
Triton Management Service Deployment Guide

Table of contents

TMS Pre-deployment Configuration

TMS Deployment Using Helm

Security Considerations

Triton Management Service Deployment Guide 1

Table of contents

TMS Pre-deployment Configuration

TMS Deployment Using Helm

Security Considerations

Triton Management Service Deployment Guide 2

Triton Management Service (TMS) is a Kubernetes microservice, and expects to be
deployed into a Kubernetes managed cluster. To more easily facilitate its deployment into
your Kubernetes cluster, TMS provides a Helm chart designed to simplify the deployment,
or installation, process.

In order to deploy TMS the helm tool (download) and the TMS Helm chart (download
must be installed on the local system. Additionally, the local user will require cluster
administrator privileges.

TMS Pre-deployment Configuration

Preparing Your Cluster

In order to run TMS, you will need a properly-configured Kubernetes cluster. Depending
on which TMS features you wish to leverage and whether you plan to run inference on
GPUs, you will need to install some additional dependencies over a default installation.

As a baseline, production TMS installations are recommended to have at least two nodes
– one on which to run the API server and database, and one on which to run inference.
Typical deployments will have many nodes on which to run inference. One important
note about the inference nodes is that they need to be able to run large container
images. The default images for Triton can exceed over fourteen gigabytes, so make sure
your cluster is properly configured to handle that (also, be prepared for Triton to take a
bit of time the first time it starts on each node, as it can take some time for the image to
transfer).

If you will be running inference on GPUs, you need to ensure that your inference nodes
properly recognize the GPUs and list them as resources. You can check whether this is
the case by running kubectl describe node $NODE_NAME and seeing whether there is
an entry with a key of nvidia.com/gpu in the Capacity and Allocatable sections. If your

Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

https://kubernetes.io/
https://helm.sh/docs/intro/install/
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/helm-charts/triton-management-service

Triton Management Service Deployment Guide 3

cluster is not already properly configured, please see the documentation for the GPU
operator or your cloud service provider.

If your deployment requires the autoscaling feature, please see the autoscaling section
below.

For the specifics about the versions of Kubernetes and other tools with which TMS was
tested, please see the release notes for the version of TMS your are deploying.

Obtaining TMS Helm Chart

The TMS Helm chart can be downloaded from NVIDIA NGC. To do so, use the following
command:

Extracting the values.yaml file from the downloaded chart’s TAR file is easy. To do so,
use the following command:

This will create a values.yaml file the current directory, which can modified to meet
deployment needs.

See Helm Chart Values for a listing of the configurable values.

Configuring the API Server Pod

By default, TMS requests minimal CPU and memory resources from Kubernetes to run
the pod containing the API server and database. While this works fine for initial testing of

helm fetch https://helm.ngc.nvidia.com/nvaie/charts/triton-management-service-
1.4.0.tgz --username='$oauthtoken' --password=<YOUR API KEY>

helm show values triton-management-service-1.4.0.tgz > values.yaml

Note

Download TMS Helm Chart from NGC

https://catalog.ngc.nvidia.com/orgs/nvidia/helm-charts/gpu-operator
https://catalog.ngc.nvidia.com/orgs/nvidia/helm-charts/gpu-operator
https://docs.nvidia.com/release-notes.html
https://docs.nvidia.com/helm.html
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/helm-charts/triton-management-service

Triton Management Service Deployment Guide 4

TMS’s features and for smaller, more stable deployments, it is likely to be insufficient if
many clients are expected to be making concurrent API calls. In that situation, it is highly
recommended that system administrators change the default settings.

To change the default settings, use the configuration options in server.resources in the
values.yaml file. The amount of CPU and memory resources is relatively low compared

to that of the database. For that reason, it is recommended that initially the database be
allocated 75% of the available resources, and the API server the other 25%. Below is a
sample configuration which would do this on a node with 8 CPUs and 16Gi of memory.

Kubernetes Secrets

Setting up secrets in Kubernetes for TMS is fairly straightforward, and we’ll cover the
basics here.

Note that creation of Kubernetes secrets requires sufficient cluster privileges, and
therefore might, if you lack sufficient privileges, require a cluster administrator to create
them on your behalf.

Container Pull Secrets

TMS Helm chart will include any secrets listed under values.yaml#images.secrets . The
default values.yaml file contains an example secret named “ngc-container-pull”.

To create an image-pull secret, use:

resources:
apiServer:
cpu: 2
memory: 4Gi
database:
cpu: 6
memory: 12Gi

kubectl create secret docker-registry <secret-name> --docker-server=<docker-
server-urn> --docker-username=<username> --docker-password=<password>

Triton Management Service Deployment Guide 5

Then which ever value was chosen for <secret-name> add to the
values.yaml#images.secrets list.

Configuring Model Repositories

To connect to a model repository, see the model repository page.

Configuring Autoscaling

To enable and configure autoscaling, see the separate autoscaling configuration guide.

Configuring Triton Containers

TMS allows the TMS administrator to configure some aspect of the containers that will be
created for Triton instances. These can be configured via the top-level triton object in
values.yaml .

Currently, only resource constraints are specified in this section. These are all listed
under resources . TMS admins may specify both the default resources that Triton
containers will get, as well as the limits.maximum values that users may request on a
per-lease basis.

A sample configuration is shown below.

triton:
resources:
default:
cpu: 2
gpu: 1
systemMemory: 4Gi
sharedMemory: 256Mi
limits:
minimum:
cpu: 1
gpu: 1
systemMemory: 1Gi
sharedMemory: 128Mi
maximum:

https://docs.nvidia.com/model-repository.html
https://docs.nvidia.com/autoscaling.html

Triton Management Service Deployment Guide 6

The fields in both default , minimum and maximum sections are defined as follows.

Each value in the maximum section must be at least as large as the default and
minimum value.

Each value in the minimum section must be smaller than the default and maximum
value.

cpu : The number of whole or factional CPUs assigned to Triton. Can be specified
either a number of cores (e.g. 4), or a number followed by m , which represents
milli-CPUs (e.g. 1500m).

Minimum value: 1 (or 1000m).

Default: 2

gpu : The number of whole GPUs assigned to Triton. Must be a whole number –
GPUs cannot be fractionally assigned.

Minimum value: 0

Default: 1

repositorySize : The amount of disk space allocated for Triton model repository, as
a number plus units (e.g. 4Gi).

Units allowed: Mi , Gi , Ti

Minimum value: 256Mi

Default: 2Gi

cpu: 4
gpu: 2
systemMemory: 8Gi
sharedMemory: 512Mi

Triton Management Service Deployment Guide 7

systemMemory : The amount of system memory, as a number plus units (e.g. 4Gi
).

Units allowed: Ki , Mi , Gi , Ti

Minimum value: 256Mi , and at least 128Mi more than sharedMemory .

Default: 4Gi

sharedMemory : The amount of shared memory, as number plus units (same units
as memory).

Minimum value: 32Mi

Default: 256Mi

Note: Some backends (e.g. PyTorch) allow the user to use shared memory to
allocate tensors.

If you plan on using this, make sure you set a higher value.

Configuring Persisted Database

To enable and configure TMS to persist database contents, a volume claim bounded to a
sizeable kuberenetes persistent volume must be provided to
values.yaml#server.databaseStorage.volumeClaimName .

In the case of server failure or restart, TMS will be able to reload the contents of the
database from this volume.

It should be noted that server performance can be affected by slow or unreliable storage
solutions used for the persisted volume.

TMS Deployment Using Helm

Assuming you’ve followed the steps above, and downloaded the TMS Helm chart,
exported its values.yaml file, and modified it as necessary, use the following command
to install (aka deploy) TMS:

Triton Management Service Deployment Guide 8

Security Considerations

The Kubernetes cluster where TMS is installed should be properly secured according to
best practices and the security posture of your organization.

Any additional, optional services connected to TMS such as Prometheus and Prometheus
adapter should also be secured. We recommend the cluster administrator properly
secure access to any S3 or other external model repositories which TMS will utilize. We
reccomend leverating encryption in transit and at rest, scoping access to cluster
resources following the principle of least privilege, as well as configuring audit logging for
your cluster.

TMS default configuration does not allow connections from outside of the Kubernetes
cluster. The user assumes responsibility for securing any external connections when
changing the default configuration values.

Useful Links & Additional Resources

NVIDIA GPU Cloud

Kubernetes

Secrets

Helm

Download & Installation

Commands

Charts

Triton User Guide
© Copyright 2024, NVIDIA.. PDF Generated on 06/05/2024

helm install <name-of-tms-installation> -f values.yaml triton-management-service-
1.0.tgz

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://ngc.nvidia.com/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://helm.sh/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/helm/
https://helm.sh/docs/topics/charts/
https://github.com/triton-inference-server/server/blob/main/docs/README.md

	TMS Pre-deployment Configuration
	TMS Deployment Using Helm
	Security Considerations

