAMPLER_OUT_OF_RANGE_CONSTANT,
 .outOfRangeVal = 0, // don’t care, not using on OOR feature
 .flags = 0, // don’t care, linePitch is specified
 };

 CupvaSamplerIndices2D const sampler_idx = {
 .data = idx,
 .type = SAMPLER_INDEX_TYPE_U16,
 .width = len_out, // idx & out are 1D
 .height = 1,
 .linePitch = 0,
 .fractionalBits = frac_bits,
 .fractionalHandling = SAMPLER_FRAC_HANDLING_INTERPOLATE,
 .offsetX = 0,
 .offsetY = 0,
 .interleaving = SAMPLER_INTERLEAVING_ELEMENTS,
 };

 CupvaSamplerOutput const sample_out = {
 .data = out,
 .pitch = 0, // output 1D
 .transMode = TRANS_MODE_NONE,
 };

 cupvaSamplerSetup(sampler, &sampler_tbl, &sampler_idx, &sample_out);
}

This is setting up the DLUT task as 2D interpolation task mode and providing relevant

parameters to the DLUT task.

In the main() function of this test case, DLUT is configured then invoked by this

sequence of steps:

 CupvaSampler sampler_interp2D;

 // set up DLUT task via Sampler APIs
 dlut_setup_interp2D(&sampler_interp2D, tblw, tblh, len_out, frac_bits,
 tbl, idx, out);

 // trigger DLUT to start
 cupvaSamplerStart(&config.z_reorder_sampler);

 // VPU can perform other processing in parallel with DLUT

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 134

 // wait for sampler to be done
 cupvaSamplerWait();

For common image processing tasks that process a constant-sized tile at a time, DLUT

setup should ideally be performed in the application initialization time, perhaps with

multiple sets of input, index, and output buffers for double-buffering.

Not counting the setup time, per-tile DLUT execution time is about 60 cycles of latency

plus about len_out/4 cycles (for 16-bit 2D interpolated lookup), around 60 + 2048/4 =

572 cycles.

Besides faster processing speed than VPU, leveraging DLUT has the following

advantages:

> The table does not need to be replicated, and this saves VMEM footprint, processing

time and power consumption.

> While DLUT is busy performing the interpolated lookup, VPU can be potentially doing

some useful work.

> DLUT generally consumes much less energy compared to VPU doing the same lookup

or interpolated lookup workload.

> DLUT configuration and interaction code, in general, takes up less VPU code size than

VPU doing the same lookup or interpolated lookup workload.

> DLUT provides table access out-of-bound handling without performance penalty.

Please see the PVA SDK documentation for full list of Sampler API functions.

https://docs.nvidia.com/pva/sdk/index.html

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 135

Chapter 9. Instruction Set Reference

9.1 VPU Changes from Xavier to Orin
Changes in VPU from Xavier (Gen-1) to Orin (Gen-2) are as follows; throughput numbers

are for one VPU:

> Doubled I-cache capacity from 8KB to 16KB

> Doubled VMEM capacity from 3 x 64KB to 3 x 128KB

> Double VMEM bandwidth from one read-or-write to one read and one write per

superbank memory, from 3 x 512-bit per cycle to 3 x 2 x 512-bit per cycle in terms of

max possible read/write transactions

> Additional vector register files: 32 x 384-bit WRF and 32 x 384-bit ARF, with ARF

extended to 32 x 512-bit in select MAC and vector store instructions

> Doubled Predicate register file from 8 x 32-bit to 16 x 32-bit, from P0..P7 to P0..P15

> Integer MAC throughput boosted (see 9.2.1 for MAC instructions in Xavier/Orin)

• 8-bit x 8-bit, from 128 MACs per cycle to 1024 MACs per cycle, 8x speedup

• 16-bit x 16-bit, from 64 MACs per cycle to 256 MACs per cycle, 4x speedup

• 32-bit x 16-bit, from 32 MACs per cycle to 64 MACs per cycle, 2x speedup

• 32-bit x 32-bit, from 16 MACs per cycle to 64 MACs per cycle, 4x speedup

> Accelerated FFT (see 9.2.2 for FFT instructions in Xavier/Orin)

• 16-bit x 16-bit complex multiply, from 16 per cycle to 32 per cycle, 2x speedup

• 32-bit x 16-bit complex multiply, from 8 per cycle to 16 per cycle, 2x speedup

• 32-bit x 32-bit complex multiply, from 4 per cycle to 16 per cycle, 4x speedup

• 32-bit and 16-bit 4 x 2 add/sub

> Double throughput commonly vector operations (see 9.2.1 and 9.2.3 for such

instructions)

• Add, Sub, Compares, Min, Max, AbsDif

• And, Or, Xor, BitCnt

• Multiply, Multiply-add, Multiply-subtract

> Vector Blending

• VBlend extended to cover Word type

• New VHBlend_I to blend between even/odd lanes to work seamlessly with 2-point

and 2x2-point lookup

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 136

> Enhance vector bitwise operations

• Add scalar source 2 option and distinguish B/H/W types for bitwise And, Or, Xor

> Reduction operations going directly to scalar register destination

• VSumR, VMinR, VMaxR, VAndR, VOrR, VXorR, VBitCmp

> Additional vector integer math instructions

• VMinLT, VMaxLT, producing 2-input min/max and less-than/greater-than flag, to

maintain min/max and index where min/max comes from

• VSort2PL, sorting with payload, treating even lanes as keys and odd lanes as

accompanying payload

• VCollateIdx_Bits, fusing VCollateIdx (collate index) and bit-packing into scalar

destination

• VNormIdxFrac, fusing VNorm (normalization) and 2 VExtrBits (bit extraction) to

produce table index and post-lookup interpolation fraction bits

• VCmp*_AndL, VCmp*_OrL, using compare with logical and/or operations

• VApplySign, apply positive/negative sign

• VSelectLane, select a lane to write to scalar destination

• VSplitBits, splitting a source into 2-bit sections

• VXShiftL, VXShiftR, to work with an extra vector load to implement cross-lane

left/right shift, for bit manipulation.

• VHMin2ID, VHMax2ID, VMinSkip2RID, VMaxSkip2RID, Word type only, basically

decomposition of VMinRID/VMaxRID Word type with vector destination into 2

instructions to avoid critical timing path.

• VShuffle, shuffle permutation

> Vector floating-point support (see 9.2.3 for list of vector instructions added in Orin)

• Vector FP16/FP32 FMA

• Vector FP32/FP16 compare

• Vector FP32 reciprocal, square root, reciprocal square root, sin, cos, log2, exp2,

tanh

• Vector FP32/FP16/INT48/INT32/INT24 conversions

> Scalar floating-point enhancement (see 9.2.4 for list of instructions)

• In Xavier VPU there was just scalar FP32 FMA

• All vector FP32/FP16 math instructions also offer scalar variation, except for

conversion to/from IN48/INT24

> Agen features

• Automatically predicate off stores when executed over configured number of

iterations

• Min/Max collection

• Advance agen base

> Memory features

• Load cache (see 5.5)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 137

• Transpose modes T2/T4/T8/T16/T32 (see 6.3.7)

• Memory Fence (see 9.6.18)

• Load + permute (see 9.9.4.7 and 9.9.4.8)

• Per-lane rounding (see 9.9.4.9)

• 2-point and 2x2-point lookup (see 9.9.6.4 and 9.9.6.5)

• Histogram double throughput from VMEM upgrading to dual port memory

• OR-histogram (see 9.9.6.8 and 9.9.6.9)

> Decoupled coprocessor

• Coprocessors register interface (CPLD/CPST)

• Additional VMEM read/write ports to support coprocessors

• Decoupled lookup unit (DLUT)

9.2 VPU Math Operation Throughput
Math throughput is an important performance metric for a processor. The most

important math operation for throughput comparison is multiply-add, especially for DSP

processors. Multiplication is expensive in power, so it’s useful to have a summary of

various multiplication and MAC instructions to correlate performance and power

consumption. Throughput numbers for a wider range of operations are also tabulated.

9.2.1 Multiply/MAC Instructions

Multiply/multiply-accumulate instructions, per instruction throughput, and per VPU MAC

throughput are as follows. Instructions added in Orin are denoted in the “Added in Orin”

column in the table below:

Table 18. Multiply/MAC instructions

Instruction Function

Added

in

Orin

Thruput

per slot

Mul / MAC

Thruput

per VPU (1)

VMulB

VMulBBH

VMulH

VMulHHW

VMulWHW

VMulWWL

Multiply round_trunc(9b x 9b) = 12b

Multiply round_trunc(9b x 9b) = 24b

Multiply round_trunc(17b x 17b) = 24b

Multiply round_trunc(17b x 17b) = 48b

Multiply round_trunc(33b x 17b) = 48b

Multiply 33b x 33b = 48b : 32b

 32

32

16

16

8

8

64 x 8b

64 x 8b

32 x 16b

32 x 16b

64 x 16b

16 x 32b

VMulBBH (2x)

VMulHHW

VMulWHW

VMulW

Multiply 9b x 9b = 24b

Multiply 17b x 17b = 48b

Multiply 33b x 17b = 48b

Multiply trunc_16b(33b x 33b) = 48b

Y

Y

Y

Y

64

32

16

16

128 x 8b

64 x 16b

64 x 16b

32 x 32b

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 138

Instruction Function

Added

in

Orin

Thruput

per slot

Mul / MAC

Thruput

per VPU (1)

VMul2B

VMul2H

VMul2WHW

Multiply round_trunc(9b x 9b) = 12b

Multiply round_trunc(17b x 17b) = 24b

Multiply round_trunc(33b x 17b) = 48b

 64

32

16

128 x 8b

64 x 16b

64 x 16b

VMAddB_CA

VMAddBBH_CA

VMAddH_CA

VMAddHHW_CA

VMAddWHW_CA

Multiply-add 12b + round_trunc(9b x 9b) = 12b

Multiply-add 24b + round_trunc(9b x 9b) = 24b

Multiply-add 24b + round_trunc(17b x 17b) = 24b

Multiply-add 48b + round_trunc(17b x 17b) = 48b

Multiply-add 48b + round_trunc(33b x 17b) = 48b

 32

32

16

16

8

64 x 8b

64 x 8b

32 x 16b

32 x 16b

32 x 16b

VMAddB_CA (2x)

VMAddBBH_CA

VMAddH_CA

VMAddHHW_CA

VMAddWHW_CA

VMAddW_CA

Multiply-add 12b + 9b x 9b = 12b

Multiply-add 24b + 9b x 9b = 24b

Multiply-add 24b + 17b x 17b = 24b

Multiply-add 48b + 17b x 17b = 48b

Multiply-add 48b + 33b x 17b = 48b

Multiply-add 48b + trunc_16b(33b x 33b) = 48b

Y

Y

Y

Y

64

64

32

32

16

16

128 x 8n

128 x 8b

64 x 16b

64 x 16b

64 x 16b

32 x 32b

VDotP2BBH_CA

VDotP2HHW_CA

VDotP2WHW_CA

VDotP2W_CA

2-term dot product 24b + 9b x 9b + 9b x 9b = 24b

2-term dot product 48b + 17b x 17b + 17b x 17b = 48b

2-term dot product 48b + 33b x 17b + 33b x 17b = 48b

2-term dot product 48b + trunc_16b(33b x 33b)

 + trunc_16b(33b x 33b) = 48b

 32

16

8

8

128 x 8b

64 x 16b

32 x 16b

32 x 32b

VDotP2x2W_CA (2x) 2-term dot product 48b + trunc_16b(33b x 33b)

 + trunc_16b(33b x 33b) = 48b

Y 16

64 x 32b

VDotP4BBH_CA (2x)

VDotP4BBW_CA

VDotP4HHW_CA

VDotP4WHW_CA

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 24b

4-term dot product 32b + 9b x 9b + … + 9b x 9b = 32b

4-term dot product 48b + 17b x 17b + … + 17b x 17b = 48b

4-term dot product 48b + 33b x 17b + … + 33b x 17b = 48b

Y

Y

Y

Y

32

32

16

8

256 x 8b

256 x 8b

128 x 16b

128 x 16b

VDotP4x2BBH_CA (4x)

VDotP4x2BBW_CA

VDotP4x2HHW_CA

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 24b

4-term dot product 24b + 9b x 9b + … + 9b x 9b = 32b

4-term dot product 48b + 17b x 17b + … + 17b x 17b = 48b

Y

Y

Y

64

64

32

512 x 8b

512 x 8b

256 x 16b

VFilt4BBH_CA (2x)

VFilt4HHW_CA

4-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b

4-term filter 48b + 17b x 17b + … + 17b x 17b = 48b

Y

Y

32

16

256 x 8b

128 x 16b

VFilt4x2BBH_CA (4x)

VFilt4x2HHW_CA

4-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b

4-term filter 48b + 17b x 17b + … + 17b x 17b = 48b

Y

Y

64

32

512 x 8b

256 x 16b

VFilt4x2x2BBH_CA (8x)

VFilt4x2x2BBW_CA

4x2-term filter 24b + 24b + 9b x 9b + … + 9b x 9b = 24b

4x2-term filter 32b + 24b + 9b x 9b + … + 9b x 9b = 32b

Y

Y

64

64

1024 x 8b

1024 x 8b

Note: Count conventional 8b/16b/32b multiplications or multiply-accumulates. 33b x 17b

counted as 2 16b MACs.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 139

9.2.2 MAC-Related Instructions

Additional instructions that leverage multiply-add or multiply-accumulate datapath:

Instruction Function

Added

in

Orin

Thruput

per slot

Mul / MAC

Thruput

per VPU (1)

VCMulH

VCMulHHW

Complex multiply round_trunc(17b x 17b) = 24b

Complex multiply round_trunc(17b x 17b) = 48b

 8

8

64 x 16b

64 x 16b

VCMulHHW (2x) Complex multiply 17b x 17b = 48b Y 16 128 x 16b

VCMulWHW (2x)

VCMulW

Complex multiply 33b x 17b = 48b

Complex multiply trunc_16b(33b x 33b) = 48b

Y

Y

8

8

128 x 16b

64 x 32b

VMSubB_CA

VMSubBBH_CA

VMSubH_CA

VMSubHHW_CA

VMSubWHW_CA

VMSubW_CA

Multiply-subtract 12b + round_trunc(9b x 9b) = 12b

Multiply-subtract 24b + round_trunc(9b x 9b) = 24b

Multiply-subtract 24b + round_trunc(17b x 17b) = 24b

Multiply-subtract 48b + round_trunc(17b x 17b) = 48b

Multiply-subtract 48b + round_trunc(33b x 17b) = 48b

Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b

 32

32

16

16

8

8

64 x 8b

64 x 8b

32 x 16b

32 x 16b

32 x 16b

16 x 32b

VMSubB_CA (2x)

VMSubBBH_CA

VMSubH_CA

VMSubHHW_CA

VMSubWHW_CA

VMSubW_CA

Multiply-subtract 12b + 9b x 9b = 12b

Multiply-subtract 24b + 9b x 9b = 24b

Multiply-subtract 24b + 17b x 17b = 24b

Multiply-subtract 48b + 17b x 17b = 48b

Multiply-subtract 48b + 33b x 17b = 48b

Multiply-subtract 48b + trunc_16b(33b x 33b) = 48b

Y

Y

Y

Y

Y

Y

64

64

32

32

16

16

128 x 8b

128 x 8b

64 x 16b

64 x 16b

64 x 16b

32 x 32b

VBlendB

VBlendH

VBlendW

Blend 12b + round(9b x 8b – 9b x 8b) = 12b

Blend 24b + round(17b x 16b – 17bb x 16b) = 24b

Blend (48b << 16) + trunc_16b(33b x 32b)

 – trunc_16b(33b x 32b) = 48b

Y (W)

32

16

8

128 x 8b

64 x 16b

32 x 32b

VHBlend_IB

VHBlend_IH

VHBlend_IW

VHBlend_IBHB

Blend 12b + round(9b x 8b – 9b x 8b) = 12b

Blend 24b + round(17b x 16b – 17bb x 16b) = 24b

Blend (48b << 16) + trunc_16b(33b x 32b)

 – trunc_16b(33b x 32b) = 48b

Blend 12b + round(9b x 8b – 9b x 8b) = 12b

Y

Y

Y

Y

32

16

8

32

128 x 8b

64 x 16b

32 x 32b

128 x 8b

VXNorAdd8x4x2_CA 8x4-term XNorAdd 16b + 1b ^ 1b + … + 1b ^ 1b = 16b Y 128 8192 x 1b

VSumSqBBH

VSumSqHHW

VSumSqW

Sum of square 9b x 9b + 9b x 9b = 24b

Sum of square 17b x 17b + 17b x 17b = 48b

Sum of square trunc_16b(33b x 33b)

 + trunc_16b(33b x 33b) = 48b

Y

Y

Y

32

16

8

128 x 8b

64 x 16b

32 x 32b

VSqSumBBH

VSqSumHHW

Square of sum (9b + 9b) x (9b + 9b) = 24b

Square of sum (17b + 17b) x (17b + 17b) = 48b

Y

Y

32

16

192 x 8b

96 x 16b

VDet2x2HHW

VDet2x2W

Determinant 2x2 17b x 17b + 17b x 17b = 48b

Determinant 2x2 trunc_16b(33b x 33b)

 – trunc_16b(33b x 33b) = 48b

Y

Y

16

8

64 x 16b

32 x 32b

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 140

9.2.3 Other Accelerated Vector Math Instructions

Selected math operations are accelerated over baseline 32 x 12-bit, 16 x 24-bit, or 8 x

48-bit per vector slot.

See Removed/Emulated Instructions for list of Xavier vector math instructions that we

removed in Orin, where there is slowdown instead of speedup. We retain intrinsic

functions to maintain source code compatibility through emulating the functionality

with other instructions.

Instruction Function

Added

in

Orin

Thruput

per slot

Operation

Thruput

per VPU

VAddB/H/W

VSubB/H/W

VAndB/H/W

VOrB/H/W

VXorB/H/W

VMinB/H/W

VMaxB/H/W

VCmpLTB/H/W

VCmpLEB/H/W

VCmpGTB/H/W

VCmpGEB/H/W

VCmpEQB/H/W

VCmpNEB/H/W

VBitCntB/H/W

VAbsDifB/H/W

Addition

Subtraction

Bitwise and

Bitwise or

Bitwise exclusive-or

Min

Max

Compare less than

Compare less than or equal to

Compare greater than

Compare greater than or equal to

Compare equal

Compare not equal

Bit count

Absolute difference

12-bit operation

24-bit operation

48-bit operation

32

16

8

64 x 12-bit

32 x 24-bit

16 x 48-bit

2x perf of above 12-bit operation

24-bit operation

48-bit operation

Y

Y

Y

64

32

16

128 x 12-bit

64 x 24-bit

32 x 48-bit

VAdd2SubB

VAdd2SubH

VAdd2SubW

12-bit A + B – C

24-bit A + B – C

48-bit A + B – C

 32

16

8

128 x 12-bit

64 x 24-bit

32 x 48-bit

VAddSub4x2B (3x)

VAddSub4x2H

VAddSub4x2W

4-input-2-output add/subtract for radix-4 FFT

12-bit

24-bit

48-bit

Y

Y

Y

32

16

8

192 x 12-bit

96 x 24-bit

48 x 48-bit

VCfgAddSub4x2B (3x)

4-input-2-output configurable add/subtract

12-bit

Y

32

192 x 12-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 141

Instruction Function

Added

in

Orin

Thruput

per slot

Operation

Thruput

per VPU

VCfgAddSub4x2H

VCfgAddSub4x2W

24-bit

48-bit

Y

Y

16

8

96 x 24-bit

48 x 48-bit

9.2.4 Scalar/Vector Floating-point Instructions

In Xavier VPU we support only scalar FP32 instructions. In Orin VPU to extend floating

support to both scalar and vector, and both FP32 and FP16.

Instruction Function
Added

in Orin

Thruput

per slot

Operation

Thruput

per VPU

VAddF

VSubF

VMulF

VMAddF

VMSubF

VCmp*F

VRCPF

VSQRTF

VRSQF

VEXP2F

VLOG2F

VSINF

VCOSF

VTANHF

FP32 addition

FP32 subtraction

FP32 multiplication

FP32 multiply-add

FP32 multiply-subtract

FP32 comparison LT/LE/GT/GE/EQ/NE

FP32 reciprocal

FP32 square root

FP32 reciprocal of square root

FP32 exponent based 2

FP32 log based 2

FP32 sine

FP32 cosine

FP32 hyperbolic tangent

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

8 16 x 32-bit

VAddHF

VSubHF

VMulHF

VMAddHF

VMSubHF

VCmp*HF

FP16 addition

FP16 subtraction

FP16 multiplication

FP16 multiply-add

FP16 multiply-subtract

FP16 comparison LT/LE/GT/GE/EQ/NE

Y

Y

Y

Y

Y

Y

16 32 x 16-bit

VINT_FP

VFP_INT_Trunc

VFP_INT_Round

VINTX_FP

VFP_INTX_Trunc

VFP_INTX_Round

INT32 to FP32 conversion

FP32 to INT32 conversion with truncation

FP32 to INT32 conversion with rounding

INT48 to FP32 conversion

FP32 to INT48 conversion with truncation

FP32 to INT48 conversion with rounding

Y

Y

Y

Y

Y

Y

8 16 x 32/48-

bit

VINT_FP16

VFP16_INT_Trunc

VFP16_INT_Round

INT32 to FP16 conversion

FP16 to INT32 conversion with truncation

FP16 to INT32 conversion with rounding

Y

Y

Y

16 32 x 16/24-

bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 142

Instruction Function
Added

in Orin

Thruput

per slot

Operation

Thruput

per VPU

VINT24_FP16

VFP16_INT24_Trunc

VFP16_INT24_Round

VFP16_FP

VFP_FP16

INT24 to FP16 conversion

FP16 to INT24 conversion with truncation

FP16 to INT24 conversion with rounding

FP16 to FP32 conversion

FP32 to FP16 conversion

Y

Y

Y

Y

Y

FAdd (Scalar)

FSub

FMul

FMAdd

FMSub

FCmp*

FP32 addition

FP32 subtraction

FP32 multiplication

FP32 multiply-add

FP32 multiply-subtract

FP32 comparison LT/LE/GT/GE/EQ/NE

Y

1 2 x 32-bit

HFAdd (Scalar)

HFSub

HFMul

HFMAdd

HFMSub

HFCmp*

FP16 addition

FP16 subtraction

FP16 multiplication

FP16 multiply-add

FP16 multiply-subtract

FP16 comparison LT/LE/GT/GE/EQ/NE

Y

Y

Y

Y

Y

Y

1 2 x 16-bit

FRCP (Scalar)

FSQRT

FRSQ

FEXP2

FLOG2

FSIN

FCOS

FTANH

FP32 reciprocal

FP32 square root

FP32 reciprocal of square root

FP32 exponent based 2

FP32 log based 2

FP32 sine

FP32 cosine

FP32 hyperbolic tangent

Y

Y

Y

Y

Y

Y

Y

Y

1 2 x 32-bit

INT_FP (Scalar)

FP_INT_Trunc

FP_INT_Round

INT_FP16

FP16_INT_Trunc

FP16_INT_Round

FP16_FP

FP_FP16

INT32 to FP32 conversion

FP32 to INT32 conversion with truncation

FP32 to INT32 conversion with rounding

INT32 to FP16 conversion

FP16 to INT32 conversion with truncation

FP16 to INT32 conversion with rounding

FP16 to FP32 conversion

FP32 to FP16 conversion

Y

Y

Y

Y

Y

Y

1 2 x 32-bit

9.2.5 Scalar Integer Math Instructions

In the 2 scalar math slots, we support a variety of integer math instructions as well:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 143

Instruction Function Added in Orin

Add

Sub

And

Or

Xor

SLL

SRL

SRA

SXTD

ZXTD

CmpEQ

CmpNE

CmpGE (U)

CmpGT (U)

CmpLE (U)

CmpLT (U)

MIN (U)

MAX (U)

Addition

Subtraction

Bitwise and

Bitwise or

Bitwise exclusive-or

Shift left logical

Shift right logical/unsigned

Shirt right arithmetic/signed

Sign-extend

Zero-extend

Compare equal

Compare not equal

Compare greater than (unsigned)

Compare greater than or equal to (unsigned)

Compare less than (unsigned)

Compare less than or equal to (unsigned)

Minimal (unsigned)

Maximal (unsigned)

Mul

LMulSS

LMulSU

LMulUU

32-bit x 32-bit -> 32-bit multiply

32-bit x 32-bit -> 64-bit multiply signed-signed

32-bit x 32-bit -> 64-bit multiply signed-unsigned

32-bit x 32-bit -> 64-bit multiply unsigned-unsigned

Div Integer division (variable # cycles)

MODINC

MODINCP

MODINC_NOTP

DPMODINCP

DPMODINC_NOTP

MUXP

MUX

Modular increment

Modular increment and predicate if not zero

Modular increment and predicate if zero

Modular increment and predicate double if not zero

Modular increment and predicate double if zero

Multiplex from predicate (C select operator)

Multiplex from scalar register (C select operator)

SLLIADD

CMPWITHIN

BITCNT

Shift left immediately and add

Compare within low/high bounds

Bit count

Y

Y

Y

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 144

9.3 VPU Compatibility

9.3.1 Compatibility Exceptions

We aim to maintain C source code backward compatibility with Xavier (Gen-1) VPU. We

do not plan to support assembly code or binary compatibility.

There are a few cases where we need to break C source code compatibility in Orin VPU.

> Vector multiply-add rounding/truncating options, in Gen-1 we supported {.R0, .R7,

.R15, .R16, .T0, .T7, .T15, .T16}. In Gen-2 we added .R4, taking up encoding space of

.T0. Thus, hard-coded rounding/truncating option 4 in the application code, which

was mapped to .T0, in Gen-2 will map to .R4.

> Some VMEM storage classes involving Word and Halfword types need to be revised

to the base classes involving Byte type.

• RAM_Aw, RAM_Ah → RAM_Ab

• RAM_Bw, RAM_Bh → RAM_Bb

• RAM_Cw, RAM_Ch → RAM_Cb

• DMw, DMh → DMb

> CLRHWLP needs 3 instruction packets of gap to the Loop End instruction packet for

the clear hardware loop (and exit loop) functionality to work.

> Agen auto predication features would predicate off any agen-based scalar/vector

store past the configured iteration counts. For example, if N1/N2/N3/N4/N5/N6 are

left unchanged after initializing an agen (which would set them to default value of 1),

in Gen-1 ISS/silicon, multiple stores to the same location (as address would stick to

last valid address), but in Gen-2 ISS/silicon, only the first store would be carried out;

subsequent stores are blocked and thus not carried out.

> Address map difference and aliasing of address space means that code that

addresses outside primary address regions would behave differently in Gen-1

ISS/silicon versus Gen-2 ISS/silicon. For example, reading 0x10024 would be aliased

back to physical memory at 0x24 in Gen-1, and would be reading physical memory at

0x10024 in Gen-2.

> Gen-1 VPU supports floating-point math in scalar slots only and FP32 only, and

functionality was implemented with Synopsys DesignWare floating-point fused

multiply-add unit, Gen-2 VPU extends floating-point support to scalar/vector and

FP16/FP32, and functionality was provided by reusing NVIDIA GPU SM floating-point

unit. There can be differences in various corner case behavior around +/- zero, +/-

infinity, and denormal numbers.

> vbool, vector Boolean type, was removed as it is ambiguous (as how many lanes of

Boolean).

> Intrinsic functions for VMinRID/VMaxRID in Gen-1 was vminr()/vmaxr(), which are

easy to confuse with intrinsic functions for VMinR/VMaxR. They are corrected in Gen-

2 as vminrid()/vmaxrid().

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 145

> Agen configuration load/store syntax was revised to better support Native

compilation. See AgenCfgST and AgenCfgLD for details.

9.3.2 Removed/Emulated Instructions

The following instructions are removed from the Orin VPU instruction set due to timing

pressure:

> Removed VMinR, VMaxR with vector register destination, replaced with scalar

destination

> Removed VMinRID, VMaxRID with vector register destinations (dst1 & dst2), replaced

with scalar destinations (dst1 & dst2)

> Removed VPromote (without deinterleaving)

The intrinsic functions are still supported by emulating the functionality with multiple

instructions. We do not regard this as breaking backward compatibility, but it is worth

noting, in case programmers see compute kernels utilizing these instructions

performing slower in Orin ISS/silicon versus Xavier ISS/silicon.

9.4 Instruction Execution Ordering

9.4.1 Processor Pipeline

Normally processor pipelining is behind the scenes, as execution packets appear to

execute sequentially, and mostly one packet per cycle, with instructions in the same

packet executed in parallel. However, to understand various conditions where the

processor stalls, and the few exceptions to the sequential execution behavior better, we

need to learn about the VPU processor pipeline stages:

> IF1..IF3: Instruction fetch stages

> ID: Instruction decode stage

> EX1 .. EX9: execution stages

> VPU pipeline diagram follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 146

Figure 13. VPU processor pipeline

IF1

IF2

IF3

ID

EX1

EX2

EX3

EX4

EX5

EX6

EX7

EX8

EX9

EX10

Scalar Math Pipe Vector Math Pipe Load Pipe Store Pipe

Fetch &
Branch Pipe

I$

Instruction
Alignment

Instruction
Decode

Scalar
Math

Pred WB

SRF
WB

Pred Read

SRF
Read

VRF/WRF
Read

1
Cycle
Ops

VRF/WRF/ARF
WB

2
Cycle
Ops 3

Cycle
Ops

Scalar
RF

Read

MEM
ARB

Addr Calc

Address
XBAR

Memory
Read

Read
XBAR

Sbnk Mux
LD Distr

SRF
WB

VRF/WRF
WB

SRF
WB

Scalar
RF

Read

SRF
WB

SRF
RD

Pipe-0

VRF
ReadPipe-

1

Pipe-
2

RND

MEM
ARB

SAT

Addr
Calc

Data
Mux

Addr
XBAR

Data
XBAR

Memory
Write

Br-1

Branch-2

Instruction Decode Instruction Decode
Instruction

Decode
Instruction

Decode

Pred Math

SRF
Read

Scalar
FP

SRF
WB

SRF
Read

Pred
RF

Read

Pred
RF

Read

ARF
Read

Part
I/O

Part
I/O

Part
I/O

AGU/
AGEN

VRF
Read

AGU/
AGEN

VRF
Read

SRF
Rd

9.4.2 Default/General Behavior

The VPU instructions execute in the following general order consistent with assembly

encoding:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 147

1. Scalar and vector instructions in the same VLIW execution packet are executed in

parallel.

2. Within the same VLIW execution packet, loads are executed before stores.

3. Multiple stores are executed in parallel if they go to different memory superbanks.

Multiple writes going to the same memory superbanks are executed in slot order.

4. Reading the same register (scalar or vector) by multiple slots is supported.

5. Writing to same register (scalar or vector) by multiple slots is NOT allowed (compiler

does not schedule such code, and such code would cause assembler to fail).

6. Same register (scalar or vector) can be read (multiple times) and written (only once)

in the same execution packet, read preceding write.

9.4.3 Delay Slots for Branch Instructions

Branch and hardware loop instructions have delay slots, so they also appear as executing

out of order; 2 packets after branch instruction are executed before taking the branch.

SWRBK, CLR_HWLP, STW HWLP, WFE_GPI, and WFE_R5 should not be placed in a

branch delay slot.

Please see Control Instruction Summary for number of delay slots for each instruction.

9.4.4 Exception for Instructions Accessing Address

Generator

Address Generator fields have the following read/write accesses:

> MovAgen reads and writes Agen in EX2

> Agen-based load/store reads and writes Agen in EX2 (reading most fields, writing

base and loop variables)

> Agen-based store reads and writes Agen in EX7 (updating MinVal, MaxVal)

> InitAgen and CfgAgen write Agen in EX2

> Store Agen Loopvar reads Agen in EX2

> AgenCfgST/AgenCfgST_p2 reads Agen in EX7

> AgenCfgLD/AgenCfgST_p2 writes Agen in EX7

In the processor model we have, hardware stalls so that instructions appear to be

executed sequentially. However, instructions from the same execution packet are

executed or stalled together, except stalling for memory dependency. Thus, Agen

read/write instructions that access Agen in different pipeline stages exhibit non-

sequential behavior.

Write-EX2 + Read-EX7 in the same packet: would appear that write precedes read,

violating rule #6. Possible combinations for this category are:

> MovAgen with AgenCfgST in same packet: Moved Agen contents are stored to

memory.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 148

> Agen-based load/store with AgenCfgST in the same packet: Updated Agen contents

are stored to memory.

> InitAgen or CfgAgen with AgenCfgST in the same packet: Configured Agen contents

are stored to memory.

Write-EX2 + Write-EX7 in the same packet: allowed, with Write-EX2 occurring before

Write-EX7, so the outcome from Write-EX7 stays. This is violating rule #5. Possible

combinations for this category are:

> MovAgen with AgenCfgLD in same packet: Moved Agen contents are lost, overridden

by load outcome of AgenCfgLD.

> Agen-based load with AgenCfgLD in same packet: Agen-based load is carried out

with current address value (since agen-update is post-modifying). Agen address

update is lost, overridden by load outcome of AgenCfgLD.

> InitAgen or CfgAgen with AgenCfgLD in same packet: Configured Agen contents is

lost, overridden by load outcome of AgenCfgLD.

Note that Read-EX2 + Write-EX7, Read-EX2 + Write-EX2, and Read-EX7 + Write-EX7 in

same packet would appear that read precedes write and thus conform to the general

instruction ordering (rule #6).

Agen-based load/store (reading agen configuration in EX2) and AgenCfgLD (writing agen

configuration in EX7) in same packet: agen-based load/store uses configuration before

AgenCfgLD

MovAgen (reading source agen in EX2) and InitAgen/AgenCfg (writing agen

configuration in EX2) in same packet: source agen of MovAgen is read first, before being

updated by InitAgen/AgenCfg

AgenCfgST_p2 (reading agen loop variables and min/max value in EX7) and agen-based

store (reading/writing agen loop variables and min/max value in EX7, min/max value only

when min/max collection is enabled) in same packet: AgenCfgST_p2 stores agen loop

variables etc. before being updated by the agen-based store.

Agen-based load with AgenCfgLD in the same packet is allowed in Xavier VPU but is

disallowed in Orin VPU. In Orin, we have added min/max collection feature, and both

instructions are written into MinVal/MaxVal agen fields in EX7.

9.4.5 Exception for Instructions Accessing HW

Loop Registers

The hardware zero-overhead looping utilizes the following registers:

> LF: 2-bit loop level, -1, 0 or 1, indicating which loop level the execution is in, reset to -

1 (which is encoded as binary “11”).

> LS[0..1]: 32-bit loop start PC, reset to 0

> LE[0..1]: 32-bit loop end PC, reset to 0

> LC[0..1]: loop count, 32-bit, reset to 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 149

The hardware Loop instruction RPT accesses these registers (both read and write) in

EX2 stage.

The PCU, program control unit, accesses these registers (both read and write) upon end

of the loop (PC matching LE[LF]) to implement looping behavior.

These registers are written by CLR_HWLP instruction, to clear hardware loop context for

a new algorithm task, and read by STW HWLP instruction, for debug. These instructions

have placement restrictions with respect to hardware loop, to avoid hazards.

CLR_HWLP should not be placed:

> In two packets before RPT

> In the same packet as RPT

> In the two RPT delay slots

> In the first 2 packets of loop body

> In the last 2 packets of loop body

> In the first 2 packets after the loop.

Otherwise, hardware loop state is non-deterministic.

STW HWLP should not be placed:

> In two packets before RPT

> In the same packet as RPT

> In two RPT delay slots

> In the first 3 packets of loop body

> In the last 3 packets of loop body

> In the first 2 packets after the loop.

Otherwise, stored contents are non-deterministic.

These restrictions do not affect instructions injected through debug in Debug State,

since such instructions are executed one instruction at a time through all pipeline

stages.

9.4.6 Exception for Instructions Accessing FP

Invalid Flag

With the scalar and vector unit FP instructions, we have an invalid flag that FP

operations can set, and a pair of move instructions moving between the flag and a scalar

register that we can use to acquire and clear the flag.

Interesting scenarios:

> When there are multiple FP operations in the same packet, the invalid outcome from

any operation can set the invalid flag, and since the flag is sticky, the flag update can

be represented as follows:

invalid_flag |= s0_invalid | s1_invalid | v0_invalid | v1_invalid

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 150

> When MOV R, INV instruction (only in S0 since it’s classified as a control instruction)

and FP operation(s) (in S1/V0/V1 slots) are placed in the same packet, writing of the

flag from MOV R, INV instruction is ignored, overridden by the FP operation(s).

> When MOV INV, R instruction (in S0) and FP operation(s) (in S1/V0/V1 slots) are

placed in the same packet, reading of the flag occurs before the FP operation(s)

affect the flag. This case is consistent with the “read before write” general ordering

rule.

9.4.7 Hardware Stalls to Comply with Sequential

Execution Order

There is RAW (read after write) and WAW (write after write) data hazard detection on all

register files (scalar, predicate, agen, VRF, WRF, ARF, XARF) to ensure sequential

execution regarding dependency through registers.

Various control instructions interact with components external to the VPU processor in

various pipeline stages:

> GPO_SET/CLR/WR affect GPO pins in the EX2 stage.

> GPI_RD reads GPI pins in the EX2 stage.

> CPST writes to coprocessor space via APB write transaction in the EX4 stage

(address/write-request/write-data driven in EX4, wait for peripheral to be ready in

EX5).

> CPLD reads from coprocessor space via APB read transaction in the EX5 stage

(address/read-request driven in EX4, wait for peripheral to be ready and read-data in

EX5).

> SIG_R5 raises vpu_start_r5 control signal to R5 in the EX3 stage.

> WFE_GPI and WFE_R5 waits for all proceeding instructions to exit pipeline before

execution, so has their own mechanism to ensure sequential execution.

SIG_R5 and WFE_R5 are involved in R5/VPU communication. As R5 and VPU are two

separate processor cores, we are not relying on fine timing of individual signals, but on

the interaction protocol, to ensure coherent behavior.

Among the remaining external interface instructions, i.e. GPI/GPO/CPLD/CPST, GPI and

CPLD are read actions, and GPO and CPST are write actions. We need to watch for

potential RAW hazards:

> GPI after GPO: both execute in EX2, so execution order is preserved.

> GPI after CPST: CPST executes in EX4 and GPI in EX2, so potential RAW hazard.

Hardware stalls GPI in EX2 (or earlier) until peripheral responds to readiness for the

CPST transaction.

> CPLD after GPO: GPO executes in EX2 and CPLD in EX4, so execution order is

preserved.

> CPLD after CPST: CPST executes in EX4 and CPLD in EX5, also APB bus is sequential,

so execution order is preserved.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 151

Potential WAW hazards:

> GPO after CPST: CPST executes in EX4 and GPO in EX2, so potential WAW hazard.

Hardware stalls GPO in EX1 (or earlier) until peripheral responds to readiness for the

CPST transaction.

> CPST after GPO: GPO executes in EX2 and CPST in EX4, so execution order is

preserved.

9.5 Instruction Predication
The VPU has 14 32-bit predicate registers, P2… P15. P0 are P1 are reserved to indicate

unpredicated (always-execute) instructions. In addition, the first half of the main vector

register file, V0..V15, can be used for vector store lane predication.

The following predication features are available:

> Vector math instruction-level predication.

> Vector load instruction-level predication.

> Scalar store instruction-level predication.

> Vector store lane predication.

9.5.1 Instruction-Level Predication for Register

Moves

Scalar-to-scalar, scalar-to-vector, and vector-to-scalar are instruction-level predicated.

When predication is on (nonzero), the register move is performed. When predication is

off (zero), the register move is skipped.

Predicated register move can be used for conditional execution to avoid conditional

branches.

9.5.2 Instruction-Level Predication for Vector Math

Selected vector ALU instructions are predicated on or off identically across lanes, MOVS

(scalar-to-vector move) and those with “_CA” suffix in mnemonic. It’s a common decision

for all lanes to carry out one functionality or the other, with the predication-off

functionality emulating clearing of the accumulator.

For example:

 [P2] VMAddHHW_CA V0, V1, V2:V3 // if (P21==0), V2:V3 = V0*V1
// otherwise V2:V3 += V0*V1

Clearing of the accumulator typically happens periodically, once every K iterations, where

K is number of items being accumulated, as in filtering. MODINCP can be used to

implement a modulo K counter to control the periodic predication.

Please consult the description of individual instructions for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 152

9.5.3 Predication for Load/Store

Predication support for various addressing modes of scalar/vector load/store is shown

as follows:

Table 19. Scalar/vector load/store predication support

Predication feature Base+offset Post-modify Agen-based

Scalar load not available instruction-level not available

Scalar store not available instruction-level instruction-level

Vector load not available not available instruction-level

Vector store not available not available per-lane

9.5.3.1 Instruction-Level Predication for Post-Modify Scalar

Load

Scalar load with post-modify addressing mode is instruction-level predicated.

When predication is on, memory read, address register update, and destination write are

carried out. Otherwise, none of these are carried out. Of course, predicate register will

always be read for the predication.

Predicated scalar load/store is used to accelerate various conditional scalar processing.

9.5.3.2 Instruction-Level Predication for Post-Modify and

Agen-Based Scalar Store

Scalar store, both post-modify and agen-based variations are instruction-level

predicated.

For the post-modify scalar store, predication drives both memory write and the register

update (base += modifier). When predication is on, both memory write and register

update are carried out, otherwise, both are not carried out.

For the agen-based scalar store, predication drives only memory write. Agen update is

always carried out. When predication is on, memory write is carried out, otherwise,

memory write is not carried out.

In both kinds of scalar stores, source register read is carried out unconditionally, with

any necessary hardware stalling to preserve source register dependency.

Predicated scalar load/store is used to accelerate various conditional scalar processing.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 153

9.5.3.3 Instruction-Level Predication for Agen-Based Vector

Load

Agen-based vector load instructions are instruction-level predicated. When predication

is on, memory read and destination vector register write are performed. When

predication is off, memory read and destination vector register write are skipped.

Address update is carried out unconditionally.

A use case for predicated vector load is for integral image, where predication is used to

deal with boundary rows.

9.5.3.4 Lane Predication for Agen-Based Vector Store

Agen-based vector store instructions are predicated per lane. Predication-on lanes are

written to memory, predication-off lanes are skipped. Address update is carried out

unconditionally.

Predication is conveyed via either predicate register(s) or a single vector register in VRF.

In case of predication via predicate register(s), as many bits of predicate register are

used as the number of lanes, and up to 64 lanes, or two predicate registers, are used.

The predication bits are the least significant bit justified.

For example, “[P2] DVSTW_PI V0, *A0++” stores 16-word lanes, with lane i predicated by

bit i of the predicate register P2.

In case of predication via a single vector register in VRF, predicates are evenly spaced

starting from bit 0. The VRF entry is regarded as a 384-bit vector, and a single bit is used

for each lane. Bit position for each lane is lane_index * (384/num_lanes).

For vector store with scalar distribution, for example, VSTW_S, predication is supported

only through predicate registers, and not through vector register. We are storing out

just one or two values so there is little value in using vector register to convey

predicates.

The following table shows bits of VRF used across variations of vector store:

Table 20. Vector register predicated vector store variations

Vector store Number

of source

lanes

Bits used in

predicate VRF entry

As bit 0 of array

elements

VSTB_P/T

VSTBH_P/T

32 0, 12, 24, …, 372 arr_vcharx[0, 1, …, 31]

VSTH_P/T

VSTHW_P/T

16 0, 24, 48, …, 360 arr_vshorx[0, 1, …, 15]

VSTW_P/T

VSTWX_P

8 0, 48, 96, …, 336 arr_vintx[0, 1, …, 7]

VSTB_S 1 Predication via VRF not supported

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 154

Vector store Number

of source

lanes

Bits used in

predicate VRF entry

As bit 0 of array

elements

VSTH_S

VSTW_S

DVSTB_P/PI 64 0, 6, 12, …, 378 as bit 0 and bit 6 of

arr_vcharx[0, 1, …, 31]

DVSTH_P/PI/T/TI

DVSTHB_P/PI

32 0, 12, 24, …, 372 arr_vcharx[0, 1, …, 31]

DVSTW_P/PI/T/TI/T2/T2I

DVSTWH_P/PI/T/TI

16 0, 24, 48, …, 360 arr_vshortx[0, 1, …, 15]

DVSTB_S

DVSTH_S

DVSTW_S

2 Predication via VRF not supported

QVSTHB_P/PI/PI2 64 Predication via VRF not supported

QVSTWH_P/PI/PI2/T/TI2 32 Predication via VRF not supported

For example, “[V2] DVSTW_PI V0, *A0++” stores 16 word lanes, with lane i predicated by

bit i*24 of V2, or bit 0 of each element of a vshortx-type variable mapped to V2.

There is a behavior difference between predicate register file and vector register file for

predication. With predicate register file, in case all lanes are predicated off, the memory

transaction is not issued, conserving power consumption. With vector register file, to

shorten the latency the VRF entry is read late in the pipeline, same stage as the store

data, too late to block the memory transaction, so the predicated memory transaction is

always issued.

Lane-predicated store via predicate register is supported in all types and distribution

combinations of Agen-based scalar/vector stores as well as VAST, vector addressed

stores, and in all memory slots.

Lane-predicated store via VRF is supported in agen-based single/double vector store of

VRF, non-scalar distribution, and in M0 slot only.

9.6 Control Instructions

9.6.1 Instruction Summary

The following control instructions are supported. Most are available only in the S0 slot,

except the following:

> RD_TSC.L/H can be issued in both S0 and S1 slots.

> CPLD, CPST, MemFence are available only in M0 slots.

In the table, delay slots refer to execution packets (one slot is one packet) following the

control instructions that are executed before the control instruction takes place. For

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 155

example, the JR instruction has 2 delay slots, so two execution packets following the JR

instruction’s own packet are executed before the jump takes place.

Table 21. Control instructions

Function Assembly Format Comments

Jump to immediate J imm20_addr Jump to relative immediate address, with 2 delay slots.

Jump to register JR Raddr Jump to absolute address in register, with 2 delay slots.

Jump and link (call) JAL imm20_addr Call (jump and link) relative immediate address., with 2

delay slots.

Jump and link

register (call)

JALR Raddr Call absolute address in register, with 2 delay slots.

Branch if zero BEQZ Rsrc, imm14_addr Branch if Rsrc is zero to relative immediate address, 2 delay

slots.

Branch if nonzero BNEZ Rsrc, imm14_addr Branch if Rsrc is not zero to relative immediate address, 2

delay slots.

Software break

point

SWBRK Software break point.

Hardware loop RPT Rsrc, imm16 Hardware zero-overhead loop, with the Rsrc specifying

number of iterations, and the immediate encoding size of

the loop, with 2 delay slots.

Clear hardware loop

registers

CLR_HWLP Initialize hardware loop registers to default values

GP out set low GPO_SETLI imm16 Set lower 16-bit of GPO according to immediate

GP out set high GPO_SETHI imm16 Set higher 16-bit of GPO according to immediate

GP out clear low GPO_CLRLI imm16 Clear lower 16-bit of GPO according to immediate

GP out clear high GPO_CLRHI imm16 Clear higher 16-bit of GPO according to immediate

GP out set GPO_SET Rsrc Set 32-bit of GPO according to Rsrc

GP out clear GPO_CLR Rsrc Clear 32-bit of GPO according to Rsrc

GP out write GPO_WR Rsrc Copy 32-bit Rsrc to 32-bit GPO

GP out read GPO_RD Rdst Copy 32-bit GPO into Rdst

GP in read GPI_RD Rdst Sample 32-bit GPI into Rdst

Wait for GPI

pattern

WFE_GPI Rsrc1, Rsrc2 Wait until (GPI & Rsrc1) == Rsrc2

Wait for R5 event WFE_R5 Transition into low-power WFE_R5 state until R5 writes

R5_vpu_start to dispatch next task

Signal R5 SIG_R5 Rsrc Send software interrupt to R5; Rsrc carries a software-

defined 32-bit data to write to a VPU config register, which

R5 interrupt service routine can read.

Enable timestamp

counter

ENABLE_TSC Enable performance counter

Once enabled, timer increments in Active state (and not

increment in Reset, Debug, WFE_R5, WFE_GPI, Halted,

Error-Halted states).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 156

Function Assembly Format Comments

Read timestamp

counter

RD_TSCL Rdst

RD_TSCH Rdst

Copy performance counter lower/upper 32-bit to Rdst.

S0 and S1 slots.

Move FP invalid flag MOV INV-R

MOV R-INV

Move floating-point invalid flag to/from scalar register

OCD load/store OCD_LD PC/GPO

OCD_ST PC/GPI/GPO

OCD (debug) load/store

Configure VMEM

Superbanks

CFG_VMEM_SBA/B/C Rsrc

RD_CFG_VMEM_SBA/B/C Rdst

Write configuration

Read configuration

Coprocessor store CPST Rsrc, Rdaddr

CPST Rsrc, #imm12

Coprocessor load CPLD Rsaddr, Rdst

CPLD #imm12, Rdst

M0 slot only

Memory fence MemFence M0 slot only

The VPU does not take interrupts, and thus there is no enable/disable interrupt, return

from interrupt, etc., instructions available.

The PC is internally modeled to count in 32-bit increments. For example, PC = 1 means

byte address of 4. The 20-bit absolute immediate field for J, JAL, the 14-bit relative

immediate fields for BEQZ, BNEZ, the 16-bit immediate field for RPT, conform to this

convention (count in 32-bit increments).

By default, the compiler aligns all branch targets to 256-bit = 32-byte = 8-word

alignment, to avoid the instruction fetch interface spending an extra cycle to fetch a

execution packet starting from target PC.

9.6.2 Branch/Jump/Call Delay Slots

For the processor pipeline to work, 2 execution packets after the branch/jump/call

instructions are executed before taking the branch/jump/call. These 2 execution packets

are called in the delay slots of the branch/jump/call instructions. Please see instruction

summary or details in each branch/jump/call instruction for how many delay slots there

are.

Note that the branching action is delayed but register read/write is still executed

sequentially.

For example, case 1:

1 LDHI R5, #0

2 BEQZ R5, #42

3 ADDI R5, #-1, R5

4 NOP

5 HALT

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 157

In this case, R5 for instruction #2 is sampled and branch decision made accordingly.

Subsequent instruction #3 that changes R5 does not change the branch decision.

For example, case 2:

1 LDHI R15, #0

2 JAL #42

3 ADDI R15, #-1, R15

4 NOP

5 HALT

In this case, R15, the link register, is changed in instruction #1, but JAL (jump and link) in

instruction #2 would overwrite R15 with the return PC (after 2 delay slots, thus #5). R15

is then revised again by instruction #3 before taking the branch. Thus, when the called

function returns via JR R15, execution starts at #4, rather than the normal behavior, 2

delay slots past the JAL, at #5.

9.6.3 Jump and Link (JAL, JALR)

Instruction name JAL

Functionality Jump and link (call)

Assembly format JAL imm20_addr

Type and bit width 20-bit signed immediate

Predication not available

Source options not available

Destination options not available (implicit: PC and LR)

Additional options not available

Intrinsics/operator not available

Additional details Jump and link (call) relative immediate address.

There’re 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the

destination.

PC after the delay slot is written to the link register R15. This is where a

subsequent JR R15 should jump to when returning from the called function.

Instruction name JALR

Functionality Jump and link register (call)

Assembly format JALR Raddr

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options not available (implicit: PC and LR)

Additional options not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 158

Intrinsics/operator not available

Additional details Jump and link (call) absolute address in register.

There’re 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the

destination.

PC after the delay slots is written to the link register R15. This is where a

subsequent JR R15 should jump to when returning from the called function.

9.6.4 Jump (J, JR)

Instruction name J

Functionality Jump to immediate

Assembly format J imm20_addr

Type and bit width 20-bit signed immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator not available

Additional details Jump to relative immediate address.

There’re 2 delay slots; one execution packet immediately following the jump

would be executed before the jump takes place.

Immediate value is calculated as the PC offset from the 2nd delay slot to the

destination.

Instruction name JR

Functionality Jump to register

Assembly format JR Raddr

Type and bit width 32-bit absolute address

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator not available

Additional details Jump to absolute address in register.

There are 2 delay slots.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 159

9.6.5 Conditional Branch (BEQZ, BNEZ)

Instruction name BEQZ

Functionality Branch if zero

Assembly format BEQZ Rsrc, imm14_addr

Type and bit width 14-bit signed immediate

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator not available

Additional details Branch if Rsrc is zero to relative immediate address.

There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the

destination.

Instruction name BNEZ

Functionality Branch if not zero

Assembly format BNEZ Rsrc, imm14_addr

Type and bit width 14-bit signed immediate

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator not available

Additional details Branch if Rsrc is not zero to relative immediate address.

There are 2 delay slots.

Immediate value is calculated as the PC offset from the 2nd delay slot to the

destination.

9.6.6 Software Break Point (SWBRK)

Instruction name SWBRK

Functionality Software break point

Assembly format SWBRK

Type and bit width not applicable

Predication not available

Source options not available

Destination options not available

Additional options not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 160

Instruction name SWBRK

Intrinsics/operator not available

Additional details Upon executing this, VPU transitions into debug state. Only the debug

controller can transition VPU back to active state.

SWBRK should not be placed in any branch or hardware loop delay slots.

9.6.7 Hardware Zero-Overhead Loop (RPT)

Instruction name RPT

Functionality Hardware loop

Assembly format RPT Rsrc, imm16

Type and bit width Rsrc: 32-bit unsigned iteration count

Imm16: 16-bit unsigned PC offset

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator not available

Additional details Hardware zero-overhead loop, with Rsrc indicating number of iterations.

There are 2 delay slots.

The immediate field encodes loop size, which is the PC difference between

the 2nd delay slot packet (very next packet is beginning of loop) and the last

packet of the loop.

Rsrc is checked at the end of the loop body, so loop is iterated at least one

time. Loop with Rsrc = 0 will be executed one time (same behavior as Rsrc =

1).

Instruction name CLR_HWLP

Functionality Clear hardware loop registers

Assembly format CLR_HWLP

Type and bit width not applicable

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void clr_hwlp();

Additional details Initialize LF = -1 (2-bit binary 11), LC[0..1] = 1, LS[0..1] = 0, LE[0..1] = 0.

Should be included in each task starting code to clear hardware loop

registers for the new task.

Should not be placed:

> in the same packet as RPT

> in RPT delay slots

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 161

Instruction name CLR_HWLP

> in first 2 packets of loop body

> in last 2 packets of loop body

9.6.8 General Purpose Output (GPO_*)

The following instructions are available for GPO feature:

> GPO_SETLI

> GPO_SETHI

> GPO_CLRLI

> GPO_CLRHI

> GPO_SET

> GPO_CLR

> GPO_RD

> GPO_WR

GPO set/clear low/high immediate are used to set or clear a number of GPO bits at the

same time, all in the lower 16 bits or upper 16 bits and known at compile time. For

example, gpo_clrh(5) would map to “GPO_CLRHI #5” to clear GPO[18] and GPO[16], while

leaving all other GPO pins unchanged.

GPO set/clear are used to set or clear a number of GPO bits at the same time, either not

all in lower/upper 16 bits or unknown at compile time. The set/clear bit mask value is

supplied by a scalar register. For example, gpo_set(val) would map to “GPO_SET R4”

(assuming variable val is allocated to R4), to set GPO pins where bits of val are one,

leaving all other GPO pins unchanged.

GPO read/write are used to replace (or not replace) a number of GPO bits at the same

time, allowing any binary transition (0 → 0, 0 → 1, 1 → 0, 1 → 1) in each bit. For example,

to replace GPO[7:4] with a 4-bit value in val, one would code:

 temp = gpo_rd();
 temp &= 0xFFFF_FF0F;
 temp |= val << 4;
 gpo_wr(temp);

which would map to (assuming val is allocated to R6):

 GPO_RD R4
 LHI #0xFFFF, R5
 ORI R5, #0xFF0F, R5
 AND R4, R5, R4
 SLLI R6, #4, R5
 OR R4, R5, R4
 GPO_WR R4

Instruction name GPO_SETLI

Functionality General purpose output set low immediate

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 162

Instruction name GPO_SETLI

Assembly format GPO_SETLI imm16

Type and bit width 16-bit unsigned immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void gpo_setl(unsigned short imm);

Additional details Set lower 16-bit of GPO according to immediate. When a bit of the

immediate is on, the corresponding bit of GPO is set. The remaining GPO bits

are left unchanged.

For example, GPO_SETLI #0x11 would set bits 4 and 0 of GPO.

Instruction name GPO_SETHI

Functionality General purpose output set high immediate

Assembly format GPO_SETHI imm16

Type and bit width 16-bit unsigned immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void gpo_seth(unsigned short imm);

Additional details Set upper 16-bit of GPO according to immediate. When a bit of the

immediate is on, the corresponding bit in upper 16 bits of GPO is set. The

remaining GPO bits are left unchanged.

For example, GPO_SETHI #0x11 would set bits 20 and 16 of GPO.

Instruction name GPO_CLRLI

Functionality General purpose output clear low immediate

Assembly format GPO_CLRLI imm16

Type and bit width 16-bit unsigned immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void gpo_clrl(unsigned short imm);

Additional details Clear lower 16-bit of GPO according to immediate. When a bit of the

immediate is on, the corresponding bit of GPO is cleared. The remaining GPO

bits are left unchanged.

For example, GPO_CLRLI #0x11 would clear bits 4 and 0 of GPO.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 163

Instruction name GPO_CLRHI

Functionality General purpose output clear high immediate

Assembly format GPO_CLRHI imm16

Type and bit width 16-bit unsigned immediate

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void gpo_clrh(unsigned short imm);

Additional details Clear upper 16-bit of GPO according to immediate. When a bit of the

immediate is on, the corresponding bit in upper 16 bits of GPO is cleared. The

remaining GPO bits are left unchanged.

For example, GPO_CLRHI #0x11 would clear bits 20 and 16 of GPO.

Instruction name GPO_SET

Functionality General purpose output set register

Assembly format GPO_SET Rsrc

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator void gpo_set(unsigned int);

Additional details Set 32-bit GPO according to register source. When a bit of the scalar register

is on, the corresponding bit of GPO is set. The remaining GPO bits are left

unchanged.

For example, GPO_SET R1 with R1 = 0x11 would set bits 4 and 0 of GPO.

Instruction name GPO_CLR

Functionality General purpose output clear register

Assembly format GPO_CLR Rsrc

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator void gpo_clr(unsigned int);

Additional details Clear 32-bit GPO according to register source. When a bit of the scalar

register is on, the corresponding bit of GPO is cleared. The remaining GPO

bits are left unchanged.

For example, GPO_CLR R1 with R1 = 0x11 would clear bits 4 and 0 of GPO.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 164

Instruction name GPO_RD

Functionality General purpose output read

Assembly format GPO_RD Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options not available

Destination options scalar register

Additional options not available

Intrinsics/operator unsigned int gpo_rd();

Additional details Copy 32-bit GPO to destination register Rdst.

Instruction name GPO_WR

Functionality General purpose output write

Assembly format GPO_WR Rsrc

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator void gpo_wr(unsigned int var);

Additional details Copy 32-bit source register Rsrc to GPO.

9.6.9 General Purpose Input (GPI_RD)

Instruction name GPI_RD

Functionality General purpose input read

Assembly format GPI_RD Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options not available

Destination options scalar register

Additional options not available

Intrinsics/operator unsigned int gpi_rd();

Additional details Sample 32-bit GPI into destination register Rdst.

9.6.10 Wait for GPI Event (WFE_GPI)

Instruction name WFE_GPI

Functionality Wait for GPI pattern

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 165

Instruction name WFE_GPI

Assembly format WFE_GPI Rsrc1, Rsrc2

Type and bit width 32-bit unsigned

Predication not available

Source options Two scalar registers

Destination options not available

Additional options not available

Intrinsics/operator void wfe_gpi(unsigned int mask, unsigned int match);

Additional details Wait until (GPI & Rsrc1) == Rsrc2, Rsrc1 being the bit mask and Rsrc2 being

the match pattern.

For example, WFE_GPI R1, R2, with R1 = 3 and R2 = 1 would wait for GPI[0] =

1 and GPI[1] = 0 before proceeding to the next execution packet.

Should not be placed in a branch delay slot.

9.6.11 Wait for R5 Event (WFE_R5)

Instruction name WFE_R5

Functionality Wait for R5 event

Assembly format WFE_R5

Type and bit width not applicable

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void wfe_r5();

Additional details Transition into low-power WFE_R5 state until R5 writes R5_vpu_start to

dispatch next task.

Should be included as the last statement in every task’s exit code. Should not

be placed in a loop.

Should not be placed in a branch delay slot.

9.6.12 Signal R5 (SIG_R5)

Instruction name SIG_R5

Functionality Signal R5

Assembly format SIG_R5 Rsrc

Type and bit width not applicable

Predication not available

Source options scalar register

Destination options not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 166

Instruction name SIG_R5

Additional options not available

Intrinsics/operator void sig_r5(unsigned int data);

Additional details Send software interrupt to R5; Rsrc carries a software-defined 32-bit data to

write to a VPU config register, which R5 interrupt service routine can read.

9.6.13 Performance Counter (ENABLE/RD_TSC)

Instruction name ENABLE_TSC

Functionality Enable performance counter

Assembly format ENABLE_TSC

Type and bit width not applicable

Predication not available

Source options not available

Destination options not available

Additional options not available

Intrinsics/operator void enable_TSC();

Additional details Once enabled, the 64-bit counter increments in Active state (and not

increment in Reset, Debug, WFE_R5, WFE_GPI, Halted, Error-Halted states).

Once enabled, subsequent ENABLE TSC would be ignored.

Though the counter is called TSC, it does not count in real-time scale, but in

VPU clock cycles.

Instruction name RD_TSC

Functionality Read performance counter

Assembly format RD_TSCL Rdst

RD_TSCH Rdst

Type and bit width not applicable

Predication not available

Source options not available

Destination options scalar register

Additional options not available

Intrinsics/operator unsigned long long read_TSC();//read lower/upper parts together
unsigned int read_TSCL(); // read just lower part
unsigned int read_TSCH(); // read just upper part

Additional details Copy TSC lower/upper 32-bit to Rdst.

It’s available on both S0 and S1 slots, and ideally should be schedule in both

S0 and S1 to copy lower/upper parts to avoid skewed copy introducing

inconsistency.

Intrinsic functions are supported to read just lower or upper part, or both

parts. Intrinsic function reading both parts are implemented such that,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 167

Instruction name RD_TSC

RD_TSCL and RD_TSCH are executed in the same execution packet and

with no other fused operations to avoid potential inconsistency.

unsigned long long start_time = read_TSC();

// loop code

unsigned long long end_time = read_TSC();
printf(“Loop XXX cycle count = %ld \n”, end_time – start_time);

9.6.14 Floating-Point Invalid Flag

Instruction name MOV INV-R

Functionality Move floating-point invalid flag to register

Assembly format MOV INV, Rdst

Type and bit width 1-bit

Predication not available

Source options not available

Destination options scalar register

Additional options not available

Intrinsics/operator int invalid_flag();

Additional details Move floating-point invalid flag to scalar register. After the move, the scalar

register becomes either 0 or 1.

The invalid flag is set when any input or output floating-point value is NaN

(not a number).

Instruction name MOV R-INV

Functionality Move register to floating-point invalid flag

Assembly format MOV Rsrc, INV

Type and bit width not applicable

Predication not available

Source options scalar register

Destination options not available

Additional options not available

Intrinsics/operator void set_invalid_flag(int var);

Additional details Move scalar register to floating-point invalid flag. Invalid flag is cleared if the

scalar register is zero and set if the scalar register is non-zero.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 168

9.6.15 OCD Load/Store

Instruction name OCD_LD

Functionality OCD (on-chip debug) load

Assembly format OCD_LD PC

OCD_LD GPO

OCD_LD SES (shadow execution state)

Type and bit width 32-bit unsigned

Predication not available

Source options dedicated ocd_data register

Destination options PC or GPO

Additional options not available

Intrinsics/operator not available

Additional details Copy from ocd_data dedicated debug register to PC, GPO, or SES, for debug.

Only take effect in debug mode; treated like NOP otherwise.

Instruction name OCD_ST

Functionality OCD (on-chip debug) store

Assembly format OCD_ST PC

OCD_ST GPI

OCD_ST GPO

OCD_ST SES (shadow execution state)

Type and bit width 32-bit unsigned

Predication not available

Source options PC, GPI or GPO

Destination options dedicated ocd_data register

Additional options not available

Intrinsics/operator not available

Additional details Copy from PC, GPI, GPO, SES to ocd_data dedicated debug register.

9.6.16 Configure VMEM Superbanks

(CFG_VMEM_SBA/B/C)

Instruction name CFG_VMEM_SBA/B/C

Functionality Cofigure VMEM Superbanks

Assembly format CFG_VMEM_SBA/B/C Rsrc

Type and bit width not applicable

Predication not available

Source options 32-bit scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 169

Instruction name CFG_VMEM_SBA/B/C

Destination options not available

Additional options not available

Intrinsics/operator void cfg_vmem_sba(int data);
void cfg_vmem_sbb(int data);
void cfg_vmem_sbc(int data);

Additional details Write VMEM superbank A/B/C configuration data, 32-bit for each superbank.

Bit 0: Load cache enable (0 = disable, 1 = enable)

Bits 1 ~ 31: Reserved

Reset value = 0

For example, cfg_vmem_sba(0) disables load cache in Superbank A, and

cfg_vmem_sbb(1) enables load cache in Superbank B.

Instruction name RD_CFG_VMEM_SBA/B/C

Functionality Read cofiguration of VMEM Superbanks

Assembly format RD_CFG_VMEM_SBA/B/C Rdst

Type and bit width not applicable

Predication not available

Source options not available

Destination options 32-bit scalar register

Additional options not available

Intrinsics/operator int rd_cfg_vmem_sba();
int rd_cfg_vmem_sbb();
int rd_cfg_vmem_sbc();

Additional details Read VMEM superbank A/B/C configuration data, 32-bit for each superbank

and return in destination register.

Bit 0: Load cache enable (0 = disable, 1 = enable)

Bits 1 ~ 31: Reserved

Reset value = 0

9.6.17 Coprocessor Control/Status Register

Load/Store

Instruction name CPST

Functionality Coprocessor store

Assembly format CPST Rsrc, Rdaddr

CPST Rsrc, #imm12

Type and bit width 32-bit

Predication not available

Source options 32-bit scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 170

Instruction name CPST

Destination options Coprocessor address supplied by bits 13:2 of Rdaddr

or 12-bit immediate word address

Additional options not available

Intrinsics/operator void cp_store(unsigned int src, int daddr);

Additional details Available in M0 slot

Instruction name CPLD

Functionality Coprocessor load

Assembly format CPLD Rsaddr, Rdst

CPLD #imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options Coprocessor address supplied by bits 13:2 of Rdaddr

or 12-bit immediate word address

Destination options 32-bit scalar register

Additional options not available

Intrinsics/operator unsigned int cp_load(int saddr);

Additional details Available in M0 slot

9.6.18 Memory Fence

Instruction name MemFence

Functionality Memory fence

Assembly format MemFence

Type and bit width none

Predication not available

Source options none

Destination options none

Additional options not available

Intrinsics/operator void mem_fence();

Additional details Available in M0 slot

Stall appropriately for any preceding memory write (scalar/vector store,

histogram, VAST) to commit to memory before the execution packet where

MemFence resides can execute, to ensure memory coherency and prevent

RAW data hazards.

See Memory Coherency for comparison between MemFence instruction and

chess_memory_fence() pragma.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 171

9.7 Scalar ALU Instructions
The scalar unit supports various common scalar arithmetic and logic operations in the

S0 and S1 slots.

9.7.1 ALU RRR Instructions

9.7.1.1 Instruction Summary

These RRR (register-register-register) instructions have two source registers and one

destination register. Unless otherwise noted, these are 32-bit operations.

Table 22. Scalar ALU RRR instructions

Function Assembly Format Comments

Add ADD Rsrc1, Rsrc2, Rdst

Subtract SUB Rsrc1, Rsrc2, Rdst

Multiply MUL Rsrc1, Rsrc2, Rdst

And AND Rsrc1, Rsrc2, Rdst Bitwise and

Or OR Rsrc1, Rsrc2, Rdst Bitwise or

Exclusive or XOR Rsrc1, Rsrc2, Rdst Bitwise exclusive or

Shift left logical SLL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count, also works for shift left

arithmetic.

6 LSBs of Rsrc2 are read as unsigned bit count; other

bits are ignored.

Shift right logical SRL Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other

bits are ignored.

Shift right

arithmetic

SRA Rsrc1, Rsrc2, Rdst Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other

bits are ignored.

Sign extend SXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to sign

extend from. 6 LSBs of Rsrc2 are read as unsigned bit

width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does

sh = 32 – Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Zero extend ZXTD Rsrc1, Rsrc2, Rdst Rsrc2 carries the bit width of Rsrc1 we want to zero

extend from. 6 LSBs of Rsrc2 are read as unsigned bit

width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does

sh = 32 – Rsrc2[5:0];

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 172

Function Assembly Format Comments

Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Compare equal CMPEQ Rsrc1, Rsrc2, Rdst

Compare not equal CMPNE Rsrc1, Rsrc2, Rdst

Compare greater

than or equal

CMPGE Rsrc1, Rsrc2, Rdst

Compare greater

than or equal

unsigned

CMPGEU Rsrc1, Rsrc2, Rdst

Compare greater

than

CMPGT Rsrc1, Rsrc2, Rdst

Compare greater

than unsigned

CMPGTU Rsrc1, Rsrc2, Rdst

Compare less than

or equal

CMPLE Rsrc1, Rsrc2, Rdst

Compare less than

or equal unsigned

CMPLEU Rsrc1, Rsrc2, Rdst

Compare less than CMPLT Rsrc1, Rsrc2, Rdst

Compare less than

unsigned

CMPLTU Rsrc1, Rsrc2, Rdst

Modular increment MODINC Rsrc1, Rsrc2, Rdst Modular increment:

Rdst = (Rsrc2 == Rsrc1) ? 0 : (Rsrc2 + 1);

For example, with R4 = 3, R5 = 0, repeated execution

of MODINC R4, R5, R5 results in R5 = 1, 2, 3, 0, 1, …

Min MIN Rsrc1, Rsrc2, Rdst

Min unsigned MINU Rsrc1, Rsrc2, Rdst

Max MAX Rsrc1, Rsrc2, Rdst

Max unsigned MAXU Rsrc1, Rsrc2, Rdst

9.7.1.2 ADD

Instruction name ADD

Functionality Add

Assembly format ADD Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator+(int src1, int src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 173

Instruction name ADD

Additional details

9.7.1.3 SUB

Instruction name SUB

Functionality Subtract

Assembly format SUB Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator-(int src1, int src2);

Additional details

9.7.1.4 MUL

Instruction name MUL

Functionality Multiply

Assembly format MUL Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator*(int src1, int src2);

Additional details

9.7.1.5 AND

Instruction name AND

Functionality Bitwise and

Assembly format AND Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 174

Instruction name AND

Additional options

Intrinsics/operator int operator&(int src1, int src2);

Additional details

9.7.1.6 OR

Instruction name OR

Functionality Bitwise or

Assembly format OR Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator|(int src1, int src2);

Additional details

9.7.1.7 XOR

Instruction name XOR

Functionality Bitwise exclusive or

Assembly format XOR Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator^(int src1, int src2);

Additional details

9.7.1.8 SLL

Instruction name SLL

Functionality Shift left

Assembly format SLL Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 175

Instruction name SLL

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator<<(int src1, int src2);
unsigned int operator<<(unsigned int src1, int src2);

Additional details Rsrc2 carries the shift count, also works for shift left arithmetic.

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

9.7.1.9 SRL

Instruction name SRL

Functionality Shift right logical

Assembly format SRL Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int operator>>(unsigned int src1, int src2);

Additional details Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Zeroes are shifted into the most significant bits (logical vs arithmetic).

9.7.1.10 SRA

Instruction name SRA

Functionality Shift right arithmetic

Assembly format SRA Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator>>(int src1, int src2);

Additional details Rsrc2 carries the shift count.

6 LSBs of Rsrc2 are read as unsigned bit count; other bits are ignored.

Source 1 sign bit is into the most significant bits (arithmetic vs logic).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 176

9.7.1.11 SXTD

Instruction name SXTD

Functionality Sign extend

Assembly format SXTD Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int ext(int src1, int src2);

Additional details Rsrc2 carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs of

Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:

sh = 32 – Rsrc2[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Examples:

src1 = 0xF0 with src2 = 6 would take the lower 6 bits of src1, 0x30, sign-

extend it to 0xFFFF_FFF0, and copy to dst.

src1 = 0xF0 with src2 = 4 would take the lower 4 bits of src1, 0, sign-extend it

to 0 and copy to dst.

9.7.1.12 ZXTD

Instruction name ZXTD

Functionality Zero extend

Assembly format ZXTD Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int extu(int src1, int src2);

Additional details Rsrc2 carries the bit width of Rsrc1 we want to zero extend from. 6 LSBs of

Rsrc2 are read as unsigned bit width; other bits are ignored.

When Rsrc2[5:0] is between 1 and 32, VPU does:

sh = 32 – Rsrc2[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Examples:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 177

Instruction name ZXTD

src1 = 0xF0 with src2 = 6 would take the lower 6 bits of src1, 0x30, zero-

extend it to 0x30, and copy to dst.

src1 = 0xF0 with src2 = 4 would take the lower 4 bits of src1, 0, zero-extend it

to 0 and copy to dst.

9.7.1.13 CMPEQ

Instruction name CMPEQ

Functionality Compare equal

Assembly format CMPEQ Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator==(int src1, int src2);

Additional details

9.7.1.14 CMPNE

Instruction name CMPNE

Functionality Compare not equal

Assembly format CMPNE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator!=(int src1, int src2);

Additional details

9.7.1.15 CMPGE

Instruction name CMPGE

Functionality Compare greater or equal

Assembly format CMPGE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 178

Instruction name CMPGE

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(int src1, int src2);

Additional details

9.7.1.16 CMPGEU

Instruction name CMPGEU

Functionality Compare greater or equal unsigned

Assembly format CMPGEU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(unsigned int src1, unsigned int src2);

Additional details

9.7.1.17 CMPGT

Instruction name CMPGT

Functionality Compare greater than

Assembly format CMPGT Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(int src1, int src2);

Additional details

9.7.1.18 CMPGTU

Instruction name CMPGTU

Functionality Compare greater than unsigned

Assembly format CMPGTU Rsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 179

Instruction name CMPGTU

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(unsigned int src1, unsigned int src2);

Additional details

9.7.1.19 CMPLE

Instruction name CMPLE

Functionality Compare less or equal

Assembly format CMPLE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<=(int src1, int src2);

Additional details

9.7.1.20 CMPLEU

Instruction name CMPLEU

Functionality Compare less or equal unsigned

Assembly format CMPLEU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<=(unsigned int src1, unsigned int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 180

9.7.1.21 CMPLT

Instruction name CMPLT

Functionality Compare less than

Assembly format CMPLT Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(int src1, int src2);

Additional details

9.7.1.22 CMPLTU

Instruction name CMPLTU

Functionality Compare less than unsigned

Assembly format CMPLTU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(unsigned int src1, unsigned int src2);

Additional details

9.7.1.23 MODINC

Instruction name MODINC

Functionality Modular increment

Assembly format MODINC Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int dst = mod_inc(int src2, int src1);
unsigned int dst = mod_inc(unsigned int src2, unsigned int src1);
// note change in order vs assembly, src2 is the counter,
// src1 is the max value

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 181

Instruction name MODINC

Additional details Modular increment:

Rdst = (Rsrc2 == Rsrc1) ? 0 : (Rsrc2 + 1);

For example, with R4 = 3, R5 = 0, repeated execution of

 MODINC R4, R5, R5

results in R5 = 1, 2, 3, 0, 1, …

9.7.1.24 MIN

Instruction name MIN

Functionality Minimal

Assembly format MIN Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int min(int src1, int src2);

Additional details

9.7.1.25 MINU

Instruction name MINU

Functionality Minimal unsigned

Assembly format MINU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int min(unsigned int src1, unsigned int src2);

Additional details

9.7.1.26 MAX

Instruction name MAX

Functionality Maximal

Assembly format MAX Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 182

Instruction name MAX

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int max(int src1, int src2);

Additional details

9.7.1.27 MAXU

Instruction name MAXU

Functionality Maximal unsigned

Assembly format MAXU Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int max(unsigned int src1, unsigned int src2);

Additional details

9.7.2 ALU RIR Instructions

9.7.2.1 Instruction Summary

These RIR (register-immediate-register) instructions have one source register, one 12-bit

immediate, and one destination register. The immediate operand can be sign-extended

(where designated as Imm12) or zero-padded (where designated as UImm12).

Table 23. Scalar ALU RIR instructions

Function Assembly Format Comments

Add ADDI Rsrc1, Imm12, Rdst

Add ADDUI Rsrc1, UImm12, Rdst

Subtract SUBI Rsrc1, Imm12, Rdst

Subtract SUBUI Rsrc1, UImm12, Rdst

And ANDI Rsrc1, UImm12, Rdst

Exclusive or XORI Rsrc1, UImm12, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 183

Function Assembly Format Comments

Shift left logical SLLI Rsrc1, UImm12, Rdst Immediate carries the shift count, also works for shift

left arithmetic. 6 LSBs of immediate are read as

unsigned bit count; other bits are ignored.

Shift right logical SRLI Rsrc1, UImm12, Rdst Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count;

other bits are ignored.

Shift right

arithmetic

SRAI Rsrc1, UImm12, Rdst Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count;

other bits are ignored.

Sign extend SXTDI Rsrc1, UImm12, Rdst Immediate carries the bit width of Rsrc1 we want to

sign extend from. 6 LSBs of Immediate are read as

unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 – Imm[5:0];

Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Zero extend ZXTDI Rsrc1, UImm12, Rdst Immediate carries the bit width of Rsrc1 we want to

zero extend from. 6 LSBs of Rsrc2 are read as

unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 – Imm[5:0];

Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Compare equal CMPEQI Rsrc1, Imm12, Rdst

Compare not equal CMPNEI Rsrc1, Imm12, Rdst

Compare greater

than or equal

CMPGEI Rsrc1, Imm12, Rdst

Compare greater

than or equal

unsigned

CMPGEUI Rsrc1,UImm12, Rdst

Compare greater

than

CMPGTI Rsrc1, Imm12, Rdst

Compare greater

than unsigned

CMPGTUI Rsrc1, UImm12, Rdst

Compare less than

or equal

CMPLEI Rsrc1, Imm12, Rdst

Compare less than

or equal unsigned

CMPLEU Rsrc1, UImm12, Rdst

Compare less than CMPLTI Rsrc1, Imm12, Rdst

Compare less than

unsigned

CMPLTUI Rsrc1, UImm12, Rdst

Min MINI Rsrc1, Imm12, Rdst

Min unsigned MINUI Rsrc1, UImm12, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 184

Function Assembly Format Comments

Max MAXI Rsrc1, Imm12, Rdst

Max unsigned MAXUI Rsrc1, UImm12, Rdst

9.7.2.2 ADDI

Instruction name ADDI

Functionality Add immediate

Assembly format ADDI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator+(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.3 ADDUI

Instruction name ADDUI

Functionality Add unsigned immediate

Assembly format ADDUI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator+(int src1, int uimm12);

Additional details UImm12 is zero-extended before the operation.

9.7.2.4 SUBI

Instruction name SUBI

Functionality Subtract immediate

Assembly format SUBI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 185

Instruction name SUBI

Additional options

Intrinsics/operator // Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other
// instructions to correctly implement expressions
// involving scalar subtraction operation.

Additional details Imm12 is sign-extended before the operation.

9.7.2.5 SUBUI

Instruction name SUBUI

Functionality Subtract unsigned immediate

Assembly format SUBUI Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator // Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other
// instructions to correctly implement expressions
// involving scalar subtraction operation.

Additional details UImm12 is zero-extended before the operation.

9.7.2.6 ANDI

Instruction name ANDI

Functionality Bitwise and immediate

Assembly format ANDI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator&(int src1, int uimm12);

Additional details UImm12 is zero-extended before the operation.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 186

9.7.2.7 XORI

Instruction name XORI

Functionality Bitwise exclusive or immediate

Assembly format XORI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator^(int src1, int uimm12);

Additional details UImm12 is zero-extended before the operation.

9.7.2.8 SLLI

Instruction name SLLI

Functionality Shift left immediate

Assembly format SLLI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator<<(int src1, int uimm12);
unsigned int operator<<(unsigned int src1, int src2);

Additional details Immediate carries the shift count, also works for shift left arithmetic. 6 LSBs

of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.9 SRLI

Instruction name SRLI

Functionality Shift right logical immediate

Assembly format SRLI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int operator>>(unsigned int src1, int uimm12);

Additional details Immediate carries the shift count.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 187

Instruction name SRLI

6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.10 SRAI

Instruction name SRAI

Functionality Shift right arithmetic immediate

Assembly format SRAI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int operator>>(int src1, int uimm12);

Additional details Immediate carries the shift count.

6 LSBs of immediate are read as unsigned bit count; other bits are ignored.

9.7.2.11 SXTDI

Instruction name SXTDI

Functionality Sign extend immediate

Assembly format SXTDI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int ext(int src1, int uimm12);

Additional details Immediate carries the bit width of Rsrc1 we want to sign extend from. 6 LSBs

of Immediate are read as unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 – Imm[5:0];
Rdst = (Rsrc1 << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 188

9.7.2.12 ZXTDI

Instruction name ZXTDI

Functionality Zero extend immediate

Assembly format ZXTDI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int extu(int src1, int uimm12);

Additional details Immediate carries the bit width of Rsrc1 we want to zero extend from. 6

LSBs of Rsrc2 are read as unsigned bit width; other bits are ignored.

When Imm[5:0] is between 1 and 32, VPU does:

sh = 32 – Imm[5:0];
Rdst = (((unsigned) Rsrc1) << sh) >> sh;

Otherwise (0 or > 32), Rdst = 0.

9.7.2.13 CMPEQI

Instruction name CMPEQI

Functionality Compare equal immediate

Assembly format CMPEQI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator==(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.14 CMPNEI

Instruction name CMPNEI

Functionality Compare not equal immediate

Assembly format CMPNE Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 189

Instruction name CMPNEI

Additional options

Intrinsics/operator bool operator!=(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.15 CMPGEI

Instruction name CMPGEI

Functionality Compare greater or equal immediate

Assembly format CMPGEI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.16 CMPGEUI

Instruction name CMPGEUI

Functionality Compare greater or equal unsigned immediate

Assembly format CMPGEUI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(unsigned int src1, unsigned int uimm12);

Additional details UImm12 is zero-extended before the operation.

9.7.2.17 CMPGTI

Instruction name CMPGTI

Functionality Compare greater than immediate

Assembly format CMPGTI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 190

Instruction name CMPGTI

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.18 CMPGTUI

Instruction name CMPGTUI

Functionality Compare greater than unsigned immediate

Assembly format CMPGTUI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(unsigned int src1, unsigned int uimm12);

Additional details UImm12 is zero-extended before the operation.

9.7.2.19 CMPLEI

Instruction name CMPLEI

Functionality Compare less or equal immediate

Assembly format CMPLEI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<=(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.20 CMPLEUI

Instruction name CMPLEUI

Functionality Compare less or equal unsigned immediate

Assembly format CMPLEUI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 191

Instruction name CMPLEUI

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<=(unsigned int src1, unsigned int uimm12);

Additional details UImm12 is zero-extended before the operation.

9.7.2.21 CMPLTI

Instruction name CMPLTI

Functionality Compare less than immediate

Assembly format CMPLTI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(int src1, int imm12);

Additional details Imm12 is signed-extended before the operation.

9.7.2.22 CMPLTUI

Instruction name CMPLTUI

Functionality Compare less than unsigned immediate

Assembly format CMPLTUI Rsrc1, UImm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(unsigned int src1, unsigned int uimm12);

Additional details UImm12 is zero-extended before the operation.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 192

9.7.2.23 MINI

Instruction name MINI

Functionality Minimal immediate

Assembly format MINI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int min(int src1, int imm12);

Additional details

9.7.2.24 MINUI

Instruction name MINUI

Functionality Minimal unsigned immediate

Assembly format MINUI Rsrc1, Imm12, Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int min(unsigned int src1, unsigned int uimm12);

Additional details

9.7.2.25 MAXI

Instruction name MAXI

Functionality Maximal Immediate

Assembly format MAXI Rsrc1, Imm12, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int max(int src1, int imm12);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 193

9.7.2.26 MAXUI

Instruction name MAXUI

Functionality Maximal unsigned immediate

Assembly format MAXUI Rsrc1, Imm12, Rdst

Type and bit width 32-bit unsigned

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned int max(unsigned int src1, unsigned int uimm12);

Additional details

9.7.3 Long Multiplication Instructions

9.7.3.1 Instruction Summary

The scalar ALU also supports long multiply, multiplication between two signed/unsigned

32-bit operands. Outcome is placed in the PL/PH special register pair.

Table 24. Scalar ALU long multiply instructions

Function Assembly Format Comments

Long multiply

signed-signed

LMULSS Rsrc1, Rsrc2 Multiply into 64-bit product in PL:PH (dedicated

product low/high registers)

Long multiply

signed-unsigned

LMULSU Rsrc1, Rsrc2 Multiply into 64-bit product in PL:PH (dedicated

product low/high registers)

Long multiply

unsigned-unsigned

LMULUU Rsrc1, Rsrc2 Multiply into 64-bit product in PL:PH (dedicated

product low/high registers)

9.7.3.2 LMULSS

Instruction name LMULSS

Functionality Long multiply signed-signed

Assembly format LMULSS Rsrc1, Rsc2

Type and bit width signed 32-bit x signed 32-bit → signed 64-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 194

Instruction name LMULSS

Intrinsics/operator long long mulwl_s(int src1, int src2);

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.3 LMULSU

Instruction name LMULSU

Functionality Long multiply signed-unsigned

Assembly format LMULSU Rsrc1, Rsc2

Type and bit width signed 32-bit x unsigned 32-bit → signed 64-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator long long mulwl_su(int src1, unsigned int src2);

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

9.7.3.4 LMULUU

Instruction name LMULUU

Functionality Long multiply unsigned-unsigned

Assembly format LMULUU Rsrc1, Rsc2

Type and bit width unsigned 32-bit x unsigned 32-bit → unsigned 64-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator unsigned long long mulwl_u(unsigned int src1, unsigned int src2);

Additional details Product is placed in PL (lower 32-bit) and PH (upper 32-bit).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 195

9.7.4 Predicate Instructions

9.7.4.1 Instruction Summary

Moving between scalar register and predicate register, and modular

increment/decrement on predicate register is also supported. These are used for

periodic predication that enable loop collapsing.

Function Assembly Format Comments

Move scalar to

predicate

MOVSP Rsrc, Pdst

Move scalar register to predicate register

Negate scalar to

predicate

NOTSP Rsrc, Pdst Negate scalar register to predicate register

Move predicate to

scalar

MOVPS Psrc, Rdst Move predicate register to scalar register

Move predicate MOVP Psrc, Pdst

MOVP DPsrc, DPdst

Move single/double predicate register

Modular increment MODINC Rsrc1, Ps2d Modular increment predicate register Ps2d. Rsrc1

conveys the max value.

Modular increment

MODINCP Rsrc1, Rs2d, Pdst Modular increment scalar register Rs2d. Rsrc1 conveys

the max value, and Pdst is set all 0 or all 1 based on

Rs2d outcome being zero/non-zero

Modular increment

NOT

MODINC_NOTP Rsrc1, Rs2d,

Pdst

Modular increment scalar register Rs2d. Rsrc1 conveys

the max value, and Pdst is set all 0 or all 1 based on

Rs2d outcome being non-zero/zero, inversed w.r.t.

MODINCP

Modular increment,

double predicate

DPMODINCP Rsrc1, Rs2d,

DPdst

Modular increment scalar register Rs2d. Rsrc1 conveys

the max value, and DPdst is set all 0 or all 1 based on

Rs2d outcome being zero/non-zero. Both destination

predicate registers are set identically.

Modular increment

NOT, double

predicate

DPMODINC_NOTP Rsrc1, Rs2d,

DPdst

Modular increment scalar register Rs2d. Rsrc1 conveys

the max value, and DPdst is set all 0 or all 1 based on

Rs2d outcome being non-zero/zero, inversed w.r.t.

DPMODINCP. Both destination predicate registers are

set identically.

Predicated Move [Preg] MOV Rsrc, Rdst Predicated scalar register move

Multiplex to predicate MUXP Rsrc1, Rsrc2, Rsrc3,

Pdst

Multiplex to predicate destination.

For example, with Rsrc1 = 1, Rsrc2 = 2, Rsrc3 = 3, Pdst =

(Rsrc1 != 0) ? Rsrc2 : Rsrc3, so would set Pdst to Rsrc2 =

2.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 196

Table 25. Scalar predicate instructions

See Instruction Predication for use cases of instruction predication.

9.7.4.2 MOVSP

Instruction name MOVSP

Functionality Move scalar to predicate

Assembly format MOVSP Rsrc, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options predicate register

Additional options

Intrinsics/operator // not needed, instantiated from an assignment statement
// with destination variable mapped to a predicate register
// example: int dst_predicate = int src;

Additional details P0 and P1 contain constant -1, and should not be a destination of MOVSP

9.7.4.3 NOTSP

Instruction name NOTSP

Functionality Negate (bitwise not) scalar to predicate

Assembly format NOTSP Rsrc, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options predicate register

Additional options

Intrinsics/operator // Intrinsic functions are not needed for this instruction.
// Compiler has freedom to leverage this and/or other
// bitwise logic instructions to correctly implement
// expressions involving bitwise not operations. NOTSP,
// specifically, may be used when the outcome is mapped to
// a predicate register.

Additional details P0 and P1 contain constant -1, and should not be a destination of NOTSP

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 197

9.7.4.4 MOVPS

Instruction name MOVPS

Functionality Move predicate to scalar

Assembly format MOVPS Psrc, Rdst

Type and bit width 32-bit

Predication not available

Source options predicate register

Destination options scalar register

Additional options

Intrinsics/operator // not needed, instantiated from an assignment statement
// with source variable mapped to a predicate register and
// destination variable mapped to a scalar register
// example: int dst = int src_predicate;

Additional details

9.7.4.5 MOVP

Instruction name MOVP

Functionality Move predicate register

Assembly format MOVP Psrc, Pdst

MOVP DPsrc, DPdst

Type and bit width 32-bit

Predication not available

Source options single or double predicate register

Destination options single or double predicate register

Additional options

Intrinsics/operator // not needed, instantiated from an assignment statement
// with source and destination variables mapped to predicate
// registers
// example: int dst_predicate = int src_predicate;

Additional details P0 and P1 contain constant -1, and should not be a destination of MOVP

9.7.4.6 MODINC

Instruction name MODINC

Functionality Modular increment

Assembly format MODINC Rsrc1, Ps2d

Type and bit width 32-bit

Predication not available

Source options scalar register and predicate register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 198

Instruction name MODINC

Destination options predicate register

Additional options

Intrinsics/operator int mod_inc(int s2d, int src1);
unsigned int mod_inc(unsigned int s2d, unsigned int src1);
// note the change in operand order vs assembly
// s2d is the counter, src1 is the max value

Additional details Modular increment predicate register:

Ps2d = (Ps2d == Rsrc1) ? 0 : (Ps2d + 1);

For example, with R1 = 4, P2 = 0, a sequence of

 MODINC R1, P2

results in P2 = 1, 2, 3, 4, 0, 1, …

This is useful for VMadd_CA to occasionally clear the accumulator.

9.7.4.7 MODINCP

Instruction name MODINCP

Functionality Modular increment predicate

Assembly format MODINCP Rsrc1, Rs2d, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and predicate register

Additional options

Intrinsics/operator int mod_inc_pred_nz(int s2d, int src1, int & pdst);
unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, int &
pdst);
// Note the change in operand order compared to assembly
// First argument is the modular counter input
// Second argument src1 is the max counter value input
// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular
// increment is non-zero, otherwise is set 0
// Return modular counter value after the increment
// Typical usage:
// count = mod_inc_pred_nz(count, period_mns_1, count_nz);

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1);

Pdst = Rs2d ? -1 : 0; // set 0 or all 1s (-1)

For example, with R1 = 4, initial R2 = 0, a sequence of

 MODINCP R1, R2, P2

results in R2 = 1, 2, 3, 4, 0, 1, …

 P2 = -1, -1, -1, -1, 0, -1, …

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 199

9.7.4.8 MODINC_NOTP

Instruction name MODINC_NOTP

Functionality Modular increment not predicate

Assembly format MODINC_NOTP Rsrc1, Rs2d, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and predicate register

Additional options

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, int & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, int &
pdst);
// Note the change in operand order compared to assembly
// First argument is the modular counter input
// Second argument src1 is the max counter value input
// Third argument pdst is a reference argument output, and
// is set -1 if the modular counter after the modular
// increment is 0, otherwise is set 0
// Return modular counter value after the increment
// Typical usage:
// count = mod_inc_pred_nz(count, period_mns_1, count_z);

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1);

Pdst = (Rs2d==0) ? -1 : 0; // set 0 or all 1s (-1)

For example, with R1 = 4, initial R2 = 0, a sequence of

 MODINC_NOTP R1, R2, P2

results in R2 = 1, 2, 3, 4, 0, 1, …

 P2 = 0, 0, 0, 0, -1, 0, …

9.7.4.9 DPMODINCP

Instruction name DPMODINCP

Functionality Modular increment predicate, double predicate

Assembly format DPMODINCP Rsrc1, Rs2d, DPdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and double predicate register

Additional options

Intrinsics/operator int mod_inc_pred_nz(int s2d, int src1, dpred & pdst);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 200

Instruction name DPMODINCP

unsigned int mod_inc_pred_nz(unsigned int s2d, unsigned int src1, dpred
& pdst);
// note the change in operand order
// s2d is the counter, src1 is the max value, pdst is
// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1);

Pdst = Rs2d ? -1 : 0; // set 0 or all 1s (-1)

For example, with R1 = 4, initial R2 = 0, a sequence of

 DPMODINCP R1, R2, P2:P3

results in R2 = 1, 2, 3, 4, 0, 1, …

 P2 = P3 = -1, -1, -1, -1, 0, -1, …

9.7.4.10 DPMODINC_NOTP

Instruction name DPMODINC_NOTP

Functionality Modular increment not predicate, double predicate

Assembly format DPMODINC_NOTP Rsrc1, Rs2d, DPdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register and double predicate register

Additional options

Intrinsics/operator int mod_inc_pred_z(int s2d, int src1, dpred & pdst);
unsigned int mod_inc_pred_z(unsigned int s2d, unsigned int src1, dpred &
pdst);
// note the change in operand order
// s2d is the counter, src1 is the max value, pdst is
// set depending on counter value after modular increment

Additional details Modular increment scalar register Rs2d :

Rs2d = (Rs2d == Rsrc1) ? 0 : (Rs2d + 1);

Pdst = (Rs2d==0) ? -1 : 0; // set 0 or all 1s (-1)

For example, with R1 = 4, initial R2 = 0, a sequence of

 DPMODINC_NOTP R1, R2, P2:P3

results in R2 = 1, 2, 3, 4, 0, 1, …

 P2 = P3 = 0, 0, 0, 0, -1, 0, …

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 201

9.7.4.11 Predicated MOV

Instruction name Predicated MOV

Functionality Predicated scalar register move

Assembly format [Preg] MOV Rsrc, Rdst

Type and bit width 32-bit

Predication Instruction-level predication

Source options scalar register and predicate register

Destination options scalar register

Additional options

Intrinsics/operator // not needed, instantiated from the following code
// if (preg) chess_guard {
// int dst = int src;
// }

Additional details

9.7.4.12 MUXP

Instruction name Multiplex to predicate

Functionality Multiplexing with scalar sources and predicate destination

Assembly format MUXP Rsrc1, Rsrc2, Rsrc3, Pdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options predicate register

Additional options

Intrinsics/operator // Intrinsic functions are not needed for this instruction.
// Compiler may leverage MUXP to implement a ternary
// conditional operator when the outcome variable is mapped
// to a predicate register. For example,
// int chess_storage(PA2) dst = (a0 != 0) ? a1 : a2;

Additional details Multiplex to predicate destination.

 Pdst = (Rsrc1 != 0) ? Rsrc2 : Rsrc3;

For example, with R1 = 1, R2 = 2, R3 = 3,

 MUXP R1, R2, R3, P4

would set P4 to R2, which is 2.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 202

9.7.5 Scalar Floating-point Instructions

9.7.5.1 Instruction Summary

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float

conversion instructions are available in the S0 and S1 instruction slots. Scalar registers

supply the sources and destination of FP instructions.

FP multiply-add is implemented with a fused multiply-add datapath that preserves full

product precision and has higher precision than separate FP multiply and FP add

operations.

A sticky invalid status bit, INV, is available, for software to read, set, or clear by moving

between INV and a scalar register. We have (detailed in 9.3.14):

> MOV INV-R: moving from the invalid flag to a scalar register

> MOV R-INV: moving from a scalar register to the invalid flag

It’s sticky in the sense that once a floating-point instruction produces an invalid (NaN)

outcome, the flag is set if it’s previously clear and remains set until a MOV R-INV

instruction moves zero value to the flag.

The flag can also be set by software, by a MOV R-INV instruction moving a software-

calculated invalid value to the flag. This is useful for software emulation of floating-point

functions (reciprocal, square root, etc.).

R5 software can configure VPU to go to error-halted mode upon the flag being set, or to

just continue execution.

FP instructions output a fixed NaN encoding value of 0x7FC0_0000, which is a quiet NaN

(as opposed to a signaling NaN), as invalid output. Note that this is different behavior

from X86 FP NaN output, going with some NaN propagation rule with priority among

inputs to propagate input NaN value to the output.

Note that there is just one invalid status bit to indicate floating-point outcome being

NaN.

Table 26. Scalar floating-point instructions

Function Assembly Format Comments

FP add FAdd Rsrc1, Rsrc2, Rdst

FP subtract FSub Rsrc1, Rsrc2, Rdst

FP multiply FMul Rsrc1, Rsrc2, Rdst

FP multiply-add FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

FP multiply-subtract FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

FP16 add HFAdd Rsrc1, Rsrc2, Rdst

FP16 subtract HFSub Rsrc1, Rsrc2, Rdst

FP16 multiply HFMul Rsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 203

Function Assembly Format Comments

FP16 multiply-add HFMAdd Rsrc1, Rsrc2, Rsrc3,

Rdst

FP16 multiply-subtract HFMSub Rsrc1, Rsrc2, Rsrc3,

Rdst

INT to FP conversion INT_FP Rsrc, Rdst Integer to floating-point conversion

FP to INT conversion with

truncation

FP_INT_Trunc Rsrc, Rdst Floating-point to integer conversion with

truncation (consistent with C float-to-int

type casting)

FP to INT conversion with

rounding

FP_INT_Round Rsrc, Rdst Floating-point to integer conversion with

rounding

INT to FP16 conversion INT_FP16 Rsrc1, Rsrc2, Rdst Rsrc2 conveys qbit for fixed-point

representation.

FP16 to INT conversion

wth truncation

FP16_INT_Trunc Rsrc1, Rsrc2,

Rdst

Rsrc2 conveys qbit for fixed-point

representation.

FP16 to INT conversion

wth rounding

FP16_INT_Round Rsrc1, Rsrc2,

Rdst

Rsrc2 conveys qbit for fixed-point

representation.

FP16 to FP32 conversion FP16_FP Rsrc, Rdst

FP32 to FP16 conversion FP_FP16 Rsrc, Rdst

FP compare LT FCmpLT Rsrc1, Rsrc2, Rdst

FP compare LE FCmpLE Rsrc1, Rsrc2, Rdst

FP compare GT FCmpGT Rsrc1, Rsrc2, Rdst

FP compare GE FCmpGE Rsrc1, Rsrc2, Rdst

FP compare EQ FCmpEQ Rsrc1, Rsrc2, Rdst

FP compare NE FCmpNE Rsrc1, Rsrc2, Rdst

FP16 compare LT HFCmpLT Rsrc1, Rsrc2, Rdst

FP16 compare LE HFCmpLE Rsrc1, Rsrc2, Rdst

FP16 compare GT HFCmpGT Rsrc1, Rsrc2, Rdst

FP16 compare GE HFCmpGE Rsrc1, Rsrc2, Rdst

FP16 compare EQ HFCmpEQ Rsrc1, Rsrc2, Rdst

FP16 compare NE HFCmpNE Rsrc1, Rsrc2, Rdst

FP reciprocal FRCP Vsrc, Vdst

FP square root FSQRT Vsrc, Vdst

FP reciprocal square root FRSQ Vsrc, Vdst

FP exponential base-2 FEXP2 Vsrc, Vdst

FP logarithm base-2 FLOG2 Vsrc, Vdst

FP sine FSIN Vsrc, Vdst

FP cosine FCOS Vsrc, Vdst

FP hyperbolic tangent FTANH Rsrc, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 204

9.7.5.2 FAdd

Instruction name FAdd

Functionality Floating-point add

Assembly format FAdd Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fadd(float src1, float src2); //bit-exact between ISS & Native
float operator+(float src1, float src2); // NOT bit-exact between
 // ISS and Native

Additional details IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.3 FSub

Instruction name FSub

Functionality Floating-point subtract

Assembly format FSub Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fsub(float src1, float src2); //bit-exact between ISS & Native
float operator-(float src1, float src2); // NOT bit-exact between
 // ISS and Native

Additional details IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 205

9.7.5.4 FMul

Instruction name FMul

Functionality Floating-point multiply

Assembly format FMul Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fmul(float src1, float src2); //bit-exact between ISS & Native
float operator*(float src1, float src2); // NOT bit-exact between
 // ISS and Native

Additional details IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.5 FMAdd

Instruction name FMAdd

Functionality Floating-point multiply-add

Assembly format FMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 32-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fmadd(float src1, float src2, float src3);

Additional details Performing multiply-add with IEEE compliant floating-point multiply and add.

Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Example:

FMAdd R1, R2, R3, R4

would perform R4 = R1 * R2 + R3, reading the source registers R1, R2, R3 as

32-bit floating-point numbers, and producing 32-bit floating-point outcome

in R4.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 206

9.7.5.6 FMSub

Instruction name FMSub

Functionality Floating-point multiply-subtract

Assembly format FMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 32-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fmsub(float src1, float src2, float src3);

Additional details Performing IEEE compliant floating-point multiply-subtract, src3 – src1 *

src2. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Example:

 FMSub R1, R2, R3, R4

would perform R4 = R3 – R1 * R2, reading the source registers R1, R2, R3 as

32-bit floating-point numbers, and producing 32-bit floating-point outcome

in R4.

9.7.5.7 HFAdd

Instruction name HFAdd

Functionality FP16 add

Assembly format HFAdd Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat hfadd(hfloat src1, hfloat src2);
hfloat operator+(hfloat src1, hfloat src2);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,

FP16 addition performed, and FP16 outcome is sign-extended to 32-bit in

the destination register.

IEEE compliant half-precision floating-point add. Handles denormal, zero,

infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 207

9.7.5.8 HFSub

Instruction name HFSub

Functionality FP16 subtract

Assembly format HFSub Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat hfsub(hfloat src1, hfloat src2);
hfloat operator-(hfloat src1, hfloat src2);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,

FP16 subtraction performed, and FP16 outcome is sign-extended to 32-bit in

the destination register.

IEEE compliant half-precision floating-point subtract. Handles denormal,

zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.9 HFMul

Instruction name HFMul

Functionality FP16 multiply

Assembly format HFMul Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat hfmul(hfloat src1, hfloat src2);
hfloat operator*(hfloat src1, hfloat src2);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,

FP16 multiplication performed, and FP16 outcome is sign-extended to 32-bit

in the destination register.

IEEE compliant half-precision floating-point multiply. Handles denormal, zero,

infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 208

9.7.5.10 HFMAdd

Instruction name HFMAdd

Functionality FP16 multiply-add

Assembly format HFMAdd Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 16-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat hfmadd(hfloat src1, hfloat src2, hfloat src3);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,

FP16 multiply-add src1 * src2 + src3 performed, and FP16 outcome is sign-

extended to 32-bit in the destination register.

Fused multiply-add is performed, preserving intermediate precision as much

as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.7.5.11 HFMSub

Instruction name HFMSub

Functionality FP16 multiply-subtract

Assembly format HFMSub Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 16-bit float

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat hfmsub(hfloat src1, hfloat src2, hfloat src3);

Additional details Least significant 16 bits of sources registers are read as FP16 numbers,

FP16 multiply-subtract src3 - src1 * src2 performed, and FP16 outcome is

sign-extended to 32-bit in the destination register.

Fused multiply-subtract is performed, preserving intermediate precision as

much as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 209

9.7.5.12 INT_FP

Instruction name INT_FP

Functionality Integer to floating-point conversion

Assembly format INT_FP Rsrc, Rdst

Type and bit width 32-bit signed integer input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float int_fp(int src); //bit-exact between ISS & Native float

// Type casting int into float also compiles into INT_FP,
// but it’s not bit-exact between ISS and Native. For example,
float_var = (float) int_var;

Additional details Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.7.5.13 FP_INT_Trunc

Instruction name FP_INT_Trunc

Functionality Floating-point to integer conversion

Assembly format FP_INT_Trunc Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit signed integer output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int fp_int_trunc(float src); //bit-exact between ISS & Native float

// Type casting float into int also compiles into FP_INT_Trunc,
// but it’s not bit-exact between ISS and Native. For example,
int_var = (int) float_var;

Additional details FP32 to integer conversion with truncation.

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is trunc(1.5) = 1

Note that

- truncation is used during the conversion, consistent with C float-to-int type

casting.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 210

Instruction name FP_INT_Trunc

- When output value exceeds 32-bit int representation range, output is

saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

9.7.5.14 FP_INT_Round

Instruction name FP_INT_Round

Functionality Floating-point to integer conversion

Assembly format FP_INT_Round Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit signed integer output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int fp_int_round(float src);
int f32_to_i32_rte(float src); // Gen-1 legacy

Additional details FP32 to integer conversion with rounding.

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is round(1.5) = 2,

as 1.5 is tied between 1 and 2, so we round to 2 (even).

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is

saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements

rounding implicitly, programmers are strongly encouraged to switch to Gen-2

intrinsic function fp_int_round() to avoid confusion.

9.7.5.15 INT_FP16

Instruction name INT_FP16

Functionality Integer to 16-bit floating-point conversion

Assembly format INT_FP16 Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit int input, 16-bit float output

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 211

Instruction name INT_FP16

Source options src1: scalar register

src2: scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat int_fp16(int src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in source

fixed-point representation. dst = src1 / 2^src2.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

16-bit floating-point output is sign-extended into the 32-bit container.

Where output absolute value falls below normal FP16 range, denormal FP16

output is generated.

9.7.5.16 FP16_INT_Trunc

Instruction name FP16_INT_Trunc

Functionality Floating-point to integer conversion with truncation

Assembly format FP16_INT_Trunc Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options src1: scalar register

src2: scalar register

Destination options scalar register

Additional options

Intrinsics/operator int fp16_int_trunc(hfloat src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in

destination fixed-point representation. dst = trunc(src1 * 2^src2).

16-bit floating-point input is read from 16 LSBs of the 32-bit input.

Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 2^src2) exceeds 32-bit int representation

range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 212

9.7.5.17 FP16_INT_Round

Instruction name FP16_INT_Round

Functionality Floating-point to integer conversion with rounding

Assembly format FP16_INT_Round Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options src1: scalar register

src2: scalar register

Destination options scalar register

Additional options

Intrinsics/operator int fp16_int_round(hfloat src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in

destination fixed-point representation. dst = round(src1 * 2^src2).

16-bit floating-point input is read from 16 LSBs of the 32-bit input.

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value round(src1 * 2^src2) exceeds 32-bit int representation

range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

9.7.5.18 FP16_FP

Instruction name FP16_FP

Functionality Floating-point FP16 to floating-point FP32 conversion

Assembly format FP16_FP Rsrc, Rdst

Type and bit width 16-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fp16_fp(hfloat src);

Additional details FP16 floating-point input is read from 16 LSBs of the 32-bit source,

converted to FP32 floating-point outcome, and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 213

9.7.5.19 FP_FP16

Instruction name FP_FP16

Functionality Floating-point FP32 to floating-point FP16 conversion

Assembly format FP_FP16 Rsrc, Rdst

Type and bit width 32-bit float input, 16-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator hfloat fp_fp16(float src);

Additional details FP32 floating-point input is read from 32-bit source, converted to FP16

floating-point outcome, sign-extended and written to 32-bit destination.

Note that the invalid status flag is NOT set when input is NaN.

9.7.5.20 FCmpLT

Instruction name FCmpLT

Functionality Floating-point compare less than

Assembly format FCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.21 FCmpLE

Instruction name FCmpLE

Functionality Floating-point compare less than or equal to

Assembly format FCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 214

Instruction name FCmpLE

Intrinsics/operator bool operator<=(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.22 FCmpGT

Instruction name FCmpGT

Functionality Floating-point compare greater than

Assembly format FCmpGT Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.23 FCmpGE

Instruction name FCmpGE

Functionality Floating-point compare greater than or equal to

Assembly format FCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 215

9.7.5.24 FCmpEQ

Instruction name FCmpEQ

Functionality Floating-point compare equal

Assembly format FCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator==(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.25 FCmpNE

Instruction name FCmpNE

Functionality Floating-point compare not equal

Assembly format FCmpNE Rsrc1, Rsrc2, Rdst

Type and bit width 32-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator!=(float src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.26 HFCmpLT

Instruction name HFCmpLT

Functionality FP16 compare less than

Assembly format HFCmpLT Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<(hfloat src1, hfloat src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 216

Instruction name HFCmpLT

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.27 HFCmpLE

Instruction name HFCmpLE

Functionality FP16 compare less than or equal

Assembly format HFCmpLE Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator<=(hfloat src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.28 HFCmpGT

Instruction name HFCmpGT

Functionality FP16 compare greater than

Assembly format HFCmpGT Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>(hfloat src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 217

9.7.5.29 HFCmpGE

Instruction name HFCmpGE

Functionality FP16 compare greater than or equal

Assembly format HFCmpGE Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator>=(hfloat src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.30 HFCmpEQ

Instruction name HFCmpEQ

Functionality FP16 compare equal

Assembly format HFCmpEQ Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator==(hfloat src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 218

9.7.5.31 HFCmpNE

Instruction name HFCmpNE

Functionality FP16 compare not equal

Assembly format HFCmpNE Rsrc1, Rsrc2, Rdst

Type and bit width 16-bit float input, 32-bit int output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator bool operator!=(hfloat src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See 6.2.4.3 for corner cases.

9.7.5.32 FRCP

Instruction name FRCP

Functionality Floating-point reciprocal

Assembly format FRCP Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float frcp(float src);

Additional details Performing FP32-input, FP32-output reciprocal. Set invalid status flag when

output is NaN.

Corner cases:

 RCP(+denorm) gives +Inf

 RCP(-denorm) gives -Inf

 RCP(+0.0) gives +Inf

 RCP(-0.0) gives -Inf

 RCP(+1.0) gives +1.0

 RCP(-1.0) gives -1.0

 RCP(+Inf) gives +0.0

 RCP(-Inf) gives -0.0

 RCP(NaN) gives NaN

Max relative error is 2^-23 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 219

9.7.5.33 FSQRT

Instruction name FSQRT

Functionality Floating-point square root

Assembly format FSQRT Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fsqrt(float src);

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag

when output is NaN.

Corner cases:

 SQRT(+denorm) gives +0.0

 SQRT(-denorm) gives -0.0

 SQRT(+0.0) gives +0.0

 SQRT(-0.0) gives -0.0

 SQRT(+1.0) gives +1.0

 SQRT(-1.0) gives NaN

 SQRT(+Inf) gives +Inf

 SQRT(-Inf) gives NaN

 SQRT(NaN) gives NaN

 SQRT(negative) gives NaN (other than for -denorm or -0)

Max relative error is 2^-23 over entire normal floating-point range.

9.7.5.34 FRSQ

Instruction name FRSQ

Functionality Floating-point reciprocal square root

Assembly format FRSQ Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float frsq(float src);

Additional details Performing FP32-input, FP32-output reciprocal square root. Set invalid

status flag when output is NaN.

Corner cases:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 220

Instruction name FRSQ

 RSQ(+denorm) gives +Inf

 RSQ(-denorm) gives -Inf

 RSQ(+0.0) gives +Inf

 RSQ(-0.0) gives -Inf

 RSQ(+1.0) gives +1.0

 RSQ(-1.0) gives NaN

 RSQ(+Inf) gives +0.0

 RSQ(-Inf) gives NaN

 RSQ(NaN) gives NaN

 RSQ(negative) gives NaN (other than for -denorm or -0)

Max relative error is 2^-22.4 over entire normal floating-point range.

9.7.5.35 FEXP2

Instruction name FEXP2

Functionality Floating-point exponential base-2

Assembly format FEXP2 Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fexp2(float src);

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid

status flag when output is NaN.

Corner cases:

 EXP2(+denorm) gives +1.0

 EXP2(-denorm) gives +1.0

 EXP2(+0.0) gives +1.0

 EXP2(-0.0) gives +1.0

 EXP2(+Inf) gives +Inf

 EXP2(-Inf) gives +0.0

 EXP2(NaN) gives NaN

Max relative error is 2^-22.5 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 221

9.7.5.36 FLOG2

Instruction name FLOG2

Functionality Floating-point logarithm base-2

Assembly format FLOG2 Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float flog2(float src);

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid

status flag when output is NaN.

Corner cases:

 LOG2(+denorm) gives -Inf

 LOG2(-denorm) gives -Inf

 LOG2(+0.0) gives -Inf

 LOG2(-0.0) gives -Inf

 LOG2(+Inf) gives +Inf

 LOG2(-Inf) gives NaN

 LOG2(NaN) gives NaN

 LOG2(negative) gives NaN (other than for -denorm or -0)

Max absolute error is 2^-22 in range (0.5, 2.0).

Max relative error can be as large as 0.9 in range (0.5, 2.0).

Max relative error is 2^-22.5 in range [0, 0.5] and [2.0, +Inf].

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 222

9.7.5.37 FSIN

Instruction name FSIN

Functionality Floating-point sine

Assembly format FSIN Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fsin(float src);

Additional details Performing FP32-input, FP32-output sine function. Input in radians should be

pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

 SIN(+denorm) gives +0.0

 SIN(-denorm) gives -0.0

 SIN(+0.0) gives +0.0

 SIN(-0.0) gives -0.0

 SIN(+Inf) gives NaN

 SIN(-Inf) gives NaN

 SIN(NaN) gives NaN

 SIN(normal) is always in the range [-1, +1]

Max absolute error is 2^-20.5 in range -2*pi ~ 2*pi.

Max absolute error is 2^-14.7 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-

normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 223

9.7.5.38 FCOS

Instruction name FCOS

Functionality Floating-point cosine

Assembly format FCOS Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float fcos(float src);

Additional details Performing FP32-input, FP32-output cosine function. Input in radians should

be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

 COS(+denorm) gives +1.0

 COS(-denorm) gives +1.0

 COS(+0.0) gives +1.0

 COS(-0.0) gives +1.0

 COS(+Inf) gives NaN

 COS(-Inf) gives NaN

 COS(NaN) gives NaN

 COS(normal) is always in the range [-1, +1]

Max absolute error is 2^-20.9 in range -2*pi ~ 2*pi.

Max absolute error is 2^-15.3 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-

normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 224

9.7.5.39 FTANH

Instruction name FTANH

Functionality Floating-point hyperbolic tangent

Assembly format FTANH Rsrc, Rdst

Type and bit width 32-bit float input, 32-bit float output

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator float ftanh(float src);

Additional details Performing FP32-input, FP32-output hyperbolic function. Set invalid status

flag when output is NaN.

Corner cases:

 TANH(-denorm) gives -0.0

 TANH(-0.0) gives -0.0

 TANH(+0.0) gives +0.0

 TANH(+denorm) gives +0.0

 TANH(-Inf) gives -1.0

 TANH(+Inf) gives 1.0

 TANH(NaN) gives NaN

 TANH(normal) is always in the range [-1.0 .. +1.0]

Max relative error is 2^-11 over the entire normal floating-point range.

Max absolute error is 2^-12 over the entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 225

9.7.6 Other Scalar ALU Instructions

9.7.6.1 Instruction Summary

Table 27. Other scalar ALU instructions

Function Assembly Format Comments

Count leading bits CLB Rsrc, Rdst If bit 31 is zero, count leading 0 bits, otherwise, count

leading 1 bits

Load high LHI imm16, Rdst Set destination to (immediate << 16)

Or immediate ORI Rsrc1, imm16, Rdst Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate

value into a scalar register.

Mux MUX Rsrc1, Rsrc2, Rsrc3, Rdst Select between 2 items

Rdst = Rsrc1 ? Rsrc2 : Rsrc3

Divide DIV Rsrc1, Rsrc2 Divide Rsrc1 by Rsrc2, resulting quotient into PL and

remainder into PH, takes multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit

number.

When Rsrc2 is zero, return quotient = 0xFFFF_FFFF

(max value of unsigned 32-bit), and return remainder

= Rsrc1.

Divide-by-zero would generate error interrupt to R5.

Only available in S0 slot.

Logical left shift

and add

SLLIADD Rsrc1, UImm4, Rsrc2,

Rdst

dst = (src1 << imm) + src2;

Compare within CMPWITHIN Rsrc1, Rsrc2,

Rsrc3, Rdst

dst = (src1 <= src2) && (src2 < src3);

Bit count BITCNT Rsrc, Rdst Count number of bits set to one

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 226

9.7.6.2 CLB

Instruction name CLB

Functionality Count leading bits

Assembly format CLB Rsrc, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int clb(int src);

Additional details If bit 31 of the source is 0, count number of consecutive 0 bits from bit 31

down. Otherwise, count number of consecutive 1 bits from bit 31 down.

Examples:

clb(0) = 32

clb(0x1000_0000) = 3

clb(0x6000_0000) = 1

clb(0x8000_0000) = 1

clb(0xE000_0000) = 3

clb(0xFFF0_0000) = 12

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 227

9.7.6.3 LHI

Instruction name LHI

Functionality Load high. Load (immediate << 16) into scalar destination, and thus not just

loading high, but clearing low at the same time.

Assembly format LHI imm16, Rdst

Type and bit width 32-bit

Predication not available

Source options not available

Destination options scalar register

Additional options

Intrinsics/operator // not available, instantiated automatically when assigning
// a value exceeding 12-bit to variable mapped to a scalar
// register, for example,
// int var1 = 0x654321;
// is compiled into
// LHI 0x65, R4
// ORI 0x4321, R4
// when var1 is mapped to R4. When the value fits 12-bit,
// compiler instantiates ADDI, for example,
// ADDI R0, #321, R4

Additional details Set destination to (immediate << 16)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 228

9.7.6.4 ORI

Instruction name ORI

Functionality Bitwise OR with 16-bit immediate

Assembly format ORI Rsrc1, imm16, Rdst

Type and bit width 32-bit

Predication not available

Source options not available

Destination options scalar register

Additional options

Intrinsics/operator // not available, instantiated automatically when assigning // values
exceeding 16-bit to variable mapped to a scalar
// register, for example,
// int var1 = 0x654321;
// is compiled into
// LHI 0x65, R4
// ORI 0x4321, R4
// when var1 is mapped to R4. When the value fits 12-bit,
// compiler instantiates ADDI, for example,
// ADDI R0, #321, R4

Additional details Set destination to Rsrc1 OR immediate.

LHI/ORI sequence is used to load a 32-bit immediate value into a scalar

register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 229

9.7.6.5 MUX

Instruction name MUX

Functionality Scalar multiplexing

Assembly format MUX Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator char mux(int src1, char src2, char src3);
short mux(int src1, short src2, short src3);
int mux(int src1, int src2, int src3);
hfloat mux(int src1, hfloat src2, hfloat src3);
float mux(int src1, float src2, float src3);
char mux(bool src1, char src2, char src3);
short mux(bool src1, short src2, short src3);
int mux(bool src1, int src2, int src3);
hfloat mux(bool src1, hfloat src2, hfloat src3);
float mux(bool src1, float src2, float src3);

Additional details Select between 2 data items,

Rdst = Rsrc1 ? Rsrc2 : Rsrc3

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 230

9.7.6.6 DIV

Instruction name DIV

Functionality Scalar divide

Assembly format DIV Rsrc1, Rsrc2

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator void udiv(unsigned int src1, unsigned int src2, unsigned int & dst1,
unsigned int & dst2);
unsigned int operator/(unsigned int src1, unsigned int src2);
unsigned int operator%(unsigned int src1, unsigned int src2);

Additional details Divide Rsrc1 by Rsrc2, resulting quotient into PL and remainder into PH, takes

multiple cycles.

Rsrc1 and Rsrc2 are regarded as unsigned 32-bit number.

When Rsrc2 is zero, return quotient = 0xFFFF_FFFF (max value of unsigned 32-

bit), and return remainder = Rsrc1.

Divide-by-zero would generate error interrupt to R5.

This is a multi-cycle instruction, taking up to 33 cycles to complete. Subsequent

instructions using PL/PH as source or destination shall be stalled until DIV

completes. Also, to avoid task switch before PL/PH are written, subsequent

HALT, WFE_R5, and GPO writes are stalled until DIV completes.

Note that DIV is only available in the S0 slot.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 231

9.7.6.7 SLLIADD

This is an instruction added in Gen-2 VPU to accelerate address calculation.

Instruction name SLLIADD

Functionality Scalar shift and add

Assembly format SLLIADD Rsrc1, UImm4, Rsrc2, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int slladd(int src1, int shift_uimm4, int src2);

Additional details Unsigned 4-bit immediate value is used as left shift bit count, to shift left by

up to 15 bits.

int dst = ((int src1) << imm) + (int src2);

Why just 4-bit? The intention of this instruction is to support address calculation of

base[index], byte_addr(base) + index * sizeof(base), when the size of the data type is a

power of 2. 4-bit left shift would cover up to size of 2^15 = 32768 bytes, and is more

than commonly needed.

9.7.6.8 CMPWITHIN

This is an instruction added in Gen-2 VPU to accelerate range checking.

Instruction name CMPWITHIN

Functionality Compare within

Assembly format CMPWITHIN Rsrc1, Rsrc2, Rsrc3, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int cmpwithin(int src1, int src2, int src3);

Additional details Returns (src1 <= src2) && (src2 < src3);

Note that signed comparison is carried out.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 232

9.7.6.9 BITCNT

Instruction name BITCNT

Functionality Bit count

Assembly format BITCNT Rsrc, Rdst

Type and bit width 32-bit

Predication not available

Source options scalar register

Destination options scalar register

Additional options

Intrinsics/operator int bitcount(int src);

Additional details Count number of bits set to one; a scalar version of VBitCnt.

For example, bitcount(13) = 3, as the binary representation of 13 is “1101”

and contains 3 ones.

9.8 Vector ALU Instructions

9.8.1 Move Instructions

9.8.1.1 Instruction Summary

Table 28 Scalar/vector move instructions

Function Assembly Format Comments

Vector move VMov Vsrc/Wsrc, Vdst/Wdst

VMov Vsrc, ACdst

VMov ACsrc, Vdst

VMov ACsrc, ACdst

VMov XACsrc, XACdst

Move vector register

Move scalar to

vector

<pred> VMovS<W/WU/H/B> Rsrc,

 Vdst/Wdst/ACdst

Broadcast scalar register to all

W/H/B lanes of vector register

Vector move double <pred> DVMov DVsrc/DWsrc, DVdst/DWdst

<pred> DVMov DACsrc, DACdst

<pred> DVMov DXACsrc, DXACdst

DVMov DVsrc, DACdst

DVMov DACsrc, DVdst

Move double vector register

Vector move pair VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2 Move 2 vector registers

Move from vector

to scalar

<pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst Move vector lane 0 to scalar

register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 233

Table 29 vector register move support matrix

Destination

VRF WRF ARF XARF

Source

VRF single/double single/double single/double demote_i

double-to-single

WRF single/double single/double

ARF single/double

single/double

XARF promote_di

single-to-double

single/double

9.8.1.2 VMOV

Instruction name VMOV

Functionality Vector move

Assembly format VMov Vsrc/Wsrc, Vdst/Wsrc

VMov Vsrc, ACdst

VMov ACsrc, Vdst

VMov ACsrc, ACdst

VMov XACsrc, XACdst

Type and bit width n/a: 384-bit

Predication not available

Source options Single vector register in VRF, WRF, ARF, XARF

Destination options Single vector register in VRF, WRF, ARF, XARF

Additional options

Intrinsics/operator // not needed; instantiated from assignment statement
// between source and destination of same single vector
// type, for example,
// vintx dst = vintx src;
// vshortx dst = vshortx src;
// vcharx dst = vcharx src;
// xvshortx dst = xvshortx src;
// xvcharx dst = xvcharx src;
// vfloatx dst = vfloatx src;
// vhfloatx dst = vhfloatx src;

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 234

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 235

9.8.1.3 VMOVS

Instruction name VMOVS

Functionality Move scalar to vector

Assembly format <pred> VMovS<type> Rsrc, Vdst/Wdst/ACdst

pred = none, [P2..P15]

Type and bit width W: 32-bit sign-extended to 48-bit and broadcast to 8 x 48-bit

WU: 32-bit zero-extended to 48-bit and broadcast to 8 x 48-bit

H: lowest 24-bit broadcast to 16 x 24-bit

B: lowest 12-bit broadcast to 32 x 12-bit

Note that float/vfloatx type intrinsic function is mapped to W type

instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H

type instruction.

Predication Instruction-level predication

Source options Scalar register

Destination options Single vector register in VRF, WRF, ARF

Additional options

Intrinsics/operator vintx replicatew(int src);
vintx replicatew(unsigned int src);
vshortx replicateh(int src);
vcharx replicateb(int src);
vfloatx replicatef(float src); // W type, float value
 // sign-extended to 48-bit
vhfloatx replicatehf(hfloat src); // H type, hfloat value
 // sign-extended to 24-bit

Additional details Example:

 [P2] VMovSH R2, V3

When P2 is non-zero, this would copy R2[23:0] to all 16 half-word lanes of V3.

Otherwise, V3 is unchanged.

The predication feature is not exposed through intrinsic functions, but with

code pattern:

 if (condition) chess_guard {

 vector_var = replicatew(scalar_value);

 }

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 236

9.8.1.4 DVMOV

Instruction name DVMOV

Functionality Move double vector

Assembly format <pred> DVMov DVsrc/DWsrc, DVdst/DWdst

<pred> DVMov DACsrc, DACdst

<pred> DVMov DXACsrc, DXACdst

DVMov DVsrc, DACdst

DVMov DACsrc, DVdst

pred = none, [P2..P15]

Type and bit width n/a: 768-bit

Predication Instruction-level predication on DV/DW moves

Source options Double vector register in VRF, WRF, ARF, XARF

Destination options Double vector register in VRF, WRF, ARF, XARF

Additional options

Intrinsics/operator // not needed; instantiated from assignment statement
// between source and destination of same single vector
// type, for example,
// dvintx dst = dvintx src;
// dvshortx dst = dvshortx src;
// dvcharx dst = dvcharx src;
// dxvshortx dst = dxvshortx src;
// dxvcharx dst = dxvcharx src;
// dvfloatx dst = dvfloatx src;
// dvhfloatx dst = dvhfloatx src;

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 237

9.8.1.5 VMOV2

Instruction name VMOV2

Functionality Move vector pair

Assembly format VMov2 Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width n/a: 384-bit

Predication not available

Source options Two vector registers in VRF

Destination options Two vector registers in VRF

Additional options

Intrinsics/operator // Optional; instantiated from two assignments of the
// same single vector data type, or one assignment of the
// same double vector data type, for example,
// vintx dst = vintx src;
// vshortx dst = vshortx src;
// vcharx dst = vcharx src;
// vfloatx dst = vfloatx src;
// vhfloatx dst = vhfloatx src;
void dvmov(vfloatx src1, vfloatx src2, vfloatx &dst1, vfloatx &dst2);
void dvmov(vhfloatx src1,vhfloatx src2,vhfloatx &dst1,vhfloatx &dst2);
void dvmov(vintx src1, vintx src2, vintx &dst1, vintx &dst2);
void dvmov(vshortx src1, vshortx src2, vshortx &dst1, vshortx &dst2);
void dvmov(vcharx src1, vcharx src2, vcharx &dst1, vcharx &dst2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 238

9.8.1.6 MOVVS

Instruction name MOVVS

Functionality Move vector lane 0 to scalar

Assembly format <pred> MovVS<W/H/B/HU/BU> Vsrc, Rdst

pred = none, [P2..P15]

Type and bit width W: 32-bit

H: 24-bit sign-extend to 32-bit

B: 12-bit sign-extend to 32-bit

HU: 24-bit zero-pad to 32-bit

BU: 12-bit zero-pad to 32-bit

Note that float/vfloatx type intrinsic function is mapped to W type

instruction, and hfloat/vhfloatx type intrinsic function is mapped to the H

type instruction.

Predication Instruction-level predication

Source options Vector register (lane 0) in VRF

Destination options Scalar register

Additional options n/a

Intrinsics/operator int smovw (vintx src);
int smovh (vshortx src);
int smovb (vcharx src);
int smovhu (vshortx src);
int smovbu (vcharx src);
float smovf (vfloatx src);
hfloat smovhf (vhfloatx src);

Additional details Available in memory slots.

The predication feature is not exposed through intrinsic functions, but with

code pattern:

 if (condition) chess_guard {

 scalar_var = smovw(vector_value);

 }

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 239

9.8.2 Vector OP11 Instructions

These are one-source, one-destination operation vector instructions.

The double vector flavor is supported for selected operators.

9.8.2.1 Instruction Summary

Table 30. Vector OP11 instructions

Function Assembly Format Comments

Vector not bitwise VNot Vsrc/Wsrc, Vdst/Wsrc

Vector not logical VNotL<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector bit reverse VBitRev<W/H/B> Vsrc/Wsrc, Vdst/Wdst Use standard (32/16/8) bit width

Vector negate VNeg<W/H/B> Vsrc/Wsrc, Vdst/Wdst

Vector sum

reduction

VSumR<type> Vsrc/Wsrc,

Vdst/Wdst/Rdst

type = {BW, HW, W}

Sum of all lanes.

Result stored across all lanes of Vdst

Vector min

reduction

VMinR<W/H/B> Vsrc/Wsrc, Rdst Min of all lanes.

Scalar destination only

Vector max

reduction

VMaxR<W/H/B> Vsrc/Wsrc, Rdst Max of all lanes.

Scalar destination only

Vector AND

reduction

VAndR<W/H/B> Vsrc/Wsrc,

Vdst/Wdst/Rdst

Bitwise AND across all lanes.

Result stored across all lanes of Vdst

Vector OR

reduction

VOrR<W/H/B> Vsrc/Wsrc,

Vdst/Wdst/Rdst

Bitwise OR across all lanes.

Result stored across all lanes of Vdst

Vector XOR

reduction

VXorR<W/H/B> Vsrc/Wsrc,

Vdst/Wdst/Rdst

Bitwise XOR across all lanes.

Result stored across all lanes of Vdst

Vector bitunpack VBitUnpk<W/H/B> Rsrc, Vdst/Wdst Bit unpack from scalar

Vector bit-

transpose

VBitTranspH Vsrc/Wsrc, Vdst/Wdst Transpose 16-bit across 16 lanes.

Used in LBP encode, speedup ~ 2x

Vector most-

significant bit

detect

VMSBD<W/H/B> Vsrc/Wsrc, Vdst/Wdst Return most significant bit position, input

must be non-negative, return -1 for zero

input

Vector bit count VBitCnt<W/H/B> Vsrc/Wsrc, Vdst/Wdst

VBitCnt<W/H/B> DVsrc/DWsrc,

DVdst/DWdst

Count number of 1 bits

Vector collate

indices

VCollateIdx<W/H> Vsrc/Wsrc, Vdst/Wdst Compute indices to nonzero lanes

Vector expand

indices

VExpandIdx<W/H> Vsrc/Wsrc/Rsrc,

Vdst/Wdst

Compute indices to expand collated data

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 240

Function Assembly Format Comments

Vector horizontal 2-

term min-ID

VHMin2IDW Vsrc/Wsrc, Vdst/Wdst Computer min & ID in each lane pair

Vector horizontal 2-

term max-ID

VHMax2IDW Vsrc/Wsrc, Vdst/Wdst Computer max & ID in each lane pair

Vector shuffle

permutation

VShuffle<type> Vsrc/Wsrc, Vdst/Wdst

9.8.2.2 VNOT

Instruction name VNOT

Functionality Vector inversion bitwise

Assembly format VNot Vsrc/Wsrc, Vdst/Wsrc

Type and bit width no type: 384-bit (bitwise)

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator~(vintx src);
vshortx operator~(vshortx src);
vcharx operator~(vcharx src);
// double vector pseudo intrinsics
dvintx operator~(dvintx src);
dvshortx operator~(dvshortx src);
dvcharx operator~(dvcharx src);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 241

9.8.2.3 VNOTL

Instruction name VNOTL

Functionality Vector inversion logical

Assembly format VNotL<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator!(vintx src);
vshortx operator!(vshortx src);
vcharx operator!(vcharx src);
// double vector pseudo intrinsics
dvintx operator!(dvintx src);
dvshortx operator!(dvshortx src);
dvcharx operator!(dvcharx src);

Additional details Example:

VNotLB V1, V2

This would detect zero/non-zero of V1 byte lanes, and set a byte lane of V2 to

0 if the corresponding lane in V1 is non-zero, and 1 if the corresponding lane

in V1 is zero.

9.8.2.4 VBITREV

Instruction name VBITREV

Functionality Vector bit reverse

Assembly format VBitRev<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbitreverse(vintx src);
vshortx vbitreverse(vshortx src);
vcharx vbitreverse(vcharx src);
// double vector pseudo intrinsics
dvintx dvbitreverse(dvintx src);
dvshortx dvbitreverse(dvshortx src);
dvcharx dvbitreverse(dvcharx src);

Additional details Reverse lower 8/16/32 bits of each lane; upper bits are dropped.

Output lower 8/16/32 bits of each lane bit-reversed; upper bits are zero, and

appear unsigned (or non-negative).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 242

Instruction name VBITREV

Example:

vintx src = {0, 0x100, 0x200, 0x300, 0, 0, 0, 0};
vintx dst = vbitreverse(src);

Expected dst = {0, 0x80_0000, 0x40_0000, 0xC0_0000, 0, 0, 0, 0}

9.8.2.5 VNEG

Instruction name VNEG

Functionality Vector negate

Assembly format VNeg<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator-(vintx src);
vshortx operator-(vshortx src);
vcharx operator-(vcharx src);
// double vector pseudo intrinsics
dvintx operator-(dvintx src);
dvshortx operator-(dvshortx src);
dvcharx operator-(dvcharx src);

Additional details

9.8.2.6 VSUMR

Instruction name VSUMR

Functionality Vector sum reduction

Assembly format VSumR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit → 8 x 48-bit

HW: 16 x 24-bit → 8 x 48-bit

BW: 32 x 12-bit → 8 x 48-bit

Note that sign extension is applied for HW and BW cases.

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vsumr(vintx src);
vintx vsumr(vshortx src);
vintx vsumr(vcharx src);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 243

Instruction name VSUMR

int vsumr_s(vintx src);
int vsumr_s(vshortx src);
int vsumr_s(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Sum across all lanes of source is broadcast to all lanes of destination.

Destination is of W-type to reduce chance of overflow.

Note that number of lanes reduces for HW and BW variations.

Programmer should be aware of possibility of overflow in the VSumRW case,

and code accordingly.

For scalar destination, in W-type, 32 LSBs of the sum is returned.

Programmer should be aware of potential overflow in the outcome. In H-type

and B-type, the sum is sign-extended to 32-bit.

9.8.2.7 VMINR

Instruction name VMINR

Functionality Vector min reduction

Assembly format VMinR<type> Vsrc/Wsrc, Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single register in scalar register file

Additional options

Intrinsics/operator int vminr_s(vintx src);
int vminr_s(vshortx src);
int vminr_s(vcharx src);
// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions
vintx vminr(vintx src);
vshortx vminr(vshortx src);
vcharx vminr(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Min across all lanes of source is stored in the scalar destination.

For W-type, 32 LSBs of the min value is returned. Programmer should be

aware of potential overflow in the outcome. In H-type and B-type, the min

value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination

register. For W-type 48-bit min value is output in each lane of the vector

destination.

For Halfword and Byte types, the emulation uses vminr_s() and replicateh/b().

For Word type, using just vminr_s() and replicatew() will not compute bits

47..32 of the extended word lane properly. Instead, the emulation uses

vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 244

Instruction name VMINR

Examples:

VMinRB V1, V2 is emulated as VMinRB V1, R2; VMovSB R2, V2.
vminr(vcharx_src) as { replicateb(vminr_s(vcharx_src)); }

VMinRH V1, V2 is emulated as VMinRH V1, R2; VMovSH R2, V2.
vminr(vshortx_src) as { replicateh(vminr_s(vshortx_src)); }

VMinRW V1, V2 is emulated as
VHMin2IDW V1, V3; VMinSkip2RIDW V3, V2, R2.
vminr(vintx_src) as {
 vhmin2id(vintx_src, temp);
 vminskip2rid(temp, vintx_dst1, id_dst2);
 return vintx_dst1;
}

9.8.2.8 VMAXR

Instruction name VMAXR

Functionality Vector max reduction

Assembly format VMaxR<type> Vsrc/Wsrc, Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single register in scalar register file

Additional options

Intrinsics/operator int vmaxr_s(vintx src);
int vmaxr_s(vshortx src);
int vmaxr_s(vcharx src);
// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions
vintx vmaxr(vintx src);
vshortx vmaxr(vshortx src);
vcharx vmaxr(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Max across all lanes of source is stored in the scalar destination.

For W-type, 32 LSBs of the max value is returned. Programmer should be

aware of potential overflow in the outcome. In H-type and B-type, the max

value is sign-extended to 32-bit.

Gen-1 legacy intrinsics broadcast outcome across all lanes of destination

register. For W-type 48-bit max value is output in each lane of the vector

destination.

For Halfword and Byte types, the emulation uses vmaxr_s() and replicateh/b().

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 245

Instruction name VMAXR

For Word type, using just vmaxr_s() and replicatew() will not compute bits

47..32 of the extended word lane properly. Instead, the emulation uses

vhmax2id() and vmaxskip2rid(). See 9.8.2.18 and 9.8.3.10 for details.

Examples:

VMaxRB V1, V2 is emulated as VMaxRB V1, R2; VMovSB R2, V2.
vmaxr(vcharx_src) as { replicateb(vmaxr_s(vcharx_src)); }

VMaxRH V1, V2 is emulated as VMaxRH V1, R2; VMovSH R2, V2.
vmaxr(vshortx_src) as { replicateh(vmaxr_s(vshortx_src)); }

VMaxRW V1, V2 is emulated as
VHMax2IDW V1, V3; VMaxSkip2RIDW V3, V2, R2.
vmaxr(vintx_src) as {
 vhmax2id(vintx_src, temp);
 vmaxskip2rid(temp, vintx_dst1, id_dst2);
 return vintx_dst1;
}

9.8.2.9 VANDR

Instruction name VANDR

Functionality Vector bitwise AND reduction

Assembly format VAndR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vandr(vintx src);
vshortx vandr(vshortx src);
vcharx vandr(vcharx src);
int vandr_s(vintx src);
int vandr_s(vshortx src);
int vandr_s(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Bitwise AND across all lanes of source is broadcast to all lanes of destination.

dst[i] = src[0] & src[1] & … & src[nlanes – 1]

For scalar destination, in W-type, 32 LSBs of the AND reduction value is

returned. Programmer should be aware of potential overflow in the outcome.

In H-type and B-type, the AND reduction value is zero-extended to 32-bit.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 246

9.8.2.10 VORR

Instruction name VORR

Functionality Vector bitwise OR reduction

Assembly format VOrR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vorr(vintx src);
vshortx vorr(vshortx src);
vcharx vorr(vcharx src);
int vorr_s(vintx src);
int vorr_s(vshortx src);
int vorr_s(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Bitwise OR across all lanes of source is broadcast to all lanes of destination.

dst[i] = src1[0] | src1[1] | … | src1[nlanes – 1]

For scalar destination, in W-type, 32 LSBs of the OR reduction value is

returned. Programmer should be aware of potential overflow in the outcome.

In H-type and B-type, the OR reduction value is zero-extended to 32-bit.

9.8.2.11 VXORR

Instruction name VXORR

Functionality Vector bitwise XOR reduction

Assembly format VXorR<type> Vsrc/Wsrc, Vdst/Wdst/Rdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vxorr(vintx src);
vshortx vxorr(vshortx src);
vcharx vxorr(vcharx src);
int vxorr_s(vintx src);
int vxorr_s(vshortx src);
int vxorr_s(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details XOR across all lanes of source is broadcast to all lanes of destination.

dst[i] = src[0] ^ src[1] ^ … ^ src[nlanes – 1]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 247

Instruction name VXORR

For scalar destination, in W-type, 32 LSBs of the XOR reduction value is

returned. Programmers should be aware of potential overflow in the

outcome. In H-type and B-type, the XOR reduction value is zero-extended to

32-bit.

9.8.2.12 VBITUNPK

Instruction name VBITUNPK

Functionality Vector unpack from scalar

Assembly format VBitUnpk<type> Rsrc, Vdst/Wdst

Type and bit width W: take Rsrc[7:0], unpack into 8 x 48-bit, each lane gets 0 or 1

H: take Rsrc[15:0], unpack into 16 x 24-bit, each lane gets 0 or 1

B: take Rsrc[31:0], unpack into 32 x 12-bit, each lane gets 0 or 1

Predication not available

Source options Scalar register

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vbitunpackb(int src);
vshortx vbitunpackh(int src);
vintx vbitunpackw(int src);
// double vector pseudo intrinsics unavailable

Additional details Unpack lower 8/16/32-bit of source scalar register, one bit into each vector

lane, bit i into lane i.

For example, with R4 = 0xF0, “VBitUnpkW R4, V0” would result in

V0 = {0, 0, 0, 0, 1, 1, 1, 1}

9.8.2.13 VBITTRANSP

Instruction name VBITTRANSP

Functionality Vector bit transpose

Assembly format VBitTranspH Vsrc/Wsrc, Vdst/Wsrc

Type and bit width H: 16 x 16-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx vbittranspose(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details Transpose between bit dimension (16 bits) and lane dimension (16 lanes),

useful for census transform and rank transform

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 248

Example for VBitTranspH:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

11 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

14 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

15 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

43690 52428 61680 65280 0 0 0 0 0 0 0 0 0 0 0 0

AAAA CCCC F0F0 FF00 0 0 0 0 0 0 0 0 0 0 0 0

Value (dec)

Value (hex)

Value (hex)

B

i

t

-

T

r

a

n

s

p

o

s

e

d

Bit

Lane

Bit

I

n

p

u

t

Value (dec)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 249

9.8.2.14 VMSBD

Instruction name VMSBD

Functionality Vector most significant bit detect

Assembly format VMSBD<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vmsbd(vintx src);
vshortx vmsbd(vshortx src);
vcharx vmsbd(vcharx src);
// double vector pseudo intrinsics
dvintx dvmsbd(dvintx src);
dvshortx dvmsbd(dvshortx src);
dvcharx dvmsbd(dvcharx src);

Additional details Return most significant bit position, treat input as unsigned, return -1 for

zero input.

For example, value of 0x12 has leading bit in bit 4, thus MSBD would return 4.

9.8.2.15 VBITCNT

Instruction name VBITCNT

Functionality Vector bit count

Assembly format VBitCnt<type> Vsrc/Wsrc, Vdst/Wsrc

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbitcount(vintx src);
vshortx vbitcount(vshortx src);
vcharx vbitcount(vcharx src);

Additional details Count input “1” bits. For example, input of 12 = 0x0C would lead to bit count

of 2.

Instruction name VBITCNT

Functionality Double vector bit count

Assembly format VBitCnt<type> DVsrc/DWsrc, DVdst/DWsrc

Type and bit width W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 250

Instruction name VBITCNT

Source options Double vector register in VRF or WRF

Destination options Double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx dvbitcount(dvintx src);
dvshortx dvbitcount(dvshortx src);
dvcharx dvbitcount(dvcharx src);

Additional details Count input “1” bits. For example, input of 12 = 0x0C would lead to bit count

of 2.

9.8.2.16 VCOLLATEIDX

Instruction name VCOLLATEIDX

Functionality Vector collate

Assembly format VCollateIdx<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector registers in VRF or WRF

Additional options

Intrinsics/operator vintx vcollate_idx(vintx src);
vshortx vcollate_idx(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details Vdst/Wdst gets indices to nonzero lanes (sequentially from lane 0) of

Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc.

 For example, VCollateIdxW V0, V1, with V0 = {0, -1, 2, -3, 0, 0, 0, 4}. Non-zero

lanes are lane 1, 2, 3, and 7. Expected outcome V1 = {1, 2, 3, 7, 0, 4, 5, 6}. The

idea is that a subsequent VPermW would use V1 as indices to

extract/compact V0 nonzero and zero lanes into {-1, 2, -3, 4, 0, 0, 0, 0}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 251

9.8.2.17 VEXPANDIDX

Instruction name VEXPANDIDX

Functionality Vector expand, the inverse operation of vector collate

Assembly format VExpandIdx<type> Vsrc/Wsrc/Rsrc, Vdst/Wdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication not available

Source options Single vector register in VRF or WRF, or scalar register

Destination options Single vector registers in VRF or WRF

Additional options

Intrinsics/operator vintx vexpand_idx(vintx src);
vshortx vexpand_idx(vshortx src);
vintx vexpand_idxw(int src);
vshortx vexpand_idxh(int src);
// double vector pseudo intrinsics unavailable

Additional details Identify nonzero lanes of Vsrc/Wsrc (sequentially from lane 0) and replace

these lanes with incrementing indices. Zero lanes continue the indexing from

non-zero lanes.

When scalar register source is used, extract zero/nonzero directly from the

scalar, bit i = 1 indicating lane i is nonzero.

The source contains a Boolean array. The expanded index can be used to

expand, or uncollated, a collated array back to original data.

 For example, VExpandIdxW V0, V1, with V0 = {0, 1, 1, 1, 0, 0, 0, 1}. Non-zero

lanes are 1, 2, 3, and 7. Expected outcome V1 = {4, 0, 1, 2, 5, 6, 7, 3}. The idea

is that a subsequent VPermW would use V1 as indices to expand collated

data, for example, {-1, 2, -3, 4, 0, 0, 0, 0} to {0, -1, 2, -3, 0, 0, 0, 4}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 252

9.8.2.18 VHMIN2ID

Instruction name VHMIN2ID

Functionality Vector horizontal (between lane) min and ID

Assembly format VHMin2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width W: 8 x 48-bit signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vhmin2id(vintx src);

Additional details Min-ID between even/odd lanes in each lane pair. even destination lane gets

the minimal value, odd destination lane gets the lane ID (0 or 1) that has the

minimal value, in case of tie, ID = 0.

dst[2*i] = min(src[2*i], src[2*i+1]);
dst[2*i+1] = (src[2*i] <= src[2*i+1]) ? 0 : 1;

This operation is supported only for the Word type, to handle potential

overflow of Word-type VMinRID with scalar register destinations.

9.8.2.19 VHMAX2ID

Instruction name VHMAX2ID

Functionality Vector horizontal (between lane) max and ID

Assembly format VHMax2ID<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width W: 8 x 48-bit signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vhmax2id(vintx src);

Additional details Min-ID between even/odd lanes in each lane pair. even destination lane gets

the maximal value, odd destination lane gets the lane ID (0 or 1) that has the

maximal value, in case of tie, ID = 0.

dst[2*i] = max(src[2*i], src[2*i+1]);
dst[2*i+1] = (src[2*i] >= src[2*i+1]) ? 0 : 1;

This operation is supported only for the Word type, to handle potential

overflow of Word-type VMaxRID with scalar register destinations.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 253

9.8.2.20 VSHUFFLE

Instruction name VSHUFFLE

Functionality Vector shuffle permutation

Assembly format VShuffle<type> Vsrc/Wsrc, Vdst/Wdst

Type and bit width B: 32 x 12-bit

H: 16 x 24-bit

W: 8 x 48-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vshuffle(vcharx src);
vshortx vshuffle(vshortx src);
vintx vshuffle(vintx src);

Additional details Perform shuffle permutation among byte/halfword/word lanes. Equivalent to

VPerm with pattern:

Byte: {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23,

 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}

Halfword: {0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15}

Word: {0, 4, 1, 5, 2, 6, 3, 7}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 254

9.8.3 Vector OP12 Instructions

These are one-source, two-destination operation vector instructions.

9.8.3.1 Instruction Summary

Table 31. Vector OP12 instructions

Function Assembly Format Comments

Vector sign-

magnitude

VSignMag<W/H/B>

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Vdst1/Wdst2 gets sign values.

Vdst2/Wdst2 gets magnitude values.

Vector min

reduction & ID

VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the min value.

dst2 gets the min ID.

Vector max

reduction & ID

VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2 dst1 gets the max value.

dst2 gets the max ID.

Vector type

promotion

VPromote_DI<type>

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

VPromote_DI<type> XACsrc, Vdst1, Vdst2

type = {H, W}

With and without deinterleaving

Vector bit

deinterleaving

VBitDeIntrlvW

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

VBitDeIntrlv21W

Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

1:1 and 2:1 deinterleaving

Collate index and

bits

VCollateIdx_Bits<type> Vsrc/Wsrc,

Vdst1/Wdst1, Rdst2

Vector min skip2

reduction-ID

VMinSkip2RIDW Vsrc/Wsrc,

 Vdst1/Wdst1, Rdst2

Complete min reduction-ID, assuming src

is outcome from VHMin2ID

Vector max skip2

reduction-ID

VMaxSkip2RIDW Vsrc/Wsrc,

 Vdst1/Wdst1, Rdst2

Complete max reduction-ID, assuming src

is outcome from VHMax2ID

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 255

9.8.3.2 VSIGNMAG

Instruction name VSIGNMAG

Functionality Vector sign magnitude

Assembly format VSignMag<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator void vsignmag(vintx src, vintx & dst1, vintx & dst2);
void vsignmag(vshortx src, vshortx & dst1, vshortx & dst2);
void vsignmag(vcharx src, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvsignmag(dvintx src, dvintx & dst1, dvintx & dst2);
void dvsignmag(dvshortx src, dvshortx & dst1, dvshortx & dst2);
void dvsignmag(dvcharx src, dvcharx & dst1, dvcharx & dst2);

Additional details dst1 gets the sign, 0 for zero/positive and 1 for negative. dst2 gets the

magnitude (absolute value).

9.8.3.3 VMINRID

Instruction name VMINRID

Functionality Vector min reduction with ID

Assembly format VMinRID<type> Vsrc/Wsrc, Rdst1, Rdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1, dst2: scalar registers

Additional options

Intrinsics/operator void vminrid_s(vintx src, int & dst1, int & dst2);
void vminrid_s(vshortx src, int & dst1, int & dst2);
void vminrid_s(vcharx src, int & dst1, int & dst2);
// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions
void vminrid(vintx src, vintx & dst1, vintx & dst2);
void vminrid(vshortx src, vshortx & dst1, vshortx & dst2);
void vminrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details dst1 gets the min value among lanes, 12-bit/24-bit outcome is sign-extended

to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with

upper 16 bits dropped.

dst2 gets lane ID (0 ~ 7/15/31) where the min value is found, lowest lane when

there’s a tie.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 256

Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination

registers. For W-type 48-bit min value is output in each lane of the first vector

destination.

For Halfword and Byte types, the emulation uses vminrid_s() and

replicateh/b().

For Word type, using just vminrid_s() and replicatew() will not compute bits

47..32 of the extended word lane properly. Instead, the emulation uses

vhmin2id() and vminskip2rid(). See 9.8.2.18 and 9.8.3.9 for details.

Examples:

VMinRIDB V1, V2, V3 is emulated as
VMinRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3.
vminrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {
 vminrid_s(vcharx_src, min_dst, id_dst);
 vcharx_dst1 = replicateb(min_dst);
 vcharx_dst2 = replicateb(id_idst);
}

VMinRIDH V1, V2, V3 is emulated as
VMinRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3.
vminrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
 vminrid_s(vshortx_src, min_dst, id_dst);
 vshortx_dst1 = replicateh(min_dst);
 vshortx_dst2 = replicateh(id_idst);
}

VMinRIDW V1, V2, V3 is emulated as
VHMin2IDW V1, V4; VMinSkip2RIDW V4, V2, R2; VMovS R2, V3.
vminrid(vintx_src, vintx_dst1, vintx_dst2) as {
 vhmin2id(vintx_src, temp);
 vminskip2rid(temp, vintx_dst1, id_dst2);
 vintx_dst2 = replicatew(id_dst2);
}

9.8.3.4 VMAXRID

Instruction name VMAXRID

Functionality Vector max reduction with ID

Assembly format VMaxRID<type> Vsrc/Wsrc, Rdst1, Rdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1, dst2: scalar registers

Additional options

Intrinsics/operator void vmaxrid_s(vintx src, int & dst1, int & dst2);
void vmaxrid_s(vshortx src, int & dst1, int & dst2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 257

Instruction name VMAXRID

void vmaxrid_s(vcharx src, int & dst1, int & dst2);
// Following gen-1 legacy intrinsics shall be emulated with multiple
instructions
void vmaxrid(vintx src, vintx & dst1, vintx & dst2);
void vmaxrid(vshortx src, vshortx & dst1, vshortx & dst2);
void vmaxrid(vcharx src, vcharx & dst1, vcharx & dst2);

Additional details dst1 gets the max value among lanes, 12-bit/24-bit outcome is sign-extended

to 32-bit, and 48-bit outcome has 32 LSBs written to the destination with

upper 16 bits dropped.

dst2 gets lane ID (0 ~ 7/15/31) where the max value is found, lowest lane when

there’s a tie.

Gen-1 legacy intrinsics broadcast outcomes across all lanes of destination

registers. For W-type 48-bit min value is output in each lane of the first vector

destination.

For Halfword and Byte types, the emulation uses vmaxrid_s() and

replicateh/b().

For Word type, using just vmaxrid_s() and replicatew() will not compute bits

47..32 of the extended word lane properly. Instead, the emulation uses

vhmax2id() and vmaxskip2rid(). See 9.8.2.19 and 9.8.3.10 for details.

Examples:

VMaxRIDB V1, V2, V3 is emulated as
VMaxRIDB V1, R2, R3; VMovSB R2, V2; VMovSB R3, V3.
vmaxrid(vcharx_src, vcharx_dst1, vcharx_dst2) as {
 vmaxrid_s(vcharx_src, max_dst, id_dst);
 vcharx_dst1 = replicateb(max_dst);
 vcharx_dst2 = replicateb(id_idst);
}

VMaxRIDH V1, V2, V3 is emulated as
VMaxRIDH V1, R2, R3; VMovSH R2, V2; VMovSH R3, V3.
vmaxrid(vshortx_src, vshortx_dst1, vshortx_dst2) as {
 vmaxrid_s(vshortx_src, max_dst, id_dst);
 vshortx_dst1 = replicateh(max_dst);
 vshortx_dst2 = replicateh(id_idst);
}

VMaxRIDW V1, V2, V3 is emulated as
VHMax2IDW V1, V4; VMaxSkip2RIDW V4, V2, R2; VMovS R2, V3.
vmaxrid(vintx_src, vintx_dst1, vintx_dst2) as {
 vhmax2id(vintx_src, temp);
 vmaxskip2rid(temp, vintx_dst1, id_dst2);
 vintx_dst2 = replicatew(id_dst2);
}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 258

9.8.3.5 VPROMOTE_DI

Instruction name VPROMOTE_DI

Functionality Vector type promotion with deinterleaving

Assembly format VPromote_DI<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width BH: 32 x 12-bit → 2 x 16 x 24-bit, HW: 16 x 24-bit → 2 x 8 x 48-bit, with sign

extension

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator void vpromote_di(vcharx src, vshortx & dst1, vshortx & dst2);
void vpromote_di(vshortx src, vintx & dst1, vintx & dst2);
dvshortx vpromote_di(vcharx src);
dvintx vpromote_di(vshortx src);
// double vector pseudo intrinsics unavailable

Additional details Expand byte to half-word or half-word to word, with 2 single registers as

destination and with deinterleaving.

Example:

VPromote_DIHW V1, V2, V3

with V1 = {0, 1, 2, …, 15} would copy V1’s contents to V2 and V3

deinterleavingly, so that

V2 = {0, 2, 4, …, 14} and

V3 = {1, 3, 5, …, 15}

Instruction name VPROMOTE_DI (Gen-2 from XARF to VRF)

Functionality Vector type promotion with deinterleaving

Assembly format VPromote_DI<type> XACsrc, Vdst1, Vdst2

Type and bit width H: 32 x 16-bit → 2 x 16 x 24-bit, W: 16 x 32-bit → 2 x 8 x 48-bit

Predication not available

Source options Single vector register in XARF

Destination options dst1: Single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vpromote_di(xvcharx src, vshortx& dst1, vshortx& dst2);
void vpromote_di(xvshortx src, vintx& dst1, vintx& dst2);
dvshortx vpromote_di(xvcharx src);
dvintx vpromote_di(xvshortx src);
// double vector pseudo intrinsics unavailable

Additional details Expand halfword to extended halfword or word to extended word.

Example:

VPromote_DIH XAC0, V2, V3

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 259

Instruction name VPROMOTE_DI (Gen-2 from XARF to VRF)

with XAC0 = {0, 1, 2, …, 31} would copy XAC0 contents to V2 and V3

deinterleavingly, so that

V2 = {0, 2, 4, …, 30} and

V3 = {1, 3, 5, …, 31}

9.8.3.6 VPROMOTE (Emulated)

Instruction name VPROMOTE (Emulated)

Functionality Vector type promotion (without deinterleaving)

Assembly format VPromote<type> Vsrc, Vdst1, Vdst2

Type and bit width BH: 32 x 12-bit → 2 x 16 x 24-bit, HW: 16 x 24-bit → 2 x 8 x 48-bit, with sign

extension

Predication not available

Source options Single vector register

Destination options Single vector register

Additional options

Intrinsics/operator void vpromote(vshortx src, vintx & dst1, vintx & dst2);
void vpromote(vcharx src, vshortx & dst1, vshortx & dst2);
dvintx vpromote(vshortx src);
dvshortx vpromote(vcharx src);
// double vector pseudo intrinsics unavailable

Additional details Expand byte to half-word or half-word to word, with 2 single registers as

destination and without deinterleaving.

It’s an instruction in Gen-1 VPU only. In Gen-2, it was removed to reduce

timing pressure in cross-lane unit. The intrinsic is supported by implementing

the same functionality using multiple instructions.

The emulation uses vshuffle() and vpromote_di() intrinsic functions. See

9.8.2.20 and 9.8.3.5 for details.

Examples:

VPromoteBH V1, V2, V3 is emulated as
VShuffleB V1, V4; VPromote_DIBH V4, V2, V3.
vpromote(vcharx_src, vshortx_dst1, vshortx_dst2) as {
vpromote_di(vshuffle(vcharx_src), vshortx_dst1, vshortx_dst2); }

VPromoteHW V1, V2, V3 is emulated as
VShuffleH V1, V4; VPromote_DIHW V4, V2, V3.
vpromote(vcharx_src, vintx_dst1, vintx_dst2) as {
vpromote_di(vshuffle(vshortx_src), vintx_dst1, vintx_dst2); }

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 260

9.8.3.7 VBITDEINTRLV

Instruction name VBITDEINTRLV

Functionality Vector bit deinterleave

Assembly format VBitDeintrlv<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width W: 8 x 32-bit → 8 x 16-bit + 8 x 16-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator void vbit_deinterleave(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details In each 48-bit W lane, bit-deinterleave src[31:0] into dst1[15:0] and dst2[15:0]

dst1[15] = src[31], dst2[15] = src[30],

dst1[14] = src[29], dst2[14] = src[28], and so on.

dst1[47:16] = dst2[47:16] = 0

Instruction name VBITDEINTRLV21

Functionality Vector bit deinterleave 2:1

Assembly format VBitDeIntrlv21<type> Vsrc/Wsrc, Vdst1/Wdst1, Vdst2/Wdst2

Type and bit width W: 8 x 48-bit → 8 x 32-bit + 8 x 16-bit

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: single vector register in VRF or WRF

Additional options

Intrinsics/operator void vbit_deinterleave_21(vintx src, vintx & dst1, vintx & dst2);
// double vector pseudo intrinsics
void dvbit_deinterleave_21(dvintx src, dvintx & dst1, dvintx & dst2);

Additional details In each 48-bit W lane, bit-deinterleave src[47:0] into dst1[31:0] and dst2[15:0]

dst1[31:30] = src[47:46], dst2[15] = src[45],

dst1[29:28] = src[44:43], dst2[14] = src[42], and so on.

dst1[47:32] = dst2[47:16] = 0

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 261

9.8.3.8 VCOLLATEIDX_BITS

Instruction name VCOLLATEIDX_BITS

Functionality Vector collate index and bits

Assembly format VCollateIdx_Bits<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit (no byte type support)

Predication not available

Source options Single vector register in VRF or WRF

Destination options Single vector registers in VRF or WRF

Scalar register

Additional options

Intrinsics/operator void vcollate_idx_bits(vintx src, vintx& dst1, int& dst2);
void vcollate_idx_bits(vshortx src, vshortx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details Vdst1/Wdst1 gets indices to nonzero lanes (sequentially from lane 0) of

Vsrc/Wsrc, followed by indices to zero lanes of Vsrc/Wsrc. Rdst2 gets bit-

packed Boolean vector indicating nonzero lanes of Vsrc/Wsrc.

For example, VCollateIdxW V0, V1, R2, with V0 = {0, -1, 2, -3, 0, 0, 0, 4}. Non-

zero lanes are lane 1, 2, 3, and 7. Expected outcome V1 = {1, 2, 3, 7, 0, 4, 5, 6},

R2 = 0x8E (bits 1, 2, 3, 7 are ones).

The idea is that a subsequent VPermW would use V1 as indices to

extract/compact V0 nonzero and zero lanes into {-1, 2, -3, 4, 0, 0, 0, 0}. R2 is

saved for later-on expanding the nonzeros back to original data array.

9.8.3.9 VMINSkip2RID

Instruction name VMINSKIP2RID

Functionality Vector every-other-lane horizontal min reduction and ID

Assembly format VMinSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width W: 8 x 48-bit signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: scalar register

Additional options

Intrinsics/operator void vminskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details Complete min reduction-ID functionality cross lanes, assuming the source is

outcome of VHMin2ID, with even lanes containing min values and LSB of odd

lanes containing 1-bit min-ID (between lanes 2*I and 2*I+1).

min_val = min(src[0], src[2], src[4], src[6]);
id_val = (src[0] == min_val) ? src[1][0] :
 ((src[2] == min_val) ? (2 + src[3][0]) :

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 262

Instruction name VMINSKIP2RID

 ((src[4] == min_val) ? (4 + src[5][0]) : (6 + src[7][0])));
dst1[0..7] = min_val;
dst2 = id_val;

src[i][0] means bit 0 of src[i].

This operation is supported only for the Word type, to handle potential

overflow of Word-type VMinRID with scalar register destinations.

For example, start with V0 = {3, 1, 4, 0, 2, 5, 9, 1}, holding 8 int48 values.

After VHMin2IDW V0, V1, we shall have

V1 = {1, 1, 0, 1, 2, 0, 1, 1}, this is because

min(3, 1) = 1 from odd lane, min(4, 0) = 0 from odd lane, and so on.

While executing VMinSkip2RID V1, V2, R3, we have

min_val = min(1, 0, 2, 1) = 0,

and we have src1[2] == min_val, so id_val = 2 + src[3][0] = 2+1 = 3.

We return

V2 = {0, 0, 0, 0, 0, 0, 0, 0} and R3 = 3

9.8.3.10 VMAXSkip2RID

Instruction name VMAXSKIP2RID

Functionality Vector every-other-lane horizontal max reduction and ID

Assembly format VMaxSkip2RID<type> Vsrc/Wsrc, Vdst1/Wdst1, Rdst2

Type and bit width W: 8 x 48-bit signed

Predication not available

Source options Single vector register in VRF or WRF

Destination options dst1: Single vector register in VRF or WRF

dst2: scalar register

Additional options

Intrinsics/operator void vmaxskip2rid(vintx src, vintx& dst1, int& dst2);
// double vector pseudo intrinsics unavailable

Additional details Complete max reduction-ID functionality cross lanes, assuming the source is

outcome of VHMax2ID, with even lanes containing max values and LSB of

odd lanes containing 1-bit max-ID (between lanes 2*I and 2*I+1).

max_val = max(src[0], src[2], src[4], src[6]);
id_val = (src[0] == max_val) ? src[1] :
 ((src[2] == max_val) ? (2 + src[3]) :
 ((src[4] == max_val) ? (4 + src[5]) : (6 + src[7])));
dst1[0..7] = max_val;
dst2 = id_val;

This operation is supported only for the Word type, to handle potential

overflow of Word-type MaxRID with scalar register destinations.

See example in VMinSkip2RID instruction description.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 263

9.8.4 Vector OP21 Instructions

These are two-source, one-destination operation vector instructions.

9.8.4.1 Instruction Summary

For some of these two-source, one-destination instructions, source 2 can be vector

register or scalar register. In case of scalar register, its value is broadcast to all lanes

before the operation, depending on the type:

> For Byte-type operations, bits 11:0 of scalar register is broadcast to all extended

byte lanes (12-bit each).

> For Halfword-type operations, bits 23:0 of scalar register is broadcast to all extended

halfword lanes (24-bit each).

> For Word-type operations, the 32-bit scalar register is sign-extended to extended

word lanes (48-bit each).

Double vector flavor is supported for selected operators.

Table 32 Vector OP21 instructions

Function Assembly Format Comments

Vector and bitwise VAnd<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DVdst/DWdst

VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector and logical VAndL<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector or bitwise VOr<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DVdst/DWdst

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector or logical VOrL<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector exclusive or VXor<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DVdst/DWdst

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector add VAdd<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 264

Function Assembly Format Comments

VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DVdst/DWdst

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector subtract VSub<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

DVdst/DWdst

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector absolute

difference

VAbsDif<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VAbsDif<W/H/B> DVsrc1,

DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2,

DVdst/DWdst

Vector min VMin<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMin<W/H/B> DVsrc1/Wsrc1,

 DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector max VMax<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VMax<W/H/B> DVsrc1/Wsrc1,

 DVsrc2/Wsrc2/Rsrc2, DVdst/Wdst

Vector shift VShift<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, when

positive shift left, when negative

shift right. Bit counts are saturated

to [-12, 12], [-24, 24] or [-48, 48]

range before applying the shift.

Vector shift left VSLA<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to

[0, 12], [0, 24], [0, 48] before

applying the left shift.

Vector shift right VSRA<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to

[0, 12], [0, 24], [0, 48] range before

applying the right shift.

Vector round VRound<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

src2 carries bit counts, saturated to

[0, 12], [0, 24], [0, 48] range before

applying the right shift.

Vector permute VPerm<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

src1 carries data.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 265

Function Assembly Format Comments

src2 carries permute pattern in

corresponding lane, value i for lane i.

Only 5/4/3 LSBs are read as

unsigned indices for W/H/B type.

Vector compare GT VCmpGT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpGT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpGT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare GE VCmpGE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpGE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpGE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LT VCmpLT<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpLT<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpLT<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare LE VCmpLE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpLE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpLE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare EQ VCmpEQ<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpEQ<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpEQ<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Vector compare NE VCmpNE<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

VCmpNE<W/H/B>

DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpNE<W/H/B>

DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 266

Function Assembly Format Comments

Vector compare

and bit-pack

VBitCmp<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2,

Vdst/Wdst/Rdst

type = {BBW, H, WWB}

Compare src1 >= src2, bit-pack

outcome, then broadcast to all lanes

Vector normalize VNorm<W/H/B>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Normalize src1 data with most-

significant bit position src2

Vector octant

detect

VOctDetH

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

src1 = Y values, src2 = X values,

detect octant of (X, Y) vectors.

Vector type

demotion

VDemote_I<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

VDemote<type>

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

type = {HB, WH}

VDemote_I<type> Vsrc1, Vsrc2, XACdst

type = {H, W}

Type demotion with and without

interleaving

Vector bit

interleaving

VBitIntrlvW

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

VBitIntrlv21W

Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Bit interleaving, 1:1 and 2:1

Vector apply sign VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2,

Vdst/Wdst

Inverse operation of VSignMag,

treating src1 as sign (0 for

zero/positive and 1 for negative),

and src2 as magnitude.

Vector select lane VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 267

9.8.4.2 VAND

Instruction name VAND

Functionality Vector bitwise AND

Assembly format VAnd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator&(vintx src1, vintx src2);
vshortx operator&(vshortx src1, vshortx src2);
vcharx operator&(vcharx src1, vcharx src2);
vintx operator&(vintx src1, unsigned int src2);
vshortx operator&(vshortx src1, unsigned int src2);
vcharx operator&(vcharx src1, unsigned int src2);

Additional details

Instruction name VAND

Functionality Double vector bitwise AND

Assembly format VAnd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VAnd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator&(dvintx src1, dvintx src2);
dvshortx operator&(dvshortx src1, dvshortx src2);
dvcharx operator&(dvcharx src1, dvcharx src2);
dvintx operator&(dvintx src1, unsigned int src2);
dvshortx operator&(dvshortx src1, unsigned int src2);
dvcharx operator&(dvcharx src1, unsigned int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 268

9.8.4.3 VANDL

Instruction name VANDL

Functionality Vector logical AND

Assembly format VAndL<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all

vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator&&(vintx src1, vintx src2);
vshortx operator&&(vshortx src1, vshortx src2);
vcharx operator&&(vcharx src1, vcharx src2);
vintx operator&&(vintx src1, unsigned int src2);
vshortx operator&&(vshortx src1, unsigned int src2);
vcharx operator&&(vcharx src1, unsigned int src2);
// double vector pseudo intrinsics
dvintx operator&&(dvintx src1, dvintx src2);
dvshortx operator&&(dvshortx src1, dvshortx src2);
dvcharx operator&&(dvcharx src1, dvcharx src2);
dvintx operator&&(dvintx src1, unsigned int src2);
dvshortx operator&&(dvshortx src1, unsigned int src2);
dvcharx operator&&(dvcharx src1, unsigned int src2);

Additional details

9.8.4.4 VOR

Instruction name VOR

Functionality Vector bitwise OR

Assembly format VOr<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator|(vintx src1, vintx src2);
vshortx operator|(vshortx src1, vshortx src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 269

Instruction name VOR

vcharx operator|(vcharx src1, vcharx src2);
vintx operator|(vintx src1, unsigned int src2);
vshortx operator|(vshortx src1, unsigned int src2);
vcharx operator|(vcharx src1, unsigned int src2);

Additional details

Instruction name VOR

Functionality Double vector bitwise OR

Assembly format VOr<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VOr<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator|(dvintx src1, dvintx src2);
dvshortx operator|(dvshortx src1, dvshortx src2);
dvcharx operator|(dvcharx src1, dvcharx src2);
dvintx operator|(dvintx src1, unsigned int src2);
dvshortx operator|(dvshortx src1, unsigned int src2);
dvcharx operator|(dvcharx src1, unsigned int src2);

Additional details

9.8.4.5 VORL

Instruction name VORL

Functionality Vector logical OR

Assembly format VOrL Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W/H/B: full 32-bit detected logically then broadcast to all

vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator||(vintx src1, vintx src2);
vshortx operator||(vshortx src1, vshortx src2);
vcharx operator||(vcharx src1, vcharx src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 270

Instruction name VORL

vintx operator||(vintx src1, unsigned int src2);
vshortx operator||(vshortx src1, unsigned int src2);
vcharx operator||(vcharx src1, unsigned int src2);
// double vector pseudo intrinsics
dvintx operator||(dvintx src1, dvintx src2);
dvshortx operator||(dvshortx src1, dvshortx src2);
dvcharx operator||(dvcharx src1, dvcharx src2);
dvintx operator||(dvintx src1, unsigned int src2);
dvshortx operator||(dvshortx src1, unsigned int src2);
dvcharx operator||(dvcharx src1, unsigned int src2);

Additional details

9.8.4.6 VXOR

Instruction name VXOR

Functionality Vector bitwise exclusive or

Assembly format VXor<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator^(vintx src1, vintx src2);
vshortx operator^(vshortx src1, vshortx src2);
vcharx operator^(vcharx src1, vcharx src2);
vintx operator^(vintx src1, unsigned int src2);
vshortx operator^(vshortx src1, unsigned int src2);
vcharx operator^(vcharx src1, unsigned int src2);

Additional details

Instruction name VXOR

Functionality Double vector bitwise exclusive or

Assembly format VXor<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VXor<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 271

Instruction name VXOR

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator^(dvintx src1, dvintx src2);
dvshortx operator^(dvshortx src1, dvshortx src2);
dvcharx operator^(dvcharx src1, dvcharx src2);
dvintx operator^(dvintx src1, unsigned int src2);
dvshortx operator^(dvshortx src1, unsigned int src2);
dvcharx operator^(dvcharx src1, unsigned int src2);

Additional details

9.8.4.7 VADD

Instruction name VADD

Functionality Vector add

Assembly format VAdd<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator+(vintx src1, vintx src2);
vshortx operator+(vshortx src1, vshortx src2);
vcharx operator+(vcharx src1, vcharx src2);
vintx operator+(vintx src1, int src2);
vshortx operator+(vshortx src1, int src2);
vcharx operator+(vcharx src1, int src2);

Additional details

Instruction name VADD

Functionality Double vector add

Assembly format VAdd<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VAdd<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 272

Instruction name VADD

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator+(dvintx src1, dvintx src2);
dvshortx operator+(dvshortx src1, dvshortx src2);
dvcharx operator+(dvcharx src1, dvcharx src2);
dvintx operator+(dvintx src1, int src2);
dvshortx operator+(dvshortx src1, int src2);
dvcharx operator+(dvcharx src1, int src2);

Additional details

9.8.4.8 VSUB

Instruction name VSUB

Functionality Vector subtract

Assembly format VSub<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator-(vintx src1, vintx src2);
vshortx operator-(vshortx src1, vshortx src2);
vcharx operator-(vcharx src1, vcharx src2);
vintx operator-(vintx src1, int src2);
vshortx operator-(vshortx src1, int src2);
vcharx operator-(vcharx src1, int src2);

Additional details

Instruction name VSUB

Functionality Double vector subtract

Assembly format VSub<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VSub<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 273

Instruction name VSUB

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator-(dvintx src1, dvintx src2);
dvshortx operator-(dvshortx src1, dvshortx src2);
dvcharx operator-(dvcharx src1, dvcharx src2);
dvintx operator-(dvintx src1, int src2);
dvshortx operator-(dvshortx src1, int src2);
dvcharx operator-(dvcharx src1, int src2);

Additional details

9.8.4.9 VABSDIF

Instruction name VABSDIF

Functionality Vector absolute difference

Assembly format VAbsDif<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vabsdif(vintx src1, vintx src2);
vshortx vabsdif(vshortx src1, vshortx src2);
vcharx vabsdif(vcharx src1, vcharx src2);
vintx vabsdif(vintx src1, int src2);
vshortx vabsdif(vshortx src1, int src2);
vcharx vabsdif(vcharx src1, int src2);

Additional details

Instruction name VABSDIF

Functionality Double vector absolute difference

Assembly format VAbsDif<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VAbsDif<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 274

Instruction name VABSDIF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx dvabsdif(dvintx src1, dvintx src2);
dvshortx dvabsdif(dvshortx src1, dvshortx src2);
dvcharx dvabsdif(dvcharx src1, dvcharx src2);
dvintx dvabsdif(dvintx src1, int src2);
dvshortx dvabsdif(dvshortx src1, int src2);
dvcharx dvabsdif(dvcharx src1, int src2);

Additional details

9.8.4.10 VMIN

Instruction name VMIN

Functionality Vector min

Assembly format VMin<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vmin(vintx src1, vintx src2);
vshortx vmin(vshortx src1, vshortx src2);
vcharx vmin(vcharx src1, vcharx src2);
vintx vmin(vintx src1, int src2);
vshortx vmin(vshortx src1, int src2);
vcharx vmin(vcharx src1, int src2);

Additional details Return minimal of 2 inputs

Instruction name VMIN

Functionality Double vector min

Assembly format VMin<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VMin<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 275

Instruction name VMIN

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx dvmin(dvintx src1, dvintx src2);
dvshortx dvmin(dvshortx src1, dvshortx src2);
dvcharx dvmin(dvcharx src1, dvcharx src2);
dvintx dvmin(dvintx src1, int src2);
dvshortx dvmin(dvshortx src1, int src2);
dvcharx dvmin(dvcharx src1, int src2);

Additional details Return minimal of 2 inputs

9.8.4.11 VMAX

Instruction name VMAX

Functionality Vector max

Assembly format VMax<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vmax(vintx src1, vintx src2);
vshortx vmax(vshortx src1, vshortx src2);
vcharx vmax(vcharx src1, vcharx src2);
vintx vmax(vintx src1, int src2);
vshortx vmax(vshortx src1, int src2);
vcharx vmax(vcharx src1, int src2);

Additional details Return maximal of 2 inputs

Instruction name VMAX

Functionality Double vector max

Assembly format VMax<type> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VMax<type> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 16 x 48-bit, H: 32 x 24-bit, B: 64 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 276

Instruction name VMAX

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx dvmax(dvintx src1, dvintx src2);
dvshortx dvmax(dvshortx src1, dvshortx src2);
dvcharx dvmax(dvcharx src1, dvcharx src2);
dvintx dvmax(dvintx src1, int src2);
dvshortx dvmax(dvshortx src1, int src2);
dvcharx dvmax(dvcharx src1, int src2);

Additional details Return minimal of 2 inputs

9.8.4.12 VSHIFT

Instruction name VSHIFT

Functionality Vector shift

Assembly format VShift<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vshift(vintx src1, vintx src2);
vshortx vshift(vshortx src1, vshortx src2);
vcharx vshift(vcharx src1, vcharx src2);
vintx vshift(vintx src1, int src2);
vshortx vshift(vshortx src1, int src2);
vcharx vshift(vcharx src1, int src2);
// double vector pseudo intrinsics
dvintx dvshift(dvintx src1, dvintx src2);
dvshortx dvshift(dvshortx src1, dvshortx src2);
dvcharx dvshift(dvcharx src1, dvcharx src2);
dvintx dvshift(dvintx src1, int src2);
dvshortx dvshift(dvshortx src1, int src2);
dvcharx dvshift(dvcharx src1, int src2);

Additional details When the lane value in src2 is positive, perform left shift, otherwise perform

right shift, -k indicating >> k.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read

as a signed number, and saturated to [-12, 12], [-24, 24], [-48, 48] range

before detecting sign and applying the shift.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 277

9.8.4.13 VSLA

Instruction name VSLA

Functionality Vector shift left

Assembly format VSLA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<<(vintx src1, vintx src2);
vshortx operator<<(vshortx src1, vshortx src2);
vcharx operator<<(vcharx src1, vcharx src2);
vintx operator<<(vintx src1, int src2);
vshortx operator<<(vshortx src1, int src2);
vcharx operator<<(vcharx src1, int src2);
// double vector pseudo intrinsics
dvintx operator<<(dvintx src1, dvintx src2);
dvshortx operator<<(dvshortx src1, dvshortx src2);
dvcharx operator<<(dvcharx src1, dvcharx src2);
dvintx operator<<(dvintx src1, int src2);
dvshortx operator<<(dvshortx src1, int src2);
dvcharx operator<<(dvcharx src1, int src2);

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read

as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before

applying the shift.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 278

9.8.4.14 VSRA

Instruction name VSRA

Functionality Vector shift right

Assembly format VSRA<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>>(vintx src1, vintx src2);
vshortx operator>>(vshortx src1, vshortx src2);
vcharx operator>>(vcharx src1, vcharx src2);
vintx operator>>(vintx src1, int src2);
vshortx operator>>(vshortx src1, int src2);
vcharx operator>>(vcharx src1, int src2);
// double vector pseudo intrinsics
dvintx operator>>(dvintx src1, dvintx src2);
dvshortx operator>>(dvshortx src1, dvshortx src2);
dvcharx operator>>(dvcharx src1, dvcharx src2);
dvintx operator>>(dvintx src1, int src2);
dvshortx operator>>(dvshortx src1, int src2);
dvcharx operator>>(dvcharx src1, int src2);

Additional details Shift right arithmetic (preserving sign). Unsigned data should be loaded with

appropriate unsigned type of vector load, and zero-padded when loading into

extended vector lanes.

Each 12/24/48-bit lane of Vsrc2/Wsrc2 or lower 12/24/32-bit of Rsrc2 is read

as a signed number, and saturated to [0, 12], [0, 24], [0, 48] range before

applying the shift.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 279

9.8.4.15 VROUND

Instruction name VROUND

Functionality Vector round

Assembly format VRound<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vround(vintx src1, vintx src2);
vshortx vround(vshortx src1, vshortx src2);
vcharx vround(vcharx src1, vcharx src2);
vintx vround(vintx src1, int src2);
vshortx vround(vshortx src1, int src2);
vcharx vround(vcharx src1, int src2);
// double vector pseudo intrinsics
dvintx dvround(dvintx src1, dvintx src2);
dvshortx dvround(dvshortx src1, dvshortx src2);
dvcharx dvround(dvcharx src1, dvcharx src2);
dvintx dvround(dvintx src1, int src2);
dvshortx dvround(dvshortx src1, int src2);
dvcharx dvround(dvcharx src1, int src2);

Additional details In case of Vsrc2/Wsrc2, each lane gets an independent number of bits to

round. In case of Rsrc2, lower 12/24/32 bits are broadcast so all lanes are

rounded by the same number of bits.

Number of bits to round is read as a signed number and saturated to [0, 12],

[0, 24], or [0, 48] range before being applied to the rounding.

Let rnd_bits be number of bits to round. Rounding is performed in each lane

where rnd_bits >= 1, by

temp1 = src1 >> (rnd_bits – 1);
dst = (temp1 + 1) >> 1;

In lanes where rnd_bits <= 0, dst = src1 (no rounding).

Note that rounding by the lane width or more bits would result in 0 for both

positive and negative inputs.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 280

9.8.4.16 VPERM

Instruction name VPERM

Functionality Vector permute

Assembly format VPerm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vpermute(vintx src1, vintx src2);
vshortx vpermute(vshortx src1, vshortx src2);
vcharx vpermute(vcharx src1, vcharx src2);
vfloatx vpermute(vfloatx src1, vintx src2);
vhfloatx vpermute(vhfloatx src1, vshortx src2);

vintx vpermute(vintx src1, int src2);
vshortx vpermute(vshortx src1, int src2);
vcharx vpermute(vcharx src1, int src2);
vfloatx vpermute(vfloatx src1, int src2);
vhfloatx vpermute(vhfloatx src1, int src2);

// double vector pseudo intrinsics unavailable

Additional details Treat src1 as lane data and src2 as lane indices.

For each lane, return value of the lane pointed to by the index.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are

ignored.

For example, say if we start with

V0 = {1, 3, 5, 7, 9, 11, 13, 15} in W lanes

V1 = {4, 5, 6, 7, 0, 0, 1, 1} in W lanes

VPermW V0, V1, V2 would result in

V2 = {9, 11, 13, 15, 1, 1, 3, 3} in W lanes

When using scalar register as src2, the value in 3/4/5 LSBs of the scalar

register is used to select one of 8/16/32 W/H/B lanes of src1, and value in the

selected lane is replicated in all lanes of the destination.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 281

9.8.4.17 VCMPGT

Instruction name VCMPGT

Functionality Vector compare greater than

Assembly format VCmpGT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>(vintx src1, vintx src2);
vshortx operator>(vshortx src1, vshortx src2);
vcharx operator>(vcharx src1, vcharx src2);
vintx operator>(vintx src1, int src2);
vshortx operator>(vshortx src1, int src2);
vcharx operator>(vcharx src1, int src2);

Additional details

Instruction name VCMPGT

Functionality Double vector compare greater than

Assembly format VCmpGT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpGT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator>(dvintx src1, dvintx src2);
dvshortx operator>(dvshortx src1, dvshortx src2);
dvcharx operator>(dvcharx src1, dvcharx src2);
dvintx operator>(dvintx src1, int src2);
dvshortx operator>(dvshortx src1, int src2);
dvcharx operator>(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 282

9.8.4.18 VCMPGE

Instruction name VCMPGE

Functionality Vector compare greater than or equal

Assembly format VCmpGE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>=(vintx src1, vintx src2);
vshortx operator>=(vshortx src1, vshortx src2);
vcharx operator>=(vcharx src1, vcharx src2);
vintx operator>=(vintx src1, int src2);
vshortx operator>=(vshortx src1, int src2);
vcharx operator>=(vcharx src1, int src2);

Additional details

Instruction name VCMPGE

Functionality Double vector compare greater than or equal

Assembly format VCmpGE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpGE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator>=(dvintx src1, dvintx src2);
dvshortx operator>=(dvshortx src1, dvshortx src2);
dvcharx operator>=(dvcharx src1, dvcharx src2);
dvintx operator>=(dvintx src1, int src2);
dvshortx operator>=(dvshortx src1, int src2);
dvcharx operator>=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 283

9.8.4.19 VCMPLT

Instruction name VCMPLT

Functionality Vector compare less than

Assembly format VCmpLT<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<(vintx src1, vintx src2);
vshortx operator<(vshortx src1, vshortx src2);
vcharx operator<(vcharx src1, vcharx src2);
vintx operator<(vintx src1, int src2);
vshortx operator<(vshortx src1, int src2);
vcharx operator<(vcharx src1, int src2);

Additional details

Instruction name VCMPLT

Functionality Double vector compare less than

Assembly format VCmpLT<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpLT<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator<(dvintx src1, dvintx src2);
dvshortx operator<(dvshortx src1, dvshortx src2);
dvcharx operator<(dvcharx src1, dvcharx src2);
dvintx operator<(dvintx src1, int src2);
dvshortx operator<(dvshortx src1, int src2);
dvcharx operator<(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 284

9.8.4.20 VCMPLE

Instruction name VCMPLE

Functionality Vector compare less than or equal

Assembly format VCmpLE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<=(vintx src1, vintx src2);
vshortx operator<=(vshortx src1, vshortx src2);
vcharx operator<=(vcharx src1, vcharx src2);
vintx operator<=(vintx src1, int src2);
vshortx operator<=(vshortx src1, int src2);
vcharx operator<=(vcharx src1, int src2);

Additional details

Instruction name VCMPLE

Functionality Double vector compare less than or equal

Assembly format VCmpLE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpLE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator<=(dvintx src1, dvintx src2);
dvshortx operator<=(dvshortx src1, dvshortx src2);
dvcharx operator<=(dvcharx src1, dvcharx src2);
dvintx operator<=(dvintx src1, int src2);
dvshortx operator<=(dvshortx src1, int src2);
dvcharx operator<=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 285

9.8.4.21 VCMPEQ

Instruction name VCMPEQ

Functionality Vector compare equal

Assembly format VCmpEQ<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator==(vintx src1, vintx src2);
vshortx operator==(vshortx src1, vshortx src2);
vcharx operator==(vcharx src1, vcharx src2);
vintx operator==(vintx src1, int src2);
vshortx operator==(vshortx src1, int src2);
vcharx operator==(vcharx src1, int src2);

Additional details

Instruction name VCMPEQ

Functionality Double vector compare equal

Assembly format VCmpEQ<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpEQ<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator==(dvintx src1, dvintx src2);
dvshortx operator==(dvshortx src1, dvshortx src2);
dvcharx operator==(dvcharx src1, dvcharx src2);
dvintx operator==(dvintx src1, int src2);
dvshortx operator==(dvshortx src1, int src2);
dvcharx operator==(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 286

9.8.4.22 VCMPNE

Instruction name VCMPNE

Functionality Vector compare not equal

Assembly format VCmpNE<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator!=(vintx src1, vintx src2);
vshortx operator!=(vshortx src1, vshortx src2);
vcharx operator!=(vcharx src1, vcharx src2);
vintx operator!=(vintx src1, int src2);
vshortx operator!=(vshortx src1, int src2);
vcharx operator!=(vcharx src1, int src2);

Additional details

Instruction name VCMPNE

Functionality Double vector compare not equal

Assembly format VCmpNE<W/H/B> DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VCmpNE<W/H/B> DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

Type and bit width Vector operand: W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF, or scalar register

Destination options dst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvintx operator!=(dvintx src1, dvintx src2);
dvshortx operator!=(dvshortx src1, dvshortx src2);
dvcharx operator!=(dvcharx src1, dvcharx src2);
dvintx operator!=(dvintx src1, int src2);
dvshortx operator!=(dvshortx src1, int src2);
dvcharx operator!=(dvcharx src1, int src2);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 287

9.8.4.23 VBITCMP

Instruction name VBITCMP

Functionality Vector compare and bit-pack

Assembly format VBitCmp<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst/Rdst

Type and bit width Vector operand:

WWB: 8 x 48-bit compare as signed → 8-bit → broadcast to B lanes.

H: 16 x 24-bit compare as signed → 16-bit → broadcast to H lanes.

BBW: 32 x 12-bit compare as signed → 32-bit → broadcast to W lanes.

Scalar operand:

WWB: full 32-bit sign-extended to 48-bit, H: 24 LSBs, BBW: 12 LSBs,

compare as signed.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF, or scalar register

Destination options dst: Single vector register in VRF or WRF, or scalar register

Additional options

Intrinsics/operator vintx vbitcmp(vcharx vsrc1, vcharx vsrc2);
vshortx vbitcmp(vshortx vsrc1, vshortx vsrc2);
vcharx vbitcmp(vintx vsrc1, vintx vsrc2);
vintx vbitcmp(vcharx vsrc1, int vsrc2);
vshortx vbitcmp(vshortx vsrc1, int vsrc2);
vcharx vbitcmp(vintx vsrc1, int vsrc2);
int vbitcmp_s(vcharx vsrc1, vcharx vsrc2);
int vbitcmp_s(vshortx vsrc1, vshortx vsrc2);
int vbitcmp_s(vintx vsrc1, vintx vsrc2);
int vbitcmp_s(vcharx vsrc1, int vsrc2);
int vbitcmp_s(vshortx vsrc1, int vsrc2);
int vbitcmp_s(vintx vsrc1, int vsrc2);
// double vector pseudo intrinsics unavailable

Additional details Compare src1 >= src2 in each W/H/B lane, compact to 8/16/32-bit scalar,

broadcast to all destination B/H/W lanes.

For example, say if we start with

V0 = {1, 3, 5, 7, 9, 11, 13, 15} in W lanes

V1 = {5, 5, 5, 5, 10, 10, 10, 10} in W lanes

VBitCmpWWB V0, V1, V2 would result in {0,0,1,1,0,1,1,1} = 0xEC,

V2 = {0xEC, 0xEC, …, 0xEC} in B lanes

For scalar destination, in WWB-type, the 8-bit scalar is zero-extended to 32-

bit and returned. In H-type, the 16-bit scalar is zero-extended to 32-bit and

returned. In BBW-type, the 32-bit scalar is returned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 288

9.8.4.24 VNORM

Instruction name VNORM

Functionality Vector normalize

Assembly format VNorm<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12

LSBs broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vnorm(vcharx vsrc1, vcharx vsrc2);
vshortx vnorm(vshortx vsrc1, vshortx vsrc2);
vintx vnorm(vintx vsrc1, vintx vsrc2);
// double vector pseudo intrinsics
dvintx dvnorm(dvintx vsrc1, dvintx vsrc2);
dvshortx dvnorm(dvshortx vsrc1, dvshortx vsrc2);
dvcharx dvnorm(dvcharx vsrc1, dvcharx vsrc2);

Additional details Each 12/24/48-bit lane of Vsrc2/Wsrc2 is read as an signed number, 7 –

src2, 15 – src2, or 31 – src2 is performed, outcome saturated to [-12, 12], [-

24, 24], [-48, 48] range, then src1 is shifted by this many bits. Arithmetic

shift is performed to preserve sign bit when shifting right.

The intention is to precede VNorm with VMSBD, so that src2 holds the

most significant bit position of src1. VNorm would then shift the most

significant bit (left or right) to bit 7 for B, bit 15 for H, bit 31 for W.

For example, when src2 = 11, the shift amount is 7 – 11 = -4, to shift src1

right by 4 bits. When src2 = 5, the shift amount is 7 – 5 = 2, to shift src1 left

by 2 bits.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 289

9.8.4.25 VOCTDET

Instruction name VOCTDET

Functionality Vector octant detection for atan2(Y, X)

Assembly format VOctDetH Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width H: 16 x 24-bit, signed

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx voct_detect(vshortx vsrc1, vshortx vsrc2);
// double vector pseudo intrinsics
dvshortx dvoct_detect(dvshortx vsrc1, dvshortx vsrc2);

Additional details Treat Vsrc1/Wsrc1 as Y, Vsrc2/Wsrc2 as X, return octant of (X, Y) in 2D

plane, 0 ~ 7.

First (0th) octant from 0 to 44.999 degree, second (1th) from 45 to 89.999

degree, etc, 0 degree being the X axis.

Condition Octant and angle range

X>=0, Y>=0, |Y|<=|X| 0: [0 ~ 0.25 pi]

X>=0, Y>=0, |Y|>|X| 1: (0.25 pi ~ 0.5 pi)

X<0, Y>=0, |Y|>|X| 2: (0.5 pi ~ 0.75 pi)

X<0, Y>=0, |Y|<=|X| 3: [0.75 pi ~ pi]

X<0, Y<0, |Y|<=|X| 4: (pi ~ 1.25 pi)

X<0, Y<0, |Y|>|X| 5: (1.25 pi ~ 1.5 pi)

X>=0,Y<0, |Y|>|X| 6: [1.5 pi ~ 1.75 pi]

X>=0,Y<0, |Y|<=|X| 7: [1.75 pi ~ 2 pi]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 290

9.8.4.26 VDEMOTE_I

Instruction name VDEMOTE_I

Functionality Vector type demotion with interleaving

Assembly format VDemote_I<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width HB: 2 x 16 x 24-bit → 32 x 12-bit, WH: 2 x 8 x 48-bit → 16 x 24-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator void vdemote_i(vshortx src1, vshortx src2, vcharx & dst);
void vdemote_i(vintx src1, vintx src2, vshortx & dst);
vcharx vdemote_i(dvshortx src);
vshortx vdemote_i(dvintx src);
// double vector pseudo intrinsics unavailable

Additional details Compress half-word to byte or word to half-word, with 2 single registers as

source and with interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,

lower 24 bits. Programmer should be aware of the possibility of overflow.

Example:

VDemote_IWH V1, V2, V3

with V1 = {0, 1, 2, …, 7} and V2 = {8, 9, …, 15} would copy V1 and V2 contents

to V3 interleavingly, such that

V3 = {0, 8, 1, 9, …, 7, 15}

Instruction name VDEMOTE_I (Gen-2 from VRF to XARF)

Functionality Vector type demotion with interleaving

Assembly format VDemote_I<type> Vsrc1, Vsrc2, XACdst

Type and bit width H: 2 x 16 x 24-bit → 32 x 16-bit, W: 2 x 8 x 48-bit → 16 x 32-bit

Predication not available

Source options src1: Single vector register in VRF

src2: single vector register in VRF

Destination options Single vector register in XARF

Additional options

Intrinsics/operator void vdemote_i(vshortx src1, vshortx src2, xvcharx &dst);
void vdemote_i(vintx src1, vintx src2, xvshortx &dst);
// double vector pseudo intrinsics unavailable

Additional details Compress extended halfword to halfword or extended word to word.

Example:

VDemote_IH V0, V1, XAC2

with V0 = {0, 1, 2, …, 15} and V1 = {16, 17, …, 31} would copy V0 and V1

contents to V3 interleavingly, such that

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 291

Instruction name VDEMOTE_I (Gen-2 from VRF to XARF)

XAC2 = {0, 16, 1, 17, …, 15, 31}.

9.8.4.27 VDEMOTE

Instruction name VDEMOTE

Functionality Vector type demotion

Assembly format VDemote<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width HB: 2 x 16 x 24-bit → 32 x 12-bit, WH: 2 x 8 x 48-bit → 16 x 24-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator void vdemote(vintx src1, vintx src2, vshortx & dst);
void vdemote(vshortx src1, vshortx src2, vcharx & dst);
vcharx vdemote(dvshortx src);
vshortx vdemote(dvintx src);
// double vector pseudo intrinsics unavailable

Additional details Compress half-word to byte or word to half-word, with 2 single registers as

source and without interleaving.

For HB, lower 12 bits of the source lane is copied to the destination. For WH,

lower 24 bits. Programmer should be aware of the possibility of overflow.

Example:

VDemoteWH V1, V2, V3

with V1 = {0, 1, 2, …, 7} and V2 = {8, 9, …, 15} would copy V1 and V2 contents

to V3 sequentially, such that

V3 = {0, 1, 2, …, 15}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 292

9.8.4.28 VBITINTRLV

Instruction name VBITINTRLV

Functionality Vector bit interleave

Assembly format VBitIntrlv<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width W: 8 x 16-bit + 8 x 16-bit → 8 x 32-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbit_interleave(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvintx dvbit_interleave(dvintx src1, dvintx src2);

Additional details In each 48-bit W lane, bit-interleave src1[15:0] and src2[15:0] into dst

dst[31] = src1[15], dst[30] = src2[15],

dst[29] = src1[14], dst[28] = src2[14], and so on.

dst[47:32] = 0.

Instruction name VBITINTRLV21

Functionality Vector bit interleave 2:1

Assembly format VBitIntrlv21<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width W: 8 x 32-bit + 8 x 16-bit → 8 x 48-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vintx vbit_interleave_21(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvintx dvbit_interleave_21(dvintx src1, dvintx src2);

Additional details In each 48-bit W lane, bit-interleave src1[31:0] and src2[15:0] into dst in 2-

bit, 1-bit pattern.

dst[47:46] = src1[31:30], dst[45] = src2[15],

dst[44:43] = src1[29:28], dst[42] = src2[14], and so on.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 293

9.8.4.29 VAPPLYSIGN

Instruction name VAPPLYSIGN

Functionality Vector apply sign

Assembly format VApplySign<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

Type and bit width B: 32 x 12-bit

H: 16 x 24-bit

W: 8 x 48-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

Destination options dst: Single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vapply_sign(vcharx src1, vcharx src2);
vshortx vapply_sign(vshortx src1, vshortx src2);
vintx vapply_sign(vintx src1, vintx src2);
// double vector pseudo intrinsics
dvcharx dvapply_sign(dvcharx src1, dvcharx src2);
dvshortx dvapply_sign(dvshortx src1, dvshortx src2);
dvintx dvapply_sign(dvintx src1, dvintx src2);

Additional details Inverse operation of VSignMag (vector sign-magnitude). The intention is that

in each vector lane (width depending on data type), we treat src1 as a

Boolean carrying the sign bit that we want to apply on src2 that carries the

magnitude.

The hardware performs

 dst = src1 ? –src2 : src2

so that output gets negated src2 when src1 is true (non-zero), and src2 as-is

when src1 is false (zero).

Thus, in addition to applying a sign to a magnitude, it can be used to

conditionally flip the sign of any number.

Note that this instruction does not perform absolute value function on src2

before applying the sign.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 294

9.8.4.30 VSelectLane

Instruction name VSelectLane

Functionality Vector select lane

Assembly format VSelectLane<type> Vsrc1/Wsrc1, Rsrc2, Rdst

Type and bit width Vector operand:

 W: 32-bit

 H: 24-bit sign-extend to 32-bit

 B: 12-bit sign-extend to 32-bit

Scalar operand: W: 3 LSBs, H: 4 LSBs, B: 5 LSBs

Predication not available

Source options src1: single vector register in VRF or WRF

src2: scalar register

Destination options dst: destination register

Additional options

Intrinsics/operator int vselectlane(vintx src1, int src2);
int vselectlane(vshortx src1, int src2);
int vselectlane(vcharx src1, int src2);
float vselectlane(vfloatx src1, int src2);
hfloat vselectlane(vhfloatx src1,int src2);
// double vector pseudo intrinsics unavailable

Additional details Treat src1 as lane data and src2 as lane index.

For W-type, 32 LSBs of the selected 48-bit lane is returned in the destination

scalar register. Programmer should be aware of potential overflow in the

outcome. For H/B-type, selected 12-bit/24-bit is sign-extend to 32-bit in the

destination register.

Only 3/4/5 LSBs are read as unsigned indices for W/H/B type, rest are

ignored.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 295

9.8.5 Vector OP22 Instructions

These are two-source, two-destination operation vector instructions.

9.8.5.1 Instruction Summary

Table 33. Vector OP22 instructions

Function Assembly Format Comments

Non-overwriting

Vector 2-item sort VSort2<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = min(Vsrc1, Vsrc2);

Vdst2 = max(Vsrc1, Vsrc2);

Vector

add/subtract

VAddSub<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = Vsrc1 + Vsrc2;

Vdst2 = Vsrc1 – Vsrc2;

Vector complex

add/sub

VCAddSubH Vsrc1, Vsrc2, Vdst1, Vdst2 Like VAddSub but swap

even/odd lanes of Vsrc2 and

add/subtract, see details

Vector min-LT-flag VMinLT<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = min(Vsrc1, Vsrc2);

Vdst2 = Vsrc1 < Vsrc2;

Vector max-GT-flag VMaxGT<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2 Vdst1 = max(Vsrc1, Vsrc2);

Vdst2 = Vsrc1 > Vsrc2;

Vector 2-item sort

with payload

VSort2PL<W/H/B> Vsrc1, Vsrc2, Vdst1, Vdst2 Key and payload interleaved in

each source and destination

vector register

Vector split bits VSplitBits Vsrc1, Vsrc2, Vdst1, Vdst2 Split src1 into two right-

justified bit fields

9.8.5.2 VSORT2

Instruction name VSORT2

Functionality Vector 2-point sort

Assembly format VSort2<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vsort2(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vsort2(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsort2(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 296

Instruction name VSORT2

// double vector pseudo intrinsics
void dvsort2(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvsort2(dvshortx src1, dvshortx src2, dvshortx & dst1,dvshortx & dst2);
void dvsort2(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 = min(src1, src2), dst2 = max(src1, src2)

9.8.5.3 VADDSUB

Instruction name VADDSUB

Functionality Vector add-subtract

Assembly format VAddSub<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vaddsub(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vaddsub(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvaddsub(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1,dvshortx & dst2);
void dvaddsub(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 = src1 + src2, dst2 = src1 – src2.

9.8.5.4 VCADDSUB

Instruction name VCADDSUB

Functionality Vector add-subtract

Assembly format VCAddSub<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width H: 16 x 24-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vcaddsub(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 297

Instruction name VCADDSUB

// double vector pseudo intrinsics
void dvcaddsub(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);

Additional details Even lanes, dst1[2*i] = src1[2*i] + src2[2*i+1]

 dst2[2*i] = src1[2*i] – src2[2*i+1]

Odd lanes, , dst1[2*i+1] = src1[2*i+1] – src2[2*i]

 dst2[2*i+1] = src1[2*i+1] + src2[2*i]

This is for 16-bit FFT acceleration, where real and imaginary components are

interleaved, even lanes being real, odd lanes being imaginary.

We are implementing rotating complex number src2 by +/- 90 degree and adding

to src1:

dst1 = src1 – j*src2;
dst2 = src1 + j*src2;

Thus,

 dst1[2*i] (R) = src1[2*i] (R) + src2[2*i+1] (I)
 dst1[2*i+1] (I) = src1[2*i+1] (I) – src2[2*i] (R)
 dst2[2*i] (R) = src1[2*i] (R) – src2[2*i+1] (I)
 dst2[2*i+1] (I) = src1[2*i+1] (I) + src2[2*i] (R)

9.8.5.5 VMINLT

Instruction name VMINLT

Functionality Vector min-less-than-flag

Assembly format VMinLT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vminLT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vminLT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vminLT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvminLT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvminLT(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvminLT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 = min(src1, src2), dst2 = (src1 < src2), so that flag = 1

indicating src1 being the min, and 0 indicating src2 being the min.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 298

9.8.5.6 VMAXGT

Instruction name VMAXGT

Functionality Vector max-greater-than-flag

Assembly format VMaxGT<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vmaxGT(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vmaxGT(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vmaxGT(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvmaxGT(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvmaxGT(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvmaxGT(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details For each lane, dst1 = max(src1, src2), dst2 = (src1 > src2), so that flag = 1

indicating src1 being the max, and 0 indicating src2 being the max.

9.8.5.7 VSORT2PL

Instruction name VSORT2PL

Functionality Vector 2-item sort with payload

Assembly format VSort2PL<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vsort2pl(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vsort2pl(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsort2pl(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvsort2pl(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvsort2pl(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvsort2pl(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details Key and payload are lane-interleaved; even lanes carry key, odd lanes carry

payload.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 299

Instruction name VSORT2PL

For each pair of lanes 2*i and 2*i+1:

 if (src1[2*i] <= src2]2*i]) {
 dst1[2*i] = src1[2*i];
 dst2[2*i] = src2[2*i];
 dst1[2*i+1] = src1[2*i+1];
 dst2[2*i+1] = src2[2*i+1];
 }
 else {
 dst1[2*i] = src2[2*i];
 dst2[2*i] = src1[2*i];
 dst1[2*i+1] = src2[2*i+1];
 dst2[2*i+1] = src1[2*i+1];
 }

9.8.5.8 VSPLITBITS

Instruction name VSPLITBITS

Functionality Vector split bit fields and right-justify

Assembly format VSplitBits<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vsplitbits(vintx src1, vintx src2, vintx & dst1, vintx & dst2);
void vsplitbits(vshortx src1, vshortx src2, vshortx & dst1, vshortx & dst2);
void vsplitbits(vcharx src1, vcharx src2, vcharx & dst1, vcharx & dst2);
// double vector pseudo intrinsics
void dvsplitbits(dvintx src1, dvintx src2, dvintx & dst1, dvintx & dst2);
void dvsplitbits(dvshortx src1, dvshortx src2, dvshortx & dst1, dvshortx & dst2);
void dvsplitbits(dvcharx src1, dvcharx src2, dvcharx & dst1, dvcharx & dst2);

Additional details Each lane of src2 is read as a signed number and saturated to [0, 48], [0, 24], [0, 12]

to obtain the bit position T. Each lane of src1 is read as a signed number. dst1

(signed) gets right-justified upper bits of src1, from bit T and up. dst2 (unsigned)

gets lower bits of src1, from bit T-1 down.

Pseudo-code for the Halfword case:

 T = (src2 < 0) ? 0 : ((src2 > 24) ? 24 : src2);
 mask = (1 << T) – 1;
 dst1 = src1 >> T;
 dst2 = src1 & mask;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 300

9.8.6 Vector OP31 Instructions

These are three-source, one-destination operation vector instructions.

9.8.6.1 Instruction Summary

The subset of three-source, one-destination instructions with “_CA” suffix support the

“clear-accumulator” feature. They are optionally predicated but not predicated in the

conventional sense of being executed or skipped. They are predicated to execute one of

two different functionalities, and one being a subset of the other to clear the

accumulators.

For example, [P2] VMin3W_CA V0, V1, V2 does

 V2 = min(V0, V1, V2) when P2 != 0

 V2 = min(V0, V1) otherwise

This is used to carry out cumulative minimum operation, with V2 being the accumulator.

When the predicate is off, the minimum is carried out without V2, effectively clearing

the accumulator.

The _CA suffix is also used in a few vector multiply-add, multiply-subtract instructions in

the Vector Multiply-Add Instruction section.

The _CA predicated instructions are overwriting using the 3rd operand as both the 3rd

source and the destination. This is so there’s room in the encoding for the additional

predication field.

The non-CA instructions in the Vector OP31 group are non-overwriting, with destination

being a separate field. Compiler can opt to assign the same register as the 3rd source

and destination, to accomplish overwriting.

Note that valid predicate registers are P2...P15 for predication. P0 and P1 are reserved

for unpredicated execution of the full functionality (min of 3 items in case of VMin3, for

example), and in assembly listing, the leading [P0] or [P1] would be omitted to indicate

unpredicated execution.

Table 34 Vector OP31 instructions

Function Assembly Format Comments

Vector multiplexor VMux<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

VMux<W/H/B> Wsrc1, Vsrc2, Vsrc3, Vdst

VMux<W/H/B> Vsrc1, Wsrc2, Vsrc3, Vdst

VMux<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst

Vdst = (src1 != 0) ? src2 : src3

Vector multiplexor

with scalar src2

VMux<W/H/B> Vsrc1, Rsrc2, Vsrc3, Vdst Vdst = (Vsrc1 != 0) ? Rsrc2 :

Vsrc3

Double vector

multiplexor

VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1

VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1

VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Vdst = (src1 != 0) ? src2 : src3

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 301

Function Assembly Format Comments

Vector mid of 3 VMid3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

VMid3<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst

VMid3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = mid(src1, src2, src3)

Vector A+B-C VAdd2Sub<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst Vdst = Vsrc1 + Vsrc2 – Vsrc3

Vector shift-or VShiftOr<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst Vdst = VShift(Vsrc1, Vsrc2) |

Vsrc3.

Vector shift-add VShiftAdd<W/H/B> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst Vdst = Vshift(Vsrc1, Vsrc2) +

Vsrc3.

Vector extract bits VExtrBits<W/H/B> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst Extract low, high bits from

src3, 8-bit each.

Shift(Vsrc1, Vsrc2) then AND

with bit mask between low

and high bit positions.

Vector atan2 post-

processing

VAtan2PPH Vsrc1, Vsrc2, Vsrc3, Vdst Vsrc1 = Y, Vsrc2 = X, detect

octant of (X, Y) vector then

map Vsrc3 angle from first-

octan arctan angle to the

appropriate octant.

Vector min of 3 VMin3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

VMin3<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst

VMin3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = min(src1, src2, src3)

Vector max of 3 VMax3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

VMax3<W/H/B> Vsrc1, Vsrc2, Wsrc3, Vdst

VMax3<W/H/B> Vsrc1, Wsrc2, Wsrc3, Vdst

Vdst = max(src1, src2, src3)

Vector add 3 VAdd3<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 + Vsrc2 + Vsrc3

Vector bitwise-and 3 VAnd3 Vsrc1, Vsrc2/, Vsrc3, Vdst Vdst = Vsrc1 & Vsrc2 & Vsrc3

Vector bitwise-or 3 VOr3 Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 | Vsrc2 | Vsrc3

Vector bitwise-xor 3 VXor3 Vsrc1, Vsrc2, Vsrc3, Vdst Vdst = Vsrc1 ^ Vsrc2 ^ Vsrc3

Vector min of 3,

predicated

<pred> VMin3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst

Vector max of 3,

predicated

<pred> VMax3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst

Vector add 3,

predicated

<pred> VAdd3<W/H/B>_CA Vsrc1, Vsrc2, ACsrc3dst

Vector bitwise-and 3,

predicated

<pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector bitwise-or 3,

predicated

<pred> VOr3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector bitwise-xor 3,

predicated

<pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst

Vector sum of

absolute differences

<pred> VSAD<W/H/B/BH/HW>_CA Vsrc1, Vsrc2,

ACsrc3dst/DACsrc3dst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 302

Function Assembly Format Comments

Vector sum of

Hamming distance

<pred> VSumHD<W/H/B>_CA Vsrc1, Vsrc2/Rsrc2,

ACsrc3dst

Vector compare LT

and AndL

VCmpLT_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE

and AndL

VCmpLE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare EQ

and AndL

VCmpEQ_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE

and AndL

VCmpNE_AndL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LT

and OrL

VCmpLT_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare LE

and OrL

VCmpLE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare EQ

and OrL

VCmpEQ_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector compare NE

and OrL

VCmpNE_OrL<W/H/B> Vsrc1, Vsrc2, Vsrc3, Vdst

Vector cross-element

shift right

VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Vector cross-element

shift left

VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 303

9.8.6.2 VMUX

Instruction name VMUX

Functionality Vector multiplexor

Assembly format VMux<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

VMux<type> Wsrc1, Vsrc2, Vsrc3, Vdst1

VMux<type> Vsrc1, Wsrc2, Vsrc3, Vdst1

VMux<type> Vsrc1, Vsrc2, Wsrc3, Vdst1

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options src1: single vector register in VRF or WRF

src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vmux(vintx src1, vintx src2, vintx src3);
vshortx vmux(vshortx src1, vshortx src2,vshortx src3);
vcharx vmux(vcharx src1, vcharx src2, vcharx src3);
vhfloatx vmux(vshortx src1,vhfloatx src2,vhfloatx src3);
vfloatx vmux(vintx src1, vfloatx src2, vfloatx src3);

Additional details For each lane, dst1 = src1 ? src2 : src3.

9.8.6.3 VMUX (Rsrc2)

Instruction name VMUX

Functionality Vector multiplexor with scalar src2

Assembly format VMux<type> Vsrc1, Rsrc2, Vsrc3, Vdst1

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF

src2: scalar register

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vmux(vintx src1, int src2, vintx src3);
vshortx vmux(vshortx src1, int src2, vshortx src3);
vcharx vmux(vcharx src1, int src2, vcharx src3);
vhfloatx vmux(vshortx src1, hfloat src2,vhfloatx src3);
vfloatx vmux(vintx src1, float src2, vfloatx src3);

Additional details For each lane, dst1 = src1 ? src2 : src3.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 304

Instruction name VMUX

src2 is from a scalar register, its lower 12/24/32-bit is broadcast to all vector

lanes as the “true” data input.

9.8.6.4 VMUX (Double Vector)

Instruction name VMUX (Gen-2 double vector/double throughput)

Functionality Vector multiplexor

Assembly format VMux<type> DVsrc1, DWsrc2, DVsrc3, DVdst1

VMux<type> DVsrc1, DVsrc2, DWsrc3, DVdst1

VMux<type> DVsrc1, Rsrc2, DVsrc3, DVdst1

Type and bit width W: 2 x 8 x 48-bit, H: 2 x 16 x 24-bit, B: 2 x 32 x 12-bit

Predication not available

Source options src1: double vector register in VRF

src2: double vector register in VRF or WRF, or scalar register

src3: double vector register in VRF or WRF

Destination options dst1: double vector register in VRF

Additional options

Intrinsics/operator dvintx dvmux(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmux(dvshortx src1, dvshortx src2,dvshortx src3);
dvcharx dvmux(dvcharx src1, dvcharx src2, dvcharx src3);
dvhfloatx dvmux(dvshortx src1, dvhfloatx src2,dvhfloatx src3);
dvfloatx dvmux(dvintx src1, dvfloatx src2, dvfloatx src3);
dvintx dvmux(dvintx src1, int src2, dvintx src3);
dvshortx dvmux(dvshortx src1, int src2, dvshortx src3);
dvcharx dvmux(dvcharx src1, int src2, dvcharx src3);
dvhfloatx dvmux(dvshortx src1, hfloat src2, dvhfloatx src3);
dvfloatx dvmux(dvintx src1, float src2, dvfloatx src3);

Additional details For each lane, dst1 = src1 ? src2 : src3.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 305

9.8.6.5 VMID3

Instruction name VMID3

Functionality Vector median3

Assembly format VMid3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

VMid3<type> Vsrc1, Vsrc2, Wsrc3, Vdst

VMid3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vmid3(vintx src1, vintx src2, vintx src3);
vshortx vmid3(vshortx src1, vshortx src2, vshortx src3);
vcharx vmid3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvmid3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmid3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmid3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return median of 3 sources.

9.8.6.6 VADD2SUB

Instruction name VADD2SUB (to change intrinsic to +/- operators)

Functionality Vector add then subtract

Assembly format VAdd2Sub<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst1

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vadd2sub(vintx src1, vintx src2, vintx sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, vshortx sc3);
vcharx vadd2sub(vcharx src1, vcharx src2, vcharx sc3);
vintx vadd2sub(vintx src1, vintx src2, int sc3);
vshortx vadd2sub(vshortx src1, vshortx src2, int sc3);
vcharx vadd2sub(vcharx src1, vcharx src2, int sc3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 306

Instruction name VADD2SUB (to change intrinsic to +/- operators)

// double vector pseudo intrinsics
dvintx dvadd2sub(dvintx src1, dvintx src2, dvintx sc3);
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, dvshortx sc3);
dvcharx dvadd2sub(dvcharx src1, dvcharx src2, dvcharx sc3);
dvintx dvadd2sub(dvintx src1, dvintx src2, int sc3);
dvshortx dvadd2sub(dvshortx src1, dvshortx src2, int sc3);
dvcharx dvadd2sub(dvcharx src1, dvcharx src2, int sc3);

Additional details For each lane, dst1 = src1 + src2 – src3.

9.8.6.7 VSHIFTOR

Instruction name VSHIFTOR

Functionality Vector shift-or

Assembly format VShiftOr<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes, as signed.

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vshiftor(vintx src1, vintx src2, vintx src3);
vshortx vshiftor(vshortx src1, vshortx src2, vshortx src3);
vcharx vshiftor(vcharx src1, vcharx src2, vcharx src3);
vintx vshiftor(vintx src1, int src2, vintx src3);
vshortx vshiftor(vshortx src1, int src2, vshortx src3);
vcharx vshiftor(vcharx src1, int src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvshiftor(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvshiftor(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvshiftor(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvshiftor(dvintx src1, int src2, dvintx src3);
dvshortx dvshiftor(dvshortx src1, int src2, dvshortx src3);
dvcharx dvshiftor(dvcharx src1, int src2, dvcharx src3);

Additional details For each lane, dst1 = shift(src1, src2) | src3.

 Shift left or right based on sign of src2. src2 is read as a signed number and

saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the

shift. Positive bit count shifts left, and negative bit count shifts right.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 307

9.8.6.8 VSHIFTADD

Instruction name VSHIFTADD

Functionality Vector shift-add

Assembly format VShiftAdd<type> Vsrc1, Vsrc2/Rsrc2, Vsrc3, Vdst1

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit sign-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes, as signed.

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vshiftadd(vintx src1, vintx src2, vintx src3);
vshortx vshiftadd(vshortx src1, vshortx src2, vshortx src3);
vcharx vshiftadd(vcharx src1, vcharx src2, vcharx src3);
vintx vshiftadd(vintx src1, int src2, vintx src3);
vshortx vshiftadd(vshortx src1, int src2, vshortx src3);
vcharx vshiftadd(vcharx src1, int src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvshiftadd(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvshiftadd(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvshiftadd(dvintx src1, int src2, dvintx src3);
dvshortx dvshiftadd(dvshortx src1, int src2, dvshortx src3);
dvcharx dvshiftadd(dvcharx src1, int src2, dvcharx src3);

Additional details For each lane, dst1 = shift(src1, src2) + src3.

Shift left or right based on sign of src2. src2 is read as a signed number and

saturated at [-12, 12], [-24, 24], [-48, 48], before detecting sign and applying the

shift. Positive bit count shifts left, and negative bit count shifts right.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 308

9.8.6.9 VEXTRBITS

Instruction name VEXTRBITS

Functionality Vector extract bits

Assembly format VExtrBits<type> Vsrc1, Vsrc2, Vsrc3/Rsrc3, Vdst

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes.

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF or scalar register

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vintx vextract_bits(vintx src1, vintx src2, vintx src3);
vshortx vextract_bits(vshortx src1, vshortx src2, vshortx src3);
vcharx vextract_bits(vcharx src1, vcharx src2, vcharx src3);
vintx vextract_bits(vintx src1, vintx src2, int src3);
vshortx vextract_bits(vshortx src1, vshortx src2, int src3);
vcharx vextract_bits(vcharx src1, vcharx src2, int src3);
// double vector pseudo intrinsics
dvintx dvextract_bits(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, dvcharx src3);
dvintx dvextract_bits(dvintx src1, dvintx src2, int src3);
dvshortx dvextract_bits(dvshortx src1, dvshortx src2, int src3);
dvcharx dvextract_bits(dvcharx src1, dvcharx src2, int src3);

Additional details Shift input then AND with bitmask between low and high bit positions.

low = src3[7:0]; // Unsigned bit position
high = src3[15:8] // Unsigned bit position, Rsrc3 or Vsrc3
 // in H/W types
high = src3[11:8]; // Unsigned bit position, Vsrc3 in B type
temp1 = shift(src1, src2); // up or down based on src2 sign
temp2 = ~((1 << low)-1);
temp3 = (1 << high+1) – 1;
dst = temp1 & temp2 & temp3

If low > high or if low >= BITWIDTH, 0 is returned. Otherwise, high is saturated to

top bit position of the lane.

For example, with byte lane input src1 = 0x12, src2 = 4, low = 4, high = 7,

temp1 = shift(0x12, 4) = 0x120

temp2 = 0xFF0 (enable bits 4 and higher)

temp3 = 0x0FF (enable bits 7 and lower)

return 0x120 & 0xFF0 & 0x0FF = 0x20

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 309

9.8.6.10 VATAN2PP

Instruction name VATAN2PP

Functionality Vector atan2 post-processing

Assembly format VAtan2PP<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width H: 16 x 24-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vshortx vatan2_postp(vshortx src1, vshortx src2, vshortx src3);
// double vector pseudo intrinsics
dvshortx dvatan2_postp(dvshortx src1, dvshortx src2, dvshortx src3);

Additional details Treat Vsrc1 as Y, Vsrc2 as X, detect octant of (X, Y) in 2D plane, 0 ~ 7 (see

9.8.4.25 VOctDetH). Treat Vsrc3 as first-octant outcome of atan, A, and return:

Condition Octant and ang range Return angle

X>=0, Y>=0, |Y|<=|X| 0: [0 ~ 0.25 pi] A & 0x7FFF

X>=0, Y>=0, |Y|>|X| 1: (0.25 pi ~ 0.5 pi) (0x2000 – A) & 0x7FFF

X<0, Y>=0, |Y|>|X| 2: (0.5 pi ~ 0.75 pi) (0x2000 + A) & 0x7FFF

X<0, Y>=0, |Y|<=|X| 3: [0.75 pi ~ pi] (0x4000 – A) & 0x7FFF

X<0, Y<0, |Y|<=|X| 4: (pi ~ 1.25 pi) (0x4000 + A) & 0x7FFF

X<0, Y<0, |Y|>|X| 5: (1.25 pi ~ 1.5 pi) (0x6000 – A) & 0x7FFF

X>=0,Y<0, |Y|>|X| 6: [1.5 pi ~ 1.75 pi] (0x6000 + A) & 0x7FFF

X>=0,Y<0, |Y|<=|X| 7: [1.75 pi ~ 2 pi] (0x8000 – A) & 0x7FFF

For example, in a particular lane, say we have src1 = X = 100, src2 = Y = -200,

src3 = A = 0x972. It’s in the 6th octant, as X is positive, Y is negative, and |Y| >

|X|. Return value is 0x6000 + 0x972 = 0x6972.

The atan2(y, x) function is implemented with table lookup. In order to compress the

table, we take the absolute value of y, x, and sort (|y|, |x|) so that |y| <= |x|. This folds the

whole 2*pi range of output to 1/8 of the range, 0 ~ pi/4.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 310

After doing lookup and post-lookup interpolation with the sorted (|y|, |x|), we use the

VAtan2PPH with the first-octant angle and (y, x) as inputs to map the angle back to the

full range, as shown in the following diagram:

Note that the 2*pi full range is quantized to 15-bit, 0 ~ 0x7FFF. Thus, 90-degree is

0x2000, 180-degree 0x4000, and 270-degree 0x6000.

9.8.6.11 VMIN3

Instruction name VMIN3

Functionality Vector min3

Assembly format VMin3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

VMin3<type> Vsrc1, Vsrc2, Wsrc3, Vdst

VMin3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vmin3(vintx src1, vintx src2, vintx src3);
vshortx vmin3(vshortx src1, vshortx src2, vshortx src3);
vcharx vmin3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvmin3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmin3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmin3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return minimal of 3 sources.

oct tan ang

0 y/x a

 x/y 1/4 – a

 -x/y 1/4 + a

 -y/x 1/2 – a

 y/x 1/2 + a

 x/y 3/4 – a

 -x/y 3/4 + a

 -y/x 1 – a

x

y

0

1

7

6 5

4

3

2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 311

9.8.6.12 VMIN3_CA

Instruction name VMIN3_CA

Functionality Vector min3

Assembly format <pred> VMin3<type>_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2..P15]

 [P0] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vmin3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vmin3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vmin3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvmin3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvmin3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred);
dvcharx dvmin3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Vsrc3dst = pred ? min(Vsrc1, Vsrc2, Vsrc3dst)
 : min(Vsrc1, Vsrc2);

When predicate is off, the operation becomes min of first 2 sources, allowing

min accumulation to start fresh.

9.8.6.13 VMAX3

Instruction name VMAX3

Functionality Vector max3

Assembly format VMax3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

VMax3<type> Vsrc1, Vsrc2, Wsrc3, Vdst

VMax3<type> Vsrc1, Wsrc2, Wsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF or WRF

src3: single vector register in VRF or WRF

Destination options dst1: single vector register

Additional options

Intrinsics/operator vintx vmax3(vintx src1, vintx src2, vintx src3);
vshortx vmax3(vshortx src1, vshortx src2, vshortx src3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 312

Instruction name VMAX3

vcharx vmax3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvmax3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvmax3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvmax3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details For each lane, return maximal of 3 sources.

9.8.6.14 VMAX3_CA

Instruction name VMAX3_CA

Functionality Vector max3

Assembly format <pred> VMax3<type>_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2.. P15]

 [P0] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vmax3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vmax3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vmax3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvmax3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvmax3_ca(dvshortx src1, dvshortx src2, dvshortx src3,int pred);
dvcharx dvmax3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Vsrc3dst = preg ? max(Vsrc1, Vsrc2, Vsrc3dst)
 : max(Vsrc1, Vsrc2);

When predicate is off, the operation becomes max of first 2 sources, allowing

max accumulation to start fresh.

9.8.6.15 VADD3

Instruction name VADD3

Functionality Vector add3

Assembly format VAdd3<type> Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options src1: single vector register in VRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 313

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vadd3(vintx src1, vintx src2, vintx src3);
vshortx vadd3(vshortx src1, vshortx src2, vshortx src3);
vcharx vadd3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvadd3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvadd3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvadd3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details

9.8.6.16 VADD3_CA

Instruction name VADD3_CA

Functionality Vector add3

Assembly format <pred> VAdd3B/H/W_CA Vsrc1, Vsrc2, ACsrc3dst

pred = none, [P2.. P15]

 [P0] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: B/H/W: single vector register in ARF

Additional options

Intrinsics/operator vintx vadd3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vadd3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vadd3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvadd3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvadd3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvadd3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Vsrc3dst = preg ? (Vsrc1 + Vsrc2 + Vsrc3dst)
 : (Vsrc1 + Vsrc2);

When predicate is off, the operation becomes sum of first 2 sources, allowing

accumulation to start fresh.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 314

9.8.6.17 VAND3

Instruction name VAND3

Functionality Vector and 3

Assembly format VAnd3 Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width no type, full 384 bits

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vand3(vintx src1, vintx src2, vintx src3);
vshortx vand3(vshortx src1, vshortx src2, vshortx src3);
vcharx vand3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvand3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvand3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvand3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Bitwise AND in each vector lane

9.8.6.18 VAND3_CA

Instruction name VAND3_CA

Functionality Vector and 3

Assembly format <pred> VAnd3_CA Vsrc1, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]

 [P0] is omitted

Type and bit width no type, full 384 bits

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in VRF

Additional options

Intrinsics/operator vintx vand3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vand3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vand3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvand3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvand3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvand3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 315

Instruction name VAND3_CA

Additional details Bitwise AND in each vector lane

Vsrc3dst = preg ? (Vsrc1 & Vsrc2 & Vsrc3dst)
 : (Vsrc1 & Vsrc2);

When predicate is off, the operation becomes AND of first 2 sources, allowing

AND accumulation to start fresh.

9.8.6.19 VOR3

Instruction name VOR3

Functionality Vector or 3

Assembly format VOr3 Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width no type, full 384 bits

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vor3(vintx src1, vintx src2, vintx src3);
vshortx vor3(vshortx src1, vshortx src2, vshortx src3);
vcharx vor3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvor3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvor3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvor3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Bitwise OR in each vector lane

9.8.6.20 VOR3_CA

Instruction name VOR3_CA

Functionality Vector or 3

Assembly format <pred> VOr3_CA Vsrc1, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]

 [P0] is omitted

Type and bit width no type, full 384 bits

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in VRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 316

Instruction name VOR3_CA

Additional options

Intrinsics/operator vintx vor3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvor3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvor3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Bitwise OR in each vector lane

Vsrc3dst = preg ? (Vsrc1 | Vsrc2 | Vsrc3dst)
 : (Vsrc1 | Vsrc2);

When predicate is off, the operation becomes OR of first 2 sources, allowing OR

accumulation to start fresh.

9.8.6.21 VXOR3

Instruction name VXOR3

Functionality Vector exclusive-or 3

Assembly format VXor3 Vsrc1, Vsrc2, Vsrc3, Vdst1

Type and bit width no type, full 384 bits

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

src3: single vector register in VRF

Destination options dst1: single vector register in VRF

Additional options

Intrinsics/operator vintx vxor3(vintx src1, vintx src2, vintx src3);
vshortx vxor3(vshortx src1, vshortx src2, vshortx src3);
vcharx vxor3(vcharx src1, vcharx src2, vcharx src3);
// double vector pseudo intrinsics
dvintx dvxor3(dvintx src1, dvintx src2, dvintx src3);
dvshortx dvxor3(dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvxor3(dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Bitwise exclusive OR in each vector lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 317

9.8.6.22 VXOR3_CA

Instruction name VXOR3_CA

Functionality Vector exclusive-or 3

Assembly format <pred> VXor3_CA Vsrc1, Vsrc2, Vsrc3dst

pred = none, [P2.. P15]

 [P0] is omitted

Type and bit width no type, full 384 bits

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in VRF

Additional options

Intrinsics/operator vintx vxor3_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vxor3_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vxor3_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
// double vector pseudo intrinsics
dvintx dvxor3_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvxor3_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvxor3_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details Bitwise exclusive-OR in each vector lane

Vsrc3dst = preg ? (Vsrc1 ^ Vsrc2 ^ Vsrc3dst)
 : (Vsrc1 ^ Vsrc2);

When predicate is off, the operation becomes XOR of first 2 sources, allowing

XOR accumulation to start fresh.

9.8.6.23 VSAD_CA

Instruction name VSAD_CA

Functionality Vector sum of absolute differences

Assembly format <pred> VSad<type>_CA Vsrc1, Vsrc2, ACsrc3dst/DACsrc3dst

pred = none, [P2.. P15]

[P0] is omitted

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

HW: 16 x (|24-bit – 24-bit| + 48-bit)

BH: 32 x (|12-bit – 12-bit| + 24-bit)

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register for W in ARF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 318

Instruction name VSAD_CA

src3dst: double vector register for HW, BH in ARF

Additional options

Intrinsics/operator vintx vSAD_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vSAD_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vSAD_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
dvintx vSAD_ca(vshortx src1, vshortx src2, dvintx src3, int pred);
dvshortx vSAD_ca(vcharx src1, vcharx src2, dvshortx src3, int pred);
// double vector pseudo intrinsics
dvintx dvSAD_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvSAD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);
dvcharx dvSAD_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);

Additional details For each lane, src3dst += |src1 - src2| when predicate is on. Otherwise, src3dst =

|src1 - src2|.

For HW and BH types, destination is a double vector register. Lane 2*i from |src1

- src2| is added/stored to lane i of the lower register of the pair. Lane 2*i+1 from

|src1 – src2| is added/stored to lane i of the upper register.

9.8.6.24 VSUMHD_CA

Instruction name VSumHD_CA

Functionality Vector sum of Hamming distance

Assembly format <pred> VSumHD<type>_CA Vsrc1, Vsrc2/Rsrc2, ACsrc3dst

pred = none, [P2.. P15]

[P0] is omitted

Type and bit width Vector operand: W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, unsigned

Scalar operand: W: full 32-bit zero-extended to 48-bit, H: 24 LSBs, B: 12 LSBs

broadcast to all vector lanes, as unsigned.

Predication Available across lanes to clear accumulator

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vSumHD_ca(vintx src1, vintx src2, vintx src3, int pred);
vshortx vSumHD_ca(vshortx src1, vshortx src2, vshortx src3, int pred);
vcharx vSumHD_ca(vcharx src1, vcharx src2, vcharx src3, int pred);
vintx vSumHD_ca(vintx src1, unsigned int src2, vintx src3, int pred);
vshortx vSumHD_ca(vshortx src1, unsigned int src2, vshortx src3, int pred);
vcharx vSumHD_ca(vcharx src1, unsigned int src2, vcharx src3, int pred);

// double vector pseudo intrinsics
dvintx dvSumHD_ca(dvintx src1, dvintx src2, dvintx src3, int pred);
dvshortx dvSumHD_ca(dvshortx src1, dvshortx src2, dvshortx src3, int pred);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 319

Instruction name VSumHD_CA

dvcharx dvSumHD_ca(dvcharx src1, dvcharx src2, dvcharx src3, int pred);
dvintx dvSumHD_ca(dvintx src1, unsigned int src2, dvintx src3, int pred);
dvshortx dvSumHD_ca(dvshortx src1, unsigned int src2, dvshortx src3, int pred);
dvcharx dvSumHD_ca(dvcharx src1, unsigned int src2, dvcharx src3, int pred);

Additional details For each lane, src3dst += bit_count(src1 ^ src2) when predicate is on, otherwise,

src3dst = bit_count(src1 ^ src2).

“^” is the bit-wise XOR operation.

9.8.6.25 VCMPLT_ANDL

Instruction name VCMPLT_ANDL

Functionality Vector compare less than and logical AND

Assembly format VCmpLT_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpLT_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLT_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLT_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 < vintx src2) && src3;
// vshortx dst = (vshortx src1 < vshortx src2) && src3;
// vcharx dst = (vcharx src1 < vcharx src2) && src3;

// double vector pseudo intrinsics
dvcharx dvCmpLT_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLT_andL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLT_andL(dvintx src1, dvintx src2, dvintx src3);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 320

9.8.6.26 VCMPLE_ANDL

Instruction name VCMPLE_ANDL

Functionality Vector compare less than or equal and logical AND

Assembly format VCmpLE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpLE_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLE_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLE_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 <= vintx src2) && src3;
// vshortx dst = (vshortx src1 <= vshortx src2) && src3;
// vcharx dst = (vcharx src1 <= vcharx src2) && src3;

// double vector pseudo intrinsics
dvcharx dvCmpLE_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLE_andL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLE_andL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.27 VCMPEQ_ANDL

Instruction name VCMPEQ_ANDL

Functionality Vector compare equal and logical AND

Assembly format VCmpEQ_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpEQ_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpEQ_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpEQ_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 == vintx src2) && src3;
// vshortx dst = (vshortx src1 == vshortx src2) && src3;
// vcharx dst = (vcharx src1 == vcharx src2) && src3;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 321

Instruction name VCMPEQ_ANDL

// double vector pseudo intrinsics
dvcharx dvCmpEQ_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpEQ_andL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpEQ_andL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.28 VCMPNE_ANDL

Instruction name VCMPNE_ANDL

Functionality Vector compare not equal and logical AND

Assembly format VCmpNE_AndL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpNE_andL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpNE_andL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpNE_andL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 != vintx src2) && src3;
// vshortx dst = (vshortx src1 != vshortx src2) && src3;
// vcharx dst = (vcharx src1 != vcharx src2) && src3;

// double vector pseudo intrinsics
dvcharx dvCmpNE_andL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpNE_andL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpNE_andL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.29 VCMPLT_ORL

Instruction name VCMPLT_ORL

Functionality Vector compare less than and logical OR

Assembly format VCmpLT_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 322

Instruction name VCMPLT_ORL

Intrinsics/operator vcharx vCmpLT_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLT_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLT_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 < vintx src2) || src3;
// vshortx dst = (vshortx src1 < vshortx src2) || src3;
// vcharx dst = (vcharx src1 < vcharx src2) || src3;

// double vector pseudo intrinsics
dvcharx dvCmpLT_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLT_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLT_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.30 VCMPLE_ORL

Instruction name VCMPLE_ORL

Functionality Vector compare less than or equal and logical OR

Assembly format VCmpLE_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpLE_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpLE_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpLE_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 <= vintx src2) || src3;
// vshortx dst = (vshortx src1 <= vshortx src2) || src3;
// vcharx dst = (vcharx src1 <= vcharx src2) || src3;

// double vector pseudo intrinsics
dvcharx dvCmpLE_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpLE_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpLE_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 323

9.8.6.31 VCMPEQ_ORL

Instruction name VCMPEQ_ORL

Functionality Vector compare equal and logical OR

Assembly format VCmpEQ_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpEQ_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpEQ_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpEQ_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 == vintx src2) || src3;
// vshortx dst = (vshortx src1 == vshortx src2) || src3;
// vcharx dst = (vcharx src1 == vcharx src2) || src3;

// double vector pseudo intrinsics
dvcharx dvCmpEQ_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpEQ_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpEQ_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.32 VCMPNE_ORL

Instruction name VCMPNE_ORL

Functionality Vector compare not equal and logical OR

Assembly format VCmpNE_OrL <type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit, signed

Predication not available

Source options src1, src2, src3: single vector register in VRF

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vCmpNE_orL(vcharx src1, vcharx src2, vcharx src3);
vshortx vCmpNE_orL(vshortx src1, vshortx src2, vshortx src3);
vintx vCmpNE_orL(vintx src1, vintx src2, vintx src3);

// compiler also instantiates from, e.g.,
// vintx dst = (vintx src1 != vintx src2) || src3;
// vshortx dst = (vshortx src1 != vshortx src2) || src3;
// vcharx dst = (vcharx src1 != vcharx src2) || src3;

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 324

Instruction name VCMPNE_ORL

// double vector pseudo intrinsics
dvcharx dvCmpNE_orL(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvCmpNE_orL(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvCmpNE_orL(dvintx src1, dvintx src2, dvintx src3);

Additional details

9.8.6.33 VXSHIFTR

Instruction name VXShiftR

Functionality Vector cross element shift right

Assembly format VXShiftR <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Type and bit width Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector

lanes as unsigned.

Predication not available

Source options src1, src2: single vector register in VRF

src3: single vector in VRF or scalar register

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vxshiftr(vcharx src1, vcharx src2, vcharx src3);
vshortx vxshiftr(vshortx src1, vshortx src2, vshortx src3);
vintx vxshiftr(vintx src1, vintx src2, vintx src3);
vcharx vxshiftr(vcharx src1, vcharx src2, unsigned int src3);
vshortx vxshiftr(vshortx src1, vshortx src2, unsigned int src3);
vintx vxshiftr(vintx src1, vintx src2, unsigned int src3);
// double vector pseudo intrinsics
dvcharx dvxshiftr(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvxshiftr(dvintx src1, dvintx src2, dvintx src3);
dvcharx dvxshiftr(dvcharx src1, dvcharx src2, unsigned int src3);
dvshortx dvxshiftr(dvshortx src1, dvshortx src2, unsigned int src3);
dvintx dvxshiftr(dvintx src1, dvintx src2, unsigned int src3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 325

Instruction name VXShiftR

Additional details Src1 carries current lane data. Src2 carries next lane data (from another load

from memory). Src3[7:0] carries number of LSBs of src1 we want to shift

right and throw out, and refill upper bits from LSBs of src2.

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned

number. Src3[7:0] is treated as an unsigned number and saturated to

8/16/32 before being used in the subsequent operations.

In each lane we compute

 nbits = src3[7:0];

 nbits = (nbits > bitwidth) ? bitwidth : nbits;

 dst = ((src1 >> nbits) | (src2 << (bitwidth – nbits))) & mask;

where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) – 1.

MSB LSB MSB LSB

 src2 src1

 dst  src3 →

9.8.6.34 VXSHIFTL

Instruction name VXShiftL

Functionality Vector cross element shift left

Assembly format VXShiftL <type> Vsrc1, Vsrc2, Rsrc3/Vsrc3, Vdst

Type and bit width Vector operand: W: 8 x 32-bit, H: 16 x 16-bit, B: 32 x 8-bit, unsigned

Scalar operand: W: full 32-bit, H: 16 LSBs, B: 8 LSBs broadcast to all vector

lanes as unsigned.

Predication not available

Source options src1, src2: single vector register in VRF

src3: single vector in VRF or scalar register

Destination options dst: Single vector register in VRF

Additional options

Intrinsics/operator vcharx vxshiftl(vcharx src1, vcharx src2, vcharx src3);
vshortx vxshiftl(vshortx src1, vshortx src2, vshortx src3);
vintx vxshiftl(vintx src1, vintx src2, vintx src3);
vcharx vxshiftl(vcharx src1, vcharx src2, unsigned int src3);
vshortx vxshiftl(vshortx src1, vshortx src2, unsigned int src3);
vintx vxshiftl(vintx src1, vintx src2, unsigned int src3);
// double vector pseudo intrinsics
dvcharx dvxshiftl(dvcharx src1, dvcharx src2, dvcharx src3);
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, dvshortx src3);
dvintx dvxshiftl(dvintx src1, dvintx src2, dvintx src3);
dvcharx dvxshiftl(dvcharx src1, dvcharx src2, unsigned int src3);
dvshortx dvxshiftl(dvshortx src1, dvshortx src2, unsigned int src3);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 326

Instruction name VXShiftL

dvintx dvxshiftl(dvintx src1, dvintx src2, unsigned int src3);

Additional details Src1 carries current lane data. Src2 carries previous lane data (from another

load from memory). Src3[7:0] carries number of MSBs of src1 we want to

shift left and throw out, and refill lower bits from MSBs of src2.

Only lower 8/16/32 bits of src1 and src2 are used and treated as an unsigned

number. Src3[7:0] is treated as an unsigned number and saturated to

8/16/32 before being used in the subsequent operations.

In each lane we compute

 nbits = src3[7:0];

 nbits = (nbits > bitwidth) ? bitwidth : nbits;

 dst = ((src1 << nbits) | (src2 >> (bitwidth – nbits))) & mask;

where bitwidth = 8/16/32 for B/H/W type, and mask = (1 << bitwidth) – 1.

MSB LSB MSB LSB

 src1 src2

<- src3 -> dst

9.8.7 Vector Multiply-Add Instructions

9.8.7.1 Types and Data Widths

Multiplication has higher area cost per bit, so instead of extended precision of B=12-bit,

H=24-bit, W=48-bit, VPU supports B=9-bit, H=17-bit, W=33-bit of multiplication input.

The 1 extra bits compared with standard bit width allows support of both signed and

unsigned data of standard bit widths.

For src1 and src2, the B/H/W types correspond to 9/17/33 bits, as opposed to 12/24/48

bits for most other vector ALU operations.

For multiply-add/subtract and various dot-product/filtering operations, src3 is the

operand to be added/subtracted from, and extended bit width of 12/24/48 bits of src3

are used. 12/24/48-bit results are calculated and written to the destination.

There is optional rounding/truncation after multiplication (and before add or subtract for

VMAdd, VMSub). Rounding is not by arbitrary bit counts but with a few selected options.

There are two encoding schemes:

For Word type (33-bit by 33-bit) multiply/multiply-add/multiply-subtract resulting in 48-

bit outcome, VPU supports:

> .R0/.T0/omitted: no rounding (encoded as 0)

> .T4: rounding down 4 bits (encoded as 5)

> .T8: truncate down 7 bits (encoded as 6)

> .T16: truncate down 16 bits (encoded as 7)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 327

There is an instruction (VMulWWL) that carries out 33-bit x 33-bit multiply without

rounding/truncation and produces 66-bit outcome in two register entries.

For all other type combinations (B, BBH, H, HHW, WHW):

> .R0/.T0/omitted: no rounding (encoded as 0)

> .R7: rounding down 7 bits (encoded as 1)

> .R15: rounding down 15 bits (encoded as 2)

> .R16: rounding down 16 bits (encoded as 3)

> .R4: rounding down 4 bits (encoded as 4)

> .T7: truncate down 7 bits (encoded as 5)

> .T15: truncate down 15 bits (encoded as 6)

> .T16: truncate down 16 bits (encoded as 7)

Note that in Gen-1 VPU MAC instructions, there is just one set of encoding for non-Word

type:

> .R0/omitted: no rounding (encoded as 0)

> .R7: rounding down 7 bits (encoded as 1)

> .R15: rounding down 15 bits (encoded as 2)

> .R16: rounding down 16 bits (encoded as 3)

> .T0: truncating 0 bits, same as no rounding (encoded as 4)

> .T7: truncate down 7 bits (encoded as 5)

> .T15: truncate down 15 bits (encoded as 6)

> .T16: truncate down 16 bits (encoded as 7)

and for Word-type MAC, the only available rounding option is .T16, except for VMulWWL.

Note that not all options are supported in all VMul/VMAdd/VMSub instructions for all

types. Please see individual MAC instruction for details.

VPU supports the following type combinations of multiply/multiply-add/multiply-

subtract:

> B: 9-bit by 9-bit multiplication with 12-bit accumulator or product

> BBH: 9-bit by 9-bit multiplication with 24-bit accumulator or product

> BBW: 9-bit by 9-bit multiplication with 32-bit accumulator

> H: 17-bit by 17-bit multiplication with 24-bit accumulator or product

> HHW: 17-bit by 17-bit multiplication with 48-bit accumulator or product

> WHW: 33-bit by 17-bit multiplication with 48-bit accumulator or product, src2 is in

half-word lanes, but only even-numbered lanes are used, lining up with W lanes

> W: 33-bit by 33-bit multiplication with truncation of 0/4/8/16 bits, keeping 48 LSBs

of product.

> WWL: 33-bit by 33-bit multiplication with 66-bit product

B, H, WHW, W are lane-parallel operations, in the sense that we have src1[i] * src2[i] →

dst[i]. The others, BBH, BBW, HHW, WWH, WWL, are lane-expansion operations, with

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 328

single vector as src1, single vector as src2, but double vector as src3/destination to

receive the 2x wider output. In lane-expansion operations, outcome elements are

deinterleaved to the two src3/destination registers to avoid long routes.

A few expanding operations (VDotP4x2BBH/HHW, VFilt4x2BBH/HHW,

VFilt4x2x2BBH/BBW) produce two sets of products and accumulate into two sets of

accumulators, requiring a quad vector for the accumulator operand.

For example, VMAddBBH.R15 V0, V1, V2:V3 would result in:

V2[0] += round(V0[0] * V1[0], 15);
V3[0] += round(V0[1] * V1[1], 15);
V2[1] += round(V0[2] * V1[2], 15);
V3[1] += round(V0[3] * V1[3], 15);
…
V2[15] += round(V0[30] * V1[30], 15);
V3[15] += round(V0[31] * V1[31], 15);

VMulWWL long multiplication (33-bit-by-33-bit multiplication producing 66-bit outcome)

does not offer rounding option, and there’s no multiply-add/subtract variations, just

multiplication. The L in destination type indicates 66-bit width, and is split into a pair of

destination registers, lower unsigned 32-bit stored in the low (even) register, and upper

33-bit signed extended in the high (odd) register.

For example, VMulWWL V0, V1, V2:V3 would result in:

V2[0] = low_32b(V0[0] * V1[0]);
V3[0] = high_33b(V0[0] * V1[0]);
V2[1] = low_32b(V0[1] * V1[1]);
V3[1] = high_33b(V0[1] * V1[1]);
…
V2[7] = low_32b(V0[7] * V1[7]);
V3[7] = high_33b(V0[7] * V1[7]);

VDotP2HHW carries out 2 taps x 16 outputs per instruction. We have two src1 (src1a

and src1b) to supply data for first and second taps. We share src2 between each pair of

output to supply the two taps per lane.

For example, VDotP2HHW V0, V1, V2, V4:V5 would treat V0, V1, V2 each as Half-word

vectors (16H each), V4:V5 together as a Word vector (16W), and perform:

 V4[0] += V0[0]*V2[0] + V1[0]*V2[1];
 V5[0] += V0[1]*V2[0] + V1[1]*V2[1];
 V4[1] += V0[2]*V2[2] + V1[2]*V2[3];
 V5[1] += V0[3]*V2[2] + V1[3]*V2[3];
 …
 V4[7] += V0[14]*V2[14] + V1[14]*V2[15];
 V5[7] += V0[15]*V2[14] + V1[15]*V2[15];

In this case, conceptual data V4 and V5 are first interleaved into one stream to supply

added to the multiply-add operation, then deinterleaved back to the two registers.

VBlend performs alpha blending between Vsrc1a and Vsrc1b, using Vsrc2 as the

blending factor. There is no rounding option, as rounding is tied to the supported data

type, 7 bits for Byte type, and 15 bits for Half-word type.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 329

For example, in VBlendH V0, V1, V2, V3, we treat each vector as 16 Half-words, say V0 =

A, V1 = B, V2 = alpha, V3 = Y, and perform

 Y[0] = A[0] + round(B[0] * alpha[0] – A[0] * alpha[0], 15);
 Y[1] = A[1] + round(B[1] * alpha[1] – A[1] * alpha[1], 15);
 …
 Y[15] = A[15] + round(B[15] * alpha[15] – A[15] * alpha[15], 15);

VCMulH and VCMulHHW complex multiplication is supported with rounding/truncation

but no 3rd source input. Real and imaginary parts are interleaved in lanes.

For example, say we have VCMulH V0, V1, V2 instructions. V0, V1 each holds a vector of

8 complex numbers (16 real + imaginary components), and outcome V2 is another vector

of 8 complex numbers. VPU calculates:

V2[0] = V0[0] * V1[0] – V0[1] * V1[1]; // C0.R = A0.R * B0.R – A0.I * B0.I
V2[1] = V0[0] * V1[1] + V0[1] * V1[0]; // C0.I = A0.R * B0.I + A0.I * B0.R
…
V2[14] = V0[14] * V1[14] – V0[15] * V1[15]; // C7.R = A7.R * B7.R – A7.I * B7.I
V2[15] = V0[14] * V1[15] + V0[15] * V1[14]; // C7.I = A7.R * B7.I + A7.I * B7.R

For VCMulHHW, outputs are deinterleaved between the two vector registers. For

example, VCMulHHW V0, V1, V2:V3 would lead to:

V2[0] = V0[0] * V1[0] – V0[1] * V1[1]; // C0.R = A0.R * B0.R – A0.I * B0.I
V3[0] = V0[0] * V1[1] + V0[1] * V1[0]; // C0.I = A0.R * B0.I + A0.I * B0.R
 …
V2[7] = V0[14] * V1[14] – V0[15] * V1[15]; // C7.R = A7.R * B7.R – A7.I * B7.I
V3[7] = V0[14] * V1[15] + V0[15] * V1[14]; // C7.I = A7.R * B7.I + A7.I * B7.R

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 330

9.8.7.2 Instruction Summary

Table 35. Vector multiply-add instructions

Function Assembly Format Comments

Vector multiply VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,

 Vdst/ACdst

VMul<type> .R/T<bits> Vsrc1, Vsrc2/Rsrc2,

 DVdst/DACdst

type = B, H, BBH, HHW, WHW, W

W type does not allow Rsrc2.

VMulWHW DVsrc1/DWsrc1, DVsrc2, DVdst/DWdst

VMulWHW DVsrc1, DWsrc2, DVdst/DWdst

VMulW.T<bits> DVsrc1/DWsrc1, DVsrc2,

DVdst/DWdst

VMulW.T<bits> DVsrc1, DWsrc2, DVdst/DWdst

.R0/T4/T8/T16 for W

Vdst = round/trunc(Vsrc1 * Vsrc2,

bits)

Vector multiply-

add/sub

<pred> VMAdd<type>_CA . R/T<bits>

 Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst

VMAdd<type>.R/T<bits>

 Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst

pred> VMSub<type>_CA . R/T<bits>

 Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst

VMSub<type>.R/T<bits>

 Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst

type = B, H, BBH, HHW, WHW, W

W type does not allow Rsrc2.

Vdst = -Vdst +/- round/trunc(Vsrc1 *

Vsrc2, nbits)

DV multiply-add/sub <pred> VMAdd<type>_CA.R/T<bits> DVsrc1,

DVsrc2/DWsrc2/Rsrc2, DACsrc3dst/QACsrc3dst

<pred> VMSub<type>_CA.R/T<bits> DVsrc1,

DVsrc2/DWsrc2/Rsrc2, DACsrc3dst / QACsrc3dst

type = {B, BBH, H, HHW, WHW, W}

W type does not allow Rsrc2.

.R0 only for B, BBH, H, HHW, WHW

.R0/T4/T8/T16 for W

Vector long multiply VMulWWL Vsrc1, Vsrc2, DVdst/DACdst Perform signed 33-bit x signed 33-bit

multiplication producing 66-bit

product, lower 32-bit unsigned in

Vdst.lo and upper 34-bit sign-

extended in Vdst.hi, no rounding

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 331

Function Assembly Format Comments

Vector complex

multiply

VCMulHHW Vsrc1, Vsrc2, DACdst (Gen-1)

VCMulHHW DVsrc1, DWsrc2, QACdst

VCMulWHW DVsrc1, Wsrc2, DACdst

Vector dot product, 2-

term

<pred> VDotP2BBH/HHW_CA Vsrc1a, Vsrc1b, Vsrc2,

DACsrc3dst

<pred> VDotP2WHW_CA Vsrc1a, Vsrc1b, Vsrc2,

ACsrc3dst

<pred> VDotP2W_CA.T16 Vsrc1a, Vsrc1b, Vsrc2,

ACsrc3dst

Perform 2-term dot product, Vdst +=

Vsrc1a * Vsrc2_even + Vsrc1b *

Vsrc2_odd

Vector dot product 2-

term with negation

<pred> VDotPN2<type>_CA

 Vsrc1a, Vsrc1b, Vsrc2, Vsrc3dst

type = WHW

Perform a variation of 2-term dot

product, Vdst += Vsrc1a * Vsrc2_even

– Vsrc1b * Vsrc2_odd

Vector blend VBlend<type>

 Vsrc1a, Vsrc1b, Vsrc2/Rsrc2, Vdst

VBlend<type>

 Wsrc1a, Wsrc1b, Vsrc2/Rsrc2, Vdst

type = B, H, W

Vsrc1a = X0, Vsrc1b = X1, Vsrc2 =

alpha.

Vdst = round(X1*alpha – X0*alpha,

nbits) + X0

Vector blend

horizontal

VHBlend_I<type> Vsrc1a, Vsrc1b, Vsrc2, Vdst

type = B, H, W, BHB

Vector double multiply VMul2<type> . R/T<bits> DVsrc1, Vsrc2/Rsrc2,

 DVdst/DACdst

type = B, H, WHW

Rsrc2 option available for B/H types only

WHW type requires .T16

Vsrc1 and Vdst are double vector.

Double multiplication sharing Vsrc2

Vector 4-tap filter <pred> VFilt4<type>_CA Vsrc1a, Vsrc1b, Wsrc2,

DACsrc3dst

type = BBH, HHW

Vsrc1a, Vsrc1b supplies overlapping

data vector offset by 4 entries

Vector 4-tap x 2 filter <pred> VFilt4x2<type>_CA Vsrc1a, Vsrc1b, DWsrc2,

DACsrc3dst

type = BBH, HHW

Vsrc1a, Vsrc1b supplies overlapping

data vector offset by 4 entries

Vector 4x2-tap x 2

filter

<pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b,

DWsrc2, QACsrc3dst

<pred> VFilt4x2x2BBW_CA DVsrc1a, DVsrc1b,

DWsrc2, QXACsrc3dst

For BBH/BBW, DVsrc1a, DVsrc1b

each supplies overlapping data vector

offset by 8 entries.

Vector XNor add

8x4x2

<pred> VXNorAdd8x4x2_CA DVsrc1a, DVsrc1b,

DWsrc2, QXACsrc3dst

Convolution between binary data &

coefficients, 8 horizontal x 4 vertical

taps x 2 sets per byte lane

Vector 4-term dot

product

<pred> VDotP4HHW_CA DVsrc1a, DVsrc1b, Wsrc2,

DACsrc2dst

<pred> VDotP4WHW_CA DVsrc1a, DVsrc1b, Wsrc2,

ACsrc2dst

<pred> VDotP4BBW_CA DVsrc1a, DVsrc1b, Wsrc2,

DXACsrc3dst

DVsrc1a, DVsrc1b together supplies 4

independent data terms

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 332

Function Assembly Format Comments

Vector 4-term x 2 dot

product

<pred> VDotP4x2BBH_CA DVsrc1a, DVsrc1b,

DWsrc2, QACsrc3dst

<pred> VDotP4x2HHW_CA DVsrc1a, DVsrc1b,

DWsrc2, QACsrc3dst

<pred> VDotP4x2BBW_CA DVsrc1a, DVsrc1b,

DWsrc2, QXACsrc3dst

DVsrc1a, DVsrc1b together supplies 4

independent data terms

Vector 2-term x 2 dot

product

<pred> VDotP2x2W_CA.T16 Vsrc1a, Vsrc1b, DWsrc2,

DACsrc3dst

Vsrc1a, Vsrc1b together supplies 2

independent data terms

Vector sum of squares VSumSq<type> Vsrc1, Vsrc2, Vdst/DVdst

type = BBH, HHW, W.T16

dst = src1^2 + src2^2

Truncate each term by 16 bits for W

type

Vector square of sum VSqSum<type> Vsrc1, Vsrc2, DVdst

type = BBH, HHW

dst = src1^2 + src2^2 + 2*src1*src2

Vector 2x2 matrix

determinant

VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst

VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst

VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst

type = HHW, W.T16

dst = src1.lo * src2.hi – src1.hi * src2.lo

9.8.7.3 VMUL

Instruction name VMUL

Functionality Vector multiply

Assembly format VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vdst/ACdst

VMul<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVdst/DACdst

Rounding 0 bits (.R0) is omitted. For example,

VMulH.R7 V2, V3, V4

VMulBBH V2, V3, V4:V5

VMulBBH V2, R3, V4:V5

VMulHHW V2, V3, AC0:AC1

Type and bit width B: 32 x (9-bit src1/src2 → 12-bit dst)

H: 16 x (17-bit src1/src2 → 24-bit dst)

BBH: 32 x (9-bit src1/src2 → 24-bit dst)

HHW: 16 x (17-bit src1/src2 → 48-bit dst)

WHW: 8 x (33-bit src1, 17-bit src2 → 48-bit dst)

W: 8 x (33-bit src1/src2 → 48-bit dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no

support for Rsrc2.

All other types support full set of rounding/truncation options and Rsrc2.

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 333

Instruction name VMUL

Source options src1: single vector register in VRF

src2: single vector register in VRF, scalar register (except W type)

Destination options B/H/WHW/W: dst: single vector register in VRF or ARF

BBH/HHW: dst: double vector register in VRF or ARF

Additional options

Intrinsics/operator vcharx vmulb(vcharx src1, vcharx src2, u3imm rnd_opt);
vshortx vmulh(vshortx src1, vshortx src2, u3imm rnd_opt);
dvshortx vmulbh(vcharx src1, vcharx src2, u3imm rnd_opt);
dvintx vmulhw(vshortx src1, vshortx src2, u3imm rnd_opt);
vintx vmulwhw(vintx src1, vintx src2, u3imm rnd_opt);
vintx vmulw(vintx src1, vintx src2, u3imm rnd_opt);
vintx vmulw_t16(vintx src1, vintx src2); // Gen-1 legacy

vcharx vmulb(vcharx src1, int src2, u3imm rnd_opt);
vshortx vmulh(vshortx src1, int src2, u3imm rnd_opt);
dvshortx vmulbh(vcharx src1, int src2, u3imm rnd_opt);
dvintx vmulhw(vshortx src1, int src2, u3imm rnd_opt);
vintx vmulwhw(vintx src1, int src2, u3imm rnd_opt);

// Double vector pseudo intrinsics
dvcharx dvmulb(dvcharx src1, dvcharx src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, dvshortx src2, u3imm rnd_opt);
dvintx dvmulwhw(dvintx src1, dvintx src2, u3imm rnd_opt);

dvcharx dvmulb(dvcharx src1, int src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, int src2, u3imm rnd_opt);
dvintx dvmulwhw(dvintx src1, int src2, u3imm rnd_opt);

Additional details For each lane, dst = round(src1 * src2, rnd_opt), using the specified B/H/W lane,

and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take

lower 17-bit of each W lane.

For BBH/HHW, destination double vector is deinterleaved between the two

vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

See 9.8.7.1 for rounding/truncation options.

For example, VMulB.R7 V1, V2, V3 has the following data layout and behavior:

V1: D[0] D[1] D[2] D[3] … D[30] D[31]

V2: C[0] C[1] C[2] C[3] … C[30] C[31]

V3: P[0] P[1] P[2] P[3] … P[30] P[31]

P[i] = round(D[i] * C[i], 7); // C[i], D[i] taken from 9 LSBs of each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 334

While VMulHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior:

V1: D[0] D[1] D[2] D[3] … D[14] D[15]

V2: C[0] C[1] C[2] C[3] … C[14] C[15]

AC2: P[0] P[2] … P[14]

AC3: P[1] P[3] P[15]

P[i] = truncate(D[i] * C[i], 16); // C[i], D[i] taken from 17 LSBs of each lane

The outcome from input lane 1 is deposited in AC3 lane 0, which is DAC1 (viewing AC2

and AC3 as a double vector) lane 8, outcome from input lane 3 is deposited in AC3 lane 1,

which is DAC1 lane 9, and so on.

Instruction name VMUL (Gen-2 double throughput)

Functionality Vector multiply

Assembly format VMulWHW DVsrc1, DVsrc2/DWsrc2/Rsrc2, DVdst/DWdst

VMulWHW DWsrc1, DVsrc2/Rsrc2, DVdst/DWdst

VMulW.T<bits> DVsrc1, DVsrc2/DWsrc2, DVdst/DWdst

VMulW.T<bits> DWsrc1, DVsrc2, DVdst/DWdst

For Word type, truncating by 0 bit is omitted.

Type and bit width WHW: 2 x 8 x (33-bit src1, 17-bit src2 → 48-bit dst)

W: 2 x 8 x (33-bit src1/src2 → 48-bit dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no

support for Rsrc2.

For WHW type, only no rounding/truncation (R0) is supported, and there is

support for Rsrc2.

Predication not available

Source options src1: double vector register in VRF/WRF

src2: double vector register in VRF/WRF or scalar register

excluding both src1 and src2 from WRF

Destination options Double vector register in VRF/WRF

Additional options

Intrinsics/operator dvintx dvmulwhw(dvintx src1, dvintx src2);

dvintx dvmulwhw(dvintx src1, int src2);

dvintx dvmulw(dvintx src1, dvintx src2, u3imm rnd_opt);

dvintx dvmulw_t16(dvintx src1, dvintx src2); // Gen-1 legacy

Additional details For each lane, dst = src1 * src2, or (src1 * src2) >> trunc_bits.

No rounding is supported for VMulWHW. Truncation by 0/4/8/16 bits is

supported for VMulW.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 335

For example, VMulWHW V0:V1, V2:V3, V4:V5 has the following data layout and behavior:

V0: D[0] D[1] D[2] D[3] … D[7]

V2: C[0] C[1] C[2] C[3] … C[7]

V4: P[0] P[1] P[2] P[3] … P[7]

V1: D[8] D[9] D[10] D[11] … D[15]

V3: C[8] C[9] C[10] C[11] … C[15]

V5: P[8] P[9] P[10] P[11] … P[15]

P[i] = D[i] * C[i]; // D[i] taken from 33 LSBs of each lane,

 // C[i] taken from 17 LSBs of each lane

There is nothing wrong with drawing the layout as a single row per operand, showing

lane 0, 1, …, 15. The above style of drawing it as two rows matches with micro-

architecture of the SIMD units inside the processor, and is more consistent across

various MAC instructions.

9.8.7.4 VMADD_CA

Instruction name VMADD_CA

Functionality Vector multiply-add

Assembly format <pred> VMAdd<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst

pred = none, [P2..P15]

type = {B, H, BBH, HHW, WHW, W}

.R0 omitted

VMAdd<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, Vsrc3dst/DVsrc3dst

type = {B, BBH, H, HHW, WHW, W}

.R0 omitted

Type and bit width B: 32 x (9-bit src1/src2, 12-bit src3dst)

H: 16 x (17-bit src1/src2, 24-bit src3dst)

BBH: 32 x (9-bit src1/src2, 24-bit src3dst)

HHW: 16 x (17-bit src1/src2, 48-bit src3dst)

WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst)

W: 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support

for Rsrc2.

All other types support full set of rounding/truncation options and Rsrc2.

Predication Available across lanes to clear accumulator

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 336

Instruction name VMADD_CA

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register (except W type)

Destination

options

B/H/WHW/W: src3dst: single vector register in ARF or VRF

BBH/HHW: src3dst: double vector register in ARF or VRF

Additional options

Intrinsics/ operator // predicated
vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt,int pred);
dvintx vmaddhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);
vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);
vintx vmaddw_t16(vintx src1, vintx src2, vintx src3, int pred);

vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmaddhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);

// unpredicated
vcharx vmaddb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt);
vshortx vmaddh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt);
dvshortx vmaddbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt);
dvintx vmaddhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt);
vintx vmaddwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);
vintx vmaddw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);
vintx vmaddw_t16(vintx src1, vintx src2, vintx src3);

vcharx vmaddb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt);
vshortx vmaddh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt);
dvshortx vmaddbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt);
dvintx vmaddhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt);
vintx vmaddwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);

// Double vector pseudo intrinsics, when (rnd_opt != 0)
dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt,int pred);
dvshortx dvmaddh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt,
int pred);
dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src30, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1);

void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src30, dvintx src31, u3imm
rnd_opt, int pred, dvintx & dst0, dvintx & dst1);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 337

Instruction name VMADD_CA

dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, int src2, dvshortx src30, dvshortx src31, u3imm rnd_opt,
int pred, dvshortx & dst0, dvshortx & dst1);

void dvmaddhw(dvshortx src1, int src2, dvintx src30, dvintx src31, u3imm rnd_opt,
int pred, dvintx & dst0, dvintx & dst1);

Additional details For each lane, src3dst += round/trunc(src1 * src2, rnd_opt), using the specified B/H/W lane,

and taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-

bit of each W lane.

When predicate is off, only multiply-round is performed, src3dst = round/trunc(src1 * src2,

rnd_opt), effectively clearing the accumulator.

For BBH/HHW, destination double vector registers are deinterleaved between the two

vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

See 9.8.7.1 for rounding/truncating options. For W,.R0/T4/T8/T16 options are supported.

Note that we do not support scalar source 2 when source 2 is of the Word type. This is

because for Word type we would like to use 33 bits so we can support both signed 32-bit

and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits, and

we do not want to create variation of behavior between source 2 being from a vector or a

scalar, nor do we want to have Signed/Unsigned designation in the instruction itself (like

scalar having LMULSS/SU/UU), so we just don’t support scalar source 2.

For example, VMAddB.R7 V1, V2, V3 has the following data layout and behavior:

V1: D[0] D[1] D[2] D[3] … D[30] D[31]

V2: C[0] C[1] C[2] C[3] … C[30] C[31]

V3: A[0] A[1] A[2] A[3] … A[30] A[31]

A[i] = A[i] + round(D[i] * C[i], 7); // C[i], D[i] taken from 9 LSBs of each lane

While [P2] VMAddHHW.T16 V1, V2, AC2:AC3 has the following data layout and behavior:

V1: D[0] D[1] D[2] D[3] … D[14] D[15]

V2: C[0] C[1] C[2] C[3] … C[14] C[15]

AC2: A[0] A[2] … A[14]

AC3: A[1] A[3] A[15]

A[i] = P2 ? (A[i] + truncate(D[i] * C[i], 16)) : truncate(D[i] * C[i], 16)

// C[i], D[i] taken from 17 LSBs of each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 338

The accumulator for input lane 1 is mapped to AC3 lane 0, which is DAC1 (viewing AC2

and AC3 as a double vector) lane 8, accumulator for input lane 3 is mapped to AC3 lane

1, which is DAC1 lane 9, and so on.

Instruction name VMADD_CA (Gen-2 double vector/throughput)

Functionality Vector multiply-add

Assembly format <pred> VMAdd<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

 DACsrc3dst /QACsrc3dst

pred = none, [P2..P15]

type = {B, BBH, H, HHW, WHW, W}

.R0 only for B, BBH, H, HHW, WHW

.R0/T4/T8/T16 for W

Type and bit width B: 2 x 32 x (9-bit src1/src2, 12-bit src3dst)

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst)

H: 2 x 16 x (17-bit src1/src2, 24-bit src3dst)

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst)

WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst)

W: 2 x 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support

for Rsrc2.

All other types support no rounding/truncation option (R0) and Rsrc2.

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: double vector register in VRF/WRF (all types) or scalar register (all except W type)

Destination options B/H/WHW/W: src3dst: double vector register in ARF

BBH/HHW: src3dst: quad vector register in ARF

Additional options

Intrinsics/ operator // Note that some of the following intrinsic function names are the same as double vector
// pseudo intrinsic functions in the non-double vector/throughput variations of VMAdd_CA.
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double
// vector/throughput instructions when (rnd_opt == 0). Otherwise, each intrinsic function
// maps to 2 instances of the single vector instructions. For w type, the double
// vector intrinsic function always maps to a double vector/throughput instruction.

dvcharx dvmaddb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmaddw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmaddw_t16(dvintx src1, dvintx src2, dvintx src3, int pred);

void dvmaddhw(dvshortx src1, dvshortx src2, dvintx src3_0, dvintx src3_1, u3imm

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 339

Instruction name VMADD_CA (Gen-2 double vector/throughput)

rnd_opt, int pred, dvintx & dst_0, dvintx & dst_1);

void dvmaddbh(dvcharx src1, dvcharx src2, dvshortx src3_0, dvshortx src3_1, u3imm
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1);

dvcharx dvmaddb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmaddh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmaddwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmaddbh(dvcharx src1, int src2, dvshortx src3_0, dvshortx src3_1, u3imm
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1);

void dvmaddhw(dvshortx src1, int src2, dvintx src3_0, dvintx src3_1, u3imm rnd_opt,
int pred, dvintx & dst_0, dvintx & dst_1);

Additional details

For example, [P3] VMAddHHW V0:V1, V2:V3, AC0:AC3 has the following data layout and

behavior:

V0: D[0] D[2] D[4] D[6] … D[28] D[30]

V1: D[1] D[3] D[5] D[7] … D[29] D[31]

V2: C[0] C[2] C[4] C[6] … C[28] C[30]

V3: C[1] C[3] C[5] C[7] … C[29] C[31]

AC0: ACC[0] ACC[4] … ACC[28]

AC1: ACC[2] ACC[6] … ACC[30]

AC2: ACC[1] ACC[5] … ACC[29]

AC3: ACC[3] ACC[7] … ACC[31]

 ACC[i] = P3 ? (ACC[i] + D[i] * C[i]) : (D[i] * C[i]);

9.8.7.5 VMSUB_CA

Instruction name VMSUB_CA

Functionality Vector multiply-subtract

Assembly format <pred> VMSub<type>_CA.R/T<bits> Vsrc1, Vsrc2/Rsrc2, ACsrc3dst/DACsrc3dst

pred = none, [P2..P15]

type = {B, H, BBH, HHW, WHW, W}

.R0 omitted

VMSub<type>.R/T<bits> Vsrc1, Vsrc2/Rsrc2, DVsrc3dst

type = {B, BBH, H, HHW, WHW, W}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 340

Instruction name VMSUB_CA

.R0 omitted

Type and bit width B: 32 x (9-bit src1/src2, 12-bit src3dst)

H: 16 x (17-bit src1/src2, 24-bit src3dst)

BBH: 32 x (9-bit src1/src2, 24-bit src3dst)

HHW: 16 x (17-bit src1/src2, 48-bit src3dst)

WHW: 8 x (33-bit src1, 17-bit src2, 48-bit src3dst)

W: 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no

support for Rsrc2.

All other types support full set of rounding/truncation options and Rsrc2.

Predication Available across lanes to clear accumulator (except W type)

Source options src1: single vector register in VRF

src2: single vector register in VRF or scalar register

Destination options B/H/WHW: src3dst: single vector register in ARF or VRF

BBH/HHW: src3dst: double vector register in ARF or VRF

Additional options

Intrinsics/ operator // predicated
vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);
vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt, int pred);
vintx vmsubw_t16(vintx src1, vintx src2, vintx src3, int pred);

vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt, int pred);
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt, int pred);
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);
vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt, int pred);

// unpredicated
vcharx vmsubb(vcharx src1, vcharx src2, vcharx src3, u3imm rnd_opt);
vshortx vmsubh(vshortx src1, vshortx src2, vshortx src3, u3imm rnd_opt);
dvshortx vmsubbh(vcharx src1, vcharx src2, dvshortx src3, u3imm rnd_opt);
dvintx vmsubhw(vshortx src1, vshortx src2, dvintx src3, u3imm rnd_opt);
vintx vmsubwhw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);
vintx vmsubw(vintx src1, vintx src2, vintx src3, u3imm rnd_opt);
vintx vmsubw_t16(vintx src1, vintx src2, vintx src3);

vcharx vmsubb(vcharx src1, int src2, vcharx src3, u3imm rnd_opt);
vshortx vmsubh(vshortx src1, int src2, vshortx src3, u3imm rnd_opt);
dvshortx vmsubbh(vcharx src1, int src2, dvshortx src3, u3imm rnd_opt);
dvintx vmsubhw(vshortx src1, int src2, dvintx src3, u3imm rnd_opt);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 341

Instruction name VMSUB_CA

vintx vmsubwhw(vintx src1, int src2, vintx src3, u3imm rnd_opt);

// Double vector pseudo intrinsics, when (rnd_opt != 0)
dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, dvshortx src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx src1, dvcharx src2, dvshortx src30, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1);

void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src30, dvintx src31, u3imm
rnd_opt, int pred, dvintx & dst0, dvintx & dst1);

dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, int src2, dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx src1, int src2, dvshortx src30, dvshortx src31, u3imm
rnd_opt, int pred, dvshortx & dst0, dvshortx & dst1);

void dvmsubhw(dvshortx src1, int src2, dvintx src30, dvintx src31, u3imm rnd_opt,
int pred, dvintx & dst0, dvintx & dst1);

Additional details For each lane, src3dst –= round(src1 * src2, rnd_opt), using the specified B/H/W lane, and

taking lower 9/17/33-bit of operand. Exception is WHW; for source 2 we take lower 17-bit

of each W lane.

When predicate is off, only multiply-round is performed, src3dst = round(src1 * src2,

rnd_opt), effectively clearing the accumulator.

For BBH/HHW, destination double vector registers are deinterleaved between the two

vector registers. See Data Ordering in Single and Double Vector Registers for data

ordering in single/double vector registers.

See Types and Data Widths for rounding/truncating options. For W,.R0/T4/T8/T16

options are supported.

Note that we do not support scalar source 2 when source 2 is of the Word type. This is

because for Word type we would like to use 33 bits so we can support both signed 32-bit

and unsigned 32-bit values. Scalar register is only 32-bit wide so cannot supply 33 bits,

and we do not want to create variation of behavior between source 2 being from a vector

or a scalar, nor do we want to have Signed/Unsigned designation in the instruction itself

(like scalar having LMULSS/SU/UU), so we just don’t support scalar source 2.

See VMAdd_CA for data layout and behavior examples.

Instruction name VMSUB_CA (Gen-2 double vector/throughput)

Functionality Vector multiply-subtract

Assembly format <pred> VMSub<type>_CA.R/T<bits> DVsrc1, DVsrc2/DWsrc2/Rsrc2,

 DACsrc3dst /QACsrc3dst

pred = none, [P2..P15]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 342

Instruction name VMSUB_CA (Gen-2 double vector/throughput)

type = {B, BBH, H, HHW, WHW, W}

.R0 only for BBH, HHW, WHW

.R0/T4/T8/T16 for W

Type and bit width B: 2 x 32 x (9-bit src1/src2, 12-bit src3dst)

BBH: 2 x 32 x (9-bit src1/src2, 24-bit src3dst)

H: 2 x 16 x (17-bit src1/src2, 24-bit src3dst)

HHW: 2 x 16 x (17-bit src1/src2, 48-bit src3dst)

WHW: 2 x 8 x (33-bit src1, 17-bit src2, 48-bit src3dst)

W: 2 x 8 x (33-bit src1/src2, 48-bit src3dst)

For W type, only truncation options (R0/T4/T8/T16) are supported, and there is no support

for Rsrc2.

All other types support no rounding/truncation option (R0) and Rsrc2.

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: double vector register in VRF/WRF (all types) or scalar register (all except W type)

Destination

options

B/H/WHW/W: src3dst: double vector register in ARF

BBH/HHW: src3dst: quad vector register in ARF

Additional options

Intrinsics/ operator // Note that some of the following intrinsic function names are the same as double vector
// pseudo intrinsic functions in the non-double vector/throughput variations of VMSub_CA.
// For b, h, whw, bh, hw types, intrinsic functions are implemented to map to double
// vector/throughput instructions when (rnd_opt == 0). Otherwise, each intrinsic function
// maps to 2 instances of the single vector instructions. For w type, the double
// vector intrinsic function always maps to a double vector/throughput instruction.

dvcharx dvmsubb(dvcharx src1, dvcharx src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1,dvshortx src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmsubw(dvintx src1, dvintx src2, dvintx src3, u3imm rnd_opt, int pred);
dvintx dvmsubw_t16(dvintx src1, dvintx src2, dvintx src3, int pred);

void dvmsubhw(dvshortx src1, dvshortx src2, dvintx src3_0, dvintx src3_1, u3imm
rnd_opt, int pred, dvintx & dst_0, dvintx & dst_1);

void dvmsubbh(dvcharx src1, dvcharx src2, dvshortx src3_0, dvshortx src3_1, u3imm
rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1);

dvcharx dvmsubb(dvcharx src1, int src2, dvcharx src3, u3imm rnd_opt, int pred);
dvshortx dvmsubh(dvshortx src1, int src2,dvshortx src3, u3imm rnd_opt, int pred);
dvintx dvmsubwhw(dvintx src1, int src2, dvintx src3, u3imm rnd_opt, int pred);

void dvmsubbh(dvcharx src1, int src2, dvshortx src3_0, dvshortx src3_1, u3imm

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 343

Instruction name VMSUB_CA (Gen-2 double vector/throughput)

rnd_opt, int pred, dvshortx & dst_0, dvshortx & dst_1);

void dvmsubhw(dvshortx src1, int src2, dvintx src3_0, dvintx src3_1, u3imm rnd_opt,
int pred, dvintx & dst_0, dvintx & dst_1);

Additional details

See VMAdd_CA for data layout and behavior examples.

9.8.7.6 VMULWWL

Instruction name VMULWWL

Functionality Vector long multiply

Assembly format VMul<type> Vsrc1, Vsrc2, DVdst/DACdst

Type and bit width WWL: 8 x (33-bit src1/src2 → 66-bit → 2 x 48-bit)

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst: double vector register in VRF or ARF, lower 32-bit zero-extended in the low

register, upper 34-bit sign-extended in the high register

Additional options

Intrinsics/operator dvintx vmulwl(vintx src1, vintx src2);

Additional details For each lane, dst = src1 * src2.

Destination double vector registers are low/high deinterleaved between the two

vector registers. See 6.2.3.6 for data ordering in single/double vector registers.

While VMulWWL V1, V2, V4:V5 has the following data layout and behavior:

V1: D[0] D[1] … D[7]

V2: C[0] C[1] … C[7]

V4: P[0].lo P[1].lo … P[7].lo

V5: P[0].hi P[1].hi … P[7].hi

P[i] = D[i] * C[i]; // C[i], D[i] taken from 33 LSBs of each lane

P[i].lo = P[i] & ((1 << 32) – 1);

P[i].hi = P[i] >> 32;

9.8.7.7 VCMUL

Instruction name VCMUL (Gen-1)

Functionality Vector complex multiply

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 344

Instruction name VCMUL (Gen-1)

Assembly format VCMul<type>.R/T<bits> Vsrc1, Vsrc2, Vdst

.R0 is omitted

Type and bit width H: 8 x (complex 17-bit src1/src2 → 24-bit dst)

HHW: 8 x (complex 17-bit src1/src2 → 48-bit dst)

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options H dst: single vector register in VRF

HHW dst: double vector register in VRF

Additional options

Intrinsics/operator vshortx vcmulh(vshortx src1, vshortx src2, u3imm rnd_opt);
dvintx vcmulhw(vshortx src1, vshortx src2, u3imm rnd_opt);
// double vector pseudo intrinsics
dvshortx dvcmulh(dvshortx src1, dvshortx src2, u3imm rnd_opt);

Additional details Real/imaginary lane interleaved (even lane = real, odd lane = imaginary).

Vdst.r = round(Vsrc1.r * Vsrc2.r, nbits) – round(Vsrc1.i * Vsrc2.i, nbits)

Vdst.i = round(Vsrc1.r * Vsrc2.i, nbits) + round(Vsrc1.i * Vsrc2.r, nbits)

or

Vdst.r = trunc(Vsrc1.r * Vsrc2.r, nbits) – trunc(Vsrc1.i * Vsrc2.i, nbits)

Vdst.i = trunc(Vsrc1.r * Vsrc2.i, nbits) + trunc(Vsrc1.i * Vsrc2.r, nbits)

For example, VCMulH.R7 V1, V2, V3 has the following data layout and behavior:

V1: DR[0] DI[0] DR[1] DI[1] … DR[7] DI[7]

V2: CR[0] CI[0] CR[1] CI[1] … CR[7] CI[7]

V3: PR[0] PI[0] PR[1] PI[1] … PR[7] PI[7]

PR[i] = round(DR[i] * CR[i] , 7) – round(DI[i] * CI[i], 7);

PI[i] = round(DR[i] * CI[i] , 7) + round(DI[i] * CR[i], 7);

// C*[i], D*[i] taken from 17 LSBs of each lane

While VCMulHHW.T16 V1, V2, V4:V5 has the following data layout and behavior:

V1: DR[0] DI[0] DR[1] DI[1] … DR[7] DI[7]

V2: CR[0] CI[0] CR[1] CI[1] … CR[7] CI[7]

V4: PR[0] PR[1] … PR[7]

V5: PI[0] PI[1] PI[7]

PR[i] = truncate(DR[i] * CR[i] , 16) – truncate (DI[i] * CI[i], 16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 345

PI[i] = truncate (DR[i] * CI[i] , 16) + truncate (DI[i] * CR[i], 16);

// C*[i], D*[i] taken from 17 LSBs of each lane

The following instruction is added in Gen-2 VPU to accelerate 16-bit x 16-bit and 32-bit x

16-bit FFT by 2x.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 346

Instruction name VCMUL (added in Gen-2)

Functionality Vector complex multiply

Assembly format VCMulHHW DVsrc1, DWsrc2, QACdst

VCMulWHW DVsrc1, Wsrc2, DACdst

VCMulW.T16 DVsrc1, DWsrc2, DACdst

Type and bit width HHW: 16 x (complex 17-bit src1/src2 → 48-bit dst)

WHW: 8 x (complex 33-bit src1, 17-bit src2 → 48-bit dst)

W: 8 x (complex 33-bit src1/src2 → 48-bit dst)

Predication not available

Source options src1: double vector register real in .lo, imaginary in .hi, in VRF

src2: HHW/W: double vector register real in .lo, imaginary in .hi, in WRF

 WHW: single vector register real/imaginary interleaved in WRF

NOTE THAT storage format is different from single-vector VCMul instructions. In

single-vector instructions real/imaginary are interleaved in a single vector, whereas

in double-vector instructions real/imaginary are store in .lo and .hi single vector

respectively.

Destination options HHW: quad vector register with even real in .q0, odd real in .q1, even imaginary in

.q2, odd imaginary in .q3, in ARF

WHW/W: double vector register with real in .lo, imaginary in .hi, in ARF

Additional options

Intrinsics/operator void dvcmulhw(dvshortx src1, dvshortx src2, dvintx &outr, dvintx &outi);
dvintx dvcmulwhw(dvintx src1, vshortx src2);
dvintx dvcmulw_t16(dvintx src1, dvintx src2);

Additional details For HHW/WHW:

dst.r = src1.r * src2.r – src1.i * src2.i

dst.i = src1.r * src2.i + src1.i * src2.r

For W:

dst.r = (src1.r * src2.r >> 16) – (src1.i * src2.i >> 16)

dst.i = (src1.r * src2.i >> 16) + (src1.i * src2.r >> 16)

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 347

For example, VCMulHHW V0:V1, W2:W3, AC4:AC7 has the following data layout and

behavior:

V0: DR[0] DR[1] … DR[14] DR[15]

V1: DI[0] DI[1] … DI[14] DI[15]

W2: CR[0] CR[1] … CR[14] CR[15]

W3: CI[0] CI[1] … CI[14] CI[15]

AC4: PR[0] … PR[14]

AC5: PR[1] … PR[15]

AC6: PI[0] … PI[14]

AC7: PI[1] … PI[15]

PR[i] = DR[i] * CR[i] – DI[i] * CI[i];

PI[i] = DR[i] * CI[i] + DI[i] * CR[i];

// C*[i], D*[i] taken from 17 LSBs of each lane

For example, VCMulWHW V0:V1, W2, AC4:AC5 has the following data layout and

behavior:

V0: DR[0] DR[1] … DR[6] DR[7]

V1: DI[0] DI[1] … DI[6] DI[7]

W2: CR[0] CI[0] CR[1] CI[1] … CR[6] CI[6] CR[7] CI[7]

AC4: PR[0] PR[1] … PR[6] PR[7]

AC5: PI[0] PI[1] … PI[6] PI[7]

PR[i] = DR[i] * CR[i] – DI[i] * CI[i]; // D*[i] taken from 33 LSBs of each lane,

PI[i] = DR[i] * CI[i] + DI[i] * CR[i]; // C*[i] taken from 17 LSBs of each lane

For example, VCMulW.T16 V0:V1, W2:W3, AC4:AC5 has the following data layout and

behavior:

V0: DR[0] DR[1] … DR[7]

V1: DI[0] DI[1] … DI[7]

W2: CR[0] CR[1] … CR[7]

W3: CI[0] CI[1] … CI[7]

AC4: PR[0] PR[1] … PR[7]

AC5: PI[0] PI[1] … PI[7]

PR[i] = truncate(DR[i] * CR[i], 16) – truncate(DI[i] * CI[i] , 16); // C*[i], D*[i] taken

from

PI[i] = truncate(DR[i] * CI[i] , 16) + truncate(DI[i] * CR[i] , 16); // 33 LSBs of each

lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 348

9.8.7.8 VDOTP2_CA

Instruction name VDOTP2_CA

Functionality Vector 2-term dot product

Assembly format <pred> VDotP2BBH/HHW_CA Vsrc1a, Vsrc1b, Vsrc2, DACsrc3dst

<pred> VDotP2WHW_CA Vsrc1a, Vsrc1b, Vsrc2, ACsrc3dst

<pred> VDotP2W_CA.T16 Vsrc1a, Vsrc1b, Vsrc2, ACsrc3dst

pred = none, [P2..P15]

.T16 is available only for W type and is always applied with W type.

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: double vector register (BBH, HHW types) in ARF

src3dst: single vector register (WHW, W type) in ARF

Additional options

Intrinsics/operator dvshortx vdotp2_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx
src3dst, int pred);

dvintx vdotp2_hhw(vshortx src1a, vshortx src1b, vshortx src2, dvintx
src3dst, int pred);

vintx vdotp2_whw(vintx src1a, vintx src1b, vshortx src2, vintx src3dst,
int pred);

vintx vdotp2_w_t16(vintx src1a, vintx src1b, vintx src2, vintx src3dst,
int pred);

Additional details When predicate is off, destination is replaced with the sum of 2 products,

 Vsrc3dst = Vsrc1a * Vsrc2_even + Vsrc1b * Vsrc2_odd,

effectively clearing the accumulator.

Otherwise, the sum of 2 products is added to the accumulator

 Vsrc3dst += Vsrc1a * Vsrc2_even + Vsrc1b * Vsrc2_odd

BBH: Treat coefficient vector as byte vector (32 x 9-bit), but share a pair of

coefficients between a pair of accumulators.

for i = 0..15:

Vsrc3dst[2*i] += Vsrc1a[2*i] * Vsrc2[2*i] + Vsrc1b[2*i] * Vsrc2[2*i+1]

Vsrc3dst[2*i+1] += Vsrc1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 349

Instruction name VDOTP2_CA

HHW: Treat coefficient vector as half-word vector (16 x 17-bit), but share a pair of

coefficients between a pair of accumulators.

for i = 0..7:

Vsrc3dst[2*i] += Vsrc1a[2*i] * Vsrc2[2*i] + Vsrc1b[2*i] * Vsrc2[2*i+1]

Vsrc3dst[2*i+1] += Vsrc1a[2*i+1] * Vsrc2[2*i] + Vsrc1b[2*i+1] * Vsrc2[2*i+1]

WHW: Treat coefficient vector as half-word vector (16 x 17-bit).

for i = 0..7:

Vsrc3dst[i] += Vsrc1a[i] * Vsrc2[2*i] + Vsrc1b[i] * Vsrc2[2*i+1]

W: Treat coefficient vector as word vector (8 x 48-bit) and each pair of W lanes

share 2 coefficients. Each product is truncated by 16 bits.

for i = 0..3:

Vsrc3dst[2*i] += (Vsrc1a[2*i] * Vsrc2[2*i]>>16) + (Vsrc1b[2*i] * Vsrc2[2*i+1]>>16)

Vsrc3dst[2*i+1] += (Vsrc1a[2*i+1] * Vsrc2[2*i]>>16) + (Vsrc1b[2*i+1] *

Vsrc2[2*i+1]>>16)

See 6.2.3.6 for data ordering in single/double vector registers.

For example, VDotP2BBH_CA V1, V2, V3, AC2:AC3 has the following data layout and

behavior:

V1: D[0] D[1] D[2] D[3] … D[30] D[31]

V2: E[0] E[1] E[2] E[3] … E[30] E[31]

V3: C[0][0] C[1][0] C[0][1] C[1][1] … C[0][15] C[1][15]

AC2: A[0] A[2] … A[30]

AC3: A[1] A[3] … A[31]

A[2*i] = A[2*i] + C[0][i] * D[2*i] + C[1][i] * E[2*i];

A[2*i + 1] = A[2*I + 1] + C[0][i] * D[2*i + 1] + C[1][i] * E[2*i + 1];

While VDotP2W.T16 V1, V2, V3, AC2 has the following data layout and behavior:

V1: D[0] D[1] D[2] D[3] … D[6] D[7]

V2: E[0] E[1] E[2] E[3] … E[6] E[7]

V3: C[0][0] C[1][0] C[0][1] C[1][1] … C[0][3] C[1][3]

AC2: A[0] A[1] A[2] A[3] … A[6] A[7]

A[2*i] = A[2*i] + truncate(C[0][i] * D[2*i], 16) + truncate(C[1][i] * E[2*i], 16);

A[2*i + 1] = A[2*I + 1] + truncate(C[0][i] * D[2*i + 1], 16) + truncate(C[1][i] * E[2*i + 1],

16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 350

9.8.7.9 VDOTPN2_CA

Instruction name VDOTPN2_CA

Functionality Vector 2-term dot product variation

Assembly format <pred> VDotPN2<type>_CA Vsrc1a, Vsrc1b, Vsrc2, Vsrc3dst

pred = none, [P2..P15]

Type and bit width WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: single vector register in VRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vintx vdotpn2_whw(vintx src1a, vintx src1b, vshortx src2, vintx src3dst,
int pred);

Additional details Perform multiply add/sub, Vsrc3dst += Vsrc1a * Vsrc2_even – Vsrc1b * Vsrc2_odd

when predicate is on.

When predicate is off, destination is replaced with the difference of products,

Vsrc3dst = Vsrc1a * Vsrc2_even – Vsrc1b * Vsrc2_odd, effectively clearing the

accumulator.

Treat coefficient vector as half-word vector.

for i = 0..7:

Vsrc3dst[i] += Vsrc1a[i]*Vsrc2[2*i] – Vsrc1b[i]*Vsrc2[2*i+1]

See VDotP2_CA for data layout and behavior.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 351

9.8.7.10 VBLEND

Instruction name VBLEND

Functionality Vector blend

Assembly format VBlend<type> Vsrc1a, Vsrc1b, Vsrc2/Rsrc2, Vdst

VBlend<type> Wsrc1a, Wsrc1b, Vsrc2/Rsrc2, Vdst

Type and bit width B: 32 x (9-bit signed src1a/src1b, 8-bit unsigned src2 → 12-bit dst)

H: 16 x (17-bit signed src1a/src1b, 16-bit unsigned src2 → 24-bit dst)

W: 8 x (33-bit signed src1a/src1b, 32-bit unsigned src2 → 48-bit dst)

Predication not available

Source options src1a: single vector register in VRF or WRF

src1b: single vector register in VRF or WRF

src2: single vector register in VRF or scalar register

Destination options dst: single vector register in VRF

Additional options

Intrinsics/operator vcharx vblend(vcharx src1a, vcharx src1b, vcharx src2);
vshortx vblend(vshortx src1a, vshortx src1b, vshortx src2);
vintx vblendw_q15(vintx src1a, vintx src1b, vintx src2);
vcharx vblend(vcharx src1a, vcharx src1b, unsigned int src2);
vshortx vblend(vshortx src1a, vshortx src1b, unsigned int src2);
vintx vblendw_q15(vintx src1a, vintx src1b, unsigned int src2);

// double vector pseudo intrinsics
dvcharx dvblend(dvcharx src1a, dvcharx src1b, dvcharx src2);
dvshortx dvblend(dvshortx src1a, dvshortx src1b, dvshortx src2);
dvintx dvblendw_q15(dvintx src1a, dvintx src1b, dvintx src2);
dvcharx dvblend(dvcharx src1a, dvcharx src1b, unsigned int src2);
dvshortx dvblend(dvshortx src1a, dvshortx src1b, unsigned int src2);
dvintx dvblendw_q15(dvintx src1a, dvintx src1b, unsigned int src2);

Additional details Treat Vsrc1a lower 9/17/33 bits as X0, Vsrc1b lower 9/17/33 bits as X1, Vsrc2 lower

8/16/32 bits as unsigned alpha blending factor with Q7/Q15/Q31 fixed-point

representation.

B/H: Vdst = X0 + round(X1*alpha – X0*alpha, nbits);

W: Vdst = (X0 << 15) + (X1*alpha >> 16) – (X0*alpha >> 16);

nrbits = 7 for type B, 15 for type H (hard-wired, not as .R<nbits> option)

Note that we do support scalar source 2 when source 2 is of the Word type, as

opposed to VMAdd/VMSub not supporting scalar source 2. This is because this

instruction supports only unsigned type for source 2, and indeed we can get

unsigned 32-bit value from a scalar register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 352

9.8.7.11 VHBLEND_I

Instruction name VHBLEND_I

Functionality Vector blend horizontal interleaved

Assembly format VHBlend_I<type> Vsrc1a, Vsrc1b, Vsrc2, Vdst

Type and bit width B: 32 x (9-bit signed src1a/src1b, 8-bit unsigned src2 → 12-bit dst)

H: 16 x (17-bit signed src1a/src1b, 16-bit unsigned src2 → 24-bit dst)

W: 8 x (33-bit signed src1a/src1b, 32-bit unsigned src2 → 48-bit dst)

BHB: like B but with each lane pair sharing blending factor in Halfword lanes

Predication not available

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: single vector register in VRF

Destination options dst: single vector register in VRF

Additional options

Intrinsics/operator vcharx vhblend_i(vcharx src1a, vcharx src1b, vcharx src2);
vshortx vhblend_i(vshortx src1a, vshortx src1b, vshortx src2);
vintx vhblend_iw_q15(vintx src1a, vintx src1b, vintx src2);
vcharx vhblend_i(vcharx src1a, vcharx src1b, vshortx src2); // BHB

// double vector pseudo intrinsics
dvcharx dvhblend_i(dvcharx src1a, dvcharx src1b, dvcharx src2);
dvshortx dvhblend_i(dvshortx src1a, dvshortx src1b, dvshortx src2);
dvintx dvhblend_iw_q15(dvintx src1a, dvintx src1b, dvintx src2);

Additional details Perform blending within each pair of lanes in src1a, src1b and interleave outcome.

In each even/odd pair of extended Byte/Halfword/Word lanes, extract 9/17/33 LSBs

as signed src1a/src1b for X0/X1, extract 8/16/32 LSBs of src2 for as unsigned

blending factor, according to this pattern for B/H/W types

src1a A[0] B[0]

src1b A[1] B[1]

src2 alpha[0] alpha[1]

dst Y[0] Y[1]

For BHB type, both lanes share the same blending factor:

src1a A[0] B[0]

src1b A[1] B[1]

src2 alpha[0] = alpha[1]

dst Y[0] Y[1]

The datapath carries out:

B/H/BHB: Y[i] = A[i] + round(B[i] * alpha[i] – A[i] *alpha[i], nbits);

 i = {0, 1}, nrbits = 7 for type B/BHB, 15 for type H

W: Y[i] = (A[i] << 15) + (B[i]*alpha[i] >> 16) – (A[i]*alpha[i] >> 16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 353

Instruction name VHBLEND_I

Note that the BHB variation still support Byte-type blending factor (unsigned 8 bits

in Q7 fixed-point), just that the lane position of blending factors are in even Byte

lanes, as if it’s a Halfword type vector.

VHBlend_I is intended to use with DVLUT_2x2pt to achieve bilinear interpolation with

maximal throughput bottlenecked by the lookup.

As DVLUT_2x2pt for B/H/W type fetch up to 8/8/4 sets of 2x2 table entries, after

interpolation the yield is half a single vector worth of outcome. To maximize throughput,

at a minimum we would bundle up two DVLUT_2x2pt instructions and subsequent 3

blending instructions. Then we will need to unroll the loop to compensate for load-to-use

latency.

The intended code loop is as follows for halfword (short) type:

for (...) {
 idx = dvshort_load_di(...); // .lo: 0, 2,hi: 1, 3, ...
 x_frac = dvshort_load_perm(...); // .lo: 0, 0, 2, 2,hi: 1, 1, 3, 3, ...
 y_frac = vshort_load(...);
 entries1 = dvlut_2x2pt_8h(table, idx.lo);
 entries2 = dvlut_2x2pt_8h(table, idx.hi);
 y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation
 y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
 out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
 vstore(out);
}

Similarly for word (int) type:

for (...) {
 idx = dvint_load_di(...); // .lo: 0, 2,hi: 1, 3, ...
 x_frac = dvint_load_perm(...); // .lo: 0, 0, 2, 2,hi: 1, 1, 3, 3, ...
 y_frac = vint_load(...);
 entries1 = dvlut_2x2pt_4w(table, idx.lo);
 entries2 = dvlut_2x2pt_4w(table, idx.hi);
 y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation
 y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
 out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
 vstore(out);
}

For byte (char) type, there is no load-permute feature, so we will have to use byte-to-

halfword promoting load and the BHB type variation of VHBlend:

for (...) {
 idx = dvchar_load_di(...); // .lo: 0, 2,hi: 1, 3, ...
 x_frac = vchar_dvshortx_load_di(...); // .lo: 0, -, 2, -,hi: 1, -, 3, -, ...
 y_frac = vchar_load(...);
 entries1 = dvlut_2x2pt_8b(table, idx.lo);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 354

 entries2 = dvlut_2x2pt_8b(table, idx.hi);
 y_intrp1 = vhblend_i(entries1.lo, entries1.hi, x_frac.lo); // horz interpolation
 y_intrp2 = vhblend_i(entries2.lo, entries2.hi, x_frac.hi); // horz interpolation
 out = vhblend_i(y_intrp1, y_intrp2, y_frac); // vert interpolation
 vstore(out);
}

9.8.7.12 VMUL2

Instruction name VMUL2

Functionality Vector double multiply

Assembly format VMul2<type>.R/T<bits> DVsrc1, Vsrc2/Rsrc2, DVdst/DACdst

Rsrc2 option is available for B and H types only.

WHW type requires .T16

.R0 is omitted

Type and bit width B: 32 x (9-bit src1/src2 → 12-bit dst)

H: 16 x (17-bit src1/src2 → 24-bit dst)

WHW: 8 x (33-bit src1 x 17-bit src2 → 48-bit dst) only with .T16

Predication not available

Source options src1: double vector register in VRF

src2: single vector register in VRF or single scalar register (B and H types)

Destination options dst: double vector register in VRF or ARF

Additional options

Intrinsics/operator dvcharx dvmulb(dvcharx src1, vcharx src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, vshortx src2, u3imm rnd_opt);
dvintx dvmulwhw_t16(dvintx src1, vintx src2);
dvcharx dvmulb(dvcharx src1, int src2, u3imm rnd_opt);
dvshortx dvmulh(dvshortx src1, int src2, u3imm rnd_opt);

Additional details Perform 2 sets of multiplication, sharing src2

dst.lo = round(src1.lo * src2, rnd_opt)

dst.hi = round(src1.hi * src2, rnd_opt)

See 9.8.7.1 for rounding/truncating options.

For example, VMu2lH.R7 V0:V1, V2, AC4:AC5 has the following data layout and behavior:

V0: D[0] D[1] … D[15]

V1: E[0] E[1] … E[15]

V2: C[0] C[1] … C[15]

AC4: P[0] P[1] … P[15]

AC5: Q[0] Q[1] … Q[15]

P[i] = round(C[i] * D[i], 7); // C[i], D[i], E[i] taken from 17 LSBs of each lane

Q[i] = round(C[i] * E[i], 7);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 355

9.8.7.13 VFILT4_CA

This is an instruction added in Gen-2 VPU to accelerate filtering and CNN applications by

2x.

Instruction name VFILT4_CA

Functionality Vector 4-term filter

Assembly format <pred> VFilt4<type>_CA Vsrc1a, Vsrc1b, Wsrc2, DACsrc3dst

pred = none, [P2..P15]

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: single vector register in WRF

Destination options src3dst: double vector register in ARF

Additional options

Intrinsics/operator dvshortx vfilt4_bbh(vcharx src1a, vcharx src1b, vcharx src2, dvshortx
src3dst, int pred);

dvintx vfilt4_hhw(vshortx src1a, vshortx src1b, vshortx src2, dvintx
src3dst, int pred);

Additional details When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to

the accumulator.

Data entries for the products are formed with 4-tap filtering pattern, treating

src1a and src1b as two data vectors offset by 4 elements. Coefficient entries are

shared among 4 outputs. Accumulators are double vector registers to

accommodate type promotion.

BBH data, coefficient, accumulator layout per 48-bit and

HHW data, coefficient, accumulator layout per 96-bit:

src1a D[0] D[1] D[2] D[3]

src1b D[4] D[5] D[6] D[7]

src2 C[0] C[1] C[2] C[3]

src3dst.lo ACC[0] ACC[2]

src3dst.hi ACC[1] ACC[3]

ACC[0] += D[0] * C[0] + D[1] * C[1] + D[2] * C[2] + D[3] * C[3];

ACC[1] += D[1] * C[0] + D[2] * C[1] + D[3] * C[2] + D[4] * C[3];

ACC[2] += D[2] * C[0] + D[3] * C[1] + D[4] * C[2] + D[5] * C[3];

ACC[3] += D[3] * C[0] + D[4] * C[1] + D[5] * C[2] + D[6] * C[3];

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 356

Instruction name VFILT4_CA

See Data Ordering in Single and Double Vector Registers for data ordering in

single/double vector registers.

9.8.7.14 VFILT4x2_CA

This is an instruction added in Gen-2 VPU to accelerate 8-bit/16-bit filtering and CNN

applications by 4x. It’s doing twice the amount of work compared to VFilt4_CA by

accepting two sets of coefficients (src2) and accumulating onto two sets of

accumulators.

Instruction name VFILT4x2_CA

Functionality Vector 4-term filter

Assembly format <pred> VFilt4x2<type>_CA Vsrc1a, Vsrc1b, DWsrc2, QACsrc3dst

pred = none, [P2..P15]

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: double vector register in WRF

Destination options src3dst: quad vector register in ARF

Additional options

Intrinsics/operator void vfilt4x2_bbh(vcharx src1a, vcharx src1b, dvcharx src2, dvshortx src3_0,
dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1);

void vfilt4x2_hhw(vshortx src1a, vshortx src1b, dvshortx src2, dvintx
src3_0, dvintx src3_1, int pred, dvintx & dst_0, dvintx & dst_1);

Additional details When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to

the accumulator.

Data entries for the products are formed with horizontal 4-tap filtering pattern,

treating src1a and src1b as two data vectors offset by 4 elements. Coefficient

entries are shared among 4 outputs. There are two sets of coefficients and two

sets of accumulators. Accumulators are quad vector registers to accommodate

type promotion.

BBH data, coefficient, accumulator layout per 48-bit and

HHW data, coefficient, accumulator layout per 96-bit:

src1a D[0] D[1] D[2] D[3]

src1b D[4] D[5] D[6] D[7]

src2.lo C[0][0] C[0][1] C[0][2] C[0][3]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 357

Instruction name VFILT4x2_CA

src2.hi C[1][0] C[1][1] C[1][2] C[1][3]

src3dst.q0 ACC[0][0] ACC[0][2]

src3dst.q1 ACC[0][1] ACC[0][3]

src3dst.q2 ACC[1][0] ACC[1][2]

src3dst.q3 ACC[1][1] ACC[1][3]

ACC[0][0] += D[0] * C[0][0] + D[1] * C[0][1] + D[2] * C[0][2] + D[3] * C[0][3];

ACC[0][1] += D[1] * C[0][0] + D[2] * C[0][1] + D[3] * C[0][2] + D[4] * C[0][3];

ACC[0][2] += D[2] * C[0][0] + D[3] * C[0][1] + D[4] * C[0][2] + D[5] * C[0][3];

ACC[0][3] += D[3] * C[0][0] + D[4] * C[0][1] + D[5] * C[0][2] + D[6] * C[0][3];

ACC[1][0] += D[0] * C[1][0] + D[1] * C[1][1] + D[2] * C[1][2] + D[3] * C[1][3];

ACC[1][1] += D[1] * C[1][0] + D[2] * C[1][1] + D[3] * C[1][2] + D[4] * C[1][3];

ACC[1][2] += D[2] * C[1][0] + D[3] * C[1][1] + D[4] * C[1][2] + D[5] * C[1][3];

ACC[1][3] += D[3] * C[1][0] + D[4] * C[1][1] + D[5] * C[1][2] + D[6] * C[1][3];

9.8.7.15 VFILT4x2x2_CA

This is an instruction added in Gen-2 VPU to further accelerate 8-bit CNN applications by

2x (compared to VFilt4x2). Source 1a and 1b are double vectors each, and accumulator

bit width is extended from 24-bit to 32-bit in VFilt4x2x2BBW_CA. This instruction

delivers 4 horizontal taps x 2 deep/vertical taps x 2 sets of accumulators x 32 lanes =

512 INT8 MACs per instruction. Per VPU we have 1K INT8 MACs, and per PVA we have

2K INT8 MACs. This is 8X of Gen-1 PVA INT8 MAC performance.

Instruction name VFILT4x2x2_CA

Functionality Vector 4x2-term filter x 2 sets

Assembly format <pred> VFilt4x2x2BBH_CA DVsrc1a, DVsrc1b, DWsrc2, QACsrc3dst

<pred> VFilt4x2x2BBW_CA DVsrc1a, DVsrc1b, DWsrc2, QXACsrc3dst

pred = none, [P2..P15]

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: double vector register in VRF

src1b: double vector register in VRF

src2: double vector register in WRF

Destination options src3dst: BBH: quad vector register in ARF

 BBW: quad vector register in XARF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 358

Instruction name VFILT4x2x2_CA

Additional options

Intrinsics/operator void vfilt4x2x2_bbh(dvcharx src1a, dvcharx src1b, dvcharx src2, dvshortx
src3_0, dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1);

void vfilt4x2x2_bbw(dvcharx src1a, dvcharx src1b, dvcharx src2, dxvshortx
src3_0, dxvshortx src3_1, int pred, dxvshortx & dst_0, dxvshortx & dst_1);

Additional details When predicate is off, destination is replaced with the sum of 2x4 products,

effectively clearing the accumulator. Otherwise, the sum of 2x4 products is added

to the accumulator.

Data entries for the products are formed with 4 (horizontal) x 2 (vertical or deep)

tap filtering pattern, treating src1a and src1b as two sets of two data vectors

offset by 8 elements. Coefficient entries are shared among 8 outputs in a slice.

There are two sets of coefficients and two sets of accumulators.

For BBH, each accumulator is 24-bit wide and mapped to quad vector in ARF.

For BBW, each accumulator is 32-bit wide and mapped to quad vector in ARF as

well as quad vector in XRF. Lower 24-bit comes from ARF and upper 8-bit comes

from XRF.

Data layout per group of 8 byte lanes for VFilt4x2x2BBH & VFilt4x2x2BBW:

src1a.lo D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7]

src1a.hi D[8] D[9] D[10] D[11] D[12] D[13] D[14] D[15]

src1b.lo E[0] E[1] E[2] E[3] E[4] E[5] E[6] E[7]

src1b.hi E[8] E[9] E[10] E[11] E[12] E[13] E[14] E[15]

src2.lo C[0][0][0] C[0][0][1] C[0][0][2] C[0][0][3] C[0][1][0] C[0][1][1] C[0][1][2] C[0][1][3]

src2.hi C[1][0][0] C[1][0][1] C[1][0][2] C[1][0][3] C[1][1][0] C[1][1][1] C[1][1][2] C[1][1][3]

src3dst.q0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6]

src3dst.q1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7]

src3dst.q2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6]

src3dst.q3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7]

For VFilt4x2x2BBW, XRF provides 8 upper bits for each accumulator:

src3dst.x0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6]

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7]

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6]

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][1] ACC[1][7]

ACC[0][0] += D[0] * C[0][0][0] + D[1] * C[0][0][1] + D[2] * C[0][0][2] + D[3] * C[0][0][3]

 + E[0] * C[0][1][0] + E[1] * C[0][1][1] + E[2] * C[0][1][2] + E[3] * C[0][1][3];

ACC[0][1] += D[1] * C[0][0][0] + D[2] * C[0][0][1] + D[3] * C[0][0][2] + D[4] * C[0][0][3]

 + E[1] * C[0][1][0] + E[2] * C[0][1][1] + E[3] * C[0][1][2] + E[4] * C[0][1][3];

ACC[0][2] += D[2] * C[0][0][0] + D[3] * C[0][0][1] + D[4] * C[0][0][2] + D[5] * C[0][0][3]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 359

 + E[2] * C[0][1][0] + E[3] * C[0][1][1] + E[4] * C[0][1][2] + E[5] * C[0][1][3];

...

ACC[0][7] += D[7] * C[0][0][0] + D[8] * C[0][0][1] + D[9] * C[0][0][2] + D[10] * C[0][0][3]

 + E[7] * C[0][1][0] + E[8] * C[0][1][1] + E[9] * C[0][1][2] + E[10] * C[0][1][3];

ACC[1][0] += D[0] * C[1][0][0] + D[1] * C[1][0][1] + D[2] * C[1][0][2] + D[3] * C[1][0][3]

 + E[0] * C[1][1][0] + E[1] * C[1][1][1] + E[2] * C[1][1][2] + E[3] * C[1][1][3];

ACC[1][1] += D[1] * C[1][0][0] + D[2] * C[1][0][1] + D[3] * C[1][0][2] + D[4] * C[1][0][3]

 + E[1] * C[1][1][0] + E[2] * C[1][1][1] + E[3] * C[1][1][2] + E[4] * C[1][1][3];

ACC[1][2] += D[2] * C[1][0][0] + D[3] * C[1][0][1] + D[4] * C[1][0][2] + D[5] * C[1][0][3]

 + E[2] * C[1][1][0] + E[3] * C[1][1][1] + E[4] * C[1][1][2] + E[5] * C[1][1][3];

...

ACC[1][7] += D[7] * C[1][0][0] + D[8] * C[1][0][1] + D[9] * C[1][0][2] + D[10] * C[1][0][3]

 + E[7] * C[1][1][0] + E[8] * C[1][1][1] + E[9] * C[1][1][2] + E[10] * C[1][1][3];

9.8.7.16 VXNORADD8x4x2_CA

This is an instruction added in Gen-2 VPU to accelerate binary CNN convolution layers, by

operating on 1-bit data/coefficients, and computing 8 horizontal taps x 4 deep taps x 2

sets of accumulators x 64 lanes = 4K XNor-accumulate per instruction. This is equivalent

to 4K binary MACs (one XNor-Add translating to 1 binary Multiply-Accumulate). Per VPU

we have 8K binary MACs, and per PVA we have 16K binary MACs. This is 4X of INT8 MAC

performance.

Instruction name VXNorAdd8x4x2_CA

Functionality Vector exclusive NOR 8x4 filter x 2 sets

Assembly format <pred> VXNorAdd8x4x2_CA DVsrc1a, DVsrc1b, Wsrc2, QXACsrc3dst

pred = none, [P2..P15]

Type and bit width Binary data/coefficients, extended charx (16-bit) accumulators

Predication Available across lanes to clear accumulator

Source options src1a: double vector register in VRF

src1b: double vector register in VRF

src2: single vector register in WRF

Implicit PL scalar register

Destination options src3dst:quad vector ARF + quad vector XRF

Additional options

Intrinsics/operator void vxnor_add8x4x2(dvcharx src1a, dvcharx src1b, vcharx src2, dxvcharx
src3_0, dxvcharx src3_1, int pred, unsigned int mask, dxvcharx & dst_0,
dxvcharx & dst_1);

Additional details This instruction accelerates binary CNN 3D convolution. Per group of 8 byte lanes,

this instruction delivers 1024 XNor-accumulate throughput per instruction via 8

horizontal taps (S) x 4 deep taps (C) x 2 sets x 16 lanes of accumulator of XNOR-

add throughput. Each instruction delivers 8 x 4 x 2 x 64 = 4096 binary XNOR-

accumulate throughput.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 360

Instruction name VXNorAdd8x4x2_CA

Data is read from src1a and src1b (together 4 single registers supplying 4 rows of

data). In each group of 8 byte lanes, each single vector source supplies 16 + 8 – 1 =

23 bits from the first 3 extended byte lanes.

Coefficients are read from src2. For 2 sets of 8x4 binary coefficients, we need

2*8*4 = 64 bits, and they are read from 8 extended byte lanes of src2.

Accumulators are read from and written back to src3dst, which is a quad

extended ARF (XARF) register. In each slice, we need 2 sets x 16 horizontal lanes x

16-bit accumulator = 512 bits of accumulators, provided by 4 registers x 8 lanes x

(12 + 4) bits from twice extended byte type = 512 bits of src3dst.

A 32-bit mask is read from scalar register PL to enable/disable each XNor

contribution to the accumulation. This is needed to trim the horizontal 8 taps

and/or vertical 4 taps as needed to implement arbitrary weight tensor dimension

through looping. For example, when S = 13 and C = 3, we would accumulate

throughput looping, first 8 x 3 then 5 x 3 weight data, and would need to feed PL

with correct mask values for these 2 sets of weight data.

In a non-binary CNN, weights can be zero-padded as needed to trim the weight

set. However, in binary CNN, we are matching activation binary with weight binary,

and there is no room in the weight binary to encode a neutral weight value needed

to trim down the weight tensor dimension. It’s technically possible to use 2 bits

per tap of weight to encode “don’t care”, but this would double the weight storage

and traffic so is less efficient. The weight mask provides a mechanism to trim the

weight dimension.

Horizontally overlapped 8x4 data bits are XNORed with 2 sets of horizontally

shared 8x4 coefficient bits, then ANDed with the 8x4 mask bits. When predicate is

off, the destination is replaced with the masked sum of XNOR terms, effectively

clearing the accumulator. Otherwise, the masked sum of XNOR terms is added to

the accumulator.

Data layout per 96-bit:

Lowest byte lane Highest byte lane

src1a.lo D[0][0..7] D[0][8..15] D[0][16..23] D.C. D.C. D.C. D.C. D.C.

src1a.hi D[1][0..7] D[1][8..15] D[2][16..23] D.C. D.C. D.C. D.C. D.C.

src1b.lo D[2][0..7] D[2][8..15] D[2][16..23] D.C. D.C. D.C. D.C. D.C.

src1b.hi D[3][0..7] D[3][8..15] D[3][16..23] D.C. D.C. D.C. D.C. D.C.

src2 C[0][0][0..7] C[0][1][0..7] C[0][2][0..7] C[0][3][0..7] C[1][0][0..7] C[1][1][0..7] C[1][2][0..7] C[1][3][0..7]

src3dst.q0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] ACC[0][8] ACC[0][10] ACC[0][12] ACC[0][14]

src3dst.q1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] ACC[0][9] ACC[0][11] ACC[0][13] ACC[0][15]

src3dst.q2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] ACC[1][8] ACC[1][10] ACC[1][12] ACC[1][14]

src3dst.q3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] ACC[1][9] ACC[1][11] ACC[1][13] ACC[1][15]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 361

XRF and ARF together provides the 16-bit accumulator as src3 and destination; XRF

provides 4 upper bits and ARF provides the lower 12 bits for each accumulator:

src3dst.x0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6] ACC[0][8] ACC[0][10] ACC[0][12] ACC[0][14]

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7] ACC[0][9] ACC[0][11] ACC[0][13] ACC[0][15]

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6] ACC[1][8] ACC[1][10] ACC[1][12] ACC[1][14]

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7] ACC[1][9] ACC[1][11] ACC[1][13] ACC[1][15]

In the data layout diagram, each column represents a 12-bit extended byte lane. Each

“D.C.” entry represents a 12-bit don’t care value. Each entry in the src1a/src1b/src2

rows having 8 bits of activation/weight data also includes 4 upper don’t care bits.

Activation inputs involved are indexed as D[C][W], C being input depth and W being

horizontal index. Coefficients (or weights) are indexed as C[K][C][S], K being output

depth, C being input depth, and S being kernel horizontal index. Accumulators are

indexed as ACC[K][Q], K being output depth and Q being output horizontal index. Mask

bits are indexed as mask[C][S], C being input depth and S being kernel horizontal index.

The instructions carry out this nested for loop in each group of 8 byte lanes of vector

math to add to the accumulators when predicate is true:

for (k = 0..1) // output depth (K)
 for (q=0..15) // output horizontal (Q)
 for (s=0..7) // kernel horizontal (S)
 ACC[k][q] += (mask[0][s] & ~(C[k][0][s] ^ D[0][q+s]))
 + (mask[1][s] & ~(C[k][1][s] ^ D[1][q+s]))
 + (mask[2][s] & ~(C[k][2][s] ^ D[2][q+s]))
 + (mask[3][s] & ~(C[k][3][s] ^ D[3][q+s]));

Otherwise (when predicate is false), we write bit counts of XNor between binary

activation and weights to the accumulators, resulting in this behavior:

for (k = 0..1) // output depth (K)
 for (q=0..15) // output horizontal (Q)
 ACC[k][q] = 0;
 for (s=0..7) // kernel horizontal (S)
 ACC[k][q] += (mask[0][s] & ~(C[k][0][s] ^ D[0][q+s]))
 + (mask[1][s] & ~(C[k][1][s] ^ D[1][q+s]))
 + (mask[2][s] & ~(C[k][2][s] ^ D[2][q+s]))
 + (mask[3][s] & ~(C[k][3][s] ^ D[3][q+s]));

For intended binary CNN mapping, the 4 slices are supplied with activation data with 16

bits of offset between slices. It’s 16 bits because each slice produces 2 planes x 16

horizontal outputs. We intend to use VLDPermHBU_P with permute indices {0, 1, 1, 1, 1,

2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4} to permute bit-packed activation data in memory as

Halfwords, then take the 16 permuted halfwords and zero-extend each 8-bit into 12-bit

extended byte lane in each single vector register in src1a/src1b.

The same 2 * 8 * 4 = 64 bits of weight data is replicated among slices, so we can use

VLDPermHBU_P with permute indices {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3} to

permute bit-packed weight data in memory as Halfwords, then take the 16 permuted

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 362

halfwords and zero-extend each 8-bit into 12-bit extended byte lane in the single vector

register src2.

9.8.7.17 VDOTP4_CA

This is an instruction added in Gen-2 VPU to accelerate matrix multiplication by 2x.

One use case is bilinear interpolation. Another use case is fully connected convolution

layer.

Instruction name VDotP4_CA

Functionality Vector 4-term dot product

Assembly format <pred> VDotP4HHW/BBH_CA DVsrc1a, DVsrc1b, Wsrc2, DACsrc3dst

<pred> VDotP4WHW_CA DVsrc1a, DVsrc1b, Wsrc2, ACsrc3dst

<pred> VDotP4BBW_CA DVsrc1a, DVsrc1b, Wsrc2, DXACsrc3dst

pred = none, [P2..P15]

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

WHW: 8 x (33-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: double vector register in VRF

src1b: double vector register in VRF

src2:: single vector register in WRF

Destination options src3dst: BBH/HHW: double vector register in ARF

 WHW: single vector register in ARF

 BBW: double vector register in XARF

Additional options

Intrinsics/operator dvshortx vdotp4_bbh(dvcharx src1a, dvcharx src1b, vcharx src2, dvshortx
src3dst, int pred);

dvintx vdotp4_hhw(dvshortx src1a, dvshortx src1b, vshortx src2, dvintx
src3dst, int pred);

vintx vdotp4_whw(dvintx src1a, dvintx src1b, vshortx src2, vintx
src3dst, int pred);

dxvshortx vdotp4_bbw(dvcharx src1a, dvcharx src1b, vcharx src2,
dxvshortx src3dst, int pred);

Additional details When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to

the accumulator.

There are 4 independent data vectors. Coefficients are shared, within each group

of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 363

Instruction name VDotP4_CA

Accumulators for HHW are in a double vector register to accommodate type

promotion. Accumulators for W are in a single vetor register.

BBH data, coefficient, accumulator layout per group of 4 byte lanes:

HHW data, coefficient, accumulator layout per group of 4 halfword lanes:

src1a.lo D[0][0] D[0][1] D[0][2] D[0][3]

src1a.hi D[1][0] D[1][1] D[1][2] D[1][3]

src1b.lo D[2][0] D[2][1] D[2][2] D[2][3]

src1b.hi D[3][0] D[3][1] D[3][2] D[3][3]

src2 C[0] C[1] C[2] C[3]

src3dst.lo ACC[0] ACC[2]

src3dst.hi ACC[1] ACC[3]

ACC[0] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3];

ACC[1] += D[0][1] * C[0] + D[1][1] * C[1] + D[2][1] * C[2] + D[3][1] * C[3];

ACC[2] += D[0][2] * C[0] + D[1][2] * C[1] + D[2][2] * C[2] + D[3][2] * C[3];

ACC[3] += D[0][3] * C[0] + D[1][3] * C[1] + D[2][3] * C[2] + D[3][3] * C[3];

For VDotP4BBW, XRF provides 8 upper bits for each accumulator:

src3dst.x0 ACC[0] ACC[2]

src3dst.x1 ACC[1] ACC[3]

WHW data, coefficient, accumulator layout per 96-bit:

src1a.lo D[0][0] D[0][1]

src1a.hi D[1][0] D[1][1]

src1b.lo D[2][0] D[2][1]

src1b.hi D[3][0] D[3][1]

src2 C[0] C[1] C[2] C[3]

src3dst ACC[0] ACC[1]

ACC[0] += D[0][0] * C[0] + D[1][0] * C[1] + D[2][0] * C[2] + D[3][0] * C[3];

ACC[1] += D[0][1] * C[0] + D[1][1] * C[1] + D[2][1] * C[2] + D[3][1] * C[3];

See 6.2.3.6 for data ordering in single/double vector registers.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 364

9.8.7.18 VDOTP4x2_CA

This is an instruction added in Gen-2 VPU to accelerate 16-bit matrix multiplication by

4x. It’s doing twice the amount of work compared to VDotP4_CA by accepting two sets

of coefficients (src2) and accumulating onto two sets of accumulators.

Instruction name VDotP4x2_CA

Functionality Vector 4-term dot product

Assembly format <pred> VDotP4x2BBH/HHW_CA DVsrc1a, DVsrc1b, DWsrc2, QACsrc3dst

<pred> VDotP4x2BBW_CA DVsrc1a, DVsrc1b, DWsrc2, QXACsrc3dst

pred = none, [P2..P15]

Type and bit width BBH: 32 x (9-bit src1a/src1b, 9-bit src2, 24-bit src3dst)

HHW: 16 x (17-bit src1a/src1b, 17-bit src2, 48-bit src3dst)

BBW: 32 x (9-bit src1a/src1b, 9-bit src2, 32-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: double vector register in VRF

src1b: double vector register in VRF

src2: double vector register in WRF

Destination options src3dst: quad vector register in ARF (BBH/HHW)

 quad vector register in XARF (BBW)

Additional options

Intrinsics/operator void vdotp4x2_bbh(dvcharx src1a, dvcharx src1b, dvcharx src2, dvshortx
src3_0, dvshortx src3_1, int pred, dvshortx & dst_0, dvshortx & dst_1);

void vdotp4x2_hhw(dvshortx src1a, dvshortx src1b, dvshortx src2, dvintx
src3_0, dvintx src3_1, int pred, dvintx & dst_0, dvintx & dst_1);

void vdotp4x2_bbw(dvcharx src1a, dvcharx src1b, dvcharx src2, dxvshortx
src3_0, dxvshortx src3_1, int pred, dxvshortx &dst_0, dxvshortx &dst_1);

Additional details When predicate is off, destination is replaced with the sum of 4 products,

effectively clearing the accumulator. Otherwise, the sum of 4 products is added to

the accumulator.

There are 4 independent data vectors. Coefficients are shared, within each group

of 4 byte lanes for BBW, and within each group of 4 halfword lanes for HHW.

Accumulators are in a quad vector register to accommodate type promotion.

BBH data, coefficient, accumulator layout per 48-bit:

Also, HHW data, coefficient, accumulator layout per 96-bit:

src1a.lo D[0][0] D[0][1] D[0][2] D[0][3]

src1a.hi D[1][0] D[1][1] D[1][2] D[1][3]

src1b.lo D[2][0] D[2][1] D[2][2] D[2][3]

src1b.hi D[3][0] D[3][1] D[3][2] D[3][3]

src2.lo C[0][0] C[0][1] C[0][2] C[0][3]

src2.hi C[1][0] C[1][1] C[1][2] C[1][3]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 365

Instruction name VDotP4x2_CA

src3dst.q0 ACC[0][0] ACC[0][2]

src3dst.q1 ACC[0][1] ACC[0][3]

src3dst.q2 ACC[1][0] ACC[1][2]

src3dst.q3 ACC[1][1] ACC[1][3]

ACC[0][0] += D[0][0] * C[0][0] + D[1][0] * C[0][1] + D[2][0] * C[0][2] + D[3][0] * C[0][3];

ACC[0][1] += D[0][1] * C[0][0] + D[1][1] * C[0][1] + D[2][1] * C[0][2] + D[3][1] * C[0][3];

ACC[0][2] += D[0][2] * C[0][0] + D[1][2] * C[0][1] + D[2][2] * C[0][2] + D[3][2] * C[0][3];

ACC[0][3] += D[0][3] * C[0][0] + D[1][3] * C[0][1] + D[2][3] * C[0][2] + D[3][3] * C[0][3];

ACC[1][0] += D[0][0] * C[1][0] + D[1][0] * C[1][1] + D[2][0] * C[1][2] + D[3][0] * C[1][3];

ACC[1][1] += D[0][1] * C[1][0] + D[1][1] * C[1][1] + D[2][1] * C[1][2] + D[3][1] * C[1][3];

ACC[1][2] += D[0][2] * C[1][0] + D[1][2] * C[1][1] + D[2][2] * C[1][2] + D[3][2] * C[1][3];

ACC[1][3] += D[0][3] * C[1][0] + D[1][3] * C[1][1] + D[2][3] * C[1][2] + D[3][3] * C[1][3];

BBW data, coefficient layout per 48-bit is the same as that of BBH.

BBW accumulator is similar, with layout of lower 24-bit of each accumulator same

as that of BBH, and upper 8-bit of each accumulator in the extension part of

XARF:

 src3dst.x0 ACC[0][0] ACC[0][2] ACC[0][4] ACC[0][6]

src3dst.x1 ACC[0][1] ACC[0][3] ACC[0][5] ACC[0][7]

src3dst.x2 ACC[1][0] ACC[1][2] ACC[1][4] ACC[1][6]

src3dst.x3 ACC[1][1] ACC[1][3] ACC[1][5] ACC[1][7]

9.8.7.19 VDOTP2x2_CA

Instruction name VDOTP2x2_CA

Functionality Vector 2-term dot product

Assembly format <pred> VDotP2x2W_CA.T16 Vsrc1a, Vsrc1b, DWsrc2, DACsrc3dst

pred = none, [P2..P15]

.T16 is always applied with W type.

Type and bit width W.T16: 8 x (33-bit src1a/src1b, 33-bit src2, 48-bit src3dst)

Predication Available across lanes to clear accumulator

Source options src1a: single vector register in VRF

src1b: single vector register in VRF

src2: double vector register in WRF

Destination options src3dst: single vector register in ARF

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 366

Instruction name VDOTP2x2_CA

Intrinsics/operator dvintx vdotp2x2_w_t16(vintx src1a, vintx src1b, dvintx src2, dvintx src3dst,
int pred);

Additional details W: Treat src1a and src1b as data vector, each being 8 x 31-bit in a 8 x 48-bit

container. Treat src2 as coefficient vector, 2 x 2 x 31-bit in a 2 x 2 x 48-bit

container replicated per group of 2 word lanes. Each product is truncated by 16

bits before being summed.

Data, coefficient, accumulator layout per 96-bit:

src1a D[0][0] D[0][1]

src1b D[1][0] D[1][1]

src2.lo C[0][0] C[0][1]

src2.hi C[1][0] C[1][1]

src3dst.lo ACC[0][0] ACC[0][1]

src3dst.hi ACC[1][0] ACC[1][1]

When predicate is true, do

ACC[0][0] += (D[0][0] * C[0][0] >> 16) + (D[1][0] * C[0][1] >> 16);

ACC[0][1] += (D[0][1] * C[0][0] >> 16) + (D[1][1] * C[0][1] >> 16);

ACC[1][0] += (D[0][0] * C[1][0] >> 16) + (D[1][0] * C[1][1] >> 16);

ACC[1][1] += (D[0][1] * C[1][0] >> 16) + (D[1][1] * C[1][1] >> 16);

Otherwise

ACC[0][0] = (D[0][0] * C[0][0] >> 16) + (D[1][0] * C[0][1] >> 16);

ACC[0][1] = (D[0][1] * C[0][0] >> 16) + (D[1][1] * C[0][1] >> 16);

ACC[1][0] = (D[0][0] * C[1][0] >> 16) + (D[1][0] * C[1][1] >> 16);

ACC[1][1] = (D[0][1] * C[1][0] >> 16) + (D[1][1] * C[1][1] >> 16);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 367

9.8.7.20 VSUMSQ

Instruction name VSUMSQ

Functionality Vector sum of squares

Assembly format VSumSq<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, DVdst/DWdst

type = BBH, HHW

VSumSq<type> Vsrc1/Wsrc1, Vsrc2/Wsrc2, Vdst/Wdst

type = W.T16

Type and bit width BBH: 32 x (9-bit src1/src2 → 24-bit dst)

HHW: 16 x (17-bit src1/src2 → 48-bit dst)

W.T16: 8 x (33-bit src1/src2 → 48-bit dst)

Predication not available

Source options src1: single vector register in VRF/WRF

src2: single vector register in VRF/WRF

Destination options dst: double vector register in VRF/WRF for BBH/HHW

 single vector register in VRF/WRF for W.T16

Additional options

Intrinsics/operator dvshortx vsumsq(vcharx src1, vcharx src2);
dvintx vsumsq(vshortx src1, vshortx src2);
vintx vsumsq_t16(vintx src1, vintx src2);

// double vector pseudo intrinsics
dvintx dvsumsq_t16(dvintx src1, dvintx src2);

Additional details Perform sum of squares operation in each lane,

dst = src1 * src1 + src2 * src2 // BBH/HHW

dst = ((src1 * src1)>>16) + ((src2 * src2)>>16) // W.T16

9/17/33 LSBs of src1 and src2 are used and interpreted as signed numbers.

See 6.2.3.6 for data ordering in single/double vector registers.

VSumSQ can be used in calculation Euclidean distance, sqrt(x^2 + y^2), or

magnitude of a complex number, sqrt(real^2 + imaginary^2).

For example, VSumSqHHW V1, W2, V4:V5 has the following data layout and behavior:

V1: X[0] X[1] X[2] X[3] … X[14] X[15]

W2: Y[0] Y[1] Y[2] Y[3] … Y[14] Y[15]

V4: S[0] S[2] … S[14]

V5: S[1] S[3] … S[15]

S[i] = X[i] * X[i] + Y[i] * Y[i]; // X[i], Y[i] taken from 17 LSBs from each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 368

9.8.7.21 VSQSUM

Instruction name VSQSUM

Functionality Vector square of sum

Assembly format VSqSum<type> Vsrc1, Vsrc2, Vdst/DVdst

Type and bit width BBH: 32 x (9-bit src1/src2 → 24-bit dst)

HHW: 16 x (17-bit src1/src2 → 48-bit dst)

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Destination options dst: BBH/HHW: double vector register in VRF

Additional options

Intrinsics/operator dvshortx vsqsum(vcharx src1, vcharx src2);
dvintx vsqsum(vshortx src1, vshortx src2);

Additional details Perform square of sum operation in each lane.

 dst = (src1 + src2)^2 = src1^2 + src2^2 + 2 * src1 * src2

9/17 LSBs of src1 and src2 are used and interpreted as signed numbers.

See 6.2.3.6 for data ordering in single/double vector registers.

VSqSum can be used to calculate trace-square of a 2x2 matrix, trace being the

sum of two diagonal terms. Trace-sqare is used in the Harris Corner feature point

detection algorithm.

Note that VSqSumW.T16 was considered but deferred. For timing we would implement

it as a^2 + b^2 + 2*a*b, but we would need to add another 32-bit multiplier per W lane to

implement it.

For example, VSqSumBBH V1, V2, V4:V5 has the following data layout and behavior:

V1: X[0] X[1] X[2] X[3] … X[30] X[31]

V2: Y[0] Y[1] Y[2] Y[3] … Y[30] Y[31]

V4: S[0] S[2] … S[30]

V5: S[1] S[3] … S[31]

S[i] = (X[i] + Y[i]) * (X[i] + Y[i]); // X[i], Y[i] taken from 9 LSBs from each lane

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 369

9.8.7.22 VDET2x2

Instruction name VDET2x2

Functionality Vector 2x2 matrix determinant

Assembly format VDet2x2<type> DVsrc1, DVsrc2, Vdst/DVdst

VDet2x2<type> DVsrc1, DWsrc2, Vdst/DVdst

VDet2x2<type> DWsrc1, DVsrc2, Vdst/DVdst

Type and bit width HHW: 16 x (17-bit src1/src2 → 48-bit dst)

W.T16: 8 x (33-bit src1/src2 → 48-bit dst)

Predication Not available

Source options src1: double vector register in VRF or WRF

src2: double vector register in VRF or WRF

Destination options dst: HHW: double vector register in VRF

 W.T16: single vector register in VRF

Additional options

Intrinsics/operator dvintx vdet2x2_hhw(dvshortx src1, dvshortx src2);
vintx vdet2x2_w_t16(dvintx src1, dvintx src2);

Additional details Treat two double vector sources as 4 entries in a 2x2 matrix.

Src1.lo contains A00, src1.hi contains A01, src2.lo contains A10, src2.hi contains

A11, in each lane.

For HHW return A00*A11 – A01*A10 in each lane, extending precision into a

double vector.

For W.T16 return ((A00*A11)>>16) – ((A01*A10)>>16) in each lane, keeping word

precision in a single vector.

See 6.2.3.6 for data ordering in single/double vector registers.

For example, VDet2x2HHW V0:V1, V2:V3, V4:V5 has the following data layout and

behavior:

V0: X[0] X[1] X[2] X[3] … X[14] X[15]

V1: Y[0] Y[1] Y[2] Y[3] … Y[14] Y[15]

V2: Z[0] Z[1] Z[2] Z[3] Z[14] Z[15]

V3: W[0] W[1] W[2] W[3] W[14] W[15]

V4: S[0] S[2] … S[14]

V5: S[1] S[3] … S[15]

S[i] = det ([
X[i] Y[i]
Z[i] W[i]

]) = X[i] ∗ W[i] − Y[i] ∗ Z[i]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 370

9.8.8 Vector Floating-point Instructions

9.8.8.1 Instruction Summary

Floating-point add, subtract, multiply, multiply-add, and float-to-int, int-to-float

conversion instructions are available in the vector math V0 and V1 instruction slots. The

main vector register file VRF and working register file WRF supply the sources and

destination of FP instructions.

FP multiply-add is implemented with a fused multiply-add datapath that preserves full

product precision and has higher precision than separate FP multiply and FP add

operations.

Invalid outcome is captured in the sticky invalid status bit, INV, as described in section

9.4.5.

Handling of NaN and various corner cases in vector FP math follows that of scalar FP

math. FP comparison behavior of vector FP math follows that of scalar FP math. See FP

Math Corner Cases, FP Comparison Corner Cases, and FP Conversion Corner Cases for

corner case details.

Table 36. Vector floating-point instructions

Function Assembly Format Comments

Vector FP add VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP subtract VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP multiply VMulF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP multiply-

add

VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2,

Vsrc3dst

Vector FP multiply-

subtract

VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Vector FP16 add VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

subtract

VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

multiply

VMulHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

multiply-add

VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2,

Vsrc3dst

Vector FP16

multiply-subtract

VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Vector INT to FP

conversion

VINT_FP Vsrc1, Vdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 371

Function Assembly Format Comments

Vector FP to INT

conversion with

truncation

VFP_INT_Trunc Vsrc, Vdst

Vector FP to INT

conversion with

rounding

VFP_INT_Round Vsrc, Vdst

Vector INTX to FP

conversion

VINTX_FP Vsrc1, Vdst

Vector FP to INTX

conversion with

truncation

VFP_INTX_Trunc Vsrc, Vdst

Vector FP to INTX

conversion with

rounding

VFP_INTX_Round Vsrc, Vdst

Vector INT to FP16

conversion

VINT_FP16 DVsrc1, Rsrc2, Vdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector FP16 to INT

conversion wth

truncation

VFP16_INT_Trunc Vsrc1, Rsrc2, DVdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector FP16 to INT

conversion wth

rounding

VFP16_INT_Round Vsrc1, Rsrc2, DVdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector INT24 to

FP16 conversion

VINT24_FP16 Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector FP16 to

INT24 conversion

wth truncation

VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector FP16 to

INT24 conversion

wth rounding

VFP16_INT24_Round Vsrc1, Rsrc2, Vdst Rsrc2 conveys qbit

for fixed-point

representation.

Vector FP16 to FP32

conversion

VFP16_FP Vsrc, DVdst

Vector FP32 to FP16

conversion

VFP_FP16 DVsrc, Vdst

Vector FP compare

LT

VCmpLTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare

LE

VCmpLEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare

GT

VCmpGTF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP compare

GE

VCmpGEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 372

Function Assembly Format Comments

Vector FP compare

EQ

VCmpEQF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Vector FP compare

NE

VCmpNEF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Vector FP16

compare LT

VCmpLTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,

Vdst/Wdst

Vector FP16

compare LE

VCmpLEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,

Vdst/Wdst

Vector FP16

compare GT

VCmpGTHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,

Vdst/Wdst

Vector FP16

compare GE

VCmpGEHF

Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Vector FP16

compare EQ

VCmpEQHF

Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,Vdst/Wdst

Vector FP16

compare NE

VCmpNEHF Vsrc1/Wsrc1,Vsrc2/Wsrc2/Rsrc2,

Vdst/Wdst

Vector FP reciprocal VRCPF Vsrc/Wsrc, Vdst/Wdst

Vector FP square

root

VSQRTF Vsrc/Wsrc, Vdst/Wdst

Vector FP reciprocal

square root

VRSQF Vsrc/Wsrc, Vdst/Wdst

Vector FP

exponential base-2

VEXP2F Vsrc/Wsrc, Vdst/Wdst

Vector FP logarithm

base-2

VLOG2F Vsrc/Wsrc, Vdst/Wdst

Vector FP sine VSINF Vsrc/Wsrc, Vdst/Wdst

Vector FP cosine VCOSF Vsrc/Wsrc, Vdst/Wdst

Vector FP hyperbolic

tangent

VTANHF Vsrc/Wsrc, Vdst/Wdst

9.8.8.2 VAddF

Instruction name VAddF

Functionality Floating-point add

Assembly format VAddF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 373

Instruction name VAddF

Additional options

Intrinsics/operator vfloatx operator+(vfloatx src1, vfloatx src2);
vfloatx operator+(vfloatx src1, float src2);
vfloatx vaddf(vfloatx src1, vfloatx src2);
vfloatx vaddf(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvfloatx operator+(dvfloatx src1, dvfloatx src2);
dvfloatx operator+(dvfloatx src1, float src2);
dvfloatx dvaddf(dvfloatx src1, dvfloatx src2);
dvfloatx dvaddf(dvfloatx src1, float src2);

Additional details IEEE compliant floating-point add. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Outcome sign extended to fill bits 47 ~ 32.

9.8.8.3 VSubF

Instruction name VSubF

Functionality Floating-point subtract

Assembly format VSubF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit (sign-extend FP32 to 48-bit

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx operator-(vfloatx src1, vfloatx src2);
vfloatx operator-(vfloatx src1, float src2);
vfloatx vsubf(vfloatx src1, vfloatx src2);
vfloatx vsubf(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvfloatx operator-(dvfloatx src1, dvfloatx src2);
dvfloatx operator-(dvfloatx src1, float src2);
dvfloatx dvsubf(dvfloatx src1, dvfloatx src2);
dvfloatx dvsubf(dvfloatx src1, float src2);

Additional details IEEE compliant floating-point subtract. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 374

Instruction name VSubF

Set the invalid status flag when any input or output is NaN.

Outcome sign extended to fill bits 47 ~ 32.

9.8.8.4 VMulF

Instruction name VMulF

Functionality Floating-point multiply

Assembly format VMulF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx operator*(vfloatx src1, vfloatx src2);
vfloatx operator*(vfloatx src1, float src2);
vfloatx vmulf(vfloatx src1, vfloatx src2);
vfloatx vmulf(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvfloatx operator*(dvfloatx src1, dvfloatx src2);
dvfloatx operator*(dvfloatx src1, float src2);
dvfloatx dvmulf(dvfloatx src1, dvfloatx src2);
dvfloatx dvmulf(dvfloatx src1, float src2);

Additional details IEEE compliant floating-point multiply. Handles denormal, zero, infinity, NaN.

Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Outcome sign extended to fill bits 47 ~ 32.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 375

9.8.8.5 VMAddF

Instruction name VMAddF

Functionality Floating-point multiply-add

Assembly format VMAddF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst

pred = none, [P2..P15]

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication Available across lanes to clear accumulator (CA variation)

Source options unpredicated:

 src1/src3: vector register in VRF

src2: vector register WRF or scalar register

predicated (_CA):

 src1/src3: vector register in VRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3);
vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3);
vfloatx vmaddf(vfloatx src1, vfloatx src2, vfloatx src3, int pred);
vfloatx vmaddf(vfloatx src1, float src2, vfloatx src3, int pred);

// Double vector pseudo intrinsics
dvfloatx dvmaddf(dvfloatx src1, dvfloatx src2, dvfloatx src3);
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3);
dvfloatx dvmaddf(dvfloatx src1, dvfloatx src2, dvfloatx src3, int
pred);
dvfloatx dvmaddf(dvfloatx src1, float src2, dvfloatx src3, int
pred);

Additional details Performing multiply-add with IEEE compliant floating-point multiply and add.

Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Outcome sign extended to fill bits 47 ~ 32.

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise

perform src1 * src2 + positive_zero, ignoring the src3 input.

Note that for corner cases around positive/negative zeros, src1 * src2 and

src1 * src2 + positive_zero produce different outcomes.

Example:

 VMAddF V1, V2, V3, V4

would perform V4 = V1 * V2 + V3 in each Word lane.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 376

9.8.8.6 VMSubF

Instruction name VMSubF

Functionality Floating-point multiply-subtract

Assembly format VMSubF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication Not available

Source options src1/src3: vector register in VRF

src2: vector register in WRF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vmsubf(vfloatx src1, vfloatx src2, vfloatx src3);
vfloatx vmsubf(vfloatx src1, float src2, vfloatx src3);

// Double vector pseudo intrinsics
dvfloatx dvmsubf(dvfloatx src1, dvfloatx src2, dvfloatx src3);
dvfloatx dvmsubf(dvfloatx src1, float src2, dvfloatx src3);

Additional details Performing IEEE compliant floating-point multiply-sub, src3 – src1 * src2.

Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Outcome sign extended to fill bits 47 ~ 32.

Example:

 VMSubF V1, W2, V3, V4

would perform V4 = V3 – V1 * W2 in each Word lane.

9.8.8.7 VAddHF

Instruction name VAddHF

Functionality FP16 add

Assembly format VAddHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator+(vhfloatx src1, vhfloatx src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 377

Instruction name VAddHF

vhfloatx operator+(vhfloatx src1, hfloat src2);
vhfloatx vaddhf(vhfloatx src1, vhfloatx src2);
vhfloatx vaddhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvhfloatx operator+(dvhfloatx src1, dvhfloatx src2);
dvhfloatx operator+(dvhfloatx src1, hfloat src2);
dvhfloatx dvaddhf(dvhfloatx src1, dvhfloatx src2);
dvhfloatx dvaddhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 addition performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register.

IEEE compliant half-precision floating-point add. Handles denormal, zero,

infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.8.8 VSubHF

Instruction name VSubHF

Functionality FP16 subtract

Assembly format VSubHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator-(vhfloatx src1, vhfloatx src2);
vhfloatx operator-(vhfloatx src1, hfloat src2);
vhfloatx vsubhf(vhfloatx src1, vhfloatx src2);
vhfloatx vsubhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvhfloatx operator-(dvhfloatx src1, dvhfloatx src2);
dvhfloatx operator-(dvhfloatx src1, hfloat src2);
dvhfloatx dvsubhf(dvhfloatx src1, dvhfloatx src2);
dvhfloatx dvsubhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 subtraction performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 378

Instruction name VSubHF

IEEE compliant half-precision floating-point add. Handles denormal, zero,

infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.8.9 VMulHF

Instruction name VMulHF

Functionality FP16 multiply

Assembly format VMulHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication not available

Source options src1: vector register in VRF/WRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF/WRF

Additional options

Intrinsics/operator vhfloatx operator*(vhfloatx src1, vhfloatx src2);
vhfloatx operator*(vhfloatx src1, hfloat src2);
vhfloatx vmulhf(vhfloatx src1, vhfloatx src2);
vhfloatx vmulhf(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvhfloatx operator*(dvhfloatx src1, dvhfloatx src2);
dvhfloatx operator*(dvhfloatx src1, hfloat src2);
dvhfloatx dvmulhf(dvhfloatx src1, dvhfloatx src2);
dvhfloatx dvmulhf(dvhfloatx src1, hfloat src2);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 multiplication performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register.

IEEE compliant half-precision floating-point multiply. Handles denormal, zero,

infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 379

9.8.8.10 VMAddHF

Instruction name VMAddHF

Functionality FP16 multiply-add

Assembly format VMAddHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

<pred> VMAddHF_CA Vsrc1, Vsrc2/Wsrc2/Rsrc2, Vsrc3dst

pred = none, [P2..P15]

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication Instruction level predication

Source options unpredicated:

 src1/src3: vector register in VRF

src2: vector register WRF or scalar register

predicated (_CA):

 src1/src3: vector register in VRF

src2: vector register VRF/WRF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);
vhfloatx vmaddhf(vhfloatx src1, hfloat src2, vhfloatx src3);
vhfloatx vmaddhf(vhfloatx src1, vhfloatx src2, vhfloatx src3, int
pred);
vhfloatx vmaddhf(vhfloatx src1, hfloat src2, vhfloatx src3, int
pred);

// Double vector pseudo intrinsics
dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat src2, dvhfloatx src3);
dvhfloatx dvmaddhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3,
int pred);
dvhfloatx dvmaddhf(dvhfloatx src1, hfloat src2, dvhfloatx src3, int
pred);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 multiply-add performed, and FP16 outcome is sign-

extended to 24-bit in each Halfword lane of the destination register.

When predicate is true, perform multiply-add src1 * src2 + src3. Otherwise

perform src1 * src2 + positive_zero, ignoring the src3 input.

Fused multiply-add is performed, preserving intermediate precision as much

as possible. Handles denormal, zero, infinity, NaN. Generates quiet NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 380

9.8.8.11 VMSubHF

Instruction name VMSubHF

Functionality FP16 multiply-subtract

Assembly format VMSubHF Vsrc1, Wsrc2/Rsrc2, Vsrc3, Vdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit float (sign-extend FP16 to 24-bit)

Predication Not available

Source options src1/src3: vector register in VRF

src2: vector register in WRF or scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx vmsubhf(vhfloatx src1, vhfloatx src2, vhfloatx src3);
vhfloatx vmsubhf(vhfloatx src1, hfloat src2, vhfloatx src3);

// Double vector pseudo intrinsics
dvhfloatx dvmsubhf(dvhfloatx src1, dvhfloatx src2, dvhfloatx src3);
dvhfloatx dvmsubhf(dvhfloatx src1, hfloat src2, dvhfloatx src3);

Additional details Least significant 16 bits of each Halfword lane in each source are read as

FP16 numbers, FP16 multiply-subtract performed, and FP16 outcome is

sign-extended to 24-bit in each Halfword lane of the destination register.

Fused multiply-subtract is performed, preserving intermediate precision as

much as possible. Handles denormal, zero, infinity, NaN. Generates quiet

NaN.

Only rounding mode supported is round to nearest, ties to even.

Set the invalid status flag when any input or output is NaN.

9.8.8.12 VINT_FP

Instruction name VINT_FP

Functionality Integer to floating-point conversion

Assembly format VINT_FP Vsrc, Vdst

Type and bit width Input: 8 x 48-bit integer

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vint_vfp(vintx src);

// Double vector pseudo intrinsics
dvfloatx dvint_dvfp(dvintx src);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 381

Instruction name VINT_FP

Additional details Each Word-lane 48-bit integer input is first saturated to 32-bit integer range,

[-2^31, 2^31-1], before converting to 32-bit floating-point. Each 32-bit

floating-point outcome is sign-extended back into a 48-bit Word lane.

The 32-bit integer to 32-bit floating-point conversion process is the same as

in INT_FP scalar instruction.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.8.8.13 VFP_INT_Trunc

Instruction name VFP_INT_Trunc

Functionality Floating-point to integer conversion

Assembly format VFP_INT_Trunc Vsrc, Vdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit integer

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vintx vfp_vint_trunc(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvint_trunc(dvfloatx src);

Additional details FP32 to integer conversion with truncation.

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is trunc(1.5) = 1

Note that

- truncation is used during the conversion, consistent with C float-to-int type

casting.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is

saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 382

9.8.8.14 VFP_INT_Round

Instruction name VFP_INT_Round

Functionality Floating-point to integer conversion

Assembly format VFP_INT_Round Vsrc, Vdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit integer

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vintx vfp_vint_round(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvint_round(dvfloatx src);

Additional details FP32 to integer conversion with rounding.

For example, if input is 0x3FC0_0000 (1.5 in FP32), output is round(1.5) = 2,

as 1.5 is tied between 1 and 2, so we round to 2 (even).

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value exceeds 32-bit int representation range, output is

saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

Gen-1 legacy intrinsic function f32_to_i32() is supported. As it implements

rounding implicitly, programmers are strongly encouraged to switch to Gen-2

intrinsic function fp_int_round() to avoid confusion.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 383

9.8.8.15 VINTX_FP

Instruction name VINTX_FP

Functionality Extended integer to floating-point conversion

Assembly format VINTX_FP Vsrc, Vdst

Type and bit width Input: 8 x 48-bit integer

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vfloatx vintx_vfp(vintx src);

// Double vector pseudo intrinsics
dvfloatx dvintx_dvfp(dvintx src);

Additional details Each Word-lane 48-bit integer input is converted to 32-bit floating-point. Each

32-bit floating-point outcome is sign-extended back into a 48-bit Word lane.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

9.8.8.16 VFP_INTX_Trunc

Instruction name VFP_INTX_Trunc

Functionality Floating-point to extended integer conversion with truncation

Assembly format VFP_INTX_Trunc Vsrc, Vdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit integer

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vintx vfp_vintx_trunc(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvintx_trunc(dvfloatx src);

Additional details FP32 to INT48 conversion with truncation.

Note that

- truncation is used during the conversion, consistent with C float-to-int type

casting.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 48-bit int value (0x7FFF_FFFF_FFFF).

- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 384

Instruction name VFP_INTX_Trunc

- When output value exceeds 48-bit int representation range, output is

saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF.

- NaN maps to either 0x8000_0000_0000 or 0x7FFF_FFFF_FFFF, preserving

the sign.

- The invalid status flag is NOT set when input is NaN.

9.8.8.17 VFP_INTX_Round

Instruction name VFP_INTX_Round

Functionality Floating-point to extended integer conversion with rounding

Assembly format VFP_INTX_Round Vsrc, Vdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit integer

Predication not available

Source options vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vintx vfp_vintx_round(vfloatx src);

// Double vector pseudo intrinsics
dvintx dvfp_dvintx_round(dvfloatx src);

Additional details FP32 to INT48 conversion with rounding.

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 48-bit int value (0x7FFF_FFFF_FFFF).

- Minus infinity maps to minimal 48-bit int value (0x8000_0000_0000).

- When output value exceeds 48-bit int representation range, output is

saturated between 0x8000_0000_0000 and x7FFF_FFFF_FFFF.

- NaN maps to either 0x8000_0000_0000 or 0x7FFF_FFFF_FFFF, preserving

the sign.

- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 385

9.8.8.18 VINT_FP16

Instruction name VINT_FP16

Functionality Integer to 16-bit floating-point conversion

Assembly format VINT_FP16 DVsrc1, Rsrc2, Vdst

Type and bit width Input: 2 x 8 x 48-bit integer

Output: 16 x 24-bit (FP16 sign-extend to 24-bit)

Predication not available

Source options src1: double vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx dvint_vfp16(dvintx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in source

fixed-point representation. dst = src1 / 2^src2.

Each Word-lane 48-bit integer input is first saturated to 32-bit integer range,

[-2^31, 2^31-1], before converting to 16-bit floating-point along with the

qbit information. Each 16-bit floating-point outcome is sign-extended back

into a 24-bit Halfword lane.

The 32-bit integer to 16-bit floating-point conversion process is the same as

in INT_FP16 scalar instruction.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

Where output absolute value falls below normal FP16 range, denormal FP16

output is generated.

Conversion inputs come interleaved from a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 386

9.8.8.19 VFP16_INT_Trunc

Instruction name VFP16_INT_Trunc

Functionality Floating-point to integer conversion with truncation

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst

Type and bit width Input: 16 x 16-bit (16 LSBs of each 24-bit lane)

Output: 2 x 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options double vector register in VRF

Additional options

Intrinsics/operator dvintx vfp16_dvint_trunc(vhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in

destination fixed-point representation. dst = trunc(src1 * 2^src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container).

Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value trunc(src1 * 2^src2) exceeds 32-bit int representation

range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

- Conversion outputs are deinterleaved into a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 387

9.8.8.20 VFP16_INT_Round

Instruction name VFP16_INT_Round

Functionality Floating-point to integer conversion with rounding

Assembly format VFP16_INT_Round Vsrc1, Rsrc2, DVdst

Type and bit width Input: 16 x 16-bit (16 LSBs of each 24-bit lane)

Output: 2 x 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options double vector register in VRF

Additional options

Intrinsics/operator dvintx vfp16_dvint_round(vhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 31]) conveys qbit in

destination fixed-point representation. dst = round(src1 * 2^src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container).

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 32-bit int value (0x7FFF_FFFF).

- Minus infinity maps to minimal 32-bit int value (0x8000_0000).

- When output value round(src1 * 2^src2) exceeds 32-bit int representation

range, output is saturated between 0x8000_0000 and x7FFF_FFFF.

- NaN maps to either 0x8000_0000 or 0x7FFF_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

- Conversion outputs are deinterleaved into a double vector register.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 388

9.8.8.21 VINT24_FP16

Instruction name VINT24_FP16

Functionality 24-bit integer to 16-bit floating-point conversion

Assembly format VINT24_FP16 Vsrc1, Rsrc2, Vdst

Type and bit width Input: 16 x 24-bit integer

Output: 16 x 24-bit (FP16 sign-extend to 24-bit)

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx vint24_vfp16(vshortx src1, int src2);

// Double vector pseudo intrinsics
dvhfloatx dvint24_dvfp16(dvshortx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in source

fixed-point representation. dst = src1 / 2^src2.

Note that rounding is included in this instruction’s functionality.

Only rounding mode supported is round to nearest, ties to even.

Each 16-bit floating-point output is sign-extended into a Halfword lane (24-

bit container).

Where output absolute value falls below normal FP16 range, denormal FP16

output is generated.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 389

9.8.8.22 VFP16_INT24_Trunc

Instruction name VFP16_INT24_Trunc

Functionality Floating-point to integer conversion with truncation

Assembly format VFP16_INT24_Trunc Vsrc1, Rsrc2, Vdst

Type and bit width Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vshortx vfp16_vint24_trunc(vhfloatx src1, int src2);

// Double vector pseudo intrinsics
dvshortx dvfp16_dvint24_trunc(dvhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in destination

fixed-point representation. dst = trunc(src1 * 2^src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container).

Note that

- truncation is used during the conversion.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 24-bit int value (0x7F_FFFF).

- Minus infinity maps to minimal 24-bit int value (0x80_0000).

- When output value trunc(src1 * 2^src2) exceeds 24-bit int representation

range, output is saturated between 0x80_0000 and x7F_FFFF.

- NaN maps to either 0x80_0000 or 0x7F_FFFF, preserving the sign.

- Denormal FP16 input value is supported.

- The invalid status flag is NOT set when input is NaN.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 390

9.8.8.23 VFP16_INT24_Round

Instruction name VFP16_INT24_Round

Functionality Floating-point to integer conversion with rounding

Assembly format VFP16_INT24_Round Vsrc1, Rsrc2, Vdst

Type and bit width Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF

src2: scalar register

Destination options vector register in VRF

Additional options

Intrinsics/operator vshortx vfp16_vint24_round(vhfloatx src1, int src2);

// Double vector pseudo intrinsics
dvshortx dvfp16_dvint24_round(dvhfloatx src1, int src2);

Additional details src2 (read as sign number and saturated to [0, 23]) conveys qbit in

destination fixed-point representation. dst = round(src1 * 2^src2).

Each 16-bit floating-point input is read from 16 LSBs of a Halfword lane (24-

bit container).

Note that

- Rounding is used during the conversion. The only rounding mode supported

is round to nearest, ties to even.

- Both zero and minus zero maps to zero.

- Infinity maps to maximal 24-bit int value (0x7F_FFFF).

- Minus infinity maps to minimal 24-bit int value (0x80_0000).

- When output value round(src1 * 2^src2) exceeds 24-bit int representation

range, output is saturated between 0x80_0000 and x7F_FFFF.

- NaN maps to either 0x80_0000 or 0x7F_FFFF, preserving the sign.

- The invalid status flag is NOT set when input is NaN.

- Denormal FP16 input value is supported.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 391

9.8.8.24 VFP16_FP

Instruction name VFP16_FP

Functionality Vector floating-point FP16 to floating-point FP32 conversion

Assembly format VFP16_FP Vsrc, DVdst

Type and bit width Input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Output: 2 x 8 x 48-bit (FP32 sign-extend to 48-bit)

Predication not available

Source options vector register in VRF

Destination options double vector register in VRF

Additional options

Intrinsics/operator dvfloatx vfp16_dvfp(vhfloatx src);

Additional details FP16 floating-point input is read from 16 LSBs of each Halfword lane in the

source, converted to FP32 floating-point outcome, sign-extended, and

written to 48-bit Word lane in the destination.

Note that the invalid status flag is NOT set when input is NaN.

Conversion outputs are deinterleaved into a double vector register.

9.8.8.25 VFP_FP16

Instruction name VFP_FP16

Functionality Vector floating-point FP32 to floating-point FP16 conversion

Assembly format VFP_FP16 DVsrc, Vdst

Type and bit width Input: 2 x 8 x 32-bit (32 LSBs of each 48-bit lane)

Output: 16 x 24-bit (FP16 sign-extend to 24-bit)

Predication not available

Source options double vector register in VRF

Destination options vector register in VRF

Additional options

Intrinsics/operator vhfloatx dvfp_vfp16(dvfloatx src);

Additional details FP32 floating-point input is read from 32 LSBs of each Word lane in the

source, converted to FP16 floating-point outcome, sign-extended, and

written to 24-bit Halfword lane in the destination.

Note that the invalid status flag is NOT set when input is NaN.

Conversion inputs come interleaved from a double vector register.

9.8.8.26 VCmpLTF

Instruction name VCmpLTF

Functionality Floating-point compare less than

Assembly format VCmpLTF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 392

Instruction name VCmpLTF

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<(vfloatx src1, vfloatx src2);
vintx operator<(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator<(dvfloatx src1, dvfloatx src2);
dvintx operator<(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See for FP comparison corner cases.

9.8.8.27 VCmpLEF

Instruction name VCmpLEF

Functionality Floating-point compare less than or equal to

Assembly format VCmpLEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator<=(vfloatx src1, vfloatx src2);
vintx operator<=(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator<=(dvfloatx src1, dvfloatx src2);
dvintx operator<=(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 393

9.8.8.28 VCmpGTF

Instruction name VCmpGTF

Functionality Floating-point compare greater than

Assembly format VCmpGTF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>(vfloatx src1, vfloatx src2);
vintx operator>(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator>(dvfloatx src1, dvfloatx src2);
dvintx operator>(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.29 VCmpGEF

Instruction name VCmpGEF

Functionality Floating-point compare greater than or equal to

Assembly format VCmpGEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator>=(vfloatx src1, vfloatx src2);
vintx operator>=(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator>=(dvfloatx src1, dvfloatx src2);
dvintx operator>=(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 394

Instruction name VCmpGEF

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.30 VCmpEQF

Instruction name VCmpEQF

Functionality Floating-point compare equal

Assembly format VCmpEQF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator==(vfloatx src1, vfloatx src2);
vintx operator==(vfloatx src1, float src2);

// Double vector pseudo intrinsics
dvintx operator==(dvfloatx src1, dvfloatx src2);
dvintx operator==(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.31 VCmpNEF

Instruction name VCmpNEF

Functionality Floating-point compare not equal

Assembly format VCmpNEF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Scalar input: 32-bit scalar float broadcast to each lane

Output: 8 x 48-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vintx operator!=(vfloatx src1, vfloatx src2);
vintx operator!=(vfloatx src1, float src2);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 395

Instruction name VCmpNEF

// Double vector pseudo intrinsics
dvintx operator!=(dvfloatx src1, dvfloatx src2);
dvintx operator!=(dvfloatx src1, float src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.32 VCmpLTHF

Instruction name VCmpLTHF

Functionality FP16 compare less than

Assembly format VCmpLTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator<(vhfloatx src1, vhfloatx src2);
vshortx operator<(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator<(dvhfloatx src1, dvhfloatx src2);
dvshortx operator<(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.33 VCmpLEHF

Instruction name VCmpLEHF

Functionality FP16 compare less than or equal

Assembly format VCmpLEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 396

Instruction name VCmpLEHF

Additional options

Intrinsics/operator vshortx operator<=(vhfloatx src1, vhfloatx src2);
vshortx operator<=(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator<=(dvhfloatx src1, dvhfloatx src2);
dvshortx operator<=(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.34 VCmpGTHF

Instruction name VCmpGTHF

Functionality FP16 compare greater than

Assembly format VCmpGTHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator>(vhfloatx src1, vhfloatx src2);
vshortx operator>(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator>(dvhfloatx src1, dvhfloatx src2);
dvshortx operator>(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.35 VCmpGEHF

Instruction name VCmpGEHF

Functionality FP16 compare greater than or equal

Assembly format VCmpGEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 397

Instruction name VCmpGEHF

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator>=(vhfloatx src1, vhfloatx src2);
vshortx operator>=(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator>=(dvhfloatx src1, dvhfloatx src2);
dvshortx operator>=(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.36 VCmpEQHF

Instruction name VCmpEQHF

Functionality FP16 compare equal

Assembly format VCmpEQHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator==(vhfloatx src1, vhfloatx src2);
vshortx operator==(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator==(dvhfloatx src1, dvhfloatx src2);
dvshortx operator==(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 398

9.8.8.37 VCmpNEHF

Instruction name VCmpNEHF

Functionality FP16 compare not equal

Assembly format VCmpNEHF Vsrc1/Wsrc1, Vsrc2/Wsrc2/Rsrc2, Vdst/Wdst

Type and bit width Vector input: 16 x 16-bit float (16 LSBs of each 24-bit lane)

Scalar input: 16-bit scalar float (16 LSBs) broadcast to each lane

Output: 16 x 24-bit integer

Predication not available

Source options src1: vector register in VRF or WRF

src2: vector register in VRF, WRF or scalar register

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vshortx operator!=(vhfloatx src1, vhfloatx src2);
vshortx operator!=(vhfloatx src1, hfloat src2);

// Double vector pseudo intrinsics
dvshortx operator!=(dvhfloatx src1, dvhfloatx src2);
dvshortx operator!=(dvhfloatx src1, hfloat src2);

Additional details Always return 0 or 1 and never set invalid status flag.

See FP Comparison Corner Cases for FP comparison corner cases.

9.8.8.38 VRCPF

Instruction name VRCPF

Functionality Floating-point reciprocal

Assembly format VRCPF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfrcp(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfrcp(dvfloatx src);

Additional details Performing FP32-input, FP32-output reciprocal. Set invalid status flag when

output is NaN.

Corner cases:

 RCP(+denorm) gives +Inf

 RCP(-denorm) gives -Inf

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 399

Instruction name VRCPF

 RCP(+0.0) gives +Inf

 RCP(-0.0) gives -Inf

 RCP(+1.0) gives +1.0

 RCP(-1.0) gives -1.0

 RCP(+Inf) gives +0.0

 RCP(-Inf) gives -0.0

 RCP(NaN) gives NaN

Max relative error is 2^-23 over entire normal floating-point range.

9.8.8.39 VSQRTF

Instruction name VSQRTF

Functionality Floating-point square root

Assembly format VSQRTF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfsqrt(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfsqrt(dvfloatx src);

Additional details Performing FP32-input, FP32-output square root. Set invalid status flag

when output is NaN.

Corner cases:

 SQRT(+denorm) gives +0.0

 SQRT(-denorm) gives -0.0

 SQRT(+0.0) gives +0.0

 SQRT(-0.0) gives -0.0

 SQRT(+1.0) gives +1.0

 SQRT(-1.0) gives NaN

 SQRT(+Inf) gives +Inf

 SQRT(-Inf) gives NaN

 SQRT(NaN) gives NaN

 SQRT(negative) gives NaN (other than for -denorm or -0)

Max relative error is 2^-23 over entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 400

9.8.8.40 VRSQF

Instruction name VRSQF

Functionality Floating-point reciprocal square root

Assembly format VRSQF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfrsq(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfrsq(dvfloatx src);

Additional details Performing FP32-input, FP32-output reciprocal square root. Set invalid

status flag when output is NaN.

Corner cases:

 RSQ(+denorm) gives +Inf

 RSQ(-denorm) gives -Inf

 RSQ(+0.0) gives +Inf

 RSQ(-0.0) gives -Inf

 RSQ(+1.0) gives +1.0

 RSQ(-1.0) gives NaN

 RSQ(+Inf) gives +0.0

 RSQ(-Inf) gives NaN

 RSQ(NaN) gives NaN

 RSQ(negative) gives NaN (other than for -denorm or -0)

Max relative error is 2^-22.4 over entire normal floating-point range.

9.8.8.41 VEXP2F

Instruction name VEXP2F

Functionality Floating-point exponential base-2

Assembly format VEXP2F Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 401

Instruction name VEXP2F

Additional options

Intrinsics/operator vfloatx vfexp2(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfexp2(dvfloatx src);

Additional details Performing FP32-input, FP32-output exponential base-2 function. Set invalid

status flag when output is NaN.

Corner cases:

 EXP2(+denorm) gives +1.0

 EXP2(-denorm) gives +1.0

 EXP2(+0.0) gives +1.0

 EXP2(-0.0) gives +1.0

 EXP2(+Inf) gives +Inf

 EXP2(-Inf) gives +0.0

 EXP2(NaN) gives NaN

Max relative error is 2^-22.5 over entire normal floating-point range.

9.8.8.42 VLOG2F

Instruction name VLOG2F

Functionality Floating-point logarithm base-2

Assembly format VLOG2F Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vflog2(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvflog2(dvfloatx src);

Additional details Performing FP32-input, FP32-output logarithm base-2 function. Set invalid

status flag when output is NaN.

Corner cases:

 LOG2(+denorm) gives -Inf

 LOG2(-denorm) gives -Inf

 LOG2(+0.0) gives -Inf

 LOG2(-0.0) gives -Inf

 LOG2(+Inf) gives +Inf

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 402

Instruction name VLOG2F

 LOG2(-Inf) gives NaN

 LOG2(NaN) gives NaN

 LOG2(negative) gives NaN (other than for -denorm or -0)

Max absolute error is 2^-22 in range (0.5, 2.0).

Max relative error can be as large as 0.9 in range (0.5, 2.0).

Max relative error is 2^-22.5 in range [0, 0.5] and [2.0, +Inf].

9.8.8.43 VSINF

Instruction name VSINF

Functionality Floating-point sine

Assembly format VSINF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfsin(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfsin(dvfloatx src);

Additional details Performing FP32-input, FP32-output sine function. Input in radians should be

pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

 SIN(+denorm) gives +0.0

 SIN(-denorm) gives -0.0

 SIN(+0.0) gives +0.0

 SIN(-0.0) gives -0.0

 SIN(+Inf) gives NaN

 SIN(-Inf) gives NaN

 SIN(NaN) gives NaN

 SIN(normal) is always in the range [-1, +1]

Max absolute error is 2^-20.5 in range -2*pi ~ 2*pi.

Max absolute error is 2^-14.7 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-

normalization.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 403

Instruction name VSINF

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

9.8.8.44 VCOSF

Instruction name VCOSF

Functionality Floating-point cosine

Assembly format VCOSF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vfcos(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvfcos(dvfloatx src);

Additional details Performing FP32-input, FP32-output cosine function. Input in radians should

be pre-normalized by multiplying 1.0/(2*pi). Input in degrees should be pre-

normalized by multiplying 1.0/360. Set invalid status flag when output is NaN.

Corner cases:

 COS(+denorm) gives +1.0

 COS(-denorm) gives +1.0

 COS(+0.0) gives +1.0

 COS(-0.0) gives +1.0

 COS(+Inf) gives NaN

 COS(-Inf) gives NaN

 COS(NaN) gives NaN

 COS(normal) is always in the range [-1, +1]

Max absolute error is 2^-20.9 in range -2*pi ~ 2*pi.

Max absolute error is 2^-15.3 in range -100*pi ~ 100*pi.

The max error includes cumulative error of performing the required pre-

normalization.

Outside of range -100*pi ~ 100*pi, only best effort is provided; there are no

defined error guarantees.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 404

9.8.8.45 VTANHF

Instruction name VTANHF

Functionality Vector floating-point hyperbolic tangent

Assembly format VTANHF Vsrc/Wsrc, Vdst/Wdst

Type and bit width Input: 8 x 32-bit float (32 LSBs of each 48-bit lane)

Output: 8 x 48-bit (sign-extend FP32 to 48-bit)

Predication not available

Source options vector register in VRF or WRF

Destination options vector register in VRF or WRF

Additional options

Intrinsics/operator vfloatx vftanh(vfloatx src);

// Double vector pseudo intrinsics
dvfloatx dvftanh(dvfloatx src);

Additional details Performing FP32-input, FP32-output hyperbolic function. Set invalid status

flag when output is NaN.

Corner cases:

 TANH(-denorm) gives -0.0

 TANH(-0.0) gives -0.0

 TANH(+0.0) gives +0.0

 TANH(+denorm) gives +0.0

 TANH(-Inf) gives -1.0

 TANH(+Inf) gives 1.0

 TANH(NaN) gives NaN

 TANH(normal) is always in the range [-1.0 .. +1.0]

Max relative error is 2^-11 over the entire normal floating-point range.

Max absolute error is 2^-12 over the entire normal floating-point range.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 405

9.8.9 Vector Misc Instructions

9.8.9.1 Instruction Summary

Table 37. Vector miscellaneous instructions

Function Assembly Format Comments

Vector min path cost VMinPathCost<H/B> Vsrc1, Vsrc2, Vsrc3, Vdst For SGM, semi-global matching

algorithm

Vector Boolean map VBMap31 Rsrc, Vsrc1, Vsrc2, Vsrc3, Vdst Arbitrary 3-input-1-output

Boolean operation, use Rsrc1

to encode the function

Vector 4x2 add/sub VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3,

Vsrc4, Vdst1, Vdst2

4-input-2-output, various

add/sub operations

Vector configurable 4x2

add/sub

VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3,

DVdst

VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3,

DVdst

VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3,

DVdst

4-input-2-output, configurable

add/sub operations

Vector normalize and

extract index and

fraction

VNormIdxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2 Normalize src1 into index and

fraction fields

Vector horizontal min4

accumulate

<pred> VHMin4<type>_CA DVsrc1, Wsrc2,

ACsrc3dst

Min across (up to) 4 data terms

and accumulator

Vector horizontal max4

accumulate

<pred> VHMax4<type>_CA DVsrc1, Wsrc2,

ACsrc3dst

Max across (up to) 4 data

terms and accumulator

9.8.9.2 VMIN_PATH_COST

Instruction name VMIN_PATH_COST

Functionality Vector min path cost

Assembly format VMinPathCost1<type> Vsrc1, Vsrc2, Vsrc3, Vdst

VMinPathCost2<type> Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width B: 32 x 12-bit signed Vsrc1/Vsrc2/Vsrc3, two 12-bit unsigned scalars packed in

PL or PH

H: 16 x 24-bit signed Vsrc1/Vsrc2/Vsrc3, 15-bit and 17-bit unsigned scalars

packed in PL or PH

Predication not available

Source options src1, src2, src3: singe vector register

Implicit source PL (R12, VMinPathCost1) or PH (R13, VMinPathCost2)

Destination options dst: single vector register

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 406

Intrinsics/operator vshortx vminpathcost1(vshortx src1, vshortx src2, vshortx src3, int
src4); // src4 in PL

vshortx vminpathcost2(vshortx src1, vshortx src2, vshortx src3, int
src4); // src4 in PH

vcharx vminpathcost1(vcharx src1, vcharx src2, vcharx src3, int
src4); // src4 in PL

vcharx vminpathcost2(vcharx src1, vcharx src2, vcharx src3, int
src4); // src4 in PH

vshortx vminpathcost(vshortx src1, vshortx src2, vshortx src3, int
src4); // same functionality as vminpathcost1

vcharx vminpathcost(vcharx src1, vcharx src2, vcharx src3, int src4);
// same functionality as vminpathcost1

Additional details Perform SGM min path cost calculation, which involves neighboring lanes.

Each lane i of output involves itself, previous (i-1) and next (i+1) lanes: dst[i] =

min(cost[i], cost[i-1]+p, cost[i+1]+p, q).

Implicit (in assembly, not in intrinsic calls) scalar register PL = R12 or PH = R13

supplies p and q. VMinPathCost1 uses PL, and VMinPathCost2 uses PH. These

2 variants are mapped to the “1” and “2” variants in the intrinsic functions.

For Byte type, p = src4[27:16] (unsigned 12-bit) and q = src4[11:0] (unsigned

12-bit).

For Half-word type, p = src4[31:17] (unsigned 15-bit) and q = src4[16:0]

(unsigned 17-bit).

Treat Vsrc1, Vsrc2, Vsrc3 as 3 neighboring sections of a cost array, Vsrc2

supplying the current section, Vsrc1 the previous section, and Vsrc3 the next

section.

For Byte type, a single vector register contains 32 12-bit lanes. For lanes 1..30

of output, previous/current/next lanes are all available in Vsrc2. Lane 0 output

shall use Vsrc1[31] to supply the previous lane, and lane 31 output shall use

Vsrc3[0] to supply the next lane.

For Half-word type, a single vector register contains 16 24-bit lanes. For lanes

1..14 of output, previous/current/next lanes are all available in Vsrc2. Lane 0

output shall use Vsrc1[15] to supply the previous lane, and lane 15 output

shall use Vsrc3[0] to supply the next lane.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 407

9.8.9.3 VBMap31

Instruction name VBMap31

Functionality Vector Boolean map

Assembly format VBMap31 Rsrc, Vsrc1, Vsrc2, Vsrc3, Vdst

Type and bit width none (bit-wise)

Predication not available

Source options Rsrc: scalar register

Vsrc1, Vsrc2, Vsrc3: single vector register

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vintx vbmap31(int src, vintx src1, vintx src2, vintx src3);
vshortx vbmap31(int src, vshortx src1, vshortx src2, vshortx src3);
vcharx vbmap31(int src, vcharx src1, vcharx src2, vcharx src3);

// Double vector pseudo intrinsics
dvintx dvbmap31(int src, dvintx src1, dvintx src2, dvintx src3);
dvshortx dvbmap31(int src, dvshortx src1, dvshortx src2, dvshortx src3);
dvcharx dvbmap31(int src, dvcharx src1, dvcharx src2, dvcharx src3);

Additional details Perform an arbitrary 3-input-1-output Boolean function using bits 7..0 of the

scalar register source. These 8 bits are read as a truth table, indicating 0/1

outcome for the 8 combinations of 3 inputs, Vsrc1 contributing to bit 2 of the

bit position, Vsrc2 contributing to bit 1, Vsrc3 contributing to bit 0. This is a

bitwise operation across all 384 bits.

For example, to implement the following Boolean function,

 Vsrc1 Vsrc2 Vsrc3 Output

 0 0 0 1

 0 0 1 1

 0 1 0 0

 0 1 1 0

 1 0 0 1

 1 0 1 0

 1 1 0 0

 1 1 1 1

bits 7..0 of Rsrc should contain 0x93.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 408

9.8.9.4 VAddSub4x2

Instruction name VAddSub4x2

Functionality Vector 4x2 add/sub

Assembly format VAddSub4x2_op<type> Vsrc1, Vsrc2, Vsrc3, Vsrc4, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit, B: 32 x 12-bit

Predication not available

Source options Vsrc1, Vsrc2, Vsrc3, Vsrc4: single vector register in VRF

Only selected combination of VRF entries are allowed.

Destination options Vdst1, Vdst2: single vector register in VRF

Additional options op = 0 or 1, implementing one of two patterns

Intrinsics/operator void vaddsub4x2_0(vintx src1, vintx src2, vintx src3, vintx src4,
vintx &dst1, vintx &dst2);

void vaddsub4x2_1(vintx src1, vintx src2, vintx src3, vintx src4,
vintx &dst1, vintx &dst2);

void vaddsub4x2_0(vshortx src1, vshortx src2, vshortx src3, vshortx
src4, vshortx &dst1, vshortx &dst2);

void vaddsub4x2_1(vshortx src1, vshortx src2, vshortx src3, vshortx
src4, vshortx &dst1, vshortx &dst2);

void vaddsub4x2_0(vcharx src1, vcharx src2, vcharx src3, vcharx src4,
vcharx &dst1, vcharx &dst2);

void vaddsub4x2_1(vcharx src1, vcharx src2, vcharx src3, vcharx src4,
vcharx &dst1, vcharx &dst2);

Additional details When op = 0, perform

dst1 = src1 + src2 + src3 + src4

dst2 = src1 – src2 + src3 – src4

When op = 1, perform

dst1 = src1 + src2 – src3 – src4

dst2 = src1 – src2 – src3 + src4

The VAddSub4x2 instruction is architected to accelerate FFT as well as Hadamard

transform. Number of input/output operands makes it infeasible to allow arbitrary

combination of operands, so the instruction is encoded so that only specific

combinations of VRF entries are allowed:

For radix-4 DIF (decimation in frequency) FFT, the add/sub network carries out

z0.r = x0.r + x1.r + x2.r + x3.r op = 0

z2.r = x0.r - x1.r + x2.r - x3.r

z0.i = x0.i + x1.i + x2.i + x3.i op = 0

z2.i = x0.i - x1.i + x2.i - x3.i

z1.r = x0.r + x1.i - x2.r - x3.i op = 1

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 409

z3.r = x0.r - x1.i - x2.r + x3.i

z1.i = x0.i - x1.r - x2.i + x3.r op = 1

z3.i = x0.i + x1.r - x2.i - x3.r

Multiple sets of register assignment are supported to allow loop unrolling:

 x0.r x0.i x1.r x1.i x2.r x2.i x3.r x3.i

RA 0 V0 V1 V2 V3 V4 V5 V6 V7

RA 1 V8 V9 V10 V11 V12 V13 V14 V15

RA 2 V16 V17 V18 V19 V20 V21 V22 V23

RA 3 V24 V25 V26 V27 V28 V29 V30 V31

There are 16 combinations of VRF input operands needed:

Combo for op src1 src2 src3 src4

0 RA 0 z0.r, z2.r 0 V0 V2 V4 V6

1 RA 0 z0.i, z2.i 0 V1 V3 V5 V7

2 RA 0 z1.r, z3.r 1 V0 V3 V4 V7

3 RA 0 z3.i, z1.i 1 V1 V2 V5 V6

4 RA 1 z0.r, z2.r 0 V8 V10 V12 V14

5 RA 1 z0.i, z2.i 0 V9 V11 V13 V15

6 RA 1 z1.r, z3.r 1 V8 V11 V12 V15

7 RA 1 z3.i, z1.i 1 V9 V10 V13 V14

8 RA 2 z0.r, z2.r 0 V16 V18 V20 V22

9 RA 2 z0.i, z2.i 0 V17 V19 V21 V23

10 RA 2 z1.r, z3.r 1 V16 V19 V20 V23

11 RA 2 z3.i, z1.i 1 V17 V18 V21 V22

12 RA 3 z0.r, z2.r 0 V24 V26 V28 V30

13 RA 3 z0.i, z2.i 0 V25 V27 V29 V31

14 RA 3 z1.r, z3.r 1 V24 V27 V28 V31

15 RA 3 z3.i, z1.i 1 V25 V26 V29 V30

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 410

9.8.9.5 VCfgAddSub4x2

Instruction name VCfgAddSub4x2

Functionality Vector configurable 4x2 add/sub

Assembly format VCfgAddSub4x2<type> DVsrc1, DVsrc2, Rsrc3, DVdst

VCfgAddSub4x2<type> DVsrc1, DWsrc2, Rsrc3, DVdst

VCfgAddSub4x2<type> DWsrc1, DVsrc2, Rsrc3, DVdst

Type and bit width B: 32 x 12-bit, H: 16 x 24-bit, W: 8 x 48-bit

Predication not available

Source options DVsrc1, DVsrc2: double vector register in VRF or WRF

Rsrc3: scalar register

Destination options DVdst: double vector register in VRF

Additional options

Intrinsics/operator dvcharx vcfg_addsub4x2(dvcharx src1, dvcharx src2, int src3);
dvshortx vcfg_addsub4x2(dvshortx src1, dvshortx src2, int src3);
dvintx vcfg_addsub4x2(dvintx src1, dvintx src2, int src3);

Additional details Decode configuration from scalar Rsrc3 by extracting 8 2-bit parameters:

m11 = Rsrc3[1:0], m12 = Rsrc3[3:2], m13 = Rsrc3[5:4], m14 = Rsrc3[7:6],

m21 = Rsrc3[9:8], m22 = Rsrc3[11:10], m23 = Rsrc3[13:12], m24 =

Rsrc3[15:14].

Each parameter is interpreted as

“00”: 0

“01”: 1

“10”: -1

“11”: -1

Compute

dst.lo = m11*src1.lo + m12*src1.hi + m13*src2.lo + m14*src2.hi

dst.hi = m21*src1.lo + m22*src1.hi + m23*src2.lo + m24*src2.hi

Note that .lo and .hi components are derived from double vector operands as

described in 6.2.3.6, according to the interleaved format.

9.8.9.6 VNormIdxFrac

Instruction name VNormIdxFrac

Functionality Vector normalize and extract index/fraction

Assembly format VNormIdxFrac<type> Vsrc1, Vsrc2, Vdst1, Vdst2

Type and bit width W: 8 x 48-bit, H: 16 x 24-bit

(B type is omitted, as including it would increase bitwidth of shared shifter

required to implement this feature)

Predication not available

Source options src1: single vector register in VRF

src2: single vector register in VRF

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 411

Instruction name VNormIdxFrac

src3 (implicit) PL scalar register

Destination options dst1: single vector register in VRF

dst2: single vector register in VRF

Additional options

Intrinsics/operator void vnorm_idx_frac(vintx src1, vintx src2, int src3, vintx & dst1,
vintx & dst2);

void vnorm_idx_frac(vshortx src1, vshortx src2, int src3, vshortx &
dst1, vshortx & dst2);

// Double vector pseudo intrinsic
void dvnorm_idx_frac(dvintx src1, dvintx src2, int src3, dvintx &
dst1, dvintx & dst2);

void dvnorm_idx_frac(dvshortx src1, dvshortx src2, int src3, dvshortx
& dst1, dvshortx & dst2);

Additional details src1 carries the input data, src2[7:0] carries the MSB position previously

detected via VMSBD on src1. src3[3:0] (implicit in PL scalar register) carries

index_nbits, number of index bits in a subsequent table lookup. Dst1 returns

the index, and dst2 returns the fraction.

src2[7:0] is read as a signed 8-bit number to accommodate VMSBD return

value in [-1, 23] for Halfword and [-1, 47] for Word.

src3[3:0] conveys index_nbits, and has valid range of 6 ~ 9. In case src3[3:0] is

below 6 or above 9, both dst1 and dst2 return 0.

The lookup table should contain 2^index_nbits + 1 entries, so index_nbits being

6 ~ 9 corresponds to 65 ~ 1025 entries, which is a reasonable table size of

lookup table for a log table to get reasonable accuracy through linearly

interpolated lookup.

Index output is for a subsequent table lookup, so is extracted from src1 bits

from msb_pos-1 downto msb_pos – index_nbits and right justified.

Fraction output is for post-lookup linear interpolation, so is extracted from src1

bits from msb_pos – index_nbits – 1 (following index bits) downto 0 and left

justified.

Pseudo-code for Halfword type, in lane i:

 norm_pos = 15;
 frac_mask = (1 << norm_pos) – 1;
 index_nbits = PL[3:0]; // read as unsigned int4
 idx_mask = (1 << index_nbits) – 1;
 input = src1[i];
 msb_pos = src2[i][7:0]; // read as signed int8

 if (index_nbits < 6 || index_nbits > 9)
 dst[i] = 0;
 else {
 shiftVal = norm_pos – msb_pos + index_nbits;
 shiftVal = (shiftVal < -24) ? -24 :
 ((shiftVal > 24) ? 24 : ShiftVal);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 412

Instruction name VNormIdxFrac

 idx_frac = shift(input, shiftVal);
 // shift left for positive shiftVal
 // shift right for negative shiftVal
 frac = idx_frac & frac_mask;
 idx = (idx_frac >> norm_pos) & idx_mask;
 }

For Word type, norm_pos = 31, and shiftVal is saturated to [-48, 48] instead.

9.8.9.7 VHMin4_CA

Instruction name VHMin4_CA

Functionality Vector horizontal min-4 accumulate

Assembly format <pred> VHMin4<type>_CA DVsrc1, Wsrc2, ACsrc3dst

pred = none, [P2..P15]

Type and bit width B: 32 x 12-bit, H: 16 x 24-bit

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: single vector register in WRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vcharx vhmin4_ca(dvcharx src1, vcharx src2, vcharx src3, int pred);

vshortx vhmin4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred);

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.

Src2 carries control parameter to include/exclude input in bit 0 of each lane.

Src3dst is the accumulator.

The instruction carries out min operation among horizontally overlapping 4 data

terms and the accumulator when the predicate is true. When the predicate is

false, the accumulator input is ignored, effectively clearing the accumulator.

Layout of data for each 4 lane group:

src1.lo D[0] D[1] D[2] D[3]

src1.hi D[4] D[5] D[6] D[7]

src2 C[0] C[1] C[2] C[3]

src3dst ACC[0] ACC[1] ACC[2] ACC[3]

m0 = C[0][0] (bit 0 of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0]

ACC[0] = min(mask(m0, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),

 ACC[0]);

ACC[1] = min(mask(m0, D[1]), mask(m1, D[2]), mask(m2, D[3]), mask(m3, D[4]),

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 413

 ACC[1]);

ACC[2] = min(mask(m0, D[2]), mask(m1, D[3]), mask(m2, D[4]), mask(m3, D[5]),

 ACC[2]);

ACC[3] = min(mask(m0, D[3]), mask(m1, D[4]), mask(m2, D[5]), mask(m3, D[6]),

 ACC[3]);

mask(m, d) = (m == 0) ? INT_MAX : d

INT_MAX is the maximal integer value for the type. Basically, when the control

parameter is 0, the data term is replaced with INT_MAX and thus excluded

from the min operation.

9.8.9.8 VHMax4_CA

Instruction name VHMax4_CA

Functionality Vector horizontal max-4 accumulate

Assembly format <pred> VHMax4<type>_CA DVsrc1, Wsrc2, ACsrc3dst

pred = none, [P2..P15]

Type and bit width B: 32 x 12-bit, H: 16 x 24-bit

Predication Available across lanes to clear accumulator

Source options src1: double vector register in VRF

src2: single vector register in WRF

Destination options src3dst: single vector register in ARF

Additional options

Intrinsics/operator vcharx vhmax4_ca(dvcharx src1, vcharx src2, vcharx src3, int pred);

vshortx vhmax4_ca(dvshortx src1, vshortx src2, vshortx src3,int pred);

Additional details Src1 .lo and .hi carry overlapping data elements offset by 4 elements.

Src2 carries control parameter to include/exclude input in bit 0 of each lane.

Src3dst is the accumulator.

The instruction carries out max operation among horizontally overlapping 4

data terms and the accumulator when the predicate is true. When the

predicate is false, the accumulator input is ignored, effectively clearing the

accumulator.

Layout of data for each 4 lane group:

src1.lo D[0] D[1] D[2] D[3]

src1.hi D[4] D[5] D[6] D[7]

src2 C[0] C[1] C[2] C[3]

src3dst ACC[0] ACC[1] ACC[2] ACC[3]

m0 = C[0][0] (bit 0 of C[0]), m1 = C[1][0], m2 = C[2][0], m3 = C[3][0]

ACC[0] = max(mask(m0, D[0]), mask(m1, D[1]), mask(m2, D[2]), mask(m3, D[3]),

 ACC[0]);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 414

Instruction name VHMax4_CA

ACC[1] = max(mask(m0, D[1]), mask(m1, D[2]), mask(m2, D[3]), mask(m3, D[4]),

 ACC[1]);

ACC[2] = max(mask(m0, D[2]), mask(m1, D[3]), mask(m2, D[4]), mask(m3, D[5]),

 ACC[2]);

ACC[3] = max(mask(m0, D[3]), mask(m1, D[4]), mask(m2, D[5]), mask(m3, D[6]),

 ACC[3]);

mask(m, d) = (m == 0) ? INT_MIN : d

INT_MIN is the minimal integer value for the type. Basically, when the control

parameter is 0, the data term is replaced with INT_MIN and thus excluded from

the max operation.

9.9 Load/Store Instructions

9.9.1 Scalar Load/Store

9.9.1.1 Instruction Summary

Scalar load/store are supported with signed/unsigned word/half-word/byte data types

and the following address modes:

> Indexed, with register base and 12-bit (singed) immediate offset

> Post increment, with register base and register modifier value

Table 38. Scalar load/store instructions

Function Assembly Format Comments

Load base-

offset

LD<type> *(Rbase+imm12), Rdst

type = B, BU, H, HU, W

Use Rbase + (signed) imm12 as byte address.

Data is sign-extended or zero-padded.

Load post-

modify

<pred> LD<type> *Rbase+=Rmod, Rdst

pred = none, [P2.. P15]

type = B, BU, H, HU, W

Use Rbase as byte address, Rbase is post-modified.

Data is sign-extended or zero-padded.

Store base-

offset

ST<type> Rsrc, *(Rbase+imm12)

type = B, H, W

Use Rbase + (signed) imm12 as byte address.

Store post-

modify

<pred> ST<type> Rsrc, *Rbase+=Rmod

pred = none, [P2.. P15]

type = B, H, W

Use Rbase as byte address, Rbase is post-modified.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 415

9.9.1.2 LD Base-Offset

Instruction name LD

Functionality Load

Assembly format LD<type> *(Rbase+imm12), Rdst

Type and bit width B/BU: 8-bit (char, unsigned char)

H/HU: 16-bit (short, unsigned short, hfloat)

W: 32-bit (int, unsigned int, float)

Predication Not available

Source options Rbase: scalar register

Destination options Rdst: scalar register

Additional options

Intrinsics/operator not needed
// Instantiated to read from array or local frame, e.g.,
// a = array[10];

Additional details For example,

 LDW *(R1+12), R4

Use Rbase + (signed) imm12 as byte address, Rbase is not modified.

Data is sign-extended or zero-padded, based on specified type being signed

or unsigned.

9.9.1.3 LD Post-Modify

Instruction name LD

Functionality Load post-modify

Assembly format <pred> LD<type> *Rbase+=Rmod, Rdst

pred = none, [P2.. P15]

Type and bit width B/BU: 8-bit (char, unsigned char)

H/HU: 16-bit (short, unsigned short, hfloat)

W: 32-bit (int, unsigned int, float)

Predication Instruction-level predication

Source options Rbase: scalar register

Rmod: scalar register

Destination options Rdst: scalar register

Rbase: scalar register

Additional options

Intrinsics/operator not needed
// Instantiated to read from array with pointer increment, e.g.,
// a = *ptr++;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod.

Data is sign-extended or zero-padded, based on specified type being signed or

unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 416

Instruction name LD

Predication: Execute (memory read into Rdst and Rbase post-modify) only if

the referenced predicate register != 0.

9.9.1.4 ST Base-Offset

Instruction name ST

Functionality Store

Assembly format ST<type> Rsrc, *(Rbase+imm12)

Type and bit width B: 8-bit (char)

H: 16-bit (short, hfloat)

W: 32-bit (int, float)

Predication not available

Source options Rbase: scalar register

Rsrc: scalar register

Destination options

Additional options

Intrinsics/operator not needed
// Instantiated to write into array or local frame, e.g.,
// array[10] = b;

Additional details For example,

 STW R4, *(R1+12)

 STH R5, *(R1+16)

Use Rbase + (signed) imm12 as byte address, Rbase is not modified.

9.9.1.5 ST Post-Modify

Instruction name ST

Functionality Store post-modify

Assembly format <pred> ST<type> Rsrc, *Rbase+=Rmod

pred = none, [P2.. P15]

Type and bit width B: 8-bit (char)

H: 16-bit (short, hfloat)

W: 32-bit (int, float)

Predication Instruction-level predication

Source options Rbase: scalar register

Rmod: scalar register

Rsrc: scalar register

Destination options Rbase: scalar register

Additional options

Intrinsics/operator not needed

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 417

Instruction name ST

// Instantiated to write into array with pointer increment, e.g.,
// *ptr++ = b;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+(signed) Rmod.

Predication: Execute (memory write and Rbase modify) only if the referenced

predicate register != 0.

9.9.2 Scalar-Based Vector Load/Store

9.9.2.1 Instruction Summary

Table 39. Scalar-based vector load/store instructions

Function Assembly Format Comments

Vector load base

plus offset

VLD<type>_P *(Rbase+Imm), Vdst

type = B, BU, H, HU, W, WU, WX

VLDWX_P *(Rbase+Imm), Wdst

Use Rbase + (4*imm10) as byte address.

Data is sign-extended or zero-padded.

Vector load post-

modify

VLD<type>_P *Rbase+=Rmod, Vdst

type = B, BU, H, HU, W, WU, WX

Use Rbase as byte address, Rbase is

post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded.

Double vector load

post-modify

DVLD<type>_P *Rbase+=Rmod, Vdst

type = B, BU, H, HU, W, WU

Use Rbase as byte address, Rbase is

post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded.

Vector store base

plus offset

VST<type>_P Vsrc, *(Rbase+Imm)

type = B, H, W, WX

VSTWX_P Wsrc, *(Rbase+Imm)

Use Rbase + (4*imm10) as byte address.

Vector store post-

modify

VST<type>_P Vsrc, *Rbase+=Rmod

type B, H, W, WX, BH, HW

Use Rbase as byte address, Rbase is

post-modified to Rbase+Rmod.

Double vector store

post-modify

DVST<type>_P Vsrc, *Rbase+=Rmod

type B, H, W

Use Rbase as byte address, Rbase is

post-modified to Rbase+Rmod.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 418

9.9.2.2 Base-Offset

Instruction name VLD base-offset

Functionality Vector load base plus offset

Assembly format VLD<type>_P *(Rbase+Imm), Vdst

VLDWX_P *(Rbase+Imm), Vdst/Wdst

Type and bit width B/BU: 32 x 8-bit → 32 x 12-bit (vchar/vuchar -> vcharx)

H/HU: 16 x 16-bit → 16 x 24-bit (vshort/vushort -> vshortx,

 vhfloat -> vhfloatx)

W/WU for VRF: 8 x 32-bit → 8 x 48-bit (vint/vuint -> vintx,

 vfloat -> vfloatx)

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available

Source options Rbase: scalar register

Destination options Single vector register in VRF, WRF

Additional options

Intrinsics/operator vcharx sign_extend(vchar src);
vshortx sign_extend(vshort src);
vintx sign_extend(vint src);
vfloatx sign_extend(vfloat src);
vhfloatx sign_extend(vhfloat src);

vcharx zero_extend(vuchar src);
vshortx zero_extend(vushort src);
vintx zero_extend(vuint src);

// Instantiated with memory read with sign/zero extension, e.g.,
// vcharx v1 = sign_extend(vchar_array[3]);
// vcharx v1 = sign_extend(*((vchar *)(char_array + 10)));

// WX load does not require intrinsic function. Instantiated with,
// e.g.,
// vcharx v2 = vcharx_array[10];

Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address.

Rbase is not modified.

Data is sign-extended or zero-padded, based on specified type being signed

or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 419

9.9.2.3 VLD Post-Modify

Instruction name VLD post-modify

Functionality Vector load post-modify

Assembly format VLD<type>_P *Rbase+=Rmod, Vdst

Type and bit width B/BU: 32 x 8-bit → 32 x 12-bit (vchar/vuchar -> vcharx)

H/HU: 16 x 16-bit → 16 x 24-bit (vshort/vushort -> vshortx,

 vhfloat -> vhfloatx)

W/WU for VRF: 8 x 32-bit → 8 x 48-bit (vint/vuint -> vintx,

 vfloat -> vfloatx)

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available

Source options Rbase: scalar register

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vcharx sign_extend(vchar src);
vshortx sign_extend(vshort src);
vintx sign_extend(vint src);
vfloatx sign_extend(vfloat src);
vhfloatx sign_extend(vhfloat src);

vcharx zero_extend(vuchar src);
vshortx zero_extend(vushort src);
vintx zero_extend(vuint src);

// Instantiated with post-increment memory read with
// sign/zero extension, e.g.,
// vcharx v1 = sign_extend(*vchar_ptr++);

// WX load does not require intrinsic function. Instantiated with,
// e.g.,
// vcharx v2 = *vcharx_ptr++;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded, based on specified type being signed

or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 420

9.9.2.4 DVLD Post-Modify

Instruction name DVLD post-modify

Functionality Double vector load post-modify

Assembly format DVLD<type>_P *Rbase+=Rmod, DVdst

Type and bit width B/BU: 64 x 8-bit → 2 x 32 x 12-bit (dvchar/dvuchar -> dvcharx)

H/HU: 32 x 16-bit → 2 x 16 x 24-bit (dvshort/dvushort -> dvshortx,

 dvhfloat -> dvhfloatx)

W/WU: 16 x 32-bit → 2 x 8 x 48-bit (dvint/dvuint -> dvintx,

 dvfloat -> dvfloatx)

Predication Not available

Source options Rbase: scalar register

Destination options Vdst: double vector register

Additional options

Intrinsics/operator dvcharx sign_extend(dvchar src);
dvshortx sign_extend(dvshort src);
dvintx sign_extend(dvint src);
dvfloatx sign_extend(dvfloat src);
dvhfloatx sign_extend(dvhfloat src);

dvcharx zero_extend(dvuchar src);
dvshortx zero_extend(dvushort src);
dvintx zero_extend(dvuint src);

// Instantiated with post-increment memory read with sign/zero
// extension, e.g.,
// dvcharx v1 = sign_extend(*dvchar_ptr++);

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Data is sign-extended or zero-padded, based on specified type being signed

or unsigned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 421

9.9.2.5 VST Base-Offset

Instruction name VST base-offset

Functionality Vector store base plus offset

Assembly format VST<type>_P Vsrc, *(Rbase+Imm)

VSTWX_P Vsrc/Wsrc, *(Rbase+Imm)

Type and bit width B: 32 x 12-bit → 32 x 8-bit (vcharx -> vchar/vuchar)

H: 16 x 24-bit → 16 x 16-bit (vshortx -> vshort/vushort,

 vhfloatx -> vhfloat)

W for VRF: 8 x 48-bit → 8 x 32-bit (vintx -> vint/vuint,

 vfloatx -> vfloat)

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx)

Predication Not available

Source options Rbase: scalar register

Single vector register in VRF, WRF

Destination options

Additional options

Intrinsics/operator vchar extract(vcharx src);
vshort extract(vshortx src);
vint extract(vintx src);
vfloat extract(vfloatx src);
vhfloat extract(vhfloatx src);

// Instantiated with memory write with sign/zero extension,
// e.g.,
// vchar_array[3] = extract(vcharx_var);
// *((vchar *)(char_array + 10)) = extract(vcharx_var);

// WX does not require intrinsic function. Instantiated
// with, e.g.,
// vcharx_array[3] = vcharx_var;

Additional details 10-bit immediate field is scaled by 4 and added to Rbase as the byte address.

Rbase is not modified.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 422

9.9.2.6 VST Post-Modify

Instruction name VST post-modify

Functionality Vector store post-modify

Assembly format VST<type>_P Vsrc, *Rbase+=Rmod

Type and bit width B: 32 x 12-bit → 32 x 8-bit (vcharx -> vchar/vuchar)

H: 16 x 24-bit → 16 x 16-bit (vshortx -> vshort/vushort,

 vhfloatx -> vhfloat)

W for VRF: 8 x 48-bit → 8 x 32-bit (vintx -> vint/vuint,

 vfloatx -> vfloat)

WX: 8 x 48-bit → 8 x 48-bit (vcharx, vshortx, vintx)

BH: 32 x 12-bit → 32 x 16-bit (vcharx -> dvshort)

HW: 16 x 24-bit → 16 x 32-bit (vshortx -> dvint)

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options Rbase: scalar register

Additional options

Intrinsics/operator vchar extract(vcharx src);
vshort extract(vshortx src);
vint extract(vintx src);
vfloat extract(vfloatx src);
vhfloat extract(vhfloatx src);

// Instantiated with post-increment memory write with
// sign/zero extension, e.g.,
// *vchar_ptr++ = extract(vcharx_var);

// WX does not require intrinsic function. Instantiated
// with, e.g.,
// *vcharx_ptr++ = vcharx_var;

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 423

9.9.2.7 DVST Post-Modify

Instruction name DVST post-modify

Functionality Double vector store post-modify

Assembly format DVST<type>_P DVsrc, *Rbase+=Rmod

Type and bit width B: 2 x 32 x 12-bit → 64 x 8-bit (dvcharx -> dvchar/dvuchar)

H: 2 x 16 x 24-bit → 32 x 16-bit (dvshortx -> dvshort/dvushort)

W: 2 x 8 x 48-bit → 16 x 32-bit (dvintx -> dvint/dvuint)

Predication Not available

Source options Rbase: scalar register

Vsrc: double vector register

Destination options Rbase: scalar register

Additional options

Intrinsics/operator dvchar extract(dvcharx src);
dvshort extract(dvshortx src);
dvint extract(dvintx src);
dvfloat extract(dvfloatx src);
dvhfloat extract(dvhfloatx src);

// Instantiated with post-increment memory write with
// sign/zero extension, e.g.,
// *dvchar_ptr++ = extract(dvcharx_var);

Additional details Use Rbase as byte address, Rbase is post-modified to Rbase+Rmod.

9.9.3 Agen Configuration

9.9.3.1 Instruction Summary

In scalar slots we allow the following instructions to configure the agen.

Table 40. Agen config instructions

Function Assembly Format Comments

Initialize agen InitAgen Rsrc, A<id>.Base

id = 0..7

Set base address and initialize all other

parameters to default values, including

resetting loop variables I1..I6 to 0

Configure agen

base

<pred> CfgAgen Rsrc, A<id>.Base

id = 0..7

Set base address (predicated)

Configure agen

num Iterations

CfgAgen Rsrc, A<id>.N<level>

id = 0..7, level = 1..6

Only lower 16 bits are used.

Default = 1.

Configure agen

address modifier

CfgAgen Rsrc, A<id>.Mod<level>

id = 0..7, level = 1..6

Address modifiers are signed.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 424

Function Assembly Format Comments

32 bits are stored, but only lower 17 bits

are used in address calculation.

Default = 0

Configure rounding CfgAgen Rsrc, A<id>.Round Rounding applies to store only and is

ignored for WX type store.

Bit 7 specifies round (0) or truncate (1).

Bits 6:0 specifies number of bits to

round/truncate.

Default = 0 (no rounding)

Configure

saturation option

CfgAgen Rsrc, A<id>.SatOpt Only 2 LSBs of Rsrc are used.

0 : no saturation (default)

1 : no saturation

2 : treat 32-bit comparison values as

signed

3 : treat 32-bit comparison values as

unsigned

Saturation option is ignored for WX type

store.

Configure lane

offset

CfgAgen Rsrc, A<id>.LaneOfst Lane offsets are unsigned.

Default = 0

Configure

saturation

CfgAgen Rsrc, A<id>.SatLimLo

CfgAgen Rsrc, A<id>.SatLimHi

CfgAgen Rsrc, A<id>.SatValLo

CfgAgen Rsrc, A<id>.SatValHi

Saturation applies to store only and is

ignored for WX type store.

Default = 0

Configure circular

buffer

CfgAgen Rsrc, A<id>.CBStart

CfgAgen Rsrc, A<id>.CBSize

Configure starting address and size of

circular buffer, Rsrc is read as byte

address, and is right-shifted 6 bits before

writing to the CBStart and CBSize fields

to force 64-byte alignment.

CBSize = 0 indicates circular buffer is

disabled.

Default = 0.

Agen Config Move MovAgen A<src_id>, A<dst_id> Copy all agen parameters and loop

variables (608-bit).

Save agen config AgenCfgST A<id>, *Rptr += Rmod

AgenCfgST_p2 A<id>, *Rptr += Rmod

Save first/second 512-bit of agen data

structure.

Restore agen

config

AgenCfgLD *Rptr += Rmod, A<id>

AgenCfgLD_p2 *Rptr += Rmod, A<id>

Restore first/second 512-bit of agen data

structure.

Agen update AgenUpd A<id>++ Update agen without memory transaction

Move agen base MovAgen A<id>.Base, Rdst Copy agen base address to scalar

Advance agen base AdvAgen A<id>.Base, Rsrc2

Perform circular buffer wrap-around if

configured

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 425

Function Assembly Format Comments

Configure min/max

option

CfgAgen Rsrc, A<id>.MinMaxOpt Configure minmax_opt, initialize min/max

values accordingly

Move agen

min/max

MovAgen A<id>.MinVal, Rdst

MovAgen A<id>.MaxVal, Rdst

Copy agen collected min/max value to

scalar

9.9.3.2 InitAgen

Instruction name InitAgen

Functionality Initialize agen with base address

Assembly format InitAgen Rsrc, A<id>.Base

id = 0..7

Type and bit width Base: 32-bit unsigned

Predication Not available

Source options Rsrc: scalar register

Destination options Agen config (all parameters including base)

Additional options

Intrinsics/operator agen init(vint * arr1);

Additional details Set base address and initialize all other parameters to default values,

including resetting loop variables I1..I6 to 0

9.9.3.3 CfgAgen Base

Instruction name CfgAgen base

Functionality Configure agen base address

Assembly format <pred> CfgAgen Rsrc, A<id>.Base

id = 0..7

pred = none, [P2.. P15]

Type and bit width 32-bit unsigned

Predication Instruction-level predication

Source options Rsrc: scalar register

Destination options Agen config base

Additional options

Intrinsics/operator // Not needed, just assign to agen member a
// For example,
agen1.a = (vint *) array1;

Additional details Set base address

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 426

9.9.3.4 CfgAgen NIter

Instruction name CfgAgen Niter

Functionality Configure number of iterations

Assembly format CfgAgen Rsrc, A<id>.N<level>

id = 0..7, level = 1..6

Type and bit width 16-bit

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].N[level]

Additional options

Intrinsics/operator // Not needed, just assign to agen member n1..n6
// For example,
agen1.n1 = niter1;

Additional details Only lower 16 bits of Rsrc are used. Default = 1.

Programming it to 0 would exhibit the same looping behavior as

programming it to 1.

9.9.3.5 CfgAgen Mod

Instruction name CfgAgen Mod

Functionality Configure agen address modifier

Assembly format CfgAgen Rsrc, A<id>.Mod<level>

id = 0..7, level = 1..6

Type and bit width Of the 32-bit value in Rsrc, only 18 LSBs stored in the designated Mod

register.

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].Mod[level]

Additional options

Intrinsics/operator // Not needed, just assign to agen member mod1..mod6
// For example,
agen1.mod1 = vector_width * sizeof(data);

Additional details Default = 0.

Note that address modiers are signed.

9.9.3.6 CfgAgen Round

Instruction name CfgAgen Round

Functionality Configure agen rounding parameter

Assembly format CfgAgen Rsrc, A<id>.Round

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 427

Instruction name CfgAgen Round

id = 0..7

Type and bit width 8-bit unsigned

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].Round

Additional options

Intrinsics/operator // Not needed, just assign to agen member round
// For example,
agen1.round = qbits;

Additional details Rounding applies to store only, and is ignored for WX-type store.

Only bit 7 and bits 6:0 of Rsrc are used.

Bits 7 specifies round (0), truncate (1)

Bits 6:0 specifies number of bits to round/truncate.

When number of bits exceeds source lane width (B=12, H=24, W=48),

rounding leads to zero for all inputs, and truncation leads to zero for

zero/positive inputs, and to -1 for negative inputs.

Default = 0 (no rounding)

9.9.3.7 CfgAgen SatOpt

Instruction name CfgAgen SatOpt

Functionality Configure agen saturation option

Assembly format CfgAgen Rsrc, A<id>.SatOpt

id = 0..7

Type and bit width 8-bit unsigned (only 2 LSBs are used)

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].SatOpt

Additional options

Intrinsics/operator // Not needed, just assign to agen member round
// For example,
agen1.sat_opt = 0;

Additional details Only 2 LSBs of Rsrc are used.

0 : no saturation (default)

1 : no saturation

2 : treat 32-bit comparison values as signed

3 : treat 32-bit comparison values as unsigned

This is ignored for WX-type store.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 428

9.9.3.8 CfgAgen LaneOfst

Instruction name CfgAgen LaneOfst

Functionality Configure agen lane offset

Assembly format CfgAgen Rsrc, A<id>.LaneOfst

id = 0..7

Type and bit width 12-bit unsigned

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].LaneOfst

Additional options

Intrinsics/operator // Not needed, just assign to agen member lane_ofst
// For example,
agen1.lane_ofst = num_columns/16;

Additional details Only 12 LSBs of Rsrc are stored into the lane offset field. Default = 0.

Note that lane offsets are unsigned.

Used for transposing vector load/store. See 6.3.7 for details.

9.9.3.9 CfgAgen Sat

Instruction name CfgAgen Sat

Functionality Configure agen saturation

Assembly format CfgAgen Rsrc, A<id>.SatLimLo

CfgAgen Rsrc, A<id>.SatLimHi

CfgAgen Rsrc, A<id>.SatValLo

CfgAgen Rsrc, A<id>.SatValHi

id = 0..7

Type and bit width 32-bit

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].SatLimLo/SatLimHi/SatValLo/SatValHi

Additional options

Intrinsics/operator // Not needed; just assign to corresponding agen struct members
// For example,
agen1.sat_lim_lo = low_bound;
agen1.sat_val_lo = low_bound;
agen1.sat_lim_hi = high_bound;

Additional details Saturation applies to store only and is ignored for WX-type store.

Default = 0

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 429

9.9.3.10 CfgAgen CB

Instruction name CfgAgen CB

Functionality Configure agen circular buffer

Assembly format CfgAgen Rsrc, A<id>.CBStart

CfgAgen Rsrc, A<id>.CBSize

id = 0..7

Type and bit width 16-bit (from 32-bit scalar register source, 6 LSBs are dropped, bits 21:6 are

stored into agen cb_start or cb_size fields)

Predication Not available

Source options Rsrc: scalar register

Destination options Agen[id].CBStart/CBSize

Additional options

Intrinsics/operator // Recommended syntax, works in ISS and Native
short chess_storage(DMh%64: chess_segment(C)) cb_buf1[CB1_SIZE];
agen1 = update_agen_cb_start(agen1, (short *) cb_buf1);
agen2 = update_agen_cb_size(agen2, CB1_SIZE * sizeof(short));
// Legacy syntax, works in ISS but not in Native
agen agen1.cb_start = (short *) cb_buf1;
agen agen2.cb_size = CB1_SIZE * sizeof(short);

Additional details Configure starting address and size of circular buffer, Rsrc is read as byte

address or size in bytes, and is right-shifted 6 bits before writing to the

CBStart and CBSize fields to force 64-byte alignment.

CBSize = 0 indicates circular buffer is disabled.

Default = 0.

Note that CBStart and CBSize are both unsigned.

9.9.3.11 MovAgen

Instruction name MovAgen

Functionality Agen config move

Assembly format MovAgen A<src_id>, A<dst_id>

src_id/dst_id = 0..7

Type and bit width 608-bit

Predication Not available

Source options Agen[src_id]

Destination options Agen[dst_id]

Additional options

Intrinsics/operator // Not needed, just assign an agen to another agen
// For example,
agen2 = agen1;

Additional details Copy all agen parameters and loop variables (608-bit).

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 430

9.9.3.12 AgenCfgST

Instruction name AgenCfgST

Functionality Save agen config

Assembly format AgenCfgST A<id>, *Rptr += Rmod

AgenCfgST_p2 A<id>, *Rptr += Rmod

id = 0..7

Type and bit width 512-bit or 192-bit

Predication Not available

Source options Agen[id]

Rptr/Rmod: scalar register

Destination options Rmod: scalar register

Additional options

Intrinsics/operator AgenCFG agen1.get_cfg(); // Legacy syntax also supported
AgenCFG_p2 extract_agen_cfg_p2(agen src);
// For example,
AgenCFG * ptr = &cfg_arr[0];
AgenCFG_p2 ptr2 = &cfg2_arr[0];
*ptr++ = extract_agen_cfg(agen1);
*ptr2++ = extract_agen_cfg_p2(agen1);

Additional details AgenCfgST saves the first 512-bit of agen data structure

AgenCfgST_p2 saves the remaining 192-bit of agen data structure

Address should be 32-bit aligned.

For readability each MOD1..MOD6 register is sign-extended to 32-bit in

stored memory locations.

Available only in the M0 slot.

Instruction name AgenCfgST (base-offset)

Functionality Save agen config

Assembly format AgenCfgST A<id>, *(Rbase + Imm12)

AgenCfgST_p2 A<id>, *(Rbase + Imm12)

id = 0..7

Type and bit width 512-bit or 192-bit

Predication Not available

Source options Agen[id]

Rbase: scalar register

Imm12: 12-bit immediate byte address offset

Destination options n/a

Additional options

Intrinsics/operator AgenCFG extract_agen_cfg(agen src); // Recommended
AgenCFG agen1.get_cfg(); // Legacy syntax also supported
AgenCFG_p2 extract_agen_cfg_p2(agen src);
// For example,

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 431

Instruction name AgenCfgST (base-offset)

AgenCFG cfg_arr[3];
AgenCFG cfg2_arr[3];
cfg_arr[0] = extract_agen_cfg(agen1);
cfg2_arr[0] = extract_agen_cfg_p2(agen1);

Additional details AgenCfgST saves the first 512-bit of agen data structure

AgenCfgST_p2 saves the remaining 192-bit of agen data structure

Address should be 32-bit aligned.

For readability each MOD1..MOD6 register is sign-extended to 32-bit in

stored memory locations.

Available only in the M0 slot.

9.9.3.13 AgenCfgLD

Instruction name AgenCfgLD

Functionality Restore agen config

Assembly format AgenCfgLD *Rptr += Rmod, A<id>

AgenCfgLD_p2 *Rptr += Rmod, A<id>

id = 0..7

Type and bit width 512-bit or 192-bit

Predication Not available

Source options Rptr/Rmod: scalar register

Destination options Agen[id]

Rmod: scalar register

Additional options

Intrinsics/operator agen init_agen_from_cfg(AgenCFG src); // Recommended
agen agen1.expand_cfg(AgenCFG src); // Legacy syntax also supported
agen update_agen_p2(agen a1, AgenCFG_p2 data_p2);
// For example,
AgenCFG * ptr1 = &cfg_arr[0];
AgenCFG_p2 * ptr2 = &cfg2_arr[0];
agen a1 = init_agen_from_cfg(*ptr1++);
a1 = update_agen_p2(a1, *ptr2++);

Additional details AgenCfgLD restores the first 512-bit of agen data structure, and set the rest

to “sensible” initial state ready to execute dependent agen-based load/store

instructions

All loop variables to 0

auto_pred_off to 0

MinVal/MaxVal to 0, INT32 MAX/MIN, UINT32 MAX/MIN, according to

MinMaxOpt

AgenCfgLD_p2 restores the remaining 192-bit of agen data structure from

memory.

Address in Rptr should be 32-bit aligned.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 432

Instruction name AgenCfgLD

Each of MOD1..MOD6 register will only take 18 LSBs in corresponding 32-bit

memory locations.

Available only in the M0 slot.

Instruction name AgenCfgLD (base-offset)

Functionality Restore agen config

Assembly format AgenCfgLD *(Rbase + Imm12), A<id>

AgenCfgLD_p2 *(Rbase + Imm12), A<id>

id = 0..7

Type and bit width 512-bit or 192-bit

Predication Not available

Source options Rbase: scalar register

Imm12: 12-bit immediate byte address offset

Destination options Agen[id]

Additional options

Intrinsics/operator agen init_agen_from_cfg(AgenCFG src); // Recommended
agen agen1.expand_cfg(AgenCFG src); // Legacy syntax also supported
agen update_agen_p2(agen a1, AgenCFG_p2 data_p2);
// For example,
AgenCFG cfg_arr[4];
AgenCFG_p2 cfg2_arr[4];
agen a1 = init_agen_from_cfg(cfg_arr[0]);
a1 = update_agen_p2(a1, cfg2_arr[0]);

Additional details AgenCfgLD restores the first 512-bit of agen data structure, and set the rest

to “sensible” initial state ready to execute dependent agen-based load/store

instructions

All loop variables to 0

auto_pred_off to 0

MinVal/MaxVal to 0, INT32 MAX/MIN, UINT32 MAX/MIN, according to

MinMaxOpt

AgenCfgLD_p2 restores the remaining 192-bit of agen data structure from

memory.

Address in Rptr should be 32-bit aligned.

Each of MOD1..MOD6 register will only take 18 LSBs in corresponding 32-bit

memory locations.

Available only in the M0 slot.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 433

9.9.3.14 AgenUpd

Instruction name AgenUpd

Functionality Update agen loop variables and address without memory transaction

Assembly format AgenUpd A<id>++

Type and bit width

Predication Not available

Source options

Destination options

Additional options

Intrinsics/operator agen update_agen(agen a);

Additional details Perform agen loop variables and address update as configured by agen

parameters, without performing any memory load/store transaction.

Note that this instruction is available in memory slots, as opposed to scalar

slots for the other non-load/store agen configuration instructions.

9.9.3.15 Move Agen Base

Instruction name MovAgen Base

Functionality Copy agen address to scalar

Assembly format MovAgen A<id>.Base, Rdst

id = 0..7

Type and bit width 32-bit unsigned

Predication Not available

Source options Agen address

Destination options scalar register

Additional options

Intrinsics/operator // not needed, just access agen member a
int * ptr = (int *) agen.a;

Additional details Move the current agen address (updated with each execution of agen-based

load/store, rather than the starting address) to scalar register, mostly to

facilitate debug.

Note that this instruction is available in memory slots, as opposed to scalar

slots for the other non-load/store agen configuration instructions.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 434

9.9.3.16 Advance Agen Base

Instruction name AdvAgenBase

Functionality Advance agen base address by offset

Assembly format AdvAgen A<id>.Base, Rsrc2

id = 0..7

Type and bit width 32-bit unsigned base + 18-bit signed offset

Predication Not available

Source options Agen address, scalar register supplying address offset

Destination options Agen address

Additional options

Intrinsics/operator void adv_agen_base(agen& srcdst, int ofst);

Additional details When circular buffer is configured (cb_size > 0), the base address is advanced

by the offset (which can be positive or negative) with circular buffer wrap-

around. In this case, magnitude of offset must not exceed circular buffer

size, otherwise, the circular buffer addressing logic may not correctly wrap

the modified address back into the circular buffer. See 6.4.6 Circular Buffer

Addressing for details.

When circular buffer is not configured (cb_size = 0), the base address is

simply advanced (positively or negatively) by the offset, i.e., base += offset.

Only 18 LSBs of Rsrc2 providing the offset is used in the address calculation,

so this feature should not be used to move the base address between one

superbank to another superbank.

FINE PRINT: Technically it’s possible, but leveraging the address wrapping

behavior (see Memory Address Range Constraints) to place the base address

at the edge of one superbank’s primary-or-alias address space, and to

advance it by as little as one byte to fall into another superbank’s primary-or-

alias address space. However, the address wrapping behavior is not backward

or forward compatible, so this practice is very dangerous.

This instruction is available in memory slots, as opposed to scalar slots for

the other non-load/store agen configuration instructions.

9.9.3.17 CfgAgen MinMaxOpt

Instruction name CfgAgen MinMaxOpt

Functionality Configure min/max option

Assembly format CfgAgen Rsrc, A<id>.MinMaxOpt

id = 0..7

Type and bit width 8-bit unsigned (only 2 LSBs are used)

Predication Not available

Source options Scalar register

Destination options Agen[id].MinMaxOpt

Additional options

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 435

Instruction name CfgAgen MinMaxOpt

Intrinsics/operator // Not needed; just assign to agen member minmax_opt
agen1.minmax_opt = value;

Additional details Min/max option:

0: disable (default)

1: disable

2: enable for signed min/max

3: enable for unsigned min/max

Upon configuring the min/max option to 2 (enabled for signed min/max), the

min value is initialized to MAX_INT32 = 0x7FFF_FFFF. The max value is

initialized to MIN_INT32 = 0x8000_0000.

Upon configurating the min/max option to 3 (enabled for unsigned min/max),

the min value is initialized to MAX_UINT32 = 0xFFFF_FFFF. The max value is

initialized to MIN_UINT32 = 0.

Upon configurating the min/max option to 0 or 1, the min/max values are

reset to 0.

Resetting min/max values as a consequence of configurating min/max option

happens not just by this instruction, but also by InitAgen (setting min/max

option to default 0 and min/max values to 0) and AgenCfgLD (restoring

min/max option to whatever value saved in memory, and initializing min/max

values according to the option).

9.9.3.18 Move Agen Min/Max

Instruction name MovAgen Min/Max

Functionality Copy agen collected min or max value to scalar

Assembly format MovAgen A<id>.MinVal, Rdst

MovAgen A<id>.MaxVal, Rdst

id = 0..7

Type and bit width 32-bit signed

Predication Not available

Source options Agen min or max value

Destination options scalar register

Additional options

Intrinsics/operator // Not needed; just access agen member min_val or max_vol
int dst1 = agen.min_val;
int dst2 = agen.max_val;

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 436

9.9.4 Agen-Based Vector Load/Store

Agen-based load/store offers more flexibility, in expanding and contracting between

memory and vector register, and with data distribution options.

When double vector registers are used, it must be a consecutive V[2*i]:V[2*i+1] pair.

A parallel quad vector register store is also offered and only in M0 slot, to store 4 vector

registers with demotion into 512-bit memory space. This is needed for filtering with 16-

bit-by-16-bit multiply and 48-bit accumulator to achieve peak performance.

9.9.4.1 Instruction Summary

Vector load/store instructions:

Table 41. Agen-based vector load/store instructions

Function Assembly Format Comments

Vector load agen-

based

<pred> VLD<type>_distr *A<id>++, Vdst/Wdst

Double vector load

agen-based

<pred> DVLD<type>_distr *A<id>++, DVdst/DWdst

Vector store agen-

based

<pred> VST<type>_distr Vsrc/ACsrc/XACsrc, *A<id>++

Double vector store

agen-based

<pred> DVST<type>_distr DVsrc/DACsrc/DXACsrc, *A<id>++

Quad vector store

agen-based

<pred> QVST<type>_distr DVsrc1, DVsrc2, *A<id>++

<pred> QVST<type>_distr DACsrc1, DACsrc2, *A<id>++

Vector load +

permute agen-

based

VLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, Vdst/Wdst

Double vector load

+ permute agen-

based

DVLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc,

DVdst/DWdst

Vector store with

per-land rounding

DVST <type>_PLRound_distr Vsrc1/Wsrc1, DVsrc2/DACsrc2,

*A<id>++

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 437

9.9.4.2 VLD Agen

Instruction name VLD agen

Functionality Vector load agen-based

Assembly format <pred> VLD<type>_<distr> *A<id>++, Vdst

<pred> VLD<type>_<distr> *A<id>++, Wdst

pred = none, [P2.. P15]

Type and bit width Type/distribution supported:

B_P, H_P, W_P, BU_P, HU_P, WU_P,

B_T, H_T, W_T, BU_T, HU_T, WU_T,

B_S, H_S, W_S, BU_S, HU_S, WU_S,

B_C2, H_C2, W_C2, BU_C2, HU_C2, WU_C2,

WX_P

For example:

 VLDB_P *A0++, V0

[P1] VLDH_T, *A1++, V2

Predication Instruction-level predication

Source options

Destination options Vdst: single vector register in VRF or WRF

Additional options

Intrinsics/operator // unpredicated
vcharx vchar_load(agen& a1); // B_P
vshortx vshort_load(agen& a1); // H_P
vintx vint_load(agen& a1); // W_P
vcharx vuchar_load(agen& a1); // BU_P
vshortx vushort_load(agen& a1); // HU_P
vintx vuint_load(agen& a1); // WU_P
vcharx vchar_load_transp(agen& a1); // B_T
vshortx vshort_load_transp(agen& a1); // H_T
vintx vint_load_transp(agen& a1); // W_T
vcharx vuchar_load_transp(agen& a1); // BU_T
vshortx vushort_load_transp(agen& a1); // HU_T
vintx vuint_load_transp(agen& a1); // WU_T
vcharx vchar_load_bs(agen& a1); // B_S
vshortx vshort_load_hs(agen& a1); // H_S
vintx vint_load_ws(agen& a1); // W_S
vcharx vuchar_load_bs(agen& a1); // BU_S
vshortx vushort_load_hs(agen& a1); // HU_S
vintx vuint_load_ws(agen& a1); // WU_S
vcharx vchar_load_c2(agen& a1); // B_C2
vshortx vshort_load_c2(agen& a1); // H_C2
vintx vint_load_c2(agen& a1); // W_C2
vcharx vuchar_load_c2(agen& a1); // BU_C2
vshortx vushort_load_c2(agen& a1); // HU_C2
vintx vuint_load_c2(agen& a1); // WU_C2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 438

Instruction name VLD agen

vcharx vcharx_load(agen& a1); // WX
vshortx vshortx_load(agen& a1); // WX
vintx vintx_load(agen& a1); // WX

// predicated
void vchar_load(vcharx& dst, agen& a1, bool pred); // B_P
void vshort_load(vshortx& dst, agen& a1, bool pred); // H_P
void vint_load(vintx& dst, agen& a1, bool pred); // W_P
void vuchar_load(vcharx& dst, agen& a1, bool pred); // BU_P
void vushort_load(vshortx& dst, agen& a1, bool pred); // HU_P
void vuint_load(vintx& dst, agen& a1, bool pred); // WU_P
void vchar_load_transp(vcharx& dst, agen& a1,bool pred);//B_T
void vshort_load_transp(vshortx& dst, agen& a1,bool pred);//H_T
void vint_load_transp(vintx& dst, agen& a1,bool pred);//W_T
void vuchar_load_transp(vcharx& dst, agen& a1,bool pred);//BU_T
void vushort_load_transp(vshortx& dst, agen& a1,bool pred);//HU_T
void vuint_load_transp(vintx& dst, agen& a1,bool pred);//WU_T
void vchar_load_bs(vcharx& dst, agen& a1, bool pred); //B_S
void vshort_load_hs(vshortx& dst, agen& a1, bool pred); //H_S
void vint_load_ws(vintx& dst, agen& a1, bool pred); //W_S
void vuchar_load_bs(vcharx& dst, agen& a1, bool pred); //BU_S
void vushort_load_hs(vshortx& dst, agen& a1, bool pred); //HU_S
void vuint_load_ws(vintx& dst, agen& a1, bool pred); //WU_S
void vchar_load_c2(vcharx& dst, agen& a1, bool pred); //B_C2
void vshort_load_c2(vshortx& dst, agen& a1, bool pred); //H_C2
void vint_load_c2(vintx& dst, agen& a1, bool pred); //W_C2
void vuchar_load_c2(vcharx& dst, agen& a1, bool pred); //BU_C2
void vushort_load_c2(vshortx& dst, agen& a1, bool pred); //HU_C2
void vuint_load_c2(vintx& dst, agen& a1, bool pred); //WU_C2
void vcharx_load(vcharx& dst, agen& a1, bool pred); //WX
void vshortx_load(vshortx& dst, agen& a1, bool pred); //WX
void vintx_load(vintx& dst, agen& a1, bool pred); //WX

// Float
vfloatx vfloat_load(agen& a); // W_P
vfloatx vfloat_load_transp(agen& a); // W_T
vfloatx vfloat_load_ws(agen& a); // W_S
vfloatx vfloat_load_c2(agen& a); // W_C2
void vfloat_load(vfloatx& dst, agen& a, bool pred);// W_P
void vfloat_load_transp(vfloatx& dst, agen& a, bool pred);// W_T
void vfloat_load_ws(vfloatx& dst, agen& a, bool pred);// W_S
void vfloat_load_c2(vfloatx& dst, agen& a, bool pred);// W_C2
vhfloatx vhfloat_load(agen& a); // H_P
vhfloatx vhfloat_load_transp(agen& a); // H_T
vhfloatx vhfloat_load_hs(agen& a); // H_S
vhfloatx vhfloat_load_c2(agen& a); // H_C2
void vhfloat_load(vhfloatx& dst, agen& a, bool pred);//H_P
void vhfloat_load_transp(vhfloatx& dst, agen& a, bool pred);//H_T

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 439

Instruction name VLD agen

void vhfloat_load_hs(vhfloatx& dst, agen& a, bool pred);//H_S
void vhfloat_load_c2(vhfloatx& dst, agen& a, bool pred);//H_C2

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

When predication is off, writing to Vdst is skipped.

See Transposing Load/Store for address calculation and pattern for transpose

distribution.

9.9.4.3 DVLD Agen

Instruction name DVLD agen

Functionality Double vector load agen-based

Assembly format <pred> DVLD<type>_<distr> *A<id>++, DVdst

<pred> DVLD<type>_<distr> *A<id>++, DWdst

pred = none, [P2.. P15]

Type and bit width Type/distribution supported:

B_P, H_P, W_P, BU_P, HU_P, WU_P, H_T, W_T, HU_T, WU_T,

B_PDI, H_PDI, W_PDI, BU_PDI, HU_PDI, WU_PDI,

H_TDI, W_TDI, HU_TDI, WU_TDI,

BH_P, BW_P, HW_P, BHU_P, BWU_P, HWU_P,

BH_T, BW_T, HW_T, BHU_T, BWU_T, HWU_T

BH_PDI, BW_PDI, HW_PDI,

BHU_PDI, BWU_PDI, HWU_PDI,

H_T2DI, HU_T2DI, W_T2DI, WU_T2DI,

B_T32, BU_T32,

H_T2, HU_T2, H_T4, HU_T4, H_T8, HU_T8, H_T16, HU_T16,

W_T8, WU_T8

For example:

 DVLDB_P *A0++, V0:V1

[P1] DVLDH_T, *A1++, V2:V3

Predication Instruction-level predication

Source options

Destination options Vdst: double vector register in VRF or WRF

Additional options

Intrinsics/operator // unpredicated
dvcharx dvchar_load(agen& a1); // B_P
dvshortx dvshort_load(agen& a1); // H_P
dvintx dvint_load(agen& a1); // W_P
dvcharx dvuchar_load(agen& a1); // BU_P
dvshortx dvushort_load(agen& a1); // HU_P

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 440

Instruction name DVLD agen

dvintx dvuint_load(agen& a1); // WU_P
dvshortx dvshort_load_transp(agen& a1); // H_T
dvintx dvint_load_transp(agen& a1); // W_T
dvshortx dvushort_load_transp(agen& a1); // HU_T
dvintx dvuint_load_transp(agen& a1); // WU_T
dvcharx dvchar_load_di(agen& a1); // B_PDI
dvshortx dvshort_load_di(agen& a1); // H_PDI
dvintx dvint_load_di(agen& a1); // W_PDI
dvcharx dvuchar_load_di(agen& a1); // BU_PDI
dvshortx dvushort_load_di(agen& a1); // HU_PDI
dvintx dvuint_load_di(agen& a1); // WU_PDI
dvshortx dvshort_load_transp_di(agen& a1); // H_TDI
dvintx dvint_load_transp_di(agen& a1); // W_TDI
dvshortx dvushort_load_transp_di(agen& a1); // HU_TDI
dvintx dvuint_load_transp_di(agen& a1); // WU_TDI

dvshortx vchar_dvshortx_load(agen& a1); // BH_P
dvintx vchar_dvintx_load(agen& a1); // BW_P
dvintx vshort_dvintx_load(agen& a1); // HW_P
dvshortx vuchar_dvshortx_load(agen& a1); // BHU_P
dvintx vuchar_dvintx_load(agen& a1); // BWU_P
dvintx vushort_dvintx_load(agen& a1); // HWU_P
dvshortx vchar_dvshortx_load_transp(agen& a1); // BH_T
dvintx vchar_dvintx_load_transp(agen& a1); // BW_T
dvintx vshort_dvintx_load_transp(agen& a1); // HW_T
dvshortx vuchar_dvshortx_load_transp(agen& a1); // BHU_T
dvintx vuchar_dvintx_load_transp(agen& a1); // BWU_T
dvintx vushort_dvintx_load_transp(agen& a1); // HWU_T
dvshortx vchar_dvshortx_load_di(agen& a1); // BH_PDI
dvintx vchar_dvintx_load_di (agen& a1); // BW_PDI
dvintx vshort_dvintx_load_di (agen& a1); // HW_PDI
dvshortx vuchar_dvshortx_load_di (agen& a1); // BHU_PDI
dvintx vuchar_dvintx_load_di (agen& a1); // BWU_PDI
dvintx vushort_dvintx_load_di (agen& a1); // HWU_PDI

dvshortx dvshort_load_transp2_di(agen& a1); // H_T2DI
dvshortx dvushort_load_transp2_di(agen& a1); // HU_T2DI
dvintx dvint_load_transp2_di(agen& a1); // W_T2DI
dvintx dvuint_load_transp2_di(agen& a1); // WU_T2DI
dvcharx dvchar_load_transp32(agen& a1); // B_T32
dvshortx dvshort_load_transp2(agen& a1); // H_T2
dvshortx dvshort_load_transp4(agen& a1); // H_T4
dvshortx dvshort_load_transp8(agen& a1); // H_T8
dvshortx dvshort_load_transp16(agen& a1); // H_T16
dvintx dvint_load_transp8(agen& a1); // W_T8
dvcharx dvuchar_load_transp32(agen& a1); // BU_T32
dvshortx dvushort_load_transp2(agen& a1); // HU_T2
dvshortx dvushort_load_transp4(agen& a1); // HU_T4

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 441

Instruction name DVLD agen

dvshortx dvushort_load_transp8(agen& a1); // HU_T8
dvshortx dvushort_load_transp16(agen& a1); // HU_T16
dvintx dvuint_load_transp8(agen& a1); // WU_T8

// predicated
void dvchar_load(dvcharx& dst, agen& a1, bool pred); // B_P
void dvshort_load(dvshortx& dst, agen& a1, bool pred); // H_P
void dvint_load(dvintx& dst, agen& a1, bool pred); // W_P
void dvuchar_load(dvcharx& dst, agen& a1, bool pred); // BU_P
void dvushort_load(dvshortx& dst, agen& a1, bool pred); // HU_P
void dvuint_load(dvintx& dst, agen& a1, bool pred); // WU_P
void dvshort_load_transp(dvshortx& dst, agen& a1, bool pred); // H_T
void dvint_load_transp(dvintx& dst, agen& a1, bool pred); // W_T
void dvushort_load_transp(dvshortx& dst, agen& a1, bool pred); // HU_T
void dvuint_load_transp(dvintx& dst, agen& a1, bool pred); // WU_T
void dvchar_load_di(dvcharx& dst, agen& a1, bool pred); // B_PDI
void dvshort_load_di(dvshortx& dst, agen& a1, bool pred); // H_PDI
void dvint_load_di(dvintx& dst, agen& a1, bool pred); // W_PDI
void dvuchar_load_di(dvcharx& dst, agen& a1, bool pred); // BU_PDI
void dvushort_load_di(dvshortx& dst, agen& a1, bool pred); // HU_PDI
void dvuint_load_di(dvintx& dst, agen& a1, bool pred); // WU_PDI
void dvshort_load_transp_di(dvshortx& dst, agen& a1,bool pred); // H_TDI
void dvint_load_transp_di(dvintx& dst, agen& a1,bool pred); // W_TDI
void dvushort_load_transp_di(dvshortx& dst, agen& a1,bool pred); // HU_TDI
void dvuint_load_transp_di(dvintx& dst, agen& a1,bool pred); // WU_TDI

void vchar_dvshortx_load(dvshortx& dst, agen& a1, bool pred); // BH_P
void vchar_dvintx_load(dvintx& dst, agen& a1, bool pred); // BW_P
void vshort_dvintx_load(dvintx& dst, agen& a1, bool pred); // HW_P
void vuchar_dvshortx_load(dvshortx& dst, agen& a1, bool pred); // BHU_P
void vuchar_dvintx_load(dvintx& dst, agen& a1, bool pred); // BWU_P
void vushort_dvintx_load(dvintx& dst, agen& a1, bool pred); // HWU_P
void vchar_dvshortx_load_transp(dvshortx& dst, agen& a, bool p); //BH_T
void vchar_dvintx_load_transp(dvintx& dst, agen& a, bool p); //BW_T
void vshort_dvintx_load_transp(dvintx& dst, agen& a, bool p); //HW_T
void vuchar_dvshortx_load_transp(dvshortx& dst, agen& a, bool p); //BHU_T
void vuchar_dvintx_load_transp(dvintx& dst, agen& a, bool p); //BWU_T
void vushort_dvintx_load_transp(dvintx& dst, agen& a, bool p); //HWU_T
void vchar_dvshortx_load_di(dvshortx& dst,agen& a1,bool pred); //BH_PDI
void vchar_dvintx_load_di(dvintx& dst,agen& a1,bool pred); //BW_PDI
void vshort_dvintx_load_di(dvintx& dst,agen& a1,bool pred); //HW_PDI
void vuchar_dvshortx_load_di(dvshortx& dst,agen& a1,bool pred); //BHU_PDI
void vuchar_dvintx_load_di(dvintx& dst,agen& a1,bool pred); //BWU_PDI
void vushort_dvintx_load_di(dvintx& dst,agen& a1,bool pred); //HWU_PDI

void dvshort_load_transp2_di(dvshortx& dst, agen& a, bool p); // H_T2DI
void dvushort_load_transp2_di(dvshortx& dst, agen& a, bool p); // HU_T2DI
void dvint_load_transp2_di(dvintx& dst, agen& a, bool p); // W_T2DI

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 442

Instruction name DVLD agen

void dvuint_load_transp2_di(dvintx& dst, agen& a, bool p); // WU_T2DI
void dvchar_load_transp32(dvcharx& dst, agen& a1, bool pred); //B_T32
void dvshort_load_transp2(dvshortx& dst, agen& a1, bool pred); //H_T2
void dvshort_load_transp4(dvshortx& dst, agen& a1, bool pred); //H_T4
void dvshort_load_transp8(dvshortx& dst, agen& a1, bool pred); //H_T8
void dvshort_load_transp16(dvshortx& dst, agen& a1, bool pred); //H_T16
void dvint_load_transp8(dvintx& dst, agen& a1, bool pred); //W_T8
void dvuchar_load_transp32(dvcharx& dst, agen& a1, bool pred); //BU_T32
void dvushort_load_transp2(dvshortx& dst, agen& a1, bool pred); //HU_T2
void dvushort_load_transp4(dvshortx& dst, agen& a1, bool pred); //HU_T4
void dvushort_load_transp8(dvshortx& dst, agen& a1, bool pred); //HU_T8
void dvushort_load_transp16(dvshortx& dst, agen& a1, bool pred); //HU_T16
void dvuint_load_transp8(dvintx& dst, agen& a1, bool pred); //WU_T8

// Float & Hfloat
dvfloatx dvfloat_load(agen& a1); // W_P
dvfloatx dvfloat_load_transp(agen& a1); // W_T
dvfloatx dvfloat_load_di(agen& a1); // W_PDI
dvfloatx dvfloat_load_transp_di(agen& a1); // W_TDI
dvfloatx dvfloat_load_transp2_di(agen& a1); // W_T2DI
dvfloatx dvfloat_load_transp8(agen& a1); // W_T8

void dvfloat_load(dvfloatx& dst, agen& a, bool p); // W_P
void dvfloat_load_transp(dvfloatx& dst, agen& a, bool p); // W_T
void dvfloat_load_di(dvfloatx& dst, agen& a, bool p); // W_PDI
void dvfloat_load_transp_di(dvfloatx& dst, agen& a, bool p); // W_TDI
void dvfloat_load_transp2_di(dvfloatx& dst, agen& a, bool p); // W_T2DI
void dvfloat_load_transp8(dvfloatx& dst, agen& a, bool p); // W_T8

dvhfloatx dvhfloat_load(agen& a1); // H_P
dvhfloatx dvhfloat_load_transp(agen& a1); // H_T
dvhfloatx dvhfloat_load_di(agen& a1); // H_PDI
dvhfloatx dvhfloat_load_transp_di(agen& a1); // H_TDI
dvhfloatx dvhfloat_load_transp2(agen& a1); // H_T2
dvhfloatx dvhfloat_load_transp2_di(agen& a1); // H_T2DI
dvhfloatx dvhfloat_load_transp4(agen& a1); // H_T4
dvhfloatx dvhfloat_load_transp8(agen& a1); // H_T8
dvhfloatx dvhfloat_load_transp16(agen& a1); // H_T16

void dvhfloat_load(dvhfloatx& dst, agen& a, bool p); // H_P
void dvhfloat_load_transp(dvhfloatx& dst, agen& a, bool p); // H_T
void dvhfloat_load_di(dvhfloatx& dst, agen& a, bool p); // H_PDI
void dvhfloat_load_transp_di(dvhfloatx& dst, agen& a, bool p); // H_TDI
void dvhfloat_load_transp2(dvhfloatx& dst, agen& a, bool p); // H_T2
void dvhfloat_load_transp2_di(dvhfloatx& dst, agen& a, bool p); // H_T2DI
void dvhfloat_load_transp4(dvhfloatx& dst, agen& a, bool p); // H_T4
void dvhfloat_load_transp8(dvhfloatx& dst, agen& a, bool p); // H_T8
void dvhfloat_load_transp16(dvhfloatx& dst, agen& a, bool p); // H_T16

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 443

Instruction name DVLD agen

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

When predication is off, writing to Vdst is skipped.

Please see Transposing Load/Store for address calculation and pattern for

transpose distributions.

For Byte type loads, the starting address is aligned to 16-bit in order to access 64

bytes of data with 32 memory banks.

9.9.4.4 VST Agen

Instruction name VST agen

Functionality Vector store agen-based

Assembly format <pred> VST<type>_<distr> Vsrc, *A<id>++

pred = none, [P2.. P15], [V0..V15]

<pred> VST<type>_<distr> ACsrc, *A<id>++

<pred> VST<type>_<distr> XACsrc, *A<id>++

pred = none, [P2..P15]

Type and bit width For VRF source, predicate register and VRF predication are supported for these

type/distributions:

B_P, H_P, W_P, B_T, H_T, W_T,

BH_P, HW_P, BH_T, HW_T, WX_P

For VRF source, only predicate register predication is supported for these

type/distributions:

B_S, H_S, W_S

For ARF source, predication through predicate register is supported for these

type/distributions:

B_P, H_P, W_P, B_T, H_T, W_T, B_S, H_S, W_S,

BH_P, HW_P, BH_T, HW_T, WX_P

For XAC source, predication through predicate register is supported and only with

W_P type/distribution. In addition, rounding/saturation operations are bypassed.

Note that WX_P distribution is predicated as 8 lanes x 48-bit (versus 16 lanes x

24-bit or 32 lanes x 12-bit).

For example:

 VSTB_P V0, *A0++

[P1] VSTH_T V2, *A1++

Predication Per-lane predication

Source options Vsrc: single vector register in VRF, ARF, or XARF

Destination options

Additional options

Intrinsics/operator // unpredicated

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 444

Instruction name VST agen

void vstore(vcharx vec1, agen& a1); // B_P
void vstore(vshortx vec1, agen& a1); // H_P
void vstore(vintx vec1, agen& a1); // W_P
void vstore(xvshortx vec1, agen& a1); // W_P for XAC
void vstore_bh(vcharx vec1, agen& a1); // BH_P
void vstore_hw(vshortx vec1, agen& a1); // HW_P
void vstore_transp(vcharx vec1, agen& a1); // B_T
void vstore_transp(vshortx vec1, agen& a1); // H_T
void vstore_transp(vintx vec1, agen& a1); // W_T
void vstore_transp_bh(vcharx vec1, agen& a1); // BH_T
void vstore_transp_hw(vshortx vec1, agen& a1); // HW_T
void vstore_bs(vcharx vec1, agen& a1); // B_S
void vstore_hs(vshortx vec1, agen& a1); // H_S
void vstore_ws(vintx vec1, agen& a1); // W_S
void vstore_ext(vcharx vec1, agen& a1); // WX_P
void vstore_ext(vshortx vec1, agen& a1); // WX_P
void vstore_ext(vintx vec1, agen& a1); // WX_P

// predicate register per-lane predicated
void vstore(vcharx vec1, agen& a1, int pred); // B_P
void vstore(vshortx vec1, agen& a1, int pred); // H_P
void vstore(vintx vec1, agen& a1, int pred); // W_P
void vstore(xvshortx vec1, agen& a1, int pred); // W_P for XAC
void vstore_bh(vcharx vec1, agen& a1, int pred); // BH_P
void vstore_hw(vshortx vec1, agen& a1, int pred); // HW_P
void vstore_transp(vcharx vec1, agen& a1, int pred); // B_T
void vstore_transp(vshortx vec1, agen& a1, int pred); // H_T
void vstore_transp(vintx vec1, agen& a1, int pred); // W_T
void vstore_transp_bh(vcharx vec1, agen& a1, int pred); //BH_T
void vstore_transp_hw(vshortx vec1, agen& a1, int pred); //HW_T
void vstore_bs(vcharx vec1, agen& a1, int pred); // B_S
void vstore_hs(vshortx vec1, agen& a1, int pred); // H_S
void vstore_ws(vintx vec1, agen& a1, int pred); // W_S

void vstore_ext(vcharx vec1, agen& a1, int pred); // WX_P
void vstore_ext(vshortx vec1, agen& a1, int pred); // WX_P
void vstore_ext(vintx vec1, agen& a1, int pred); // WX_P

// Note that vstore_ext() for vcharx and vshortx are predicated
// as 8 x 48-bit lanes, like for vintx, as opposed to 32 x 12-
// bit lanes or 16 x 24-bit lanes. vstore_ext() for the 3
// vector types are mapped to the same instruction.

// VRF per-lane predicated
void vstore(vcharx vec1, agen& a1, vcharx pred); // B_P
void vstore(vshortx vec1, agen& a1, vshortx pred); // H_P
void vstore(vintx vec1, agen& a1, vintx pred); // W_P
void vstore_bh(vcharx vec1, agen& a1, vcharx pred); // BH_P

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 445

Instruction name VST agen

void vstore_hw(vshortx vec1, agen& a1, vshortx pred); //HW_P
void vstore_transp(vcharx v1, agen& a1, vcharx p);//B_T
void vstore_transp(vshortx v1, agen& a1, vshortx p);//H_T
void vstore_transp(vintx v1, agen& a1, vintx p);//W_T
void vstore_transp_bh(vcharx v1, agen& a1, vcharx p);//BH_T
void vstore_transp_hw(vshortx v1, agen& a1, vshortx p);//HW_T
void vstore_ext(vintx v1, agen& a1, vintx p);//WX_P

// vstore_ext(vcharx v1, agen& a1, vcharx p) and
// vstore_ext(vshortx v1, agen& a1, vshortx p) are not
// supported as we cannot support appropriate predicate
// datatype for per-lane predication.

// Float
void vstore(vfloatx vec1, agen& a1); // W_P
void vstore_transp(vfloatx vec1, agen& a1); // W_T
void vstore_ws(vfloatx vec1, agen& a1); // W_S
void vstore(vfloatx vec1, agen& a1, int pred); // W_P
void vstore_transp(vfloatx vec1, agen& a1, int pred); // W_T
void vstore_ws(vfloatx vec1, agen& a1, int pred); // W_S
void vstore(vfloatx vec1, agen& a1, vintx pred); // W_P
void vstore_transp(vfloatx vec1, agen& a1, vintx pred); // W_T

void vstore(vhfloatx vec1, agen& a1); // H_P
void vstore_transp(vhfloatx vec1, agen& a1); // H_T
void vstore_hs(vhfloatx vec1, agen& a1); // H_S
void vstore(vhfloatx vec1, agen& a1, int pred);//H_P
void vstore_transp(vhfloatx vec1, agen& a1, int pred);//H_T
void vstore_hs(vhfloatx vec1, agen& a1, int pred);//H_S
void vstore(vhfloatx vec1, agen& a1, vshortx pred);//H_P
void vstore_transp(vhfloatx vec1, agen& a1, vshortx pred);//H_T

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is

skipped. Address updates are always carried out.

Consumes lower K bits of Preg or a single VRF for K-lane predication. See 9.5.3.4

for details.

Please see Transposing Load/Store for address calculation and pattern for

transpose distribution.

Per-lane predication via vector register is only available in the M0 slot, and is NOT

supported for scalar distribution.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 446

9.9.4.5 DVST Agen

Instruction name DVST agen

Functionality Double vector store agen-based

Assembly format <pred> DVST<type>_<distr> DVsrc, *A<id>++

pred = none, [P2.. P15], [V0..V15]

<pred> DVST<type>_<distr> DACsrc, *A<id>++

<pred> DVST<type>_<distr> DXACsrc, *A<id>++

pred = none, [P2.. P15]

Type and bit width For double VRF source, predicate register and VRF predication are supported with

type/distribution:

B_P, H_P, W_P, H_T, W_T,

B_PI, H_PI, W_PI, H_TI, W_TI,

HB_P, WH_P, HB_T, WH_T,

HB_PI, WH_PI, HB_TI, WH_TI, W_T2, W_T2I,

In addition, for double VRF source, only predicate register is supported with

type/distribution:

B_S, H_S, W_S, B_T32, H_T2, H_T2I, H_T4, H_T8, H_T16, W_T8

For double ARF source, predication through predicate register is supported with

type/distribution:

B_P, H_P, W_P, H_T, W_T, B_S, H_S, W_S,

B_PI, H_PI, W_PI, H_TI, W_TI,

HB_P, WH_P, HB_T, WH_T,

HB_PI, WH_PI, HB_TI, WH_TI,

B_T32, H_T2, H_T2I, H_T4, H_T8, H_T16, W_T2, W_T2I, W_T8

For double XAC source, predication through predicate register is supported and

only with WH_PI type/distribution. In addition, rounding/saturation operations are

bypassed, and it’s available in the M0 slot.

For example:

 DVSTB_P V0:V1, *A0++

[P1] DVSTH_T V2:V3, *A1++

Predication Per-lane predication

Source options DVsrc: double vector register in VRF, ARF, or ARF + XRF (together 32-bit per

Halfword lane)

Destination options

Additional options

Intrinsics/operator // unpredicated
void vstore(dvcharx vec1, agen& a1); // B_P
void vstore(dvshortx vec1, agen& a1); // H_P
void vstore(dvintx vec1, agen& a1); // W_P

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 447

Instruction name DVST agen

void vstore_hb(dvshortx vec1, agen& a1); // HB_P
void vstore_wh(dvintx vec1, agen& a1); // WH_P
void vstore_transp(dvshortx vec1, agen& a1); // H_T
void vstore_transp(dvintx vec1, agen& a1); // W_T
void vstore_transp_hb(dvshortx vec1, agen& a1); // HB_T
void vstore_transp_wh(dvintx vec1, agen& a1); // WH_T

void vstore_i(dvcharx vec1, agen& a1); // B_PI
void vstore_i(dvshortx vec1, agen& a1); // H_PI
void vstore_i(dvintx vec1, agen& a1); // W_PI
void vstore_i_hb(dvshortx vec1, agen& a1); // HB_PI
void vstore_i_wh(dvintx vec1, agen& a1); // WH_PI
void vstore_i(dxvshortx vec1, agen& a1); // WH_PI DXAC
void vstore_transp_i(dvshortx vec1, agen& a1); // H_TI
void vstore_transp_i(dvintx vec1, agen& a1); // W_TI
void vstore_transp_i_hb(dvshortx vec1, agen& a1); // HB_TI
void vstore_transp_i_wh(dvintx vec1, agen& a1); // WH_TI
void vstore_bs(dvcharx vec1, agen& a1); // B_S
void vstore_hs(dvshortx vec1, agen& a1); // H_S
void vstore_ws(dvintx vec1, agen& a1); // W_S

void vstore_transp32(dvcharx vec1, agen& a1); // B_T32
void vstore_transp2(dvshortx vec1, agen& a1); // H_T2
void vstore_transp2_i(dvshortx vec1, agen& a1); // H_T2I
void vstore_transp4(dvshortx vec1, agen& a1); // H_T4
void vstore_transp8(dvshortx vec1, agen& a1); // H_T8
void vstore_transp16(dvshortx vec1, agen& a1); // H_T16
void vstore_transp2(dvintx vec1, agen& a1); // W_T2
void vstore_transp2_i(dvintx vec1, agen& a1); // W_T2I
void vstore_transp8(dvintx vec1, agen& a1); // W_T8

// per-lane predicated via predicate register
void vstore(dvcharx vec1, agen& a1, dpred pred); // B_P
void vstore(dvshortx vec1, agen& a1, int pred); // H_P
void vstore(dvintx vec1, agen& a1, int pred); // W_P
void vstore_hb(dvshortx vec1, agen& a1, int pred); // HB_P
void vstore_wh(dvintx vec1, agen& a1, int pred); // WH_P
void vstore_transp(dvshortx vec1, agen& a1, int pred);//H_T
void vstore_transp(dvintx vec1, agen& a1, int pred);//W_T
void vstore_transp_hb(dvshortx vec1, agen& a1, int pred);//HB_T
void vstore_transp_wh(dvintx vec1, agen& a1, int pred);//WH_T

void vstore_i(dvcharx vec1, agen& a1, dpred pred); // B_PI
void vstore_i(dvshortx vec1, agen& a1, int pred); // H_PI
void vstore_i(dvintx vec1, agen& a1, int pred); // W_PI
void vstore_i_hb(dvshortx vec1, agen& a1, int pred); //HB_PI
void vstore_i_wh(dvintx vec1, agen& a1, int pred); //WH_PI
void vstore_i(dxvshortx vec1, agen& a1, int pred); //WH_PI DXAC

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 448

Instruction name DVST agen

void vstore_transp_i(dvshortx vec1, agen& a1, int pred); //H_TI
void vstore_transp_i(dvintx vec1, agen& a1, int pred); //W_TI
void vstore_transp_i_hb(dvshortx vec1, agen& a1, int pred); //HB_TI
void vstore_transp_i_wh(dvintx vec1, agen& a1, int pred); //WH_TI
void vstore_bs(dvcharx vec1, agen& a1, int pred); // B_S
void vstore_hs(dvshortx vec1, agen& a1, int pred); // H_S
void vstore_ws(dvintx vec1, agen& a1, int pred); // W_S
void vstore_transp32(dvcharx vec1, agen& a1, dpred pred); //B_T32
void vstore_transp2(dvshortx vec1, agen& a1, int pred); //H_T2
void vstore_transp2_i(dvshortx vec1, agen& a1, int pred); //H_T2I
void vstore_transp4(dvshortx vec1, agen& a1, int pred); //H_T4
void vstore_transp8(dvshortx vec1, agen& a1, int pred); //H_T8
void vstore_transp16(dvshortx vec1, agen& a1, int pred); //H_T16
void vstore_transp2(dvintx vec1, agen& a1, int pred); //W_T2
void vstore_transp2_i(dvintx vec1, agen& a1, int pred); //W_T2I
void vstore_transp8(dvintx vec1, agen& a1, int pred); //W_T8

// per-lane predicated via VRF
void vstore(dvcharx vec1, agen& a1, vcharx pred); // B_P
void vstore(dvshortx vec1, agen& a1, vcharx pred); // H_P
void vstore(dvintx vec1, agen& a1, vshortx pred); // W_P
void vstore_hb(dvshortx vec1, agen& a1, vcharx pred); // HB_P
void vstore_wh(dvintx vec1, agen& a1, vshortx pred); // WH_P
void vstore_transp(dvshortx vec1, agen& a1, vcharx pred);//H_T
void vstore_transp(dvintx vec1, agen& a1, vshortx pred);//W_T
void vstore_transp_hb(dvshortx vec1, agen& a1, vcharx pred);//HB_T
void vstore_transp_wh(dvintx vec1, agen& a1, vshortx pred);//WH_T
void vstore_i(dvcharx vec1, agen& a1, vcharx pred); // B_PI
void vstore_i(dvshortx vec1, agen& a1, vcharx pred); // H_PI
void vstore_i(dvintx vec1, agen& a1, vshortx pred); // W_PI
void vstore_i_hb(dvshortx vec1, agen& a1, vcharx pred); // HB_PI
void vstore_i_wh(dvintx vec1, agen& a1, vshortx pred); // WH_PI
void vstore_transp_i(dvshortx v1, agen& a1, vcharx p); // H_TI
void vstore_transp_i(dvintx v1, agen& a1, vshortx p); // W_TI
void vstore_transp_i_hb(dvshortx v1, agen& a1, vcharx p); // HB_TI
void vstore_transp_i_wh(dvintx v1, agen& a1, vshortx p); // WH_TI
void vstore_transp2 (dvintx v1, agen& a1, vshortx p); //W_T2
void vstore_transp2_i(dvintx v1, agen& a1, vshortx p); //W_T2I

// Float (basically leveraging H and W type stores)
void vstore(dvhfloatx vec1, agen& a1); // H_P
void vstore_transp(dvhfloatx vec1, agen& a1); // H_T
void vstore_i(dvhfloatx vec1, agen& a1); // H_PI
void vstore_transp_i(dvhfloatx vec1, agen& a1); // H_TI
void vstore_hs(dvhfloatx vec1, agen& a1); // H_S
void vstore_transp2(dvhfloatx vec1, agen& a1); // H_T2
void vstore_transp2_i(dvhfloatx vec1, agen& a1); // H_T2I
void vstore_transp4(dvhfloatx vec1, agen& a1); // H_T4

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 449

Instruction name DVST agen

void vstore_transp8(dvhfloatx vec1, agen& a1); // H_T8
void vstore_transp16(dvhfloatx vec1, agen& a1); // H_T16
void vstore(dvhfloatx vec1, agen& a1, int pred); // H_P
void vstore_transp(dvhfloatx vec1, agen& a1, int pred); // H_T
void vstore_i(dvhfloatx vec1, agen& a1, int pred); // H_PI
void vstore_transp_i(dvhfloatx vec1, agen& a1, int pred); // H_TI
void vstore_hs(dvhfloatx vec1, agen& a1, int pred); // H_S
void vstore_transp2(dvhfloatx vec1, agen& a1, int pred); // H_T2
void vstore_transp2_i(dvhfloatx vec1, agen& a1, int pred); // H_T2I
void vstore_transp4(dvhfloatx vec1, agen& a1, int pred); // H_T4
void vstore_transp8(dvhfloatx vec1, agen& a1, int pred); // H_T8
void vstore_transp16(dvhfloatx vec1, agen& a1, int pred); // H_T16
void vstore(dvhfloatx vec1, agen& a1, vcharx p); // H_P
void vstore_transp(dvhfloatx vec1, agen& a1, vcharx p); // H_T
void vstore_i(dvhfloatx vec1, agen& a1, vcharx p); // H_PI
void vstore_transp_i(dvhfloatx vec1, agen& a1, vcharx p); // H_TI

void vstore(dvfloatx vec1, agen& a1); // W_P
void vstore_transp(dvfloatx vec1, agen& a1); // W_T
void vstore_i(dvfloatx vec1, agen& a1); // W_PI
void vstore_transp_i(dvfloatx vec1, agen& a1); // W_TI
void vstore_ws(dvfloatx vec1, agen& a1); // W_S
void vstore_transp2(dvfloatx vec1, agen& a1);// W_T2
void vstore_transp2_i(dvfloatx vec1, agen& a1);// W_T2I
void vstore_transp8(dvfloatx vec1, agen& a1);// W_T8
void vstore(dvfloatx vec1, agen& a1, int pred); // W_P
void vstore_transp(dvfloatx vec1, agen& a1, int pred); // W_T
void vstore_i(dvfloatx vec1, agen& a1, int pred); // W_PI
void vstore_transp_i(dvfloatx vec1, agen& a1, int pred); // W_TI
void vstore_ws(dvfloatx vec1, agen& a1, int pred); // W_S
void vstore_transp2(dvfloatx vec1, agen& a1, int pred); // W_T2
void vstore_transp2_i(dvfloatx vec1, agen& a1, int pred); // W_T2I
void vstore_transp8(dvfloatx vec1, agen& a1, int pred); // W_T8
void vstore(dvfloatx vec1, agen& a1, vshortx p); // W_P
void vstore_transp(dvfloatx vec1, agen& a1, vshortx p); // W_T
void vstore_i(dvfloatx vec1, agen& a1, vshortx p); // W_PI
void vstore_transp_i(dvfloatx vec1, agen& a1, vshortx p); // W_TI
void vstore_transp2 (dvfloatx vec1, agen& a1, vshortx p); // W_T2
void vstore_transp2_i(dvfloatx vec1, agen& a1, vshortx p); // W_T2I

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is

skipped. Address updates are always carried out.

Consumes lower K bits of Preg or a single VRF for K-lane predication. For

transposition distribution, each element is separately predicated, so that

DVSTW_T2 requires 16 predication bits, just like DVSTW_P and DVSTW_T. See

Lane Predication for Agen-Based Vector Store for additional details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 450

Instruction name DVST agen

See Transposing Load/Store for address calculation and pattern for transpose

distributions.

Per-lane predication via vector register is only available in the M0 slot, and is NOT

supported for scalar distribution.

9.9.4.6 QVST Agen

Instruction name QVST agen

Functionality Quad vector store agen-based

Assembly format <pred> QVST<type>_distr DVsrc1, DVsrc2, *A<id>++

<pred> QVST<type>_distr DACsrc1, DACsrc2, *A<id>++

pred = none, [P2.. P15]

Type and bit width Type/distribution supported for quad vector VRF and ARF source:

HB_P, HB_PI, HB_PI2

WH_P, WH_PI, WH_PI2, WH_T, WH_TI

Predication Per-lane predication

Source options two double vector registers all in VRF or ARF

Destination options

Additional options

Intrinsics/operator // unpredicated
void vstore(dvshortx v1, dvshortx v2, agen& a); // HB_P
void vstore(dvintx v1, dvintx v2, agen& a); // WH_P
void vstore_i(dvshortx v1, dvshortx v2, agen& a); // HB_PI
void vstore_i(dvintx v1, dvintx v2, agen& a); // WH_PI
void vstore_i2(dvshortx v1, dvshortx v2, agen& a); // HB_PI2
void vstore_i2(dvintx v1, dvintx v2, agen& a); // WH_PI2
void vstore_transp(dvintx v1, dvintx v2, agen& a); // WH_T
void vstore_transp_i(dvintx v1, dvintx v2, agen& a); // WH_TI

// per-lane predicated
void vstore(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_P
void vstore(dvintx v1, dvintx v2, agen& a, int p); //WH_P
void vstore_i(dvshortx v1, dvshortx v2, agen& a, dpred p); //HB_PI
void vstore_i(dvintx v1, dvintx v2, agen& a, int p); //WH_PI
void vstore_i2(dvshortx v1, dvshortx v2, agen& a, dpred p);//HB_PI2
void vstore_i2(dvintx v1, dvintx v2, agen& a, int p); //WH_PI2
void vstore_transp(dvintx v1, dvintx v2, agen& a, int p); //WH_T
void vstore_transp_i(dvintx v1, dvintx v2, agen& a, int p); //WH_TI

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Per-lane predicated. When predication is off, writing to specific memory object is

skipped. Consumes lower K bits of Preg for K-lane predication.

Address update is always carried out.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 451

Instruction name QVST agen

See Transposing Load/Store for address calculation and pattern for T transpose

distribution.

9.9.4.7 VLDPerm Agen

Instruction name VLDPerm agen

Functionality Vector load + permute agen-based

Assembly format VLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, Vdst/Wdst

Type and bit width Type/distribution available:

HB_P, HBU_P,

For example:

 VLDPermHB_P *A0++, V2, V1

Predication Not available

Source options Vsrc: single vector register in VRF or WRF specifying permutation pattern

Destination options Vdst/Wdst: single vector register in VRF or WRF

Additional options

Intrinsics/operator vcharx vchar_load_perm(agen& agen1, vshortx src); // HB_P
vcharx vuchar_load_perm(agen& agen1, vshortx src); // HBU_P

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

HB_P/HBU_P case:

512-bit is read from memory and treated like a 32 entries x 16-bit table. From the

single Halfword vector source, 5 LSBs of each of 16 Halfword lanes, bits 4:0, are

used to index the table to return 16 x 16-bit permutation outcome. Next higher

bit, bit 5, is used to conditionally replace outcome with zero when the bit is set.

Then, the 16 x 16-bit data is repartitioned as 32 x 8-bit and expanded every 8-bit

into 12-bit of space in the destination vector register, with sign-extension

performed for HB_P case, and zero-extension performed for HBU_P case.

For example, in case of VLDPermHBU_P (unsigned version), say memory location

pointed by the agen address contains these halfwords:

 0x0123, 0x4567, 0x89AB, 0xCDEF, …

and Vsrc read as Halfword lanes contains:

 0x1, 0x0, 0x2, 0x3, …

First the memory word would be permuted into

 0x4567, 0x0123, 0x89AB, 0xCDEF, …

then byte by byte extended into

 0x067, 0x045, 0x023, 0x001, 0x0AB, 0x089, 0x0EF, 0x0CD …

in the destination vector register.

The same memory and Vsrc contents with VLDPermHB_P (signed) would return

 0x067, 0x045, 0x023, 0x001, 0xFAB, 0xF89, 0xFEF, 0xFCD …

VLDPerm is supported in all 3 memory slots.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 452

9.9.4.8 DVLDPerm Agen

Instruction name DVLDPerm agen

Functionality Double vector load + permute agen-based

Assembly format DVLDPerm<type>_<distr> *A<id>++, Vsrc/Wsrc, DVdst/DWdst

Type and bit width Type/distribution available:

H_P, W_P, HU_P, WU_P,

H_T, W_T, HU_T, WU_T,

HB_P, HBU_P

W_T2, WU_T2

For example:

 DVLDPermH_P *A0++, V2, V0:V1

Predication Not available

Source options Vsrc: single vector register in VRF or WRF specifying permutation pattern

Destination options DVdst/DWdst: double vector register in VRF or WRF

Additional options

Intrinsics/operator dvshortx dvshort_load_perm(agen& agen1, vcharx src); // H_P
dvintx dvint_load_perm(agen& agen1, vshortx src); // W_P
dvshortx dvushort_load_perm(agen& agen1, vcharx src); // HU_P
dvintx dvuint_load_perm(agen& agen1, vshortx src); // WU_P

dvshortx dvshort_load_perm_transp(agen& agen1, vcharx src);//H_T
dvintx dvint_load_perm_transp(agen& agen1, vshortx src);//W_T
dvshortx dvushort_load_perm_transp(agen& agen1, vcharx src);//HU_T
dvintx dvuint_load_perm_transp(agen& agen1, vshortx src);//WU_T

dvcharx dvchar_load_perm(agen& agen1, vcharx src); // HB_P
dvcharx dvuchar_load_perm(agen& agen1, vcharx src); // HBU_P

dvintx dvint_load_perm_transp2(agen& agen1, vshortx src);//W_T2
dvintx dvuint_load_perm_transp2(agen& agen1, vshortx src);//WU_T2

//Float
dvfloatx dvfloat_load_perm(agen& agen1, vshortx src);
dvfloatx dvfloat_load_perm_transp(agen& agen1, vshortx src);
dvfloatx dvfloat_load_perm_transp2(agen& agen1, vshortx src);
dvhfloatx dvhfloat_load_perm(agen& agen1, vcharx src);
dvhfloatx dvhfloat_load_perm_transp(agen& agen1, vcharx src);

Additional details Use Agen to supply address; address is post-modified according to multi-dimensional

(up to 6D) address modifier scheme.

Since we are returning double vector destination using single vector lane selection

source, we are using a smaller data type as lane selection than the destination.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 453

Instruction name DVLDPerm agen

Word destination (W_P/WU_P/W_T/WU_T/W_T2/WU_T2):

512-bit is read from memory (consecutively for P distribution, transposed from 16 x

32-bit for T/T2 distribution) and treated like a 16 entries x 32-bit table. From the

single vector source, 4 LSBs of each of 16 Halfword lanes, bits 3:0, are used to index

the table to return 16 x 32-bit permutation outcome. Next higher bit, bit 4, is used to

conditionally replace outcome with zero when the bit is set.

The permutation outcome, 16 x 32-bit, is zero or sign extended to the Word type

double vector destination according to signed (W_P/W_T) or unsigned (WU_P/WU_T)

designation.

Halfword destination (H_P/HU_P/H_T/HU_T):

512-bit is read from memory (consecutively for P distribution, transposed from 32 x

16-bit for T distribution) and treated like a 32 entries x 16-bit table. From the single

vector source, 5 LSBs of each of 32 Byte lanes, bits 4:0, are used to index the table to

return 32 x 16-bit permutation outcome. Next higher bit, bit 5, is used to

conditionally replace outcome with zero when the bit is set.

The permutation outcome, 32 x 16-bit, is zero or sign extended to the Halfword type

double vector destination according to signed (H_P/H_T) or unsigned (HU_P/HU_T)

designation.

Permuted as Halfword into Byte destination (HB_P/HBU_P):

512-bit is read from memory consecutively (as only P distribution is supported) and

treated like a 32 entries x 16-bit table. From the single vector source, 5 LSBs of each

of 32 Byte lanes, bits 4:0, are used to index the table to return 32 x 16-bit

permutation outcome. Next higher bit, bit 5, is used to conditionally replace

outcome with zero when the bit is set.

The permutation outcome, 32 x 16-bit, is repartitioned as Byte lanes, 64 x 8-bit, and

then zero or sign extended into the Byte type double vector destination according to

signed (HB_P) or unsigned (HBU_P) designation.

Ordering of lanes for destinations shall be .lo components first then .hi components.

In other words, DVLDPermH_P with {0, 1, 2, …, 31} selection data shall behave like “_P”

distributed double vector load, DVLDH_P.

DVLDPerm is supported in all 3 memory slots.

See Transposing Load/Store for address calculation and pattern for transpose

distributions.

9.9.4.9 DVST_PLROUND Agen

Instruction name DVST_PLROUND agen

Functionality Double vector store agen-based with per-lane rounding

Assembly format DVST <type>_PLRound_distr Vsrc1/Wsrc1, DVsrc2/DACsrc2, *A<id>++

Type and bit width Type/distribution available:

H_P, W_P, HB_P, WH_P, WB_P,

H_PI, W_PI, HB_PI, WH_PI, WB_PI

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 454

Instruction name DVST_PLROUND agen

For example:

 DVSTH_PLRound_P W0, V0:V1, *A0++

Predication Not supported

Source options src1: single vector register in VRF/WRF to carry rounding information

src2: double vector register in VRF/ARF to carry data

Destination options

Additional options

Intrinsics/operator void vstore_plround(vcharx s1, dvshortx s2, agen& a1); // H_P
void vstore_plround(vshortx s1, dvintx s2, agen& a1); // W_P
void vstore_hb_plround(vcharx s1, dvshortx s2, agen& a1); // HB_P
void vstore_wh_plround(vshortx s1, dvintx s2, agen& a1); // WH_P
void vstore_wb_plround(vshortx s1, dvintx s2, agen& a1); // WB_P
void vstore_i_plround(vcharx s1, dvshortx s2, agen& a1); // H_PI
void vstore_i_plround(vshortx s1, dvintx s2, agen& a1); // W_PI
void vstore_hbi_plround(vcharx s1, dvshortx s2, agen& a1); // HB_PI
void vstore_whi_plround(vshortx s1, dvintx s2, agen& a1); // WH_PI
void vstore_wbi_plround(vshortx s1, dvintx s2, agen& a1); // WB_PI

Additional details Use Agen to supply address; address is post-modified according to multi-dimensional

(up to 6D) address modifier scheme.

Because we use a single vector to provide rounding parameters for storing of a

double vector, in the intrinsic functions, source 1 single vector data type is half the

size of the source 2 double vector data type, so we can match number of lanes.

Use 8 LSBs of source 1 to supply rounding/truncation parameters, overriding the

rounding/truncation configuration from Agen. Bit 7 indicates rounding (0) vs

truncation (1). Bits 6:0 specifies number of bits to round/truncate.

When number of bits to round/truncate exceeds the data source (src2) lane bit width,

outcome is 0 for rounding any value, truncating any non-negative value, and -1 for

truncating any negative value.

Note that rounding/truncation information in the single vector source 1 is ordered

sequentially as stored data in memory. For example, for Word type, with the P

distribution option, pairing of two sources are:

src1[0] – src2.lo[0], src1[1] – src2.lo[1], …, src1[7] – src2.lo[7],

src1[8] – src2.hi[0], src1[9] – src2.hi[1], …, src1[15] – src2.hi[7].

With the PI distribution option, pairing of two sources are:

src1[0] – src2.lo[0], src1[1] – src2.hi[0], src1[2] – src2.lo[1], src1[3] – src2.hi[1],

…, src1[14] – src2.lo[7], src1[15] – src2.hi[7].

Per-lane rounding vector store is only available in the M0 slot.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 455

9.9.5 Agen-Based Scalar Load/Store

9.9.5.1 Instruction Summary

Scalar load/store instructions:

Table 42. Agen-based scalar load/store instructions

Function Assembly Format Comments

Scalar load agen-

based

LD<type> *A<id>++, Rdst

Type available:

B, BU, H, HU, W

Dual scalar load

agen-based

DLD<type> *A<id>++, Rdst1, Rdst2

Type available:

B, BU, H, HU, W

Scalar store agen-

based

<pred> ST<type> Rsrc, *A<id>++

pred = none, [P2.. P15], instruction level predication

Type available:

B, H, W

Dual scalar store

agen-based

<pred> DST<type> Rsrc1, Rsrc2, *A<id>++

pred = none, [P2.. P15], instruction level predication

Type available:

B, H, W

Agen features supported and not supported for scalar load/store:

> Distribution: not supported; dual register accesses consecutive items in memory

> Type promotion/demotion: not supported; only single data type

> Multi-dimensional addressing: supported

> Circular buffer addressing: supported

> Lane offset/transposition: not supported

> Rounding: not supported

> Saturation: not supported

9.9.5.2 LD Agen

Instruction name LD agen

Functionality Scalar load agen-based

Assembly format LD<type> *A<id>++, Rdst

Type and bit width Type available:

B, BU, H, HU, W

Predication not available

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 456

Instruction name LD agen

Source options

Destination options Single scalar register

Additional options

Intrinsics/operator int int_load(agen& agen1);
unsigned int uint_load(agen& agen1);
short short_load(agen& agen1);
unsigned short ushort_load(agen& agen1);
char char_load(agen& agen1);
unsigned char uchar_load(agen& agen1);
float float_load(agen& agen1);
hfloat hfloat_load(agen& agen1);

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

9.9.5.3 DLD Agen

Instruction name DLD agen

Functionality Dual scalar load agen-based

Assembly format DLD<type> *A<id>++, Rdst1, Rdst2

Type and bit width Type available:

B, BU, H, HU, W

Predication not available

Source options

Destination options Two scalar registers

Additional options

Intrinsics/operator void int_load(agen& agen1, int &dst1, int &dst2);
void uint_load(agen& agen1, uint &dst1, uint &dst2);
void short_load(agen& agen1, short &dst1, short &dst2);
void ushort_load(agen& agen1, unsigned short &dst1, unsigned short &dst2);
void char_load(agen& agen1, char &dst1, char &dst2);
void uchar_load(agen& agen1, unsigned char &dst1, unsigned char &dst2);
void float_load(agen& agen1, float &dst1, float &dst2);
void hfloat_load(agen& agen1, hfloat &dst1, hfloat &dst2);

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Two successive items in memory pointed by the Agen are loaded, the first item

into Rdst1, the second item into Rdst2.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 457

9.9.5.4 ST Agen

Instruction name ST agen

Functionality Scalar store agen-based

Assembly format <pred> ST<type> Rsrc, *A<id>++

Type and bit width Type available:

B, H, W

Predication Instruction level predication

Source options Single scalar register

Destination options

Additional options

Intrinsics/operator // unpredicated
void int_store(int src, agen& agen1);
void short_store(short src, agen& agen1);
void char_store(char src, agen& agen1);
void uint_store(unsigned int src, agen& agen1);
void ushort_store(unsigned short src, agen& agen1);
void uchar_store(unsigned char src, agen& agen1);
void float_store(float src, agen& agen1);
void hfloat_store(hfloat src, agen& agen1);

// predicated
void int_store(int src, agen& agen1, bool pred);
void short_store(short src, agen& agen1, bool pred);
void char_store(char src, agen& agen1, bool pred);
void uint_store(unsigned int src, agen& agen1, bool pred);
void ushort_store(unsigned short src, agen& agen1, bool pred);
void uchar_store(unsigned char src, agen& agen1, bool pred);
void float_store(float src, agen& agen1, bool pred);
void hfloat_store(hfloat src, agen& agen1, bool pred);

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Note that when compile-time-constant 0 is used on the predicate argument, the

intrinsic would be compiled into update_agen(), which is equivalent in

functionality.

9.9.5.5 DST Agen

Instruction name DST agen

Functionality Dual scalar store agen-based

Assembly format <pred> ST<type> Rsrc1, Rsrc2, *A<id>++

Type and bit width Type available:

B, H, W

Predication Instruction level predication

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 458

Instruction name DST agen

Source options Two scalar registers

Destination options

Additional options

Intrinsics/operator // unpredicated
void int_store(int src1, int src2, agen& agen1);
void short_store(short src1, short src2, agen& agen1);
void char_store(char src1, char src2, agen& agen1);
void uint_store(unsigned int src1, unsigned int src2, agen& agen1);
void ushort_store(unsigned short src1, unsigned short src2, agen&
agen1);
void uchar_store(unsigned char src1, unsigned char src2, agen& agen1);
void float_store(float src1, float src2, agen& a1);
void hfloat_store(hfloat src1, hfloat src2, agen& a1);

// predicated
void int_store(int src1, int src2, agen& agen1, bool pred);
void short_store(short src1, short src2, agen& agen1, bool pred);
void char_store(char src1, char src2, agen& agen1, bool pred);
void uint_store(unsigned int src1, unsigned int src2, agen& agen1, bool
pred);
void ushort_store(unsigned short src1, unsigned short src2, agen& agen1,
bool pred);
void uchar_store(unsigned char src1, unsigned char src2, agen& agen1,
bool pred);
void float_store(float src1, float src2, agen& a1, bool pred);
void hfloat_store(hfloat src1, hfloat src2, agen& a1, bool pred);

Additional details Use Agen to supply address; address is post-modified according to multi-

dimensional (up to 6D) address modifier scheme.

Two successive items are store to memory pointed by the Agen, the first item from

Rsrc1, the second item from Rsrc2.

Note that when compile-time-constant 0 is used on the predicate argument, the

intrinsic would be compiled into update_agen(), which is equivalent in functionality.

9.9.6 Parallel Lookup, Histogram, Vector Addressed

Store

9.9.6.1 Instruction Summary

Instructions for lookup, histogram and vector addressed store are shown as follows.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 459

Table 43 Parallel lookup, histogram, vector addressed store instructions

Function Assembly Format Comments

Parallel lookup DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc),

DVdst/DWdst

type-parallelism = {32H, 32HU, 16W, 16WU}

Rbase should be 64-byte

aligned, bits 5..0 are ignored.

Use DVsrc as indices.

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

type-parallelism = {32/16/8/4/2/1 B/BU, 16/8/4/2/1

H/HU, 8/4/2/1 W/WU}

VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst

type-parallelism = {32HB, 32HBU}

VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

type-parallelism = {16/8/4/2/1HB, 16/8/4/2/1HBU}

Rbase should be 64-byte

aligned, bits 5..0 are ignored.

Use Vsrc as indices.

Parallel 2-point

lookup

DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc),

DVdst

type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1

H/HU, 8/4/2/1 W/WU, 16/8/4/2/1 HB/HBU}

Lookup table[index] and

table[index+1] and return a

double vector

Parallel 2x2-pt

lookup

DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc),

DVdst/DWdst

type-parallelism =

{8/4/2/1 B/BU, 8/4/2/1 H/HU, 4/2/1 W/WU, 8/4/2/1

HB/HBU }

Lookup table[index],

table[index+1], table[line_pitch

+ index], table[line_pitch + index

+ 1] in a double vector

Parallel histogram DVHist_<type-parallelism> *(Rbase+DVsrc1),

DVsrc2, DVdst

DVHist_<type-parallelism> *(Rbase+DVsrc1),

DVsrc2

type-parallelism = {32H, 16W}

Rbase should be 64-byte

aligned, bits 5..0 are ignored.

Use DVsrc1 as indices, DVsrc2

as update (additive) values.

Optionally return bin value

before the update in DVdst

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2,

Vdst

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

type-parallelism = {16/8/4/2/1 H, 8/4/2/1 W}

Use Vsrc1 as indices, Vsrc2 as

update (additive) values.

Optionally return bin value

before the update in Vdst

Parallel OR

histogram

DVHist_OR_<type-parallelism> *(Rbase+DVsrc1),

DVsrc2, DVdst

DVHist_OR_<type-parallelism> *(Rbase+DVsrc1),

DVsrc2

type-parallelism = {32H, 16W}

Perform bitwise OR operation

instead of addition

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 460

Function Assembly Format Comments

VHist_OR_<type-parallelism> *(Rbase+Vsrc1),

Vsrc2, Vdst

VHist_OR_<type-parallelism> *(Rbase+Vsrc1),

Vsrc2

type-parallelism = {16/8/4/2/1H, 8/4/2/1W}

Perform bitwise OR operation

instead of addition

Vector addressed

store

DVAST_<type-parallelism> DVsrc, *(Rbase+DVidx)

type-parallelism = {32H, 16W}

Rbase should be 64-byte

aligned, bits 5..0 are ignored.

Use DVidx as indices, DVsrc as

data to write.

9.9.6.2 DVLUT

Instruction name DVLUT

Functionality Double vector lookup

Assembly format DVLUT_<type-parallelism> *(Rbase+DVsrc/DWsrc), DVdst/DWdst

Type and bit width type-parallelism = {32H, 32HU, 16W, 16WU}

Same type applies to indices and table entries, but indices are always signed

even when unsigned type is used. Table entries are signed or unsigned

indicated in the type.

For example:

 DVLUT_16W *(R4 + V0:V1), V2:V3

Predication Not available

Source options Base address: scalar register

Index: double vector register in VRF or WRF

Destination options Double vector register in VRF or WRF

Additional options

Intrinsics/operator dvshortx vlookup_32h(const short* tbl, dvshortx idx);
dvshortx vlookup_32hu(cont unsigned short* tbl, dvshortx idx);
dvhfloatx vlookup_32hf(const hfloat* tbl, dvshortx idx);
dvintx vlookup_16w(const int* tbl, dvintx idx);
dvintx vlookup_16wu(const unsigned int* tbl, dvintx idx);
dvfloatx vlookup_16f(const float* tbl, dvintx idx);

Additional details Use double vector to supply indices to lookup parallel tables. Rbase is forced

to be 64-byte aligned by ignoring its bits 5:0.

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.3 VLUT

Instruction name VLUT

Functionality Single vector lookup

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 461

Instruction name VLUT

Assembly format VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

Type and bit width type-parallelism =

{32/16/8/4/2/1B, 32/16/8/4/2/1BU, 16/8/4/2/1H, 16/8/4/2/1HU,

 8/4/2/1W, 8/4/2/1WU}

Same type applies to indices and table entries, but indices are always signed

even when unsigned type is used. Table entries are signed or unsigned

indicated in the type.

For example:

 VLUT_4W *(R4 + V0), V2

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vcharx vlookup_32b(const char* tbl, vcharx idx);
vcharx vlookup_32bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_16b(const char* tbl, vcharx idx);
vcharx vlookup_16bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_8b(const char* tbl, vcharx idx);
vcharx vlookup_8bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_4b(const char* tbl, vcharx idx);
vcharx vlookup_4bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_2b(const char* tbl, vcharx idx);
vcharx vlookup_2bu(const unsigned char* tbl, vcharx idx);
vcharx vlookup_1b(const char* tbl, vcharx idx);
vcharx vlookup_1bu(const unsigned char* tbl, vcharx idx);

vshortx vlookup_16h(const short* tbl, vshortx idx);
vshortx vlookup_16hu(const unsigned short* tbl,vshortx idx);
vshortx vlookup_8h(const short* tbl, vshortx idx);
vshortx vlookup_8hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_4h(const short* tbl, vshortx idx);
vshortx vlookup_4hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_2h(const short* tbl, vshortx idx);
vshortx vlookup_2hu(const unsigned short* tbl, vshortx idx);
vshortx vlookup_1h(const short* tbl, vshortx idx);
vshortx vlookup_1hu(const unsigned short* tbl, vshortx idx);

vintx vlookup_8w(const int* tbl, vintx idx);
vintx vlookup_8wu(const unsigned int* tbl, vintx idx);
vintx vlookup_4w(const int* tbl, vintx idx);
vintx vlookup_4wu(const unsigned int* tbl, vintx idx);
vintx vlookup_2w(const int* tbl, vintx idx);
vintx vlookup_2wu(const unsigned int* tbl, vintx idx);
vintx vlookup_1w(const int* tbl, vintx idx);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 462

Instruction name VLUT

vintx vlookup_1wu(const unsigned int* tbl, vintx idx);

vfloatx vlookup_8f(const float* tbl, vintx idx);
vfloatx vlookup_4f(const float* tbl, vintx idx);
vfloatx vlookup_2f(const float* tbl, vintx idx);
vfloatx vlookup_1f(const float* tbl, vintx idx);

vhfloatx vlookup_16hf(const hfloat* tbl, vshortx idx);
vhfloatx vlookup_8hf(const hfloat* tbl, vshortx idx);
vhfloatx vlookup_4hf(const hfloat* tbl, vshortx idx);
vhfloatx vlookup_2hf(const hfloat* tbl, vshortx idx);
vhfloatx vlookup_1hf(const hfloat* tbl, vshortx idx);

Additional details Use first K lanes of a single vector to supply K indices to lookup K parallel

tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Returned table entries are placed on the first K lanes of the destination

vector register. Remaining lanes, if any, are returned 0.

Refer to Table Lookup for index bit width used in address calculation.

Instruction name VLUT (looking up bytes with halfword indices)

Functionality Single vector lookup

Assembly format VLUT_<type-parallelism> *(Rbase+Vsrc), Vdst

VLUT_<type-parallelism> *(Rbase+DVsrc), Vdst

Type and bit width type-parallelism = {32/16/8/4/2/1HB, 32/16/8/4/2/1HBU}

The first type letter indicates type of indices; indices are always signed. The

second type letter indicates type of table entries including signed/unsigned

In case of 32-way parallel lookup, 32 short indices require a double vector

source. For other parallelism, a single vector source is used.

For example:

 VLUT_4HB *(R4 + V0), V2

 VLUT_32HB *(R4 + V0:V1), V2

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register (1 ~ 16-way)

DVsrc: double vector register (32-way)

Destination options Vdst: single vector register

Additional options

Intrinsics/operator vcharx vlookup_32hb(const char* tbl,dvshortx idx);
vcharx vlookup_32hbu(const unsigned char* tbl,dvshortx idx);
vcharx vlookup_16hb(const char* tbl, vshortx idx);
vcharx vlookup_16hbu(const unsigned char* tbl, vshortx idx);
vcharx vlookup_8hb(const char* tbl, vshortx idx);
vcharx vlookup_8hbu(const unsigned char* tbl, vshortx idx);
vcharx vlookup_4hb(const char* tbl, vshortx idx);
vcharx vlookup_4hbu(const unsigned char* tbl, vshortx idx);
vcharx vlookup_2hb(const char* tbl, vshortx idx);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 463

Instruction name VLUT (looking up bytes with halfword indices)

vcharx vlookup_2hbu(const unsigned char* tbl, vshortx idx);
vcharx vlookup_1hb(const char* tbl, vshortx idx);
vcharx vlookup_1hbu(const unsigned char* tbl, vshortx idx);

Additional details Use first K lanes of a single vector to supply K indices to lookup K parallel

tables. Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Returned table entries are placed on the first K lanes of the destination

vector register. Remaining lanes, if any, are returned 0.

In the case of 32-way parallel byte lookup with double short vector indices,

the .lo component of double vector supplies the first 16 indices, the .hi

component of double vector supplies the last 16 indices.

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.4 DVLUT_2PT

Instruction name DVLUT_2PT

Functionality Double vector two-point lookup

Assembly format DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width type-parallelism = {16/8/4/2/1 B/BU, 16/8/4/2/1 H/HU, 8/4/2/1 W/WU}

Same type applies to indices and table entries, but indices are always signed

even when unsigned type is used. Table entries are signed or unsigned

indicated in the type.

For example:

 DVLUT_2pt_16HU *(R4 + V0), V2:V3

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options DVdst: double vector register

Additional options

Intrinsics/operator dvcharx vlookup_2pt_16b(const char* tbl, vcharx idx);
dvcharx vlookup_2pt_16bu(const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_8b(const char* tbl, vcharx idx);
dvcharx vlookup_2pt_8bu(const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_4b(const char* tbl, vcharx idx);
dvcharx vlookup_2pt_4bu(const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_2b(const char* tbl, vcharx idx);
dvcharx vlookup_2pt_2bu(const unsigned char* tbl, vcharx idx);
dvcharx vlookup_2pt_1b(const char* tbl, vcharx idx);
dvcharx vlookup_2pt_1bu(const unsigned char* tbl, vcharx idx);

dvshortx vlookup_2pt_16h(const short* tbl, vshortx idx);
dvshortx vlookup_2pt_16hu(const unsigned short* tbl, vshortx idx);
dvshortx vlookup_2pt_8h(const short* tbl, vshortx idx);
dvshortx vlookup_2pt_8hu(const unsigned short* tbl, vshortx idx);
dvshortx vlookup_2pt_4h(const short* tbl, vshortx idx);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 464

Instruction name DVLUT_2PT

dvshortx vlookup_2pt_4hu(const unsigned short* tbl, vshortx idx);
dvshortx vlookup_2pt_2h(const short* tbl, vshortx idx);
dvshortx vlookup_2pt_2hu(const unsigned short* tbl, vshortx idx);
dvshortx vlookup_2pt_1h(const short* tbl, vshortx idx);
dvshortx vlookup_2pt_1hu(const unsigned short* tbl, vshortx idx);

dvintx vlookup_2pt_8w(const int* tbl, vintx idx);
dvintx vlookup_2pt_8wu(const unsigned int* tbl, vintx idx);
dvintx vlookup_2pt_4w(const int* tbl, vintx idx);
dvintx vlookup_2pt_4wu(const unsigned int* tbl, vintx idx);
dvintx vlookup_2pt_2w(const int* tbl, vintx idx);
dvintx vlookup_2pt_2wu(const unsigned int* tbl, vintx idx);
dvintx vlookup_2pt_1w(const int* tbl, vintx idx);
dvintx vlookup_2pt_1wu(const unsigned int* tbl, vintx idx);

Additional details Use first P lanes of a single vector to supply indices to look up P parallel

tables (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its

bits 5:0. Table[index] and the next entry in the table per parallel table are

returned in the low and high registers, respectively, in the first P lanes.

Remaining lanes are returned as zero.

Note that the parallelism indicates number of parallel sub-tables we have.

Number of data points returned is twice as many, as we look up 2 data points

from each subtable.

Refer to Table Lookup for index bit width used in address calculation.

For example, DVLUT_2pt_8W returns 2 data points from each of 8 subtables. Layout of

an 8-way-parallel word-type table and picking up data points via index vector {0, 1, 2, 3,

4, 5, 4, 3}:

T0[0] T0[1] T1[0] T1[1] T2[0] T2[1] T3[0] T3[1] T4[0] T4[1] T5[0] T5[1] T6[0] T6[1] T7[0] T7[1]

T0[2] T0[3] T1[2] T1[3] T2[2] T2[3] T3[2] T3[3] T4[2] T4[3] T5[2] T5[3] T6[2] T6[3] T7[2] T7[3]

T0[4] T0[5] T1[4] T1[5] T2[4] T2[5] T3[4] T3[5] T4[4] T4[5] T5[4] T5[5] T6[4] T6[5] T7[4] T7[5]

T0[6] T0[7] T1[6] T1[7] T2[6] T2[7] T3[6] T3[7] T4[6] T4[7] T5[6] T5[7] T6[6] T6[7] T7[6] T7[7]

Instruction name DVLUT_2PT (looking up bytes with halfword indices)

Functionality Double vector two-point lookup

Assembly format DVLUT_2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width type-parallelism = {16/8/4/2/1 HB/HBU}

The first type letter indicates type of indices; indices are always signed. The

second type letter indicates type of table entries including signed/unsigned

For example:

 DVLUT_2pt_4HB *(R4 + V0), V2:V3

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options DVdst: double vector register

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 465

Instruction name DVLUT_2PT (looking up bytes with halfword indices)

Additional options

Intrinsics/operator dvcharx vlookup_2pt_16hb(const char* tbl, vshortx idx);
dvcharx vlookup_2pt_16hbu(const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_8hb(const char* tbl, vshortx idx);
dvcharx vlookup_2pt_8hbu(const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_4hb(const char* tbl, vshortx idx);
dvcharx vlookup_2pt_4hbu(const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_2hb(const char* tbl, vshortx idx);
dvcharx vlookup_2pt_2hbu(const unsigned char* tbl, vshortx idx);
dvcharx vlookup_2pt_1hb(const char* tbl, vshortx idx);
dvcharx vlookup_2pt_1hbu(const unsigned char* tbl, vshortx idx);

Additional details Use single vector to supply indices to lookup parallel tables in the first P

lanes (P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its

bits 5:0. Table[index] and the next entry in the table per parallel table are

returned in the first P lanes respectively in the low and high parts of

destination double register. Remaining lanes are returned as zero.

Note that the parallelism indicates number of parallel sub-tables we have.

Number of data points returned is twice as many, as we look up 2 data points

from each subtable.

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.5 DVLUT_2X2PT

Instruction name DVLUT_2X2PT

Functionality Double vector two-by-two-point lookup

Assembly format DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst/DWdst

Type and bit width type-parallelism =

{8/4/2/1B/BU, 8/4/2/1H/HU, 4/2/1W/WU}

Same type applies to indices and table entries, but indices are always signed

even when unsigned type is used. Table entries are signed or unsigned indicated

in the type.

For example:

 DVLUT_2x2pt_2W *(R4 + V0), V2:V3

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Implicit PL scalar register to derive line pitch

Destination options DVdst: double vector register

Additional options

Intrinsics/operator dvcharx vlookup_2x2pt_8b(const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_8bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_4b(const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_4bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_2b(const char* tbl, vcharx idx, int k);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 466

Instruction name DVLUT_2X2PT

dvcharx vlookup_2x2pt_2bu(const unsigned char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_1b(const char* tbl, vcharx idx, int k);
dvcharx vlookup_2x2pt_1bu(const unsigned char* tbl, vcharx idx, int k);

dvshortx vlookup_2x2pt_8h(const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_8hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_4h(const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_4hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_2h(const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_2hu(const unsigned short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_1h(const short* tbl, vshortx idx, int k);
dvshortx vlookup_2x2pt_1hu(const unsigned short* tbl, vshortx idx, int k);

dvintx vlookup_2x2pt_4w(const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_4wu(const unsigned int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_2w(const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_2wu(const unsigned int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_1w(const int* tbl, vintx idx, int k);
dvintx vlookup_2x2pt_1wu(const unsigned int* tbl, vintx idx, int k);

Additional details Use a single vector to supply indices to lookup parallel tables in the first P lanes

(P = parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Table[index], table[index+1], table[index + line_pitch], and table[index +

line_pitch + 1] are returned for each parallel table.

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low

part of destination double register. Table[index+ line_pitch] and table[index +

line_pitch + 1], are interleaved in the first 2*P lanes of the high part of

destination double register. Remaining lanes are returned as zero.

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, (32/P)*k+2 for

Halfword-type table, and (16/P)*k+2 for Word-type table, k being an integer >= 0

and P = parallelism. The restriction ensures that the 2x2 points being read in

each subtable do not collide in memory banks (16-bit per bank). The integer k is

conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.

Note that the parallelism indicates number of parallel sub-tables we have.

Number of data points returned is 4 times as many, as we look up 2 x 2 = 4 data

points from each subtable.

It IS allowed to have k = PL = 0. In this case, for H and W types, the lookup

behaves like looking up 4 consecutive items from the indexed item. For B type,

we would be fetching table[index], table[index+1], table[index+4],

table[index+5] in each subtable. The access pattern is such that it’s not obvious

how it might be used.

Refer to Table Lookup for index bit width used in address calculation.

For example, DVLUT_2x2pt_2W returns 4 data points from each of 2 subtables. Assume

PL = 1, line pitch = 16/2*1 + 2 = 10. The following diagram shows the layout of an 2-way-

parallel word-type table with line pitch of 10 elements, and where data points are picked

up from index vector {1, 13}.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 467

A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7] B[0][0] B[0][1] B[0][2] B[0][3] B[0][4] B[0][5] B[0][6] B[0][7]

A[0][8] A[0][9] A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] B[0][8] B[0][9] B[1][0] B[1][1] B[1][2] B[1][3] B[1][4] B[1][5]

A[1][6] A[1][7] A[1][8] A[1][9] A[2][0] A[2][1] A[2][2] A[2][3] B[1][6] B[1][7] B[1][8] B[1][9] B[2][0] B[2][1] B[2][2] B[2][3]

A[2][4] A[2][5] A[2][6] A[2][7] A[2][8] A[2][9] A[3][0] A[3][1] B[2][4] B[2][5] B[2][6] B[2][7] B[2][8] B[2][9] B[3][0] B[3][1]

Returned destination low part = {A[0][1], A[0][2], B[1][3], B[1][4], 0, 0, 0, 0},

and high part = {A[1][1], A[1][2], B[2][3], B[2][4], 0, 0, 0, 0}.

Instruction name DVLUT_2X2PT (HB/HBU)

Functionality Double vector two-by-two-point lookup

Assembly format DVLUT_2x2pt_<type-parallelism> *(Rbase+Vsrc), DVdst

Type and bit width type-parallelism = {8/4/2/1 HB/HBU }

The first type letter indicates type of indices; indices are always signed. The

second type letter indicates type of table entries including signed/unsigned

For example:

 DVLUT_2x2pt_2HB *(R4 + V0), V2:V3

Predication Not available

Source options Rbase: scalar register

Vsrc: single vector register

Destination options DVdst: double vector register

Additional options

Intrinsics/operator dvcharx vlookup_2x2pt_8hb(const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_8hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_4hb(const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_4hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_2hb(const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_2hbu(const unsigned char* tbl,vshortx idx,int k);
dvcharx vlookup_2x2pt_1hb(const char* tbl, vshortx idx, int k);
dvcharx vlookup_2x2pt_1hbu(const unsigned char* tbl,vshortx idx,int k);

Additional details Use single vector to supply indices to lookup parallel tables in the first P lanes (P

= parallelism). Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Table[index] and table[index + 1], are interleaved in the first 2*P lanes of the low

part of destination double register. Table[index + line_pitch] and table[index +

line_pitch + 1], are interleaved in the first 2*P lanes of the high part of

destination double register. Remaining lanes are returned as zero.

Line_pitch is restricted to (64/P)*k+4 for Byte-type table, k being an integer > 0

and P = parallelism. The restriction ensures that the 2x2 points being read in

each subtable do not collide in memory banks (16-bit per bank). The integer k is

conveyed in the 8 LSBs of implicit scalar register PL, as an unsigned number.

Note that with 8-bit unsigned number we can represent line pitch more than

16,000 8-bit data points, 8,000 16-bit data points, 4,000 32-bit data points,

which are more than sufficient for normal applications.

Note that the parallelism indicates number of sub-tables we have. Number of

data points returned is 4 times as many, as we look up 2 x 2 = 4 data points

from each subtable.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 468

Instruction name DVLUT_2X2PT (HB/HBU)

Refer to Table Lookup for index bit width used in address calculation.

9.9.6.6 DVHist

Instruction name DVHist

Functionality Double vector histogram

Assembly format DVHist_<type-parallelism> *(Rbase+DVsrc1), DVsrc2, DVdst

DVHist_<type-parallelism> *(Rbase+DVsrc1), DVsrc2

Type and bit width type-parallelism = {32H, 16W}

Same type applies to indices and table entries. Both indices and table entries are

signed.

Note that it is possible to maintain unsigned histogram, as histogram update

operation (addition) behaves the same way for signed or unsigned data. Just

that the pre-update bin read back data are always sign-extended in the

destination registers.

For example:

 DVHist_16W *(R4 + V0:V1), V2:V3, V4:V5

 DVHist_16W *(R4 + V0:V1), V2:V3

Predication Not available

Source options Rbase: scalar register

DVsrc1: double vector register

DVsrc2: double vector register

Destination options DVdst: double vector register

or none

Additional options

Intrinsics/operator dvshortx vhist_32h(short* hist, dvshortx idx, dvshortx upd);
dvintx vhist_16w(int* hist, dvintx idx, dvintx upd);

void vhist_simple_32h(short* hist, dvshortx idx, dvshortx upd);
void vhist_simple_16w(int* hist, dvintx idx, dvintx upd);

Additional details Use DVsrc1 as indices and DVsrc2 as weights for weighted histogram. The

indexed entries are updated by adding the corresponding weights. Pre-update

entries are optionally returned in DVdst.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

9.9.6.7 VHist

Instruction name VHist

Functionality Single vector histogram

Assembly format VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2, Vdst

VHist_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 469

Instruction name VHist

Type and bit width type-parallelism = {16/8/4/2/1H, 8/4/2/1W}

Same type applies to indices and histogram entries. Both indices and histogram

entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update

operation (addition) behaves the same way for signed vs unsigned data. Just

that the pre-update bin read back data are always sign-extended in the

destination register.

For example:

 VHist_4W *(R4 + V0), V1, V2

 VHist_4W *(R4 + V0), V1

Predication Not available

Source options Rbase: scalar register

Vsrc1: single vector register

Vsrc2: single vector register

Destination options Vdst: single vector register

or none

Additional options

Intrinsics/operator vshortx vhist_16h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_8h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_4h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_2h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_1h(short* hist, vshortx idx, vshortx upd);

vintx vhist_8w(int* hist, vintx idx, vintx upd);
vintx vhist_4w(int* hist, vintx idx, vintx upd);
vintx vhist_2w(int* hist, vintx idx, vintx upd);
vintx vhist_1w(int* hist, vintx idx, vintx upd);

void vhist_simple_16h(short* hist, vshortx idx, vshortx upd);
void vhist_simple_8h(short* hist, vshortx idx, vshortx upd);
void vhist_simple_4h(short* hist, vshortx idx, vshortx upd);
void vhist_simple_2h(short* hist, vshortx idx, vshortx upd);
void vhist_simple_1h(short* hist, vshortx idx, vshortx upd);

void vhist_simple_8w(int* hist, vintx idx, vintx upd);
void vhist_simple_4w(int* hist, vintx idx, vintx upd);
void vhist_simple_2w(int* hist, vintx idx, vintx upd);
void vhist_simple_1w(int* hist, vintx idx, vintx upd);

Additional details Use Vsrc1 as indices and Vsrc2 as weights for weighted histogram. The indexed

entries are updated by adding the corresponding weights.

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Pre-update entries are optionally returned in the first K lanes of Vdst. The

remaining lanes, if any, are returned 0.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 470

9.9.6.8 DVHist_OR

Instruction name DVHist_OR

Functionality Double vector histogram with bitwise OR operation

Assembly format DVHist_OR_<type-parallelism> *(Rbase+DVsrc1), DVsrc2, DVdst

DVHist_OR_<type-parallelism> *(Rbase+DVsrc1), DVsrc2

Type and bit width type-parallelism = {32H, 16W}

Same type applies to indices and histogram entries. Both indices and histogram

entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update

operation (addition) behaves the same way for signed vs unsigned data. Just

that the pre-update bin read back data are always sign-extended in the

destination registers.

For example:

 DVHist_OR_16W *(R4 + V0:V1), V2:V3, V4:V5

Predication Not available

Source options Rbase: scalar register

DVsrc1: double vector register

DVsrc2: double vector register

Destination options DVdst: double vector register

or none (no-return/simple version)

Additional options

Intrinsics/operator dvshortx vhist_or_32h(short* hist, dvshortx idx, dvshortx upd);
dvintx vhist_or_16w(int* hist, dvintx idx, dvintx upd);

void vhist_or_simple_32h(short* hist, dvshortx idx, dvshortx upd);
void vhist_or_simple_16w(int* hist, dvintx idx, dvintx upd);

Additional details Use DVsrc1 as indices and DVsrc2 as updates. The indexed entries are updated

by bitwise-ORing the corresponding updates. Pre-update entries are optionally

returned in DVdst.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

9.9.6.9 VHist_OR

Instruction name VHist_OR

Functionality Single vector histogram with bitwise OR operation

Assembly format VHist_OR_<type-parallelism> *(Rbase+Vsrc1), Vsrc2, Vdst

VHist_OR_<type-parallelism> *(Rbase+Vsrc1), Vsrc2

Type and bit width type-parallelism = {16/8/4/2/1H, 8/4/2/1W}

Same type applies to indices and histogram entries. Both indices and histogram

entries are signed.

Note that it is possible to maintain unsigned histogram, as histogram update

operation (bitwise OR) behaves the same way for signed vs unsigned data. Just

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 471

Instruction name VHist_OR

that the pre-update bin read back data are always sign-extended in the

destination register.

For example:

 VHist_OR_4W *(R4 + V0), V1, V2

Predication Not available

Source options Rbase: scalar register

Vsrc1: single vector register

Vsrc2: single vector register

Destination options Vdst: single vector register

or none (no-return/simple version)

Additional options

Intrinsics/operator vshortx vhist_or_16h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_or_8h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_or_4h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_or_2h(short* hist, vshortx idx, vshortx upd);
vshortx vhist_or_1h(short* hist, vshortx idx, vshortx upd);

vintx vhist_or_8w(int* hist, vintx idx, vintx upd);
vintx vhist_or_4w(int* hist, vintx idx, vintx upd);
vintx vhist_or_2w(int* hist, vintx idx, vintx upd);
vintx vhist_or_1w(int* hist, vintx idx, vintx upd);

void vhist_or_simple_16h(short* hist, vshortx idx, vshortx upd);
void vhist_or_simple_8h(short* hist, vshortx idx, vshortx upd);
void vhist_or_simple_4h(short* hist, vshortx idx, vshortx upd);
void vhist_or_simple_2h(short* hist, vshortx idx, vshortx upd);
void vhist_or_simple_1h(short* hist, vshortx idx, vshortx upd);

void vhist_or_simple_8w(int* hist, vintx idx, vintx upd);
void vhist_or_simple_4w(int* hist, vintx idx, vintx upd);
void vhist_or_simple_2w(int* hist, vintx idx, vintx upd);
void vhist_or_simple_1w(int* hist, vintx idx, vintx upd);

Additional details Use Vsrc1 as indices and Vsrc2 as update. The indexed entries are updated by

biwise-ORing the corresponding updates.

First K lanes of Vsrc1 and Vsrc2 are used for K-way histogram.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Pre-update entries are optionally returned in the first K lanes of Vdst.

Remaining lanes, if any, are returned 0.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 472

9.9.6.10 DVAST

Instruction name DVAST

Functionality Double vector addressed store

Assembly format <pred> DVAST_<type-parallelism> DVsrc1, *(Rbase+DVsrc2)

pred = none, [P2.. P15]

Type and bit width type-parallelism = {32H, 16W}

Same type applies to indices and entries in memory. The indices are signed,

whereas the entries in memory can be signed or unsigned, as memory store

behaves the same way for signed vs unsigned data.

For example:

[P3] DVAST_16W V2:V3, *(R4 + V0:V1)

Predication Per-lane predication

Source options Rbase: scalar register

DVsrc1: double vector register (as data)

DVsrc2: double vector register (as indices)

Destination options

Additional options

Intrinsics/operator void vast_32h(short* arr, dvshortx idx, dvshortx data,
 int pred);
void vast_32hf(hfloatx* arr, dvshortx idx, dvhfloatx data, int pred);
void vast_16w(int* arr, dvintx idx, dvintx data, int pred);
void vast_16f(float* arr, dvintx idx, dvfloatx data, int pred);

Additional details Use DVsrc1 as data and DVsrc2 as indices, write each lane of DVsrc1 into

memory object indexed by a corresponding lane of DVsrc2.

Lowest K bits of pred argument is used to predicate K lanes.

Rbase is forced to be 64-byte aligned by ignoring its bits 5:0.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 473

9.9.7 Misc Register Store

9.9.7.1 Instruction Summary

These instructions support debug functionality by storing out otherwise inaccessible

architecture registers to memory, so that debug controller can read the contents from

memory.

Table 44 Miscellaneous register store instructions

Function Assembly Format Comments

Store hardware

loop register

STW HWLP.<reg>, *(Rbase+imm12)

reg = LF, LS[0/1], LE[0/1], LC[0/1]

Use Rbase + (signed) imm12 as byte

address.

Data zero-padded in case of LF (2 bits)

Store Agen loop

variable

STH A<id>.I<level>, *(Rbase+imm12) Each variable is 16-bit

9.9.7.2 STW HWLP

Instruction name STW HWLP

Functionality Store hardware loop register

Assembly format STW HWLP.<reg>, *(Rbase+imm12)

reg = LF, LS[0/1], LE[0/1], LC[0/1]

Type and bit width LF: 2-bit, zero-padded into 32-bit

LS/LE/LC: 32-bit

Predication Not available

Source options Specific HWLP register

Rbase: scalar register

Destination options

Additional options

Intrinsics/operator not available

Additional details This instruction is intended to be used in Debug State, injected through

debug client to query hardware loop registers through VMEM. In normal (non-

debug) programming, placement of STW HWLP in the following packets lead

to indefinite outcome:

• In two packets before RPT

• In the same packet as RPT

• In two delay slots following RPT

• In first 3 packets of loop body

• In last 3 packets of loop body

• In first 2 packets after the loop

Note that debug-injection of STW HWLP is not hindered, as pipeline is

flushed before and existing debug state.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 474

9.9.7.3 AgenLpv ST

Instruction name AgenLpv ST

Functionality Store Agen loop variable

Assembly format STH A<id>.I<level>, *(Rbase+imm12)

id = 0..7, level = 1..6

Type and bit width 16-bit

Predication Not available

Source options Specific Agen loop variable register

Rbase: scalar register

Destination options

Additional options

Intrinsics/operator not available

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 475

Chapter 10. Decoupled Lookup Unit

(DLUT) Reference

10.1 Index and Output Data Format
To provide some degree of flexibility in data formatting without sacrificing

area/performance/power efficiency, DLUT supports a subset of address calculation

capability via a reduced set of agen, address generator, parameters. There is one set of

agen parameters for index read, and another set of agen parameters for output write.

Agen operation is similar to the agen in VPU instruction set, but some of the

configuration parameters are derived from other DLUT parameters:

> Indices are always unsigned.

> Table entries can be treated as signed or unsigned in post-lookup interpolation.

There is no bit width expansion from calculated output to memory, so the store itself

is agnostic to signed/unsigned data types.

> Number of inner-loop iterations N1 and size of partial memory transactions are

derived from task length N1 and size of index/output as configured:

INDEX_AGEN_N1 = ((TASK_LEN_N1 * idx_dim) + (64/sizeof_idx – 1))/ (64/sizeof_idx);
INDEX_REMAINDER = (TASK_LEN_N1 * idx_dim) % (64/sizeof_idx);
OUTPUT_AGEN_N1 = (TASK_LEN_N1 + (64/sizeof_entry – 1)) / (64/sizeof_entry);
OUTPUT_REMAINDER = TASK_LEN_N1 % (64/sizeof_entry);

idx_dim = 1 for 1D lookup/interpolation, and 2 for 2D lookup/interpolation. Note that

zero remainder means all read/write transactions are full, 64-byte, transactions.

> Number of outer-loop iterations N2 are simply copied from task length N2:

INDEX_AGEN_N2 = OUTPUT_AGEN_N2 = TASK_LEN_N2;

> Two-level address calculation capability is supported, so there are AMOD1 and

AMOD2 parameters for each agen.

> Transpose option is included to select among P (no transpose), T1, T2, T4, T8, T16,

T32, along with lane_ofst parameter to specify transpose line pitch.

> In case of 2D lookup (with or without interpolation), X/Y indices can be element-wise

interleaved, or 32-byte interleaved (with 32 bytes of X then 32 bytes of Y). This is

analogous of VPU double vector load having deinterleaving option, or VPU double

vector store having interleaving option.

> No rounding/saturation agen fields are supported.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 476

Note that auto-indexing mode uses the index stream to load parameters that drive DLUT

index generation, so it has a different data layout in the index stream. See 2D Lookup

with Interpolation with Auto Index Generation for details.

When INDEX_REMAINDER is non-zero, hardware handles partial index read memory

transactions correctly. For example, if INDEX_REMAINDER = 10 while full memory read

involves 16 indices (say idx_dim = 2 and index type = Halfword), the last 6 index lanes of

the last inner-loop iteration will be discarded.

When OUTPUT_REMAINDER is non-zero, hardware handles partial output write memory

transactions correctly. For example, if OUTPUT_REMAINDER = 5 while full memory write

involves 32 indies (say entry type = Halfword), the last 27 output lanes of last inner-loop

iterations are predicated off and not write any garbage values.

With element-wise interleaved X/Y format, the expected data layout for the first

transaction is:

 X[0] Y[0] X[1] Y[1] X[2] Y[2] … X[15] Y[15]

The last transaction is:

 X[80] Y[80] X[81] Y[81] X[82] Y[82] X[83] Y[83] DC0 DC1 … DC23 (DC = don’t care)

With 32-byte interleaved X/Y format, the expected data layout for the first transaction

is:

 X[0] X[1] X[2] … X[15] Y[0] Y[1] Y[2] … Y[15]

The last 32 indices is:

 X[80] X[81] X[82] X[83] DC0 … DC11 Y[80] Y[81] X[82] X[83] DC12 … DC23

Since index read and output write agen N1/N2 are derived from task length N1/N2, there

cannot be inconsistency in index data stream, between production and consumption,

and in output data stream, between production and consumption.

With N1/N2 derived from task length N1/N2, additional parameters for index read agen

are:

> index_addr

> index_amod1

> index_amod2

> index_transp_mode

> index_lane_ofst

> index_interleave_format

Additional parameters for output write agen are:

> output_addr

> output_amod1

> output_amod2

> output_transp_mode

> output_lane_ofst

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 477

Transposing mode can be P (no transpose), T1 (halfword or word only), T2, T4, T8, T16

(byte or halfword only), or T32 (byte only). The “T” number (for example of 2 in T2)

indicates number consecutive elements before applying line pitch to go down to the

next row.

Disallowed type and transpose combinations shall be detected as incorrect

configuration. See Incorrect Task Configuration for handling.

Like VPU transposed load/store, the line pitch (in data elements) must comply with the

following constraint, with index/output_lane_ofst supplying the integer “k” in the line

pitch constraint.

Table 45 Index and output line pitch and transpose modes

LINE PITCH Transpose mode

Entry type T1 T2 T4 T8 T16 T32

Byte n/a 64k + 2 64k + 4 64k + 8 64k + 16 64k + 32

Halfword 32k + 1 32k + 2 32k + 4 32k + 8 32k + 16 n/a

Word 16k + 1 16k + 2 16k + 4 16k + 8 n/a n/a

With flexibility in the agen (even one trimmed down to 2 levels) together with various

transpose modes, it is quite difficult to visualize all possible data layout for index and

output. The following diagrams show two example layouts in P (no transpose) mode and

T1 mode.

Figure 14. DLUT index/output data layout

In the un-transposed example layout above, parameter n1 specifies the width of the

rectangle data region (grey box), and parameter n2 specifies the height. In the

transposed example layout, parameter n1 specifies the height of width of the rectangle

data region (grey box), and parameter n2 specifies the width. In both cases, parameters

amod1/amod2 specify offset between address pointer updates (address pointers

address n1

amod1

n2

amod2

address n2

n1

amod2

amod1

Index/output layout non-transposed Index/output layout T1 transposed

Line pitch

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 478

expressed as dots in the diagram). Amod1 specifies the address offset between

read/write memory transactions, and amod2 specifies the address offset at end of the

inner loop (after index/output agen N1 transactions).

Index and output addressing shall have consistent address alignment requirements as

VPU load/store instructions. Byte/Halfword index/output shall be 16-bit aligned. Here we

consider byte data to be access 64 bytes per transaction so Agen address pointers

should be 16-bit aligned instead of being 8-bit aligned. Word index/output shall be 32-bit

aligned.

Address alignment is enforced by ignoring 1 or 2 LSBs of the agen address driving index

reads and output writes. That is, address = base and address += AMOD1/AMOD2 steps

are calculated without AND masking. AND masking is applied as address goes to VMEM

for read/write, ignoring 1 LSB (aligned to halfword) for Byte/Halfword types and ignoring

2 LSBs (aligned to word) for Word type. This is consistent with VPU agen addressing

behavior when reading/writing Byte/Halfword/Word type double vector.

For example, say INDEX_ADDR is configured as 0x1001 and INDEX_AGEN_AMOD1 is

configured as 0x41 for a LOOKUP_2D task with Halfword index type. The first few

iterations of index agen base address and address used to read indices are as follows:

 Iteration Agen base Read address (aligned to Halfword)

 0 0x1001 0x1000

 1 0x1042 0x1042

 2 0x1083 0x1082

 3 0x10C4 0x10C4

 4 0x1105 0x1104

Index and output agen address calculation shall behave the same as in VPU agen

address calculation (see 6.4.1) in that the selected AMOD is read as signed 18-bit

number does not encode large enough jump to go from one superbank primary region

into another superbank’s primary region. However, it is possible to walk through an

aliased region into another superbank, though it is strongly discouraged to address an

aliased region, as it may break software compatibility in the future.

Agen address update process can be expressed as:

lpend1 = (i1 == (agen_n1 - 1)) || (agen_n1 == 0);
lpend2 = (i2 == (agen_n2 - 1)) || (agen_n2 == 0);

if (lpend1 && lpend2) {
 amod = 0; // stay at last data point
} else if (lpend1) {
 i1 = 0;
 i2 = i2+1;
 amod = amod2;
} else {
 i1 += 1;
 amod = amod1;
}

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 479

addr += amod;

10.2 Table Data Format
Table data, the target of table lookups, should be a single data type, Byte, Halfword, or

Word, specified in the task configuration.

Table data format is specified via these task configuration parameters:

> Task mode: 1D or 2D table

> Entry type can be signed/unsigned Byte/Halfword/Word

> X integer limit: linear (for 1D table) or X dimension limit (for 2D table)

> Y integer limit: Y dimension limit (for 2D table)

> Line pitch: for 2D table

> Table pointer: starting address of the table, 64 bytes aligned

> Table address offset: address offset per outer iteration; there are N1 inner iterations

and N2 outer iterations, 64 bytes aligned

The following diagrams show table organization with various parameters.

Figure 15. DLUT table data layout

Single 1D table Single 2D table

Table pointer
Table pointer

X integer limit

Y integer limit

X integer limit

Line pitch

N2 1D subtables

Table pointer Table pointer

N2 2D subtables

…

Table addr

offset

…

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 480

The table pointer can vary among task_N2 rounds of lookup, by adding the table offset

after each round of task_N1 lookups.

The table data address shall be 512-bit or 64-byte aligned, to be consistent with VPU

lookup instructions. The alignment constraint applies to table base address and table

address offset.

Table size in any DLUT task is limited to one superbank, for the index calculation process

includes steps to map lookup accesses into the superbank where the table data address

resides. Note that this is different from index read and output write agen address

update, where it is possible to walk from one superbank into another superbank.

With the predicating off output write out-of-range handling option, the programmer can

construct multiple DLUT tasks to implement table being allocated in 2 or even 3

superbanks, by proper configuration of out-of-range option, X/Y offset and X/Y integer

limit.

For example, for a 2D lookup with interpolation with 150 rows x 400 columns of lookup

table, say only 100 table rows of would fit one superbank. We would place the last 51

table rows in the other superbank (to have 1 row of overlap between 2 subtables). We

would construct DLUT tasks as:

task1_param.out_of_range_hndl = OOR_EN_SENTINEL;
task1_param.X_offset = 0;
task1_param.Y_offset = 0;
task1_param.X_int_limit = 399;
task1_param.Y_int_limit = 99;
task1_param.table_addr = subtable1;
task1_param.next_task = &task2_param;
task2_param.out_of_range_hndl = OOR_EN_PRED_OFF;
task2_param.X_offset = 0;
task2_param.Y_offset = -99; // maps original row 99 to subtable2 row 0
task2_param.X_int_limit = 399;
task2_param.Y_int_limit = 50; // since original row 149 is the last valid row
task2_param.table_addr = subtable2;
task2_param.next_task = NULL;

Note that the same index buffer and output buffer are provided to both tasks, so there

is no preprocessing or postprocessing needed to separate indices or combine outputs.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 481

Figure 16. Example to leverage out-of-range handling to split a large table as

two sub-table lookups

With out-of-range handling configured as predicating off, potentially we can have every

lane of a write transaction being predicated off, particularly at the last write

transactions of the inner (task_length_N1) loop that can be partial transactions. The

current implementation does not optimize out such NULL write transactions. The

occurrence of such transactions is data dependent and should be infrequent if the use

case is well optimized.

10.3 Index Calculation
Index and lookup address calculation for the first 4 modes are described in the following

subsections.

Input and parameter bit width common to these modes are as follows:

> index[i]: U16 or U32, use worst case U32

> x_offset, y_offset: S32

> frac_bits: 0 ~ 16

> frac_mask = (1 << frac_bits) -1; // U16

> round_add = (frac_bits == 0) ? 0 : (1 << (frac_bits – 1)); // U16

> tbl_addr: U20

> line_pitch: U16

10.3.1 1D Lookup

In 1D lookup (without interpolation), DLUT shall perform for each data point iterated by

task_i2 in the outer loop and task_i1 in the inner loop:

x = index[task_i1] + x_offset; // U32 + S32 = S34
x_int = (round_trunc_mode == 0) ? (x >> frac_bits)
 : ((x + round_add) >> frac_bits); // S34
x_in_range = (x_int >= 0) && (x_int <= x_int_limit); // Boolean
out_of_range = out_of_range_enable && !x_in_range; // Boolean

subtable

1
subtable2

row 0

row 1

…
row 99

row 99

…

row 149

Superbank A Superbank B

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 482

lu_idx = x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, lookup

for that specific output is not performed, and either configured sentinel value is

returned instead, or writing of that output is predicated off.

When the task outer loop parameter task_length_N2 is greater than one, table pointer

advances with each round of task_length_N1 outcomes. The lookup index is scaled by

entry size and added to the table pointer as well. Note that we never switch superbank

(from the one configured in the task parameter) with the table pointer advancing or

entry indexing, as they only affect the lower 17 bits of the byte address (covering 128KB

inside a superbank).

entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
 + lu_idx * sizeof_entry) & 0x1FFFF); // U20

The entry address is decomposed into superbank ID, row address, bank ID, and byte ID

(only for Byte-type entries):

entry_superbank = entry_addr[19:18]; // 0 = superbank A, 1 = B, 2/3 = C
entry_row_addr = entry_addr[16:6]; // 11 bits covering 2K rows
entry_bank_id = entry_addr[5:1]; // 5 bits covering 32 banks
entry_byte_id = entry_addr[0]; // 1 bit covering 2 bytes

Although index data is unsigned, x_offset is signed, so index calculation involves signed

arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can be

negative or can exceed VMEM superbank address range. With the way entry address is

calculated, the lookup would wrap address back into the same superbank as configured

in the task parameter. This is consistent with VPU table lookup address wrapping

described in 0.

10.3.2 1D Lookup with interpolation

Index calculation for 1D lookup with interpolation mode is the same as that of 1D lookup

mode, except:

> We need to calculate the fraction part of the index to perform interpolation, so the

integer component is always calculated with truncation.

> Out-of-range detection takes into account index value right on the last valid data

point with zero fraction.

x = index[task_i1] + x_offset; // U32 + S32 = S34
x_int = x >> frac_bits; // S34
x_frac = x & frac_mask; // U16
x_in_range = (x_int >= 0) && ((x_int < x_int_limit) ||
 ((x_int == x_int_limit) && (x_frac == 0))); // Boolean
out_of_range = out_of_range_enable && !x_in_range; // Boolean
lu_idx = x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, the

two lookups for that specific output is not performed, and either configured sentinel

value is returned instead or, writing of that output is predicated off.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 483

Like the 1D lookup mode, we never switch superbank (from the one configured in the

task parameter) with the table pointer advancing or entry indexing:

entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
 + lu_idx * sizeof_entry) & 0x1FFFF); // U20

In addition, the entry address for the next table entry is calculated in order to look up

two items for interpolation. The next table entry shall be also in the same superbank:

entry_addr2 = (tbl_ptr & 0xC0000)
+ (entry_addr + sizeof_entry) & 0x1FFFF; // U20

How each entry address is decomposed into superbank ID, row address, bank ID, and

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Again, although index data is unsigned, x_offset is signed, so index calculation involves

signed arithmetic. When out-of-range detection is disabled, the lookup index lu_idx can

be negative or can exceed VMEM superbank address range. With the way entry address

is calculated, the lookup would wrap address back into the same superbank as

configured in the task parameter. This is consistent with VPU table lookup address

wrapping described in 0.

10.3.3 2D Lookup

In 2D lookup (without interpolation), DLUT shall perform for each data point:

x = index[2*task_i1] + x_offset; // U32 + S32 = S34
y = index[2*task_i1+1] + y_offset; // U32 + S32 = S34
x_int = (round_trunc_mode == 0) ? (x >> frac_bits) // S34
 : ((x + round_add) >> frac_bits);
y_int = (round_trunc_mode == 0) ? (y >> frac_bits) // S34
 : ((y + round_add) >> frac_bits);
x_in_range = (x_int >= 0) && (x_int <= x_int_limit); // Boolean
y_in_range = (y_int >= 0) && (y_int <= y_int_limit); // Boolean
out_of_range = out_of_range_enable && (!x_in_range || !y_in_range); //Boolean
lu_idx = y_int * line_pitch + x_int; // S32

When out-of-range is detected, lookup for that specific output is not performed, and

either configured sentinel value is returned instead, or writing of that output is

predicated off.

Similar to the 1D lookup mode, we never switch superbank (from the one configured in

the task parameter) with the table pointer advancing or entry indexing:

entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
 + lu_idx * sizeof_entry) & 0x1FFFF); // U20

How each entry address is decomposed into superbank ID, row address, bank ID, and

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 484

Again, although index data is unsigned, x_offset and y_offset are signed, so index

calculation involves signed arithmetic. When out-of-range detection is disabled, the

lookup index lu_idx can be negative or can exceed VMEM superbank address range. With

the way entry address is calculated, the lookup would wrap address back into the same

superbank as configured in the task parameter. This is consistent with VPU table lookup

address wrapping described in 0.

10.3.4 2D Lookup with Interpolation

Index calculation for 2D lookup with interpolation mode is the same as that of 2D lookup

mode, except:

> We need to calculate the X and Y fraction parts of the index to perform interpolation,

so the integer component is always calculated with truncation.

> Out-of-range detection takes into account index value right on the last row or last

column of valid data region with zero fraction.

x = index[2*task_i1] + x_offset; // U32 + S32 = S34
y = index[2*task_i1+1] + y_offset; // U32 + S32 = S34
x_int = x >> frac_bits; // S34
y_int = y >> frac_bits; // S34
x_frac = x & frac_mask; // U16
y_frac = y & frac_mask; // U16
x_in_range = (x_int >= 0) && ((x_int < x_int_limit) ||
 ((x_int == x_int_limit) && (x_frac == 0))); // Boolean
y_in_range = (y_int >= 0) && ((y_int < y_int_limit) ||
 ((y_int == y_int_limit) && (y_frac == 0))); // Boolean
out_of_range = out_of_range_enable && (!x_in_range || !y_in_range); //Boolean
lu_idx = y_int * line_pitch + x_int; // S32

When out-of-range detection is enabled and index is detected to be out of range, the 4

lookups for that specific output is not performed, and either configured sentinel value is

returned instead, or writing of that output is predicated off.

Similar to the 1D lookup mode, we never switch superbank (from the one configured in

the task parameter) with the table pointer advancing or entry indexing:

entry_addr = (tbl_ptr & 0xC0000)
+ ((tbl_ptr + task_i2 * tbl_addr_offset
 + lu_idx * sizeof_entry) & 0x1FFFF); // U20

In addition, address for 3 additional table entries is calculated to look up 2x2 = 4 items

for interpolation. These additional table entries shall be also in the same superbank:

entry_addr2 = (tbl_ptr & 0xC0000)
 + (entry_addr + sizeof_entry) & 0x1FFFF; // U20
entry_addr3 = (tbl_ptr & 0xC0000)
 + (entry_addr + line_pitch * sizeof_entry) & 0x1FFFF; // U20
entry_addr4 = (tbl_ptr & 0xC0000)
 + (entry_addr + line_pitch * sizeof_entry + sizeof_entry) & 0x1FFFF;//U20

How each entry address is decomposed into superbank ID, row address, bank ID, and

optionally byte ID is similar to the 1D lookup mode. See 1D Lookup for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 485

Again, although index data is unsigned, x_offset and y_offset are signed, so index

calculation involves signed arithmetic. When out-of-range detection is disabled, the

lookup index lu_idx can be negative or can exceed VMEM superbank address range. With

the way entry address is calculated, the lookup would wrap address back into the same

superbank as configured in the task parameter. This is consistent with VPU table lookup

address wrapping described in 0.

10.3.5 2D Lookup with Interpolation with Auto Index

Generation

The 2D lookup with interpolation with automatic index generation mode involves these

additional parameters:

> AUTO_IDX_MODE: specifies whether it’s translation-only mode (index stream loads

x0/y0, 2 parameters per round of lookup/interpolation) or translation-scaling mode

(index stream loads x0/y0/step_x/step_y, 4 parameters per round of

lookup/interpolation) per round of lookup/interpolation.

> AUTO_IDX_TRAVERSAL_DIR: specifies that index traversal going horizontally first

(when it’s 0) or vertically first (when it’s 1).

> AUTO_IDX_PATCH_WIDTH (U8): specifies patch width

> AUTO_IDX_PATCH_HEIGHT (U8): specifies patch height

Basically, DLUT in this mode instead of reading Task_len_N2 x Task_len_N1 pairs of

indices from VMEM, would read just Task_len_N2 sets of (2 or 4) parameters and

generate indices on the fly to drive lookup and interpolation.

DLUT hardware shall carry out the following process to generate indices for task_len_N1

outputs in the inner loop. task_len_N1 must match PATCH_WIDTH * PATCH_HEIGHT.

Also, we need PATCH_WIDTH >= 8 when traversing horizontally first, and

PATCH_HEIGHT >= 8 when traversing vertically first, to simplify index generation.

This process is for group size of 8, which applies for IDX_W index type and U16/S16

table entry type that we are supporting for auto-indexing mode.

In the normal (horizontally first) mode, hardware follows this behavior:

int xi[] = {0, 1, 2, 3, 4, 5, 6, 7};
int yi[] = {0, 0, 0, 0, 0, 0, 0, 0};
y = replicate(y0); // all lanes initialized to y0
x = x0 + xi * step_x; // lane i = x0 + i*step_x

for (i1 = 0, i1 = 0; i1 < N1; i1 += group_size) {

// proceed with address calculation with coordinate (x, y)

// update x, y for next group
 adv_mask = (xi+8) >= PATCH_WIDTH; // boolean vector
 yi += adv_mask; // add 0 or 1
 y += adv_mask * step_y; // add 0 or step_y

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 486

 valid_mask = yi < PATCH_HEIGHT; // mask out lanes in last group
 xi += adv_mask ? (8 - PATCH_WIDTH) : 8;
 x += adv_mask ? ((8 – PATCH_WIDTH) * step_x) : (8 * step_x);
}

Otherwise (in the vertically first mode), hardware follows this behavior:

int xi[] = {0, 0, 0, 0, 0, 0, 0, 0};
int yi[] = {0, 1, 2, 3, 4, 5, 6, 7};
x = replicate(x0); // all lanes initialized to x0
y = y0 + yi * step_y; // lane i = y0 + i*step_y

for (i1 = 0, i1 = 0; i1 < N1; i1 += group_size) {

// proceed with address calculation with coordinate (x, y)

// update x, y for next group
 adv_mask = (yi+8) >= PATCH_HEIGHT; // boolean vector
 xi += adv_mask; // add 0 or 1
 x += adv_mask * step_x; // add 0 or step_x
 valid_mask = xi < PATCH_WIDTH; // mask out lanes in last group
 yi += adv_mask ? (8 - PATCH_HEIGHT) : 8;
 y += adv_mask ? ((8 – PATCH_HEIGTH) * step_y) : (8 * step_y);
}

When AUTO_IDX_MODE specifies translation-only mode, only x0/y0 are loaded per round

of task_len_N1 outputs, hardware would derive step X/Y from frac_bits:

step_x = step_y = 1 << frac_bits

X/Y update is expressed for index traversal going horizontally first. The vertically first

option can be implemented by swapping the X/Y feeding rest of the address calculation.

Rest of the address calculation process, duplicate detection, conflict resolution, post

lookup interpolation, index/output agen (other than index agen N1/N2 derivation) all

operate the same way as in the common table lookup with and without interpolation

modes.

Index agen parameters should be derived from Task_len_N1, Task_len_N2, differently

than the normal lookup/interpolation modes:

INDEX_AGEN_N1 = (TASK_LEN_N2 * [2 or 4] + 64/sizeof_idx – 1)/ (64/sizeof_idx);
INDEX_REMAINDER = (TASK_LEN_N2 * [2 or 4]) % (64/sizeof_idx);
INDEX_AGEN_N2 = 1;

Note that x0/y0 or x0/y0/step_x/step_y data in memory shall be interpreted consistently

with INDEX_DATA_TYPE (constrained to IDX_W for the auto-indexing mode), as

unsigned 32-bit words.

Other relevant parameters:

> INDEX_ADDR specifies starting address of these parameters.

> INDEX_AGEN_TRANSP_MODE should be 0 (no transposition).

> INDEX_AGEN_LANE_OFST is not used.

> INDEX_AGEN_AMOD2 is not used.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 487

10.4 Duplicate Detection and

Consolidation
Before sending read/read-modify-write/write requests to VMEM, DLUT shall first detect

duplicate requests. Duplicate requests are consolidated for performance and power, and

the same return values are broadcast to the multiple return-value lanes as needed.

Note that the hardware has a certain window where duplicate detection works; not all

duplicates within a task are caught. The duplicate detection feature is for performance

and has no effect on the final outcome.

Duplicate detection logic does consume some power in operation. There is an enable bit

in the task parameter block to enable/disable duplicate detection/consolidation on the

task. Programmer should disable duplicate detection/consolidation only for DLUT tasks

that are expected to have very few duplicates.

10.5 Conflict Resolution and Lookup
After duplicate requests are detected and consolidated by voiding redundant requests,

the bank address of valid requests are compared, conflict detected, and DLUT hardware

issues read requests to complete the lookup as needed to the table in VMEM.

Not all individual lookups are performed due to out-of-range detection and duplicate

detection. For the sake of functionality description, we can say that hardware performs

1, 2, or 4 lookups as prescribed using the entry address(es) calculated for each output

not deemed out-of-range:

entry = * entry_addr; // all modes, the anchor entry
entry2 = * entry_addr2; // 1D or 2D interpolation, to the right of anchor
entry3 = * entry_addr3; // 2D interpolation only, down from anchor
entry4 = * entry_addr4; // 2D interpolation only, down-and-right from anchor

10.6 Post Lookup Interpolation
For 1D lookup with linear interpolation, DLUT performs for each output not deemed out-

of-range:

y_out = entry + round((entry2 – entry) * x_frac, frac_bits);

For 2D lookup with bilinear interpolation, DLUT performs for each output not deemed

out-of-range:

y0 = entry + round((entry2 – entry) * x_frac, frac_bits);
y1 = entry3 + round((entry4 – entry3) * x_frac, frac_bits);
y_out = y0 + round((y1 – y0) * y_frac, frac_bits);

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 488

Note that x_frac and y_frac are extracted from frac_bits LSBs of x and y, so for

linear/bilinear interpolation to work correctly, round/trunc mode shall be set to

truncation.

In all lookup modes, when X or Y are out of range and out-of-range is enabled, either the

configured sentinel value is returned instead of interpolated value, or output write is

predicated off. Note that the out-of-range detection is performed in case of

interpolated lookup such that when any dependent entry (out of 2 or 2x2 entries) is out-

of-range, it’s detected as out-of-range.

It’s the programmer’s responsibility to set round/truncate mode and X/Y limit correctly

for the mode of operation performed. DLUT hardware shall just carry out lookup and

calculation with configuration parameters provided.

10.7 2D Conflict-free Lookup with

Interpolation
The 2D conflict-free bilinear interpolation mode allows DLUT to offload 2D-to-linear

index calculation, lookup, and post-lookup interpolation from VPU, reducing energy and

improving performance as well.

The following parameters are constrained for this 2D conflict-free lookup with

interpolation:

> Task mode: 0x04 (2D conflict-free lookup with interpolation)

> Entry data type: must be signed or unsigned Halfword

> Index data type: must be unsigned Halfword or unsigned Word

> Line pitch: must be 4k + 2 (k being any integer)

In this mode, table data is organized as 8-way parallel subtables with Halfword entries. It

is the same table organization as for VPU DVLUT_8H and DVLUT_2x2pt_8H instructions,

and is shown as follows with linear indexing for each subtable:

Figure 17. Table layout for VPU lookup instructions

T0[0..3] T1[0..3] … T7[0..3]

T0[4..7] T1[4..7] … T7[4..7]

T0[8..11] T1[8..11] … T7[8..11]

…

For example, if each subtable has width of 9 and height of 4, we would pick line pitch =

4*2+2 = 10, and have the following table layout (p = pad, or don’t care value):

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 489

Figure 18. Table layout for DLUT 2D conflict-free lookup w/ interpolation

T0[0][0] T0[0][1] T0[0][2] T0[0][3] T1[0][0] T1[0][1] … T7[0][3]

T0[0][4] T0[0][5] T0[0][6] T0[0][7] T1[0][4] T1[0][5] T7[0][7]

T0[0][8] p T0[1][0] T0[1][1] T1[0][8] p T7[1][1]

T0[1][2] T0[1][3] T0[1][4] T0[1][5] T1[1][2] T1[1][3] T7[1][5]

T0[1][6] T0[1][7] T0[1][8] p T1[1][6] T1[1][7] p

T0[2][0] T0[2][1] T0[2][2] T0[2][3] T1[2][0] T1[2][1] T7[2][3]

T0[2][4] T0[2][5] T0[2][6] T0[2][7] T1[2][4] T1[2][5] T7[2][7]

T0[2][8] p T0[3][0] T0[3][1] T1[2][8] p T7[3][1]

…

Note that the line pitch is inside each subtable, which is 4 elements wide, instead of line

pitch in the full-width VMEM in the context of storing a 2D array in VMEM. In this case,

each subtable contains a 2D table, and the line pitch is needed to translate 2D indices

(x_int, y_int) into linear indices (lu_idx*) to perform lookups in each subtable.

With such table organization and such line pitch, each set of 2x2 lookups go to its own

set of 4 memory banks, and each of the 2x2 lookups goes to its own memory bank, so

there is no conflict, and no replication either.

Example:

> line_pitch = 10. fraction_bits = 2.

> At lane 0 of certain group, we get X index = 7, Y index = 5.

> x_int = 1, x_frac = 3, y_int = 1, y_frac = 1.

> lu_idx = 1 * 10 + 1 = 11.

> lu_idx2 = 11 + 1 = 12.

> lu_idx3 = 11 + 10 = 21.

> lu_idx4 = 11 + 10 + 1 = 22.

We use 8-way parallel, halfword variation of the parallel table address calculation (from

0):

byte_offset[i] = ((index modulo K) + i*K) * M + floor(index / K)*64, for i = 0..N-1

where N = parallelism, K = stride, M = entry size in bytes.

It’s clearer in this context to translate the above to a halfword offset:

 halfword_offset = (index modulo K) + i*K + floor(index / K)*32

In this case, parallelism N=8, data size M=2, stride K=4, and lane i = 0, so for the first of

the 2x2 lookups we have

halfword_offset = ((lu_idx modulo 4) + 0*4 + floor(lu_idx / 4) * 32
= (11 modulo 4) + floor(11/4)*32 = 3 + 2*32 = 67

For rest of the 2x2 lookups we have:

 halfword_offset2 = (12 modulo 4) + floor(12/4)*32 = 0 + 3*32 = 96
halfword_offset3 = (21 modulo 4) + floor(21/4)*32 = 1 + 5*32 = 161
halfword_offset4 = (22 modulo 4) + floor(22/4)*32 = 2 + 5*32 = 162

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 490

We can see that the 2x2 lookups go to memory banks 3, 0, 1, 2 of the first subtable, due

to the 4k + 2 line pitch.

Index read agen should be configured appropriately to supply X/Y indices to perform

address calculation and post-lookup interpolation. Since index read transactions are

configured to read 64 bytes at a time, for Halfword indices, 16 pairs of X/Y indices are

read at a time to feed 2 cycles of lookup. For Word indices, 8 pairs of X/Y indices are

read at a time to feed one cycle of lookup.

Output write agen should be configured appropriately to write outputs. Since output

write transactions are configured to write 64 bytes or 32 halfwords at a time, the

hardware accumulates 4 cycles of lookup/interpolation to issue each output write.

Features supported in this mode are:

> Out-of-range detection: supported.

> Round mode: not relevant, as it only applies to lookup without interpolation.

> Duplicate handling: not relevant, as subtables are separate so no duplicate lookups

are possible.

> Task length N1/N2 and table address stepping: supported.

> Index agen transposition modes: supported.

> Index X/Y interleaving modes: per element and per 32B both supported.

> Output agen transposition modes: supported.

Parameters involved and not involved for this mode of operation are summarized after

the task parameters detailed.

10.8 Table Reformatting
Table reformatting feature allows DLUT to offload the reorganizing of data from VPU,

reducing energy and sometimes improving performance as well.

As the reformatting is simply data movement without involving any arithmetic

processing on data, it is signed/unsigned and byte/halfword/word type agnostic. To

simplify hardware verification, only Halfword type is supported. Index type must be

unsigned Halfword, and entry type can be signed or unsigned Halfword. This is so the

derivation from task_len_N1/N2 to index/output_agen_N1/N2 can be consistent.

The following is the definition of a table reformatting task.

> Input: accept N * P subtables, each is of length L and is stored in consecutive

memory region, with each subtable being LP (line pitch) entries apart. P =

2/4/8/16/32, referred to as the parallelism in VPU lookup instructions and DLUT task

definition. N is any integer, and basically an optional outer-loop number of iterations

and number of rows of parallel subtables.

> DLUT is to reformat the table data and produce output: N blocks of P parallel

subtables across 512-bit (or 32 halfowrds) VMEM superbank memory width.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 491

Note that subtable length L does NOT have to be a multiple of (32/P). 32/P can be

regarded as “stride” in parallel subtable organization, number of entries each subtable

has in halfword-aligned 64 consecutive bytes. As hardware reads and writes P strides at

a time, or P*L halfwords. L not being a multiple of 32/P means P*L halfwords not being

32 halfwords = 64 byes aligned. Since partial index read and output write transactions

are supported in the common table lookup/interpolation modes, table reformatting

mode takes advantage of this to allow flexibility that may lead to memory footprint

saving.

The parallel subtable format is consistent with that of VPU 2/4/8/16/32-way parallel

lookup/histogram instructions, as well as DLUT conflict-free lookup mode. Please consult

Data Organization in Memory for VPU lookup/histogram data format.

Common table reformatting input/output data format is as follows:

Figure 19. Table reformatting input/output layout scheme

Table reformatting is basically accomplished through various transpose mode

configured in the index agen with appropriate N1, N2, AMOD1, AMOD2 programming in

index and output agens.

Line pitch (LP in the diagram) is constrained to 32*k + 32/P, with k configured as the

transpose lane offset parameter.

The following are the parameters involved in a table reformatting task:

> task_mode = table reformatting

> index_type = unsigned halfword

> entry_type = signed or unsigned halfword

> task_len_N1 = P*L (index_agen_N1 = output_agen_N1 = P*L/32)

> task_len_N2 = N (index_agen_N2 = output_agen_N2 = N)

> index_addr = starting address of input (data to be reformatted)

L

N*P

P

N

Input to table reformatting Output of table reformatting

LP

…
 …

…

…

L

32

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 492

> index_agen_amod1 = 64/P, advancing by one stride

> index_agen_amod2 = P*LP*2 – (L/(32/P) – 1) *(32/P)*2 = P*LP*2 – L*2 + 64/P

> index_agen_transp_mode = T<32/P>

> index_agen_lane_ofst = (LP – 32/P) / 32, the “k” in 32*k + 32/P

> index_interleave_format = don’t care

> out_addr = starting address of output (reformatted data)

> out_agen_amod1 = 64

> out_agen_amod2 = 64

> out_agen_transp_mode = None

> out_agen_lane_ofst = don’t care

> next_task: points to parameters of next task, 0 to terminate the task sequence

Note that these are recommended values to accomplish the table reformatting task as

stated. Hardware just carries out index/output agen update as configured and passes

data from the load stream to the store stream without verifying various parameter

values.

For example, a table reformatting task with N = 2, P = 4, L = 32, line pitch = 32*k + 32/P =

40 (thus k = 1) shall have the following input and output organization:

Figure 20. Table reformatting input/output layout example

Input:

T0[0..31] 8 entry skipped

T1[0..31] 8 entry skipped

T2[0..31] 8 entry skipped

T3[0..31] 8 entry skipped

T4[0..31] 8 entry skipped

T5[0..31] 8 entry skipped

T6[0..31] 8 entry skipped

T7[0..31] 8 entry skipped

Output:

T0[0..7] T1[0..7] T2[0..7] T3[0..7]

T0[8..15] T1[8..15] T2[8..15] T3[8..15]

T0[16..23] T1[16..23] T2[16..23] T3[16..23]

T0[24..31] T1[24..31] T2[24..31] T3[24..31]

T4[0..7] T5[0..7] T6[0..7] T7[0..7]

T4[8..15] T5[8..15] T6[8..15] T7[8..15]

T4[16..23] T5[16..23] T6[16..23] T7[16..23]

T4[24..31] T5[24..31] T6[24..31] T7[24..31]

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 493

10.9 VPU/DLUT Interface
VPU/DLUT interface consists of a set of coprocessor control/status registers similar to

how R5 would launch a VPU task. In VPU task launch, R5 software programs VPU

starting PC, programs DMA to supply/consume input/output data, then commands VPU

and DMA to go. In DLUT task launch, VPU software programs DLUT task parameter

pointer (for first parameter block, which links to the next parameter blocks and so on) in

the Coprocessor address space, allocates DLUT input/output regions in VMEM, then

command DLUT to go by asserting a GPO signal.

The following subsections describe task control/status registers in the coprocessor

address space, task parameter block data structure, and GPIO signaling.

10.9.1 Task Parameters

Task configuration parameters are stored in VMEM and have the following data

structure per task. Note that any unused encoding option (for example, task mode 6 ~

15) are reserved, and unused bit fields are ignored.

Table 46. DLUT task parameter data structure

Word/Field Byte

offset

Bits Description

TASK_INFO 0x00 Task basic information

 MODE 30:28 0x00: LOOKUP_1D, 1D lookup (one common table)

0x01: LOOKUP_2D, 2D lookup (one common table)

0x02: INTERP_1D, 1D lookup with linear interpolation (one

common table)

0x03: INTERP_2D, 2D lookup with bilinear interpolation

(one common table)

0x04: CONFLICT_FREE_2D_INTERP, conflict free 2D

lookup with bilinear interpolation, (Halfword entry type

only, 8 parallel tables)

0x05: TABLE_REFORMAT, table reformatting

0x06: INTERP_2D_AUTO_IDX, 2D lookup with

interpolation by using automatically generated index data

 INDEX_DATA_TYPE 25:24 0x1: IDX_H, Halfword

0x2: IDX_W, Word

 ENTRY_DATA_TYPE 22:20 0x0: S8, signed Byte

0x1: S16, signed Halfword

0x2: S32, signed Word

0x4: U8, unsigned Byte

0x5: U16, unsigned Halfword

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 494

Word/Field Byte

offset

Bits Description

0x6: U32, unsigned Word

 OUT_OF_RANGE_ HANDLING 19:18 0: disable

1: enable, return sentinel value for OOR lookup

2: enable, predicate off writing output for an OOR lookup

 ROUND_MODE_NO_INTRP 17 0: truncate

1: round

Only applied to modes 0 & 1 (without interpolation)

 DUPLICATE_HANDLING 16 Duplicate detection and consolidation

0: disabled

1: enabled

 FRACTION_BITS 4:0 U5, number of fraction bits to round/truncate, 0 ~ 16.

X_INT_LIMIT 0x04 17:0 U18, upper limit of X integer, or linear index for 1D

lookup.

For example, if there are 480 valid columns in a 2D table,

or 480 valid entries in a 1D table, valid X integer range is 0

~ 479, and this parameter should be configured as 479

Y_INT_LIMIT 0x08 17:0 U18, upper limit of Y integer.

For example, if there are 240 valid rows in a 2D table,

valid Y integer range is 0 ~ 239, and this parameter

should be configured as 239.

X_OFFSET 0x0C 31:0 S32, number to add to X indices, with same number of

fraction bits as input indices.

This is to translate between global coordinates to

local/tile coordinates.

Y_OFFSET 0x10 31:0 S32, number to add to Y indices, with same number of

fraction bits as input indices. This is to translate between

global coordinates to local/tile coordinates.

TASK_LEN 0x14

 N2 31:16 U16, number of rounds

 N1 15:0 U16, number of elements to output per round of lookup

OOR_SENTINEL 0x18 31:0 Return value for out-of-range indices, use 8 LSBs (S8 or U8)

for Byte entry type, 16 LSBs (S16 or U16) for Halfword entry

type, all 32 bits (S32 or U32) for Word entry type.

TABLE_ADDR 0x1C 19:6 U20, pointer to table, 64 bytes aligned

TABLE_ADDR_OFFSET 0x20 17:6 S18, address update between rounds of lookup, 64 bytes

aligned

TABLE_LINE_PITCH 0x24 15:0 U16. Note that this is in terms of number of table entries,

and it’s the line pitch itself, instead of providing k and line

pitch being 32*k+n.

For mode 4 (8 parallel table conflict-free lookup), line

pitch must be 4k + 2, k being any integer.

AUTO_IDX_CFG 0x28 Auto-indexing configuration

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 495

Word/Field Byte

offset

Bits Description

 MODE 20 0: Index stream loads starting X/Y per round of task_len_N1

outputs

1: Index stream loads starting X/Y and step scale X/Y per

round of task_len_N1 outputs

 TRAVERSAL_DIR 16 0: Index traverses horizontally first, the raster-scan order,

1: Index traverses vertically first.

 PATCH_WIDTH 15:8 U8, patch width

 PATCH_HEIGHT 7:0 U8, patch height

INDEX_AGEN_CFG 0x2C

 TRANSP_MODE 30:28 0: None, no transposition

1: T1

2: T2

3: T4

4: T8

5: T16

6: T32

 INTERLEAVE_FORMAT 24 0 : element-wise interleaved

1: 32B interleaved

 LANE_OFST 11:0 U12, for transposed access, specify “k” in line pitch

constraint 32k + t, t depending on transp_mode

 TRANSP_MODE 30:28 0: None, no transposition

1: T1

2: T2

3: T4

4: T8

5: T16

6: T32

 INTERLEAVE_FORMAT 24 0 : element-wise interleaved

1: 32B interleaved

 LANE_OFST 11:0 U12, for transposed access, specify “k” in line pitch

constraint 32k + t, t depending on transp_mode

OUTPUT_AGEN_CFG 0x30

 TRANSP_MODE 30:28 0: no transposition

1: T1

2: T2

3: T4

4: T8

5: T16

6: T32

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 496

Word/Field Byte

offset

Bits Description

 LANE_OFST 11:0 U12, for transposed access, specify “k” in line pitch

constraint 32k + t, t depending on transp_mode

Reserved_1 0x34

Reserved_2 0x38

Reserved_3 0x3C

INDEX_ADDR 0x40 19:0 U20, pointer to index array

INDEX_AGEN_AMOD1 0x44 17:0 S18, index address modifier for inner iterations

INDEX_AGEN_AMOD2 0x48 17:0 S18, index address modifier for outer iterations

OUTPUT_ADDR 0x4C 19:0 U20, pointer to output

OUTPUT_AGEN_AMOD1 0x50 17:0 S18, output address modifier for inner iterations

OUTPUT_AGEN_AMOD2 0x54 17:0 S18, output address modifier for outer iterations

Reserved_4 0x58

NEXT_TASK 0x5C 19:2 U20, pointer to next task configuration data, zero for last

task, 4 bytes aligned

Parameters relevant to various task modes are tabulated as follows. Blank entries are

not used, and values are “don’t care.” Constrained values are also shown.

Table 47. DLUT parameter usage and constraints

Parameter LU_1D LU_2D INTRP

_1D

INTRP

_2D

CF_INTRP

_2D

TBL_

RFMT

INTERP

_2D_AUTO

_IDX

MODE 0 1 2 3 4 5 6

INDEX_DATA_TYPE Yes Yes Yes Yes Yes IDX_H

or

IDX_W

IDX_W

ENTRY_DATA_TYPE Yes Yes Yes Yes S16/U16 S16/U16 S16/U16

OUT_OF_RANGE_ HANDLING Yes Yes Yes Yes Yes disable Yes

ROUND_MODE_NO_INTRP Yes Yes

DUPLICATE_HANDLING Yes Yes Yes Yes Yes

FRACTION_BITS Yes Yes Yes Yes Yes 0 Yes

X_INT_LIMIT Yes Yes Yes Yes Yes Yes

Y_INT_LIMIT Yes Yes Yes Yes

X_OFFSET Yes Yes Yes Yes Yes 0 Yes

Y_OFFSET Yes Yes Yes 0 Yes

TASK_LEN N2 Yes Yes Yes Yes Yes Yes Yes

TASK_LEN N1 Yes Yes Yes Yes Yes Yes must

match

PW*PH

OOR_SENTINEL Yes Yes Yes Yes Yes Yes

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 497

Parameter LU_1D LU_2D INTRP

_1D

INTRP

_2D

CF_INTRP

_2D

TBL_

RFMT

INTERP

_2D_AUTO

_IDX

TABLE_ADDR Yes Yes Yes Yes Yes Yes

TABLE_ADDR_OFFSET Yes Yes Yes Yes Yes Yes

TABLE_LINE_PITCH Yes Yes Yes (4k+2) Yes

INDEX_ADDR Yes Yes Yes Yes Yes Yes Yes

INDEX_AGEN_TRANSP_MODE Yes Yes Yes Yes Yes Yes 0

INDEX_INTERLEAVE_FORMAT Yes Yes Yes 0 0

INDEX_AGEN_LANE_OFST Yes Yes Yes Yes Yes Yes

INDEX_AGEN_AMOD1 Yes Yes Yes Yes Yes Yes Yes

INDEX_AGEN_AMOD2 Yes Yes Yes Yes Yes Yes

OUTPUT_ADDR Yes Yes Yes Yes Yes Yes Yes

OUTPUT_AGEN_TRANSP_MODE Yes Yes Yes Yes Yes Yes Yes

OUTPUT_AGEN LANE_OFST Yes Yes Yes Yes Yes Yes Yes

OUTPUT_AGEN_AMOD1 Yes Yes Yes Yes Yes Yes Yes

OUTPUT_AGEN_AMOD2 Yes Yes Yes Yes Yes Yes Yes

NEXT_TASK Yes Yes Yes Yes Yes Yes Yes

AUTO_IDX_CFG Yes

10.9.2 Interaction Sequence

VPU software is expected to interact with DLUT with the following sequence:

> Prepare task parameters in VMEM.

> Make sure previous task interaction is done, so that both VPU_DLUT_START

(GPO[10]) and DLUT_VPU_DONE (GPI[10]) signals are low.

> Write starting address of task parameters in VPU_DLUT_TASK register.

> Assert VPU_DLUT_START

> Go on to execute other tasks, and when DLUT outcome is needed (no more

independent tasks to run), executes WFE_GPI to wait for DLUT task completion in

low power mode

> DLUT executes requested lookup tasks; there can be multiple tasks per interaction.

> DLUT asserts DLUT_VPU_DONE.

> VPU, upon sensing assertion of DLUT_VPU_DONE, resumes operations, de-asserts

VPU_DLUT_START before go on to execute the next task.

> DLUT, upon sensing de-assertion of VPU_DLUT_START, de-asserts DLUT_VPU_DONE

to complete the current round of interaction.

Two instances of typical VPU/DLUT interaction is shown in the following diagram:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 498

Figure 21. VPU/DLUT interaction timing diagram

VPU processing

VPU_DLUT_START

DLUT_VPU_DONE

DLUT processing DLUT_T1 DLUT_T2

VPU_T1 VPU_T2WFE_GPI

DLUT_VPU_
BOTH_BUSY

DLUT_VPU_
BOTH_BUSY

VPU_WAIT_
FOR_DLUT

DLUT_WAIT
_FOR_VPU

VPU is the master in the interaction. Before VPU_DLUT_START is asserted, software

should ensure that:

> Configuration parameters for the requested DLUT tasks are ready in VMEM for DLUT

to consume.

> Input index and table data for these tasks are either already in VMEM for DLUT to

consume, or they will be ready when DLUT gets to the task that consumes the data

by nature of task sequencing.

> Space needed for DLUT to write lookup/interpolation outcome for these tasks, are

either all available in VMEM for DLUT to write, or they will be available when DLUT

gets to the task that writes the outcome by nature of task sequencing.

DLUT executes requested tasks sequentially, so it is possible to have data and/or space

dependency among DLUT tasks in the same sequence. Task i output can be safely

consumed as task i+1 input, and task i input, if not dependent upon by subsequent

tasks, can be overwritten by a subsequent task.

For example, we can have one task performing table reformatting, and the very next

lookup task using the reformatted table.

If it also allowed to have space dependency within one task. For example, if the index

and outcome group pitches are programmed appropriately, we can overwrite

lookup/interpolation outcome onto the index array, if the index data is only consumed

once and never needed again.

In case VPU software does not follow the recommended protocol, and de-asserts

VPU_DLUT_START before DLUT completed the task(s) and asserts DLUT_VPU_DONE,

DLUT detects the issue and error-halt, as described in 10.9.4

DLUT internally has multiple stages of processing. Processing of a sequence of two

tasks is shown in the following diagram:

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 499

Figure 22. DLUT processing stages

DLUT execute task 1

Idle Config Execute Drain Config Execute Drain

DLUT execute task 2

Idle

DLUT busy

10.9.3 Incorrect Task Configuration

DLUT incorrect task configuration is defined as

> Having a parameter value outside valid range.

• For example, task mode is defined as a 3-bit field, with values 0 ~ 5 mapped to

valid modes, and values 6 ~ 7 being reserved. A task configured with task mode 6

~ 7 is deemed as having incorrect configuration.

• As another example, a number of fraction bits is supposed to be 0 ~ 16 in the 5-

bit parameter, so values 17 ~ 31 are invalid. A task configured with number of

fraction bits being 17 ~ 31 is deemed having incorrect configuration.

> Having a parameter value not allowed for the operation mode.

• In a 2D conflict-free lookup with interpolation task, index type not being unsigned

Halfword or unsigned Word, or entry type not being signed or unsigned Halfword.

• In a 2D conflict-free lookup with interpolation task, line pitch not being 4k + 2, k

being any integer.

• In a table reformatting task, index type not being unsigned Halfword, or entry

type can be signed or unsigned Halfword.

• In a table reformatting task, out-of-range handling not being disabled,

fraction_bits, X offset, Y offset not being zero.

• In a table reformatting task, index interleave format not being element-wise

interleaved.

• In auto-indexing mode, index type not being IDX_W, index TRANSP_MODE not

being None, index interleave format not being element-wise interleaved.

> Having disallowed index/entry type and transpose mode combination in agen:

• Byte with T1 transpose is not allowed.

• Halfword with T32 transpose is not allowed.

• Word with T16 and T32 transpose is not allowed.

> Having inconsistent/conflicting parameters:

• In auto-indexing mode, task_len_N1 not matching PATCH_WIDTH *

PATCH_HEIGHT.

• In auto-indexing mode, when traversing horizontally first, PATCH_WIDTH < 8.

• In auto-indexing mode, when traversing vertically first, PATCH_HEIGHT < 8.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 500

Handling of incorrect configuration is described in the next subsection.

The following cases of parameter configuration seem “strange”, but are NOT considered

incorrect configuration, meaning hardware would carry out the task as configured,

mostly because it would be cumbersome to detect:

> Having nonzero value in an unused bit location. For example, parameter word 0 bit 3

is not used (between task mode and index type), so a task configured with nonzero

value there does not cause incorrect behavior, nor trigger configuration error.

> Having nonzero value in an unused bit field for that operating mode. For example, Y-

related fields are not used for 1D lookup (with or without interpolation) modes. Such

fields are simply ignored, so nonzero values there does not cause incorrect behavior,

nor trigger configuration error.

> Starting address for index/table/output or next task parameter block not aligned to

required address alignment. Address alignment is forced by hardware ignoring 1, 2,

or 6 LSBs of the byte address from agen base. This is consistent with address

alignment handling in VPU load/store instructions (see Memory Address Alignment).

> In a table reformatting task, normally we use None (no transposition) in one end and

a transposition mode (T1/T2 etc) in the other end. If we have None-to-None or

Transpose-to-Transpose combinations, the agen programming is likely to be

incorrect. However, hardware in table reformatting will just perform input read and

output write as configured by the agen parameters, not checking for transpose

combinations between read and write.

> Infinite task sequence by task parameter blocks forming a cycle. It is most likely

incorrectly programmed, but the hardware does not have an easy way to detect such

a condition. In this case, DLUT would not terminate, and VPU software would wait

forever in the WFE_GPI state. The R5 processor runs an RTOS and is able to detect

and handle such error conditions.

10.9.4 DLUT Execution States, Error Handling, Halt

and Debug

10.9.4.1 Normal Execution Behavior and Conceptual State

Diagram

Upon reset, DLUT execution state becomes idle.

After VPU asserts VPU_DLUT_START to start DLUT operation, DLUT execution state

becomes busy.

After DLUT completes configured task sequence, DLUT asserts DLUT_VPU_DONE and

execution state returns to being idle. DLUT_VPU_DONE is asserted until

VPU_DLUT_START is deasserted.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 501

DLUT execution state transition behavior can be described by the following conceptual

state diagram. Transitions other than normal execution, between idle/done and busy,

shall be explained in the following subsections.

Figure 23. DLUT execution state conceptual state diagram

Idle/done

Busy

Error-halted:
incorrect config

Error-halted:
missed event

Halted

reset

START

VPU unhalts
DLUT and

next task ==
NULL

Task
sequence
done

Before task
sequence is

done, START

VPU reads/writes
DLUT_STATUS0

10.9.4.2 Error Handling

In case of an incorrectly configured task, DLUT would execute (correctly configured)

proceeding tasks to completion, change execution state from “1: busy” to “2: halted due

to incorrect configuration”, show number of tasks completed successfully, say K, raise

DLUT_VPU_DONE, and show pointer to task parameter for the incorrectly configured

task, which is task K+1.

In case of a missed event, defined as VPU_DLUT_START being asserted to start a DLUT

task sequence, then deasserted prematurely, before DLUT asserts DLUT_VPU_DONE to

convey that the sequence is completed. This is in violation of the protocol and can lead

to race conditions in the VPU/DLUT interaction. DLUT records the issue, and after the

currently executing task is completed, raises DLUT_VPU_DONE and goes to error-halted

state, showing execution state being “3: halted due to missed event”. The number of

tasks completed, and current task parameter pointer shown in status registers, shall be

dependent on when the missed event was detected with respect to the tasks being

executed. If number of tasks completed is shown as K, it’s possible for task parameter

pointer to point to task K, in case missed event was detected when task K is being

executed, and next task not yet parsed, of it can point to task K+1, in case missed event

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 502

was detected when task K is just finished, task K+1 parameters are parsed but task K+1

execution not yet started.

In both error cases, DLUT stays in the appropriate error-halted state until VPU software

acknowledges the error by reading DLUT_STATUS0.EX_STATE and writing the same

value (2 or 3) back to the same register address. Such write would clear DLUT execution

state to (0: idle or done) and get DLUT ready for next task launch. Until such a write,

DLUT status registers showing execution state, number of tasks completed and pointer

to task parameter, as well as DLUT_VPU_DONE (having been raised to high) all remain

unchanged.

For an incorrectly configured task error, there is precise definition of which is the first

task being incorrectly configured, so number of tasks completed and pointer to

parameter of currently executing task shall be kept consistent. For example, if task 1

(being starting task of the sequence) and 2 are fine and task 3 is incorrectly configured,

DLUT shall complete the first 2 tasks, signals DLUT_VPU_DONE, show 2 tasks completed

and points to parameter block of task 3.

For missed event errors, hardware detects the error but runs current task to completion,

so if it’s detected during execution of task 3, task 3 is completed, DLUT signals

DLUT_VPU_DONE, and status registers show 3 tasks completed and points to parameter

block of task 3, thereby keeping these two status registers consistent. However, there is

no precise way to predict when hardware detects the error relative to task sequence

execution, so it is not feasible to predict exactly how many tasks will be completed if a

missed event occurs after a set time after kicking of a task sequence, even if the task

sequence is fully known (parameters and index/table data). This is because DLUT can be

stalled by VPU and DMA upon VMEM superbank contentions.

DLUT incorrect configuration and DLUT missed event are among VPS error clauses, and

in VPS error handling, each clause can be configured to error-halt both VPU and DLUT, or

to continue with VPU execution.

Both kinds of DLUT errors are recoverable through normal VPU software interaction,

unlike VPU error-halt, which can only be recovered by VPS-level reset that resets both

VPU and DLUT. Thus, if deemed appropriate by the programmer, VPU software can carry

out quicker recovery from DLUT errors, as opposed to PVA-level reset which will take

longer.

10.9.4.3 R5 Halt/Unhalt

We provide a mechanism for R5 processors to halt/unhalt VPU. Halting means

suspension of operation, and unhalting means resume of operation. Halting and

subsequent unhalting should not alter the eventual outcome. Both VPU and DLUT are

NOT expected to suspend operation immediately, but to do so when it’s convenient to

do so. VPU has a processor pipeline, so it would suspend after its pipeline is drained.

DLUT is a decoupled engine with multiple stages pipelined together and configured to

process a task at a time, each task producing task_len_N1 x task_len_N2 outputs, and

it’s only convenient to suspend after the current task is done.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 503

In case VPU is halted from R5 writing VPS Config register to halt VPU, VPU, after it has

halted, forwards the halt request to DLUT. DLUT handling is as follows:

> If DLUT is idle, it remains idle.

> If DLUT has already error-halted from a previous task, it remains error-halted.

> Otherwise (DLUT is processing a task), DLUT would attempt to run that task to

completion.

• After the task is completed without error, DLUT goes to Halted execution state.

• In case an error occurs, DLUT goes to Error-Halted execution state

When VPU is subsequently unhalted by R5, VPU requests DLUT to unhalt:

> If DLUT is idle, it remains idle.

> If DLUT is error-halted, it remains error-halted.

> Otherwise (DLUT is in Halted state), it moves on to process the next task.

• If there is no next task it becomes idle

• Otherwise, it becomes busy processing the next task.

The VPS config register VPS_STATUS.EXE_STATE showing halted when VPU has been

halted, and it’s possible that DLUT would remain active/busy for a while, until current

task is completed or terminated with error.

10.9.4.4 Debug Mode

In case VPU enters debug mode, DLUT continues to execute until configured task

sequence is completed and raises DLUT_VPU_DONE. This is consistent with DMA’s

handling of VPU entering debug mode.

10.9.5 Other Control/Status Registers

DLUT contributes one VPS error cause, DLUT incorrect task configuration. See 13.2 for

details.

DLUT contributes a few counters to the VPS performance monitor feature. See PVA VPS

IAS VPS Register Spec for details.

DLUT is part of VPS, and its clock gating behavior shall be consistent with VPS clock

gating behavior. See PVA VPS IAS VPS Register Spec for details.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 504

Chapter 11. Register Spec

11.1 VPS Coprocessor Registers
The VPS Coprocessor registers are, in general, accessible by VPU coprocessor read/write

instruction.

The Revision ID register is described in the following subsection. The DLUT

control/status registers are described in DLUT Task Control/State Registers.

11.1.1 Revision ID Register

The revision ID register is read-only. The purpose of the revision ID is to allow VPU

software to read and differentiate among versions. revisions and instances of VPU

module when needed.

Tie-in at PVA module boundary drives PVA_ID. Tie-in at VPS module boundary drives the

VPU_ID. PVA revision and release IDs are identical copies from PVA-top level PVA_CFG

registers.

Table 48. VPU revision ID register

Register/Field RW Bits Reset Description

REVISION_ID

0x200

 Revision ID register

PVA_INST_ID R 31:28 0/1 PVA instance ID

0: PVA0

1: PVA1

VPU_INST_ID R 27:24 0/1 VPU instance ID

0: VPU0

1: VPU1

REV_ID R 23:20 2 PVA revision ID, matching

PVA_CFG_PVA_ID.PVAREVID

1: T19x PVA 1.0

2: T23x PVA 2.0

REL_ID R 15:0 0x36 PVA release ID, matching

PVA_CFG_PVAREL_ID.PVAREL_REV

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 505

11.1.2 DLUT Task Control/Status Registers

There exists configuration and status registers on the VPU’s coprocessor space. VPU

software can read/write these registers via the CP_LD and CP_ST instructions.

Table 49. VPU DLUT task control/status registers

Register/Field RW Bits Reset Description

VPU_DLUT_TASK

0x800

 VPU-DLUT task configuration

CFG_ADDR RW 19:2 0 Configuration byte address in VMEM for

DLUT to execute for the next task.

A byte address is to be written to the

32-bit register. 2 LSBs are non-writable

and thus dropped, enforcing the 32-bit

alignment. 12 MSBs are non-writable,

since VMEM has an address range of 1

MB (20-bit byte address).

DLUT_STATUS0

0x804

 DLUT execution status 0

 EX_STATE RW 2:0 0 Execution state

0: idle or done

1: busy

2: error-halted due to incorrect

configuration

3: error-halted due to missed event

4: halted (by R5 halt, to resume later)

Upon DLUT being in error-halted state (2

or 3), before the next DLUT task can be

started, VPU software should read this

register and write the contents back to

this register to return the status to

idle/done.

DLUT_STATUS1

0x808

 DLUT execution status 1

NTASKS_CMPLTD R 7:0 0 Number of tasks completed in current

task launch (writing of CFG_ADDR).

This would clear upon task launch and

increment by 1 at a time as DLUT

completes tasks.

This would stay at number of tasks

configured when EX_STATE = done.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 506

Register/Field RW Bits Reset Description

In case number of tasks configured

exceeds 255, instead of rolling over to 0,

the count would saturate to 255.

DLUT_CURR_TASK

0x80C

PARAM_ADDR R 19:2 0 VMEM address of task parameter block

that DLUT is executing

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 507

Chapter 12. General Purpose

Input/Output

12.1 VPU/DMA Control Interface
VPU/DMA control interfaces include:

> VPU-DMA start event signaling

> DMA-VPU done event signaling

VPU has 32-bit General Purpose Input (GPI) for DMA-VPU event signaling, and 32-bit

General Purpose Output (GPO) for VPU-DMA event signaling. VPU/DMA event signaling

is described in detail in the PVA DMA IAS, and is summarized here.

The VPU signals DMA to start DMA transfer for read (reading from system memory to

VMEM), store (writing from VMEM to system memory), and config (reading address/data

pairs in VMEM to configure registers and descriptors), and DMA signals back when the

transfer is completed.

Table 50. VPU/DMA control signal list

Signal Driver GPIO Notes

vpu_dma_read_start[6:0] VPU GPO[22:16] Start DMA read from external mem into

VMEM, action upon positive edge. VPU

software asserts to send the request,

and deasserts upon detecting the

corresponding DONE signals.

vpu_dma_store_start[6:0] VPU GPO[29:23] Start DMA store to external mem from

VMEM, action upon positive edge. VPU

software asserts to send the request,

and deasserts upon detecting the

corresponding DONE signals.

vpu_dma_config_start VPU GPO[4] Start DMA write config space from

addr/data pairs in VMEM, action upon

positive edge. VPU software asserts to

send the request, and deasserts upon

detecting the corresponding DONE

signals.

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 508

12.2 Summary of GPI/GPO Signals
A few additional GPI/GPO signals are used for debug and performance monitoring. Full

GPI/GPO allocation is as follows.

Table 51. VPU GPI/GPO signal list

Signal Driver GPIO Notes

dma_vpu_read_done[6:0] DMA GPI[22:16] DMA read done, level, cleared upon

corresponding read_start being

deasserted

dma_vpu_store_done[6:0] DMA GPI[29:23] DMA store done, level, cleared upon

corresponding store_start being

deasserted

dma_vpu_config_done DMA GPI[4] DMA config done, level, cleared upon

vpu_dma_config_start being deasserted

dma_hwseqstart_vpu DMA GPI[15] DMA HWSeq start, DMA telling VPU to

start processing a tile

 DMA GPI[14]

vpu_hwseqdone_dma VPU GPO[15] VPU HWSeq done, VPU telling DMA that

processing is done for a tile

 VPU GPO[14]

GPIO Signal Driver Receiver Value

after

reset

Notes

GPI[29:23] dma_vpu_store_done[6:0] DMA VPU 0

GPI[22:16] dma_vpu_read_done[6:0] DMA VPU 0

GPI[15:14] dma_vpu_hwseqs DMA VPU 0

GPI[10] dlut_vpu_done DLUT VPU 0 DLUT telling VPU it’s done

GPI[9] icache2vpu_config

_invalidate_rdy

I-cache VPU 1

GPI[8] vps_sw_event SEC VPU 0

GPI[7] icache2vpu_gpio_invalidate_

all_rdy

I-cache VPU 1

GPI[6] icache_vpu_prefetch_done I-cache VPU 1

GPI[5] icache_vpu_prefetch_rdy I-cache VPU 1

GPI[4] dma_vpu_config_done DMA VPU 0

GPI[0] vpu_cntlin_debug VPU

GPO[30]

VPU 0 Debug control in, loop back from

vpu_cntlout_debug

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 509

Note that GPI reset values are driven by various driver modules outside VPU, so the reset

values are applied when the corresponding module (DMA or SEC) is reset. I-cache and

DLUT are reset with VPU. Unused GPIs are tied to 0.

GPIO Signal Driver Receiver Value

after

reset

Notes

GPO[31] vpu_testfail_debug VPU n/a 0 Test done pass/fail signaling for

simulation & debug, 0 = pass, 1 =

fail, connected to testbench

GPO[30] vpu_cntlout_debug VPU VPU

GPI[0]

0 Debug control out

GPO[29:23] vpu_dma_store_start[6:0] VPU DMA 0

GPO[22:16] vpu_dma_read_start[6:0] VPU DMA 0

GPO[15:14] vpu_dma_hwseq VPU DMA 0

GPO[10] vpu_dlut_start VPU DLUT 0 VPU telling DLUT to start

GPO[4] vpu_dma_config_start VPU DMA 0

GPO[3] vpu_perf_monitor_en VPU VPS

config

0 VPU software drives this pin to 1:

enable or 0: disable performance

monitor counters for optional

kernel/loop level control

GPO[2] vpu_start_r5 VPU SEC 0

GPO[1] vpu2icache_gpio_invalidate_

all

VPU I-cache 0

GPO[0] vpu_stimwd_debug VPU n/a 0 STIM window, for power test

case simulation & debug,

connected to testbench

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 510

Chapter 13. Design for Test and Safety

13.1 Debug Features
The VPU has a CoreSight/APB-based debug interface that is hooked up to system-level

JTAG interface and is accessible through JTAG or through CPU software. The VPU

debug features are:

> Enter/exit debug state.

> Read program memory.

> Invalidate I-cache. Debug writing program memory is implemented by writing to

system memory then invalidate I-cache, which drives I-cache to refetch from system

memory.

> Read/write VMEM.

> Directly feed the instruction word to be executed.

> Read/write processor registers, including PC, scalar/vector register file, HW loop

control registers, predicate register file, and agen config register file (through

injection of instruction sequence to store the relevant register into VMEM then

reading VMEM).

> Read/write GPO, read GPI (through injection of instruction sequence).

> Read/write PC (through injection of instruction sequence).

> Read/write SES (shadow execution state) register. The VPU execution state (active,

WFE_R5, WFE_GPI, error-halted, or halted) before transitioning into debug state is

saved in this register. It is read/write accessible by debug software via

OCD_LD/OCD_ST instructions and can be changed to drive VPU to a different state

after exiting the debug state.

> Read/write DLUT configuration/status registers via CPLD/CPST.

> Single step execution.

> 24 watch or break points (combined, for example we can configure them into 18

watch points and 6 break points.

• Hardware break points: when PC matches one of the configured break point PC

values, VPU enters debug state.

• Single watch points: when VMEM read or write (need to specify which direction)

address from designated load/store slot matches with one of the configured

addresses, VPU enters debug state. (Only starting address, not an address range

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 511

in case of vector load/store, so only matches starting/base address in case of

transposition and histogram; table lookup is read-only access so is not covered)

• Range watch points: Two single watch points can be configured as lower/upper

bounds of an address range. Reading or writing with any base address in the

range would trigger the request to enter VPU into debug state.

• Each watch point is specified as a full 32-bit byte address, with designation of

load/store and which memory slot (M0/M1/M2). A single watch point on IDE does

not specify memory slot and costs 3 watch point resources. A range watch point

on IDE costs 6 watch point resources.

• Note that watch point does not capture aliased accesses. For example, any binary

address xxxx_xxxx_xxxx_00xx_0100_0000_0000_0000 maps to address

0x4_0000, so a watch point on 0x4_0000 does not capture accesses to

0x14_0000, which also maps to the same physical address.

> SW break points (unlimited), program contents substituted with SWBRK instruction,

upon execution of which, VPU is instructed to enter debug state.

> SWBRK being executed when DBGEN = 1 will transition VPU to the debug state.

> SWBRK being executed when DBGEN = 0 constitutes an illegal debug error and is

captured in error logging (see Soft Error Cases and Handling), with the option to

either continue execution (treating SWBRK as NOP) or error-halt.

> Cross-trigger input/output, to optionally allow other processors enter/exit debug to

cause VPU to enter/exit debug, and vice versa.

> First 64 bytes of VMEM is reserved for debug software as staging area to query and

save/restore registers or VMEM data.

13.2 Soft Error Cases and Handling
VPU has the following features to detect various “soft” errors, so named because most

likely they occur during software development, so these features can be regarded as

design-for-test and debug features:

> Illegal instruction detection

> Scalar divide by zero error

> Floating-point invalid outcome

> Illegal debug

> Illegal instruction from alignment stage

> DLUT task incorrect configuration

> Coprocessor load/store access error

> DLUT missed event

Each error case is configurable whether to error-halt in the ERR_HNDL_CFG register.

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in

PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 512

controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator.

Error handling and context capture for each soft error follows.

Table 52. VPU soft error cases and handling

Error case Illegal instruction

Where/when it is

detected

VPU instruction decode stages.

The decode stage detects illegal instruction in each 32-bit instruction for scalar, vector,

math units.

Error handling The erroneous instruction is sent down the pipeline.

VPU enters Error-halted state right after the erroneous instruction when configured so

in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

A dedicated interrupt, invalid_instruction_error, is always sent independently of the

ERR_HNDL_CFG setting.

Context captured PC and timestamp.

SEC signal vpu_sec_illinstr_uncorrerr

Additional details

Error case Scalar divide by zero

Where/when it is

detected

Scalar divider unit, when zero divisor is supplied for a divide operation.

Error handling Max unsigned int value (0xFFFF_FFFF) is returned as the quotient.

VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

Error case Floating-point invalid

Where/when it is

detected

Scalar and vector FP unit, when invalid (NaN) outcome is generated.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 513

Error case Illegal debug

Where/when it is

detected

VPU executing a SWBRK (software break point) instruction when debug is disabled on

the debug interface.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG. Otherwise,

VPU ignores the SWBRK instruction, treating it as an NOP instruction.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

Error case Illegal instruction from alignment stage

Where/when it is

detected

VPU alignment stage detects illegal instruction.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

Error case DLUT task incorrect configuration

Where/when it is

detected

DLUT executes a task that is incorrectly configured.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

DLUT terminates task sequence upon detection by asserting DLUT_VPU_DONE, and

shows execution state as error-halted to incorrect configuration.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured Timestamp.

SEC signal n/a

Additional details

Error case Coprocessor access error

Where/when it is

detected

Coprocessor load/store instruction reading from a invalid/reserved address, or writing

to a read-only or invalid/reserved address.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 514

Error case DLUT missed event

Where/when it is

detected

VPU_DLUT_START is de-asserted before DLUT_VPU_DONE (GPI) is asserted.

Error handling VPU enters Error-halted state when it’s configured so in ERR_HNDL_CFG.

DLUT terminates task sequence when current task is completed, by asserting

DLUT_VPU_DONE, and shows execution state as error-halted to missed event.

SEC, when properly configured, detects VPU execution transition into Error-Halted state

and sends an interrupt to R5.

Context captured PC and timestamp.

SEC signal n/a

Additional details

13.3 Safety Features
VPS has the following error handling as safety features. These errors most likely

originated from some permanent or transient hardware fault:

> Illegal instruction

> I-cache ECC single-bit error (correctable)

> I-cache ECC double-bit error (uncorrectable)

> VMEM per-byte parity error

Note that divide-by-0 and floating-point invalid detection are not safety features, but

design-for-test/debug features.

Illegal instruction error source is configurable whether to error-halt in the

ERR_HNDL_CFG register.

When an error occurs, an interrupt is sent to the SEC block (safety and event control) in

PVA top level, where the interrupts are optionally forwarded to VIC (vectored interrupt

controller) then to the R5. R5 and/or SEC can optionally forward error events to system-

level error collator.

Safety-related error handling and context capture for each error follows.

Table 53. VPU safety error cases and handling

Error case I-cache ECC single-bit error

Where/when it is

detected

I-cache reading an entry upon request from VPU instruction fetch

Error handling Erroneous instruction word is corrected on the fly before returning it to VPU instruction

fetch/align unit.

An error interrupt is sent by I-cache to SEC. R5 software can choose to either

A) Respond to the interrupt, invalidate the cache line (hopefully before a 2nd error

occurs), or

Orin PVA VPU Programmer’s Guide SWE-PVA-076-PGRF | 515

Error case I-cache ECC single-bit error

B) Ignore the interrupt.

Note that VPU continues execution in this case.

Context captured None

SEC signal icache_memr_sec_correrr

Additional details ECC is applied on 32 bytes basis.

The corrected data will arrive at the VPU fetch/align unit on cycle later. The VPU

fetch/align unit would invalidate the erroneous instruction data and send one cycle of

bubble down the pipeline.

Error case I-cache ECC double-bit error

Where/when it is

detected

I-cache reading an entry upon request from VPU instruction fetch

Error handling An error interrupt is sent by I-cache to SEC. R5 software can choose to either

A) Halt/reset VPU immediately, or

B) Give VPU a chance (until watchdog timer expires) to run to task completion.

VPU continues, decoding/executing returned instruction data from I-cache.

Context captured None

SEC signal icache_memr_sec_correrr

Additional details ECC is applied on 32 bytes basis

Error case VMEM parity error

Where/when it is

detected

VMEM reading an entry upon request from VPU or external host (DMA, R5 or outside-

PVA host)

Error handling Erroneous data is retuned to VPU or external host.

VPU continues execution.

An error interrupt is sent to SEC. R5 software can choose to respond to the interrupt or

ignore it.

Context captured None

SEC signal vmem_memr_sec_dperr

Additional details Parity is applied per byte

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.NVIDIA.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a

product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the

information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the

consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document

is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time

without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise

agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects

to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual

obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in

applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or

environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such

inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of

each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information

contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the

application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability

of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA

accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any

manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this

document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products

or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual

property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full

compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS

(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR

OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY,

AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,

INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability

towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUPVA, Orin, Thor are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries.

Other company and product names may be trademarks of the respective companies with which they are associated.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables

are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm

Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm Limited. All other brands or

product names are the property of their respective holders. ʺArmʺ is used to represent ARM Holdings plc; its operating company Arm Limited; and the

regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany

GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright

© 2025 NVIDIA Corporation and affiliates. All rights reserved.

http://www.nvidia.com/

