
vPYNVVIDEOCODEC_PG-08085-001_v07"    |    May 2025

PyNvVideoCodec API

Programming Guide



PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   ii

Table of Contents

Chapter 1. Overview..............................................................................................................1

Chapter 2. Using PyNvVideoCodec API's............................................................................. 3
2.1. Video Demuxing.........................................................................................................................3

2.2. Buffer-Based Demuxing and Decoding................................................................................... 4

2.3. Video Decoding..........................................................................................................................6

2.4. SimpleDecoder........................................................................................................................ 10

2.5. Decoder Caching..................................................................................................................... 12

2.6. ThreadedDecoder.................................................................................................................... 14

2.7. Video Encoding........................................................................................................................ 16

2.8. Video Encoding Basics............................................................................................................21

2.9. Video Encoding Parameter Details........................................................................................ 23

2.10. Segment-Based Transcoding............................................................................................... 26

2.11. SEI Message Encoding and Decoding..................................................................................28

2.12. Interoperability with Deep Learning Frameworks.............................................................. 32

Chapter 3. PyNvVideoCodec Performance.........................................................................35
3.1. Frame Retrieval.......................................................................................................................35

3.2. Decoder Reuse........................................................................................................................ 37

3.3. Segmented Transcoding......................................................................................................... 39

Chapter 4. Debugging and Logging................................................................................... 42



PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   1

Chapter 1. Overview

NVIDIA’s Video Codec SDK offers hardware-accelerated video encoding and decoding through
highly optimized C/C++ APIs. Such encoding and decoding of videos is also useful for a wide range
of users, including computer vision experts, researchers and Deep Learning (DL) developers.
The objective of PyNvVideoCodec is to provide simple APIs for harnessing such video encoding
and decoding capabilities when working with videos in Python.

PyNvVideoCodec is a library that provides Python bindings over C++ APIs for hardware-
accelerated video encoding and decoding. Internally, it utilizes core APIs of NVIDIA Video Codec
SDK and provides the ease-of-use inherent to Python. It relies on an external FFmpeg library
for demuxing media files.

PyNvVideoCodec gives encode and decode performance (FPS) close to Video Codec SDK.

Here is a high level block diagram showing client application, PyNvVideoCodec library and
related components.



Overview

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   2

Figure 1. High Level Architecture Diagram



PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   3

Chapter 2. Using PyNvVideoCodec
API's

The following sections in this chapter explain how to use PyNvVideoCodec APIs for accelerating
video decoding and encoding.

All APIs are exposed in python module named PyNvVideoCodec.

2.1. Video Demuxing
Demux API

‣ CreateDemuxer

CreateDemuxer(filename: str) -> PyNvDemuxer
parameters
    :param _filename: path to media file or encoded bitstream
             

CreateDemuxer function accepts files with extension .mp4, .avi, and .mkv.

The CreateDemuxer has parameter as follows:
filename

Absolute path to file

Demux API usage

 1. Create Demuxer instance as follows. This only argument required is the media file name.

import PyNvVideoCodec as nvc
demuxer = nvc.CreateDemuxer(filename=media_file_name)
           

 2. demuxer object reads media file and splits it into chunks of data (PacketData).

Example below shows how to fetch PacketData from demuxer object

import PyNvVideoCodec as nvc
demuxer = nvc.CreateDemuxer(filename=media_file_name)
for packet in demuxer:
    # process packet
           



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   4

 3. In addition to file-based demuxing, PyNvVideoCodec also supports buffer-based demuxing
which allows processing video data directly from memory buffers.

This approach is particularly useful for streaming applications or scenarios where video data
is already in memory. For more details, see Buffer-Based Demuxing and Decoding.

PacketData

This class stores compressed data. It is typically exported by demuxers and then passed as input
to decoders. For video, it typically contains one compressed frame.

The class PacketData has following attributes:
bsl

Size of the buffer in bytes where the elementary bitstream data is stored.
bsl_data

A pointer to the buffer containing the elementary bitstream data.
dts

The time at which the packet is decompressed.
duration

Duration of this packet in stream's time base.
key

Value of 1 indicates that packet data belongs to key frame.
pos

Byte position in stream.
pts

The time at which the decompressed packet will be presented to the user.

2.2. Buffer-Based Demuxing and Decoding
In addition to file-based demuxing, PyNvVideoCodec supports buffer-based demuxing which
allows processing video data directly from memory buffers rather than reading from disk. This
approach is particularly useful for streaming applications or scenarios where video data is
already in memory.

Buffer-Based Demuxing Overview

Buffer-based demuxing enables applications to:

‣ Process data that's already in memory without writing to disk first

‣ Feed video data in chunks to the demuxer via a callback function

‣ Control the memory flow between application and demuxer

‣ Implement custom data sources (network streams, encrypted content, etc.)

Applications of Buffer-Based Demuxing

Buffer-based demuxing is particularly useful for:



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   5

‣ Network streaming applications where data arrives in chunks

‣ Processing encrypted video that needs to be decrypted in memory

‣ Working with video data from non-file sources (databases, memory-mapped files, etc.)

‣ Real-time video processing where data is generated on-the-fly

‣ Multi-source video applications that composite or switch between different streams

Demuxer Callback Function

When creating a demuxer for buffer-based processing, you provide a callback function instead
of a filename. This callback function:

‣ Is called whenever the demuxer needs more data

‣ Receives a pre-allocated buffer to fill with video data

‣ Returns the number of bytes copied to the buffer (0 indicates end of stream)

Implementation Examples

1. VideoStreamFeeder Class:

class VideoStreamFeeder:
    """
    Class to handle feeding video data in chunks to the demuxer.
    """
    def __init__(self, file_path):
        # Read the entire video file into a memory buffer
        with open(file_path, 'rb') as f:
            self.video_buffer = bytearray(f.read())
        self.current_pos = 0
        self.bytes_remaining = len(self.video_buffer)
        self.chunk_size = 0

    def feed_chunk(self, demuxer_buffer):
        """
        Feed next chunk of video data to demuxer buffer.
        Returns number of bytes copied (0 if no more data)
        """
        buffer_capacity = len(demuxer_buffer)
        
        if self.bytes_remaining < buffer_capacity:
            self.chunk_size = self.bytes_remaining
        else:
            self.chunk_size = buffer_capacity

        if self.chunk_size == 0:
            return 0

        # Copy data from video buffer to demuxer buffer
        demuxer_buffer[:] = self.video_buffer[
            self.current_pos:self.current_pos + self.chunk_size]

        self.current_pos += self.chunk_size
        self.bytes_remaining -= self.chunk_size
        return self.chunk_size

2. Buffer-Based Decoding Pipeline:

def demux_from_byte_array(input_file, yuv_file, use_device_memory):



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   6

    # Create the data feeder
    data_feeder = VideoStreamFeeder(input_file)
    
    # Create buffer-based demuxer with the feed_chunk callback
    buffer_demuxer = nvc.CreateDemuxer(data_feeder.feed_chunk)

    # Create decoder using codec information from demuxer
    buffer_decoder = nvc.CreateDecoder(
        gpuid=0,
        codec=buffer_demuxer.GetNvCodecId(),
        cudacontext=0,
        cudastream=0,
        usedevicememory=use_device_memory
    )

    # Process the packets and frames
    with open(yuv_file, 'wb') as decFile:
        for packet in buffer_demuxer:
            for decoded_frame in buffer_decoder.Decode(packet):
                # Process and save decoded frames
                # ...

Best Practices for Buffer-Based Demuxing

‣ Consider memory usage: Loading large videos entirely into memory may not be efficient;
consider streaming or chunking for large files

‣ Implement proper error handling in your callback function

‣ Return 0 from the callback when there is no more data to signal end-of-stream

‣ For streaming scenarios, implement a thread-safe buffer with proper synchronization

2.3. Video Decoding
PyNvVideoCodec provides robust hardware-accelerated video decoding capabilities, leveraging
NVIDIA GPUs to efficiently decode various video formats. This section covers the key concepts
and API usage for video decoding operations.

Creating a Decoder

The primary method to create a decoder is through the CreateDecoder function. This factory
function configures and initializes a decoder instance based on your requirements:

import PyNvVideoCodec as nvc

# Create CUDA context and stream
device_id = 0
cuda_device = cuda.Device(device_id)
cuda_ctx = cuda_device.retain_primary_context()
cuda_stream = cuda.Stream()

# Create a demuxer for codec detection
nv_dmx = nvc.CreateDemuxer(filename="input.mp4")

# Create a decoder
nv_dec = nvc.CreateDecoder(
    gpuid=0,                       # GPU device ID
    codec=nv_dmx.GetNvCodecId(),   # Get codec from demuxer



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   7

    cudacontext=cuda_ctx.handle,   # CUDA context
    cudastream=cuda_stream.handle, # CUDA stream
    usedevicememory=True,          # Store decoded frames in device memory
    latency=nvc.DisplayDecodeLatencyType.NATIVE  # Latency mode
)

Basic Decoding Workflow

A typical video decoding workflow consists of the following steps:

 1. Create a demuxer to extract encoded packets from the video container

 2. Create a decoder with the appropriate configuration

 3. Feed encoded packets to the decoder

 4. Retrieve and process decoded frames

import PyNvVideoCodec as nvc

# Create demuxer
demuxer = nvc.CreateDemuxer(filename="input.mp4")

# Create decoder
decoder = nvc.CreateDecoder(
    gpuid=0,
    codec=demuxer.GetNvCodecId(),
    usedevicememory=True
)

# Decode frames
for packet in demuxer:
    for frame in decoder.Decode(packet):
        # Process decoded frame
        process_frame(frame)

Decoder Parameters

The decoder can be created with various parameters to control its behavior:

Parameter Description

gpuid Ordinal of GPU to use

codec Codec identifier (H.264, HEVC, AV1, etc.)

cudacontext Optional CUDA context handle

cudastream Optional CUDA stream handle

usedevicememory Whether to keep decoded frames in device memory

outputcolortype The desired color format of the output frames

maxwidth, maxheight Maximum dimensions for decoded frames

lowlatency Enable low-latency decoding mode

Color Formats

PyNvVideoCodec supports various color formats for decoded frames. The color format is
specified using the format parameter when creating a decoder.



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   8

Table 1. Supported Color Formats

Format Description

NV12 Semi-planar YUV format with Y plane followed by interleaved UV plane. This
is the most commonly used format for 8-bit content.

P016 16-bit semi-planar YUV format with Y plane followed by interleaved UV plane.
Can be used for 10-bit content (6 LSB bits 0) or 12-bit content (4 LSB bits 0).

YUV444 Planar YUV format with separate Y, U, and V planes at full resolution. Used
for 8-bit content with no chroma subsampling.

YUV444_16Bit 16-bit planar YUV format with separate Y, U, and V planes at full resolution.
Can be used for 10-bit content (6 LSB bits 0) or 12-bit content (4 LSB bits 0)
with no chroma subsampling.

NV16 Semi-planar YUV 4:2:2 format with Y plane followed by interleaved UV plane.
Used for 8-bit content with horizontal-only chroma subsampling.

P216 16-bit semi-planar YUV 4:2:2 format with Y plane followed by interleaved UV
plane. Can be used for 10-bit content (6 LSB bits 0) or 12-bit content (4 LSB
bits 0) with horizontal-only chroma subsampling.

Latency Modes

PyNvVideoCodec provides different latency modes for video decoding, which control the timing
of when decoded frames are made available to the application. Understanding these modes is
crucial for applications that require real-time or low-latency processing.

The DisplayDecodeLatencyType enumeration defines three possible latency modes:

‣ NATIVE: For a stream with B-frames, there is at least 1 frame latency between submitting
an input packet and getting the decoded frame in display order.

‣ LOW: For All-Intra and IPPP sequences (without B-frames), there is no latency between
submitting an input packet and getting the decoded frame in display order. Do not use this
flag if the stream contains B-frames. This mode maintains proper display ordering.

‣ ZERO: Enables zero latency for All-Intra / IPPP streams. Do not use this flag if the stream
contains B-frames. This mode maintains decode ordering.

Understanding Latency in H.264/HEVC Decoding

In H.264 and HEVC, there is an inherent display latency for video content with frame reordering
(typically due to B-frames). Even for All-Intra and IPPP sequences, if num_reorder_frames is
not explicitly set to 0 in the Video Usability Information (VUI), there can still be display latency.
The LOW and ZERO latency modes help eliminate this latency for appropriate content types.

Implementing Low-Latency Decoding

To achieve low-latency decoding, you need to:

 1. Set the appropriate DisplayDecodeLatencyType when creating the decoder



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   9

 2. For packets containing exactly one frame or field, set the ENDOFPICTURE flag to trigger
immediate decode callback

Code Example:

import PyNvVideoCodec as nvc

# Create a decoder with low latency mode
nvdec = nvc.CreateDecoder(
    gpuid=0,
    codec=nvc.cudaVideoCodec.H264,
    cudacontext=cuda_ctx.handle,
    cudastream=cuda_stream.handle,
    latency=nvc.DisplayDecodeLatencyType.LOW
)

# When processing packets in low latency mode
for packet in demuxer:
    # If using LOW or ZERO latency mode 
    # and packet contains exactly one frame
    if decode_latency == nvc.DisplayDecodeLatencyType.LOW or \
       decode_latency == nvc.DisplayDecodeLatencyType.ZERO:
        # Set flag to trigger decode callback immediately 
        # when packet contains exactly one frame
        packet.decode_flag = nvc.VideoPacketFlag.ENDOFPICTURE
        
    # Decode the packet
    frames = nvdec.Decode(packet)
    
    for frame in frames:
        # Process frame here
        process_frame(frame)

Note: The ENDOFPICTURE flag is only effective for content without B-frames (All-Intra or IPPP
sequences). For content with B-frames, some inherent latency will remain due to the nature of
bidirectional prediction.

Error Handling

The decoder provides robust error handling mechanisms for dealing with corrupted streams:

try:
    for packet in demuxer:
        for frame in decoder.Decode(packet):
            process_frame(frame)
except nvc.PyNvVCExceptionCuda as e:
    print(f"CUDA error: {e}")
except nvc.PyNvVCExceptionDecode as e:
    print(f"Decoding error: {e}")
except nvc.PyNvVCExceptionUnsupported as e:
    print(f"Unsupported feature: {e}")

Performance Optimization Tips

‣ Use device memory (usedevicememory=True) to avoid costly host-device transfers

‣ Reuse decoder instances when processing multiple videos with similar properties

‣ Provide a CUDA stream to enable parallel processing with other operations

‣ Choose the appropriate color format for your workflow to minimize conversions



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   10

‣ Consider using the ThreadedDecoder for ML pipelines to hide decoding latency

2.4. SimpleDecoder
SimpleDecoder Overview

The SimpleDecoder class provides a high-level, user-friendly interface for video decoding
operations. It simplifies video frame access and decoding with a Pythonic interface, handling
many of the complex aspects of video processing.

Key features of SimpleDecoder include:

‣ Random access to frames using Python's indexing syntax

‣ Support for both individual frames and frame ranges (slices)

‣ Batch decoding of sequential or arbitrary frames

‣ Access to comprehensive stream metadata

‣ Mapping between time and frame indices

‣ Decoder reuse and reconfiguration

The SimpleDecoder can be configured with various parameters to control its behavior:

Parameter Description

enc_file_path Path to the encoded video file

gpu_id GPU device ID on which to decode (default: 0)

cuda_context CUDA context under which the source is decoded (default: 0)

cuda_stream CUDA stream used by the decoder (default: 0)

use_device_memory If True, decoded frames are stored in GPU memory using
CUDeviceptr wrapped in CUDA Array Interface; if False, frames are
in host memory (default: True)

max_width Maximum width that the decoder must support, important for
decoder reuse (default: 0, which means no limit)

max_height Maximum height that the decoder must support, important for
decoder reuse (default: 0, which means no limit)

need_scanned_stream_metadata If True, collects detailed stream metadata by analyzing each packet
(runs on a separate thread, processing time depends on stream size)
(default: False)

decoder_cache_size LRU cache size for the number of decoders to cache (default: 4)

output_color_type Output format for decoded frames: NATIVE (default, returns in
format like NV12, YUV444), RGB (interleaved RGB in HWC format), or
RGBP (planar RGB in CHW format)



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   11

Parameter Description

bWaitForSessionWarmUp Whether to wait for decoder session warmup (default: False)

SimpleDecoder API Usage

Here are examples showing how to use SimpleDecoder APIs.

‣ Creating a decoder: Initialize with a video file path and optional parameters for GPU
selection, memory management, and output format
decoder = SimpleDecoder("video.mp4", use_device_memory=True)

‣ Accessing individual frames: Use Python indexing to get frames by position
frame = decoder[10]  # Get the 11th frame (zero-based indexing)

‣ Accessing frame ranges: Use Python slicing to get multiple frames
frames = decoder[10:20]  # Get frames 10 through 19

‣ Getting sequential batches: Process frames in batches for efficiency
batch = decoder.get_batch_frames(batch_size=10)  # Get next 10 frames

‣ Getting specific frame batches: Retrieve arbitrary sets of frames by index
frames = decoder.get_batch_frames_by_index([5, 10, 15, 20])  # Get specific frames

‣ Accessing metadata: Get information about the video stream
metadata = decoder.get_stream_metadata()  # Basic metadata
detailed_metadata = decoder.get_scanned_stream_metadata()  # Detailed metadata (if
 enabled)

‣ Time-based navigation: Convert between time and frame indices
frame_idx = decoder.get_index_from_time_in_seconds(10.5)  # Get frame at 10.5
 seconds

‣ Seeking to positions: Move to specific position in the stream
decoder.seek_to_index(100)  # Seek to frame 100

‣ Decoder reuse: Reconfigure for a new video source without creating a new decoder
decoder.reconfigure_decoder("another_video.mp4")  # Switch to new video

‣ Advanced initialization: Configure the decoder with extended parameters for specialized use
cases

advanced_decoder = SimpleDecoder(
    enc_file_path="input_video.mp4",          # Input filename 
    gpu_id=0,                                 # Index of GPU, useful for multi-GPU setups 
    use_device_memory=True,                   # Decoded frames reside in device memory 
    max_width=1920,                           # Maximum width of buffer for decoder reuse 
    max_height=1080,                          # Maximum height of buffer for decoder reuse 
    need_scanned_stream_metadata=True,        # Retrieve stream-level metadata 
    decoder_cache_size=8,                     # Maximum number of unique
 decoder sessions cached 
    output_color_type=nvc.OutputColorType.RGB # Decoded frames available as RGB
 or YUV
)

‣ Getting video information: Retrieve video properties like length, resolution, frame rate, and
codec

# Get total number of frames
total_frames = len(decoder)

# Get basic stream metadata



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   12

metadata = decoder.get_stream_metadata()
print(f"Video dimensions: {metadata.width}x{metadata.height}")
print(f"FPS: {metadata.avg_frame_rate}")
print(f"Codec: {metadata.codec}")
print(f"Duration: {metadata.duration} seconds")

‣ Sequential frame fetching: Get frames in sequence using Python indexing

# Get the first frame
frame_0 = decoder[0]

# Get a range of frames (frames 0 to 10)
frames_0_10 = decoder[0:10:1]

‣ Sliced frame fetching: Get frames at specified intervals using Python's slice notation
# Fetch every third frame from index 0 to 9 (frames 0, 3, 6, 9)
sampled_frames = decoder[0:10:3]

‣ Sequential batch fetching: Retrieve batches of sequential frames for efficient processing
batch_size = 16

# Fetch the first batch of 16 sequential frames (frames 0 to 15)
frame_batch_0_15 = decoder.get_batch_frames(batch_size)

# Fetch the next batch of 16 frames (frames 16 to 31)
frame_batch_16_31 = decoder.get_batch_frames(batch_size)

‣ Random batch fetching: Jump to a specific position and retrieve a batch
# Seek to Index 50 and get the next 16 frames (frames 50 to 65)
decoder.seek_to_index(50)
frame_batch_50_65 = decoder.get_batch_frames(batch_size)

2.5. Decoder Caching
How Decoder Caching Works

The SimpleDecoder class in PyNvVideoCodec manages an internal cache of decoder instances.
When a new video is decoded, the class attempts to reuse an existing decoder from cache. A
decoder will only be reused if the codec, bit depth, and chroma subsampling of the new video
exactly match those of a cached instance.

If no matching decoder is found, a new one is created and added to the cache. If the cache is full,
the least recently used (LRU) decoder is evicted to make space for the new instance.

Additional Parameters Affecting Caching

In addition to the basic requirements mentioned above, the ability to reuse a decoder from the
cache also depends on the following parameters specified when creating the SimpleDecoder:

‣ max_width: The maximum frame width the decoder must support

‣ max_height: The maximum frame height the decoder must support

‣ decoder_cache_size: The number of decoder instances that can be stored in the cache

For maximum cache reuse, configure these values to accommodate your typical input
dimensions without oversizing.



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   13

Code Examples

Example 1: Using Decoder Cache
import PyNvVideoCodec as nvc

# Create and cache decoder instance
decoder = nvc.SimpleDecoder(enc_file_path="1280x720.mp4", 
                           max_width=2048, 
                           max_height=2048, 
                           decoder_cache_size=6)

# Decode frames from first video
frames = decoder.get_batch_frames(4)
 
# Reconfigure the same decoder instance for new video
decoder.reconfigure_decoder("1920x1080.mp4")

# Reusing cached decoder instance since the codec, bit depth, 
# and chroma subsampling of the new input match those of the cached decoder
 
# Decode frames from new video
new_frames = decoder.get_batch_frames(4)

Example 2: New Decoder Created Due to Resolution Change and Zero Dimension Limits
import PyNvVideoCodec as nvc

# Create decoder with max_width and max_height set to 0
decoder = nvc.SimpleDecoder(enc_file_path="1920x1080.mp4")

# Decode frames from first video
frames = decoder.get_batch_frames(4)

# Attempt to reconfigure for a smaller video
decoder.reconfigure_decoder("1280x720.mp4")

# Since max_width and max_height were set to 0, the decoder cannot be reconfigured
# New decoder instance is created

# Decode frames from new video
new_frames = decoder.get_batch_frames(4)

Best Practices for Decoder Caching

‣ Set appropriate maximum dimensions: Set max_width and max_height to the largest
resolution you expect to encounter to maximize cache reuse

‣ Optimize cache size: Set decoder_cache_size based on how many different types of videos
you'll be processing simultaneously

‣ Group similar videos: Process videos with the same codec and similar properties together
to improve cache hit rates

‣ Monitor performance: Compare performance with and without caching to determine the
optimal strategy for your workflow

Performance Considerations

While decoder caching can significantly improve performance in many scenarios, there are some
considerations to keep in mind:



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   14

‣ Memory usage: Larger cache sizes will consume more GPU memory

‣ Codec compatibility: Caching is most effective when processing videos with the same codec,
bit depth, and chroma subsampling

‣ Resolution differences: If you're processing videos with widely varying resolutions, consider
having separate decoders optimized for each resolution range

2.6. ThreadedDecoder
With the increasing demand for real-time and high-performance deep learning (DL) workloads,
optimizing video processing pipelines has become crucial. Many inference workloads—such
as object detection, action recognition, and video analytics—rely on decoded video frames as
input. However, video decoding can introduce latency, potentially becoming a bottleneck in the
inference pipeline.

To address this, PyNvVideoCodec provides a ThreadedDecoder feature. This feature enables
decoding to run in the background on a dedicated thread, ensuring that a batch of decoded
frames is always available for the inference pipeline.

How the Threaded Decoder Works

In a traditional decoding workflow, the inference pipeline must wait for frames to be decoded
before processing can begin, resulting in idle GPU cycles and reduced overall performance. The
threaded decoder addresses this inefficiency by continuously decoding frames in the background
and maintaining a preloaded buffer of ready-to-use frames. This approach effectively hides the
decoding latency and ensures that inference becomes the primary bottleneck assuming, as is
often the case, that decoding is faster than inference.

Key Benefits

‣ Reduced Latency: The inference process does not have to wait for frame decoding, leading
to lower end-to-end processing time.

‣ Maximized GPU Utilization: Ensures that the GPU is consistently engaged in inference
without unnecessary stalls due to decoding delays. This helps overlapping SM usage with
NVDEC usage thereby increasing utilization of both the engines.

‣ Optimized Pipeline Performance: By keeping a batch of frames ready for processing, the
system achieves smoother and more efficient execution.

‣ Improved Real-Time Performance: Particularly useful for real-time applications such as
surveillance, autonomous vehicles, and live-streaming analytics.

Threaded Decoder API Usage

The ThreadedDecoder can be easily integrated into existing video processing pipelines. The
following code snippet demonstrates how to enable and use the threaded decoder:
import PyNvVideoCodec as nvc



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   15

import torch
from torchvision import models

# Initialize the threaded video decoder
decoder = nvc.ThreadedDecoder(
    enc_file_path,
    buffer_size=12,
    cuda_context=0,
    cuda_stream=0,
    use_device_memory=True,
    output_color_type=nvc.OutputColorType.RGBP)

# Loading the pre-trained faster R-CNN model
model = models.fasterrcnn_resnet50_fpn(pretrained=True)
model.to(torch.device('cuda'))
model.eval()
    
# Main Decoding and Inference loop
while True:

    # Fetch the next batch of frames (pre-fetched by threaded decoder)
    frames = decoder.get_batch_frames(3)

    # Exit the loop if no more frames are available
    if len(frames) == 0:
        break   

    src_tensor_list = []

    for frame in frames:
        # Convert PyNvVideoCodec frame to a PyTorch tensor without copying
        # Frame is in planar RGB format: all R pixels, then G, then B
        src_tensor = torch.from_dlpack(frame)

        # Normalize the tensor values to [0, 1] as expected by the model
        src_tensor = src_tensor.float() / 255.0
        src_tensor_list.append(src_tensor)
 
    # Run inference on batch input
    with torch.no_grad():
        outputs = model(src_tensor_list)

The ThreadedDecoder can be configured with various parameters to control its behavior:

Parameter Description

enc_file_path Path to the encoded video file

buffer_size Number of frames to prefetch and keep in the buffer

cuda_context CUDA context handle (default: 0, which uses the primary context)

cuda_stream CUDA stream handle (default: 0, which creates a new stream)

use_device_memory Whether to keep decoded frames in GPU memory (default: True)

output_color_type Format of the decoded frames (e.g., RGB, RGBP, YUV)

Key methods provided by ThreadedDecoder include:

Method Description

get_batch_frames(batch_size) Get a batch of prefetched frames

get_stream_metadata() Get information about the video stream



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   16

Method Description

reconfigure_decoder(new_source) Switch to a new video source

Performance Considerations

‣ Buffer Size: Adjust the buffer_size parameter based on your application's memory
constraints and latency requirements

‣ Memory Usage: Using device memory (use_device_memory=True) avoids expensive host-
device transfers but consumes GPU memory

‣ Color Format: Choose the output color format that best matches your model's input
requirements to minimize conversions

‣ Thread Synchronization: The ThreadedDecoder handles thread synchronization internally,
so you don't need to worry about race conditions when accessing frames

2.7. Video Encoding
PyNvVideoCodec provides powerful hardware-accelerated video encoding capabilities using
NVIDIA GPUs. This section covers the key concepts and API usage for video encoding operations.

Creating an Encoder

The primary method to create an encoder is through the CreateEncoder function. This factory
function configures and initializes an encoder instance based on your requirements:
import PyNvVideoCodec as nvc

# Create an encoder
encoder = nvc.CreateEncoder(
    width=1920,
    height=1080,
    format="NV12",
    usecpuinputbuffer=False,
    **config_params)

Encoder Parameters

The encoder can be configured with various parameters to control its behavior:

Parameter Description

gpuid Ordinal of GPU to use

width The desired width of the encoded video

height The desired height of the encoded video

format Surface format of raw data. See Supported Surface Formats for
available options.

usecpuinputbuffer Value of True indicates that input to encode must be host memory,
False indicates device memory



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   17

Parameter Description

**kwargs Key-value pairs of optional parameters that allow fine-grained
control. Please refer to Optional Parameters for more details

Basic Encoding Workflow

A typical video encoding workflow consists of the following steps:

 1. Create an encoder with the appropriate configuration

 2. Feed raw frames to the encoder

 3. Retrieve and process encoded bitstream

 4. Flush the encoder when finished

import PyNvVideoCodec as nvc
import numpy as np

# Create encoder
encoder = nvc.CreateEncoder(
    width=1920,
    height=1080,
    format="NV12",
    usecpuinputbuffer=True)

frame_size = 1920 * 1080 * 1.5  # Size for NV12 format

# Process input frames
with open("output.h264", "wb") as output_file:
    for i in range(num_frames):
        # Read raw frame data
        chunk = np.fromfile(input_file, np.uint8, count=frame_size)
        
        if chunk.size == 0:
            break
            
        # Encode the frame
        bitstream = encoder.Encode(chunk)
        
        # Write encoded data to file
        output_file.write(bytearray(bitstream))
    
    # Flush encoder
    bitstream = encoder.EndEncode()
    output_file.write(bytearray(bitstream))

Encode API

 1. CreateEncoder

This method returns an object of encoder.

Example below shows how to create encoder object with minimal parameters

import PyNvVideoCodec as nvc
encoder = nvc.CreateEncoder(1920,1080, "NV12", False)
     

The CreateEncoder takes following parameters



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   18

gpuid
Ordinal of GPU to use

width
The desired width of the encoded video

height
The desired height of the encoded video

format
Surface format of raw data, Can take any of the values from "NV12", "ARBG", "ABGR",
"YUV444", "YUV420", "P010" and "YUV444_16bit"

usecpuinputbuffer
Value of 0 indicates that input to encode must be device memory else it must be host
memory.

**kwargs
Key Value pairs of optional parameters that allow fine grained control. Please refer to
Optional Parameters for more details.

 2. Encode

Encode method accepts raw data and returns an array of encoded bitstream

Input buffer to Encode can be any of as follows

 a). 1-D array of bytes, For e.g. we could read a chunk of bytes from raw YUV and pass it as
a parameter as follows

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(
          1920,
          1080, 
          "NV12", 
          True)
frame_size = 1920 * 1080 * 1.5
chunk = np.fromfile(
        dec_file, 
        np.uint8, 
        count=frame_size)
if chunk.size != 0:
    bitstream = nvenc.Encode(chunk)  # encode frame one by one
      

 b). Object of any class which implements CUDA Array Interface as follows

It is important to note that for multi-planar and semi-planar formats such YUV444 or
NV12, The Class should have one implementation of CUDA Array Interface per plane

Example below shows how to represent NV12 surface format as class implementing
CUDA Array Interface:

import PyNvVideoCodec as nvc
import numpy as np
import pycuda.driver as cuda

class AppFrame:
    def __init__(self, width, height, format):
        if format == "NV12":



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   19

            nv12_frame_size = int(width * height * 3 / 2)
            self.gpuAlloc = cuda.mem_alloc(nv12_frame_size)
            self.cai = []
            self.cai.append(AppCAI(
            (height, width, 1), 
            (width, 1, 1), 
            "|u1", self.gpuAlloc))
            chroma_alloc = int(self.gpuAlloc) 
            + width * height
            self.cai.append(AppCAI((int(height / 2), 
            int(width / 2), 2), 
            (width, 2, 1), 
            "|u1", 
            chroma_alloc))
            self.frameSize = nv12_frame_size
    def cuda(self):
        return self.cai

encoder = nvc.CreateEncoder(
          1920,
          1080, 
         "NV12", False)
input_frame = AppFrame(
          1920, 
          1080, 
          "NV12")
bitstream = encoder.Encode(input_gpu_frame)
       

ATTENTION: Please note that AppFrame implements cuda method . Encode accepts
object of AppFrame only if its implements cuda method.

 c). NCHW Tensor with batch count as1 (N=1) and channel count as 1 (C=1)

For a single frame from 1080p YUV, tensor shape shape should be [1,1,1620,1920]

Example below shows how to represent NV12 as NCHW Tensor

import PyNvVideoCodec as nvc
import numpy as np
import torch
encoder = nvc.CreateEncoder(1920,1080, 
          "NV12", False)
cuda0 = torch.device('cuda:0')
input_tensor = torch.ones(
               [1620, 1920], 
               dtype=torch.uint8, 
               device=cuda0)
bitstream = encoder.Encode(input_tensor)
     

ATTENTION: Width specified during CreateEncoder for NV12 surface format is 1080, but
Tensor is created with Width as 1620. This small workaround needed as encode hardware
assumes luma and chroma planes are contiguous and Tensor don't work with planar
surface formats.

 3. EndEncode

EndEncode method flushes encoder and returns pending bitstream data from encoder queue



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   20

Example below shows how to fetch pending bitstream data from encoder queue for 1080p
raw YUV after encoding 100 frames

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(
          1920,
          1080, "NV12", True)
frame_size = 1920 * 1080 * 1.5
encoder = nvc.CreateEncoder(
          width, 
          height, 
          fmt, 
          use_cpu_memory, 
          **config_params)  # create encoder object
    for i in range(100):
        chunk = np.fromfile(
                dec_file, 
                np.uint8, 
                count=frame_size)
        if chunk.size != 0:
            bitstream = encoder.Encode(chunk)  # encode frame one by one
        bitstream = encoder.EndEncode()  # flush encoder queue
     

ATTENTION: Call to EndEncode() should be done at the last as it signifies that end of input
data to encoder

 4. GetEncodeReconfigureParams and Reconfigure

Reconfigure API allows clients to change the encoder initialization parameters without
closing existing encoder session and re-creating a new encoding session. This helps clients
avoid the latency introduced due to destruction and re-creation of the encoding session. This
API is useful in scenarios which are prone to instabilities in transmission mediums during
video conferencing, game streaming etc.

However, The API currently only supports reconfiguration of parameters listed below:

‣ rateControlMode.

‣ multiPass.

‣ averageBitrate.

‣ vbvBufferSize.

‣ maxBitRate.

‣ vbvInitialDelay.

‣ frameRateNum.

‣ frameRateDen.

The API would fail if any attempt is made to reconfigure the parameters which is not
supported.

Resolution change is possible only if NV_ENC_INITIALIZE_PARAMS::maxEncodeWidth and
NV_ENC_INITIALIZE_PARAMS::maxEncodeHeight  are set while creating encoder session.



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   21

If the client wishes to change the resolution using this API, it is advisable to
force the next frame following the reconfiguration as an IDR frame by setting
NV_ENC_RECONFIGURE_PARAMS::forceIDR to 1.

If the client wishes to reset the internal rate control states, set
NV_ENC_RECONFIGURE_PARAMS::resetEncoder to 1.

Example below shows how to fetch and change reconfigurable parameters:

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(1920,1080, "NV12", True)
t = encoder.GetEncodeReconfigureParams()
t.averageBitrate = int(t.averageBitrate / 2)
t.vbvBufferSize = int(
                  t.averageBitrate * t.frameRateDen 
                  / t.frameRateNum)
t.vbvInitialDelay = t.vbvBufferSize
encoder.Reconfigure(t)    
     

2.8. Video Encoding Basics
PyNvVideoCodec has been designed for the most simplified possible use of video encoding using
appropriate default values and simple functions. However, you can also access the detailed
optional parameters and the full flexibility offered by NVIDIA video technology stack through the
C++ interface.

If you are familiar with video encoding basic you could directly jump to the video encoding
parameters that can be used with video encode API

NVIDIA GPU allows to encode H.264, HEVC, and AV1 content. Depending on your hardware
generation, not all Codec will be accessible. Refer to the NVIDIA Hardware Video Encodersection
for information about supported Codec for each GPU architecture.

Surface Formats

PyNvVideoCodec supports various input surface formats for encoding. The surface format is
specified using the format parameter when creating an encoder.

Table 2. Supported Surface Formats

Format Description

NV12 Semi-Planar YUV [Y plane followed by interleaved UV plane]

YV12 Planar YUV [Y plane followed by V and U planes]

IYUV Planar YUV [Y plane followed by U and V planes]

YUV444 Planar YUV [Y plane followed by U and V planes]

https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-application-note/index.html#nvidia-hardware-video-encoder


Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   22

Format Description

YUV420_10BIT 10 bit Semi-Planar YUV [Y plane followed by interleaved UV plane].
Each pixel of size 2 bytes. Most Significant 10 bits contain pixel data.

YUV444_10BIT 10 bit Planar YUV444 [Y plane followed by U and V planes]. Each pixel
of size 2 bytes. Most Significant 10 bits contain pixel data.

ARGB 8 bit Packed A8R8G8B8. Word-ordered format where a pixel is
represented by a 32-bit word with B in the lowest 8 bits, G in the next
8 bits, R in the 8 bits after that and A in the highest 8 bits.

ARGB10 10 bit Packed A2R10G10B10. Word-ordered format where a pixel is
represented by a 32-bit word with B in the lowest 10 bits, G in the
next 10 bits, R in the 10 bits after that and A in the highest 2 bits.

ABGR 8 bit Packed A8B8G8R8. Word-ordered format where a pixel is
represented by a 32-bit word with R in the lowest 8 bits, G in the next
8 bits, B in the 8 bits after that and A in the highest 8 bits.

ABGR10 10 bit Packed A2B10G10R10. Word-ordered format where a pixel is
represented by a 32-bit word with R in the lowest 10 bits, G in the
next 10 bits, B in the 10 bits after that and A in the highest 2 bits.

NV16 Semi-Planar YUV 422 [Y plane followed by interleaved UV plane]

P210 Semi-Planar 10-bit YUV 422 [Y plane followed by interleaved UV
plane]

Notes on Surface Format Usage:

‣ Both 10-bit and 16-bit input frames result in 10-bit encoding

‣ The colorspace conversion matrix can be specified using the colorspace option during
CreateEncoder

‣ Not all formats are supported on all GPU architectures; refer to your GPU's documentation
for specific support information

Tuning

The NVIDIA Encoder Interface exposes four different tuning options:

‣ High quality suited for: - High-quality latency-tolerant transcoding - Video archiving -
Encoding for OTT streaming

‣ Low latency suited for: - Cloud gaming - Streaming - Video conferencing - High bandwidth
channel with tolerance for bigger occasional frame sizes

‣ Ultra-low latency for: - Cloud gaming - Streaming - Video conferencing - In strictly
bandwidth-constrained channel

‣ Lossless for: - Preserving original video footage for later editing - General lossless data
archiving (video or non-video)



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   23

Presets

For each tuning information, seven presets from P1 (highest performance) to P7 (lowest
performance) are available to control performance and quality trade off. Using these presets
will automatically set all relevant encoding parameters for the selected tuning information. This
is a coarse level of control exposed by the API.

Specific attributes and parameters within the preset can be tuned, if required. This is explained
in the next two subsections. For performance references depending on the chosen preset, refer
to the NVENC encoding performance in frames/second (fps) table.

Rate Control and Bitrate

NVENC provides control over various parameters related to the rate control algorithm
implemented in its firmware, allowing it to adapt the bit rate (or the amount of data necessary to
encode your video content per second) depending on your quality, bandwidth, and performance
constraints. NVENC supports the following rate control modes:

‣ Constant bitrate (CBR)

‣ Variable bitrate (VBR)

‣ Constant Quantization Parameter (Constant QP)

‣ Target quality

The bitrate can also be capped to a maximum target value. For more information about rate
control, refer to the NVENC Video Encoder API Programming Guide

Building your Optimized Encoder

Refer to the Recommended NVENC Settings section for more information on how to configure
NVENC depending on your use case.

2.9. Video Encoding Parameter Details

Table 3. Optional Parameters for CreateEncoder

Parameter Type Valid Values Default
Parameter Description

codec String h264, hevc, av1 h264

bitrate Integer > 0 10000000U

fps Integer > 0 30

Desired Frame
Per Second of
the video to be

encoded, default
value is set to 30

https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html#rate-control
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html#recommended-nvenc-settings


Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   24

Parameter Type Valid Values Default
Parameter Description

initqp Integer > 0 unset option Initial Quantization
Parameter (QP)

idrperiod Integer > 0 250

Period between
Instantaneous

Decoder Refresh
(IDR) frames

constqp
Integer or list
of 3 integers >=0, <=51

qmin
Integer or list
of 3 integers >=0, <=51 [30,30,30]

gop
Integer or list
of 3 integers >0 changes based

on other settings

tuning_info String

high_quality,
low_latency,

ultra_low_latency,
lossless

high_quality

preset String P1 to P7 P4

maxbitrate Integer >0 10000000U

Maximum bitrate
used for Variable

BitRate (VBR)
encoding, allowing

to dynamically
adapting bit

rate based on
video content

vbvinit Integer >0 10000000U

vbvbufsize Integer >0 10000000U

Target client Video
Buffering Verifier
(VBV) buffer size,

applicable for vbr.

rc String cbr, constqp, vbr cbr

Type of Rate
Control (RC)

chosen between
Constant BitRate
(CBR), Constant
QP or Variable
BitRate (VBR)

multipass String fullres, qres disabled
by default

bf Integer >=0
varies based on
tuning_info
and preset

Specifies the GOP
pattern as follows:
bf = 0: I, 1: IPP,
2: IBP, 3: IBBP

max_res List of 2 integers >0 4K for H264, 8K
for HEVC, AV1

Resolution
not greater

than maximum



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   25

Parameter Type Valid Values Default
Parameter Description

supported by
hardware in

order to account
for dynamic

resolution change.
For example:
[3840, 2160]

temporalaq Integer 0 or 1 0

lookahead Integer >0 0 to 255 Number of frames
to look ahead.

aq Integer 0 or 1 0

ldkfs Integer >=0, <255 0

Low Delay
Keyframe Scale

is useful to
avoid channel

congestion in case
I frame ends up
generating high
number of bits

colorspace String bt601, bt709
Specify this

option for ARGB/
ABGR inputs

timingInfo ::
num_unit_in_ticks

Integer >0

Specifies the
number of

time units of
the clock (as

defined in Annex
E of the ITU-

T Specification).
HEVC and
H264 only

timingInfo ::
timescale

Integer >0

Specifies the
frequency of
the clock (as

defined in Annex
E of the ITU-

T Specification).
HEVC and
H264 only

slice::mode Integer 0 to 3 0

Slice modes for
H.264 and HEVC

encoding (not
available for AV1)

which could be
0 (MB based

slices), 2 (MB row
based slices) or 3
(number of slices)



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   26

Parameter Type Valid Values Default
Parameter Description

slice::data Integer
valid range

changes based
on slice::mode

0

Specifies the
parameter
needed for

sliceMode. AV1
does not support
slice::data

repeatspspps Integer 0 or 1 0

Enable writing
of Sequence

Parameter Set
(SPS) and Picture

Parameter
Set (PPS) for

every IDR frame

2.10. Segment-Based Transcoding
Segment-based transcoding is a critical technique in modern video processing pipelines,
particularly in workflows that involve deep learning (DL) and AI model training. This approach
focuses on extracting smaller, meaningful segments from long videos, allowing for more
targeted and efficient processing.

Traditional transcoding workflows typically process entire videos sequentially, often requiring
repeated initialization of decoding and encoding contexts. This introduces significant overhead
and slows down processing. In contrast, segment-based transcoding minimizes these
inefficiencies by avoiding redundant context creation, resulting in faster performance, better
resource utilization, and greater overall efficiency—especially important in AI-driven video
analysis.

Challenges of Segment-Based Transcoding with FFmpeg

Although FFmpeg is widely used for video processing, it exhibits significant limitations in
segment-based transcoding workflows—particularly when utilizing NVIDIA's NVDEC (decoder)
and NVENC (encoder) hardware. Major challenges include:

‣ Repeated Context Initialization: FFmpeg creates a new decoding context and encoding
context for each segment, resulting in substantial overhead from repeated memory
allocation, and GPU resource setup.

‣ Inefficient Hardware Utilization: Each segment launches new NVDEC and NVENC sessions.
This constant setup and teardown reduce GPU utilization and limit overall throughput.

‣ Serialization Overhead: FFmpeg does not support reusing decoder and encoder sessions
across segments. Consequently, the pipeline resets frequently, introducing switching delays
and serialization bottlenecks.



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   27

PyNvVideoCodec addresses these inefficiencies by introducing an optimized approach to
segment-based transcoding.

The key optimizations include:

‣ Persistent Context Management: Rather than creating a new decode/encode context for
each segment, PyNvVideoCodec maintains a persistent context throughout the transcoding
session, significantly reducing overhead.

‣ Shared Context Across Segments and Streams: The same context is reused between
segments—eliminating unnecessary reinitialization. This context sharing not only applies
within a single bitstream but also across multiple bitstreams, further enhancing
performance.

‣ Efficient NVDEC and NVENC Utilization: By keeping GPU resources active and simply
switching data buffers, PyNvVideoCodec maximizes throughput and achieves better GPU
efficiency compared to traditional FFmpeg-based methods.

Performance Improvement Using Segment-Based Transcoding

Segment-based transcoding with PyNvVideoCodec delivers substantial performance
improvements over traditional FFmpeg-based methods. When extracting and encoding
segments individually using FFmpeg, performance is significantly hindered by repeated NVDEC
and NVENC initialization overheads. PyNvVideoCodec eliminates these inefficiencies, resulting
in more than a 2x performance boost.

Example: Using PyNvVideoCodec for Segment-Based Transcoding
import PyNvVideoCodec as nvc 

# Define transcoding quality settings 
config = {
    "preset": "P4",
    "codec": "h264",
    "tuning_info": "high_quality"
} 
 
# Initialize transcoder with input/output paths
transcoder = nvc.Transcoder("input.mp4", "output_muxed.mp4", 0, 0, 0, **config) 
  
# Transcode 3 segments of 2 seconds each 
transcoder.segmented_transcode(0.0, 2.0)
transcoder.segmented_transcode(2.0, 4.0) 
transcoder.segmented_transcode(4.0, 6.0)

The PyNvVideoCodec Transcoder class provides a streamlined API for segment-based
transcoding:

‣ Transcoder(input_file, output_file, gpu_id, cuda_context, cuda_stream,

**config): Creates a new transcoder instance with specified input, output, and
configuration

‣ segmented_transcode(start_time, end_time): Transcodes a specific segment defined
by start and end times (in seconds)



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   28

The Transcoder maintains internal state between segment operations, allowing for efficient
processing of multiple segments without reinitializing hardware resources.

Best Practices for Segment-Based Transcoding

‣ Segment Length: For optimal performance, keep individual segments longer than 1-2
seconds to amortize any remaining overhead

‣ Similar Format Streams: The greatest performance benefits come when transcoding
segments with similar codec properties

‣ Context Reuse: Reuse the same Transcoder instance for all segments rather than creating
new instances

‣ Memory Management: For very long processing sessions, consider monitoring GPU memory
usage

‣ Order of Segments: Process segments in temporal order when possible for most efficient
seek operations

Summary

In summary, segment-based transcoding using PyNvVideoCodec delivers a high-performance
alternative to conventional FFmpeg workflows by reducing redundant operations, improving
GPU resource utilization, and eliminating repeated context initialization. These enhancements
make it exceptionally well-suited for video processing applications requiring low latency and
high throughput—such as AI model training, content curation, and media analytics.

2.11. SEI Message Encoding and Decoding
PyNvVideoCodec provides support for Supplemental Enhancement Information (SEI) messages
in video streams. SEI messages are used to carry additional information that is not essential for
decoding but can be useful for various applications like HDR metadata, time code information,
or custom user data.

SEI Messages Overview

SEI messages are a mechanism defined in video coding standards (H.264/AVC, HEVC, AV1) that
allow embedding additional data within a video bitstream. They can be used for various purposes:

‣ Carrying HDR metadata (mastering display color volume, content light level)

‣ Including time codes or frame information

‣ Adding alternative transfer characteristics

‣ Embedding custom user data for application-specific purposes

PyNvVideoCodec allows both:

‣ Inserting SEI messages during encoding

‣ Extracting SEI messages during decoding



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   29

Encoding with SEI Messages

The EncodeSEIMsgInsertion.py sample demonstrates how to insert SEI messages into a video
bitstream during encoding. This can be useful for embedding metadata or custom information
that should travel with the video.

Sample Usage:
python EncodeSEIMsgInsertion.py -i input.yuv -o output.h264 -s 1920x1080 -if NV12 -
c h264

Key Components:

1. Creating SEI Messages:

# Define sample SEI messages (arrays of bytes)
SEI_MESSAGE_1 = [0xdc, 0x45, 0xe9, 0xbd, 0xe6, 0xd9, 0x48, 0xb7, 0x96, 0x2c, 0xd8,
 0x20, 0xd9, 0x23, 0xee, 0xef]
SEI_MESSAGE_2 = [0x12, 0x67, 0x56, 0xda, 0xef, 0x99, 0x00, 0xbb, 0x6a, 0xc4, 0xd8,
 0x10, 0xf9, 0xe3, 0x3e, 0x8f]

# Determine SEI type based on codec
if config_params["codec"] in ["hevc", "h264"]:
    sei_info = {"sei_type": 5}  # User data unregistered
elif config_params["codec"] == "av1":
    sei_info = {"sei_type": 6}  # AV1 equivalent
else:
    raise ValueError(f"Unsupported codec: {config_params['codec']}")

# Create SEI messages list
sei_messages = [(sei_info, SEI_MESSAGE_1), (sei_info, SEI_MESSAGE_2)]

2. Encoding with SEI Messages:

# Create encoder
nvenc = nvc.CreateEncoder(width, height, fmt, False, **config_params)

# Process frames with SEI messages
for input_gpu_frame in FetchGPUFrame(...):
    # Pass the SEI messages to the encoder with the current frame
    bitstream = nvenc.Encode(input_gpu_frame, 0, sei_messages)
    encFile.write(bytearray(bitstream))

# Flush encoder queue
bitstream = nvenc.EndEncode()
encFile.write(bytearray(bitstream))

SEI Message Parameters:

The SEI message consists of:

‣ sei_info: A dictionary containing metadata about the SEI message, including:

‣ sei_type: The type of SEI message (varies by codec)

‣ SEI payload: An array of bytes containing the actual SEI data



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   30

Decoding and Extracting SEI Messages

The DecodeSEIMsgExtraction.py sample shows how to extract and process SEI messages
during video decoding. This allows applications to access metadata embedded in the video
stream.

Sample Usage:
python DecodeSEIMsgExtraction.py -i input.h264 -o output.yuv -f sei_messages.bin -d 1

Key Components:

1. SEI Message Structures:

The sample defines C-style structures using ctypes to parse different types of SEI messages:

class TIMECODE(ctypes.Structure):
    """Structure for time code information."""
    _fields_ = [
        ("time_code_set", TIMECODESET * MAX_CLOCK_TS),
        ("num_clock_ts", ctypes.c_uint8),
    ]

class SEICONTENTLIGHTLEVELINFO(ctypes.Structure):
    """Structure for content light level information."""
    _fields_ = [
        ("max_content_light_level", ctypes.c_uint16),
        ("max_pic_average_light_level", ctypes.c_uint16),
        ("reserved", ctypes.c_uint32),
    ]

class SEIMASTERINGDISPLAYINFO(ctypes.Structure):
    """Structure for mastering display information."""
    _fields_ = [
        ("display_primaries_x", ctypes.c_uint16 * 3),
        ("display_primaries_y", ctypes.c_uint16 * 3),
        ("white_point_x", ctypes.c_uint16),
        ("white_point_y", ctypes.c_uint16),
        ("max_display_mastering_luminance", ctypes.c_uint32),
        ("min_display_mastering_luminance", ctypes.c_uint32),
    ]

2. Extracting and Processing SEI Messages:

# Process decoded frames
for packet in nv_dmx:
    for decoded_frame in nvdec.Decode(packet):
        # ... frame processing ...
        
        # Extract SEI messages
        seiMessage = decoded_frame.getSEIMessage()
        if seiMessage:
            for sei_info, sei_message in seiMessage:
                sei_type = sei_info["sei_type"]
                sei_uncompressed = sei_info["sei_uncompressed"]
                
                if sei_uncompressed == 1:
                    buffer = (ctypes.c_ubyte * len(sei_message))(*sei_message)
                    sei_struct = None
                    
                    # Handle different SEI message types
                    if sei_type in (nvc.SEI_TYPE.TIME_CODE_H264, nvc.SEI_TYPE.TIME_CODE):
                        sei_struct = ctypes.cast(



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   31

                            buffer,
                            ctypes.POINTER(TIMECODEMPEG2 if codec == nvc.cudaVideoCodec.MPEG2
 else TIMECODE)
                        ).contents
                    elif sei_type == nvc.SEI_TYPE.MASTERING_DISPLAY_COLOR_VOLUME:
                        sei_struct = ctypes.cast(buffer,
 ctypes.POINTER(SEIMASTERINGDISPLAYINFO)).contents
                    elif sei_type == nvc.SEI_TYPE.CONTENT_LIGHT_LEVEL_INFO:
                        sei_struct = ctypes.cast(buffer,
 ctypes.POINTER(SEICONTENTLIGHTLEVELINFO)).contents
                    elif sei_type == nvc.SEI_TYPE.ALTERNATIVE_TRANSFER_CHARACTERISTICS:
                        sei_struct = ctypes.cast(buffer,
 ctypes.POINTER(SEIALTERNATIVETRANSFERCHARACTERISTICS)).contents
                    
                    if sei_struct:
                        print(sei_struct)
                        
                # Store raw SEI message data
                file_message.write(bytearray(sei_message))
            
            # Also save in pickle format for later analysis
            pickle.dump(seiMessage, file_type_message)

Supported SEI Message Types

PyNvVideoCodec supports various SEI message types through the SEI_TYPE enumeration:

‣ TIME_CODE: Timing information

‣ TIME_CODE_H264: H.264-specific timing information

‣ MASTERING_DISPLAY_COLOR_VOLUME: HDR mastering display information

‣ CONTENT_LIGHT_LEVEL_INFO: Content light level information for HDR

‣ ALTERNATIVE_TRANSFER_CHARACTERISTICS: Indicates alternative color transfer
functions

‣ User Data: Various formats for custom application data

The SEI type varies by video codec (H.264, HEVC, AV1) and must be selected appropriately.

Applications of SEI Messages

SEI messages are particularly useful for:

‣ HDR video workflows (carrying mastering display and content light level information)

‣ Professional video production (embedding timecode and frame information)

‣ Custom application data transport (embedding metadata that stays with the video)

‣ Digital rights management (embedding ownership or licensing information)

‣ Analytics workflows (embedding processing metadata or detection results)

Best Practices for SEI Messages

‣ Keep SEI messages compact to minimize overhead in the bitstream

‣ For custom data, consider using the user data unregistered SEI type

‣ Ensure SEI message formats are consistent between encoder and decoder



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   32

‣ Be aware that some players may ignore SEI messages

‣ For HDR content, follow standard formats for mastering display and content light level
information

‣ When working with multiple frames, consider which frames should carry SEI messages
(typically IDR frames)

2.12. Interoperability with Deep Learning
Frameworks

PyNvVideoCodec provides efficient interoperability with popular deep learning frameworks
through DLPack, the open-source memory tensor structure for sharing tensors across
frameworks. This allows video frames decoded by PyNvVideoCodec to be directly passed
to frameworks like PyTorch, TensorFlow, and others without expensive CPU-GPU memory
transfers.

DLPack Overview

DLPack is a standardized memory tensor structure that enables efficient sharing of tensor data
between different frameworks with zero-copy. It serves as a common exchange format that
allows deep learning libraries to pass tensors to each other without expensive data copies or
CPU round-trips.

The key benefits of DLPack include:

‣ Zero-copy tensor sharing between different libraries

‣ Standardized memory management protocol

‣ Support for different device types (CPU, CUDA, etc.)

‣ Common representation for tensor metadata (shape, strides, data type)

‣ Proper handling of CUDA stream synchronization

PyNvVideoCodec DLPack Implementation

PyNvVideoCodec implements the Python DLPack protocol through __dlpack__() and
__dlpack_device__() methods on decoded frames. This allows seamless integration with any
framework that supports the DLPack protocol.

When a frame is decoded in GPU memory (use_device_memory=True), the frame object can
be directly converted to a framework-specific tensor using that framework's DLPack import
function without any data copying.

The implementation handles important aspects:

‣ Memory ownership: The PyNvVideoCodec frame retains ownership of the underlying
memory until the tensor using it is destroyed

https://github.com/dmlc/dlpack


Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   33

‣ Stream synchronization: Proper CUDA stream synchronization is maintained between
producer (PyNvVideoCodec) and consumer (e.g., PyTorch)

‣ Tensor metadata: Shape, strides, and data type information are correctly propagated to the
DLPack tensor

Integration with PyTorch

PyTorch provides the torch.from_dlpack() function to import DLPack tensors directly. This
enables zero-copy conversion from PyNvVideoCodec frames to PyTorch tensors:

import torch
import PyNvVideoCodec as nvc

# Create decoder with GPU output
decoder = nvc.SimpleDecoder("video.mp4", use_device_memory=True)

# Get a frame (GPU memory)
frame = decoder[0]

# Convert to PyTorch tensor with zero-copy
tensor = torch.from_dlpack(frame)

# tensor is now a regular PyTorch tensor backed by the same GPU memory
# No data copying has occurred - tensor and frame share the same memory
print(f"Tensor shape: {tensor.shape}")
print(f"Tensor device: {tensor.device}")

The tensor format follows the video pixel format. For example, with RGB data, the tensor will
have dimensions (height, width, 3) for interleaved format or (3, height, width) for planar format.

Batch Processing for Deep Learning

When processing multiple frames for deep learning inference, you can create a batch of tensors
and stack them:

# Get multiple frames
frames = decoder.get_batch_frames(batch_size)

# Convert all frames to tensors (all zero-copy)
tensors = [torch.from_dlpack(frame) for frame in frames]

# Stack into a batch tensor
batch = torch.stack(tensors)

# Now batch has shape [batch_size, channels, height, width]
# Run inference
with torch.no_grad():
    predictions = model(batch)

Integration with Other Frameworks

PyNvVideoCodec's DLPack support works with any framework that supports importing DLPack
tensors:

TensorFlow:

import tensorflow as tf



Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   34

# Convert decoded frame to TensorFlow tensor
tf_tensor = tf.experimental.dlpack.from_dlpack(frame)

CuPy:

import cupy as cp

# Convert decoded frame to CuPy array
cupy_array = cp.from_dlpack(frame)

NumPy (with copy):

import numpy as np
import torch

# First convert to PyTorch (zero-copy)
torch_tensor = torch.from_dlpack(frame)

# Then convert to NumPy (will copy from GPU to CPU)
numpy_array = torch_tensor.cpu().numpy()

Best Practices for DLPack Interoperability

‣ Always use use_device_memory=True when decoding frames intended for deep learning to
enable zero-copy transfer

‣ Keep the original frame objects alive while using the converted tensors to prevent memory
deallocation

‣ Be aware of tensor memory layout differences between frameworks (channel-first vs.
channel-last)

‣ Consider using ThreadedDecoder for better performance in deep learning pipelines

‣ Match the decoder's output color format to what your model expects (RGB, YUV, etc.)

‣ For optimal performance, keep processing in GPU memory throughout the entire pipeline

‣ When processing many videos, consider reusing decoders with reconfigure_decoder()
rather than creating new instances



PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   35

Chapter 3. PyNvVideoCodec
Performance

PyNvVideoCodec offers video encode and decode performance close to Video Codec SDK.
This chapter outlines the performance capabilities enabled by unique APIs and features of
PyNvVideoCodec.

Note: The benchmarks presented in this chapter use the BtBN FFmpeg build for comparison
purposes.

‣ Frame Retrieval - Performance of different frame retrieval patterns

‣ Decoder Reuse - Performance benefits of reusing decoder instances

‣ Segmented Transcoding - Performance of segment based transcoding

3.1. Frame Retrieval
Performance benchmarks for different frame retrieval patterns using PyNvVideoCodec decoder.

Environment:

‣ GPU: 1 x L40G (3 NVDECs)

‣ CPU: AMD EPYC 7313P 16-Core Processor, 2 threads per core

‣ OS: Ubuntu 22.04

Methodology:

‣ Script to execute benchmark: frame_sampling_benchmark.py

‣ Dataset generated using FFmpeg with the following default parameters:

‣ Resolution: 1920x1080

‣ GOP: 30 & 250

‣ Duration: 30 seconds

‣ Frame Rate: 30

‣ Multithreaded implementation to fully utilize NVDECs (multiple Python threads)

‣ Each Python thread independently decodes the same video & reports the FPS

https://github.com/BtbN/FFmpeg-Builds


PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   36

Benchmarks:

‣ Sequential decode (first 100 frames)

Decodes frames in sequential order from the start of the video. This approach retrieves a
specified number of consecutive frames (e.g., first 100 frames).

Table 4. Sequential Decode Performance

Video Config Num Threads FPS
1920x1080 250gop 30s 1 867.8

1920x1080 250gop 30s 3 2556.2

1920x1080 30gop 30s 1 863.3

1920x1080 30gop 30s 3 2543.7

‣ Random sampling (30 frames)

Randomly selects frames from across the entire video duration. This method is useful for
obtaining a representative sample of frames throughout the video.

Table 5. Random Sampling Performance

Video Config Num Threads FPS Efficiency
1920x1080 250gop 30s 1 38.4 1.05x

1920x1080 250gop 30s 3 109.8 1.01x

1920x1080 30gop 30s 1 60.4 1.62x

1920x1080 30gop 30s 3 172.6 1.61x

‣ Uniform sampling (30 frames)

Evenly distributes frame sampling across the entire video duration. For example, when
sampling 30 frames from a 30-second video, it fetches one frame every second.

Table 6. Uniform Sampling Performance

Video Config Num Threads FPS Efficiency
1920x1080 250gop 30s 1 38.7 1.05x

1920x1080 250gop 30s 3 114 1.05x

1920x1080 30gop 30s 1 52.9 1.44x

1920x1080 30gop 30s 3 154.5 1.42x

Note on Efficiency: Efficiency represents the performance comparison between two
approaches:

 1. Direct sampling: Decoding specific frames directly using seek operations
 2. Sequential decode + sampling: Decoding all frames sequentially and then sampling the

required frames



PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   37

The efficiency value shows how much faster direct sampling is compared to sequential
decoding with sampling. Higher efficiency values indicate better performance of the direct
sampling approach.

Key Observations:

‣ GOP size has significant impact on frame retrieval performance:

‣ For random sampling, smaller GOP size (30) increases performance by 57% as compared
to bigger GOP size(250)

‣ For uniform sampling, smaller GOP size (30) increases performance by 37% as compared
to bigger GOP size(250)

‣ Sequential decoding performance is largely unaffected by GOP size

‣ Multi-threading scales efficiently across all sampling methods:

‣ Sequential decoding shows near-linear scaling from 1 to 3 threads (approximately 2.95x)

‣ Random and uniform sampling show good scaling (approximately 2.85x) with 3 threads

‣ Efficiency comparison between frame retrieval methods:

‣ Direct random sampling with 30 GOP shows the highest efficiency gain (1.62x), making
it the most efficient for sparse frame access

‣ Uniform sampling with 30 GOP shows good efficiency (1.44x)

‣ Both sampling methods with 250 GOP show small efficiency advantage (1.05x)

3.2. Decoder Reuse
Performance benefits of reusing decoder instances when processing multiple videos.

Environment:

‣ GPU: 1 x L40G (3 NVDECs)

‣ CPU: AMD EPYC 7313P 16-Core Processor, 2 threads per core

‣ OS: Ubuntu 22.04

Methodology:

‣ Script to execute benchmark: cached_decoder_benchmark.py

‣ Dataset generated using FFmpeg with the following parameters:

‣ Resolutions: 360p, 480p, 720p, 1080p, 4k

‣ Frame Rate: 30 fps

‣ GOP Size: 60

‣ Duration: 2 seconds

‣ Pattern: mandelbrot

‣ 5 videos created using FFmpeg (1 video per resolution)



PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   38

‣ Each video was reused 50 times to create enough decoding workload to fully saturate all
available NVDEC hardware instances.

‣ Videos are distributed across multiple decoder threads

‣ Example configuration: In a 20-clip/4-thread setup, each thread processes 5 videos

Decoder Types:

‣ Simple decoder:

‣ Creates a new decoder instance for each video clip

‣ For example, if a thread has to decode 5 videos, a total of 5 decoder instances will be
created

‣ Cached decoder:

‣ Creates a single decoder instance per thread

‣ Reuses the same decoder for subsequent clips through reconfiguration

‣ Implementation follows the principles outlined in Decoder Caching

‣ For example, for 5 videos per thread, only one decoder instance is created and reused

Benchmarks:

Table 7. Decoder Reuse Performance Comparison

Resolution Decoder Type FPS
360p Simple 1475

360p Cached 5672

480p Simple 1478

480p Cached 3855

720p Simple 1186

720p Cached 2906

1080p Simple 849

1080p Cached 1184

4k Simple 351

4k Cached 410



PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   39

Figure 2. Performance Comparison: Simple vs. Cached Decoders
Bar chart comparing performance of simple decoder creation vs. cached decoder approach across
resolutions, showing speedup factors of 3.8x (360p), 2.6x (480p), 2.5x (720p), 1.4x (1080p), and 1.2x (2160p)

Key Observations:

‣ Cached decoders consistently outperform simple decoders across all resolutions

‣ Performance improvement is most significant for lower resolutions (360p: 3.8x faster, 480p:
2.6x faster)

‣ Even at higher resolutions, cached decoders show measurable improvement (4K: 1.2x faster)

‣ The performance benefit comes from eliminating decoder initialization overhead, which is
more significant when processing multiple short videos

3.3. Segmented Transcoding
Performance comparison of PyNvVideoCodec's segmented transcoding approach against
traditional FFmpeg-based methods.

Environment:

‣ GPU: 1 x L40G (3 NVDECs)

‣ CPU: AMD EPYC 7313P 16-Core Processor, 2 threads per core

‣ OS: Ubuntu 22.04

Methodology:

‣ Script to execute benchmark: segmented_transcode_benchmark.py

‣ Dataset details:



PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   40

‣ Total clips: 42

‣ Resolutions: 720p (20 clips) and 640p (22 clips)

‣ Codec: H.264

‣ Input FPS: 29.97

‣ Input GOP: 250

‣ Total frames: 318,392

‣ Transcoded frames: 105,167

‣ Transcoding parameters:

‣ Output FPS: 30

‣ Output B Frames: 0

‣ Output Preset: P1

‣ Benchmarks examine performance of different transcoding methods

Transcoding Methods:

‣ PyNVC transcoding: Uses PyNvVideoCodec with persistent context for segmented
transcoding

‣ FFmpeg without map: Uses HW accelerated FFmpeg with simple re-encoding, no mapping
or container preservation

Table 8. Segmented Transcoding Performance - H.264 1080p

Method FPS
PyNVC transcoding 1730

FFmpeg without map 663



PyNvVideoCodec Performance

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   41

Figure 3. Performance Comparison: FFmpeg vs. PyNvVideoCodec
Segment-Based Transcoding

Bar chart comparing transcoding performance between standard FFmpeg approach and
PyNvVideoCodec's segment-based transcoding for H.264 1080p content, showing a 2.6x performance
improvement

Key Observations:

‣ PyNVC transcoding significantly outperforms FFmpeg's standard transcoding method

‣ For 1080p content, PyNVC transcoding (1730 FPS) is approximately 2.6x faster than FFmpeg
without map (663 FPS)

‣ The performance advantage comes from persistent context management, avoiding repeated
decoder and encoder initialization

‣ This performance gain is particularly valuable for workflows that process multiple video
segments, such as AI training datasets



PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   42

Chapter 4. Debugging and Logging

Logging Overview

PyNvVideoCodec provides a logging system that helps diagnose issues and understand
the library's behavior. The logging system is primarily based on FFmpeg's built-in logging
capabilities, which can be controlled using environment variables.

Setting Log Levels

The logging level can be controlled by setting the LOGGER_LEVEL environment variable. When
set, this environment variable controls the verbosity of FFmpeg logs used by PyNvVideoCodec.

Available log levels (from most verbose to least verbose):

‣ TRACE: Most detailed information (maps to FFmpeg's AV_LOG_VERBOSE)

‣ DEBUG: Debugging information (maps to FFmpeg's AV_LOG_DEBUG)

‣ INFO: General information messages (maps to FFmpeg's AV_LOG_INFO)

‣ WARN: Warning messages (maps to FFmpeg's AV_LOG_WARNING)

‣ ERROR: Error messages (maps to FFmpeg's AV_LOG_ERROR)

‣ FATAL: Critical error messages (maps to FFmpeg's AV_LOG_FATAL)

If the LOGGER_LEVEL environment variable is not set, logging defaults to AV_LOG_QUIET, which
suppresses most messages.

Example Usage

Linux/macOS:

# Set log level to DEBUG
export LOGGER_LEVEL=DEBUG

# Run your Python script
python your_script.py

Windows (Command Prompt):

:: Set log level to DEBUG
set LOGGER_LEVEL=DEBUG

:: Run your Python script



Debugging and Logging

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07"   |   43

python your_script.py

Windows (PowerShell):

# Set log level to DEBUG
$env:LOGGER_LEVEL="DEBUG"

# Run your Python script
python your_script.py

Setting in Python code (before importing PyNvVideoCodec):

import os
os.environ["LOGGER_LEVEL"] = "DEBUG"

# Now import PyNvVideoCodec
import PyNvVideoCodec as nvc

Debugging Recommendations

‣ Start with INFO level: For general troubleshooting, start with LOGGER_LEVEL=INFO

‣ Use DEBUG for details: If you need more detailed information about what's happening inside
the library, use LOGGER_LEVEL=DEBUG

‣ TRACE for comprehensive logs: LOGGER_LEVEL=TRACE provides the most detailed logging,
but can generate large amounts of output

‣ Capture logs to file: When debugging complex issues, redirect the output to a file for easier
analysis:
python your_script.py > debug_log.txt 2>&1

‣ Disable logs in production: For production code, either do not set the environment variable
or explicitly set LOGGER_LEVEL=ERROR to minimize log output and improve performance



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise agreed in
an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, Jetson, Kepler, Maxwell, NCCL,
Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal,
SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks
of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2010-2025 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Using PyNvVideoCodec API's
	2.1. Video Demuxing
	2.2. Buffer-Based Demuxing and Decoding
	2.3. Video Decoding
	2.4. SimpleDecoder
	2.5. Decoder Caching
	2.6. ThreadedDecoder
	2.7. Video Encoding
	2.8. Video Encoding Basics
	2.9. Video Encoding Parameter Details
	2.10. Segment-Based Transcoding
	2.11. SEI Message Encoding and Decoding
	2.12. Interoperability with Deep Learning Frameworks

	PyNvVideoCodec Performance
	3.1. Frame Retrieval
	3.2. Decoder Reuse
	3.3. Segmented Transcoding

	Debugging and Logging

