NVIDIA.

Triton Pools & Quota Base Shared Tritons



Table of contents

Triton Pool Options

Quota Based Shared Triton Leases

Triton Pools & Quota Base Shared Tritons



/\ Attention

NVIDIA Triton Management Service (TMS) will reach the end of life on
July 31, 2024. The version 1.4.0 is the last release.

Triton Pools enable TMS administrators to create a set of Triton instances which can be
shared by any leases created and assigned to the pool. Multiple pools can exist
simultaneously with each pool having its own definition and purpose.

Pool definitions allow for the specification of the container image used to deploy Triton
instances, and the specification of the resources reserved for and assigned assigned to
each TIS instance present in the pool. In addition, a pool definition includes a minimum
and maximum pool size (aka. number of concurrent Triton instances the pool supports),
and a per-instance quota value used by TMS to determine which Triton instances are best
candidates for new leases to be assigned to.

Note: Triton Pools work best in clusters with homogeneous GPUs. TMS does not take GPU SKU
into consideration when determining the capacity of Triton instances.

Triton Pool Options

Name

Triton Pools must be given a name. A pool’'s name must be unique among all other
existing pools. A name can be reused once the name’s previous pool has been deleted.
This name is used to identify the pool when creating leases, or interacting with the pool.

Per-Instance Quota

Triton Pools must have a per-instance quota value. The quota value is used to determine
which Triton instances have available “space” for new leases to be assigned to.

The meaning of the units the quota is defined as is determined by the pool’s creator. TMS
applies no specific meaning to the value.

Triton Pools & Quota Base Shared Tritons 2



For example, a pool could be created in a cluster with GPUs which all have 40Gi of
memory. The TMS administrator could then decide that each Triton instance should be
assigned a per-instance quota value of 40, and expect that all leases deployed into the
pool specify the amount of GPU memory they require in gigabytes.

In the above case, TMS would only compare a lease’s quota request against any available
quota on Triton instances in the pool. TMS would not inspect Triton or the GPU to
determine the actual amount of available GPU memory. There is no enforcement of
guota values at runtime.

For example, it might be known ahead of time that each Triton instance in a pool is
capable of hosting four leases. Therefore, the pool could be created with a per-instance
qguota value of 4, and each lease would specify a quota need value of 1.

In the above case, each unit of per-instance quota is equal to a single “computing slot”
and each lease would consume one, or more, of them.

Instance Limits

Triton Pools are defined with a minimum and maximum number of Triton instances
they're allowed to create and host. When the minimum value is greater than zero, the
pool will attempt to always have at least that number of Triton instances available.

These limits are used to determine when a pool scales the number of Triton instances
present in the pool. When a lease is created and assigned to the pool and there are no
available Triton instances with sufficient available quota to host the lease, the pool will
attempt to add a new Triton instance only if it has not already reached it maximum
capacity. When a pool has insufficient capacity and cannot add a new Triton instance, any
lease creation attempt will be rejected.

Note: When attempting to create new Triton instances, pools are limited by available cluster
resources.

Triton Definition

Triton Pool definitions include a definition for each Triton instance in the pool. Triton
definitions include the Triton container image used, the number of logical CPU cores, the

Triton Pools & Quota Base Shared Tritons 3



number of GPUs, and the amount of memory reserved and assigned to each Triton
instance created by the pool.

Enforcement of Triton Backend Uniqueness

Triton Pool definitions include an option to not enforce that each Triton instance be
restricted to the Triton backends used by the first lease deployed on it. Enforcement is
enabled by default because the mixing of Triton backends is discouraged due to issues
with memory management.

For example, a Triton instance is deployed with enforcement enabled. The first least
deployed to the instance is an ensemble of two models; the first is a TensorFlow model,
the second is a PyTorch model. The TensorFlow and PyTorch backends will each allocate
as much memory as possible, effectively splitting the available memory between them.

From this point on, because enforcement is enabled, only leases which depend on the
TensorFlow and/or PyTorch backends will be deployed to this Triton instance. When a
second lease is deployed to this Triton instance, it will only contain models with backends
meeting this requirement.

The first time TMS encounters a model, its backend is considered unknown and therefore
cannot be assigned to any existing Triton instance. Once deployed, TMS will learn which
Triton backend the model depends on and will update its record of the Triton instance to
reflect the correct mix of backends active on the instance. Additionally, TMS will record
the Triton backend information of the model such that all future deployments of the
same model will be able to correctly select which Triton instances match the model’s
Triton backend requirements.

When enforcement is disabled, TMS will select Triton instances without taking into
consideration for model backends and which Triton backends are active on instances.
This simplifies instance selection, but incurs the risk of attempting to load a model with a
backend that's not present on a Triton instance and the instance having insufficient
memory available to the load the model.

Enabling enforcement is recommended unless extensive testing with a restricted set of
models has been done to ensure Triton instance stability.

Quota Based Shared Triton Leases

Triton Pools & Quota Base Shared Tritons 4



Quota based shared Triton (QBST) leases are defined as one or more models with a
specified quota consumption value and assigned to a Triton Pool. The specified quota
consumption value, or quota, is used to determine how the lease’s models will be hosted.
Leases with multiple models will always have all of its models hosted by a single Triton
instance.

Quota

The quota value of a QBST lease defines the amount of “space” or resources the lease
will consume. The units or meaning of the value the quota is defined as is determined by
the pool's creator. TMS applies no specific meaning to the value.

For example, a Triton Pool might define units in terms of “compute fraction” with each
Triton instance being assigned a denominator value. For this example, we'll assume each
Triton instance is assigned a quota capacity of 8. Any lease assigned to this pool must
specify what fraction of a while Triton instance the lease will consume. This is done by the
lease’s quota value.

Continuing with the example, lease could be created which expects to consume a quarter
of the capacity of a Triton instance would be assigned a quota value of 2. This lease could
share the Triton instance with any combination of other leases whose quota sum is less
than or equal to 6 (the remaining quota capacity).

It is up to the pool's administrator to determine the units and meaning of a pool's quota,
and the measures by which a lease is expected to determine the amount quota it will
consume.

TMS uses lease and pool quota values to determine how and where to place leases within
a pool. TMS does not enforce any kind of resource utilization after a lease has been
assigned to a Triton instance.

Extending the example above, a lease creator specifies that their lease consumes 2 quota
units. In actuality the lease consumes 8 quota units (i.e. an entire Triton instance).
Because the lease consumes significantly more resources than advertised, several of the
loaded models, including models loaded for other leases, experience significant
performance degradation and out of memory errors.

Triton Pools & Quota Base Shared Tritons 5



It is important to test the quota consumption values of leases before creating them in a
production environment. Undervaluing leases can lead to performance degradation, out
of memory errors, and Triton instance instability. Overvaluing leases, while often safer,
can leave hardware under utilized and potentially cause capacity issues due external
processes being forced to wait for available Al cycles.

Triton Pools & Quota Base Shared Tritons



	Triton Pool Options
	Quota Based Shared Triton Leases



