
Autoscaling Leases



Table of contents

Installing Prerequisites

Server Configuration

Requesting Autoscaling Leases

Troubleshooting

Autoscaling Leases 1

Table of contents

Installing Prerequisites

Server Configuration

Requesting Autoscaling Leases

Troubleshooting



Autoscaling Leases 2

TMS has the capability to automatically scale the number of Triton instances associated
with a lease based on utilization. This means that as a lease becomes heavily utilized,
TMS can transparently add more Triton instances to service inference requests, and as
demand decreases, automatically remove unneeded instances.

This document covers what TMS administrators must do to enable this feature and how
TMS users can leverage it to speed up inference. This include:

Installing necessary third-party tools.

Configuring TMS to enable autoscaling, as well as parameters that can be used to
control it.

Enabling autoscaling for a lease.

Installing Prerequisites

To make autoscaling work, TMS needs to be able to collect performance metrics and then
make them available to Kubernetes for determining when to automatically scale leases.
This requires two third-party tools to be installed in Kubernetes: Prometheus and the
Prometheus Metrics Adapter. This guide will cover the basics of installation and
configuration, but ultimately, the TMS administrator should follow the latest instructions
for installing, configuring, and securing these tools as provided by the developers of the
tools. Luckily, there are Helm charts available for both of these tools, so a basic
installation in Kubernetes for testing purposes is fairly straight-forward.

Note: If your cluster is already using Prometheus and the Prometheus metrics adapter
for other purposes, you do not need to install a separate copy of these for TMS. So long
as the installed copy can monitor cods in the namespace where you’re installing TMS,
things should just work.

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://prometheus.io/
https://github.com/kubernetes-sigs/prometheus-adapter


Autoscaling Leases 3

Installing Prometheus

For the most up-to-date instructions for installing Prometheus, see their installation
guide. As noted above, for production clusters you should work with your system
administrator to make sure you properly configure and secure Prometheus. At least for
testing purposes, Prometheus can be easily installed in Kubernetes via a Helm chart
available on Github. Note that the this Helm chart is currently in a beta state and is
subject to change.

To install Prometheus via Helm, you can simply do this:

Verify that the installation was successful by running kubectl get pods  and verify that
the Prometheus pods are running and healthy (they may take a bit of time to start).

Installing the Prometheus Metrics Adapter

Once Prometheus is installed, you can proceed to install the Prometheus metrics
adapter. Just like with installing Prometheus, in production clusters this should be done
by or with the help of the system administrators to ensure any security concerns are
properly addressed.

When installing via Helm, the first step is to find the name of the Prometheus service by
running kubectl get svc . If you used the default options above, you should see a service
named prometheus-kube-prometheus-prometheus . If you do not see a service named
prometheus-kube-prometheus-prometheus , double-check if Prometheus was installed

properly, or look to see if an update to the Prometheus Helm chart has changed the
name of the service.

$ TARGET_NAMESPACE = ... # put your namespace name here
$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts
$ helm install -n $TARGET_NAMESPACE prometheus prometheus-community/kube-
prometheus-stack

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus-kube-prometheus-prometheus ClusterIP 10.152.183.39 <none>
9090/TCP 6h33m

https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus-community.github.io/helm-charts/
https://prometheus-community.github.io/helm-charts/


Autoscaling Leases 4

With the name of the Prometheus service, you can now install the Prometheus adapter.

If everything installed successfully, Prometheus should start collecting metrics from the
cluster within a few minutes. You can verify this by getting metrics the Kubernetes
custom metrics API.

Note: if you don’t have jq  installed in your system, you can run without it – you’ll just get
all the output in a single line.

You should see output that look like the below. The actual entries don’t matter so long as
there are some entries.

prometheus-grafana ClusterIP 10.152.183.204 <none> 80/TCP 6h33m
prometheus-kube-prometheus-operator ClusterIP 10.152.183.197 <none> 443/TCP
6h33m
prometheus-prometheus-node-exporter ClusterIP 10.152.183.154 <none> 9100/TCP
6h33m
prometheus-kube-prometheus-alertmanager ClusterIP 10.152.183.155 <none>
9093/TCP 6h33m
prometheus-kube-state-metrics ClusterIP 10.152.183.117 <none> 8080/TCP 6h33m
alertmanager-operated ClusterIP None <none> 9093/TCP,9094/TCP,9094/UDP
6h33m
prometheus-operated ClusterIP None <none> 9090/TCP 6h33m

$ TARGET_NAMESPACE = ... # put your namespace name here
$ helm install -n $TARGET_NAMESPACE prometheus-adapter prometheus-
community/prometheus-adapter --set=prometheus.url=http://prometheus-kube-
prometheus-prometheus

$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1 | jq | less

{
"kind": "APIResourceList",
"apiVersion": "v1",
"groupVersion": "custom.metrics.k8s.io/v1beta1",



Autoscaling Leases 5

Server Configuration

Since it requires the installation of additional third-party components, lease autoscaling is
disabled by default. To enable it, you must set the appropriate values in values.yaml .
These options are in the server.autoscaling  section of the file. The TMS administrator
should set these values based on the hardware available in the cluster, the expected
workloads for this particular installation, and the configuration options of Prometheus.

"resources": [
{
"name": "services/node_memory_KReclaimable_bytes",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
},
{
"name":
"services/prometheus_remote_storage_string_interner_zero_reference_releases",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
}
]
}

server:
autoscaling:
enable: false
replicas:



Autoscaling Leases 6

default:
minimum: 1
maximum: 5
limits:
maximum: 10
minimum:
lowerBound: 1
upperBound: 2
metrics:
cpuUtilization:
allowed: false
enabled: false
threshold:
default: 90
minimum: 50
maximum: 100
gpuUtilization:
allowed: false
enabled: false
threshold:
default: 90
minimum: 50
maximum: 100
queueTime:
allowed: false
enabled: false
threshold:
default: 10000
minimum: 10000
maximum: 0
prometheus:
podMonitorLabels:
release: prometheus
ruleLabels:
release: prometheus



Autoscaling Leases 7

The options in this section are as follows:

enable  (default false ): Controls whether autoscaling is enabled. Valid values are
true  and false .

replicas  (dictionary): Controls the number of replicas that will be allowed for
leases. See values.yaml  for further details on all the options.

metrics  (dictionary): A set of metrics which can be used for autoscaling. This is
defined in further detail later.

prometheus  (dictionary): Options which specify how Prometheus finds Kubernetes
objects created by TMS that are used in autoscaling. These are described further
detail below.

In the above, if server.autoscaling.enable  is switched to true , the following would
happen:

If a user does not request autoscaling for a lease, their lease will not automatically
scale.

If a user requests autoscaling for a lease but does not specify a maximum number
of replicas, the will will have at most 5  replicas (
server.autoscaling.replicas.default.maximum ).

If a user requests autoscaling for a lease and they specify the maximum number of
replicas, they can request up to 10  replicas (
server.autoscaling.replicas.limits.maximum ).

The section on requesting autoscaling leases describes how to make these requests.

Configuring Autoscaling Metrics

The dictionary server.autoscaling.metrics  defines a series of metrics on which
autoscaling may trigger. Each metrics consists of a threshold along with a boolean flag
indicating whether or not the metric is configured. Based on this, each metric is used to
calculate a target number of replicas. The largest number is then used. The details of how
each target number is calculated can be found in the Kubernetes documentation.

The metrics are as follows:

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details


Autoscaling Leases 8

cpuUtilization  (dictionary): Scale based on high CPU utilization. Values are
expressed as a percentage.

gpuUtilization  (dictionary): Scale based on high GPU utilization. Values are
expressed as a percentage.

queueTime  (dictionary): Scale based on inference requests spending a long
amount of time in the queue before they are executed. Values are expressed in
microseconds.

Each metric has the following entries:

enable  (default false ): Whether to enable this metric by default.

allowed  (default false ): Whether this metric can be enabled on a per-lease bases.

threshold  (dictionary): Values that determine when a lease should be scaled up
and down.

threshold.default  (integer): the default value if not specified on a per-lease basis.

threshold.minimum  (integer): the minimum value allowed when specified on a per-
lease basis.

threshold.maximum  (integer): the maximum value allowed when specified on a
per-lease basis.

Configuring Prometheus Objects

When autoscaling is enabled, TMS will create a number of Kubernetes objects related to
Prometheus. For autoscaling to work properly, Prometheus must be able to detect these
objects. This is configured via the server.autoscaling.prometheus  entry in values.yaml .
This object has the following entries:

podMonitorLabels  (dictionary): A set of labels which will be added to PodMonitor
objects so that Prometheus can monitor the metrics of the Triton pods. This must
match the value of .spec.podMonitorSelector  in your Prometheus configuration.



Autoscaling Leases 9

ruleLables  (dictionary): A set of labels which will be added to PrometheusRule
objects so that Prometheus can detect rules used by TMS to define new metrics.
This must match the value of .spec.ruleSelector  in your Prometheus configuration.

In addition to the above, if your Prometheus installation has specified values for
.spec.podMonitorNamespaceSelector  or .spec.ruleNamespaceSelector , you need to

ensure that the namespace into which you install TMS has matching labels applied to it.

Verifying Autoscaling Leases Are Working Properly

Requesting Autoscaling Leases

On a server that is properly configured, users may request a lease support autoscaling
via the programmatic gRPC API, as well as the tmsctl command-line tool. The
documentation for the API and tools contains complete details of the different flags and
their usage. This section only gives an overview of how to request autoscaling via tmsctl .

To request autoscaling with the default parameters, users just need to add the
--enable-autoscaling  flag (below $MODEL_OPTIONS  is a stand-in for whatever model

the user wants to load:

To specify the maximum number of replicas, simply use the --autoscaling-max-replicas
option. For example, the below requests a maximum of four replicas.

In both cases above, the leases will start with a single replica of Triton, and as inference
requests increase, the number of Triton instance for the lease will increase until they
reach their respective maximums.

Troubleshooting

Prometheus has many rules that determine how it searches for different Kubernetes
objects in order to adjust its behavior dynamically. If these don’t match how you

$ tmscl lease create -m $MODEL_OPTIONS --enable-autoscaling

$ tmscl lease create -m $MODEL_OPTIONS --enable-autoscaling --autoscaling-max-
replicas 4

https://docs.nvidia.com/grpc-api-package.html
https://docs.nvidia.com/tmsctl.html#lease


Autoscaling Leases 10

configured TMS, autoscaling will not work properly. The Prometheus documentation
provides detailed information on all the option. This section covers some of the more
common issues.

Symptom: You are not seeing any metrics collected for your Triton pods.

Things to Check:

Make sure that you set .server.autoscaling.prometheus.podMonitorLabels  in
values.yaml  to match the labels defined by .spec.podMonitorSelector  in your

Prometheus installation.

If your Prometheus installation has set .spec.podMonitorNamespaceSelector ,
make sure that your namespace has matching labels (e.g. run
kubectl label ns tms_namespace someLabel=someValue ).

Symptom: The metric for autoscaling based on queue time (
tms_avg_request_queue_duration ) is not being collected.

Things to Check:

Make sure that you set .server.autoscaling.prometheus.ruleLabels  in values.yaml
to match the labels defined by .spec.ruleSelector  in your Prometheus installation.

If your Prometheus installation has set .spec.ruleNamespaceSelector , make sure
that your namespace has matching labels (e.g. run
kubectl label ns tms_namespace someLabel=someValue ).

© Copyright 2024, NVIDIA.. PDF Generated on 06/05/2024

https://prometheus-operator.dev/docs/prologue/introduction/

	Installing Prerequisites
	Server Configuration
	Requesting Autoscaling Leases
	Troubleshooting



