
vNVFRUC_PG-09417-001_v03 | February 2023

NVIDIA Optical Flow Engine-Assisted
Frame Rate Up Conversion

Programming Guide

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | ii

Table of Contents

Chapter 1. Introduction..1
1.1. Frame Rate Up Conversion.. 1

1.2. NVIDIA FRUC library..2

Chapter 2. How FRUC Library Works?... 3
2.1. FRUC Library Usage Overview..3

2.2. Inside FRUC Library...4

2.3. FRUC Library Components...5

Chapter 3. Programming Using FRUC APIs... 6
3.1. Basic Programming Flow.. 6

3.2. Background...6

3.3. Example Of FRUC API Usage.. 7

3.4. Using FRUC APIs.. 8

3.4.1. Creating FRUC Instance.. 8

3.4.2. Registering Resources... 9

3.4.3. Interpolating Intermediate Frame...9

3.4.4. Unregistering Resources.. 11

3.4.5. Destroying FRUC Instance...12

3.4.6. Diagnostics...12

Chapter 4. Prerequisites..13

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 1

Chapter 1. Introduction

NVIDIA GPUs starting from Turing generation contain a hardware-based Optical Flow
Accelerator (NVOFA) that gives flow vectors map between the two frames. NVIDIA
Optical Flow SDK gives access to NVOFA via Optical Flow APIs.

NVIDIA Optical Flow SDK 4.0 and later SDKs include NVOFA assisted Frame Rate Up
Conversion (FRUC) library. The library exposes FRUC APIs that can be used for frame rate
up conversion of game or video.

This document provides information on how to use the FRUC APIs. It is expected that the
developer should have familiarity with Windows and/or Linux development environment.

1.1. Frame Rate Up Conversion
Frame Rate Up Conversion is a technique that generates higher frame rate video from
lower frame rate video by inserting interpolated frames into it. Such high frame rate
video shows smooth continuity of motion across frames that improves perceived visual
quality of video.

Figure 1. Frame Rate Up Conversion

Introduction

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 2

1.2. NVIDIA FRUC library
NVIDIA FRUC library exposes FRUC APIs that take two consecutive frames and generate
an interpolated frame in between. These APIs can be used for frame rate up conversion
of gaming or video content.

The library internally uses NVOFA hardware engine and CUDA. As a result, the frame
interpolation using FRUC library is much faster compared to software-only methods.

The library supports ARGB and NV12 input surface formats. It can be directly integrated
into a DirectX game or a CUDA application.

The FRUC library works on Windows OS (Windows 10 and above) and Linux OS
(distributions Ubuntu 18 and above). It needs NVIDIA display driver version 511.65 or
above on Windows and NVIDIA display driver version 510.47.03 or above on Linux.

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 3

Chapter 2. How FRUC Library Works?

2.1. FRUC Library Usage Overview
Here is a block diagram showing how applications can use FRUC library for frame rate up
conversion.

Figure 2. FRUC Library Software Stack

 1. Application passes consecutive frames to FRUC library.
 2. FRUC library uses frame from current call (next frame) and cached frame from

previous call (previous frame) to interpolate intermediate frame. The library first
calls NVIDIA Optical flow APIs to get forward and backward flow vector maps
between the two frames (previous and next). It then uses CUDA accelerated
techniques to generate an interpolated frame between the two frames.

How FRUC Library Works?

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 4

 3. The interpolated frame is returned to the application. Application then interleaves
the interpolated frames with original frames and generates video with an increased
framerate.

2.2. Inside FRUC Library
Here is a simplified functional block diagram of FRUC library.

Figure 3. Simplified block diagram of FRUC library

Here is a brief explanation about how FRUC library processes two consecutive frames
and generates an interpolated frame.

Input to the FRUC library are two consecutive frames (previous and next)

 1. Generation of flow vectors using NVOFA APIs

Consecutive frame pairs are sent to NVIDIA Optical flow engine using NVOFA APIs to
get forward and backward flow vector maps between them.

 2. Validation of flow vectors

All flow vectors in the flow vectors maps are then validated using forward-backward
consistency check. The flow vectors that do not pass the consistency check are
rejected, resulting in sparse optical flow vector maps.

 3. Infilling invalid flow vectors using advanced techniques

Using available flow vectors and advanced techniques, accurate flow vectors are
generated to fill in the rejected flow vectors, converting the sparse flow vector map
into a fully dense flow vector map.

 4. Image interpolation

How FRUC Library Works?

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 5

Using the dense flow vector map, an interpolated frame between the two input
frames is generated.

Such an image may contain a few hole regions (pixels that don’t have valid color).
 5. Image domain hole in-filling

Holes in the interpolated frame are filled using image domain hole infilling techniques
to generate final interpolated image.

The final interpolated frame is returned to the application.

2.3. FRUC Library Components
Optical Flow SDK includes the following components of FRUC Library:

‣ NvFRUC.dll: DLL that exposes FRUC APIs on Windows.

‣ libNvFRUC.so: .so file that exposes FRUC APIs on Linux (Ubuntu).

‣ NvFRUC.h: NvFRUC API header file.

‣ NvFRUCSample: application source code: Shows how to use NVIDIA FRUC library.

‣ ReadMe.pdf: Includes instructions on how to build and run NvFRUCSample application

‣ NVOFA_FRUC.pdf: Contains detailed information about FRUC APIs and how to use
those (this document).

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 6

Chapter 3. Programming Using FRUC
APIs

3.1. Basic Programming Flow
NVIDIA FRUC APIs are designed to accept raw video frames in NV12 or ARGB format and
return an interpolated frame between them.

Broadly, the programming flow consists of the following steps:

 1. Call API PtrToFuncNvFRUCCreate to create FRUC instance.
 2. Create input resources (DirectX NV12 or CUDA ARGB surfaces) and register them

with FRUC library using API PtrToFuncNvFRUCRegisterResource.
 3. Call API PtrToFuncNvFRUCProcess to process input frames to generate interpolated

frames.
 4. Call API PtrToFuncNvFRUCUnregisterResource to unregister input resources with

FRUC library so that they can be destroyed.
 5. Call API PtrToFuncNvFRUCDestroy to destroy FRUC instance.

Header file NvFRUC.h has details of structures used in these functions.

3.2. Background
As seen in Simplified block diagram of FRUC library, the FRUC library uses Optical Flow
APIs to get flow vector maps between the two consecutive frames. The client application
first needs to allocate buffers to hold input frame pair data and interpolated frame data.
Client application then needs to pass the address of these buffers to the FRUC library.
The FRUC library then makes use of NVOFA APIs, advanced CUDA algorithms to produce
an interpolated frame and copies it to the output buffer shared by the client application.

The client application can create input and output resources using either DirectX APIs or
CUDA driver APIs.

‣ Resource creation using DirectX 11 API

In this case the client application creates shared texture using DirectX 11 APIs and
shares the pointers of the device that creates textures and texture itself to FRUC

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 7

library. Since the textures are shared between the client application and FRUC library,
it is the client application’s responsibility to ensure synchronization to avoid race
conditions. The synchronization mechanism to be used is ID3D11Fence on Windows
OS build number 1703 and above or IDXGIKeyedMutex on rest of Windows OS’s.
Client application and FRUC library uses the CUDA-DirectX graphics interoperability
API for thread safe read-write of buffers. To know more about this, please visit
Direct3D 11 Interoperability.

‣ Resource creation using CUDA Driver API

If the client application uses CUDA API to create the shared resources, it just needs
to pass the resource pointer to the FRUC library.

3.3. Example Of FRUC API Usage
Source code of NvFRUCSample application demonstrates use of the APIs exposed by
NVIDIA FRUC library for frame rate up conversion. The application accepts input video
either as YUV file or as sequence of PNG frames and generates outputs as follows:

‣ Input as YUV video sequence

In this case the application takes a YUV(YUV420) video sequence, interpolates
intermediate frames between the consecutive frames, interleaves interpolated
frames with original frames to generate output YUV video. The output video thus
generated has double the framerate as that of input video.

‣ Input as PNG frame sequence

In this case the application takes sequence of frames in PNG format, interpolates
intermediate frames between the consecutive frames and saves those in PNG
format.

NvFRUCSample has the following helper classes to create and handle shared resources.
You could reuse these helper classes and other parts of code of NVFRUCSample
application in your custom application.

‣ FrameGeneratorD3D11

This class handles the creation of ID3D11Device, IDXGIKeyedMutex and
ID3D11Fence interfaces. It also handles reading and writing of shared surfaces with
synchronization.

‣ FrameGeneratorCUDA

This handles the creation of cuDevicePtr, cuArray interface pointers and sharing
these pointers to FRUC library. It also handles reading and writing into CUDA device
memory.

‣ BufferManager

This class handles device-to-host and host-to-device CUDA memory transfers
between FRUC NvFRUCSample application and FRUC library.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__D3D11.html&context=d3d11interop

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 8

3.4. Using FRUC APIs

3.4.1. Creating FRUC Instance
Load NvFRUC.dll (Windows) or libNvFRUC.so (on Linux) as follows.

‣ Windows

SecureLoadLibrary(L"NvFRUC.dll", &hDLL);

We recommend loading NvFRUC.dll using SecureLoadLibrary() to ensure Nvidia
Signed Library is loaded by the application.

‣ Linux

hDLL = dlopen("libNvFRUC.so", RTLD_LAZY);

Retrieve the addresses of functions exported by FRUC library as follows. Signatures of
exported functions are available in header file NvFRUC.h.

NvFRUCCreate = (PtrToFuncNvFRUCCreate)GETPROCEDUREADDRESS(
 DLL,
 CreateProcName);
NvFRUCRegisterResource =(PtrToFuncNvFRUCRegisterResource)GETPROCEDUREADDRESS(
 hDLL,
 RegisterResourceProcName);
NvFRUCUnregisterResource = (PtrToFuncNvFRUCUnregisterResource)GETPROCEDUREADDRESS(
 hDLL,
 UnregisterResourceProcName);
NvFRUCProcess = (PtrToFuncNvFRUCProcess)GETPROCEDUREADDRESS(
 hDLL,
 ProcessProcName);
NvFRUCDestroy = (PtrToFuncNvFRUCDestroy)GETPROCEDUREADDRESS(
 hDLL,
 DestroyProcName);

To create NvFRUC instance call NvFRUCCreate function as follows.

NvFRUC_CREATE_PARAM createParams = { 0 };
NvFRUCHandle hFRUC;
createParams.pDevice = objFrameGenerator->GetDevice();
createParams.uiHeight = stArgs.m_Height;
createParams.uiWidth = stArgs.m_Width;
createParams.eResourceType = (NvFRUCResourceType)stArgs.m_ResourceType;
createParams.eSurfaceFormat = (NvFRUCSurfaceFormat)stArgs.m_InputSurfaceFormat;
createParams.eCUDAResourceType = (NvFRUCCUDAResourceType)stArgs.m_CudaResourceType;

//Initialize FRUC pipeline which internally initializes Optical flow engine
status = NvFRUCCreate(
 &createParams,
 &hFRUC);

Here is a brief explanation about parameters of structure NvFRUC_CREATE_PARAM that you
need to pass to NvFRUCCreate function.

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 9

‣ pDevice(input): This is pointer to ID3D11Device interface. This pointer is shared
with the FRUC library. This is used only if the client is using DirectX API for resource
creation. It should be NULL in case you are using CUDA APIs for resource creation.

‣ uiHeight(input): Height of input surface to be created by client application.

‣ uiWidth(input): Width of input surface to be created by client application.

‣ eResourceType(input): Set this to 1 if you are creating shared resources as DirectX 11
texture. In case you are creating a shared resource as cuDevicePtr or cuArray, set
this to 0.

‣ eSurfaceFormat(input): Set this to 0 for surface format NV12 and 1 for surface format
ARGB. Surface format is independent of the API being used to create resources.

‣ eCUDAResourceType(input): In case you are using CUDA APIs for resource creation set
this parameter to 0 for cuDevicePtr and 1 for cuArray.

If this function succeeds, it returns handle to FRUC instance that is required in all
subsequent functions.

3.4.2. Registering Resources
Register the resources created by client with FRUC library using
NvFRUCRegisterResource function as follows.

NvFRUC_REGISTER_RESOURCE_PARAM regOutParam = { 0 };
objFrameGenerator->GetResource(
 regOutParam.pArrResource,
 regOutParam.uiCount);
 regOutParam.pD3D11FenceObj = objFrameGenerator->GetFenceObj();

status = NvFRUCRegisterResource(
 hFRUC,
 ®OutParam);

Here the objFrameGenerator is an object of class FrameGeneratorD3D11 or
FrameGeneratorCUDA. It creates the required resources during initialization. The
objFrameGenerator->GetResource() function called above arranges these
resources in the form of an array of void pointers which are then passed to
NvFRUCRegisterResource() function.

Fill in NvFRUC_REGISTER_RESOURCE_PARAM structure as follows.

‣ pArrResource(input): Array of pointers to input and output resources.

‣ uiCount(input): Total number of input and output resources.

If the function call succeeds it returns NvFRUC_SUCCESS.

3.4.3. Interpolating Intermediate Frame
Provide the consecutive input frames and get interpolated frame by calling
NvFRUCProcess in loop as follows.

NvFRUC_PROCESS_IN_PARAMS stInParams = { 0 };

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 10

NvFRUC_PROCESS_OUT_PARAMS stOutParams = { 0 };

status = NvFRUCProcess(
 hFRUC,
 &stInParams,
 &stOutParams);

Here is a figure showing how to use NvFRUCProcess function.

Figure 4. How to use NvFRUCProcess function

Assume that you have a sequence of consecutive frames at timestamps 1, 2, 3 and so
on. You wish to interpolate frames in between these frames at timestamps 1.5, 2.5, 3.5
and so on.

Call NvFRUCProcess in loop with stInParams set to frame with timestamp 1, 2, 3
and timestamp field in stOutParams set to 1.5, 2.5, 3.5 and so on. For the first call,
NvFRUCProcess function returns frame at timestamp 1 itself as it cannot interpolate
frame using just one frame. From the next call onwards, this function returns
interpolated frames 1.5, 2.5, 3.5 and so on.

NvFRUCProcess API can be used to interpolate frame at any time-stamp between the two
frames. e.g. 1.25, 1.50, 1.75 etc. Please use the values of stInParams.nTimeStamp and
stOutParams.nTimeStamp accordingly.

NvFRUCProcess API uses frame from current call and the cached frame from previous
call to interpolate the intermediate frame. Users should not call NvFRUCProcess multiple
times with the same frame.

Fill in the stInParams and stOutParams structures before calling NvFRUCProcess API as
follows:

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 11

stInParams is a structure of type NvFRUC_PROCESS_IN_PARAMS that has the following
members:

Fill in stFrameDataInput struct as follows.

‣ pFrame(input): Pointer to raw input frame data.

‣ nTimeStamp(input): Timestamp of input frame.

‣ bHasFrameRepetitionOccurred(ignored): The value of this flag is ignored by FRUC library
in parameter stFrameDataInput.

‣ uSyncWait(output): This member is used for synchronization of CUDA-DirectX interop
in case you are using FRUC API in a DirectX application such as a game on Windows.
FRUC library supports synchronization using fence on Windows OS build 1703 and
above and keyed mutex on other windows OS builds. If you are using ID3D11Fence,
increment the fence value here so that the library can acquire the input resource,
else increment key value. For more details, please refer to graphics-interoperability
section in NVIDIA CUDA programming guide.

stOutParams is a structure of type NvFRUC_PROCESS_OUT_PARAMS that has the following
members:

‣ pFrame(output): Pointer to raw output frame data.

‣ nTimeStamp(input): Timestamp of frame to be interpolated.

‣ bHasFrameRepetitionOccurred(output): FRUC library returns the previous frame as
interpolated frame in case the interpolated frame does not meet a certain quality
bar. In such a case, this flag would be set to true by FRUC library. The application can
monitor this flag, if useful..

On success the function returns NvFRUC_SUCCESS. If you are using FRUC library in DirectX
application, then you need to wait on user thread till NvFRUCProcess() completes. For
CUDA APIs, the function call is a blocking call.

3.4.4. Unregistering Resources
Unregister the resource using NvFRUCUnregisterResource function as follows.

NvFRUC_UNREGISTER_RESOURCE_PARAM stUnregisterResourceParam = { 0 };
memcpy(stUnregisterResourceParam.pArrResource,
 regOutParam.pArrResource,
 regOutParam.uiCount * sizeof(IUnknown*));

stUnregisterResourceParam.uiCount = regOutParam.uiCount;

status = NvFRUCUnregisterResource(
 hFRUC,
 &stUnregisterResourceParam);

Fill in NvFRUC_UNREGISTER_RESOURCE_PARAM structure as follows.

‣ pArrResource(input): Array of pointers to input and output resources.

‣ uiCount(input): Total number of input and output resources.

If the function call succeeds it returns NvFRUC_SUCCESS.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graphics-interoperability

Programming Using FRUC APIs

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 12

3.4.5. Destroying FRUC Instance
In the end, destroy FRUC instance using NvFRUCDestroy function as follows:

status = NvFRUCDestroy(hFRUC);

This function destroys the FRUC instance and returns NvFRUC_SUCCESS if it succeeds.

3.4.6. Diagnostics
All FRUC APIs status NvFRUC_SUCCESS if they succeed. In case of failure, the APIs return
error codes hinting at the possible causes of failure. FRUC header NvFRUC.h has a list of
all such error codes.

NVIDIA Optical Flow Engine-Assisted Frame Rate Up
Conversion

vNVFRUC_PG-09417-001_v03 | 13

Chapter 4. Prerequisites

Once you integrate FRUC APIs into your application, you can build the application and
run it on the target system. Do not run the sample application executable with elevated
permission. Target system needs to have the following prerequisites for using FRUC
library:

‣ NVIDIA GPU (Graphics Processing Units): Turing or above, with Optical Flow hardware
support

‣ Windows OS: Windows 10 or above with latest updates

‣ Linux OS: Distributions Ubuntu 18 or above

‣ NVIDIA Windows display driver version 511.65 or above

‣ NVIDIA Linux display driver version 510.47.03 or above

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, Jetson, Kepler, Maxwell,
NCCL, Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM,
PerfWorks, Pascal, SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/
or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2018-2023 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Frame Rate Up Conversion
	1.2. NVIDIA FRUC library

	How FRUC Library Works?
	2.1. FRUC Library Usage Overview
	2.2. Inside FRUC Library
	2.3. FRUC Library Components

	Programming Using FRUC APIs
	3.1. Basic Programming Flow
	3.2. Background
	3.3. Example Of FRUC API Usage
	3.4. Using FRUC APIs
	3.4.1. Creating FRUC Instance
	3.4.2. Registering Resources
	3.4.3. Interpolating Intermediate Frame
	3.4.4. Unregistering Resources
	3.4.5. Destroying FRUC Instance
	3.4.6. Diagnostics

	Prerequisites

