
vPYNVVIDEOCODEC_PG-08085-001_v07" | April 2024

PyNvVideoCodec API

Programming Guide

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | ii

Table of Contents

Chapter 1. Overview..1

Chapter 2. Using PyNvVideoCodec API's... 3
2.1. Video Demuxing...3

2.2. Video Decoding..4

2.3. Video Encoding.. 8

2.4. Video Encoding Basics..12

2.5. Video Encoding Parameter Details.. 13

2.6. Interoperability with DL/ML Frameworks..16

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 1

Chapter 1. Overview

NVIDIA’s Video Codec SDK offers hardware-accelerated video encoding and decoding through
highly optimized C/C++ APIs. Such encoding and decoding of videos is also useful for a wide range
of users, including computer vision experts, researchers and Deep Learning (DL) developers.
The objective of PyNvVideoCodec is to provide simple APIs for harnessing such video encoding
and decoding capabilities when working with videos in Python.

PyNvVideoCodec gives encode and decode performance (FPS) close to Video Codec SDK.

PyNvVideoCodec is a library that provides Python bindings over C++ APIs for hardware-
accelerated video encoding and decoding. Internally, it utilizes core APIs of NVIDIA Video Codec
SDK and provides the ease-of-use inherent to Python. It relies on an external FFmpeg library
for demuxing media files.

Here is a high level block diagram showing client application, PyNvVideoCodec library and
related components.

Overview

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 2

Figure 1. High Level Architecture Diagram

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 3

Chapter 2. Using PyNvVideoCodec
API's

All APIs are exposed in python module named PyNvVideoCodec.

The following sections in this chapter explain how to use PyNvVideoCodec APIs for accelerating
video decoding and encoding.

2.1. Video Demuxing
Demux API

‣ CreateDemuxer

CreateDemuxer(filename: str) -> PyNvDemuxer
parameters
 :param _filename: path to media file or encoded bitstream

CreateDemuxer function accepts files with extension .mp4, .avi, and .mkv.

The CreateDemuxer has parameter as follows:
filename

Absolute path to file

Demux API usage

 1. Create Demuxer instance as follows. This only argument required is the media file name.

import PyNvVideoCodec as nvc
demuxer = nvc.CreateDemuxer(filename=media_file_name)

 2. demuxer object reads media file and splits it into chunks of data (PacketData).

Example below shows how to fetch PacketData from demuxer object

import PyNvVideoCodec as nvc
demuxer = nvc.CreateDemuxer(filename=media_file_name)
for packet in demuxer:
 # process packet

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 4

PacketData

This class stores compressed data. It is typically exported by demuxers and then passed as input
to decoders. For video, it typically contains one compressed frame.

The class PacketData has following attributes:
bsl

Size of the buffer in bytes where the elementary bitstream data is stored.
bsl_data

A pointer to the buffer containing the elementary bitstream data.
dts

The time at which the packet is decompressed.
duration

Duration of this packet in stream's time base.
key

Value of 1 indicates that packet data belongs to key frame.
pos

Byte position in stream.
pts

The time at which the decompressed packet will be presented to the user.

2.2. Video Decoding
Decode API

 1. CreateDecoder

import PyNvVideoCodec as nvc
decoder =
 nvc.CreateDecoder(gpuid=0,codec=nvc.cudaVideoCodec.H264,cudacontext=0,cudastream=0,usedevicememory=True,
 enableasyncallocations=False)

Here is the CreateDecoder API showing the defaolt parameters. In this case, the decoder
internally manages allocation and deallocation of decode buffers.

CreateDecoder(
 gpuid: int = 0,
 codec: PyNvVideoCodec.
 _PyNvVideoCodec.cudaVideoCodec
 = <cudaVideoCodec.H264: 4>,
 cudacontext: int = 0,
 cudastream: int = 0,
 usedevicememory: bool = 0) -> PyNvDecoder

The CreateDecoder has named parameter as follows:
gpuid

Parameter not in use, please ignore

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 5

codec
code is inferred from Demuxer, can take any one of the values from list below:

‣ PyNvVideoCodec._PyNvVideoCodec.cudaVideoCodec.H264

‣ PyNvVideoCodec._PyNvVideoCodec.cudaVideoCodec.HEVC

‣ PyNvVideoCodec._PyNvVideoCodec.cudaVideoCodec.AV1

cudacontext
Handle to the CUDA Context created by application.

cudastream
Handle to CUDA Stream created by application

usedevicememory
Value of 1 indicates the surface allocation within library is in device memory and value of
0 indicates that its in Host memory

CreatedDecoder API returns an object that can be used to decode packets containing
elementary bitstream to raw video frames. Please refer Demux API usage. to split the media
file into PacketData

 2. decoder.Decode() takes PacketData as input.

Please refer to PacketData for more details

import PyNvVideoCodec as nvc
decoder = nvc.CreateDecoder(
 gpuid=0,
 codec=nvc.cudaVideoCodec.H264,
 cudacontext=0,
 cudastream=0,
 usedevicememory=True)
for decodedframe in decoder.Decode(packet):
 # process decodedframe

Video Decoding Details

Python sample Decoder.py shows how to decode video files.

 1. Following examples show how to create decoder object and provide raw compressed
data(PacketData) to Decode().

‣ Create a decoder object with cuda context created within library, default cuda stream
and output surface in device memory.

In this case, decoder creates and manages its own cuda context and stream.

Output surface after call to Decode() resides in host memory

Example below demonstrates how to create decoder object and fetch decoded frames
as device memory buffer

import PyNvVideoCodec as nvc
demuxer = nvc.CreateDemuxer(
 filename=enc_file_path)
decoder = nvc.CreateDecoder(gpuid=0,

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 6

 codec=GetNvCodecId(),
 cudacontext=0,
 cudastream=0,
 usedevicememory=True)
for packet in demuxer:
 for decoded_frame in decoder.Decode(packet):
 new_array = cast_address_to_1d_bytearray(
 base_address=luma_base_addr,
 size=decoded_frame.framesize())
 #refer to Utils class for this implementation

‣ Create a decoder object with cuda context created within library, default cuda stream
and output surface in host memory.

In this case, decoder creates and manages its own cuda context and stream.

Example below demonstrates how to create decoder object and fetch decoded frames
as host memory buffer

import PyNvVideoCodec as nvc
import pycuda.driver as cuda
demuxer = nvc.CreateDemuxer(
 filename=enc_file_path)
decoder = nvc.CreateDecoder(
 gpuid=0,
 codec=GetNvCodecId(),
 cudacontext=0,
 cudastream=0,
 usedevicememory=False)
seq_triggered = False
for packet in demuxer:
 for decoded_frame in decoder.Decode(packet):
 if not seq_triggered:
 decoded_frame_size
 = nv_dec.GetFrameSize()
 raw_frame
 = np.ndarray(
 shape=decoded_frame_size,
 dtype=np.uint8)
 seq_triggered = True
 cuda.memcpy_dtoh(
 raw_frame,
 luma_base_addr)

‣ Create a decoder object with externally manaager cuda context, stream and output
surface from decoder is in device memory.

In this case, decoder uses externally created cuda context and stream.

Example below demonstrates how to create decoder object and fetch decoded frames
from device memory buffer.

import PyNvVideoCodec as nvc
import pycuda.driver as cuda
cuda.init()
cuda_device = cuda.Device(0)
cuda_ctx = cuda_device.retain_primary_context()
cuda_ctx.push()
cuda_stream_decoder = cuda.Stream()
seq_triggered = False
demuxer = nvc.CreateDemuxer(
 filename=enc_file_path)
decoder = nvc.CreateDecoder(

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 7

 gpuid=0,codec=nvc.cudaVideoCodec.H264,
 cudacontext=cuda_ctx.handle,
 cudastream=cuda_stream_decoder.handle,
 usedevicememory=True)
for packet in demuxer:
 for decoded_frame in decoder.Decode(packet):
 if not seq_triggered:
 decoded_frame_size = nv_dec.GetFrameSize()
 raw_frame = np.ndarray(
 shape=decoded_frame_size,
 dtype=np.uint8)
 seq_triggered = True
 cuda.memcpy_dtoh(
 raw_frame,
 luma_base_addr)

‣ Create a decoder object with asynchronous allocations enabled.

In this case, decoder allocates device memory on externally provided cuda stream and
context instead of creating its own.

Example below demonstrates how to create decoder object and fetch decoded frames to
device memory buffer allocated on external cuda stream.

import PyNvVideoCodec as nvc
import pycuda.driver as cuda
cuda.init()
cuda_device = cuda.Device(0)
cuda_ctx = cuda_device.retain_primary_context()
cuda_ctx.push()
cuda_stream_decoder = cuda.Stream()
cuda_stream_app = cuda.Stream()
decoder = nvc.CreateDecoder(
 gpuid=0,
 codec=nvc.cudaVideoCodec.H264,
 cudacontext=cuda_ctx.handle,
 cudastream=cuda_stream_decoder.handle,
 usedevicememory=True,
 enableasyncallocations=True)
raw_frame = None
seq_triggered = False
for packet in demuxer:
 for decoded_frame in decoder.Decode(packet):
 if not seq_triggered:
 decoded_frame_size = decoder.GetFrameSize()
 raw_frame = cuda.pagelocked_empty(
 shape=decoded_frame_size,
 dtype=np.uint8,
 order='C',
 mem_flags=0) # for stream aware allocations, we need to create
 page locked host
 # memory
 seq_triggered = True
 luma_base_addr = decoded_frame.GetPtrToPlane(0)
 decoder.WaitOnCUStream(cuda_stream_app.handle)
 cuda.memcpy_dtoh_async(
 raw_frame,
 luma_base_addr,
 cuda_stream_app)
 cuda_stream_app.synchronize()

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 8

ATTENTION: Please note the WaitOnCUStream call after decoded frames are received,
since allocation is done on a stream different than stream on which memory copy is
scheduled. application needs to wait till allocation is complete only then it can schedule
the memory copy.

 2. Client needs to check the pitch of the output surface before calling the interoperability API,
pitch of the decoded surface is aligned by 16 bytes.

 3. To Decode SVC(Scalable Video Coding) streams or having Dynamic Resolution Change, users
should enable dumping output in host memory

 4. After decoding, ownership of buffers remains with PyNvVideoCodec library only, Client
application needs to deep copy the the decoded surface for usage.

 5. Output buffers in NvCUVID are size of DPB, for H264 codec its 16.

2.3. Video Encoding
Encode API

 1. CreateEncoder

This method returns an object of encoder.

Example below shows how to create encoder object with minimal parameters

import PyNvVideoCodec as nvc
encoder = nvc.CreateEncoder(1920,1080, "NV12", False)

The CreateEncoder takes following parameters
gpuid

Parameter not in use, please ignore
width

The desired width of the encoded video
height

The desired height of the encoded video
format

Surface format of raw data, Can take any of the values from "NV12", "ARBG", "ABGR",
"YUV444", "YUV420", "P010" and "YUV444_16bit"

usecpuinputbuffer
Value of 0 indicates that input to encode must be device memory else it must be host
memory.

**kwargs
Key Value pairs of optional parameters that allow fine grained control. Please refer to
Optional Parameters for more details.

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 9

 2. Encode

Encode method accepts raw data and returns an array of encoded bitstream

Input buffer to Encode can be any of as follows

 a). 1-D array of bytes, For e.g. we could read a chunk of bytes from raw YUV and pass it as
a parameter as follows

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(
 1920,
 1080,
 "NV12",
 True)
frame_size = 1920 * 1080 * 1.5
chunk = np.fromfile(
 dec_file,
 np.uint8,
 count=frame_size)
if chunk.size != 0:
 bitstream = nvenc.Encode(chunk) # encode frame one by one

 b). Object of any class which implements CUDA Array Interface as follows

It is important to note that for multi-planar and semi-planar formats such YUV444 or
NV12, The Class should have one implementation of CUDA Array Interface per plane

Example below shows how to represent NV12 surface format as class implementing
CUDA Array Interface:

import PyNvVideoCodec as nvc
import numpy as np
import pycuda.driver as cuda

class AppFrame:
 def __init__(self, width, height, format):
 if format == "NV12":
 nv12_frame_size = int(width * height * 3 / 2)
 self.gpuAlloc = cuda.mem_alloc(nv12_frame_size)
 self.cai = []
 self.cai.append(AppCAI(
 (height, width, 1),
 (width, 1, 1),
 "|u1", self.gpuAlloc))
 chroma_alloc = int(self.gpuAlloc)
 + width * height
 self.cai.append(AppCAI((int(height / 2),
 int(width / 2), 2),
 (width, 2, 1),
 "|u1",
 chroma_alloc))
 self.frameSize = nv12_frame_size
 def cuda(self):
 return self.cai

encoder = nvc.CreateEncoder(
 1920,
 1080,
 "NV12", False)
input_frame = AppFrame(
 1920,

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 10

 1080,
 "NV12")
bitstream = encoder.Encode(input_gpu_frame)

ATTENTION: Please note that AppFrame implements cuda method . Encode accepts
object of AppFrame only if its implements cuda method.

 c). NCHW Tensor with batch count as1 (N=1) and channel count as 1 (C=1)

For a single frame from 1080p YUV, tensor shape shape should be [1,1,1620,1920]

Example below shows how to represent NV12 as NCHW Tensor

import PyNvVideoCodec as nvc
import numpy as np
import torch
encoder = nvc.CreateEncoder(1920,1080,
 "NV12", False)
cuda0 = torch.device('cuda:0')
input_tensor = torch.ones(
 [1620, 1920],
 dtype=torch.uint8,
 device=cuda0)
bitstream = encoder.Encode(input_tensor)

ATTENTION: Width specified during CreateEncoder for NV12 surface format is 1080, but
Tensor is created with Width as 1620. This small workaround needed as encode hardware
assumes luma and chroma planes are contiguous and Tensor don't work with planar
surface formats.

 3. EndEncode

EndEncode method flushes encoder and returns pending bitstream data from encoder queue

Example below shows how to fetch pending bitstream data from encoder queue for 1080p
raw YUV after encoding 100 frames

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(
 1920,
 1080, "NV12", True)
frame_size = 1920 * 1080 * 1.5
encoder = nvc.CreateEncoder(
 width,
 height,
 fmt,
 use_cpu_memory,
 **config_params) # create encoder object
 for i in range(100):
 chunk = np.fromfile(
 dec_file,
 np.uint8,
 count=frame_size)
 if chunk.size != 0:
 bitstream = encoder.Encode(chunk) # encode frame one by one
 bitstream = encoder.EndEncode() # flush encoder queue

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 11

ATTENTION: Call to EndEncode() should be done at the last as it signifies that end of input
data to encoder

 4. GetEncodeReconfigureParams and Reconfigure

Reconfigure API allows clients to change the encoder initialization parameters without
closing existing encoder session and re-creating a new encoding session. This helps clients
avoid the latency introduced due to destruction and re-creation of the encoding session. This
API is useful in scenarios which are prone to instabilities in transmission mediums during
video conferencing, game streaming etc.

However, The API currently only supports reconfiguration of parameters listed below:

‣ rateControlMode.

‣ multiPass.

‣ averageBitrate.

‣ vbvBufferSize.

‣ maxBitRate.

‣ vbvInitialDelay.

‣ frameRateNum.

‣ frameRateDen.

The API would fail if any attempt is made to reconfigure the parameters which is not
supported.

Resolution change is possible only if NV_ENC_INITIALIZE_PARAMS::maxEncodeWidth and
NV_ENC_INITIALIZE_PARAMS::maxEncodeHeight are set while creating encoder session.

If the client wishes to change the resolution using this API, it is advisable to
force the next frame following the reconfiguration as an IDR frame by setting
NV_ENC_RECONFIGURE_PARAMS::forceIDR to 1.

If the client wishes to reset the internal rate control states, set
NV_ENC_RECONFIGURE_PARAMS::resetEncoder to 1.

Example below shows how to fetch and change reconfigurable parameters:

import PyNvVideoCodec as nvc
import numpy as np
encoder = nvc.CreateEncoder(1920,1080, "NV12", True)
t = encoder.GetEncodeReconfigureParams()
t.averageBitrate = int(t.averageBitrate / 2)
t.vbvBufferSize = int(
 t.averageBitrate * t.frameRateDen
 / t.frameRateNum)
t.vbvInitialDelay = t.vbvBufferSize
encoder.Reconfigure(t)

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 12

2.4. Video Encoding Basics
PyNvVideoCodec has been designed for the most simplified possible use of video encoding using
appropriate default values and simple functions. However, you can also access the detailed
optional parameters and the full flexibility offered by NVIDIA video technology stack through the
C++ interface.

If you are familiar with video encoding basic you could directly jump to the video encoding
parameters that can be used with video encode API

NVIDIA GPU allows to encode H.264, HEVC, and AV1 content. Depending on your hardware
generation, not all Codec will be accessible. Refer to the NVIDIA Hardware Video Encodersection
for information about supported Codec for each GPU architecture.

Surface Format Support

Currently supported input formats are

‣ NV12(8 bit)

‣ YUV 4:2:0(10 bit)

‣ YUV 4:4:4(8 bit and 10 bit)

Both 10 bit and 16 bit input frames result in 10 bit encoding. The colorspace conversion matrix
can be specified by the client using the colorspace option during CreateEncoder.

Tuning

The NVIDIA Encoder Interface exposes four different tuning options:

‣ High quality suited for: - High-quality latency-tolerant transcoding - Video archiving -
Encoding for OTT streaming

‣ Low latency suited for: - Cloud gaming - Streaming - Video conferencing - High bandwidth
channel with tolerance for bigger occasional frame sizes

‣ Ultra-low latency for: - Cloud gaming - Streaming - Video conferencing - In strictly
bandwidth-constrained channel

‣ Lossless for: - Preserving original video footage for later editing - General lossless data
archiving (video or non-video)

Presets

For each tuning information, seven presets from P1 (highest performance) to P7 (lowest
performance) are available to control performance and quality trade off. Using these presets
will automatically set all relevant encoding parameters for the selected tuning information. This
is a coarse level of control exposed by the API.

https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-application-note/index.html#nvidia-hardware-video-encoder

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 13

Specific attributes and parameters within the preset can be tuned, if required. This is explained
in the next two subsections. For performance references depending on the chosen preset, refer
to the NVENC encoding performance in frames/second (fps) table.

Rate Control and Bitrate

NVENC provides control over various parameters related to the rate control algorithm
implemented in its firmware, allowing it to adapt the bit rate (or the amount of data necessary to
encode your video content per second) depending on your quality, bandwidth, and performance
constraints. NVENC supports the following rate control modes:

‣ Constant bitrate (CBR)

‣ Variable bitrate (VBR)

‣ Constant Quantization Parameter (Constant QP)

‣ Target quality

The bitrate can also be capped to a maximum target value. For more information about rate
control, refer to the NVENC Video Encoder API Programming Guide

Building your Optimized Encoder

Refer to the Recommended NVENC Settings section for more information on how to configure
NVENC depending on your use case.

2.5. Video Encoding Parameter Details

Table 1. Optional Parameters for CreateEncoder

Parameter Type Valid Values Default
Parameter Description

codec String h264, hevc, av1 h264

bitrate Integer > 0 10000000U

fps Integer > 0 30

Desired Frame
Per Second of
the video to be

encoded, default
value is set to 30

initqp Integer > 0 unset option Initial Quantization
Parameter (QP)

idrperiod Integer > 0 250

Period between
Instantaneous

Decoder Refresh
(IDR) frames

https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html#rate-control
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html#recommended-nvenc-settings

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 14

Parameter Type Valid Values Default
Parameter Description

constqp
Integer or list
of 3 integers >=0, <=51

qmin
Integer or list
of 3 integers >=0, <=51 [30,30,30]

gop
Integer or list
of 3 integers >0 changes based

on other settings

tuning_info String

high_quality,
low_latency,

ultra_low_latency,
lossless

high_quality

preset String P1 to P7 P4

maxbitrate Integer >0 10000000U

Maximum bitrate
used for Variable

BitRate (VBR)
encoding, allowing

to dynamically
adapting bit

rate based on
video content

vbvinit Integer >0 10000000U

vbvbufsize Integer >0 10000000U

Target client Video
Buffering Verifier
(VBV) buffer size,

applicable for vbr.

rc String cbr, constqp, vbr cbr

Type of Rate
Control (RC)

chosen between
Constant BitRate
(CBR), Constant
QP or Variable
BitRate (VBR)

multipass String fullres, qres disabled
by default

bf Integer >=0
varies based on
tuning_info
and preset

Specifies the GOP
pattern as follows:
bf = 0: I, 1: IPP,
2: IBP, 3: IBBP

max_res List of 2 integers >0 4K for H264, 8K
for HEVC, AV1

Resolution
not greater

than maximum
supported by
hardware in

order to account
for dynamic

resolution change.

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 15

Parameter Type Valid Values Default
Parameter Description

For example:
[3840, 2160]

temporalaq Integer 0 or 1 0

lookahead Integer >0 0 to 255 Number of frames
to look ahead.

aq Integer 0 or 1 0

ldkfs Integer >=0, <255 0

Low Delay
Keyframe Scale

is useful to
avoid channel

congestion in case
I frame ends up
generating high
number of bits

colorspace String bt601, bt709
Specify this

option for ARGB/
ABGR inputs

timingInfo ::
num_unit_in_ticks

Integer >0

Specifies the
number of

time units of
the clock (as

defined in Annex
E of the ITU-

T Specification).
HEVC and
H264 only

timingInfo ::
timescale

Integer >0

Specifies the
frequency of
the clock (as

defined in Annex
E of the ITU-

T Specification).
HEVC and
H264 only

slice::mode Integer 0 to 3 0

Slice modes for
H.264 and HEVC

encoding (not
available for AV1)

which could be
0 (MB based

slices), 2 (MB row
based slices) or 3
(number of slices)

slice::data Integer
valid range

changes based
on slice::mode

0

Specifies the
parameter
needed for

sliceMode. AV1

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 16

Parameter Type Valid Values Default
Parameter Description

does not support
slice::data

repeatspspps Integer 0 or 1 0

Enable writing
of Sequence

Parameter Set
(SPS) and Picture

Parameter
Set (PPS) for

every IDR frame

2.6. Interoperability with DL/ML
Frameworks

Example below shows how DecodedFrame can be consumed by PyTorch without the need of
explicit memory copy

for packet in demuxer:
 for decoded_frame in decoder.Decode(packet):
 src_tensor = torch.from_dlpack(decoded_frame)

"PyNvVideoCodec APIs can seamlessly (zero-copy) exchange data with popular DL frameworks
like PyTorch and TensorRT. Video frame decoded by PyNvVideoCodec decode API can be
directly consumed by DL framework. The decoded surface supports DLpack and CUDA Arrary
Inteface for enabling this. Similarly encode API can consume the video frame produced by DL
frameworks.

Example below shows a DecodedFrame class for NV12 1080p Surface. The DecodedFrame
instance contains list of CAIMemoryView.

For NV12 list of CAIMemoryView would have 2 entries one for luma component and other for
chroma component.

import PyNvVideoCodec as nvc
print(nvc.DecodedFrame)
<DecodedFrame [timestamp=0, format=Pixel_Format.NV12, [<CAIMemoryView [1080, 1920,
 1]>, <CAIMemoryView [540, 960, 2]>]]>

DecodedFrame implements methods as below:

 1. Access the underlying list of CAIMemoryView where each view implements
__cuda_array_interface__.
decodedFrame.cuda()

 2. Convert DecodedFrame in semi-planar NV12 and YUV444 format to 1-D single channel
tensor.
decodedFrame.nvcv_image()

 3. Access the DLPack methods. DLPack is an intermediate in-memory representation standard
for tensor data structures that allows exchange between major frameworks.

Using PyNvVideoCodec API's

PyNvVideoCodec API vPYNVVIDEOCODEC_PG-08085-001_v07" | 17

‣ Shape of Tensor - (tuple of ints describing axes length)
decodedFrame.shape()

‣ Stride of Tensor - (tuple of ints describing strides of data in memory)
decodedFrame.shape()

‣ dtype of Tensor - (data type)
decodedFrame.dtype()

 4. Access the opaque pointer to the underlying GPU buffer.
decodedFrame.__dlpack_device___

ATTENTION: In order to create custom DataLoader for media files, please refer NVVL

https://github.com/NVIDIA/nvvl

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise agreed in
an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, Jetson, Kepler, Maxwell, NCCL,
Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal,
SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks
of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2010-2024 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Using PyNvVideoCodec API's
	2.1. Video Demuxing
	2.2. Video Decoding
	2.3. Video Encoding
	2.4. Video Encoding Basics
	2.5. Video Encoding Parameter Details
	2.6. Interoperability with DL/ML Frameworks

