
TMS Basics Tutorial

Table of contents

Connecting to TMS

Creating Your First Lease

Running Inference

Other Lease Operations

Releasing the Lease

TMS Basics Tutorial 1

Table of contents

Connecting to TMS

Creating Your First Lease

Running Inference

Other Lease Operations

Releasing the Lease

TMS Basics Tutorial 2

This guide will walk you through the basics of creating a lease, running inference against
it, and releasing the lease. This guide assumes the following:

You are familiar with the basics of leases.

You already have a TMS cluster up and running, with the appropriate secrets
configured to get containers from NGC. If you do not, please see the deployment
guide to learn how to configure and install TMS.

You have tmsctl , the TMS CLI tool, already installed. This can be downloaded from
NGC.

You have a model repository configured that is hosting your models.

You can run kubectl commands to communicate with your cluster. This is needed
to run kubectl port-forward commands to open up ports to the Triton server which
will host your models. Another option is to run the tutorial in a pod inside the same
cluster running Kubernetes. In this case, you can skip the kubectl port-forward
commands (you will also need to make some slight modifications to refer to the
correct service rather than localhost).

Connecting to TMS

Before getting to the more interesting steps, you need to ensure you can communicate
with the TMS server. This tutorials assumes you are running the steps outlined here
outside the Kubernetes cluster hosting TMS and need to open a port to connect to it. The
way to do this is to use the kubectl port-forward .

First, you need to locate the TMS service. By default, it should be named tms and be
running on port 30345. The rest of the tutorials assumes this is the case for your

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://docs.nvidia.com/lease.html
https://docs.nvidia.com/deployment-guide.html
https://docs.nvidia.com/deployment-guide.html
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/resources/triton-management-service-control
https://docs.nvidia.com/model-repository.html

TMS Basics Tutorial 3

installation. If not, you’ll have to modify some commands. To check where TMS is running,
run kubectl get svc :

With the name of the service and port number on which it is listening, you can run a
kubectl port-forward command so you can communicate with the service from your

local machine. You need to leave this command running, so you will need to do it in
separate terminal form the one one which you will be running the rest of the commands.

You should now be able to communicate with TMS. To test it, run a tmsctl lease list
command:

Notice that above, you had to specify the address of the TMS via the -t flag. To avoid
having to do that each time, run the tmsctl target add command to set a default target.

To inspect your set of named targets and see the default, you can run tmsctl target list

Now you can run tmsctl without specifying the -t option.

% kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
tms ClusterIP 10.98.225.223 <none> 30345/TCP 7s

% kubectl port-forward svc/tms 30345:30345
Forwarding from 127.0.0.1:30345 -> 9345
Forwarding from [::1]:30345 -> 9345

% tmsctl lease list -t http://localhost:30345
Lease State Expires Triton
Count: 0

% tmsctl target add --set-default test-target http://localhost:30345

% tmsctl target list
* test-target -> http://localhost:30345

TMS Basics Tutorial 4

The rest of this tutorial will assume you have set this and will not specify the -t option on
each command.

Creating Your First Lease

Creating a lease requires two things:

1. The URI from which to fetch the model.

2. The name of the model which will be used by Triton.

Your TMS installation should be configured model repositories, such as one hosted in an
S3 bucket, or in a Kubernetes persistent volume. If this has not already been done, please
refer to the model repository documentation. You can also pull a model from an HTTP
server.

The below assumes that you have set $MODEL_URI to the URI from which to fetch the
model. For example, if the model is in a repository named my_repo , and is in a folder
named my_model , you would set MODEL_URI=model://my_repo/my_model . If instead
your model is hosted on an HTTP server, you would set
MODEL_URI=https://www.example.com/my_model.zip .

In addition to $MODEL_URI , the below assumes you have set $MODEL_NAME to the
name that your model should have in Triton. This will be used as part of the path for
inference requests.

To create a lease, run the tmsctl lease create command. Specify a duration of at least 30
minutes (e.g. --duration 30m , --duration 1h) to have enough time to run the tutorial,
but not so much that if you forget to release the lease you hold the resources for too
long.

% tmsctl lease list
Lease State Expires Triton
Count: 0

% tmsctl lease create -t $TMS_ADDRESS -m name=$MODEL_NAME,uri=$MODEL_URI
--duration 30m

https://docs.nvidia.com/model-repository.html

TMS Basics Tutorial 5

Assuming everything went well, you should see output similar to the above. A few things
to note of importance:

The lease ID is listed first. This is how you will refer to the lease for operations like
getting its status, renewing it, or releasing it. In the example above, this is
9fd209b1f45f424c914ebc2967a3b591 . The rest of this tutorial will refer to this as
$LEASE_ID .

The line starting with Triton: gives the URL of the Triton server hosting your lease
(with all it models). Above, it is triton-de245ce9.yournamespace.svc.cluster.local .
The first component of this (triton-de245ce9), will be referred to as
$TRITON_SERVER in the rest of the tutorial.

Running Inference

With your lease ready, you can run inference against any of its models (just one in this
example). The details of the parameters will vary widely depending on your particular
model. The below shows the overall idea, but you will have to adjust it for your model. In
a common deployment scenario, you would likely have an application that is making
inference requests rather than doing it manually. This is meant to simply demonstrate
how to go from creating a lease to running inference.

An important thing to note is that the Kubernetes services associated with the leases are
only available inside the cluster. To reach it externally, you need to run a
kubectl port-forward command like you did for TMS.

Lease 9fd209b1f45f424c914ebc2967a3b591
State: Valid
Expires: 2023-10-12T23:27:19Z
Triton: triton-de245ce9.yournamespace.svc.cluster.local
<nvcr.io/nvidia/tritonserver:23.09-py3>
Models:
Name Url Status
$MODEL_NAME $MODEL_URI Ready

% kubectl port-forward svc/$TRITON_SERVER 8000:8000

TMS Basics Tutorial 6

You can now run inference against the server. Again, the particulars of the parameters to
your model will vary.

You should see output like the below:

Other Lease Operations

Now that you have a lease, you can perform many different operations on it. Below are a
few basic ones.

List Leases

You can always run tmsctl lease list to see the state of leases in your TMS installation.

Lease Status

To get detailed information about a lease, run tmsctl lease status .

% curl -X POST -H "Content-Type: application/json"
http://localhost:8000/v2/models/$MODEL_NAME/infer \
--data '{ "inputs": [{"name": "INPUT", "shape": [1], "datatype": "FP32", "data": [10] }]}'

{"model_name":"$MODEL_NAME","model_version":"1","outputs":
[{"name":"OUTPUT","datatype":"FP32","shape":[1],"data":[10.0]}]}

% tmsctl lease list
Lease State Expires Triton
9fd209b1f45f424c914ebc2967a3b591 Valid 2023-10-12T23:39:28 triton-
de245ce9.epauli.svc.cluster.local
Count: 1

% tmsctl lease status $LEASE_ID
Lease 9fd209b1f45f424c914ebc2967a3b591
State: Valid
Expires: 2023-10-12T23:39:28Z

TMS Basics Tutorial 7

Renew

Your TMS installation will be configured with a default duration for leases. After that time
elapses, TMS will automatically release the lease. If you still need it, you can run
tmsctl lease renew to renew the lease.

Create a Custom Lease Name

In the section above where you ran inference, you had to use the name of the Triton
instance in the URL. You can create additional names for a lease, which you can use to
run inference. You can use this feature to provide more meaningful names to your Triton
instances, as well as move the name from one lease to another so you can update your
models without changing the URL your application uses.

To be able to use the name myname to refer to your lease, run the below.

Triton: triton-de245ce9.yournamespace.svc.cluster.local
<nvcr.io/nvidia/tritonserver:23.09-py3>
Readied: 2023-10-12T23:17:19Z
Models:
Name Url Status
$MODEL_NAME $MODEL_URI Ready
Events:
Type Source Age Message
Status Triton Manager 0s Creating Triton deployment.
Status Triton Manager 4s Triton deployment ready.
Status Triton Sidecar 5s identity cached; model size: 1930.
Status Triton Sidecar 7s identity is ready.
Status Lease Provider 9s Lease ready.
Status Lease Service 8m Lease renewed by request.
Status Lease Service 12m Lease renewed by request.

% tmsctl lease renew $LEASE_ID
Renewed lease 9fd209b1f45f424c914ebc2967a3b591 [Valid]
Expires: 2023-10-12T23:34:44

TMS Basics Tutorial 8

You can now run inference using the myname hostname. You can still use the name of
the Triton server as well.

To test the new name, kill your previous kubectl port-forward command, and run a new
one. This time, use myname instead of the name previously provided by TMS.

Releasing the Lease

When you are done using a lease, you can release all resources associated with it by
running tmsctl lease release .

© Copyright 2024, NVIDIA.. PDF Generated on 06/05/2024

% tmsctl lease name create myname $LEASE_ID
Lease name "myname".
Target lease: $LEASE_ID

% kubectl port-forward svc/myname 8000:8000
Forwarding from 127.0.0.1:8000 -> 8000
Forwarding from [::1]:8000 -> 8000

% curl -X POST -H "Content-Type: application/json"
http://localhost:8000/v2/models/$MODEL_NAME/infer \
--data '{ "inputs": [{"name": "INPUT", "shape": [1], "datatype": "FP32", "data": [10] }]}'

% tmsctl lease release $LEASE_ID
Lease $LEASE_ID
State: Released

	Connecting to TMS
	Creating Your First Lease
	Running Inference
	Other Lease Operations
	Releasing the Lease

