
VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

1

VIA Microservices 2.0 DP User Guide
 July 2024

RN # DU-11946-001

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

2

Table of Contents

Getting Started ___ 5

Features __ 6

VIA Microservice Architecture ___ 7

API Documentation __ 9

Quick Start Guide __11

Supported Platforms ___11

Prerequisites ___11

Install the NVIDIA Driver __11

Install Docker ___12

Install NVIDIA Container Toolkit __12

Obtain NVIDIA API Key__12

Obtain NGC API Key __13

Obtain OpenAI API Key ___13

Download VIA Container Image __14

Running VIA Microservice __15

Starting VIA Microservice with Minimal Configuration_____________________________________15

GPT-4o (OpenAI) - Default ___15

VITA-2.0 (Optional) __16

Configuration Options __16

Selecting GPUs __19

Configuring Server Ports __19

Load VITA from Local Filesystem __19

VITA TRT-LLM Engine Configuration ___20

Using a Custom CA-RAG Configuration ___20

Downloading NGC Models___21

Loading Sample Streams from Local Filesystem (UI) ____________________________________21

Load Custom Model__21

Persisting Files / Assets on Host __22

Persisting Milvus Data on Host ___22

Disable Frontend, Guardrails, and CA-RAG __22

Running VIA with OpenAI API Compatible VLM __23

Model Details ___24

VIA VLM Models: __24

GPT-4o and GPT4-v Turbo ___24

NVIDIA VITA 2.0 ___24

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

3

Custom VLM Models ___24

VIA CA-RAG Models: ___25

LLaMA 3 70b Instruct ___25

Python CLI Client ___26

Pre-requisites___26

Files Commands ___27

Add File ___27

List Files ___27

Get File Details __27

Get File Contents __27

Delete File ___28

Live Stream Commands ___28

Add Live Stream ___28

List Live Streams __28

Delete Live Stream ___29

Models Commands __29

List Models ___29

Summarization Command ___29

Server Health and Metrics Commands ___30

Server Health Check ___30

Server Metrics __31

UI Application ___32

File Summarization __32

Live Stream Summarization __34

Reconnecting to Live Stream Summarization __36

Context-Aware RAG __38

VIA Microservice Customization ___40

Integrating Custom VLM models __40

Custom VITA 2.0 Checkpoint ___40

OpenAI Compatible REST API __40

Other Custom Models __40

Configurable Parameters __41

Tuning Prompts ___41

Accessing Milvus Vector DB ___43

Custom Post-Processing Functions __44

Tuning Guardrails ___44

Using Locally Deployed LLM NIM instead of NVIDIA Hosted LLM NIM ________________________44

Deploy a Chat Based NIM Locally ___44

CA-RAG and Guardrails: Using local NIM (llama3-8b) ____________________________________45

VIA Source Code __46

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

4

Known Issues: ___47

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

5

Getting Started

Advances in AI video understanding and interaction have the potential to revolutionize how we access,
analyze, and interact with video content in various domains. These AI models are capable of:

• Video captioning-Generating text descriptions or summary of videos.

• Question answering-Answering questions about a video's content.

• Video retrieval-Finding specific videos (highlights) based on text queries.

• Action recognition-Identifying actions happening in the video.

The current release of VIA microservices demonstrates Video Summarization with accelerated
performance on NVIDIA hardware.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

6

Features

VIA microservice supports video upload, live stream support, summarizing on video files and live
streams with various configuration options.

Features:

• Faster/Quick Long video processing – create and process multiples video chunks in parallel.

• Live Stream (RTSP) support

• Summarization for videos and live streams

• TRT-LMM support for VITA only

• 1 Node multiple GPU support

• Auto scaling across GPUs

• Context aware RAG support for enhanced accuracy & details

• Support for GPT-4v Turbo and GPT-4o

• Use OpenAI Compatible hosted VLM models

• Drop-in support for custom VLMs

• Guardrails support

• GPU supported – H100, A100, L40, L40S, A6000

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

7

VIA Microservice Architecture

VIA Using locally executed VLMs

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

8

VIA Using GPT4 (Default configuration)

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

9

API Documentation

Detailed VIA API documentation is available as OpenAPI spec at https://github.com/NVIDIA-AI-IOT/via-
engine/blob/main/api_spec/swagger.json.

Following is a summary of the available APIs.

REST APIs for File Management

REST API for Live-Stream
Management

https://github.com/NVIDIA-AI-IOT/via-engine/blob/main/api_spec/swagger.json
https://github.com/NVIDIA-AI-IOT/via-engine/blob/main/api_spec/swagger.json

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

10

REST API for Video Summarization

REST API for Models

REST API for Health Check

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

11

Quick Start Guide

Supported Platforms
Following Nvidia GPUs are supported:

• L40 / L40s

• H100

• A100 80GB / 40GB

• A6000

Prerequisites
• 65+ GB system memory (For locally executed VLMs)

• 40+ GB GPU memory (For locally executed VLMs)

• Ubuntu 22.04

• NVIDIA driver 535.161.08

• Docker Engine

• NVIDIA Container Toolkit

• NVIDIA API Key

• NGC API Key

• OpenAI API Key (Only for GPT4)

Install the NVIDIA Driver

• Download and install using NVIDIA driver 535.161.08 from NVIDIA Unix drivers page

at: https://www.nvidia.cn/Download/driverResults.aspx/222416/en-us/

• Run the following commands:

chmod 755 NVIDIA-Linux-x86_64-535.161.08.run

sudo ./NVIDIA-Linux-x86_64-535.161.08.run --no-cc-version-check

https://www.nvidia.cn/Download/driverResults.aspx/222416/en-us/

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

12

Install Docker
Follow the steps in https://docs.docker.com/engine/install/ubuntu/ to install the Docker Engine on
Ubuntu.

Install NVIDIA Container Toolkit
Follow the steps in https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-
guide.html#installing-the-nvidia-container-toolkit to install the NVIDIA Container Toolkit

Obtain NVIDIA API Key
1. Log in to https://build.nvidia.com/explore/discover.

2. Navigate to https://build.nvidia.com/meta/llama3-70b.

3. Search for Get API Key on the page and click on it.

https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-the-nvidia-container-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-the-nvidia-container-toolkit
https://build.nvidia.com/explore/discover
https://build.nvidia.com/meta/llama3-70b

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

13

4. Click on Generate Key.

5. Store the generated API Key securely for future use.

6. Use the key to configure the NVIDIA_API_KEY environment used by VIA. More info in
sections like Starting VIA Microservice with Minimal Configuration, and Running VIA with
OpenAI compatible VLM from NVIDIA (NIM).

Obtain NGC API Key
Follow the steps in https://docs.nvidia.com/ngc/gpu-cloud/ngc-user-guide/index.html#generating-api-
key to obtain the required NGC API Key.

Obtain OpenAI API Key
• Login at: https://platform.openai.com/apps

• Select: API

• Create a new API key for your project at: https://platform.openai.com/api-keys

https://docs.nvidia.com/ngc/gpu-cloud/ngc-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/gpu-cloud/ngc-user-guide/index.html#generating-api-key
https://platform.openai.com/apps
https://platform.openai.com/api-keys

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

14

7. Store the generated API Key securely for future use.

8. Use the key configure the `OPENAI_API_KEY` environment used by VIA. For more info see
sections like GPT-4o (OpenAI) and Running VIA with OpenAI API compatible VLM.

Download VIA Container Image
• Login to the NVIDIA Container Repository using your NGC API Key

docker login nvcr.io -u ‘$oauthtoken’ -p <NGC_API_KEY>

• Pull the docker image

docker pull nvcr.io/metropolis/via-dp/via-engine:2.0-dp

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

15

Running VIA Microservice

Starting VIA Microservice with Minimal
Configuration

GPT-4o (OpenAI) - Default
• Run the following commands in a terminal:

export BACKEND_PORT=8000
export FRONTEND_PORT=9000
export NVIDIA_API_KEY=<YOUR-NVIDIA-API-KEY>
export OPENAI_API_KEY=<YOUR-OPENAI-API-KEY>

docker run --rm -it --ipc=host --ulimit memlock=-1 \
 --ulimit stack=67108864 --tmpfs /tmp:exec --name via-server \
 --gpus '"device=all"' \
 -p $FRONTEND_PORT:$FRONTEND_PORT \
 -p $BACKEND_PORT:$BACKEND_PORT \
 -e BACKEND_PORT=$BACKEND_PORT \
 -e FRONTEND_PORT=$FRONTEND_PORT \
 -e NVIDIA_API_KEY=$NVIDIA_API_KEY \
 -e OPENAI_API_KEY=$OPENAI_API_KEY \
 -v via-hf-cache:/tmp/huggingface \
 nvcr.io/metropolis/via-dp/via-engine:2.0-dp

The following logs are seen after the microservice starts:

VIA Server loaded
Backend is running at http://0.0.0.0:8000
Frontend is running at http://0.0.0.0:9000
Press ctrl+C to stop

• After the microservice starts, the VIA API is available at http://<HOST_IP>:8000 and the Demo UI
is available at http://<HOST_IP>:9000.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

16

VITA-2.0 (Optional)
• Run the following commands in a terminal:

export BACKEND_PORT=8000
export FRONTEND_PORT=9000
export NVIDIA_API_KEY=<YOUR-NVIDIA-API-KEY>
export NGC_API_KEY=<YOUR-NGC-API-KEY>
export MODEL_PATH="ngc:nvidia/tao/vita:2.0.1"
export NGC_MODEL_CACHE=</SOME/DIR/ON/HOST>

docker run --rm -it --ipc=host --ulimit memlock=-1 \
 --ulimit stack=67108864 --tmpfs /tmp:exec --name via-server \
 --gpus '"device=all"' \
 -p $FRONTEND_PORT:$FRONTEND_PORT \
 -p $BACKEND_PORT:$BACKEND_PORT \
 -e BACKEND_PORT=$BACKEND_PORT \
 -e FRONTEND_PORT=$FRONTEND_PORT \
 -e NVIDIA_API_KEY=$NVIDIA_API_KEY \
 -e NGC_API_KEY=$NGC_API_KEY \
 -e VLM_MODEL_TO_USE=vita-2.0 \
 -v $NGC_MODEL_CACHE:/root/.via/ngc_model_cache \
 -e MODEL_PATH=$MODEL_PATH \
 -v via-hf-cache:/tmp/huggingface \
 nvcr.io/metropolis/via-dp/via-engine:2.0-dp

When the above commands are first run, the microservice downloads the VITA 2.0 model from NGC,
generates the TensorRT-LLM engine for the model, and starts the microservice on all GPUs installed on
the host. For subsequent runs, the NGC model is cached to the directory specified by

`NGC_MODEL_CACHE`.

Configuration Options

The following table describes all the configuration options supported by the VIA microservice. Each
configuration can be set as an environment variable during the Docker run command.

Mandatory
Configuration Option

Environment Variable Notes

Backend (API) Port BACKEND_PORT=8000 This is a required option. The corresponding Docker port
must also be exposed.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

17

For more information see Configuring Server Ports.

Frontend Port FRONTEND_PORT=9000 This is a required option. The corresponding Docker port
must also be exposed.

For more information see Configuring Server Ports.

Optional Configuration
Option

Environment Variable Notes

Asset storage ASSET_STORAGE_DIR=</some/path> Required if uploaded files / assets must be
persisted. See Persisting Files / Assets on
Host.

Path to CA RAG config file
on host

CA_RAG_CONFIG="" Default is
/opt/nvidia/via/default_config.yaml. See
Using a custom CA-RAG configuration for
details.

Disable CA RAG DISABLE_CA_RAG=false Default is false. See Disable Frontend /
Guardrails / CA-RAG for details.

Disable the VIA Frontend DISABLE_FRONTEND=false Default is false. See Disable Frontend /
Guardrails / CA-RAG for details.

Disable Guardrails DISABLE_GUARDRAILS=false Default is false. See Disable Frontend /
Guardrails / CA-RAG for details.

Configure directory to load
input videos for VIA
frontend

EXAMPLE_STREAMS_DIR="" Default is /opt/nvidia/via/streams. See
Loading Sample Streams from Local
Filesystem (UI)

NVIDIA API Key NVIDIA_API_KEY=<> This is required when using Guardrails or CA-
RAG.

NGC API Key NGC_API_KEY="" Required if downloading models from NGC.
See Downloading NGC Models for details.

NGC Model cache folder NGC_MODEL_CACHE="" Required if NGC download models must be
persisted. See Downloading NGC Models

Model Path (Local Model /
NGC)

MODEL_PATH=</model/path/dir>

MODEL_PATH=

ngc:<NGC_MODEL_RESOURCE_STR>

Path to load the VITA model or another
custom model from. Either a local directory or
NGC resource.

See Loading Custom Model / VITA Model
Loading Configuration / Downloading NGC
Models for details.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

18

VLM Model TRT engine
path

TRT_ENGINE_PATH="" Required only if TRT engine is at a non-
standard location. Default will use the
standard location inside the model path.

See VITA Model Loading Configuration for
details.

VLM Model preferred TRT
precision

USE_TRT_INT8=false Use int8 mode while building TRT engine
(only if TRT engine does not exist). Default is
false.

See VITA Model Loading Configuration for
details.

VLM Model batch size VLM_BATCH_SIZE=4 Default = 4 for GPUs with GPU memory >
80GB and = 1 for others.

See VITA Model Loading Configuration for
details.

VLM Model to use VLM_MODEL_TO_USE=vita-2.0 Default is openai-compat

Options:
vita-2.0,
openai-compat,
custom

Milvus Data store directory MILVUS_DATA_DIR="" Set if milvus data must be persisted on host.
See Persisting Milvus Data on Host.

Configurations to use OpenAI compatible models

See Running VIA with OpenAI API Compatible VLM for details.

Configuration
Option

Environment Variable Notes

VIA VLM Model
Name

VIA_VLM_OPENAI_MODEL_DEPLOYMENT_NAME Mandatory

VIA VLM Model
endpoint URL

VIA_VLM_ENDPOINT Default is the OpenAI v1
endpoint=
“https://api.openai.com/v1/”.

API Key to use
for the VIA VLM
Model

VIA_VLM_API_KEY API Key to use for the VIA
VLM Model hosted at
VIA_VLM_ENDPOINT.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

19

VIA VLM Model
API version

OPENAI_API_VERSION Optional as required for the
model deployment.

VIA VLM Model
API version
when using
Azure OpenAI

AZURE_OPENAI_API_VERSION Optional as required for the
model deployment.

OpenAI API Key OPENAI_API_KEY Mandatory when using model
directly from OpenAI.

Selecting GPUs
The VIA microservice runs on all the GPUs that are made available to the container.

• To make all GPUs installed on the host available to the container and VIA microservice, use --
gpus ‘”device=all”’ with the docker run command.

• To use specific GPUs, use --gpus ‘”device=<device-ids>”’ with the docker run

command. For example, --gpus ‘”device=2,3”’.

For more information on how to make certain GPUs available to the container, see
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-
enumeration.

Configuring Server Ports
The VIA Backend (API) and UI Application ports can be configured using environment variables

BACKEND_PORT and FRONTEND_PORT respectively. Along with the environment variables, the ports
need to be exposed when starting the Docker container so that the application is accessible from
outside the container.

For example:

docker run ... -p <BACKEND_PORT>:<BACKEND_PORT> -e BACKEND_PORT=<BACKEND_PORT> \
 -p <FRONTEND_PORT>:<FRONTEND_PORT> -e FRONTEND_PORT=<FRONTEND_PORT> ...

Load VITA from Local Filesystem
To load a VITA model from host file system:

• Mount the directory containing the VITA model checkpoints and the visual embedding model
checkpoints in the container.

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-enumeration
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-enumeration

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

20

• Make sure that the VITA config.json file correctly points to the visual embedding model

path in the container and set the mount path to the MODEL_PATH env variable.

For example:

ls <MODEL_DIR_ON_HOST>
vila-1.5-llama-3-8b-vision_tower config.json model-00001-of-00004.safetensors ...

docker run ... -v <MODEL_DIR_ON_HOST>:<MODEL_DIR_IN_CONTAINER> \
 -e MODEL_PATH=<MODEL_DIR_IN_CONTAINER> ...

Make sure “mm_vision_tower” in <MODEL_DIR_IN_CONTAINER>/config.json points to
“<MODEL_DIR_IN_CONTAINER>/vila-1.5-llama-3-8b-vision_tower”

While loading the model, the VIA microservice generates the TRT-LLM engine for it if it doesn’t exist
already. See VITA TRT-LLM Engine Configuration for details.

VITA TRT-LLM Engine Configuration
VIA microservice builds the TRT-LLM engine for the VITA model if it doesn’t exist already. By default, it
selects FP16 precision, a batch size depending on GPU memory, and generates the TRT-LLM engines
inside the model directory.

These can be configured using:

• env variable VLM_BATCH_SIZE – The GPU must be able to support the specified batch size.

• env variable USE_TRT_INT8 – If set to true, INT8 precision is used to build the engine.

• env variable TRT_ENGINE_PATH – If set, the VIA microservice looks for a pre-existing engine
in the specified path. If not found, it generates the engine at that path.

For example:

docker run ... -e VLM_BATCH_SIZE=4 -e USE_TRT_INT8=true \
 -v <TRT_LLM_ENGINE_DIR_ON_HOST>:<TRT_LLM_ENGINE_DIR_IN_CONTAINER> \
 -e TRT_ENGINE_PATH=<TRT_LLM_ENGINE_DIR_IN_CONTAINER> ...

Using a Custom CA-RAG Configuration
To use a custom CA-RAG configuration:

• Save the configuration to a file on the host, mount it in the VIA container, and set the mount

path to the CA_RAG_CONFIG env variable.

For example:

docker run ... -v <CA_RAG_CONFIG_FILE_ON_HOST>:<CA_RAG_CONFIG_FILE_IN_CONTAINER> \
 -e CA_RAG_CONFIG=<CA_RAG_CONFIG_FILE_IN_CONTAINER> ...

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

21

Downloading NGC Models
To download NGC models:

• Locate or define the required NGC model resource string and NGC API key. Refer to Obtaining
NGC API KEY for details.

• Export the NGC model resource string as the MODEL_PATH env variable.

• Export the API key as the NGC_API_KEY env variable while running the VIA container.

For example:

docker run ... -e MODEL_PATH=ngc:<NGC_MODEL_RESOURCE_STR> \
 -e NGC_API_KEY=<YOUR-NGC-API-KEY> ...

After the model is downloaded, the VIA microservice proceeds to generate the TRT-LLM engine for it.
See the VITA TRT-LLM Engine Configuration for details.

The VIA microservice avoids re-downloading NGC models if the model is found in its cache. NGC models
are downloaded to the container storage by default and are lost if the container is restarted.

To persist NGC downloaded models, mount a host directory or Docker volume in the container, and set

NGC_MODEL_CACHE env variable to the mount path.

For example:

docker run ... -v <NGC_MODEL_DIR_ON_HOST>:/root/.via/ngc_model_cache ...

Loading Sample Streams from Local Filesystem (UI)
To load a sample stream from a local filesystem as examples in the UI, mount a host directory in the

container and set EXAMPLE_STREAMS_DIR to the mount path.

For example:

docker run ... -v <STREAMS_DIR_ON_HOST>:<STREAMS_DIR_IN_CONTAINER> \
 -e EXAMPLE_STREAMS_DIR=<STREAMS_DIR_IN_CONTAINER> ...

NOTE: The directory must contain only valid video files. The presence of non-video files or directories
may lead to errors.

Load Custom Model
To load a custom model:

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

22

• Mount the directory containing the inference.py file and the optional model files in the
container.

• Set the MODEL_PATH env variable to the mount path. MODEL_PATH should point to the

directory containing the inference.py file in the container.

• Set VLM_MODEL_TO_USE=custom

For example:

ls <MODEL_DIR_ON_HOST>
inference.py <model-checkpoints-dir>

docker run ... -v <MODEL_DIR_ON_HOST>:<MODEL_DIR_IN_CONTAINER> \
 -e MODEL_PATH=<MODEL_DIR_IN_CONTAINER> -e VLM_MODEL_TO_USE=custom ...

Persisting Files / Assets on Host
By default, VIA microservice stores the uploaded files and any added assets in the container local

storage. To persist the assets, mount a host directory in the container and set ASSET_STORAGE_DIR
to the mount path.

For example:

docker run ... -v <ASSET_DIR_ON_HOST>:<ASSET_DIR_IN_CONTAINER> \
 -e ASSET_STORAGE_DIR=<ASSET_DIR_IN_CONTAINER> ...

Persisting Milvus Data on Host
By default, the Milvus Server that is started inside the VIA container, stores data inside the container. To
persist Milvus data on host storage:

• Mount a host directory and Docker volume in the container.

• Set MILVUS_DATA_DIR env. variable to its path.

For example:

docker run ... -v <MILVUS_DATA_DIR_ON_HOST>:<MILVUS_DATA_DIR_IN_CONTAINER> \
 -e MIVLUS_DATA_DIR=<MILVUS_DATA_DIR_IN_CONTAINER> ...

Disable Frontend, Guardrails, and CA-RAG
VIA microservice allows disabling some parts of the microservice. This can be done by setting env

variables DISABLE_GUARDRAILS, DISABLE_CA_RAG, DISABLE_FRONTEND to true.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

23

For example:

docker run ... -e DISABLE_GUARDRAILS=true \
 -e DISABLE_CA_RAG=true -e DISABLE_FRONTEND=true ...

Running VIA with OpenAI API Compatible VLM
To use an OpenAI API Compatible VLM in VIA, set env variable VLM_MODEL_TO_USE to openai-
compat along with authentication and model parameters as defined below:

Deployment Parameter Type Required Environments

OpenAI
Direct

Authentication

OPENAI_API_KEY=<key>

Model VIA_VLM_OPENAI_MODEL_DEPLOYMENT_NAME=<deployment-name>

Example: GPT4o VIA_VLM_OPENAI_MODEL_DEPLOYMENT_NAME=gpt-4o

Example: GPT4v
Turbo

VIA_VLM_OPENAI_MODEL_DEPLOYMENT_NAME=gpt-4-turbo-2024-04-
09

For example:

Running GPT-4o with OpenAI:

docker run ... -e OPENAI_API_KEY=<OPENAI_API_KEY> \
 -e VIA_VLM_OPENAI_MODEL_DEPLOYMENT_NAME=gpt-4o \
 -e VLM_MODEL_TO_USE=openai-compat ...

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

24

Model Details

VIA uses the following models

VIA VLM Models:

GPT-4o and GPT4-v Turbo
VIA offers support to use OpenAI models like GPT-4o and GPT-4v turbo as VLM. GPT-4o is the VLM
configured by default.

See Running VIA with OpenAI compatible VLM for how to set up VIA to use these models.

NVIDIA VITA
NVIDIA VITA is Video Language Model (VLM) which can be deployed locally. VITA (Vision Temporal
Assistant) is the LITA model that uses the VILA as encoder. More details on Language Instructed
Temporal Assistant (LITA) are available at https://arxiv.org/pdf/2403.19046v1 and for VILA at
https://arxiv.org/pdf/2312.07533v4 and https://github.com/NVlabs/VILA.

VIA microservice can be optionally configured to use NVIDIA VITA instead of GPT-4o.

Custom VLM Models
VIA supports integrating custom VLM models in addition to the VLM models mentioned above. Refer to
Integrating Custom VLM models.

https://arxiv.org/pdf/2312.07533v4
https://github.com/NVlabs/VILA

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

25

VIA CA-RAG Models:

LLaMA 3 70b Instruct
The LLaMA 3 70b Instruct model is used for Guardrails and by CA-RAG. The model is by default used as
NVIDIA Hosted NIM. You can use a locally deployed NIM as well as other Instruction tuned LLMs, if they
support OpenAI APIs.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

26

Python CLI Client

Pre-requisites
A reference Python CLI client is provided along with the VIA microservice. The client internally calls the
REST APIs exposed by the VIA microservice.

 The client is added to the VIA container image at /opt/nvidia/via/via_client_cli.py. It is
also available on the git repo at https://github.com/NVIDIA-AI-IOT/via-
engine/blob/main/via_client_cli.py.

The Python package dependencies for the CLI client can be installed using:

pip3 install tabulate tqdm sseclient-py requests

The CLI client can be executed by running:

python3 via_client_cli.py <command> <args> [--backend <VIA_API_URL>] [--print-curl-command]

By default, the client assumes that the VIA API server is running at http://localhost:8000. This can be

configured by passing the argument --backend <VIA_API_URL> as shown above.

The CLI client also provides an option to print the curl command for any operation. This can be done by

passing the --print-curl-command argument to the client.

To get a list of all supported commands and options supported by each command run:

python3 via_client_cli.py -h

python3 via_client_cli.py <command> -h

https://github.com/NVIDIA-AI-IOT/via-engine/blob/main/via_client_cli.py
https://github.com/NVIDIA-AI-IOT/via-engine/blob/main/via_client_cli.py
http://localhost:8000/

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

27

Files Commands
The following section describes each of the commands in detail.

Add File
Calls POST /files internally. Uploads or adds a file as path. Prints the file id and other details.

Reference:

via_client_cli.py add-file [-h] [--add-as-path] [--backend BACKEND] [--print-curl-command]
file

Example for uploading a file:

python3 via_client_cli.py add-file video.mp4

Example for adding a file as path (This requires the file path to be accessible inside the container):

python3 via_client_cli.py add-file --add-as-path /media/video.mp4

List Files
Calls GET /files internally. Prints the list of files added to the server and their details in a tabular
format.

Reference:

via_client_cli.py list-files [-h] [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py list-files

Get File Details
Calls GET /files/{id} internally. Prints the details of the file.

Reference:

via_client_cli.py file-info [-h] [--backend BACKEND] [--print-curl-command] file_id

Example:

python3 via_client_cli.py file-info 7ce1127a-2009-4bfa-bdf8-efa9e1f37fa4

Get File Contents
Calls GET /files/{id}/content internally. Saves the content to a new file.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

28

Reference:

via_client_cli.py file-content [-h] [--backend BACKEND] [--print-curl-command] file_id

Example:

python3 via_client_cli.py file-content 7ce1127a-2009-4bfa-bdf8-efa9e1f37fa4

Delete File
Calls DELETE /files/{id} internally. Prints the delete status and file details.

Reference:

via_client_cli.py delete-file [-h] [--backend BACKEND] [--print-curl-command] file_id

Example:

python3 via_client_cli.py delete-file 7ce1127a-2009-4bfa-bdf8-efa9e1f37fa4

Live Stream Commands

Add Live Stream
Calls POST /live-stream internally. Prints the live-stream id if it is added successfully.

Reference:

via_client_cli.py add-live-stream [-h] [--description DESCRIPTION]
 [--username USERNAME] [--password PASSWORD]
 [--backend BACKEND] [--print-curl-command]
 live_stream_url

Example:

python3 via_client_cli.py add-live-stream --description “Some live stream description” \
 rtsp://192.168.1.100:8554/video/media1

List Live Streams
Calls GET /live-stream internally. Prints the list of live-streams and their details in a tabular
format.

Reference:

via_client_cli.py list-live-streams [-h] [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py list-live-streams

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

29

Delete Live Stream
Calls DELETE /live-stream/{id} internally. Prints the status confirming deletion of the live
stream

Reference:

via_client_cli.py delete-live-stream [-h] [--backend BACKEND] [--print-curl-command]
 video_id

Example:

python3 via_client_cli.py delete-live-stream ea071500-3a47-4e6f-87da-1bc796075344

Models Commands

List Models
Calls GET /models internally. Prints the list of models loaded by the server and their details in a
tabular format.

Reference:

via_client_cli.py list-models [-h] [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py list-models

Summarization Command
Calls POST /summarize internally. Triggers summarization on a file or live-stream and blocks it until
summarization is complete or you interrupt the process.

The command allows some configurable parameters with the summarize request.

For files, results are available after the entire file is summarized. The command then prints the results.

For live-streams, results are periodically available. The period depends on the chunk_duration and

summary_duration. Interrupting the summarize command does not stop the summarization on the
server side. You can re-connect to the live-stream by re-running the summarize command with the same

id as the live-stream.

For more details on each argument, see the help command and the VIA API reference.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

30

Reference:

via_client_cli.py summarize [-h] --id ID --model MODEL
 [--stream]
 [--chunk-duration CHUNK_DURATION]
 [--chunk-overlap-duration CHUNK_OVERLAP_DURATION]
 [--summary-duration SUMMARY_DURATION]
 [--prompt PROMPT]
 [--file-start-offset FILE_START_OFFSET]
 [--file-end-offset FILE_END_OFFSET]
 [--model-temperature MODEL_TEMPERATURE]
 [--model-top-p MODEL_TOP_P]
 [--model-top-k MODEL_TOP_K]
 [--model-max-tokens MODEL_MAX_TOKENS]
 [--model-seed MODEL_SEED]
 [--response-format {json_object,text}]
 [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py summarize \
 --id ea071500-3a47-4e6f-87da-1bc796075344 \
 --model vita-2.0 \
 --chunk-duration 60 \
 --stream \
 --prompt “Write a dense caption about the video containing events like ...” \
 --model-temperature 0.8

Server Health and Metrics Commands

Server Health Check
Calls GET /health/ready internally. Checks the response status code and prints the server health
status.

Reference:

via_client_cli.py server-health-check [-h] [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py server-health-check

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

31

Server Metrics
Calls GET /metrics internally. Prints the server metrics. The metrics are in Prometheus format.

Reference:

via_client_cli.py server-metrics [-h] [--backend BACKEND] [--print-curl-command]

Example:

python3 via_client_cli.py server-metrics

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

32

UI Application

A sample UI application based on Gradio is provided along with VIA. It supports file and live stream
summarization.

The VIA container logs show the port on which the UI application server is running. The UI can be

accessed by navigating to http://<VIA_HOST_IP:<FRONTEND_PORT>.

File Summarization
The following image shows the file summarization page of the UI.

To start file summarization, follow the steps mentioned in the image and in the text below:

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

33

0. Make sure the “Video File Summarization” tab is selected.

1. Either upload a file or choose a preloaded example.

2. Select the chunk size from the drop down list.

3. Set a prompt (Optional).

4. Adjust the VLM parameters by clicking on Show Parameters and modifying the available
parameters (Optional).

5. Click on the Summarize button to start summarization. The button gets enabled after a video is
selected or uploaded.

The summarization takes from a few seconds to minutes, depending on various factors including video
length, chunk size, prompt, VLM model, GPUs installed on the host.

After the processing is finished, the response shows the video summary.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

34

Live Stream Summarization
The following image shows the live stream summarization page of the UI.

To start file summarization, follow the steps mentioned in the image and text below:

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

35

0. Make sure the “Live Stream Summarization” tab is selected.

1. Enter a valid RTSP Live Stream URL.

2. Select the chunk size & summary duration from the drop down list.

3. Set a prompt (Optional).

4. Adjust the VLM parameters by clicking on Show Parameters and modifying the available
parameters (Optional).

5. Click on Start Streaming & Summarize button to start summarization. The button gets enabled
once RTSP URL is entered.

After the server starts processing the stream, the UI displays a message “Waiting for first summary”. The
first summary is available after approximately summary duration + a few seconds depending on the
chunk duration, summary duration, model, and GPU being used.

Summaries for consecutive summary duration periods are appended one below the other. Newest one
being at the bottom.

Live Stream Summarization can be stopped by clicking on “Stop Summarization & Delete Live Stream”.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

36

Reconnecting to Live Stream Summarization
For live streams, even if the client disconnects, summarization keeps happening in the VIA server. To
reconnect to the live stream and get latest updates since being disconnected, follow the steps
mentioned in the image and text below:

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

37

0. Make sure the “Live Stream Summarization” tab is selected.

1. Click on “Refresh List” button.

2. Once the list is refreshed, select the active stream from the drop down.

3. Click on Reconnect. The button will be enabled once a stream is selected from the drop-down.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

38

Context-Aware RAG

VIA Context Aware RAG provides the framework for performing retrieval on the video data based on the
context and generating the context to answer user’s questions. Currently, we support summarization.

CA RAG includes the following:

• Handlers – A handler is an abstraction of the tools available to CA-RAG. Implementing various
handlers enables various use cases.

• Context Manager – CM uses the handlers and performs a specific operation. For example, CA
RAG uses the LLM handler to implement the summarize operation.

Handlers

LLM Handler

This is a handler to interface an LLM. Currently, we have implemented LLMNVIDIA, which connects to
an LLM NIM and provides access to multiple LLMs. Other LLM handlers can be implemented, such as a
self-hosted LLM or third-party LLMs.

DB Handler
This handler interfaces with databases. Currently, we have MilvusDBHandler, which stores and
fetches data from MilvusDB. This DB is where video captions are stored.

More handlers can be added, including notification handlers, and a highlight clip generation handler.

Context Manager
Context Manager uses the various handlers to perform tasks such as Summarization, etc.

Currently, CM uses the DBHandler and LLMHandler to summarize a video.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

39

Summarization

Three methods of summarization are supported stuff, batch, or refine:

• stuff - All the documents are appended, and a summary is generated. Recommended for a small
number of documents.

• refine - This is a recursive method where a summary is generated using the previous summary
and a new caption. Recommended for streaming captions.

• batch - This is a two-step summarization. Step 1 is creating batches of batch_size and generating
the summaries for these batches. Step 2 is combining the batch summaries using a second
prompt, summary_aggregation. Recommended for large documents.

Usage

from via_ctx_rag.context_manager.context_manager import ContextManager
from via_ctx_rag.llm.llm_handler import LLMNVIDIA

ctx_mgr = ContextManager(config)
ctx_mgr.add_handlers([
 LLMNVIDIA(
 model=ctx_mgr.llm_params["model"],
 api_key=api_key,
 max_tokens=ctx_mgr.llm_params["max_tokens"]),
]
)
documents: list(dict)
[
{
"start_pts": 0,
"end_pts": 100,
"text": "caption"
},
...
#]
summary = ctx_mgr.summarize(documents)

print(summary)

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

40

VIA Microservice Customization

Integrating Custom VLM models
VIA supports integrating custom VLM models. Depending on the model to be integrated, either some
configurations might need to be updated or interface code would have to be implemented. The model
can ONLY be selected at initialization time.

Custom VITA Checkpoint
To use custom VITA checkpoint but the same architecture as the publicly available VITA model, refer to
Load VITA from Local Filesystem / Downloading NGC models.

If the checkpoint is not compatible, refer to Other Custom Models.

OpenAI Compatible REST API
If the VLM model provides an OpenAI compatible REST API, refer to Running VIA with OpenAI
compatible VLM.

Other Custom Models
VIA allows you to drop in your own models to the model directory by providing the pre-trained weight
of the model and implementing an interface to bridge to the VIA pipeline.

The interface includes an inference.py file and a manifest.yaml.

In the inference.py, users must define a class named Inference with the following two methods:

def get_embeddings(self, tensor:torch.tensor) -> tensor:torch.tensor:
 # Generate video embeddings for the chunk / file.
 # Do not implement if explicit video embeddings are not supported by model
 return tensor

def generate(self, prompt:str, input:torch.tensor, configs:Dict):
 # Generate summary string from the input prompt and frame/embedding input.
 # configs contains VLM generation parameters like
 # max_new_tokens, seed, top_p, top_k, temperature

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

41

 return summary

The optional get_embeddings method is used to generate embeddings for a given video clip
wrapped in a TCHW tensor and must be removed if the model doesn’t support the feature.

The generate method is used to generate the text summary based on the given prompt and the video
clip wrapped in a TCHW tensor.

Both models that need to be executed locally on the system or models with REST APIs can be supported
using this method.

Some examples are included inside the container at /opt/nvidia/via/via-
engine/models/custom/samples and on GitHub at https://github.com/NVIDIA-AI-IOT/via-

engine/tree/main/via-engine/models/custom/samples. Examples include models fuyu8b, neva and

phi3v.

Configurable Parameters

See Configuration Options for the list of initialization time parameters and their details.

At runtime, the summarize API supports the following parameters. Refer to the API schema for

details:

• temperature

• seed

• top_p

• max_tokens

• top_k

• chunk_duration

• chunk_overlap_duration (File only)

• summary_duration (Live stream only)

NOTE: Lower chunk_duration may result in better accuracy but will lead to a higher number of
chunks getting created and thus requiring more time to summarize the video. Typically for an
hour-long video, start with 60 second chunk duration and then adjust the chunk duration based
on accuracy and latency requirements.

Tuning Prompts
VIA has configured for the warehouse usecase by default. However, VLM prompts needs to be tuned for
specific use cases or video content like sports, medical vision, retail. The prompt should include specific
events that need to be found out. The corresponding CA-RAG configs also need update.

https://github.com/NVIDIA-AI-IOT/via-engine/tree/main/via-engine/models/custom/samples
https://github.com/NVIDIA-AI-IOT/via-engine/tree/main/via-engine/models/custom/samples
https://github.com/NVIDIA-AI-IOT/via-engine/blob/main/api_spec/swagger.json

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

42

Warehouse prompt configuration example:

VIA prompt configuration can be changed with the CA_RAG_CONFIG environment variable. More details
in section: Using a custom CA-RAG configuration.

See the sample config file for the warehouse use case in the VIA source at via-
engine/config/config.yaml.

Config.yaml has the following three prompts:

Prompt Type Example Prompt Guidelines

caption "Write a concise and clear dense caption for
the provided warehouse video, focusing on
irregular or hazardous events such as boxes
falling, workers not wearing PPE, workers
falling, workers taking photographs, workers
chitchatting, forklift stuck, etc. Start and end
each sentence with a time stamp."

1) This is the prompt to VLM.

2) Make sure you provide
keywords necessary to aid
image/video
understanding.

3) Call out the types of events
you want the VLM to
detect. Example: Anomaly
like person not wearing
PPE.

4) This prompt can be
updated using VIA Gradio
UI: “PROMPT (OPTIONAL)”
field.
See: UI application for
screenshots.

caption_
summarization

"You should summarize the following events
of a warehouse in the format
start_time:end_time:caption. If during a
time segment only regular activities happen,
then ignore them, else note any irregular
activities in detail. The output should be
bullet points in the format
start_time:end_time:
detailed_event_description. Don't return
anything else except the bullet points.”

1) This prompt is used by CA
RAG to summarize captions
generated by VLM.

2) This is the first step in a
two-step summarization
task.

3) Change it according to your
use case.

summary_
aggregation

"You are a warehouse monitoring system.
Given the caption in the form
start_time:end_time: caption, Aggregate the
following captions in the format
start_time:end_time:event_description. The
output should only contain bullet points.

1) This prompt is used by CA-
RAG to generate the final
summary.

2) Change it according to your
use case.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

43

Cluster the output into Unsafe Behavior,
Operational Inefficiencies, Potential
Equipment Damage and Unauthorized
Personnel."

caption (prompt
for JSON output)

“Find out all the irregular or hazardous
events such as boxes falling, workers not
wearing PPE, workers falling, workers taking
photographs, workers chitchatting, forklift
stuck, etc. Fill the following JSON format
with the event information: { "all_events": [
{"event": "<event caption>", "start_time":
<start time of event>, "end_time": <end time
of the event>}]}. Reply only with JSON
output.”

1) This is the prompt to the
VLM.

2) You can change the JSON
format to suit your use
case.

NOTE: By default, the VIA API only allows prompt to be configured as part of the summarize API.
caption_summarization and summary_aggregation prompts are configured using the CA-RAG
configuration file.

To also allow caption_summarization and summary_aggregation prompts to be configured as part of the

summarize API, set env. variable VIA_DEV_API=1 while running the VIA container.
docker run ... -e VIA_DEV_API=1 ...

Accessing Milvus Vector DB
VIA uses Milvus vector DB to store the intermediate VLM responses per chunk before aggregating and
summarizing the responses using CA-RAG.

VIA starts a Milvus vector DB instance inside the container. You can add the following arguments to the
Docker run command to expose the Milvus DB server and access it from outside the container:

docker run ... -p 19530:19530 -e MILVUS_DB_PORT=19530 ...

You can use standard Milvus tools like milvus_cli / Milvus Python SDK to interact with the

milvus DB at <HOST_IP>:19530.

VIA stores per chunk metadata and per chunk VLM response in the vector DB. The VLM response is
stored as a string as is and it is not parsed or stored as structured as data. As part of metadata, it stores
the start / end times of the chunk, chunk index among other things. The final aggregated summarization
response from CA-RAG is not stored.

The video embeddings of the chunks are not stored in the vector DB. Instead, they are stored in the

asset storage directory. You can refer to the EmbeddingHelper module inside the via-engine for
more information and code to retrieve the embeddings. To persist the asset storage directory and
mount a host directory as asset storage directory refer to Persisting Files / Assets on Host.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

44

NOTE: All data in the DB is dropped before every summary request.

Custom Post-Processing Functions
The output of VLM is stored in a Milvus vector DB. To implement custom post-processing functions, you
can connect to the Milvus vector DB and use the information stored in it. For details refer to Accessing
Milvus Vector DB.

Another option is to update the CA-RAG implementation as required.

Tuning Guardrails
VIA microservice has guardrails enabled by default and provides some default guardrails configuration.
VIA uses NVIDIA NeMo Guardrails to provide this functionality.

The guardrails configuration is located at /opt/nvidia/via/guardrails_config inside the
container and at https://github.com/NVIDIA-AI-IOT/via-engine/tree/main/guardrails_config.

To disable guardrails, refer to Disabling Guardrails.

To modify the guardrails configuration, copy the guardrails_config directory to the host, make
modifications as required and then mount the modified config at

/opt/nvidia/via/guardrails_config in the container.

For example:

docker run ... -v <modified_guardrails_config_dir>:/opt/nvidia/via/guardrails_config ...

Using Locally Deployed LLM NIM instead of NVIDIA
Hosted LLM NIM

Deploy a Chat Based NIM Locally
Follow instructions at https://docs.nvidia.com/nim/large-language-models/latest/getting-
started.html#launch-nvidia-nim-for-llms to deploy a LLM NIM locally.

https://github.com/NVIDIA-AI-IOT/via-engine/tree/main/guardrails_config
https://docs.nvidia.com/nim/large-language-models/latest/getting-started.html#launch-nvidia-nim-for-llms
https://docs.nvidia.com/nim/large-language-models/latest/getting-started.html#launch-nvidia-nim-for-llms

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

45

CA-RAG and Guardrails: Using local NIM (llama3-8b)
VIA uses NVIDIA Hosted LLaMA3-70-Instruct NIM for Guardrails and CA-RAG by default. This can
be replaced by a locally deployed NIM.

To use the locally deployed NIM:

1) Follow Steps to deploy local NIM and deploy: llama3-8b

2) Say its deployed at:
http://<HOST-IP>:28000/v1

3) Configure CA-RAG:

Modify the CA-RAG config to use the model: “meta/llama3-8b-instruct” instead of the default
“meta/llama3-70b-instruct” model

To do this, update the summarization/llm in config.yaml. Example (changes in bold):

summarization:

 enable: true

 method: "batch"

 llm:

 base_url: "http://<HOST-IP>:28000/v1"

 model: "meta/llama3-8b-instruct"

 max_tokens: 1024

 temperature: 0.5

 top_p: 1

 params:

 batch_size: 5

 batch_max_concurrency: 20

 prompts:

 caption: "caption prompt”

 caption_summarization: "caption summarization prompt"

 summary_aggregation: "summary aggregation prompt"

4) Configure Guardrails:
Modify guardrails config to use the model: “meta/llama3-8b-instruct” instead of the default
“meta/llama3-70b-instruct” model.
To do this, follow Tuning Guardrails.
Example guardrails_config/config.yml update for the models section:

models:
 - type: main
 engine: nvidia_ai_endpoints
 model: meta/llama3-8b-instruct
 parameters:
 base_url: "http://<HOST-IP>:28000/v1"

https://build.nvidia.com/meta/llama3-8b

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

46

VIA Source Code
The VIA engine source code is hosted at https://github.com/NVIDIA-AI-IOT/via-engine.

The source code in the repository, including any modifications, can be executed in the VIA container

image by mounting the repository root directory at /opt/nvidia/via in the container.

For example:

git clone git@github.com:NVIDIA-AI-IOT/via-engine.git /home/ubuntu/via-engine

docker run ... -v /home/ubuntu/via-engine:/opt/nvidia/via ...

CA-RAG Source Code

The Context Aware RAG source code is hosted at https://github.com/NVIDIA-AI-IOT/via-ctx-rag.

The source code in the repository, including any modifications, can be executed in the VIA container
image by building a wheel using:

$ poetry build

Which generates a wheel file at:

$ dist/context_aware_rag-0.1.0-py3-none-any.whl

Copy the wheel file to the container and install the wheel file in the container using:

in-the-container$ pip uninstall context_aware_rag -y && pip install /path/to/
context_aware_rag-0.1.0-py3-none-any.whl

https://github.com/NVIDIA-AI-IOT/via-engine
mailto:git@github.com:NVIDIA-AI-IOT/via-engine.git
https://github.com/NVIDIA-AI-IOT/via-ctx-rag

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

47

Known Issues:

1. For custom queries, Aggregation is not supported.

2. Models are trained on specific data/use cases so if tested on other inputs then it might give
incorrect results.

3. VLM Model accuracy: Sometimes time stamps returned are not accurate. Also, it can hallucinate
for certain questions. Prompt tuning might be required.

4. Summarization accuracy: Summarization accuracy is heavily dependent on VLM accuracy. Also,
the default CA-RAG configs have been tuned for a specific use case. User can try tuning the CA-
RAG config as required.

5. Guardrails sometimes fails to load. Check if the NVIDIA_API_KEY is correct. If the API Key is
correct, retry after some time.

6. Following harmless warnings might be seen during VIA microservice execution. These can be
safely ignored.

a. GLib (gthread-posix.c): Unexpected error from C library during 'pthread_setspecific':
Invalid argument. Aborting

b. Warning: gst-resource-error-quark: Could not read from resource …
Could not receive any UDP packets …

c. Warning: gst-stream-error-quark: No decoder available for type 'audio/mpeg, …

d. GStreamer-WARNING **: 12:58:07.600: Failed to load plugin …

7. If Gradio UI is busy with file summarization, other operations might get stuck till the file
summarization is complete. This includes other browser tabs connected to the same VIA
instance and launching new UI instances for the VIA instance.

8. Guardrails might not reject some prompts that are expected to be rejected. This could be
because the prompt might be relevant in other contexts as well as topics in the prompt might
not be configured to be rejected. You can try tuning the guardrails configuration if required.

9. If prompt is not relevant to the video content, then VIA summary might contain blank or none
response.

10. OpenAI connection errors or 429 (too many requests) errors might be seen sometimes if too
many requests are sent to GPT-4v / GPT-4o VLMs. If multiple GPUs are being used, try using
reduced number of GPUs using --device argument in the docker run command. VIA sends one
OpenAI request per GPU in parallel for video chunk inferencing. It can also be due to lower
TPM/RPM limits associated with the OpenAI account.

11. CA-RAG Summarization sometimes fails with model context length exceeded error (This model's
maximum context length is 8192 tokens. However, you requested …. Please reduce the length of the

messages or completion.). You can try with lower number of chunks (higher chunk size).

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

48

12. CA-RAG Summarization might show a truncated summary response. This is due to the
max_tokens. Try increasing the number in the CA-RAG config file.

13. Rarely kernel error is seen for back to back summarization requests on certain A100 systems. If
such an error is encountered, the system needs to be restarted.

14. Removal of live streams when using GPT models takes a long time / UI seems to be stuck. This
happens when GPT response time is more than the chunk size and the VLM pipeline cannot
keep up with the live stream FPS. Try increasing the chunk size to more than the GPT response
time.

15. Model outputs can vary if the order of the chunks in a batch changes when using batch size > 1.

VIA Microservices User Guide

VIA-2.0 | Copyright © 2024 NVIDIA Corporation

49

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation
(“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no
responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of
third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual
sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure
or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion
and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the
product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the
product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or
requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to:
(i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information
published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the
patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all
applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,

“MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY
LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulat ive liability towards
customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned
by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm

Arm, AMBA, and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm Limited. All other brands or product names are the
property of their respective holders. ʺArmʺ is used to represent Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea
Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS, and Arm
Sweden AB.

OpenCL OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright

© 2024 NVIDIA Corporation. All rights reserved.

	Getting Started
	Features
	VIA Microservice Architecture
	API Documentation
	Quick Start Guide
	Supported Platforms
	Prerequisites
	Install the NVIDIA Driver
	Install Docker
	Install NVIDIA Container Toolkit
	Obtain NVIDIA API Key
	Obtain NGC API Key
	Obtain OpenAI API Key

	Download VIA Container Image

	Running VIA Microservice
	Starting VIA Microservice with Minimal Configuration
	GPT-4o (OpenAI) - Default
	VITA-2.0 (Optional)

	Configuration Options
	Selecting GPUs
	Configuring Server Ports
	Load VITA from Local Filesystem
	VITA TRT-LLM Engine Configuration
	Using a Custom CA-RAG Configuration
	Downloading NGC Models
	Loading Sample Streams from Local Filesystem (UI)
	Load Custom Model
	Persisting Files / Assets on Host
	Persisting Milvus Data on Host
	Disable Frontend, Guardrails, and CA-RAG
	Running VIA with OpenAI API Compatible VLM

	Model Details
	VIA VLM Models:
	GPT-4o and GPT4-v Turbo
	NVIDIA VITA
	Custom VLM Models

	VIA CA-RAG Models:
	LLaMA 3 70b Instruct

	Python CLI Client
	Pre-requisites
	Files Commands
	Add File
	List Files
	Get File Details
	Get File Contents
	Delete File

	Live Stream Commands
	Add Live Stream
	List Live Streams
	Delete Live Stream

	Models Commands
	List Models

	Summarization Command
	Server Health and Metrics Commands
	Server Health Check
	Server Metrics

	UI Application
	File Summarization
	Live Stream Summarization
	Reconnecting to Live Stream Summarization

	Context-Aware RAG
	VIA Microservice Customization
	Integrating Custom VLM models
	Custom VITA Checkpoint
	OpenAI Compatible REST API
	Other Custom Models

	Configurable Parameters
	Tuning Prompts
	Accessing Milvus Vector DB
	Custom Post-Processing Functions
	Tuning Guardrails
	Using Locally Deployed LLM NIM instead of NVIDIA Hosted LLM NIM
	Deploy a Chat Based NIM Locally
	CA-RAG and Guardrails: Using local NIM (llama3-8b)

	VIA Source Code

	Known Issues:

