Creating an Application¶
Using Textual Representation and CLI Tools¶
Set the NGC API Key¶
Set the NGC API key to be able to sync microservices from NGC:
Get the NGC API Key - Refer to Generating Your NGC API Key.
$ ucf_app_builder_cli registry repo set-api-key -a <API-KEY>
Repository 'UCF' added
The command will print the repositories that are accessible using the API key.
List Available Microservices¶
To get the list of available microservices:
$ ucf_app_builder_cli service list
List of available services in local repository:
==============================================
ucf.svc.myservice
List of available services in UCF repository:
================================================
ucf.svc.botmaker.dialog-manager
ucf.svc.botmaker.speech-controller
ucf.svc.botmaker.speech-web-app
ucf.svc.botmaker.text-web-app
ucf.svc.riva.speech-skills
The command lists available microservices built locally as well as in NGC repository.
View Information of Microservices¶
To view information about microservices, run:
$ ucf_app_builder_cli service info -n ucf.svc.botmaker.speech-web-app
name: ucf.svc.botmaker.speech-web-app
specVersion: 1.5.0
chart: https://helm.ngc.nvidia.com/eevaigoeixww/ucf-11-ea-release/charts/botmaker-speech-web-app-2.0.0.tgz
description: BotMaker Speech Web App
type: msapplication
tags: []
keywords: []
publish: false
ciTrigger: false
egress:
- name: speech-controller
description: Speech Controller gRCPC endpoint
protocol: TCP
scheme: grpc
mandatory: true
data-flow: in-out
ingress:
- name: webapp-ui
description: Web App UI Endpoint
scheme: http
data-flow: in-out
service: botmaker-speech-web-app-deployment-service
port: 5001
protocol: TCP
metadata: {}
version: 2.0.0
displayName: BotMaker Speech Web App
category:
functional: Speech AI
industry: General
secrets: []
buildToolVersion: 1.1.1
Parameters:
-------------
debug: (boolean), Start bot in debug mode [Mandatory:False]
feedback: (boolean), Enables feedback buttons in web mode [Mandatory:False]
gunicornWorkers: (string ), Number of Gunicorn Workers for FM Server [Mandatory:False]
gunicornTimeout: (string ), Gunicorn Timeout for FM Server [Mandatory:False]
Compliance Info:
---------------------
Report Generated on 2022-11-22 18:24:51 (UTC) using MSBuilder v1.1.1
Development compliance (Mandatory) 100.0%
Development compliance (Optional) 66.66%
Based on this information, users can choose the microservices to use and how to use them in the applications - setting parameters, connecting endpoints etc.,
Adding --show-docs
to the above command, will print detailed documentation for the microservice.
$ ucf_app_builder_cli service info -n ucf.svc.botmaker.speech-web-app --show-docs
...
Documentation:
--------------
╔═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╗
║ ucf.svc.botmaker.speech-web-app ║
╚═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╝
Description
BotMaker Speech Web App
Sample web application that communicates with Speech Controller and can be used to interact with speech based bot using web
browser.
Usage
Params:
┌───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ botmaker-webapp: │
│ debug: false │
│ # Show debug info for bot in Web App │
│ feedback: true │
│ # Enables feedback buttons in web mode │
│ gunicornWorkers: "1" │
│ # Number of Gunicorn Workers for Web App │
│ gunicornTimeout: "120" │
│ # Gunicorn Timeout for Web App │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Connections:
┌───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ connections: │
│ botmaker-webapp/speech-controller: speech-controller/grpc-api │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Performance
NA
Supported Platforms
x86 dGPU
Deployment requirements
1 Make sure k8s foundational services are running
License
NVIDIA Proprietary License
Known Issues / Limitations
NA
References
NA
Create Application Boilerplate¶
Now that the microservices that will be required have been chosen, we can start creating the application.
We will first create a boilerplate and then start updating it to match the reference application Update Application.
Run the following command to generate a application boilerplate:
$ ucf_app_builder_cli app create my-application
UCF Application graph boilerplate generated at my-application.yaml (Doc: README.md)
This will generate a new file my-application.yaml
along with README.md
for the application documentation.
The file is a template with contents:
specVersion: '1.5.0'
version: 0.0.1
doc: README.md
name: my-application
description: Description for my-application
dependencies:
- ucf.svc.microserviceA:0.0.1
- ucf.svc.microserviceB:0.0.1
components:
- name: microserviceA
type: ucf.service.microserviceA
parameters:
paramA1: 100
paramA2:
- name: test
secrets:
some-secret-name: some-secret
- name: microserviceB
type: ucf.service.microserviceB
parameters:
paramB1: false
paramB2:
- name: test
connections:
microserviceA/http: microserviceB/http
vaultAgent:
auth:
path: auth/jwt/authMountPath
type: jwt
jwt:
audience: https://vault-service:443
role: auth-role
role: auth-role
namespace: vault-namespace
service: https://vault-service/
# certificates:
# devCerts:
# file: certificates.yaml
# addToHelmChart: false
secrets:
some-secret:
vaultAgent:
path: secret/mount/path
template:
type: kv
key: KEY_IN_SECRET
# some-secret:
# k8sSecret:
# secretName: <k8sSecretName>
# key: <keyInK8sSecret>
# some-secret:
# secretsStoreCsi:
# providerClassName: <providerClassName>
# objectName: <objectName>
# some-secret:
# certificate:
# certName: <certificateName>
# type: <certificate/privateKey/issuingCA>
The various parts of the application YAML file are explained in Sample Application - Textual Format.
Note
App name shouldn’t contain spaces
Update App Information¶
Update the basic information for the application like name, short description etc. For more information on the fields refer to Basic Information.
After updating, the section would look like:
specVersion: 1.5.0
version: 1.13.1
doc: README.md
name: ucf-bot-app
description: UCF application for a bot
Update Dependencies¶
Add the microservices to be used in the application to the dependencies
section. This information is required to
fetch desired version of microservices when building the application.
A list of microservices and their desired versions must be added to this section. The format is a list of strings <microservice-type>:<microservice-version>
.
The microservice version can be obtained from the service info
command described above.
To view all available versions of a microservice, run:
$ ucf_app_builder_cli service versions -n ucf.svc.botmaker.speech-web-app
List of versions for service in UCF repository:
===============================================
2.0.0
<microservice-version>
can be a fixed version or in the format of NPM version range spec https://github.com/npm/node-semver#ranges
After updating the section would look like:
dependencies:
- ucf.svc.riva.speech-skills:2.0.0
- ucf.svc.botmaker.speech-web-app:>=2.0.0 && < 3.0.0
- ucf.svc.botmaker.speech-controller:2.0.x
- ucf.svc.botmaker.dialog-manager:2.0.0
In the above example, when the application is built, the tools will fetch the highest version that matches the version specification for that microservice.
For
ucf.svc.riva.speech-skills
anducf.svc.botmaker.dialog-manager
, version2.0.0
will be pickedFor
ucf.svc.botmaker.speech-web-app
, if the available versions are1.0.0
,2.0.0
, and3.0.0
, version3.0.0
will be pickedFor
ucf.svc.botmaker.speech-controller
, if the available versions are1.0.0
,2.0.0
and2.1.0
, version2.0.0
will be picked
This allows latest compatible versions of microservices to be picked when building applications without having to update the application graph file.
UCF Microservices follow semantic versioning - <MAJOR>.<MINOR>.<PATCH>
Changes in
<MAJOR>
part of version indicate major changes with possible breakage in backward compatibility.Changes in
<MINOR>
part of version indicate enhancements done to the microservice with backward compatibility preserved.Changes in
<PATCH>
part of version indicate minor changes like bug fixes done to the microservice with backward compatibility preserved.
Add and Configure Microservices¶
Next, we will add microservices to the application and configure them i.e set their parameters and set secrets. This is done
by adding microservices to the components
section.
For example, ucf.svc.botmaker.speech-web-app
can be added to the application, using:
- name: botmaker-webapp
type: ucf.svc.botmaker.speech-web-app
parameters:
debug: false
gunicornTimeout: "60"
imagePullSecrets:
- name: ngc-docker-reg-secret
The parameters must be set according to the parameter schema for the microservice which can be obtained from the service info
command output.
For example, for the ucf.svc.botmaker.speech-web-app
:
$ ucf_app_builder_cli service info -n ucf.svc.botmaker.speech-web-app
...
Parameters:
-------------
speech: (boolean), Speech Web App or Text Web App [Mandatory:False]
debug: (boolean), Start bot in debug mode [Mandatory:False]
feedback: (boolean), Disables feedback buttons in web mode [Mandatory:False]
gunicornWorkers: (string ), Number of Gunicorn Workers for FM Server [Mandatory:False]
gunicornTimeout: (string ), Gunicorn Timeout for FM Server [Mandatory:False]
...
Here, debug
is a boolean
parameter and gunicornTimeout
is a string
parameter. Parameters that are
marked mandatory must be specified. Some microservices have nested parameters as seen in the example below.
UCF application build tools will validate these parameters. During application build, the build tools will throw an error if mandatory parameters are not set or they do not match parameter schema. For example if debug
is set to "123"
:
Validating application ...
debug:'123' is not of type 'boolean'
Warning!!! parameter validation failed for microservice instance botmaker-webapp
Application validation failed
After adding all the required microservices for the application, the components
section looks like:
components:
- name: riva-speech
type: ucf.svc.riva.speech-skills
parameters:
buildModelEngines: 'true'
ngcModelConfigs:
- nvidia/riva/rmir_asr_citrinet_1024_en_us_str:2.6.0
- nvidia/riva/rmir_tts_fastpitch_hifigan_en_us:2.6.0
- eevaigoeixww/ucf-11-ea-release/misty_text_classification:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_weather:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_poi:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_smalltalk:1.7.3-ea
- nvidia/riva/rmir_nlp_question_answering_bert_base:2.6.0
- nvidia/riva/rmir_nlp_named_entity_recognition_bert_base:2.6.0
imagePullSecrets:
- name: ngc-docker-reg-secret
- name: speech-web-app
type: ucf.svc.botmaker.speech-web-app
parameters:
debug: false
gunicornTimeout: "60"
imagePullSecrets:
- name: ngc-docker-reg-secret
- name: speech-controller
type: ucf.svc.botmaker.speech-controller
parameters:
pipeline: speech_lite
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
wordBoostFilePath: ''
imagePullSecrets:
- name: ngc-docker-reg-secret
- name: dialog-manager
type: ucf.svc.botmaker.dialog-manager
parameters:
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
botConfigName: misty_bot_config.yaml
botConfig:
fulfillments:
weather:
parameters:
api-key: XXXXXXXXXXXXXXXXXXX
poi:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
here-api-key: XXXXXXXXXXXXXXXXXXXXXX
map:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXX
imagePullSecrets:
- name: ngc-docker-reg-secret
For microservices whose helm charts are built using UCF MS Builder Tool, some parameters are implicitly added.
These parameters are not shown in the service info
output. For example, imagePullSecrets
is an implicit parameter.
Implicitly added parameters are described in the next section.
Implicitly Added Parameters¶
As mentioned in previous section, microservices whose helm charts are generated using the UCF MS Builder Tool have some parameters added implicitly.
Following is an example of how to set these parameters along with their details:
- name: <svc-name>
type: <svc-ucf-type>
parameters:
imagePullSecrets: # List of K8S secrets to be used for pulling images required by the MS (Since 1.0 EA)
- name: ngc-docker-reg-secret
ucfVisibleGpus: [1, 2] # List of GPUs that should be made visible to the containers in the MS. Internally sets NVIDIA_VISIBLE_GPUS env var (Since 1.0 EA)
resources: # Resource requests and limits to set on the containers in the MS. (Since 1.0 EA)
requests: # Refer to - https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#resourcerequirements-v1-core
cpu: 1
limits:
nvidia.com/gpu: 1
serviceAccountName: name-of-sa # Name of the service account to use to run the pods belonging to the MS (Since 1.1 EA)
podAnnotations: # Annotations to set on the pods belonging to the MS (Since 1.1 EA)
annotation-name: annotation-value
podLabels: # Labels to set on the pods belonging to the MS (Since 1.1 EA)
label-name: label-value
extraPodVolumes: # List of extra volumes to add to all the pods belonging to the MS (Since 1.1 EA)
- name: extra-vol1 # Refer to https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#volume-v1-core
emptyDir: {}
extraPodVolumeMounts: # List of extra volume mounts to add to all the containers of all the pods belonging to the MS (Since 1.1 EA)
- name: extra-vol1:
mountPath: /tmp/extra-vol-dir
svcAnnotations: # Annotations to set on the services belonging to the MS (Since 1.1 EA)
annotation-name: annotation-value
svcLabels: # Labels to set on the services belonging to the MS (Since 1.1 EA)
label-name: label-value
global:
ucfGlobalEnv: # List of environment variables to set in all containers of all the pods belonging to the MS (Since 1.1 EA)
- name: SOME_ENV_VAR_NAME
value: someEnvVarValue
Configuring Secrets¶
All mandatory secrets for each microservice must be specified. The secrets requirement can be viewed using the service info
command.
Refer to Secrets Management for more information on how secrets work in UCF and how to configure them.
Connect Microservice Endpoints¶
Next we connect microservices together. Microservices that have mandatory Egress endpoints must be connected to another meaningful microservice that have corresponding and compatible Ingress endpoints that provide the necessary functionality required.
The endpoints of a microservice can be obtained from the service info
command output.
For example, for the ucf.svc.botmaker.speech-controller
:
$ ucf_app_builder_cli service info -n ucf.svc.botmaker.speech-controller
...
egress:
- name: redis
description: Redis message broker
protocol: TCP
scheme: asyncio
mandatory: false
data-flow: in-out
- name: riva
description: Riva Speech Skills API
scheme: grpc
protocol: TCP
mandatory: true
data-flow: in-out
- name: dialog-manager
description: Dialog Manager API
scheme: http
protocol: TCP
mandatory: true
data-flow: in-out
- name: ov-http
description: OV A2F service HTTP API
scheme: http
protocol: TCP
mandatory: false
data-flow: out
- name: ov-a2f-grpc
description: OV A2F service GRPC API
scheme: grpc
protocol: TCP
mandatory: false
data-flow: out
ingress:
- name: grpc-api
description: Speech Controller GRPC API
scheme: grpc
data-flow: in-out
service: botmaker-speech-controller-deployment-svc
port: 50055
protocol: TCP
...
From the output above, riva
is mandatory Egress endpoint. The corresponding required functionality is provided by the ucf.svc.riva.speech-skills
microservice.
$ ucf_app_builder_cli service info -n ucf.svc.riva.speech-skills
...
ingress:
- name: riva-speech-api
description: Riva Speech GRPC API
scheme: grpc
data-flow: in-out
service: riva-speech-riva-speech-svc
port: 50051
protocol: TCP
...
So we can connect ucf.svc.botmaker.speech-controller
’s (component name- speech-controller) riva
Egress endpoint to ucf.svc.riva.speech-skills
’s (component name - riva-speech) riva-speech-api
Ingress endpoint.
Connections are specified as an object with top-level key connections
in the application yaml. The connections are in the format:
connections:
<egress-endpoint-component-name1>/<egress-endpoint-name1>: <ingress-endpoint-component-name1>/<ingress-endpoint-name1>
<egress-endpoint-component-name2>/<egress-endpoint-name2>: <ingress-endpoint-component-name2>/<ingress-endpoint-name2>
So the above connection can be added as:
connections:
speech-controller/riva: riva-speech/riva-speech-api
In case the egress endpoint supports multiple connections (multi: true
), multiple ingress endpoints can be connected to it using array style format:
connections:
<egress-endpoint-component-name>/<egress-endpoint-name>: [
<ingress-endpoint-component-name1>/<ingress-endpoint-name1>,
<ingress-endpoint-component-name2>/<ingress-endpoint-name2>
]
UCF application build tools will validate the endpoints and connections. If a mandatory Egress endpoint is not connected or an incase of an invalid connection, the tools will throw an error like:
Validating application ...
Warning!!! Invalid connection 'dialog-manager/redis' (scheme: asyncio, protocol: TCP) -> 'riva-speech/riva-speech-api' (scheme: grpc, protocol: TCP)
Warning!!! Mandatory endpoint 'speech-controller' not set for microservice instance speech-web-app
Application validation failed
And after adding all the connections, the section would look like:
connections:
speech-web-app/speech-controller: speech-controller/grpc-api
dialog-manager/riva-speech: riva-speech/riva-speech-api
dialog-manager/triton-grpc: riva-speech/triton-grpc
speech-controller/riva: riva-speech/riva-speech-api
speech-controller/dialog-manager: dialog-manager/dialog-manager
Add Detailed Documentation¶
Add any detailed documentation required for building the application and then deploying the built helm chart to the README file accompanying the application graph file.
For example the reference application README contains instructions such as:
## Test environment
Instructions in this document were tested with the following environment.
- Ubuntu: 20.04
- Kubernetes: microk8s
- NVIDIA GPU Operator running
- MDX Local Path Provisioner running
...
## Deploy app
One time step to create the k8s secret for NGC docker registry and NGC CLI API KEY
```
kubectl create secret docker-registry ngc-docker-reg-secret --docker-server=nvcr.io --docker-username='$oauthtoken' --docker-password=<NGC_API_KEY>
kubectl create secret generic ngc-api-key-secret --from-literal=NGC_API_KEY=<NGC_API_KEY>
...
## Interacting with the Bot
Get Nodeport for `botmaker-speech-web-app-deployment-service` using `kubectl get svc` command.
You can access web agent using browser at **https://<Node_IP>:<Nodeport_>/bot**.
Final Application Graph File¶
After all the changes are done, the final application graph file should look like:
specVersion: 1.5.0
version: 1.13.1
doc: README.md
name: ucf-bot-app
description: UCF application for a bot
dependencies:
- ucf.svc.riva.speech-skills:2.0.0
- ucf.svc.botmaker.speech-web-app:2.0.0
- ucf.svc.botmaker.speech-controller:2.0.0
- ucf.svc.botmaker.dialog-manager:2.0.0
components:
- name: riva-speech
type: ucf.svc.riva.speech-skills
parameters:
buildModelEngines: 'true'
ngcModelConfigs:
- nvidia/riva/rmir_asr_citrinet_1024_en_us_str:2.6.0
- nvidia/riva/rmir_tts_fastpitch_hifigan_en_us:2.6.0
- eevaigoeixww/ucf-11-ea-release/misty_text_classification:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_weather:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_poi:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_smalltalk:1.7.3-ea
- nvidia/riva/rmir_nlp_question_answering_bert_base:2.6.0
- nvidia/riva/rmir_nlp_named_entity_recognition_bert_base:2.6.0
imagePullSecrets:
- name: ngc-docker-reg-secret
secrets:
ngc-api-key-secret: my-ngc-api-key
- name: speech-web-app
type: ucf.svc.botmaker.speech-web-app
parameters:
debug: false
gunicornTimeout: "60"
imagePullSecrets:
- name: ngc-docker-reg-secret
- name: speech-controller
type: ucf.svc.botmaker.speech-controller
parameters:
pipeline: speech_lite
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
wordBoostFilePath: ''
imagePullSecrets:
- name: ngc-docker-reg-secret
secrets:
ngc-api-key-secret: my-ngc-api-key
- name: dialog-manager
type: ucf.svc.botmaker.dialog-manager
parameters:
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
botConfigName: misty_bot_config.yaml
botConfig:
fulfillments:
weather:
parameters:
api-key: XXXXXXXXXXXXXXXXXXX
poi:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
here-api-key: XXXXXXXXXXXXXXXXXXXXXX
map:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXX
imagePullSecrets:
- name: ngc-docker-reg-secret
secrets:
ngc-api-key-secret: my-ngc-api-key
connections:
speech-web-app/speech-controller: speech-controller/grpc-api
dialog-manager/riva-speech: riva-speech/riva-speech-api
dialog-manager/triton-grpc: riva-speech/triton-grpc
speech-controller/riva: riva-speech/riva-speech-api
speech-controller/dialog-manager: dialog-manager/dialog-manager
secrets:
my-ngc-api-key:
k8sSecret:
secretName: ngc-api-key-secret
key: NGC_API_KEY
Parameters File¶
The parameters of the microservices can be extracted into a separate file and can be used during application build time. This allows the same application graph file to be used but with different configurations of microservices e.g different set of parameters for development and production environments.
The format of the the parameters file is a set of key-value pairs where key is the name of the microservice in the application and value is an object of the microservice parameters to set. For example, for the reference application, the parameters file would look like:
riva-speech:
buildModelEngines: 'true'
ngcModelConfigs:
- nvidia/riva/rmir_asr_citrinet_1024_en_us_str:2.6.0
- nvidia/riva/rmir_tts_fastpitch_hifigan_en_us:2.6.0
- eevaigoeixww/ucf-11-ea-release/misty_text_classification:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_weather:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_poi:1.7.3-ea
- eevaigoeixww/ucf-11-ea-release/intent_slot_smalltalk:1.7.3-ea
- nvidia/riva/rmir_nlp_question_answering_bert_base:2.6.0
- nvidia/riva/rmir_nlp_named_entity_recognition_bert_base:2.6.0
imagePullSecrets:
- name: ngc-docker-reg-secret
speech-web-app:
debug: false
gunicornTimeout: "60"
imagePullSecrets:
- name: ngc-docker-reg-secret
speech-controller:
pipeline: speech_lite
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
wordBoostFilePath: ''
imagePullSecrets:
- name: ngc-docker-reg-secret
dialog-manager:
botNgcPath: eevaigoeixww/ucf-11-ea-release/misty_bot:2.0.0-ea-x86_64
botConfigName: misty_bot_config.yaml
botConfig:
fulfillments:
weather:
parameters:
api-key: XXXXXXXXXXXXXXXXXXX
poi:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
here-api-key: XXXXXXXXXXXXXXXXXXXXXX
map:
parameters:
api-key: XXXXXXXXXXXXXXXXXXXXXX
imagePullSecrets:
- name: ngc-docker-reg-secret
Using UCF Studio¶
Building an Application¶
UCF Applications can be built using either the UCF Application Builder CLI
tool or the UCF Studio
GUI.
Using CLI Tools¶
Existing application graph files can be built using the following command:
$ ucf_app_builder_cli app build app.yaml
2022-12-05 14:44:52,464 - AppBuilder - INFO - Syncing any missing service versions to cache...
2022-12-05 14:44:52,507 - AppBuilder - INFO - Validating application ...
2022-12-05 14:44:52,517 - AppBuilder - INFO - Building application ucf-bot-app-1.13.1 ...
2022-12-05 14:45:00,122 - AppBuilder - INFO - Application Information written to ucf-bot-app-1.13.1/app_info.yaml
2022-12-05 14:45:00,122 - AppBuilder - INFO - Application compliance report generated at ucf-bot-app-1.13.1/compliance_report.json
2022-12-05 14:45:00,123 - AppBuilder - INFO - Application Helm Chart generated in ucf-bot-app-1.13.1
2022-12-05 14:45:00,123 - AppBuilder - INFO - App built
Parameter files can be applied using the following command:
$ ucf_app_builder_cli app build app.yaml params1.yaml params2.yaml
Application build performs several validations including any syntax errors, incorrect parameters, invalid connections and fails in case of any issues:
$ ucf_app_builder_cli app build app.yaml
2022-12-05 14:46:16,846 - AppBuilder - INFO - Syncing any missing service versions to cache...
2022-12-05 14:46:16,888 - AppBuilder - INFO - Validating application ...
2022-12-05 14:46:16,891 - AppBuilder - ERROR - Mandatory endpoint 'speech-controller' not set for microservice instance speech-web-app
2022-12-05 14:46:16,899 - AppBuilder - ERROR - Application validation failed
Using UCF Studio¶
Refer to Create Application for an example of creating an application using UCF Studio.
Build Output¶
Building an application generates the following:
A deployable helm chart at the location mentioned by the command output e.g.
ucf-bot-app-1.13.1
Application information file with some information useful for deploying the application e.g.
ucf-bot-app-1.13.1/app_info.yaml
. Currently this includes:List of secrets used in the application and their details. This can be used to setup all the secrets prior to deploying the application.
List of metrics and their details exposed by microservices used in the application. This can be used to create any Prometheus rules or alerts or HPA configurations.
Sample for this file:
metrics: - name: nv_inference_count description: No. of inference requests executed by the server labels: [ model, version ] microservice: ucf.svc.riva.speech-skills v2.0.0 secrets: - name: my-ngc-api-key description: Secret for NGC API key type: Kubernetes Secret secretName: ngc-api-key-secret secretKey: NGC_API_KEY usedBy: - ucf.svc.riva.speech-skills v2.0.0 - ucf.svc.botmaker.speech-controller v2.0.0 - ucf.svc.botmaker.dialog-manager v2.0.0
Combined compliance report of all the microservices added to the application e.g.
ucf-bot-app-1.13.1/compliance_report.json
. Sample for this file:{ "name": "ucf-bot-app", "version": "1.13.1", "time-utc": "2023-03-13 13:21:33", "appbuilder-version": "1.5.0", "compliance-development-mandatory-overall": 100.0, "compliance-development-optional-overall": 49.99, "compliance-ms": [ { "name": "ucf.svc.riva.speech-skills", "version": "2.0.0", "compliance-development-mandatory": 100.0, "compliance-development-optional": 66.66 }, { "name": "ucf.svc.botmaker.speech-web-app", "version": "2.0.0", "compliance-development-mandatory": 100.0, "compliance-development-optional": 66.66 }, { "name": "ucf.svc.botmaker.speech-controller", "version": "2.0.0", "compliance-development-mandatory": 100.0, "compliance-development-optional": 33.33 }, { "name": "ucf.svc.botmaker.dialog-manager", "version": "2.0.0", "compliance-development-mandatory": 100.0, "compliance-development-optional": 33.33 } ] }
Deploy an Application¶
Building an UCF application generates a deployable helm chart. A simple way to deploy it is using the helm install
command:
$ helm install <release-name> <app-output-helm-chart>
Some microservices expose their functionality to external users using the NodePort
service type. Exposing NodePort
services
may not be possible or maybe tricky to expose in Kubernetes provided by some cloud service providers. In this case global.useLoadBalancerInsteadOfNodePort
parameter maybe used to override the NodePort
service type to LoadBalancer
. This is only possible for microservices that are built using
UCF 1.5 or later. An example of using the option is:
$ helm install <release-name> <app-output-helm-chart> –set=global.useLoadBalancerInsteadOfNodePort=true
Users may also have their own of deploying the application charts.
The application README which gets copied to the output helm chart may have additional pre-requisites/steps required to deploy the application.
Some applications depend on core services like Vault Agent Injector, Secrets Store CSI Driver. Users must deploy these services before deploying the applciation. The application information generated during app build might be helpful here.