
Exported on Nov/27/2023 05:28 PM
https://docs.nvidia.com/networking/x/Nw5GC

 

 

 

 

 

 

 

UFM Cable Validation Tool v1.2.0
 

 

https://docs.nvidia.com/networking/x/Nw5GC


2

Table of Contents
About This Document................................................................................................................................. 5

Technical Support ..................................................................................................................................... 6

Document Revision History .......................................................................................................................... 7

Release Notes.......................................................................................................................................... 8

Limitations ........................................................................................................................................................ 8

Overview ............................................................................................................................................... 9

Collector .............................................................................................................................................. 10

Deploying the Module ..........................................................................................................................................10

Deploying the Module as Standalone..................................................................................................................... 10

Setting Docker Environment............................................................................................................................... 10

Specifying the Network Interface .................................................................................................................... 10

Adding Hostnames ...................................................................................................................................... 11

Using Volumes ........................................................................................................................................... 11

Overriding Apache Configuration ..................................................................................................................... 11

Deploying the Module as a UFM Enterprise Plugin ..................................................................................................... 11

Copy Files to the Plugin................................................................................................................................ 12

Overriding the Apache Configuration ................................................................................................................ 12

Running bringup CLI ............................................................................................................................................12

bringupcli Usage ............................................................................................................................................ 13



3

Running bringup GUI........................................................................................................................................ 14

Update Certificate..............................................................................................................................................14

Validations .......................................................................................................................................................15

Other Commands................................................................................................................................................15

Troubleshooting .................................................................................................................................................15

Complete CLI Command Reference ..........................................................................................................................15

Bringup Server REST API .......................................................................................................................................18

Login .......................................................................................................................................................... 19

Retrieving Validation Report .............................................................................................................................. 19

Bringup Commands Support via REST API ............................................................................................................... 22

Processing a Command................................................................................................................................. 22

Supported Commands .................................................................................................................................. 22

Supported Commands .................................................................................................................................. 22

Getting Command Output ............................................................................................................................. 26

Getting Commands Processing Status................................................................................................................ 27

Getting a List of Supported Commands ............................................................................................................. 27

Getting Help on Command ............................................................................................................................ 28

Rack View .................................................................................................................................................... 28

Getting List of Racks ................................................................................................................................... 29

Getting Rack View of a Specific Rack................................................................................................................ 29

Cables Agent .......................................................................................................................................... 31



4

Check if Cable Agent is Running ..............................................................................................................................31

Deploying Cable Agent on the Switch........................................................................................................................31

Cables Agent REST API..........................................................................................................................................32

Links Output Example ...................................................................................................................................... 32

Output Example of Ports................................................................................................................................... 33

Document Revision History ......................................................................................................................... 35

 

 



5

About This Document
This document describes NVIDIA® Unified Fabric Manager (UFM®) Cable Validation tool, connectivity and configuration options.



6

•
•

Technical Support
Customers who purchased NVIDIA products directly from NVIDIA are invited to contact us through the following methods:

E-mail: enterprisesupport@nvidia.com
Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract for details regarding technical support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should first seek assistance through their reseller.

mailto:Enterprisesupport@nvidia.com
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fsupport%2Fenterprise&data=05%7C01%7Camirn%40nvidia.com%7C1123aef1cfaf4fd44e7f08da4472ff5a%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637897557943988355%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=B55X06j66qptTA1ycMKbW3PMUw5pdNTZUd40nW8jKPA%3D&reserved=0


7

Document Revision History
For the list of changes made to this document, refer to Document Revision History.

https://docs.nvidia.com/networking/display/UFMCyberDEV/.Document+Revision+History+v2.4.0


8

Release Notes

Limitations
Internal Reference Number Issues

N/A Description: The tool does not support unmanaged switches

Keywords: Unmanaged Switch

Discovered in Release: 1.0.0



9

Overview
The purpose of the UFM cable validation tool is to validate the proper wiring of the network cluster and ensure high-quality links between the components.

The collector, also known as the bring up server, is the main component and is implemented as a docker container. It can be deployed on any machine 
connected to the management network of the switches, thereby facilitating communication with them. To manage large systems efficiently, an agent is 
installed on each switch, which is accountable for verifying the accuracy and quality of the switch links.



10

1.
2.
3.

Collector
The collector is the main module that should be deployed and run on a host with management network access. It is important to note that an IB interface 
is not required on the host.

Deploying the Module
The Cable Validation tool can be deployed in two methods: as a standalone or as a UFM Enterprise plugin.

Deploying the Module as Standalone
Deploy the cables_bringup container on a host, as follows:

docker load -i /tmp/cables_bringup_<version>.tar.gz
docker run --name cables_bringup -itd --network=host cables_bringup
docker exec -it cables_bringup /bin/bash

Setting Docker Environment

Specifying the Network Interface
If the host system is equipped with multiple network interfaces and the switches are connected to the host through an interface that differs from the 
default management interface, the user can designate this particular interface by utilizing a specific environment variable, namely AGENTS_IFC_NAME. To 
illustrate, assuming the hypothetical interface name is eno3:

docker run --name cables_bringup -itd --network=host --env AGENTS_IFC_NAME=eno3 cables_bringup



11

Adding Hostnames
If the switches are not configured in the DNS server, you may add hostnames; the user may use the --add-host option when running the container. For 
example (assuming the switch name is switch-3245fa and its IP is 192.168.1.1): 

docker run --name cables_bringup -itd --network=host --add-host=switch-3245fa:192.168.1.1 cables_bringup

Using Volumes
Volumes can be used for data persistence or easier file transfer to the cables_bringup container. The volume must be mapped to /cable_bringup_root
in the container for data persistence. This volume can also be used for loading topology files. Example: 

docker run --name cables_bringup -itd --network=host -v /opt/bringup_data:/cable_bringup_root cables_bringup

Overriding Apache Configuration 
In the event that a host machine is running another Apache instance and utilizing the default ports 80/443, an alternative port may be designated for the 
bringup server by the user, these ports should be available and free. To accomplish this, the APACHE_HTTPS_PORT and APACHE_HTTP_PORT environment 
variables can be employed. Consider the following example: 

docker run --name cables_bringup -itd --network=host --env APACHE_HTTP_PORT=9080 --env APACHE_HTTPS_PORT=9443
 cables_bringup 

Deploying the Module as a UFM Enterprise Plugin

Deploy the module as a UFM Enterprise plugin as follows:

    Please note that Running Cable Validation as plugin is not supported on UFM Gen2.0.



12

1.
2.
3.

1.

2.

1.
2.
3.
4.
5.

1.

docker load -i /tmp/cables_bringup_<version>.tar.gz
./manage_ufm_plugins.sh add -p cablevalidation
docker exec -it ufm-plugin-cablevalidation bash

Copy Files to the Plugin
Users have two methods for copying files to the Cable Validation plugin:

Copy the files to the plugin's data volume located at /opt/ufm/ufm_plugins_data/cablevalidation, which is mapped to /data/ inside the 
plugin container.
Use the 'docker cp' command to transfer the required files directly to the container.

Overriding the Apache Configuration
When using Cable Validation as a plugin, the default ports 80/443 are already in use by UFM Enterprise. Therefore, port 8280 will be used for HTTP, and 
8633 for HTTPS by default. Users can opt to use different ports for the bring-up server, provided that these ports are available and free.

The plugin config.cfg file can be modified to update APACHE_HTTPS_PORT and APACHE_HTTP_PORT variables for that purpose. To make this adjustment, 
follow these steps:

Execute ./manage_ufm_plugins.sh add -p cablevalidation to add the Cable Validation plugin.
Stop the plugin using ./manage_ufm_plugins.sh stop -p cablevalidation
Use vim /opt/ufm/files/conf/plugins/cablevalidation/config.cfg to modify the 'APACHE_HTTPS_PORT' and 'APACHE_HTTP_PORT' variables.
Update and save the file.
Start the plugin again with ./manage_ufm_plugins.sh start -p cablevalidation.

With these changes, the new configuration will take effect, and Apache will run with the updated ports."

Running bringup CLI
Run exec bringupcli in the container:



13

2.

1.

docker exec -it cables_bringup bringupcli

Alternatively, it is possible to run exec bash in the container and run bringcli from anywhere within the container: 

 docker exec -it cables_bringup 

bringupcli Usage
bringupcli may have command line arguments, see usage below for more details:

Optional Arguments:

Argument Description

-h, --help    Show this help message and exit

-V, --version Show program version number and exit

-k, --kill-other-sessions Kill other CLI sessions if existent

To initialize the tool, perform the following:

Load the fabric topology file: 

load_topo <topo filename> topo file extension [cluster=<cluster name>]
load_ptp <topo filename > excel file extension [cluster=<cluster name>]
load_ip <ip filename> [cluster=<cluster name>]
load <topo filename> <ip filename>(both topo and ips) [cluster=<cluster name>] 

root@r-ufm65:/# bringupcli -h

usage: bringupcli [-h] [-V] [-k]





14

2.

3.

1.
2.
3.

a.
b.
c.

4.

load_clusters <clusters file>

Set the credentials for the switches. Use set_default_creds/set_switch_creds to set the credentials.
The argument `[save=true|false] default: true` can be used with both commands to indicate whether to save the credentials to a file or not.
Deploy the agent on all switches. Run:

deploy_all_agents

Running bringup GUI
Open the following URL in the browser: https://<bringup_machine_ip>/cables_validation 
Enter default credentials in the login page.
User management is not supported in the current version. To change it manually, use the htpasswd Linux utility.

In the bringup container, locate the .htaccees file
It is located at ${BRINGUP_CONF_APACHE_PATH}/.htaccess
Use htpasswd to add, modify or delete users.

user may change the default self signed certificate located by default in the container at: 

SSLCertificateFile ${BRINGUP_CONF_APACHE_PATH}/certs/cv-cert.crt
SSLCertificateKeyFile ${BRINGUP_CONF_APACHE_PATH}/private/cv-cert.key

Update Certificate
To update a certificate, run the following command: 

add_certificate <crt file> <key_file>: update the ssl certificate.



15

•
•
•
•
•

•
•

•
•
•
•

1.

Validations
show_clusters: Show list of loaded clusters as loaded from the clusters file.
show_switches: Show list of loaded switches as loaded from the topology file
check_switch_status [cluster=<cluster>]: Check switch connectivity status (Ping/JSON-API/Agent )
start_validation [cluster=<cluster>]: Push topology to switches and get validation reports
stop_validation: Unsubscribe from getting switches updates

Other Commands
show_switch_history: Lists data files collected from switches in the last days
amber_show_latest: Shows latest collected amber data from switches

Troubleshooting
deploy_single_agent
deploy_all_agents
remove_all_agents
remove_single_agent

Complete CLI Command Reference
load_topo - Loads topology file (topo file extension).
load_topo <filename> dns=true [cluster=<cluster name >]–> assumes that DNS is active and you can access the switches by hostnames by 
default dns=true.
A topo file example: 

MQM8700 sw-hdr-proton01 CFG: main=4x



16

2.

a.

b.

3.

    P1 -4x-50G-> sw-hdr-proton02 P1
    P2 -4x-50G-> sw-hdr-proton02 P2
    P3 -4x-50G-> HCA_12 swx-proton03 mlx5_0/P1
    P4 -4x-50G-> HCA_12 swx-proton04 mlx5_2/P1

load_ptp - Loads PTP topology file (Excel file).
load_ptp <filename> sheets="sheet 1,my-sheet" dns=true [cluster=<cluster name >]–> assumes that DNS is active and that you can 
access the switches by hostnames by the default setting of dns=true.
If sheets argument is provided, only given sheets are loaded, otherwise, all sheets will be loaded. An example of sheet in the ptp file:

rack U Name HCA/Port Rack U Name Port

316 22 c-csi-0329s 1 R113 22 c-csi-mqm9700-0327 1

316 24 c-csi-0331s 1 R113 22 c-csi-mqm9700-0327 1

Please be aware that the designated port can be indicated either as a singular numerical value or as a combination of two numbers separated 
by a forward slash in the case of a split port. Concerning the port numbers for Host Channel Adapters (HCA), the following mapping 
convention should be applied: 1 represents mlx5_0 P1, 2 represents mlx5_1 P1, and so on.
Moreover, it is mandatory for the Precision Time Protocol (PTP) file to incorporate a "Legend" sheet, which contains vital details regarding 
switch and host patterns. The below is an example:

Name  Model  Switch/HCA  Speed 

c-csi-mqm*  MQM9700  switch  4x-100G 

c-csi-0*  HCA_2  hca  4x-100G 

Load_ip [cluster=<cluster name >]-Loads switch ip addresses, can be used if DNS is inactive. Loads the IP/switch-name mapping, to allow reaching 
the switch via REST API to retrieve local topology, GUID, etc. The file format is pairs of IP addresses and hostname. This file will be used in 
association with a ‘topo’ file in case DNS is unavailable.
An IP file example: 

# A comment



17

4.

5.

6.

7.

8.

10.0.30  switch1
10.0.0.31  switch2

load [cluster=<cluster name >]- Loads both IP addresses and topo files. load inputs/my-topo loads inputs/my-topo.topo and inputs/my-
topo.ip.
load_clusters <clusters file> - Clusters file should have the following format, where topo file should be in xlsx format and the ip file is 
optional, if it is not provided, dns will be considered as true when loading topo. 

# cluster_name, topo_file, [ip_file]
CLUSTER1, cluster1_topo.xlsx, cluster1.ip
CLUSTER2, cluster2_topo.xlsx,

show_switches [cluster=<cluster name >]- Shows the list of loaded switches as loaded from the topology file. If the cluster name is provided, 
show the switch in the given cluster only.
Example output:

MQM8700 sw-hdr-proton01
-----------------------
 
MQM8700 sw-hdr-proton01 P3  --> swx-proton03 mlx5_0     P1
MQM8700 sw-hdr-proton01 P4  --> swx-proton04 mlx5_2     P1
 
MQM8700 ufm-sw-hdr01
--------------------
 
MQM8700 ufm-sw-hdr01 P1  --> ufm-sw-hdr02   P1
MQM8700 ufm-sw-hdr02
--------------------
 
MQM8700 ufm-sw-hdr02 P1  --> ufm-sw-hdr01   P1

set_default_creds - Sets the default switch/host credentials to override the built-in default credentials. These credentials are used for 
communication with any switch that does not have specific credentials.

set_default_creds user=<user> pwd=<pwd> [type=switch|host] [save=true|false]

set_node_creds - Sets the credentials for a specific switch/host, it can be used when the switch credentials are different than the defaults. 



18

9.
10.
11.
12.
13.

14.
15.

16.

17.

18.
19.
20.
21.

set_node_creds <switch> user=<user> pwd=<pwd> [save=true|false]

deploy_all_agents - Deploys agents on loaded switches that have no agents.
deploy_single_agent - Deploys agent on a specific switch.
remove_all_agents - Removes agents from loaded switches that have agents.
remove_single_agent - Removes an agent from a specific switch.
show_switch_history - Lists data files collected from switches in the last days show_switch_history past=3d. Past argument can be used to 
specify the history interval, by default it is set to one week past=1w.
amber_show_latest - Shows the latest collected amber data from switches
check_switch_status [cluster=<cluster name>] - Checks switch connectivity status (Ping/JSON-API/Agent). If the cluster is provided, the 
check will be done for the switches in the provided cluster only.
Example output: 

Host IP              ping   JSONAPI   Agent
-----------------------------   -------------    ----      ----    -----
sw-hdr-proton01.mtr.labs.mlnx   209.44.74        True      True    True
ufm-sw-hdr01.mtr.labs.mlnx      10.209.36.113    True      True    True
ufm-sw-hdr02.mtr.labs.mlnx      10.209.36.122    True      True    True

add_certificate <crt file> <key_file> - Updates the SSL certificate file used by Apache for secure connections. The provided file should be a 
valid SSL certificate file in crt format. The old certificate file will be backed up before replacing it with the new one.
start_validation - Initiates validation routine: pushes topology to switches and gets validation reports timeout (an optional argument), in which 
validation stops. (For example timeout=20m or timeout=2h). If timeout is not provided, use the stop_validation command to stop it. 
start_validation timeout=n (in seconds/minutes/hours/days).
stop_validation - Stops validation routine. Unsubscribe from getting switches updates.
version - Shows application version.
exit - Exits the application.
help - Shows a list of commands. For help on a specific command, run help <command>

Bringup Server REST API
The collector has a web server listening on two internal ports 8251 and 8252. These ports are not advertised outside the machine. The bringup server is 
running on the Apache server which uses the default http/https ports. It is not recommended to change the internal ports, as this requires changing the 



19

Apache service configuration. The Apache service uses a self signed certificate, that the user can change to his own certificate. All REST APIs can run only 
with https.

The following are the supported REST APIs:

Login
To use a REST API, you need to have session credentials. If you want to use curl to access the REST API, you should log in first by going to the URL 
cablevalidation/login and saving the cookie. After that, you can use the saved cookie for subsequent requests. 

# login and save cookie
curl -k -X POST -c cookies.txt -d "httpd_username=<user>" -d "httpd_password=<password>" https://<host>/
cablevalidation/login
# use saved cookie for REST API requests
curl -k --cookie cookies.txt https://127.0.0.1/cablevalidation/report/validation

Retrieving Validation Report 
Run:

GET https://<host>/cablevalidation/report/validation

Validation Report Output Example 

•
•
•

Please note that for all the following REST API URLs, the <host> attribute is the host IP or the hostname with the correct port number in case it is 
not the default one. For example:

https://10.20.30.40:8633/
https://10.20.30.40/  # the default port: 433
https://server-name:8639/



https://10.20.30.40:8633/
https://10.20.30.40/
https://server-name:8639/


20

curl -k https://swx-proton01/cablevalidation/report/validation | python3 -m json.tool
{
    "report": "ValidationReport",
    "stats": {
        "in_progress": 3,
        "no_issues": 0,
        "not_started": 0
    },
    "issues": [
        {
            "timestamp": 1666176949.5110743,
            "node_desc": "MQM8700 sw-hdr-proton01",
            "issues": [
                [
                    "Wrong-neighbor",
                    "MQM8700 sw-hdr-proton01:P3",
                    "HCA_12 swx-proton03 mlx5_0:P1",
                    "None:PNA"
                ],
                [
                    "Wrong-neighbor",
                    "MQM8700 sw-hdr-proton01:P4",
                    "HCA_12 swx-proton04 mlx5_2:P1",
                    "HCA_12 swx-proton04 mlx5_0:P1"
                ]
            ]
        },
        {
            "timestamp": 1666176949.4999607,
            "node_desc": "MQM8700 ufm-sw-hdr02",
            "issues": [
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr02:P2",
                    "NONE",
                    "MQM8700 ufm-sw-hdr01:P2"
                ],
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr02:P3",



21

                    "NONE",
                    "MQM8700 ufm-sw-hdr01:P3"
                ],
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr02:P7",
                    "NONE",
                    "MQM8700 ufm-sw-hdr01:P7"
                ]
            ]
        },
        {
            "timestamp": 1666176949.4870453,
            "node_desc": "MQM8700 ufm-sw-hdr01",
            "issues": [
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr01:P2",
                    "NONE",
                    "MQM8700 ufm-sw-hdr02:P2"
                ],
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr01:P3",
                    "NONE",
                    "MQM8700 ufm-sw-hdr02:P3"
                ],
                [
                    "Extra-cable",
                    "MQM8700 ufm-sw-hdr01:P7",
                    "NONE",
                    "MQM8700 ufm-sw-hdr02:P7"
                ]
            ]
        }
    ]
}



22

Bringup Commands Support via REST API
The processing of bringup commands is not limited to the CLI; it can also be accomplished through the REST API.

Processing a Command 
Run: 

POST https://<host>/cablevalidation/commands/{command_name} <command-data>

Supported Commands
Command Async Argument Type Mandatory

load_topo False

dns bool False

files list True

cluster str False

load_ip False

files list True

cluster str False

load_ptp False



23

Command Async Argument Type Mandatory

dns bool False

sheets list False

files str True

cluster str False

load False

file_prefix str True

cluster str False

Load_clusters False

file str True

set_default_creds False

user str True

pwd str True

type str False

save bool False

set_node_creds False

user str True



24

Command Async Argument Type Mandatory

pwd str True

type str True

save bool False

deploy_all_agents True

deploy_single_agent True

switch str True

remove_all_agents True

remove_single_agent True

switch str True

start_validation True

cluster str False

stop_validation True

add_certificate False

crt_file str  True 

key_file  str  True

check_switch_status  True

show_switches False



25

Command Async Argument Type Mandatory

name_pattern str False

show_switch_history False

switches     str   False

past     str    False

amber_show_latest False

filter str False

exit False

Process Command Example
The command body is a JSON dictionary of key-value arguments as described in the table below. 

curl -k https://127.0.0.1/cablevalidation/commands/load_topo -d '{"files":["inputs/lab.topo"], "dns":true}' -X 
POST
Command load_topo completed successfully



26

1.
2.
3.
4.
5.

Supported Commands

Getting Command Output 

GET https://<host>/cablevalidation/commands/{command_name}/output

timestamp is an optional argument that enables the user to obtain only the output generated after a particular point in time. It is included in the 
following format: GET https://<host>/cablevalidation/commands/{command_name}/output?timestamp=<val>.

The response to this request takes the form of a JSON dictionary, containing the following details:

command: the processed command.
request_ts: timestamp of the request made by the user, if a timestamp was provided; otherwise, it is set to 0.
last_ts: the timestamp of the most recent message in the output, which the user can utilize for subsequent requests.
status: represents the current status of the command, which can be either "Completed" or "InProgress".
content: the actual output log of the command.

Command Output Example

curl -k https://localhost/cablevalidation/commands/deploy_all_agents/output 2> /dev/null | python -m json.tool
{
    "command": "deploy_all_agents",
    "content": [
        "Will install agent on 10.209.44.74",
        "Will install agent on 10.209.36.113",
        "Will install agent on 10.209.36.122",



27

•
•

Getting Commands Processing Status 

GET https://<host>/cablevalidation/commands/status

The response to the request provides a JSON dictionary that conveys pertinent information regarding the processing status of commands, which may fall 
into one of two categories:

Idle - In this scenario, the user is at liberty to initiate a new command.
Executing <command> - In this instance, the processor is currently engaged in executing a command, and as such, is incapable of processing any 
new commands until the current operation is complete.

Getting a List of Supported Commands 
The following command returns a JSON dictionary with all supported commands as well as their arguments and if it async or sync.

GET https://<host>/cablevalidation/commands

Supported Commands Output Example
Output has been cut.

{
    "load_topo": {
        "args": {
            "dns": {
                "type": "bool",
                "mandatory": false
            },
            "files": {
                "type": "list",
                "mandatory": true
            }



28

•
•

        },
        "is_async": false
    }
}

Getting Help on Command 

GET https://<host>/cablevalidation/commands/{command_name}/help

The response to the request is in the form of a JSON dictionary, which provides the following details:

command: The name of the command that was executed.
help: A list of output lines that convey relevant information about the command.

Command Help Example 

curl -k https://localhost/cablevalidation/commands/load_topo/help 2> /dev/null | python -m json.tool
{
    "command": "load_topo",
    "help": [
        "",
        "        load_topo filename dns=true/false",
        "",
        "        default dns=true",
        "        If no dns server to resolve hostnames in topo file, you should set dns=false and provide IP 
addresses file.",
        "        when true, no need to provide IP addresses.",
        ""

Rack View
Rack and unit information can be shown when loading a PTP Excel file, however, topo files do not contain such information, therefore, rack view is not 
available.



29

Rack view is supported via two REST APIs.

Getting List of Racks
The following command returns a JSON list of all loaded racks. 

GET https://<host>/resources/racks

Racks List Output Example 

[
    "1108",
    "1106"
]

Getting Rack View of a Specific Rack
The following command returns a JSON dictionary with rack details. 

GET https://<host>/resources/racks/{rack-name}

Rack View Output Example 

{
    "name": "1108",
    "units": [
        {
            "nodedesc": "MSB7800 r-ufm-sw10",
            "ports": [



30

                {
                    "port": "P25",
                    "syndrome": "Wrong-neighbor"
                },
                {
                    "port": "P26",
                    "syndrome": "Wrong-neighbor"
                },
                {
                    "port": "P27",
                    "syndrome": "Active"
                },
                {
                    "port": "P28",
                    "syndrome": "Active"
                }
            ],
            "unit": "40"
        }
    ]
}



31

1.

2.
3.
4.

1.
2.

Cables Agent
The Cables agent is implemented as a docker container that executes on the switch to gather data on neighboring switches and link quality. The agent 
operates a web service capable of providing information on ports and links through user queries. Moreover, the agent transmits validation reports to the 
bringup server.

Check if Cable Agent is Running
Check if cable agent is running on the switch:

Run: 

ssh admin@<switch-ip-or-name>

Enable
Show docker images
Exit

If cables agent is running on the switch, the following output is prompted. 

----------------------------------------------------------------------------
Image                                 Version      Created            Size
----------------------------------------------------------------------------
cables_agent                          latest       13 hours ago       788MB

Deploying Cable Agent on the Switch
Usually, it is not necessary to manually deploy the agent onto the switch, as it is recommended to use the deploy_all_agents or deploy_single_agent
commands from the bringup CLI. However, in instances where manual deployment is required, the following commands can be executed:

enable
configure terminal



32

3.
4.
5.
6.

1.
2.
3.

1.
2.
3.

1.
2.

no docker shutdown
image fetch scp://<user>:<pwd>@<hostname>/tmp/cables_agent_<version>.tar.gz cables_agent_latest.tar.gz
docker load cables_agent_latest.tar.gz
docker start cables_agent latest cables_agent now-and-init privileged network

For cleanup, run: 

docker no start cables_agent
docker remove image cables_agent latest
image delete cables_agent_latest.tar.gz

To enter terminal in the container running on the switch, run:

enable
configure terminal
docker exec cables_agent /bin/bash

Cables Agent REST API
The agent has a web server listening on port 8251. The following two REST APIs are supported:

https://<switch-ip-or-name>:8251/resources/links
https://<switch-ip-or-name>:8251/resources/ports

Links Output Example 

curl -k https://sw-hdr-proton01:8251/resources/links | python3 -m json.tool
[
 {
    "info": {
        "md5": "256477d766fa8d8853848c43c35982ba",
        "timestamp": 1659355401394591,
        "time": "2022-08-01 12:03:21.394601"



33

    },
    "src": {
        "Node Description": "MF0;sw-hdr-proton01:MQM8700/U1",
        "Guid": "0x0c42a1030079a6ec",
        "ip": "10.209.44.74",
        "Node Name": "sw-hdr-proton01"
    },
    "dests": {
        "4": {
            "Node Description": "swx-proton04 mlx5_2",
            "Guid": "0xb8cef6030083bea2",
            "LocalPort": "1"
        },
        "2": {
            "Node Description": "Quantum Mellanox Technologies",
            "Guid": "0xb8cef60300fbf210",
            "LocalPort": "2"
        },
        "3": {
            "Node Description": "swx-proton03 mlx5_0",
            "Guid": "0xb8cef6030083bf02",
            "LocalPort": "1"
        },
        "1": {
            "Node Description": "Quantum Mellanox Technologies",
            "Guid": "0xb8cef60300fbf210",
            "LocalPort": "1"
        }
    }
}
]

Output Example of Ports 

curl -k https://sw-hdr-proton01:8251/resources/ports | python3 -m json.tool
[
    {



34

        "port": "IB1/10",
        "port_num": "10",
        "logical": "Down",
        "physical": "Polling"
    },
    {
        "port": "IB1/11",
        "port_num": "11",
        "logical": "Down",
        "physical": "Polling"
    },
    {
        "port": "IB1/12",
        "port_num": "12",
        "logical": "Down",
        "physical": "Polling"
    },
    {
        "port": "IB1/13",
        "port_num": "13",
        "logical": "Down",
        "physical": "Polling"
    }
]



35

•

•
•

•

•

•

•

•
•

•

Document Revision History
Revision   Date Description

Rev 1.2 Nov 5, 2023 Updated the following sections:

Deploying the Module - Added instructions on Deploying the Module as Standalone
and Deploying the Module as a UFM Enterprise Plugin
bringupcli Usage - Updated commands
Complete CLI Command Reference - Added add_certificate <crt file> 
<key_file> command
Bringup Server REST API - Added a note on REST API URLs and changed all IP 
examples to <host> instead of <host-ip-or-name>
Supported Commands - Added the add_certificate command

Added the following section: 

Update Certificate

Rev 1.1 Aug 10, 2023 Updated the following sections: 

bringupcli Usage - Added cluster option in load commands and documentation for 
save arguments
Validations - Added show_clusters and cluster arguments
Complete CLI Command Reference - Added cluster arguments and "load_clusters 
<clusters file>" CLI command
Supported Commands - Updated table with new cluster arguments

Rev 1.0 May 8, 2023 First release



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a 
product. Neither NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make any representations or 
warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any 
errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of 
third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or 
functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without 
notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise 
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to 
applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual 
obligations are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in 
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or 
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such 
inclusion and/or use is at customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each 
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information 
contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the 
application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of 
the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no 
liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that 
is contrary to this document or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this 
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or 
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual 
property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full 
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER 
AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH 
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR 
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, 



INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT 
OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer 
might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in 
accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation and/or Mellanox Technologies Ltd. in the U.S. 
and in other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2023 NVIDIA Corporation & affiliates. All Rights Reserved.


	About This Document
	Technical Support
	Document Revision History
	Release Notes
	Limitations

	Overview
	Collector
	Deploying the Module
	Deploying the Module as Standalone
	Setting Docker Environment
	Specifying the Network Interface
	Adding Hostnames
	Using Volumes
	Overriding Apache Configuration 

	Deploying the Module as a UFM Enterprise Plugin
	Copy Files to the Plugin
	Overriding the Apache Configuration


	Running bringup CLI
	bringupcli Usage
	Running bringup GUI

	Update Certificate
	Validations
	Other Commands
	Troubleshooting
	Complete CLI Command Reference
	Bringup Server REST API
	Login
	Retrieving Validation Report 
	Bringup Commands Support via REST API
	Processing a Command 
	Supported Commands
	Process Command Example

	Supported Commands
	Getting Command Output 
	Command Output Example

	Getting Commands Processing Status 
	Getting a List of Supported Commands 
	Supported Commands Output Example

	Getting Help on Command 
	Command Help Example 


	Rack View
	Getting List of Racks
	Racks List Output Example 

	Getting Rack View of a Specific Rack
	Rack View Output Example 




	Cables Agent
	Check if Cable Agent is Running
	Deploying Cable Agent on the Switch
	Cables Agent REST API
	Links Output Example 
	Output Example of Ports 


	Document Revision History

