
Triton Management Service Deployment Guide (Latest)

Table of contents

TMS Basics Tutorial 4

TMS Minikube Quickstart Guide 11

Triton Management Service Deployment Guide 21

Model Repositories 28

Triton Image Allowlist 37

Leases 40

Autoscaling Leases 44

Triton Pools & Quota Base Shared Tritons 53

TMS Metrics 58

TMS GRPC API Package 60

Triton Management Service Control 64

Helm Chart Values 87

Release Notes for Triton Management Service 101

Triton Management Service Deployment Guide (Latest) 1

Table of contents

TMS Basics Tutorial

TMS Minikube Quickstart Guide

Triton Management Service Deployment Guide

Model Repositories

Triton Image Allowlist

Leases

Autoscaling Leases

Triton Pools & Quota Base Shared Tritons

TMS Metrics

TMS GRPC API Package

Triton Management Service Control

Helm Chart Values

Release Notes for Triton Management Service

Triton Management Service Deployment Guide (Latest) 2

Triton Management Service (TMS) is an application that helps users manage and
orchestrate a fleet of Triton Inference Servers in a Kubernetes cluster. Key features of
TMS include:

Easily creating and deleting Triton instances on-demand.

Securely loading models from remote storage locations.

Autoscaling Triton instances to meet dynamic workloads while minimizing resource
utilization during times of low demand.

Loading models into pooled Triton instances, allowing you to use less resources
while maintaining quality-of-service metrics.

One of the main organizational units in TMS is the concept of a lease. A lease is a
description of a model (or ensemble of models), along with a description of the hardware
needed to run them (e.g. number of GPUs, amount of memory). To learn more about
leases, see the description of leases.

To get started with TMS, first see the deployment guide to learn how to install and
configure TMS. Once you have TMS running, see the basic operations tutorial to learn
how to create Triton instances and load models into them. If you don’t already have a
Kubernetes cluster but want to try out TMS, see the minikube quickstart guide for an
example of how to set up a test environment and install TMS in it.

Contents

Getting Started

TMS Basics Tutorial
TMS Minikube Quickstart Guide

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://docs.nvidia.com/lease.html
https://docs.nvidia.com/deployment-guide.html
https://docs.nvidia.com/basics-tutorial.html
https://docs.nvidia.com/quickstart-guides/minikube.html
https://docs.nvidia.com/basics-tutorial.html
https://docs.nvidia.com/quickstart-guides/minikube.html

Triton Management Service Deployment Guide (Latest) 3

Triton Management Service Deployment Guide

Key Concepts

Model Repositories
Triton Image Allowlist
Leases
Autoscaling Leases
Triton Pools & Quota Base Shared Tritons
TMS Metrics

Reference

TMS GRPC API Package
Triton Management Service Control
Helm Chart Values

Release Notes

Release Notes for Triton Management Service

https://docs.nvidia.com/deployment-guide.html
https://docs.nvidia.com/model-repository.html
https://docs.nvidia.com/allowlist.html
https://docs.nvidia.com/lease.html
https://docs.nvidia.com/autoscaling.html
https://docs.nvidia.com/triton-pools.html
https://docs.nvidia.com/metrics.html
https://docs.nvidia.com/grpc-api-package.html
https://docs.nvidia.com/tmsctl.html
https://docs.nvidia.com/helm.html
https://docs.nvidia.com/release-notes.html

Triton Management Service Deployment Guide (Latest) 4

TMS Basics Tutorial

This guide will walk you through the basics of creating a lease, running inference against
it, and releasing the lease. This guide assumes the following:

You are familiar with the basics of leases.

You already have a TMS cluster up and running, with the appropriate secrets
configured to get containers from NGC. If you do not, please see the deployment
guide to learn how to configure and install TMS.

You have tmsctl , the TMS CLI tool, already installed. This can be downloaded from
NGC.

You have a model repository configured that is hosting your models.

You can run kubectl commands to communicate with your cluster. This is needed
to run kubectl port-forward commands to open up ports to the Triton server which
will host your models. Another option is to run the tutorial in a pod inside the same
cluster running Kubernetes. In this case, you can skip the kubectl port-forward
commands (you will also need to make some slight modifications to refer to the
correct service rather than localhost).

Connecting to TMS

Before getting to the more interesting steps, you need to ensure you can communicate
with the TMS server. This tutorials assumes you are running the steps outlined here

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://docs.nvidia.com/lease.html
https://docs.nvidia.com/deployment-guide.html
https://docs.nvidia.com/deployment-guide.html
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/resources/triton-management-service-control
https://docs.nvidia.com/model-repository.html

Triton Management Service Deployment Guide (Latest) 5

outside the Kubernetes cluster hosting TMS and need to open a port to connect to it. The
way to do this is to use the kubectl port-forward .

First, you need to locate the TMS service. By default, it should be named tms and be
running on port 30345. The rest of the tutorials assumes this is the case for your
installation. If not, you’ll have to modify some commands. To check where TMS is running,
run kubectl get svc :

With the name of the service and port number on which it is listening, you can run a
kubectl port-forward command so you can communicate with the service from your

local machine. You need to leave this command running, so you will need to do it in
separate terminal form the one one which you will be running the rest of the commands.

You should now be able to communicate with TMS. To test it, run a tmsctl lease list
command:

Notice that above, you had to specify the address of the TMS via the -t flag. To avoid
having to do that each time, run the tmsctl target add command to set a default target.

To inspect your set of named targets and see the default, you can run tmsctl target list

% kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
tms ClusterIP 10.98.225.223 <none> 30345/TCP 7s

% kubectl port-forward svc/tms 30345:30345
Forwarding from 127.0.0.1:30345 -> 9345
Forwarding from [::1]:30345 -> 9345

% tmsctl lease list -t http://localhost:30345
Lease State Expires Triton
Count: 0

% tmsctl target add --set-default test-target http://localhost:30345

Triton Management Service Deployment Guide (Latest) 6

Now you can run tmsctl without specifying the -t option.

The rest of this tutorial will assume you have set this and will not specify the -t option on
each command.

Creating Your First Lease

Creating a lease requires two things:

1. The URI from which to fetch the model.

2. The name of the model which will be used by Triton.

Your TMS installation should be configured model repositories, such as one hosted in an
S3 bucket, or in a Kubernetes persistent volume. If this has not already been done, please
refer to the model repository documentation. You can also pull a model from an HTTP
server.

The below assumes that you have set $MODEL_URI to the URI from which to fetch the
model. For example, if the model is in a repository named my_repo , and is in a folder
named my_model , you would set MODEL_URI=model://my_repo/my_model . If instead
your model is hosted on an HTTP server, you would set
MODEL_URI=https://www.example.com/my_model.zip .

In addition to $MODEL_URI , the below assumes you have set $MODEL_NAME to the
name that your model should have in Triton. This will be used as part of the path for
inference requests.

To create a lease, run the tmsctl lease create command. Specify a duration of at least 30
minutes (e.g. --duration 30m , --duration 1h) to have enough time to run the tutorial,

% tmsctl target list
* test-target -> http://localhost:30345

% tmsctl lease list
Lease State Expires Triton
Count: 0

https://docs.nvidia.com/model-repository.html

Triton Management Service Deployment Guide (Latest) 7

but not so much that if you forget to release the lease you hold the resources for too
long.

Assuming everything went well, you should see output similar to the above. A few things
to note of importance:

The lease ID is listed first. This is how you will refer to the lease for operations like
getting its status, renewing it, or releasing it. In the example above, this is
9fd209b1f45f424c914ebc2967a3b591 . The rest of this tutorial will refer to this as
$LEASE_ID .

The line starting with Triton: gives the URL of the Triton server hosting your lease
(with all it models). Above, it is triton-de245ce9.yournamespace.svc.cluster.local .
The first component of this (triton-de245ce9), will be referred to as
$TRITON_SERVER in the rest of the tutorial.

Running Inference

With your lease ready, you can run inference against any of its models (just one in this
example). The details of the parameters will vary widely depending on your particular
model. The below shows the overall idea, but you will have to adjust it for your model. In
a common deployment scenario, you would likely have an application that is making
inference requests rather than doing it manually. This is meant to simply demonstrate
how to go from creating a lease to running inference.

% tmsctl lease create -t $TMS_ADDRESS -m name=$MODEL_NAME,uri=$MODEL_URI
--duration 30m
Lease 9fd209b1f45f424c914ebc2967a3b591
State: Valid
Expires: 2023-10-12T23:27:19Z
Triton: triton-de245ce9.yournamespace.svc.cluster.local
<nvcr.io/nvidia/tritonserver:23.09-py3>
Models:
Name Url Status
$MODEL_NAME $MODEL_URI Ready

Triton Management Service Deployment Guide (Latest) 8

An important thing to note is that the Kubernetes services associated with the leases are
only available inside the cluster. To reach it externally, you need to run a
kubectl port-forward command like you did for TMS.

You can now run inference against the server. Again, the particulars of the parameters to
your model will vary.

You should see output like the below:

Other Lease Operations

Now that you have a lease, you can perform many different operations on it. Below are a
few basic ones.

List Leases

You can always run tmsctl lease list to see the state of leases in your TMS installation.

Lease Status

% kubectl port-forward svc/$TRITON_SERVER 8000:8000

% curl -X POST -H "Content-Type: application/json"
http://localhost:8000/v2/models/$MODEL_NAME/infer \
--data '{ "inputs": [{"name": "INPUT", "shape": [1], "datatype": "FP32", "data": [10] }]}'

{"model_name":"$MODEL_NAME","model_version":"1","outputs":
[{"name":"OUTPUT","datatype":"FP32","shape":[1],"data":[10.0]}]}

% tmsctl lease list
Lease State Expires Triton
9fd209b1f45f424c914ebc2967a3b591 Valid 2023-10-12T23:39:28 triton-
de245ce9.epauli.svc.cluster.local
Count: 1

Triton Management Service Deployment Guide (Latest) 9

To get detailed information about a lease, run tmsctl lease status .

Renew

Your TMS installation will be configured with a default duration for leases. After that time
elapses, TMS will automatically release the lease. If you still need it, you can run
tmsctl lease renew to renew the lease.

Create a Custom Lease Name

In the section above where you ran inference, you had to use the name of the Triton
instance in the URL. You can create additional names for a lease, which you can use to

% tmsctl lease status $LEASE_ID
Lease 9fd209b1f45f424c914ebc2967a3b591
State: Valid
Expires: 2023-10-12T23:39:28Z
Triton: triton-de245ce9.yournamespace.svc.cluster.local
<nvcr.io/nvidia/tritonserver:23.09-py3>
Readied: 2023-10-12T23:17:19Z
Models:
Name Url Status
$MODEL_NAME $MODEL_URI Ready
Events:
Type Source Age Message
Status Triton Manager 0s Creating Triton deployment.
Status Triton Manager 4s Triton deployment ready.
Status Triton Sidecar 5s identity cached; model size: 1930.
Status Triton Sidecar 7s identity is ready.
Status Lease Provider 9s Lease ready.
Status Lease Service 8m Lease renewed by request.
Status Lease Service 12m Lease renewed by request.

% tmsctl lease renew $LEASE_ID
Renewed lease 9fd209b1f45f424c914ebc2967a3b591 [Valid]
Expires: 2023-10-12T23:34:44

Triton Management Service Deployment Guide (Latest) 10

run inference. You can use this feature to provide more meaningful names to your Triton
instances, as well as move the name from one lease to another so you can update your
models without changing the URL your application uses.

To be able to use the name myname to refer to your lease, run the below.

You can now run inference using the myname hostname. You can still use the name of
the Triton server as well.

To test the new name, kill your previous kubectl port-forward command, and run a new
one. This time, use myname instead of the name previously provided by TMS.

Releasing the Lease

When you are done using a lease, you can release all resources associated with it by
running tmsctl lease release .

% tmsctl lease name create myname $LEASE_ID
Lease name "myname".
Target lease: $LEASE_ID

% kubectl port-forward svc/myname 8000:8000
Forwarding from 127.0.0.1:8000 -> 8000
Forwarding from [::1]:8000 -> 8000

% curl -X POST -H "Content-Type: application/json"
http://localhost:8000/v2/models/$MODEL_NAME/infer \
--data '{ "inputs": [{"name": "INPUT", "shape": [1], "datatype": "FP32", "data": [10] }]}'

% tmsctl lease release $LEASE_ID
Lease $LEASE_ID
State: Released

Triton Management Service Deployment Guide (Latest) 11

TMS Minikube Quickstart
Guide

In this quickstart guide, we’ll set up a single-node Kubernetes cluster with minikube and
install TMS onto it for development and testing. We’ll also create an NFS model repository
on our host machine to load our models from.

The quickstart guide was written for an Ubuntu Linux machine with the bash shell – you
may need to make some modifications depending on your dev environment.

Prerequisites

Docker

NGC CLI

Root access to your server

(Optional) A CUDA capable GPU and NVIDIA GPU Drivers, if deploying GPU models

Create minikube cluster

In order to deploy TMS, we need to have a Kubernetes cluster available to us. TMS works
with a wide variety of Kubernetes flavors – in this guide we’ll be using minikube, which
makes it easy to deploy a single-node cluster for development and testing. If you already
have a Kubernetes cluster available to you, you might not need to go through these
steps.

Attention

Let’s give readers a helpful hint!

https://docs.docker.com/engine/install/
https://ngc.nvidia.com/setup/installers/cli

Triton Management Service Deployment Guide (Latest) 12

1. Install minikube

2. Install kubectl

3. Install Helm

4. Start minikube

Note

Note: Installation instructions for third party components are
included in this guide for convenience, but we recommend looking at
each tool’s linked documentation for the most up-to-date
information.

curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube_latest_amd64
sudo dpkg -i minikube_latest_amd64.deb

sudo apt-get update
sudo apt-get install -y ca-certificates curl
sudo curl -fsSLo /etc/apt/keyrings/Kubernetes-archive-keyring.gpg
https://dl.k8s.io/apt/doc/apt-key.gpg
echo "deb [signed-by=/etc/apt/keyrings/Kubernetes-archive-keyring.gpg]
https://apt.Kubernetes.io/ Kubernetes-xenial main" | sudo tee
/etc/apt/sources.list.d/Kubernetes.list
sudo apt-get update
sudo apt-get install -y kubectl

curl -fsSL -o get_helm.sh
https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3
chmod 700 get_helm.sh
./get_helm.sh

https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://helm.sh/docs/intro/install/

Triton Management Service Deployment Guide (Latest) 13

Create Model Repository

Our next step is to create and fill our model repository to hold the model artifacts that
TMS will deploy. Several different kinds of model repositories are available – see the
model repository documentation for details.

In this guide, we’ll cover two different kinds of model repositories – NFS and HTTP. You’ll
only need to create one model repository to use TMS. In either case, we’ll need to
download the models onto our dev machine.

You should now have the following directory structure at ./model_repository :

minikube start

Note

In this example, we’re using the image recognition model from the
Triton quickstart guide.

mkdir -p model_repository/densenet_onnx/1
curl
https://contentmamluswest001.blob.core.windows.net/content/14b2744cf8d6418c87ff
1.2.onnx \
-o model_repository/densenet_onnx/1/model.onnx
curl https://raw.githubusercontent.com/triton-inference-
server/server/main/docs/examples/model_repository/densenet_onnx/config.pbtxt \
-o model_repository/densenet_onnx/config.pbtxt
curl https://raw.githubusercontent.com/triton-inference-
server/server/main/docs/examples/model_repository/densenet_onnx/densenet_labels
\
-o model_repository/densenet_onnx/densenet_labels.txt

https://docs.nvidia.com/model-repository.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/getting_started/quickstart.html

Triton Management Service Deployment Guide (Latest) 14

HTTP Model Repository

To serve a model repository over HTTP, all we need to do is create a zip file for each
model and run an HTTP server.

1. Zip model

2. Serve over HTTP. In a separate terminal, run the following

NFS Model Repository

NFS Model repositories for TMS have the same structure as Triton model repositories.
You can check out the Triton documentation to learn more.

1. Move model repository to directory for sharing

model_repository/
└── densenet_onnx
├── 1
│ └── model.onnx
├── config.pbtxt
└── densenet_labels.txt

cd model_repository
zip -r densenet_onnx densenet_onnx

Note

You can use any HTTP File server. Python’s http.server defaults
to port 8000.

python -m http.server --directory .

https://docs.nvidia.com/deeplearnitng/triton-inference-server/user-guide/docs/user_guide/model_repository.html

Triton Management Service Deployment Guide (Latest) 15

2. Enable NFS

3. Export NFS Share

1. Add the following line to the file /etc/exports :

2. Then, execute the following command

4. Create Kubernetes storage resources. We’ll need a PersistentVolume to expose
our NFS share to the cluster, and a PersistentVolumeClaim to allow Triton pods to
mount it.

sudo cp -r model_repository /srv/model_repository

sudo apt install nfs-kernel-server
sudo systemctl start nfs-kernel-server.service

/srv/model_repository *(rw,sync,no_subtree_check)

sudo exportfs -arv

my_nfs_server = <nfs server IP address>

kubectl apply -f - <<EOF
apiVersion: v1
kind: PersistentVolume
metadata:
name: repo0
spec:
capacity:
storage: 2Gi
accessModes:
- ReadWriteMany
nfs:

Triton Management Service Deployment Guide (Latest) 16

Deploy TMS

TMS is deployed with a Helm chart. To deploy it, we’ll need to install Helm, configure
access to the chart on NGC, and modify the deployment values.

You’ll need your NGC API Key, which can be found here.

1. Add TMS Helm repository

server: $my_nfs_server
path: "/srv/model_repository"
mountOptions:
- nfsvers=4.2
EOF

kubectl apply -f - <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: repo0-claim
spec:
accessModes:
- ReadWriteMany
storageClassName: ""
resources:
requests:
storage: 1Gi
volumeName: repo0
EOF

export NGC_CLI_API_KEY=<your key>

helm repo add tms-helm https://helm.ngc.nvidia.com/nvaie --
username=\$oauthtoken --password=$NGC_CLI_API_KEY

https://ngc.nvidia.com/setup/api-key

Triton Management Service Deployment Guide (Latest) 17

2. Add container pull secret

3. Install TMS. We’ll need to use different deployment parameters depending on the
model repository type.

1. HTTP Model Repository

2. NFS Model Repository

Create Your First Lease

To deploy a model, we need to create a lease with TMS. This lease will include a unique
identifier for the model(s) you want to deploy, along with some associated metadata. See
the tmsctl for all of the available lease options.

1. Download tmsctl . Check the NGC Console to ensure you’re getting the latest
version. tmsctl is the command line tool for managing TMS.

kubectl delete secret ngc-container-pull
kubectl create secret docker-registry ngc-container-pull \
--docker-server=nvcr.io --docker-username='$oauthtoken' --docker-
password=$NGC_CLI_API_KEY

helm install tms tms-helm/triton-management-service \
--set images.secrets={"ngc-container-pull"} \
--set server.apiService.type="NodePort"

helm install tms tms-helm/triton-management-service \
--set images.secrets={"ngc-container-pull"} \
--set server.apiService.type="NodePort" \
--set "server.modelRepositories.volumes[0].repositoryName=modelrepo"
\
--set "server.modelRepositories.volumes[0].volumeClaimName=repo0-
claim"

https://registry.ngc.nvidia.com/orgs/nvaie/resources/triton-management-service-control/version

Triton Management Service Deployment Guide (Latest) 18

2. Set tmsctl target. By doing this, you won’t need to specify the TMS URL in future
commands.

3. Make lease creation request. With this, TMS will download the model you specify
and create a Triton deployment that serves this model. Depending on the kind of
model repository you used, the model URI might be different.

1. HTTP Model Repository

2. NFS Model Repository

ngc registry resource download-version "nvaie/triton-management-service-
control:v1.4.0"
unzip triton-management-service-control_v1.4.0/tmsctl.zip

tms_url=`minikube service tms --url`
./tmsctl target add --force --set-default tms $tms_url

./tmsctl lease create -m
"name=densenet_onnx,uri=http://host.minikube.internal:8000/densenet_on
--triton-resources gpu=0

./tmsctl lease create -m
"name=densenet_onnx,uri=model://modelrepo/densenet_onnx" --triton-
resources gpu=0

Note

Depending on your network speed, this command may time out
due to minikube setting a low threshold for the time it allows for
pulling images. If that occurs, you can pull the images manually

Triton Management Service Deployment Guide (Latest) 19

4. Add lease name

By default, TMS assigns a random URL to the created Triton server. To make it
easier to address the models from other applications, we can choose a specific
name to attach to the lease and use that as part of the URL.

Let’s first get the Lease ID of the lease we just created:

Then use that to add a new name to it:

Now we can use the url test-lease.default.svc.cluster.local:8001 within the cluster
to address this lease. Note that if you installed TMS into a namespace other than
default , you should replace that part of the URL with the namespace you are using.

Make a Triton Request

To simplify the networking, we’ll be making the Triton request from within the
Kubernetes cluster. So

Congrats! You’ve successfully deployed and served a model with TMS!

Clean-up

with minikube ssh docker image pull for the respective
tritonserver and triton-management-sidecar images.

lease_id=`./tmsctl lease list -z | grep -oP 'lease:\K[^\s]+'`

./tmsctl lease name create test-lease $lease_id

kubectl run -it --rm triton-client --image=nvcr.io/nvidia/tritonserver:23.03-py3-sdk

/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION -i grpc
/workspace/images/mug.jpg -u test-lease.default.svc.cluster.local:8001

Triton Management Service Deployment Guide (Latest) 20

To delete the Triton deployments created by TMS, you can use the lease list command
to find all existing leases, and the lease release command to delete them.

To remove TMS you can uninstall with Helm

To tear down your minikube cluster, you can use

tmsctl lease release <lease-id>

helm uninstall tms

minikube stop

Triton Management Service Deployment Guide (Latest) 21

Triton Management Service
Deployment Guide

Triton Management Service (TMS) is a Kubernetes microservice, and expects to be
deployed into a Kubernetes managed cluster. To more easily facilitate its deployment into
your Kubernetes cluster, TMS provides a Helm chart designed to simplify the deployment,
or installation, process.

In order to deploy TMS the helm tool (download) and the TMS Helm chart (download
must be installed on the local system. Additionally, the local user will require cluster
administrator privileges.

TMS Pre-deployment Configuration

Preparing Your Cluster

In order to run TMS, you will need a properly-configured Kubernetes cluster. Depending
on which TMS features you wish to leverage and whether you plan to run inference on
GPUs, you will need to install some additional dependencies over a default installation.

As a baseline, production TMS installations are recommended to have at least two nodes
– one on which to run the API server and database, and one on which to run inference.
Typical deployments will have many nodes on which to run inference. One important
note about the inference nodes is that they need to be able to run large container
images. The default images for Triton can exceed over fourteen gigabytes, so make sure
your cluster is properly configured to handle that (also, be prepared for Triton to take a

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://kubernetes.io/
https://helm.sh/docs/intro/install/
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/helm-charts/triton-management-service

Triton Management Service Deployment Guide (Latest) 22

bit of time the first time it starts on each node, as it can take some time for the image to
transfer).

If you will be running inference on GPUs, you need to ensure that your inference nodes
properly recognize the GPUs and list them as resources. You can check whether this is
the case by running kubectl describe node $NODE_NAME and seeing whether there is
an entry with a key of nvidia.com/gpu in the Capacity and Allocatable sections. If your
cluster is not already properly configured, please see the documentation for the GPU
operator or your cloud service provider.

If your deployment requires the autoscaling feature, please see the autoscaling section
below.

For the specifics about the versions of Kubernetes and other tools with which TMS was
tested, please see the release notes for the version of TMS your are deploying.

Obtaining TMS Helm Chart

The TMS Helm chart can be downloaded from NVIDIA NGC. To do so, use the following
command:

Extracting the values.yaml file from the downloaded chart’s TAR file is easy. To do so,
use the following command:

This will create a values.yaml file the current directory, which can modified to meet
deployment needs.

helm fetch https://helm.ngc.nvidia.com/nvaie/charts/triton-management-service-
1.4.0.tgz --username='$oauthtoken' --password=<YOUR API KEY>

helm show values triton-management-service-1.4.0.tgz > values.yaml

Note

Download TMS Helm Chart from NGC

https://catalog.ngc.nvidia.com/orgs/nvidia/helm-charts/gpu-operator
https://catalog.ngc.nvidia.com/orgs/nvidia/helm-charts/gpu-operator
https://docs.nvidia.com/release-notes.html
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/helm-charts/triton-management-service

Triton Management Service Deployment Guide (Latest) 23

See Helm Chart Values for a listing of the configurable values.

Configuring the API Server Pod

By default, TMS requests minimal CPU and memory resources from Kubernetes to run
the pod containing the API server and database. While this works fine for initial testing of
TMS’s features and for smaller, more stable deployments, it is likely to be insufficient if
many clients are expected to be making concurrent API calls. In that situation, it is highly
recommended that system administrators change the default settings.

To change the default settings, use the configuration options in server.resources in the
values.yaml file. The amount of CPU and memory resources is relatively low compared

to that of the database. For that reason, it is recommended that initially the database be
allocated 75% of the available resources, and the API server the other 25%. Below is a
sample configuration which would do this on a node with 8 CPUs and 16Gi of memory.

Kubernetes Secrets

Setting up secrets in Kubernetes for TMS is fairly straightforward, and we’ll cover the
basics here.

Note that creation of Kubernetes secrets requires sufficient cluster privileges, and
therefore might, if you lack sufficient privileges, require a cluster administrator to create
them on your behalf.

Container Pull Secrets

TMS Helm chart will include any secrets listed under values.yaml#images.secrets . The
default values.yaml file contains an example secret named “ngc-container-pull”.

To create an image-pull secret, use:

resources:
apiServer:
cpu: 2
memory: 4Gi
database:
cpu: 6
memory: 12Gi

https://docs.nvidia.com/helm.html

Triton Management Service Deployment Guide (Latest) 24

Then which ever value was chosen for <secret-name> add to the
values.yaml#images.secrets list.

Configuring Model Repositories

To connect to a model repository, see the model repository page.

Configuring Autoscaling

To enable and configure autoscaling, see the separate autoscaling configuration guide.

Configuring Triton Containers

TMS allows the TMS administrator to configure some aspect of the containers that will be
created for Triton instances. These can be configured via the top-level triton object in
values.yaml .

Currently, only resource constraints are specified in this section. These are all listed
under resources . TMS admins may specify both the default resources that Triton
containers will get, as well as the limits.maximum values that users may request on a
per-lease basis.

A sample configuration is shown below.

kubectl create secret docker-registry <secret-name> --docker-server=<docker-
server-urn> --docker-username=<username> --docker-password=<password>

triton:
resources:
default:
cpu: 2
gpu: 1
systemMemory: 4Gi
sharedMemory: 256Mi
limits:
minimum:
cpu: 1

https://docs.nvidia.com/model-repository.html
https://docs.nvidia.com/autoscaling.html

Triton Management Service Deployment Guide (Latest) 25

The fields in both default , minimum and maximum sections are defined as follows.

Each value in the maximum section must be at least as large as the default and
minimum value.

Each value in the minimum section must be smaller than the default and maximum
value.

cpu : The number of whole or factional CPUs assigned to Triton. Can be specified
either a number of cores (e.g. 4), or a number followed by m , which represents
milli-CPUs (e.g. 1500m).

Minimum value: 1 (or 1000m).

Default: 2

gpu : The number of whole GPUs assigned to Triton. Must be a whole number –
GPUs cannot be fractionally assigned.

Minimum value: 0

Default: 1

repositorySize : The amount of disk space allocated for Triton model repository, as
a number plus units (e.g. 4Gi).

Units allowed: Mi , Gi , Ti

gpu: 1
systemMemory: 1Gi
sharedMemory: 128Mi
maximum:
cpu: 4
gpu: 2
systemMemory: 8Gi
sharedMemory: 512Mi

Triton Management Service Deployment Guide (Latest) 26

Minimum value: 256Mi

Default: 2Gi

systemMemory : The amount of system memory, as a number plus units (e.g. 4Gi
).

Units allowed: Ki , Mi , Gi , Ti

Minimum value: 256Mi , and at least 128Mi more than sharedMemory .

Default: 4Gi

sharedMemory : The amount of shared memory, as number plus units (same units
as memory).

Minimum value: 32Mi

Default: 256Mi

Note: Some backends (e.g. PyTorch) allow the user to use shared memory to
allocate tensors.

If you plan on using this, make sure you set a higher value.

Configuring Persisted Database

To enable and configure TMS to persist database contents, a volume claim bounded to a
sizeable kuberenetes persistent volume must be provided to
values.yaml#server.databaseStorage.volumeClaimName .

In the case of server failure or restart, TMS will be able to reload the contents of the
database from this volume.

It should be noted that server performance can be affected by slow or unreliable storage
solutions used for the persisted volume.

TMS Deployment Using Helm

Triton Management Service Deployment Guide (Latest) 27

Assuming you’ve followed the steps above, and downloaded the TMS Helm chart,
exported its values.yaml file, and modified it as necessary, use the following command
to install (aka deploy) TMS:

Security Considerations

The Kubernetes cluster where TMS is installed should be properly secured according to
best practices and the security posture of your organization.

Any additional, optional services connected to TMS such as Prometheus and Prometheus
adapter should also be secured. We recommend the cluster administrator properly
secure access to any S3 or other external model repositories which TMS will utilize. We
reccomend leverating encryption in transit and at rest, scoping access to cluster
resources following the principle of least privilege, as well as configuring audit logging for
your cluster.

TMS default configuration does not allow connections from outside of the Kubernetes
cluster. The user assumes responsibility for securing any external connections when
changing the default configuration values.

Useful Links & Additional Resources

NVIDIA GPU Cloud

Kubernetes

Secrets

Helm

Download & Installation

Commands

Charts

Triton User Guide

helm install <name-of-tms-installation> -f values.yaml triton-management-service-
1.0.tgz

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://ngc.nvidia.com/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://helm.sh/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/helm/
https://helm.sh/docs/topics/charts/
https://github.com/triton-inference-server/server/blob/main/docs/README.md

Triton Management Service Deployment Guide (Latest) 28

Model Repositories

Model repositories hold the model artifacts that will be loaded into and served by the
deployed Triton Inference Servers. Model repositories for Triton Management Service are
similar in structure and content to Triton Inference Server model repositories, but there
are different options and configurations for the available locations.

In general, model repositories are configured by specifying the remote location of the
repository (where the method of specifying the location is dependent on the type of
repository) as well as a Repository Name when you deploy TMS. TMS operations requiring
references to the model repository (i.e. lease creation requests) will use the configured
Repository Names. Several different types of model repository are available.

HTTP(S)

TMS Configuration

HTTP(S) model repositories are not required to be pre-specified in the TMS values.yaml
file. However, you can associate Kubernetes Secret with a particular HTTP url in the
values.yaml file, in which case TMS will provide the contents of the secret in the
Authorization request header:

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

values.yaml
server:
modelRepositories:
https:

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://kubernetes.io/docs/concepts/configuration/secret/

Triton Management Service Deployment Guide (Latest) 29

The default values.yaml file contains an example secret named “ngc-model-pull”.

The targetUri is used to determine which secret is best suited to be used to download a
given model based on the model’s URN. URN matching is broken up into two parts:

1. Match the DNS label right to left, or absolute match of an IP Address. For example:
models.company.com would match cdn.models.company.com , but would not

match models.cdn.company.com .

2. Match the path portion of URN from left-to-right. For example:
internal-cdn/repository would match internal-cdn/repository/ai_models , but

would not match internal-cdn/ai_models/repository .

To create a model-pull secret, use:

Then which ever value was chosen for <secret-name> add to the
values.yaml#server.modelRepositories.https list with the corresponding targetUri

value.

Setting up the Repository

Models in HTTP(S) repositories should be zipped versions of the directories in a Triton
Model Repository, served by some kind of web server and accessible through HTTP GET
requests.

For example, if the triton model repository is structured as follows:

- secretName: Name of the Kubernetes secret to read and provide as a
Authorization header for download requests.
targetUri: URL of the remote web-sever in \<domain_label_or_ip_address\>/\<path\>
format, used to determine if secrets apply to a model request or not.

kubectl create secret generic <secret-name> --from-file <secret-name>

model_repository/
└── my_model
├── 1

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html#model-files
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html#model-files

Triton Management Service Deployment Guide (Latest) 30

Then you should serve a file my_model.zip that contains one of the following file
layouts:

1.

2.

The my_model.zip file – and any other zip files with a similar structure – can be served
by a wide variety of web server. One approach is to use the http.server module in the
Python standard library. In a directory containing the zip file, execute the command

This will serve the model with a URI http://localhost:8000/my_models.zip .

│ └── model.onnx
└── config.pbtxt

$ unzip -l my_model.zip
Archive: my_model.zip
Length Date Time Name
--------- ---------- ----- ----
0 2022-04-28 22:27 1/
356 2022-04-28 22:27 1/model.onnx
59 2022-06-01 21:12 config.pbtxt
--------- -------
415 3 files

$ unzip -l my_model.zip
Archive: my_model.zip
Length Date Time Name
--------- ---------- ----- ----
0 2022-07-08 00:23 my_model/
59 2022-06-01 21:12 my_model/config.pbtxt
0 2022-04-28 22:27 my_model/1/
356 2022-04-28 22:27 my_model/1/model.onnx
--------- -------
415 4 files

python -m http.server --directory .

Triton Management Service Deployment Guide (Latest) 31

Model URI

To refer to a model in an HTTP(S) repository, use the full URL of the server. For example:

Persistent Volume Claim

TMS Configuration

TMS enables TMS administrators to provide model repositories from Kubernetes
Persistent Volume Claims for requested Triton instances.

To enable requested Triton instances to load models from a persistent volume claim,
provide the name of the particular Kubernetes persistent volume claim in an entry under
values.yaml#server.modelRepositories.volumes , along with a valid name for the

repository. The Persistent Volume Claim will then be mounted as a volume onto any
Triton pod launched by TMS.

Setting up the Repository

Persistent Volumes in Kubernetes are cluster resources that can be consumed – like a
node, while a Persistent Volume Claim is particular request to use that resource – like a
pod. Since model repositories in TMS are used by multiple Triton instances, you’ll need to
create a specific PVC for your repository that can then be mounted onto multiple pods.

tmsctl lease create -t ${tms_address} -m
"name=my_model,uri=http://www.example.com/models/my_model.zip"

values.yaml
server:
modelRepositories:
volumes:
Name used to reference this model repository as part of lease acquisition.
May contain only lowercase alphanumeric characters (without spaces, hyphens `-` are
permitted).
- repositoryName: volume-models
Kubernetes persistent volume claim (pvc) used to fetch models.
volumeClaimName: example-volume-claim

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Triton Management Service Deployment Guide (Latest) 32

One way to set up the repository is to create the model repository outside of kubernetes
in a piece of storage that can be consumed as a Persistent Volume. Then, you can define
that piece of storage as a Persistent Volume, and then attach a Persistent Volume Claim
to it that allows kubernetes pods to consume that particular piece of storage. The NFS
Model Repository path in the quickstart guide gives an example of this.

Persistent Volume Claims are generally exposed directly as file systems, so to create a
model repository you can use the same structure as a Triton Inference Server model
repositories – for example:

See the following resources for creating Persistent Volumes and Claims backed by various
types of storage:

NFS: TMS Quickstart Guide

AWS Elastic Block Storage: AWS Documentation. Only supported on Amazon EKS
clusters.

Azure Blob Storage: Azure Documentation. Only supported on Azure Kubernetes
Service clusters.

Azure Files: Azure Documentation. Only supported on Azure Kubernetes Service
clusters.

Model URI

To refer to a model in a PVC repository, prefix the model name with model:// and the
name of the model repository configured in the values.yaml file. For example:

model_repository/
└── my_model
├── 1
│ └── model.onnx
└── config.pbtxt

tmsctl lease create -t ${tms_address} -m "name=my_model,uri=model://volume-
models/my_model"

https://docs.nvidia.com/quickstart-guides/minikube.html#nfs-model-repository
https://docs.nvidia.com/quickstart-guides/minikube.html#nfs-model-repository
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_repository.html
https://docs.nvidia.com/quickstart-guides/minikube.html
https://repost.aws/knowledge-center/eks-persistent-storage
https://aws.amazon.com/eks/
https://learn.microsoft.com/en-us/azure/aks/azure-csi-blob-storage-provision
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://learn.microsoft.com/en-us/azure/aks/azure-csi-files-storage-provision
https://azure.microsoft.com/en-us/products/kubernetes-service

Triton Management Service Deployment Guide (Latest) 33

S3 Object Store

TMS Configuration

To configure access to an S3 compatible object store, you must specify a Repository
Name, a Bucket Name, and an S3 service Endpoint.

If your S3 Object Store is an actual AWS S3 bucket, you can provide the AWS Region of
your bucket instead of the explicit endpoint

#values.yaml
server:
modelRepositories:
s3:
Name used to reference this model repository as part of lease acquisition.
May contain only lowercase alphanumeric characters (without spaces, hyphens `-` are
permitted).
- repositoryName: repo0
Name of the S3 bucket used to fetch models.
bucketName: tms-models
Service URL of the S3 bucket.
If both 'endpoint' and 'awsRegion' fields are specified, TMS will default to using the
value from 'endpoint'.
Must be a valid URL designating to an existing endpoint (eg. "http:/s3.us-west-
2.amazonaws.com" or "http:/play.min.io:9000").
Refer here to learn more:
https://docs.aws.amazon.com/general/latest/gr/s3.html#amazon_s3_website_endpoints.
endpoint: "https://s3.us-west-2.amazonaws.com"

#values.yaml
server:
modelRepositories:
s3:
- repositoryName: repo0
bucketName: tms-models
Service region code of AWS S3 Bucket.

Triton Management Service Deployment Guide (Latest) 34

If your model repository is in a private S3 bucket that requires access credentials, you
have two options.

First, you can create a Kubernetes Secrets containing an access key ID and one containing
a secret access key that represent the authority to list and retrieve the objects in the
bucket. Then, you specify those secrets in the values.yaml file:

The other option is applicable when you are using AWS S3 buckets and when TMS is to be
deployed on EKS. Instead of explicitly providing the key ID and secret key, you must
associate an AWS IAM role which has s3:ListBucket and s3:GetObject permissions for

Field is for S3 buckets exclusively deployed through AWS.
Non-AWS S3 Buckets should be configured through the `endpoint` field.
Must be a valid code designating to existing AWS region (eg. "us-west-2").
Refer here to learn more:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-
zones.html).
awsRegion: "us-west-2"

#values.yaml
server:
modelRepositories:
S3:
- repositoryName: repo0
bucketName: tms-models
endpoint: "https://s3.us-west-2.amazonaws.com"
Name of the Kubernetes secret to read and provide as the access key ID to download
objects from the S3 bucket.
Optional value when IAM or default AWS environment variables are not used for
authorizing TMS to read from an S3 bucket.
accessKey: "access-key-secret-name"
Name of the Kubernetes secret containing the secret access key to read from the S3
bucket
Optional value when IAM or default AWS environment variables are not used for
authorizing TMS to read from an S3 bucket.
secretKey: "secret-key-secret-name"

https://kubernetes.io/docs/concepts/configuration/secret/

Triton Management Service Deployment Guide (Latest) 35

that bucket with the TMS kubernetes service account. You can do this by providing the
Amazon Resource Name of that IAM role in the values.yaml file.

You should also ensure that the role you provide here has a trust policy that allows the
tms-triton service account to assume that role. For example, you can create this IAM

role with the following eksctl command:

Please see the documentation on Configuring a Kubernetes service account to assume an
IAM role to learn more.

Setting up the Repository

S3 model repositories should be set organized into folders that are similar to the
following structure:

All model folders (like the my_model folder above) should either be at the top level of
your bucket, or contained in a single parent directory. If your model repository is not at

#values.yaml
server:
security:
aws:
AWS IAM role used read models S3 buckets configured in `modelRepositories.S3`.
role: arn:aws:iam::00000000:role/Tms-s3-role

eksctl create iamserviceaccount --cluster tms-cluster --name=tms-server --attach-
policy-arn=arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess --role-only --role-
name=Tms-s3-role --approve

tms-models #bucket name
└── my_model #S3 folder
├── 1
│ └── model.onnx
└── config.pbtxt

https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

Triton Management Service Deployment Guide (Latest) 36

the top level folder of your bucket you should include the full path when referring to the
model in lease commands.

You should also ensure that you have an IAM role available that has access to the bucket
(and folder) containing the models or that the bucket is publicly accessible.

Model URI

To refer to a model in an S3 repository, prefix the model name with model:// and the
name of the model repository configured in the values.yaml file. TMS will internally
resolve this to the correct S3 url. For example:

tmsctl lease create -t ${tms_address} -m "name=my_model,uri=model://aws-
models/my_model"

Triton Management Service Deployment Guide (Latest) 37

Triton Image Allowlist

Overview

The Triton image allowlist is a management feature used to controls which Triton images
can be used to created Triton pools and bespoke Triton instances. This feature gives
administrators some basic controls over which images can and cannot be used when
creating Triton instances. Simply put, if an image is not in the allowlist, it cannot be used
to create a new Triton instance. The Triton allowlist service is used to inspect and modify
the allowlist.

Initially, the allowlist only contains the default Triton image, as configured during
installation. This can be seen by running tmsctl allowlist list . Right after installing TMS, it
should look like this:

In this state, new Triton instances can only be created with
nvcr.io/nvidia/tritonserver:23.09-py3 as the Triton image. For example, trying to use
nvcr.io/nvidia/tritonserver:23.08-py3 will fail.

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

$ tmsctl allowlist list
nvcr.io/nvidia/tritonserver:23.09-py3

$ tmsctl lease create --triton-image nvcr.io/nvidia/tritonserver:23.08-py3 -m
"name=$MODEL_NAME,uri=$MODEL_URI"

Triton Management Service Deployment Guide (Latest) 38

New entries can be added via tmsctl allowlist add .

After running the above, we can create new bespoke Triton instances and Triton pools
specifying nvcr.io/nvidia/tritonserver:23.08-py3 as the image.

Entries can be removed via tmsctl allowlist rm .

fatal: Requested Triton container image ("nvcr.io/nvidia/tritonserver:23.08-py3") is
unreachable or not provided in a supported format. Unreachable container images
either do not exist or require privileges not granted to the server.
(triton_options_bespoke.triton.container_image @ Acquire)

$ tmsctl allowlist add nvcr.io/nvidia/tritonserver:23.08-py3
Added nvcr.io/nvidia/tritonserver:23.08-py3
$ tmsctl allowlist list
nvcr.io/nvidia/tritonserver:23.08-py3
nvcr.io/nvidia/tritonserver:23.09-py3

$ tmsctl lease create --triton-image nvcr.io/nvidia/tritonserver:23.08-py3 -m
"name=$MODEL_NAME,uri=$MODEL_URI"
Lease da21b2c0e68b49ffa8f0f6db0b030128
State: Valid
Expires: 2023-10-18T15:43:53Z
Triton: triton-6d8c9d13.tmsns.svc.cluster.local
<nvcr.io/nvidia/tritonserver:23.08-py3>
Models:
Name Url Status
<model_name> <model_url> Ready

$ tmsctl allowlist rm nvcr.io/nvidia/tritonserver:23.10-py3
Removed nvcr.io/nvidia/tritonserver:23.10-py3
$ tmsctl allowlist list
nvcr.io/nvidia/tritonserver:23.09-py3

Triton Management Service Deployment Guide (Latest) 39

After running the above, any attempts to create new bespoke Tritons or Triton pools
specifying nvcr.io/nvidia/tritonserver:23.08-py3 as the image will fail.

Further details about the individual operations are given below.

Triton Image Allowlist Operations

Following are the list of operations with the Triton Allowlist Service:

1. TritonAllowlist/Append appends a Triton container image to the list containing the
allowed Triton container images.

The server will return success or failure depending on whether the requested image
could be added to the allowlist.

Attempting to add images which are already present in the allowlist will not result in
any changes.

2. TritonAllowlist/List lists the allowed Triton container images.

This RPC begins streaming a response once the request has been received.

Each response message contains a Triton image that belongs to the list.

3. TritonAllowlist/Remove removes a Triton container image from the list containing
the allowed Triton container images.

The server will return success or failure depending on whether the image could be
removed from the allowlist.

Triton Management Service Deployment Guide (Latest) 40

Leases

Overview

A lease is the primary organizational unit used by TMS. Leases allow users to describe
which models to load, as well as control their lifecycle. Leases provide a convenient
means of describing the Triton instance where the models should be loaded, without
having to manage the Triton instance directly. Additionally, leases allow you to configure
features like autoscaling or sharing Triton servers.

A lease consists of the following information:

A model or ensemble of models that will be loaded together in a Triton instance.

A description of the Triton instance where to load the models. This can be either:

A bespoke Triton instance which will be created just for this lease and will not
be shared. Bespoke Triton instances support autoscaling.

The name of a pre-existing [Triton pool](./triton-pools.md], where the lease
may share a Triton instance with other leases.

Information about the duration of the lease, including whether it supports
automatic renewal based on usage.

For example, a simple lease might have the following characteristics:

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://docs.nvidia.com/autoscaling.html

Triton Management Service Deployment Guide (Latest) 41

It consists of a single model named model_A , along with the URI from which to
fetch it.

Uses a bespoke Triton instance with the default configuration as set by the system
administrator.

Lasts for the default duration as set by the system administrator.

A more complex lease might look as follows:

It consists of an ensemble of models. The models are named model_A , model_B ,
and model_C , and each is specified along with the URI from which to fetch it. These
models will be loaded in the specified order to ensure the ensemble works properly.

It describes a bespoke Triton instance on which to run with custom resource
requirements:

The Triton instance supports autoscaling up to four copies, scaling up when
inference queue time exceeds 200ms.

Each Triton requires 2 GPUs, 4 CPUs, and 32 GB of main memory.

The lease should remain active for 8 hours, and automatically renew for another
four hours so long as it has served inference requests in the 30 minutes before it
would expire.

The exact lifecycle of a lease will vary depending on the application requirements, but
they will all follow this general outline:

Create a lease via a Lease.Acquire() API call and get the URL of the Triton instance
where the models were loaded.

Run inference against the models in the lease using the Triton inference API.

Potentially renew the lease via Lease.Rewnew() calls, or let it automatically renew if
it is configured to renew while still being used.

Either manually release the lease via a Lease.Release() call, or let it expire. Either
way, this will either free the associated Triton instance for bespoke leases or mark
the resources as available for leases running on pooled Triton instances.

Triton Management Service Deployment Guide (Latest) 42

For more details on the available operations, see the section below. There is also a
tutorial that will guide you through the basics of of working with leases.

Lease Operations

The Lease Service exposes a number of RPC end-points: Acquire , Release , Renew ,
and Status . The Triton Allowlist Service exposes the following RPC end-points: Append ,
List and Remove . Each of the end-point accept a single structured request and

respond with a structured response.

The expected order of operations with regards to the Lease Service are as follows:

1. Lease/Acquire to create a new lease with a specified set of AI models.

Assuming the request is successful, the response will include a unique identifier and
an expiration date for the new lease.

All models in a lease acquire request are considered bundled. They cannot be
loaded or unloaded separately. Additionally, all models in a lease will be loaded into
the same instance of Triton Inference Server. If it is impossible to do so (e.g.
insufficient memory), then the lease will be marked as invalid and any models
successfully loaded models will be unloaded after the first model load failure is
detected. TMS does not support partially loaded leases.

A lease can created as part of a Triton Pool or using a bespoke Triton instance. This
is determined by the use of the triton_options value in the gRPC API.

This RPC begins streaming a response once the request has been received. The
server will send a series of model status updates to the caller to show continued

Note

The gRPC protocol supports streaming requests and/or responses.
This means that one or both sides of the interaction can stream data
to the other. Functionally, this allows the server to being sending
response data before the client has finished sending request data.

https://docs.nvidia.com/basics-tutorial.html
https://docs.nvidia.com/triton-pools.html
https://docs.nvidia.com/grpc-api-package.html

Triton Management Service Deployment Guide (Latest) 43

progress as the lease’s models are deployed. Model status updates will be sparse
(not include status of every model every time).

The final response from the server will include status for every model in the request
as well as data for the lease itself.

2. Lease/Renew to extend the lease’s duration. Once a lease is renewed it assigned a
new expiration date.

Once a lease has expired, it is no longer valid and any associated models will be
unloaded and become unavailable. Any resources consumed by the lease are
returned to the hosting Triton Inference Server to be used by future leases. In the
case that a Triton Inference Server instance becomes unnecessary, it will be deleted
and its resources returned to the cluster.

3. Lease/Status to get the current status of a specific lease.

Requesting the status of an expired or released lease is a valid operation.

4. Lease/Release to terminate a lease before its expiration is reached.

Once a lease has been released, it is no longer valid and any associated models will
be unloaded and become unavailable. Any resources consumed by the lease are
returned to the hosting Triton Inference Server to be used by future leases. In the
case that a Triton Inference Server instance becomes unnecessary, it will be deleted
and its resources returned to the cluster.

Triton Management Service Deployment Guide (Latest) 44

Autoscaling Leases

TMS has the capability to automatically scale the number of Triton instances associated
with a lease based on utilization. This means that as a lease becomes heavily utilized,
TMS can transparently add more Triton instances to service inference requests, and as
demand decreases, automatically remove unneeded instances.

This document covers what TMS administrators must do to enable this feature and how
TMS users can leverage it to speed up inference. This include:

Installing necessary third-party tools.

Configuring TMS to enable autoscaling, as well as parameters that can be used to
control it.

Enabling autoscaling for a lease.

Installing Prerequisites

To make autoscaling work, TMS needs to be able to collect performance metrics and then
make them available to Kubernetes for determining when to automatically scale leases.
This requires two third-party tools to be installed in Kubernetes: Prometheus and the
Prometheus Metrics Adapter. This guide will cover the basics of installation and
configuration, but ultimately, the TMS administrator should follow the latest instructions
for installing, configuring, and securing these tools as provided by the developers of the
tools. Luckily, there are Helm charts available for both of these tools, so a basic
installation in Kubernetes for testing purposes is fairly straight-forward.

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://prometheus.io/
https://github.com/kubernetes-sigs/prometheus-adapter

Triton Management Service Deployment Guide (Latest) 45

Note: If your cluster is already using Prometheus and the Prometheus metrics adapter
for other purposes, you do not need to install a separate copy of these for TMS. So long
as the installed copy can monitor cods in the namespace where you’re installing TMS,
things should just work.

Installing Prometheus

For the most up-to-date instructions for installing Prometheus, see their installation
guide. As noted above, for production clusters you should work with your system
administrator to make sure you properly configure and secure Prometheus. At least for
testing purposes, Prometheus can be easily installed in Kubernetes via a Helm chart
available on Github. Note that the this Helm chart is currently in a beta state and is
subject to change.

To install Prometheus via Helm, you can simply do this:

Verify that the installation was successful by running kubectl get pods and verify that
the Prometheus pods are running and healthy (they may take a bit of time to start).

Installing the Prometheus Metrics Adapter

Once Prometheus is installed, you can proceed to install the Prometheus metrics
adapter. Just like with installing Prometheus, in production clusters this should be done
by or with the help of the system administrators to ensure any security concerns are
properly addressed.

When installing via Helm, the first step is to find the name of the Prometheus service by
running kubectl get svc . If you used the default options above, you should see a service
named prometheus-kube-prometheus-prometheus . If you do not see a service named
prometheus-kube-prometheus-prometheus , double-check if Prometheus was installed

properly, or look to see if an update to the Prometheus Helm chart has changed the
name of the service.

$ TARGET_NAMESPACE = ... # put your namespace name here
$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts
$ helm install -n $TARGET_NAMESPACE prometheus prometheus-community/kube-
prometheus-stack

https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus-community.github.io/helm-charts/
https://prometheus-community.github.io/helm-charts/

Triton Management Service Deployment Guide (Latest) 46

With the name of the Prometheus service, you can now install the Prometheus adapter.

If everything installed successfully, Prometheus should start collecting metrics from the
cluster within a few minutes. You can verify this by getting metrics the Kubernetes
custom metrics API.

Note: if you don’t have jq installed in your system, you can run without it – you’ll just get
all the output in a single line.

You should see output that look like the below. The actual entries don’t matter so long as
there are some entries.

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus-kube-prometheus-prometheus ClusterIP 10.152.183.39 <none>
9090/TCP 6h33m
prometheus-grafana ClusterIP 10.152.183.204 <none> 80/TCP 6h33m
prometheus-kube-prometheus-operator ClusterIP 10.152.183.197 <none> 443/TCP
6h33m
prometheus-prometheus-node-exporter ClusterIP 10.152.183.154 <none> 9100/TCP
6h33m
prometheus-kube-prometheus-alertmanager ClusterIP 10.152.183.155 <none>
9093/TCP 6h33m
prometheus-kube-state-metrics ClusterIP 10.152.183.117 <none> 8080/TCP 6h33m
alertmanager-operated ClusterIP None <none> 9093/TCP,9094/TCP,9094/UDP
6h33m
prometheus-operated ClusterIP None <none> 9090/TCP 6h33m

$ TARGET_NAMESPACE = ... # put your namespace name here
$ helm install -n $TARGET_NAMESPACE prometheus-adapter prometheus-
community/prometheus-adapter --set=prometheus.url=http://prometheus-kube-
prometheus-prometheus

$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1 | jq | less

Triton Management Service Deployment Guide (Latest) 47

Server Configuration

Since it requires the installation of additional third-party components, lease autoscaling is
disabled by default. To enable it, you must set the appropriate values in values.yaml .
These options are in the server.autoscaling section of the file. The TMS administrator
should set these values based on the hardware available in the cluster, the expected
workloads for this particular installation, and the configuration options of Prometheus.

{
"kind": "APIResourceList",
"apiVersion": "v1",
"groupVersion": "custom.metrics.k8s.io/v1beta1",
"resources": [
{
"name": "services/node_memory_KReclaimable_bytes",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
},
{
"name":
"services/prometheus_remote_storage_string_interner_zero_reference_releases",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [
"get"
]
}
]
}

Triton Management Service Deployment Guide (Latest) 48

server:
autoscaling:
enable: false
replicas:
default:
minimum: 1
maximum: 5
limits:
maximum: 10
minimum:
lowerBound: 1
upperBound: 2
metrics:
cpuUtilization:
allowed: false
enabled: false
threshold:
default: 90
minimum: 50
maximum: 100
gpuUtilization:
allowed: false
enabled: false
threshold:
default: 90
minimum: 50
maximum: 100
queueTime:
allowed: false
enabled: false
threshold:
default: 10000
minimum: 10000
maximum: 0
prometheus:

Triton Management Service Deployment Guide (Latest) 49

The options in this section are as follows:

enable (default false): Controls whether autoscaling is enabled. Valid values are
true and false .

replicas (dictionary): Controls the number of replicas that will be allowed for
leases. See values.yaml for further details on all the options.

metrics (dictionary): A set of metrics which can be used for autoscaling. This is
defined in further detail later.

prometheus (dictionary): Options which specify how Prometheus finds Kubernetes
objects created by TMS that are used in autoscaling. These are described further
detail below.

In the above, if server.autoscaling.enable is switched to true , the following would
happen:

If a user does not request autoscaling for a lease, their lease will not automatically
scale.

If a user requests autoscaling for a lease but does not specify a maximum number
of replicas, the will will have at most 5 replicas (
server.autoscaling.replicas.default.maximum).

If a user requests autoscaling for a lease and they specify the maximum number of
replicas, they can request up to 10 replicas (
server.autoscaling.replicas.limits.maximum).

The section on requesting autoscaling leases describes how to make these requests.

Configuring Autoscaling Metrics

podMonitorLabels:
release: prometheus
ruleLabels:
release: prometheus

Triton Management Service Deployment Guide (Latest) 50

The dictionary server.autoscaling.metrics defines a series of metrics on which
autoscaling may trigger. Each metrics consists of a threshold along with a boolean flag
indicating whether or not the metric is configured. Based on this, each metric is used to
calculate a target number of replicas. The largest number is then used. The details of how
each target number is calculated can be found in the Kubernetes documentation.

The metrics are as follows:

cpuUtilization (dictionary): Scale based on high CPU utilization. Values are
expressed as a percentage.

gpuUtilization (dictionary): Scale based on high GPU utilization. Values are
expressed as a percentage.

queueTime (dictionary): Scale based on inference requests spending a long
amount of time in the queue before they are executed. Values are expressed in
microseconds.

Each metric has the following entries:

enable (default false): Whether to enable this metric by default.

allowed (default false): Whether this metric can be enabled on a per-lease bases.

threshold (dictionary): Values that determine when a lease should be scaled up
and down.

threshold.default (integer): the default value if not specified on a per-lease basis.

threshold.minimum (integer): the minimum value allowed when specified on a per-
lease basis.

threshold.maximum (integer): the maximum value allowed when specified on a
per-lease basis.

Configuring Prometheus Objects

When autoscaling is enabled, TMS will create a number of Kubernetes objects related to
Prometheus. For autoscaling to work properly, Prometheus must be able to detect these

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details

Triton Management Service Deployment Guide (Latest) 51

objects. This is configured via the server.autoscaling.prometheus entry in values.yaml .
This object has the following entries:

podMonitorLabels (dictionary): A set of labels which will be added to PodMonitor
objects so that Prometheus can monitor the metrics of the Triton pods. This must
match the value of .spec.podMonitorSelector in your Prometheus configuration.

ruleLables (dictionary): A set of labels which will be added to PrometheusRule
objects so that Prometheus can detect rules used by TMS to define new metrics.
This must match the value of .spec.ruleSelector in your Prometheus configuration.

In addition to the above, if your Prometheus installation has specified values for
.spec.podMonitorNamespaceSelector or .spec.ruleNamespaceSelector , you need to

ensure that the namespace into which you install TMS has matching labels applied to it.

Verifying Autoscaling Leases Are Working Properly

Requesting Autoscaling Leases

On a server that is properly configured, users may request a lease support autoscaling
via the programmatic gRPC API, as well as the tmsctl command-line tool. The
documentation for the API and tools contains complete details of the different flags and
their usage. This section only gives an overview of how to request autoscaling via tmsctl .

To request autoscaling with the default parameters, users just need to add the
--enable-autoscaling flag (below $MODEL_OPTIONS is a stand-in for whatever model

the user wants to load:

To specify the maximum number of replicas, simply use the --autoscaling-max-replicas
option. For example, the below requests a maximum of four replicas.

$ tmscl lease create -m $MODEL_OPTIONS --enable-autoscaling

$ tmscl lease create -m $MODEL_OPTIONS --enable-autoscaling --autoscaling-max-
replicas 4

https://docs.nvidia.com/grpc-api-package.html
https://docs.nvidia.com/tmsctl.html#lease

Triton Management Service Deployment Guide (Latest) 52

In both cases above, the leases will start with a single replica of Triton, and as inference
requests increase, the number of Triton instance for the lease will increase until they
reach their respective maximums.

Troubleshooting

Prometheus has many rules that determine how it searches for different Kubernetes
objects in order to adjust its behavior dynamically. If these don’t match how you
configured TMS, autoscaling will not work properly. The Prometheus documentation
provides detailed information on all the option. This section covers some of the more
common issues.

Symptom: You are not seeing any metrics collected for your Triton pods.

Things to Check:

Make sure that you set .server.autoscaling.prometheus.podMonitorLabels in
values.yaml to match the labels defined by .spec.podMonitorSelector in your

Prometheus installation.

If your Prometheus installation has set .spec.podMonitorNamespaceSelector ,
make sure that your namespace has matching labels (e.g. run
kubectl label ns tms_namespace someLabel=someValue).

Symptom: The metric for autoscaling based on queue time (
tms_avg_request_queue_duration) is not being collected.

Things to Check:

Make sure that you set .server.autoscaling.prometheus.ruleLabels in values.yaml
to match the labels defined by .spec.ruleSelector in your Prometheus installation.

If your Prometheus installation has set .spec.ruleNamespaceSelector , make sure
that your namespace has matching labels (e.g. run
kubectl label ns tms_namespace someLabel=someValue).

https://prometheus-operator.dev/docs/prologue/introduction/

Triton Management Service Deployment Guide (Latest) 53

Triton Pools & Quota Base
Shared Tritons

Triton Pools enable TMS administrators to create a set of Triton instances which can be
shared by any leases created and assigned to the pool. Multiple pools can exist
simultaneously with each pool having its own definition and purpose.

Pool definitions allow for the specification of the container image used to deploy Triton
instances, and the specification of the resources reserved for and assigned assigned to
each TIS instance present in the pool. In addition, a pool definition includes a minimum
and maximum pool size (aka. number of concurrent Triton instances the pool supports),
and a per-instance quota value used by TMS to determine which Triton instances are best
candidates for new leases to be assigned to.

Note: Triton Pools work best in clusters with homogeneous GPUs. TMS does not take GPU SKU
into consideration when determining the capacity of Triton instances.

Triton Pool Options

Name

Triton Pools must be given a name. A pool’s name must be unique among all other
existing pools. A name can be reused once the name’s previous pool has been deleted.
This name is used to identify the pool when creating leases, or interacting with the pool.

Per-Instance Quota

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

Triton Management Service Deployment Guide (Latest) 54

Triton Pools must have a per-instance quota value. The quota value is used to determine
which Triton instances have available “space” for new leases to be assigned to.

The meaning of the units the quota is defined as is determined by the pool’s creator. TMS
applies no specific meaning to the value.

For example, a pool could be created in a cluster with GPUs which all have 40Gi of
memory. The TMS administrator could then decide that each Triton instance should be
assigned a per-instance quota value of 40, and expect that all leases deployed into the
pool specify the amount of GPU memory they require in gigabytes.

In the above case, TMS would only compare a lease’s quota request against any available
quota on Triton instances in the pool. TMS would not inspect Triton or the GPU to
determine the actual amount of available GPU memory. There is no enforcement of
quota values at runtime.

For example, it might be known ahead of time that each Triton instance in a pool is
capable of hosting four leases. Therefore, the pool could be created with a per-instance
quota value of 4, and each lease would specify a quota need value of 1.

In the above case, each unit of per-instance quota is equal to a single “computing slot”
and each lease would consume one, or more, of them.

Instance Limits

Triton Pools are defined with a minimum and maximum number of Triton instances
they’re allowed to create and host. When the minimum value is greater than zero, the
pool will attempt to always have at least that number of Triton instances available.

These limits are used to determine when a pool scales the number of Triton instances
present in the pool. When a lease is created and assigned to the pool and there are no
available Triton instances with sufficient available quota to host the lease, the pool will
attempt to add a new Triton instance only if it has not already reached it maximum
capacity. When a pool has insufficient capacity and cannot add a new Triton instance, any
lease creation attempt will be rejected.

Note: When attempting to create new Triton instances, pools are limited by available cluster
resources.

Triton Management Service Deployment Guide (Latest) 55

Triton Definition

Triton Pool definitions include a definition for each Triton instance in the pool. Triton
definitions include the Triton container image used, the number of logical CPU cores, the
number of GPUs, and the amount of memory reserved and assigned to each Triton
instance created by the pool.

Enforcement of Triton Backend Uniqueness

Triton Pool definitions include an option to not enforce that each Triton instance be
restricted to the Triton backends used by the first lease deployed on it. Enforcement is
enabled by default because the mixing of Triton backends is discouraged due to issues
with memory management.

For example, a Triton instance is deployed with enforcement enabled. The first least
deployed to the instance is an ensemble of two models; the first is a TensorFlow model,
the second is a PyTorch model. The TensorFlow and PyTorch backends will each allocate
as much memory as possible, effectively splitting the available memory between them.

From this point on, because enforcement is enabled, only leases which depend on the
TensorFlow and/or PyTorch backends will be deployed to this Triton instance. When a
second lease is deployed to this Triton instance, it will only contain models with backends
meeting this requirement.

The first time TMS encounters a model, its backend is considered unknown and therefore
cannot be assigned to any existing Triton instance. Once deployed, TMS will learn which
Triton backend the model depends on and will update its record of the Triton instance to
reflect the correct mix of backends active on the instance. Additionally, TMS will record
the Triton backend information of the model such that all future deployments of the
same model will be able to correctly select which Triton instances match the model’s
Triton backend requirements.

When enforcement is disabled, TMS will select Triton instances without taking into
consideration for model backends and which Triton backends are active on instances.
This simplifies instance selection, but incurs the risk of attempting to load a model with a
backend that’s not present on a Triton instance and the instance having insufficient
memory available to the load the model.

Triton Management Service Deployment Guide (Latest) 56

Enabling enforcement is recommended unless extensive testing with a restricted set of
models has been done to ensure Triton instance stability.

Quota Based Shared Triton Leases

Quota based shared Triton (QBST) leases are defined as one or more models with a
specified quota consumption value and assigned to a Triton Pool. The specified quota
consumption value, or quota, is used to determine how the lease’s models will be hosted.
Leases with multiple models will always have all of its models hosted by a single Triton
instance.

Quota

The quota value of a QBST lease defines the amount of “space” or resources the lease
will consume. The units or meaning of the value the quota is defined as is determined by
the pool’s creator. TMS applies no specific meaning to the value.

For example, a Triton Pool might define units in terms of “compute fraction” with each
Triton instance being assigned a denominator value. For this example, we’ll assume each
Triton instance is assigned a quota capacity of 8. Any lease assigned to this pool must
specify what fraction of a while Triton instance the lease will consume. This is done by the
lease’s quota value.

Continuing with the example, lease could be created which expects to consume a quarter
of the capacity of a Triton instance would be assigned a quota value of 2. This lease could
share the Triton instance with any combination of other leases whose quota sum is less
than or equal to 6 (the remaining quota capacity).

It is up to the pool’s administrator to determine the units and meaning of a pool’s quota,
and the measures by which a lease is expected to determine the amount quota it will
consume.

TMS uses lease and pool quota values to determine how and where to place leases within
a pool. TMS does not enforce any kind of resource utilization after a lease has been
assigned to a Triton instance.

Extending the example above, a lease creator specifies that their lease consumes 2 quota
units. In actuality the lease consumes 8 quota units (i.e. an entire Triton instance).
Because the lease consumes significantly more resources than advertised, several of the

Triton Management Service Deployment Guide (Latest) 57

loaded models, including models loaded for other leases, experience significant
performance degradation and out of memory errors.

It is important to test the quota consumption values of leases before creating them in a
production environment. Undervaluing leases can lead to performance degradation, out
of memory errors, and Triton instance instability. Overvaluing leases, while often safer,
can leave hardware under utilized and potentially cause capacity issues due external
processes being forced to wait for available AI cycles.

Triton Management Service Deployment Guide (Latest) 58

TMS Metrics

TMS provides a metrics endpoint from which Prometheus formatted runtime metrics can
be retrieved.

The following Helm chart options can be used to affect how metrics are reported:

server.metrics.enabled can be used to enable/disable metrics endpoint.

server.metrics.reportingWindow can be used to configure the reporting window
for metrics endpoint.

server.metrics.minimumVisibility can be used to configure the which metrics are
collected and reported.

By default, only high visibility are reported when metrics reporting is enabled.

Standard (high visibility) metrics are reported for each of the server’s endpoints.

Metric Name Description

tms_error_count Number of errored requests during the reporting window.

tms_duration_avg_seco
nds

Average duration of successful requests during the reporting
window.

tms_grpc_request_coun
t

Number of gRPC requests made during the reporting window.

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://prometheus.io/

Triton Management Service Deployment Guide (Latest) 59

Additional metrics are available by adjusting the minimum-visibility Helm chart value.
These metrics are self-describing as part of the Prometheus formatted output.

Triton Management Service Deployment Guide (Latest) 60

TMS GRPC API Package

With every release of Triton Management Service a zip-compressed archive of the gRPC
IDL files is provided. These packages can be downloaded from NVIDIA’s NGC Catalog.

Versions

It is important to use the version of the TMS gRPC API that matches the version of the
TMS Server being communicated with. NVIDIA provides no guarantee of
forward/backward compatibility for the programmatic interfaces of beta software. The
TMS interface is still in development and expected to fluctuate.

Using the Package

1. Download the gRPC API Package, either using the web interface (provided above) or
using the NGC CLI with the following command
ngc registry resource download-version "nvaie/triton-management-service_grpc-
api-bundle:1.4.0"

. Notice that the desired version is the last component of the command, and can be
adjusted to match the version of TMS as necessary.

2. Extract the contents of the downloaded package.

Linux

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

$ unzip ./files.zip
Archive: ./files.zip

https://registry.ngc.nvidia.com/orgs/nvaie/resources/triton-management-service_grpc-api-bundle

Triton Management Service Deployment Guide (Latest) 61

Windows Extracting the IDL on Windows will require a tool like 7-Zip which can
handle compressed TAR files.

inflating: files/triton-management-service_grpc-api-bundle-v1.4.0.zip
$ unzip triton-management-service_grpc-api-bundle-v1.4.0.zip
Archive: triton-management-service_grpc-api-bundle-v1.4.0.zip
inflating: bespoke-triton.proto
inflating: pooled-triton.proto
inflating: lease-state.proto
inflating: triton-allowlist-service.proto
inflating: model.proto
inflating: model-state.proto
inflating: triton-pool-service.proto
inflating: triton.proto
inflating: lease-service.proto
inflating: lease-name-service.proto
inflating: common.proto
inflating: lease-duration.proto
inflating: error-code.proto
inflating: lease-event.proto
inflating: triton-state.proto

> 7z x .\files.zip
7-Zip 23.01 (x64) : Copyright (c) 1999-2023 Igor Pavlov : 2023-06-20
Scanning the drive for archives:
1 file, 18579 bytes (19 KiB)
Extracting archive: .\files.zip
--
Path = .\files.zip
Type = zip
Physical Size = 18579
Everything is Ok
Size: 19324
Compressed: 18579
> 7z x ./triton-management-service_grpc-api-bundle-v1.4.0.zip

Triton Management Service Deployment Guide (Latest) 62

Once extracted you should have the following list of files:

3. Use the protoc compiler to generate language specific code files from the provided
IDL (*.proto) files. The necessary compiler and tools can be downloaded from the
Protocol Buffers Release Page on GitHub. The latest, release version is v23.4.
Download the version of the tools that best suite your platform.

7-Zip 23.01 (x64) : Copyright (c) 1999-2023 Igor Pavlov : 2023-06-20
Scanning the drive for archives:
1 file, 19324 bytes (19 KiB)
Extracting archive: triton-management-service_grpc-api-bundle-v1.4.0.zip
--
Path = triton-management-service_grpc-api-bundle-v1.4.0.zip
Type = zip
Physical Size = 19324
Everything is Ok
Files: 15
Size: 65633
Compressed: 19324

bespoke-triton.proto
lease-duration.proto
lease-service.proto
model.proto
triton-pool-service.proto
common.proto
lease-event.proto
lease-state.proto
pooled-triton.proto
triton-state.proto
error-code.proto
lease-name-service.proto
model-state.proto
triton-allowlist-service.proto
triton.proto

https://github.com/protocolbuffers/protobuf/releases
https://github.com/protocolbuffers/protobuf/releases/tag/v23.4

Triton Management Service Deployment Guide (Latest) 63

Once all tools are downloaded, use them to generate code in your language of
choice. Use Protocol Buffers Getting Started as a guide as needed.

Example for JavaScript code generation:

Will create a JavaScript file named tms_model_state.js from
proto/model-state.proto , and output the results to a folder named js_autogen

(must exist before running protoc). Notice that the above assumes the *.proto file
are contained in a folder named proto which is a child of the current working
folder.

$ protoc --proto_path=proto --
js_out=library=tms_model_state,binary:js_autogen proto/model-state.proto

https://protobuf.dev/getting-started/

Triton Management Service Deployment Guide (Latest) 64

Triton Management Service
Control

Triton Management Service Control (tmsctl) is a command line utility for interacting with
Triton Management Service (TMS). It provides commands for interacting with TMS,
creating and managing leases, and managing service configuration.

Download tmsctl from NGC

This document includes a reference of all commands, as well as an explanation of some
configuration options that can be used to control the behavior of tmsctl .

Command Reference

allowlist

allowlist add

allowlist list

allowlist rm

lease

lease create

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://registry.ngc.nvidia.com/orgs/nvaie/resources/triton-management-service-control

Triton Management Service Deployment Guide (Latest) 65

lease list

lease release

lease renew

lease status

lease name

lease name create

lease name delete

lease name list

pool

pool create

pool delete

pool list

pool status

target

target add

target list

target remove

target set

Common Options

Many commands share a few common options. These are documented here.

(--target|-t):<target>

Triton Management Service Deployment Guide (Latest) 66

Specify the instances of TMS on which to perform the operation.

Valid targets are URLs beginning with http:// or https:// , or the name of a named
instance (see the target command).

Examples:

--target https://www.example.com:30345 : will connect to TMS at the specified URL.

--target my_tms : will connect to a TMS instance named my_tms previously
specified via tmsctl target add.

Unless a default target is specified via tsmctl target commands, all commands require the
--target option.

(--porcelain|-z)

Formats output in an easy-to-parse format for scripts; avoids fancy formatting for human
readers.

Porcelain output does not attempt to colorize output or insert unnecessary whitespace to
improve readability.

This output is not guaranteed to be stable between releases.

Lease

The tmsctl lease commands allow you to perform operations on leases, such as
creating, renewing, and releasing them.

Lease Create

tmsctl lease create [(--target|-t):<target>] [(--porcelain|-z)] (--model|-
m):<model> [{Duration Options}] [{Automatic Renewal Options}]
[{Autoscaling Options}] [{Triton Options}]

tmsctl lease create [(--target|-t):<target>] [(--porcelain|-z)] (--model|-
m):<model> (--triton-pool|-p):<name> --quota:<quota>
[{Duration Options}] [{Automatic Renewal Options}]

Triton Management Service Deployment Guide (Latest) 67

Connects to <target> and creates a lease for Triton Inference Server to serve one
or more <model> .

Provides a <lease-id> for the newly created lease when successful.

An error code will be returned when no default <target> exists and (--target|-t)
has not been specified.

To learn about how to package models, please see the model repository documentation.

Options

--model|-m:<model>

<model> is a comma-separated list of <name>=<value> pairs describing
a model.

This option can be included multiple times, once for each unique model required. All
models in a lease will be loaded and provided by a single Triton Inference Server. If the
set of models is too large or requires too many resources, Triton may fail to load them. In
the event of a failure an error will be returned and the lease made invalid.

The allowed <name>=<value> pairs are:

name (required): the name of the model. Must match the name expected by
Triton.

uri (required): the URI from which to get the model.

count (optional, default=0): the number of instances of the model to load, or 0 to
use the model’s default count.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

https://docs.nvidia.com/model-repository.html

Triton Management Service Deployment Guide (Latest) 68

Automatic Renewal Options

--auto-renew

Makes new new lease eligible for automatic renewal. Auto-renewal rules are determined
by the server.

--auto-renew-activity-window

The time window during which a lease must be used before expiration for it to be
automatically renewed. Durations must be specified in
(<hours>h)(<minutes>m)(<seconds>s) format (e.g. 1h30m15s , 1h30m ,
1h , 1m30s).

Autoscaling Options

Options related to automatically scaling the number of instances of a lease.

Note: Autoscaling and using pooled Triton instances are mutually exclusive. If any of these
options are used at the same time pool options are used, an error is reported.

--enable-autoscaling

Enable autoscaling for this lease. This is automatically turned on if any of the other
options related to autoscaling are set.

--autoscaling-max-replicas

Set the maximum number of replicas when autoscaling. Valid values are any positive
integer. Implies --enable-autoscaling when provided.

--autoscaling-min-replicas

Set the minimum number of replicas when autoscaling. Valid values are any non-negative
integer. Implies --enable-autoscaling when provided.

--autoscaling-metric-cpu-utilization

Set the state of autoscaling based on CPU utilization. Valid values are enable , disable ,
and server-default (default).

Triton Management Service Deployment Guide (Latest) 69

--autoscaling-metric-cpu-utilization-threshold

Set the threshold for autoscaling based on CPU utilization. The value must be a number
between 0 (exclusive) and 100 (inclusive).

--autoscaling-metric-gpu-utilization

Set the state of autoscaling based on CPU utilization. Valid values are enable , disable ,
and server-default (default).

--autoscaling-metric-gpu-utilization-threshold

Set the threshold for autoscaling based on GPU utilization. The value must be a number
between 0 (exclusive) and 100 (inclusive).

--autoscaling-metric-queue-time

Set the state of autoscaling based on queue time. Valid values are enable , disable , and
server-default (default).

--autoscaling-metric-queue-time-threshold

Set the threshold for autoscaling based on queue time. Durations must be specified in
(<hours>h)(<minutes>m)(<seconds>s) format (e.g. 1h30m15s , 1h30m ,
1h , 1m30s).

--autoscaling-metric-queue-time-percentage

Set the state of autoscaling based on the percentage of time inference requests spend in
the queue. Valid values are enable , disable , and server-default (default).

--autoscaling-metric-queue-time-percentage-threshold

Set the threshold for autoscaling based on the percentage of time inference requests
spend in the queue. The value must be a number between 0 (exclusive) and 100
(inclusive).

Duration Options

Triton Management Service Deployment Guide (Latest) 70

--duration

The initial duration of the lease. Durations must be specified in
(<hours>h)(<minutes>m)(<seconds>s) format (e.g. 1h30m15s , 1h30m ,
1h , 1m30s).

--renewal-duration

The duration for which the lease renews when renewed. Durations must be specified in
(<hours>h)(<minutes>m)(<seconds>s) format (e.g. 1h30m15s , 1h30m ,
1h , 1m30s).

Triton Options

Options related to how the Triton instance is created.

Note: Specifying Triton options and using pooled Triton instances are mutually exclusive.
If any of these options are used at the same time pool options are used, an error is
reported.

--triton-image|-i

Specifies the Triton container image to be used to deployment the lease.
<triton-image> must be in the allowed list of Triton container images, managed by

the TMS administrator.

--triton-resources

Specifies the hardware resources to allocate to the Triton server for this lease.

Expected format:
cpu=<count>,gpu=<count>,repository-size=<memory>,system-
memory=<memory>,shared-memory=<memory>

, where <count> is expected to be a positive integer, and <memory> is
expected to be a positive number followed by Ki, Mi, or Gi to indicate the amount of
memory.

When not provided and a pool is not specified, server-configured defaults are used.

Triton Pool Options

Triton Management Service Deployment Guide (Latest) 71

Options related to the creation of Triton pools.

Note: Specifying pool options is mutually exclusive with autoscaling options and Triton
options. If any of these options are used at the same time as those, an error is reported.

--triton-pool|-p

Specifies the Triton Pool, by name, that the lease should be deployed into. Must be
specified along with the --quota option.

--quota

Specifies the amount of available quota the lease will consume from a single instance of
Triton in the target pool. Must be specified along with (--triton-pool|-p):<name> .
Must be greater than zero.

Lease List

tmsctl lease list [(--target|-t):<target>] [(--porcelain|-z)]

tmsctl leases [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and list all active and pending leases.

By default, a summary of each lease will be listed. Adding the --verbose flag will increase
the amount of output.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Triton Management Service Deployment Guide (Latest) 72

Lease Release

tmsctl lease release <lease-id> [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and release lease <lease-id> .

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

<lease-id>

Unique identifier of a lease.

Lease Renew

tmsctl lease renew <lease-id> [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and renew lease <lease-id> .

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

Triton Management Service Deployment Guide (Latest) 73

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

<lease-id>

Unique identifier of a lease.

Lease Status

tmsctl lease status <lease-id> [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> to get the current status of a lease.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

<lease-id>

Unique identifier of a lease.

Lease Name

Provides functionality for managing names associated with leases.

Lease Name Create

Triton Management Service Deployment Guide (Latest) 74

tmsctl lease name create (--name:)<lease-name> (--lease:)<lease-id> [(--
target|-t):<target>] [(--porcelain|-z)]

Creates a new <lease-name> for an existing lease <lease-id> .

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--lease

The unique identifier of a lease to which the name should refer. May be be specified
without the --lease flag if the name is specified first.

--name

The name of a lease to create. May be be specified without the --name flag if it is the
first positional argument.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

<lease-id>

The unique identifier of a lease to which the name should refer.

<lease-name>

The name of a lease to create.

Lease Name Delete

Triton Management Service Deployment Guide (Latest) 75

tmsctl lease name delete (--name:)<lease-name> ((--lease:)<lease-id>|--
force) [(--target|-t):<target>] [(--porcelain|-z)]

Deletes an existing <lease-name> for a specified lease <lease-id> .

The lease <lease-id> associated with the <lease-name> does not have to be
specified if the --force flag is provided.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--force

Delete the name regardless of what lease it currently refers to.

--lease

The unique identifier of a lease to which the name should refer. If this does not match
what the name actually refers to, an error occurs. May be be specified without the
--lease flag if the name is specified first.

--name

The name of a lease to delete. May be be specified without the --name flag if it is the
first positional argument.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

<lease-id>

The unique identifier of a lease to which the name should refer. If this does not match
what the name actually refers to, an error occurs. May be be specified without the

Triton Management Service Deployment Guide (Latest) 76

--lease flag if the name is specified first.

<lease-name>

The name of a lease to delete.

Lease Name List

tmsctl lease name list [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and lists all lease names associated with existing leases.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

tmsctl lease name move (--name:)<lease-name> ((--source-lease:)<source-
lease-id>|--force) (--target-lease:)<target-lease-id> [(--target|-
t):<target>] [(--porcelain|-z)]

Moves a <lease-name> from one lease <source-lease-id> to another
<target-lease-id> .

The lease <source-lease-id> associated with the <lease-name> does not have
to be specified if the --force flag is provided.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Triton Management Service Deployment Guide (Latest) 77

Options

--force

Move the name regardless of what lease it currently refers to.

--name

The name of a lease to move. May be be specified without the --name flag if it is the first
positional argument.

--source-lease The unique identifier of the lease to which the name should currently
refer. If this does not match what the name actually refers to, an error occurs. May be be
specified without the --source-lease flag if the name is specified first.

--target-lease The unique identifier of the new lease to which the name should refer.
May be be specified without the --target-lease flag if the name and source lease are
specified first.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Pool

Commands for managing Triton pools.

Pool Create

tmsctl pool create <name> (--instance-quota|-q):<quota> [--disable-
backend-uniqueness] [(--instances|-c):<count>] [--triton-
resources:<resources>] [--triton-container:<image-name>] [(--target|-
t):<target>][(--porcelain|-z)]

Triton Management Service Deployment Guide (Latest) 78

An error code will be returned when no default exists and (–target|-t) has not been
specified.

Options

--disable-backend-uniqueness

Disables Triton backend uniqueness enforcement.

By default, Triton pools segregates Triton instances by the Triton backend(s) used by
models loaded. Disabling this segregation enables leases with models with differing
Triton backend requirements to be collocated. The mixing of Triton backends can lead to
runtime out-of-memory errors.

--instance-quota|-q

Specifies the maximum allocatable quota per Triton instance in the pool as an integer.
This value limits the number of leases which can be assigned to a single Triton instance in
the pool based. Leases deployed into the pool must specify the amount of quota the
consume and will only be place on Triton instances with sufficient remaining quota.
Specifying a quota larger than is physically available can lead to resource exhaustion
errors and server crashes. When the provided value is outside the configured server
limits, the pool creation request will fail. Value is required and must be a value greater
than zero.

--instances|-c

Specifies the minimum and maximum number of Triton instances allowed to exist in the
pool. Expected format: <minimum>,<maximum> where <minimum>
and/or <maximum> can be replaced with * to use the configured server default
value. When not provided the configured server defaults will be used.

--triton-container

Specifies the Triton container image to be used for all Triton instances in the pool.
<image-name> must be in the allowed list of Triton container images managed by

the TMS administrator.

--triton-resources

Triton Management Service Deployment Guide (Latest) 79

Specifies the hardware resources to allocate to the Triton server for this lease.

Expected format:
cpu=<count>,gpu=<count>,repository-size=<memory>,system-
memory=<memory>,shared-memory=<memory>

, where <count> is expected to be a positive integer, and <memory> is
expected to be a positive number followed by Ki, Mi, or Gi to indicate the amount of
memory.

When not provided, configured server defaults are used.

<name>

Unique name of the pool used to reference the pool when creating leases which make
use of the pool. Pool names can contain only alphanumeric, hyphen, and underscore
characters. Pool names are case insensitive and must not conflict with any existing, active
pool. Value is required, maximum allowed size is 512 characters, and minimum size is 8
characters.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Pool Delete

tmsctl pool delete (<triton-pool-name>|<triton-pool-name>) [(--target|-
t):<target>] [(--porcelain|-z)]

An error code will be returned when no default exists and (–target|-t) has not been
specified.

Options

<triton-pool-name> Unique identifier of the pool. Represented as 32 character
UUID.

Triton Management Service Deployment Guide (Latest) 80

<triton-pool-name> Unique name of the pool.

Pool names can contain only alphanumeric, hyphen, and underscore characters. Pool
names are case insensitive. Maximum allowed size is 1024 bytes.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Pool List

tmsctl pool list [(--verbose|-v)] [(--target|-t):<target>] [(--porcelain|-z)]

An error code will be returned when no default exists and (–target|-t) has not been
specified.

Options

--verbose|-v

Whether to produce more verbose details about the pools.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Pool Status

tmsctl pool status (<triton-pool-name>|<triton-pool-id>) [(--verbose|-
v)] [(--target|-t):<target>] [(--porcelain|-z)]

Triton Management Service Deployment Guide (Latest) 81

An error code will be returned when no default exists and (–target|-t) has not been
specified.

Options

--verbose|-v

Whether to produce more verbose details about the pools.

<triton-pool-id>

Unique identifier of the pool. Represented as 32 character UUID.

<triton-pool-name>

Unique name of the pool. Pool names can contain only alphanumeric, hyphen, and
underscore characters. Pool names are case insensitive. Maximum allowed size is 1024
bytes.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Allowlist

Allowlist Add

tmsctl allowlist add <image> [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and adds a Triton container image to the Triton allowlist.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

Triton Management Service Deployment Guide (Latest) 82

<image>

Container image to add the list of allowed Triton container images.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Allowlist List

tmsctl allowlist list [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and lists the Triton container images new leases are allowed
to be created with.

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Allowlist Remove

tmsctl allowlist rm <image> [(--target|-t):<target>] [(--porcelain|-z)]

Connects to <target> and removes a Triton container image from the Triton allow-
list.

Triton Management Service Deployment Guide (Latest) 83

When no default <target> exists and (--target|-t) has not been specified, an error
will occur.

Options

<image>

Container image to remove from the list of allowed Triton container images.

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

--target|-t

Determines the Triton Management Service to connect to. See Common Options.

Target

Target Add

tmsctl target add [--force] [--set-default] <name> <url>

Adds a new <target> to the set of configured Triton Management Services.

<url> is required to be prefixed with “http://” or “https://”.

When <target> already exists in the list of configured Triton Management Services,
an error will occur unless --force is specified.

Options

--force

Allows for the replacement of an existing configured Triton Management Service, when
specified, with <target> and <url> .

--set-default

Triton Management Service Deployment Guide (Latest) 84

Sets as default target for future commands which require a connection to Triton
Management Service.

Target List

tmsctl target list [(--porcelain|-z)] tmsctl targets [(--porcelain|-z)]

Lists all configured Triton Management Server targets.

Options

--porcelain|-z

Formats output in an easy-to-parse format for scripts. See Common Options.

Target Remove

tmsctl target rm [--force] <name>

Removes <target> from the set of configured Triton Management Services.

If the target is the default, it is not removed unless the --force flag is used.

Options

--force

Removes <target> regardless if it has been set to default or not.

Target Set

tmsctl target set <name>

tmsctl target <target>

Sets <target> as the default target for future commands which require a
connection to Triton Management Service.

Triton Management Service Deployment Guide (Latest) 85

<target> must have already been added to list of possible targets.

see tmsctl target add for additional details.

Configuring tmsctl

On startup, tmsctl will read a configuration if name .tmsctlconfig from the user’s home
directory. This file contains information about any named targets (see the target
command) as well as options to configure the output of tmsctl .

The format of .tmsctlconfig is not guaranteed to be stable and this point and may
change in the future. For now, it is a JSON file.

Configuring Output Colors

By default, tmsctl outputs everything in the default colors of the console. This can be
changed by adding an entry named "console" at the top level of the configuration file
and setting is "enable-colors" property to "true" . The example configuration below will
tell tmsctl to enable colors with its default color scheme:

If the default tmsctl color scheme does not work well with your preferred terminal
settings, you can customize the set of colors that tmsctl will use. When colors are
enabled, tmsctl will read the additional properties from the "console" object to control
text color:

"color" : used for most output.

"emphasis" : used for lines that add emphasis (e.g. lease IDs in tmsctl lease create
).

"error" : used for errors

{
"console": {
"enable-colors": "true"
}
}

Triton Management Service Deployment Guide (Latest) 86

"header" : used for header lines.

"understated" : used for output that can often be ignored.

"warning" : used for warnings.

In addition to the above, some option can have "-back" added to it to control the
background color of the corresponding entry. The options that support "-back" are
"emphasis" , "error" , "warining" and "understated ”.

Allowed values for colors are those listed by the .NET class (ConsoleColor)
[https://learn.microsoft.com/en-us/dotnet/api/system.consolecolor]. Colors must be
provided in lower case, with words separated by a - . For example, to use
ConsoleColor.DarkGreen , you would specify "dark-green" in the configuration file.

Triton Management Service Deployment Guide (Latest) 87

Helm Chart Values

The TMS helm-chart contains a values.yaml file which contains all of the deployment
configuration options available. TMS configuration is broken into three sections:

images : Container image information used by TMS.

server : Name of the container image containing TMS Server. (required)

sidecar : Name of the container image containing TMS Triton Sidecar.
(required)

triton : Name of the container image containing Triton Inference Server.
(required)

mongodb : Name of the container image containing MongoDB database used
by TMS Server. (required)

rest : Name of the container image containing TMS HTTP API Server. (optional)

secrets : Name(s) of Kubernetes secrets used to pull container image during
pod deployment.

kubernetes : Configuration options affecting how TMS deploys objects with
Kubernetes. (optional)

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

Triton Management Service Deployment Guide (Latest) 88

customAnnotations : Custom annotations added to the metadata of pods
deployed by TMS.

customLabels : Custom labels added to the metadata of pods deployed by
TMS.

partOf : Name of a higher level application TMS is a part of, applied as label
‘app.kubernetes.io/part-of’.

server : Configuration options related to how TMS Server is deployed an operates.

apiService : Configuration options related to the network services provided by
the TMS Server.

port : Port to use to connect to the gRPC API service when external to
the Kubernetes cluster (default: 30345).

External ports must be in the range [30000, 32767].

type : Type of Kubernetes service connection used by the server to
provide network API services (default: ClusterIP).

Valid options are ExternalName, ClusterIP, NodePort, and LoadBalancer.

resources : Defines the computing and memory resources allocated and
reserved for the pod hosting the API server and database. If many concurrent
requests are expected to the API server from many different clients, it is highly
recommended to change these values. A starting suggestion is to dedicate
25% of the resources to the API server, and 75% to the database.

apiServer : Defines the resources allocated and reserved for the API
server’s container.

cpu : The number of CPUs to be allocated and reserved for the API
server container (default: 0). If 0, no CPUs will be requested, but a
limit of 1 will be set. If it is any other value, that value will be used
used as both the request and limit.

Triton Management Service Deployment Guide (Latest) 89

memory : The amount of memory to be allocated and reserved for
the API server container (default: 1Gi). Must be a number with
memory units (e.g. Mi, Gi).

database : Defines the resources allocated and reserved for by the
database container.

cpu : The number of CPUs to be allocated and reserved for the
database container (default: 1). This will be used as both the
request and limit.

memory : The amount of memory to be allocated and reserved for
the database container (default: 2Gi). Must be a number with
memory units (e.g. Mi, Gi).

lease : Configuration options for the creation and management of leases.

timeout : Configures amount of time a lease is allowed to attempt
loading before timing out.

duration : Configuration options related to lease durations.

initial : Configuration options related to initial requested duration
of leases.

default : Default requested duration of a lease (default: 10m
).

maximum : Maximum requested duration of a lease (default:
30m).

renewal : Configures options related to requested renewal
duration of leases.

default : Default requested renewal duration of a lease
(default: 10m).

maximum : Maximum requested renewal duration of a lease
(default: 30m).

Triton Management Service Deployment Guide (Latest) 90

automaticRenewal : Configuration options related to automatic renewal
of leases. (optional)

enabled : Determines if the service supports automatically
renewed leases or not (default: true).

When not enabled, leases will not be allowed to request to be
automatically renewed.

window : Configuration options related to the time since a lease
has last been active to be automatically renewed.

default : Default requested amount of time since a lease has
last been active to be automatically renewed (default: 5m).

maximum : Maximum requested amount of time since a
lease has last been active to be automatically renewed
(default: 5m).

databaseStorage : Configuration option to define persistent storage for
the server’s database.

volumeClaimName : Kubernetes persistent volume claim (pvc)
attached to the volume where TMS server’s database will be stored.

shareTriton : Configuration options related to the sharing of Triton
Server instances by leases. (optional)

enabled : Determines if the service supports the sharing of Triton
Server instances by leases or not. (default: false)

byDefault : Default value applied to lease requests when not
specified (default: false).

modelRepositories : Configuration options related to model repositories with
models available to instances of Triton.

s3 : Model repositories which contain models stored in a S3 bucket.

Triton Management Service Deployment Guide (Latest) 91

Access is managed by the ARN specified by server.security.aws.role .

repositoryName : Name used to reference this model repository as
part of lease acquisition.

May contain only lowercase alphanumeric characters (without
spaces, hyphens - are permitted).

bucketName : Name of the S3 bucket used to fetch models.

awsRegion : Region code of the S3 Bucket.

Must be a valid code designating to existing AWS region (eg. “us-
west-2”).

For additional information, refer to
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html.

endpoint : Service URL of the S3 bucket.

When both ‘endpoint’ and ‘awsRegion’ fields are specified, the
‘endpoint’ value will be used instead of the awsRegion value.

Must be a valid URL designating to an existing endpoint (eg.
“http:/s3.us-west-2.amazonaws.com” or “http:/play.min.io:9000”).

For additional information, refer to
https://docs.aws.amazon.com/general/latest/gr/s3.html#amazon_s3

accessKey : Name of the Kubernetes secret to read and provide as
the access key ID to download objects from the S3 bucket.

Optional value when IAM or default AWS environment variables are
not used for authorizing TMS to read from an S3 bucket.

accessSecret : Name of the Kubernetes secret containing the secret
access key to read from the S3 bucket.

Triton Management Service Deployment Guide (Latest) 92

Optional value when IAM or default AWS environment variables are
not used for authorizing TMS to read from an S3 bucket.

https : Model repositories which provide models as compressed archive
downloads via web-service using HTTP GET.

secretName : Name of the Kubernetes secret to read and provide
as a Authorization header for download requests.

targetUri : URL of the remote web-sever in
<domain_label_or_ip_address>/<path> format, used to determine if
secrets apply to a model request or not.

volumes : Model repositories which contain models stored in a file-
system-like structure.

repositoryName : Name used to reference this model repository as
part of lease acquisition.

May contain only lowercase alphanumeric characters (without
spaces, hyphens - are permitted).

volumeClaimName : Kubernetes persistent volume claim (pvc)
used to fetch models.

autoscaling : Configuration options related to autoscaling Triton instances. If
this section is missing, autoscaling will be disabled. (optional)

enabled : Determines if TMS Server supports autoscaling Triton
instances or not (default: false).

When not enabled, requests for autoscaling leases will not be allowed.

replicas : Configuration options related to replication of autoscaling
Triton instances.

default : Values used for autoscaling Triton instances when values
are not provided during lease acquisition.

Triton Management Service Deployment Guide (Latest) 93

maximum : The maximum number of replicas.Must be within
the limits specified in the “limits” section (default: 5).

minimum : The minimum number of replicas. Must be within
the limits specified in the “limits” section (default: 1).

Must be a positive integer.

limits : Defines the limits imposed on the number of replicas that
may be requested for a lease.

maximum : The maximum number of replicas (default: 10).
Must be a non-negative number greater than or equal to
maximum-idle .

maximum-idle : The maximum number of idle instances that
are allowed (default: 1). In other words, the maximum value
for the minimum number of replicas a user may request. Must
be a non-negative number less than or equal to maximum .

minimum : The minimum number of replicas (default: 1).
Must be a non-negative number less than or equal to
maximum-idle .

metrics : Configuration options related to how metrics are used by
autoscaling Triton instances to determine availability and scale.

At least one metric must be enabled when support for autoscaling Triton
instances is enabled.

cpuUtilization : Metric used to determine scaling based on CPU
utilization.

allowed : Determines whether autoscaling based on CPU
utilization is allowed (default: false).

enabled : Determines if scaling based on CPU utilization is
enabled by default (default: false).

Triton Management Service Deployment Guide (Latest) 94

threshold : Threshold, expressed as a percentage, used to
determine scaling (default: 90).

Must be a positive integer in the exclusive range (0, 100).

default : Default value used for the threshold, as a
percentage (default: 90).

minimum : Minimum value for the threshold, as a
percentage (default: 50).

maximum : Maximum value for the threshold, as a
percentage (default: 100).

gpuUtilization : Metric used to determine scaling based on GPU
utilization.

allowed : Determines whether autoscaling based on GPU
utilization is allowed (default: false).

enabled : Determines if scaling based on GPU utilization is
enabled by default (default: false).

threshold : Threshold, expressed as a percentage, used to
determine scaling (default: 90).

Must be a positive integer in the exclusive range (0, 100).

default : Default value used for the threshold, as a
percentage (default: 90).

minimum : Minimum value for the threshold, as a
percentage (default: 50).

maximum : Maximum value for the threshold, as a
percentage (default: 100).

Triton Management Service Deployment Guide (Latest) 95

queueTime : Metric used to determine if scaling based on Triton
inference-query queue times.

allowed : Determines whether autoscaling based on Triton
inference-query queue times is allowed (default: false).

enabled : Determines if scaling based on Triton inference-
query queue times is enabled by default (default: false).

threshold : Threshold, in microseconds, used to determine
scaling.

default : Default value for the threshold, as a time in
microseconds (default: 10000).

minimum : Minimum value for the threshold, as a time
in microseconds (default: 10000).

maximum : Maximum value for the threshold, as a time
in microseconds, with 0 and negative numbers meaning
no limit (default: 0).

queueTimePercentage : Metric used to determine scaling based on
the percentage of the total inference time that requests spend in
the queue.

allowed : Determines whether autoscaling based on the
percentage of time spent in the queue is allowed (default:
false).

enabled : Determines whether autoscaling based on the
percentage of time spent in the queue is enabled by default
(default: false).

threshold : Threshold, as a percentage, used to determine
scaling.

default : Default value for the threshold, as a percentage
(default: 50).

Triton Management Service Deployment Guide (Latest) 96

minimum : Minimum value for the threshold, as a
percentage (default: 1).

maximum : Maximum value for the threshold, as a
percentage (default: 100)

metrics : Configuration options for the collection and reporting of runtime
metrics by TMS Server.

verbosity : Verbosity (volume of total metrics) of metrics collected and
reported (default: 0). (optional)

Must be in the range [0, 3].

reportingWindow : Period of time from the time of request used when
determining metric values reported (default: 60s).

port : Port used to connect to the metrics service when external to the
Kubernetes cluster (default: 30543).

Must be in the range [30000, 32767].

models : Configuration options controlling model deployment (fetching,
loading into Triton, etc.) metrics collection.

verbosity : Verbosity (volume of total metrics) of metrics collected
and reported (default: 0).

Must be in the range [0, 3].

reportingWindow : Frequency which model metrics are pushed
from Triton sidecar to TMS Server (default: 15s).

security : Configuration options related to Transport Layer Security (TLS)
connection encryption and security.

aws : Configuration options for instances deployed using Amazon EKS.

Triton Management Service Deployment Guide (Latest) 97

role : AWS IAM role used read models S3 buckets configured in
server.modelRepositories.awsS3 .

tls : Configuration options related to Transport Layer Security (TLS)
connection encryption.

enabled : Determines if TLS is expected to be enabled or not
(default: false).

When enabled, TMS will provision a certificate issuer as part of its
deployment. The issuer will be used to issue TLS certificates for
each Triton Inference Server instance deployed by TMS.

certManager : Configuration options related to cert-manager
supplied TLS certificate(s) used to encrypt network traffic.

TMS manages and applies certificates for TLS based secure
communications using cert-manager.

group : Kubernetes resource group of the CA issuer to use
when creating service certificates (default: cert-manager.io).

kind : Kubernetes resource kind of the CA issuer to use when
creating service certificates (default: ClusterIssuer).

name : Name of the issuer to use when creating service
certificates.

privateKey : Configuration options related to the creation of
certificate private keys.

algorithm : Algorithm of the private key for the
certificate (default: RSA).

Supported values are RSA , ECDSA , or Ed25519 .

size : Size, in bits, of the corresponding private key for
the certificate (default: 4096).

https://cert-manager.io/

Triton Management Service Deployment Guide (Latest) 98

Supported values depend on the value of algorithm :

RSA: 2048 , 4096 or 8192

ECDSA: 256 , 384 or 521

Ed25519: (property is ignored)

traceLevel : Configures the verbosity of the logging produced by the server.
(optional)

TMS will produce logs for Kubernetes to collect via standard output and
standard error normally when this value is not provided.

triton : Configuration options related to the deployment of Triton Inference Server.

Values can be customized based on capacity of your cluster’s hardware and
expected workload characteristics.

enableRestrictedAccess : Determines if the Triton API and protocols have
restricted access enabled (default: true). This feature relies on Limited
Endpoint Access feature in Triton.Since it is a BETA feature, it may result in
compatability issues in the future.

resources : Configuration options related to default and maximum resource
requests per Triton instance.

default : Values used to determine the resources assigned to a Triton
instance when not provided during lease acquisition.

cpu : Number of logical CPU cores to assign to a Triton instance
(default: 2).

Must be a positive integer.

gpu : Number of logical GPU devices to assign to a Triton instance
(default: 1).

Must be a positive integer.

Triton Management Service Deployment Guide (Latest) 99

sharedMemory : Amount of a Triton instance’s memory to reserve
for shared-memory (default: 256Mi).

Must be a positive integer, followed by a scale suffix of Ki, Mi, or Gi.

systemMemory : Amount of main memory to assign to a Triton
instance (default: 4Gi).

Must be a positive integer, followed by a scale suffix of Ki, Mi, or Gi.

limits : Range restrictions on resources allowed to be assigned to a
Triton instance.

minimum : Minimum resources allowed to be assigned to a Triton
instance.

cpu : Number of logical CPU cores to assign to a Triton
instance (default: 2).

Must be a positive integer.

gpu : Number of logical GPU devices to assign to a Triton
instance (default: 1).

Must be a positive integer.

sharedMemory : Amount of a Triton instance’s memory to
reserve for shared-memory (default: 128Mi).

Must be a positive integer, followed by a scale suffix of Ki, Mi,
or Gi.

systemMemory : Amount of main memory to assign to a
Triton instance (default: 1Gi).

Must be a positive integer, followed by a scale suffix of Ki, Mi,
or Gi.

Triton Management Service Deployment Guide (Latest) 100

maximum : Maximum resources allowed to be assigned to a Triton
instance.

cpu : Number of logical CPU cores to assign to a Triton
instance (default: 16).

Must be a positive integer.

gpu : Number of logical GPU devices to assign to a Triton
instance (default: 4).

Must be a positive integer.

sharedMemory : Amount of a Triton instance’s memory to
reserve for shared-memory (default: 2Gi).

Must be a positive integer, followed by a scale suffix of Ki, Mi,
or Gi.

systemMemory : Amount of main memory to assign to a
Triton instance (default: 32Gi).

Must be a positive integer, followed by a scale suffix of Ki, Mi,
or Gi.

Triton Management Service Deployment Guide (Latest) 101

Release Notes for Triton
Management Service

Version 1.4

New Features

Added the ability to restrict access to Triton Control Operations and allow only the
Triton Sidecar to perform such operations. This feature relies on Limited Endpoint
Access feature in Triton. Since it is a BETA feature, it may result in compatability
issues in the future.

Bug Fixes

Triton Pools feature can now be disabled by setting triton.pools.enabled to false
in helm values.yaml . Previously, even after setting the above value to false , the
Triton Pools feature remained enabled.

Version 1.3

New Features

Updated the default Triton image from 23.10 to 23.11.

Bug Fixes

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

Triton Management Service Deployment Guide (Latest) 102

When a model is deleted from a pooled Triton instance, the files are now deleted.
Previously, they remained in the pod consuming space, which would lead to the pod
eventually running out of storage.

Version 1.2

New Features

Updated the default Triton image from 23.09 to 23.10.

Added the ability to autoscale based on the percentage of total inference request
time spent in the queue. This is in addition to the ability to scale on the absolute
time spent in the queue. See the autoscaling options of tmsctl for more details.

Bug Fixes

Version 1.1

New Features

Updated the default Triton image from 23.08 to 23.09. Since 23.09 lowers the
memory requirements of Triton, we also lowered the default value for the minimum
amount of memory used by Triton pods.

In order to improve visibility on different console color schemes, the output of
tmsctl no longer includes colors by default. Colors can be enabled and configured

via tmsctl configuration options.

Added a feature to allow the TMS administrator to configure the CPU and memory
resources allocated and reserved for the TMS API server and database. See the
deployment guide for more information.

Model repository size for Triton instances can be configured during lease
acquisition (initially fixed at 2GB prior to v1.1). See the section under
--triton-resources in Triton Options and Configuring Triton Containers to learn

more.

Bug Fixes

Configured colors for headers in tmsctl output are used properly now.

https://docs.nvidia.com/tmsctl.html#id8
https://docs.nvidia.com/tmsctl.html#configuring-tmsctl
https://docs.nvidia.com/deployment-guide.html#configuring-the-api-server-pod
https://docs.nvidia.com/tmsctl.html#id8
https://docs.nvidia.com/deployment-guide.html#configuring-triton-containers

Triton Management Service Deployment Guide (Latest) 103

More informative message returned by LeaseService when a header is missing.

Lease.List() method now works with the verbose option enabled.

Leases are no longer terminated by the kubernetes startup probe when loading
larger models (particularly LLMs).

Version 1.0

New Features

Support for Generic S3 Model Repositories (including MinIO and Google Cloud
Storage). (See updated documentation for S3 Configuration).

Ability to configure longer timeout for loading larger models in values.yaml
through server.lease.timeout .

Finalized our TMS v1.0 API with the intent of retaining forward/backward
compatibility with all TMS v1.x releases. Be aware that several v0.x interfaces were
changed and are incompatible with the v1.0 API. Please make sure to upgrade to
the latest tmsctl and to upgrade any custom clients to avoid compatibility issues.

Bug Fixes

Fixed several small bugs in the Triton pool feature, including in the scheduling
algorithm.

Fixed bugs which were causing leases which were cancelled during creation to
remain in a pending state. There are still some situations when this may happen,
but such leases can now be released via tmsctl lease release .

Fixed a bug which allowed Triton pods to report they were ready before they were
fully operational.

Test Environments

This version of TMS was tested with the below versions of different packages. Other
versions may work as well, but have not been tested.

Kubernetes:

https://docs.nvidia.com/model-repository.html#s3-object-store

Triton Management Service Deployment Guide (Latest) 104

CNS v9.0 (Kubernetes 1.26 – see the CNS documentation for more details).

EKS with Kubernetes 1.26 - 1.27

AKS with Kubernetes 1.26

Triton: 23.03

Helm: 3.11

Prometheus:

Prometheus: 2.45 (Prometheus community Helm chart version 48.1.1)

Prometheus Adapter: 0.10 (Prometheus community Helm chart version 4.2.0)

Version 0.11

New Features

New configuration options were added in values.yaml to allow custom installations
of Prometheus to work properly with autoscaling in TMS.

When configuring queue time thresholds for autoscaling in values.yaml , units must
now be specified. Previously, the values were specified as a number of
microseconds (e.g. 10000). Now, units are required (e.g. “10ms”, “100us”).

Option to configure TMS to persist data in the case of server failure or restart. (See
Configuring Persisted Database)

New feature: Triton Pools has been added. Provides improved methods for
maximizing utilization of Triton Servers deployed by TMS.

See: Triton Pools & Quota Based Shared Tritons for additional information.

REST service has been removed.

Fixes

Fixed a bug which prevented loading models in an S3 bucket which were in nested
directories.

https://github.com/NVIDIA/cloud-native-stack#nvidia-cloud-native-stack-component-matrix-1
https://github.com/prometheus-community/helm-charts
https://github.com/prometheus-community/helm-charts
https://docs.nvidia.com/deployment-guide.html#configuring-persisted-database
https://docs.nvidia.com/triton-pools.html

Triton Management Service Deployment Guide (Latest) 105

Version 0.10

New Features

Triton Recovery

Triton instances can now recover from failures. If a pod hosting Triton instance is
killed, or if the Triton server dies, the pod will be restarted and all the models will be
reloaded when the new pod starts.

Lease Names

Leases will now be able to have custom labels associated with them. These names
can be used to interact with a lease in place of the default "Triton-####" label for
kubernetes services. See the lease-name section under tmsctl to learn more.

Fixes

Fixed a bug which prevented large models from being loaded due to using too much
ephemeral storage in the Triton Sidecar containers.

Known Issues

Version 0.9

New Features

Added the ability to set the minimum number of replicas in autoscaling leases.
Administrator may configure thresholds and defaults for this value. Users may
control it on a per-lease basis via the gRPC API and tmsctl.

Lease Events

Triton Management Service will now record events related to the lifecycle of a lease.

Lease event information will be provided during the creation of a new lease, as well
as when requesting the status of a lease.

Lease events provide a mechanism for TMS to report Triton related, model loading
errors.

https://docs.nvidia.com/tmsctl.html
https://docs.nvidia.com/helm.html
https://docs.nvidia.com/grpc-api-package.html
https://docs.nvidia.com/tmsctl.html

Triton Management Service Deployment Guide (Latest) 106

Updated the output of tmsctl lease create , tmsctl lease list , and
tmsctl lease status .

tmsctl lease create now includes lease event information. The pretty and
porcelain (-z) output have both been updated to include event information.

The pretty print version of the output now reports the status of all models in
the lease and attempt to avoid scrolling by resetting the cursor position for
every update received from the server.

tmsctl lease status now includes lease event information.

tmsctl lease list no longer includes model information. This was removed to
reduce load on the server’s database when large numbers of leases were
being returned.

Support for TLS Encrypted Connections

Added support for TLS encrypted connections to TMS and Triton Servers.

With the initial implementation, certificate validation has been disabled for TMS
Server, Triton Sidecar, and TMS Control (tmsctl). Certificate validation will be
enabled in a future version of TMS.

Support for Public S3 Model Repositories without IAM

Added support for model repositories residing in public S3 buckets.

This provides an alternative option for accessing S3 models without IAM.

Horizontal Pod Autoscaling on Average Queue Time

Modified leases to scale on average inference queue time with Triton Server.

Prior to this change, the queue time metric was processed incorrectly and leases
would not scale correctly.

Fixes

Triton Management Service Deployment Guide (Latest) 107

Fixed an issue where the URL of a lease’s Triton Server was not provided when
reading a lease’s status.

Fixed an issue where the deployment of Triton Servers would fail when services that
depend on init-containers were injected into the deployment due the
“PodInitializing” container status not being correctly handled.

Fixed an issue where models in a multi-model lease were loaded at random into
Triton Server. This issue resulted in failures for ensemble models, but is now fixed
to load models in the ordering from the lease request.

Fixed an issue where the TMS deployment was failing due to bugs in parsing helm
chart values.

Known Issues

Canceling tmsctl lease create by using Ctrl+C to terminate the process, correctly
prevents the deployment of the requested lease, but leaves the lease in a Pending
“zombie” state. Leases caught in this state are metadata artifacts that no impact on
the behavior of TMS or any deployed Triton Servers.

Version 0.8

New Features

Added a tmsctl lease renew command to renew leases via tmsctl .

Added options to control lease duration on a per-lease basis. Users may specify the
duration via the gRPC API and via tmsctl. Administrators can configure limits for
these values.

Added options to control autoscaling parameters on a per-lease basis. Users may
specify the duration via the gRPC API and via tmsctl. Administrators can configure
limits for these values.

Added tmsctl target set and tmsctl target rm commands.

Added tmsctl lease list command.

Added official support for Azure Blob and Azure File model repositories.

https://docs.nvidia.com/tmsctl.html
https://docs.nvidia.com/helm.html
https://docs.nvidia.com/tmsctl.html
https://docs.nvidia.com/helm.html
https://docs.nvidia.com/helm.html

Triton Management Service Deployment Guide (Latest) 108

Known Issues

Autoscaling on GPU utilization does not function correctly when Triton has been
deployed to an Ampere MIG partition. Autoscaling on CPU utilization and queue
time does work on such systems.

TMS Clean-up job can hang when uninstalling a TMS deployment using
helm delete [tms-instance-name] . This can result in Helm timing out the

uninstallation. helm delete [tms-instance-name] --no-hooks can be used as a
workaround.

When using the workaround, cluster administrators might have to manually delete
abandoned TMS pods, deployments, service, secrets, and/or certificates due to the
clean-up job not having been run.

Version 0.7.1

Fixes

Lease Requests with Multiple Models

Fix has been added that enables users to request Triton leases with multiple models
in a single request.

Known Issues

Autoscaling on GPU utilization does not function correctly when Triton has been
deployed to an Ampere MIG partition. Autoscaling on CPU utilization and queue
time does work on such systems.

Version 0.7

New Features

Improvements in Autoscaling Leases

Autoscaling leases now support automatic renewal, just like non-autoscaling leases.

The metrics that control scaling can be configured by the TMS administrator.

https://docs.nvidia.com/autoscaling.html#configuring-autoscaling-metrics

Triton Management Service Deployment Guide (Latest) 109

Expanded & Improved Metrics

TMS now reports model loading metrics and over 200 runtime metrics.

Model metrics are related to the loading of models into Triton Inference Server. Any
reported model metrics will include the URL used to acquire the model.

Collected metrics have a “visibility score” assigned to them based on their importance
and utility. When reporting metrics, TMS will only report the collected metrics that have a
“visibility score” equal to or greater than the configured “minimum visibility”.

The minimum visibility value can be changed in the values.yaml file of the Helm chart.

Support for AWS S3 Model Repositories

TMS now supports reading models from AWS S3 model repositories. TMS administrators
should take a look at the section of the model repository docs for assistance on this.

Known Issues

Autoscaling on GPU utilization does not function correctly when Triton has been
deployed to an Ampere MIG partition. Autoscaling on CPU utilization and queue
time does work on such systems.

Version 0.6

New Features

Lease Autoscaling

TMS users can now request that lease automatically scale the number of Triton instances
servicing them based on utilization. For full details, see the autoscaling configuration and
usage instructions.

Persistent Volume Repositories

Administrators can now attach model repositories in persistent volumes to their TMS
instance. To learn more, please refer to the Persistent Volume Claims section in the
model repository guide.

https://docs.nvidia.com/model-repository.html#s3-object-store
https://docs.nvidia.com/autoscaling.html
https://docs.nvidia.com/autoscaling.html
https://docs.nvidia.com/model-repository.html#persistent-volume-claim

Triton Management Service Deployment Guide (Latest) 110

Additionally, TMS now supports AWS EBS persistent volumes. Refer to the Persistent
Volume Claims section in the model repository guide.

Bug Fixes

Known Issues

Version 0.5

New Features

NFS Model Repositories

TMS administrators can now configure TMS with model repositories hosted on NFS
servers which Triton instances can load models from.

Unlike http model repositories, NFS hosted repositories provide TMS the benefit of
being able to now consume decompressed Triton models in lease requests.

To use an NFS model repository, TMS administrators will have to create a Kubernetes
persistent volume with a respective persistent volume claim (in the same namespace as
TMS) for the NFS server. The persistent volume claim name should be provided in TMS’s
helm charts.

There is a guide in the quickstart guide providing more elaborate instructions.
Additionally, see the default values under values.yaml#sidecar.modelRepositories.nfs to
learn more.

Bug Fixes

Known Issues
© Copyright 2024, NVIDIA.. PDF Generated on 06/05/2024

https://docs.nvidia.com/model-repository.html#persistent-volume-claim
https://docs.nvidia.com/model-repository.html#persistent-volume-claim
https://docs.nvidia.com/quickstart-guides/minikube.html

	TMS Basics Tutorial
	TMS Minikube Quickstart Guide
	Triton Management Service Deployment Guide
	Model Repositories
	Triton Image Allowlist
	Leases
	Autoscaling Leases
	Triton Pools & Quota Base Shared Tritons
	TMS Metrics
	TMS GRPC API Package
	Triton Management Service Control
	Helm Chart Values
	Release Notes for Triton Management Service

