
Model Repositories

Table of contents

HTTP(S)

Persistent Volume Claim

S3 Object Store

Model Repositories 1

Table of contents

HTTP(S)

Persistent Volume Claim

S3 Object Store

Model Repositories 2

Model repositories hold the model artifacts that will be loaded into and served by the
deployed Triton Inference Servers. Model repositories for Triton Management Service are
similar in structure and content to Triton Inference Server model repositories, but there
are different options and configurations for the available locations.

In general, model repositories are configured by specifying the remote location of the
repository (where the method of specifying the location is dependent on the type of
repository) as well as a Repository Name when you deploy TMS. TMS operations requiring
references to the model repository (i.e. lease creation requests) will use the configured
Repository Names. Several different types of model repository are available.

HTTP(S)

TMS Configuration

HTTP(S) model repositories are not required to be pre-specified in the TMS values.yaml
file. However, you can associate Kubernetes Secret with a particular HTTP url in the
values.yaml file, in which case TMS will provide the contents of the secret in the
Authorization request header:

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

values.yaml
server:
modelRepositories:
https:
- secretName: Name of the Kubernetes secret to read and provide as a
Authorization header for download requests.
targetUri: URL of the remote web-sever in \<domain_label_or_ip_address\>/\<path\>
format, used to determine if secrets apply to a model request or not.

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://kubernetes.io/docs/concepts/configuration/secret/

Model Repositories 3

The default values.yaml file contains an example secret named “ngc-model-pull”.

The targetUri is used to determine which secret is best suited to be used to download a
given model based on the model’s URN. URN matching is broken up into two parts:

1. Match the DNS label right to left, or absolute match of an IP Address. For example:
models.company.com would match cdn.models.company.com , but would not

match models.cdn.company.com .

2. Match the path portion of URN from left-to-right. For example:
internal-cdn/repository would match internal-cdn/repository/ai_models , but

would not match internal-cdn/ai_models/repository .

To create a model-pull secret, use:

Then which ever value was chosen for <secret-name> add to the
values.yaml#server.modelRepositories.https list with the corresponding targetUri

value.

Setting up the Repository

Models in HTTP(S) repositories should be zipped versions of the directories in a Triton
Model Repository, served by some kind of web server and accessible through HTTP GET
requests.

For example, if the triton model repository is structured as follows:

Then you should serve a file my_model.zip that contains one of the following file
layouts:

kubectl create secret generic <secret-name> --from-file <secret-name>

model_repository/
└── my_model
├── 1
│ └── model.onnx
└── config.pbtxt

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html#model-files
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html#model-files

Model Repositories 4

1.

2.

The my_model.zip file – and any other zip files with a similar structure – can be served
by a wide variety of web server. One approach is to use the http.server module in the
Python standard library. In a directory containing the zip file, execute the command

This will serve the model with a URI http://localhost:8000/my_models.zip .

Model URI

To refer to a model in an HTTP(S) repository, use the full URL of the server. For example:

$ unzip -l my_model.zip
Archive: my_model.zip
Length Date Time Name
--------- ---------- ----- ----
0 2022-04-28 22:27 1/
356 2022-04-28 22:27 1/model.onnx
59 2022-06-01 21:12 config.pbtxt
--------- -------
415 3 files

$ unzip -l my_model.zip
Archive: my_model.zip
Length Date Time Name
--------- ---------- ----- ----
0 2022-07-08 00:23 my_model/
59 2022-06-01 21:12 my_model/config.pbtxt
0 2022-04-28 22:27 my_model/1/
356 2022-04-28 22:27 my_model/1/model.onnx
--------- -------
415 4 files

python -m http.server --directory .

tmsctl lease create -t ${tms_address} -m

Model Repositories 5

Persistent Volume Claim

TMS Configuration

TMS enables TMS administrators to provide model repositories from Kubernetes
Persistent Volume Claims for requested Triton instances.

To enable requested Triton instances to load models from a persistent volume claim,
provide the name of the particular Kubernetes persistent volume claim in an entry under
values.yaml#server.modelRepositories.volumes , along with a valid name for the

repository. The Persistent Volume Claim will then be mounted as a volume onto any
Triton pod launched by TMS.

Setting up the Repository

Persistent Volumes in Kubernetes are cluster resources that can be consumed – like a
node, while a Persistent Volume Claim is particular request to use that resource – like a
pod. Since model repositories in TMS are used by multiple Triton instances, you’ll need to
create a specific PVC for your repository that can then be mounted onto multiple pods.

One way to set up the repository is to create the model repository outside of kubernetes
in a piece of storage that can be consumed as a Persistent Volume. Then, you can define
that piece of storage as a Persistent Volume, and then attach a Persistent Volume Claim
to it that allows kubernetes pods to consume that particular piece of storage. The NFS
Model Repository path in the quickstart guide gives an example of this.

"name=my_model,uri=http://www.example.com/models/my_model.zip"

values.yaml
server:
modelRepositories:
volumes:
Name used to reference this model repository as part of lease acquisition.
May contain only lowercase alphanumeric characters (without spaces, hyphens `-` are
permitted).
- repositoryName: volume-models
Kubernetes persistent volume claim (pvc) used to fetch models.
volumeClaimName: example-volume-claim

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.nvidia.com/quickstart-guides/minikube.html#nfs-model-repository
https://docs.nvidia.com/quickstart-guides/minikube.html#nfs-model-repository

Model Repositories 6

Persistent Volume Claims are generally exposed directly as file systems, so to create a
model repository you can use the same structure as a Triton Inference Server model
repositories – for example:

See the following resources for creating Persistent Volumes and Claims backed by various
types of storage:

NFS: TMS Quickstart Guide

AWS Elastic Block Storage: AWS Documentation. Only supported on Amazon EKS
clusters.

Azure Blob Storage: Azure Documentation. Only supported on Azure Kubernetes
Service clusters.

Azure Files: Azure Documentation. Only supported on Azure Kubernetes Service
clusters.

Model URI

To refer to a model in a PVC repository, prefix the model name with model:// and the
name of the model repository configured in the values.yaml file. For example:

S3 Object Store

TMS Configuration

To configure access to an S3 compatible object store, you must specify a Repository
Name, a Bucket Name, and an S3 service Endpoint.

model_repository/
└── my_model
├── 1
│ └── model.onnx
└── config.pbtxt

tmsctl lease create -t ${tms_address} -m "name=my_model,uri=model://volume-
models/my_model"

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://docs.nvidia.com/quickstart-guides/minikube.html
https://repost.aws/knowledge-center/eks-persistent-storage
https://aws.amazon.com/eks/
https://learn.microsoft.com/en-us/azure/aks/azure-csi-blob-storage-provision
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://learn.microsoft.com/en-us/azure/aks/azure-csi-files-storage-provision
https://azure.microsoft.com/en-us/products/kubernetes-service

Model Repositories 7

If your S3 Object Store is an actual AWS S3 bucket, you can provide the AWS Region of
your bucket instead of the explicit endpoint

#values.yaml
server:
modelRepositories:
s3:
Name used to reference this model repository as part of lease acquisition.
May contain only lowercase alphanumeric characters (without spaces, hyphens `-` are
permitted).
- repositoryName: repo0
Name of the S3 bucket used to fetch models.
bucketName: tms-models
Service URL of the S3 bucket.
If both 'endpoint' and 'awsRegion' fields are specified, TMS will default to using the
value from 'endpoint'.
Must be a valid URL designating to an existing endpoint (eg. "http:/s3.us-west-
2.amazonaws.com" or "http:/play.min.io:9000").
Refer here to learn more:
https://docs.aws.amazon.com/general/latest/gr/s3.html#amazon_s3_website_endpoints.
endpoint: "https://s3.us-west-2.amazonaws.com"

#values.yaml
server:
modelRepositories:
s3:
- repositoryName: repo0
bucketName: tms-models
Service region code of AWS S3 Bucket.
Field is for S3 buckets exclusively deployed through AWS.
Non-AWS S3 Buckets should be configured through the `endpoint` field.
Must be a valid code designating to existing AWS region (eg. "us-west-2").
Refer here to learn more:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-
zones.html).

Model Repositories 8

If your model repository is in a private S3 bucket that requires access credentials, you
have two options.

First, you can create a Kubernetes Secrets containing an access key ID and one containing
a secret access key that represent the authority to list and retrieve the objects in the
bucket. Then, you specify those secrets in the values.yaml file:

The other option is applicable when you are using AWS S3 buckets and when TMS is to be
deployed on EKS. Instead of explicitly providing the key ID and secret key, you must
associate an AWS IAM role which has s3:ListBucket and s3:GetObject permissions for
that bucket with the TMS kubernetes service account. You can do this by providing the
Amazon Resource Name of that IAM role in the values.yaml file.

awsRegion: "us-west-2"

#values.yaml
server:
modelRepositories:
S3:
- repositoryName: repo0
bucketName: tms-models
endpoint: "https://s3.us-west-2.amazonaws.com"
Name of the Kubernetes secret to read and provide as the access key ID to download
objects from the S3 bucket.
Optional value when IAM or default AWS environment variables are not used for
authorizing TMS to read from an S3 bucket.
accessKey: "access-key-secret-name"
Name of the Kubernetes secret containing the secret access key to read from the S3
bucket
Optional value when IAM or default AWS environment variables are not used for
authorizing TMS to read from an S3 bucket.
secretKey: "secret-key-secret-name"

#values.yaml
server:
security:

https://kubernetes.io/docs/concepts/configuration/secret/

Model Repositories 9

You should also ensure that the role you provide here has a trust policy that allows the
tms-triton service account to assume that role. For example, you can create this IAM

role with the following eksctl command:

Please see the documentation on Configuring a Kubernetes service account to assume an
IAM role to learn more.

Setting up the Repository

S3 model repositories should be set organized into folders that are similar to the
following structure:

All model folders (like the my_model folder above) should either be at the top level of
your bucket, or contained in a single parent directory. If your model repository is not at
the top level folder of your bucket you should include the full path when referring to the
model in lease commands.

You should also ensure that you have an IAM role available that has access to the bucket
(and folder) containing the models or that the bucket is publicly accessible.

Model URI

aws:
AWS IAM role used read models S3 buckets configured in `modelRepositories.S3`.
role: arn:aws:iam::00000000:role/Tms-s3-role

eksctl create iamserviceaccount --cluster tms-cluster --name=tms-server --attach-
policy-arn=arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess --role-only --role-
name=Tms-s3-role --approve

tms-models #bucket name
└── my_model #S3 folder
├── 1
│ └── model.onnx
└── config.pbtxt

https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

Model Repositories 10

To refer to a model in an S3 repository, prefix the model name with model:// and the
name of the model repository configured in the values.yaml file. TMS will internally
resolve this to the correct S3 url. For example:

© Copyright 2024, NVIDIA.. PDF Generated on 06/05/2024

tmsctl lease create -t ${tms_address} -m "name=my_model,uri=model://aws-
models/my_model"

	HTTP(S)
	Persistent Volume Claim
	S3 Object Store

