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Chapter 1. Read Me

1.1. Release Notes
Key Features and Enhancements

This release of PyNvVideoCodec includes support for the following features:

‣ Codec

‣ H.264

‣ HEVC

‣ AV1

‣ Surface format

‣ NV12 (8 bit)

‣ YUV 4:2:0 (10 bit)

‣ YUV 4:4:4 (8 and 10 bit)

‣ Interoperability

‣ Supports DLPack to facilitate data exchange with popular DL frameworks like PyTorch
and TensorRT.

‣ Supports CUDA Array Interface to facilitate data exchange with NVIDIA's CV-CUDA
library.

‣ CUDA stream support for optimizing throughput.

‣ Contains a collection of Python sample applications that demonstrate the usage of APIs.

Limitations and Known Issues

‣ DLPack interoperability is supported only for NV12.

‣ Currently, only pageable allocations are supported.

‣ PyNvVideoCodec uses the FFmpeg binaries for demuxing of audio and video content.

https://github.com/dmlc/dlpack
https://pytorch.org/
https://developer.nvidia.com/tensorrt
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html#cuda-array-interface-version-3
https://github.com/CvCuda/CV-CUDA
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NVIDIA will not update the FFmpeg binaries included in our release package as these
binaries are available, maintained and updated by the FFmpeg open-source community.

ATTENTION: NVIDIA does not provide support for FFMPEG; therefore, it is the responsibility
of end users and developers, to stay informed about any vulnerabilities or quality bugs
reported against FFMPEG. Users are encouraged to refer to the official FFmpeg website and
community forums for the latest updates, patches, and support related to FFmpeg binaries
and act as they deem necessary.

Package Contents

This package contains the following:

 1. Sample applications demonstrating usage of PyNvVideoCodec APIs for encoding, decoding
and transcoding use cases.

‣ [.\samples\]

 2. Python Bindings

‣ [.src\PyNvVideoCodec]

 3. Video codec helper classes and utilities

‣ [.src\VideoCodecSDKUtils]

 4. FFmpeg libraries and source code

‣ [.external\ffmpeg]

 5. Documents

‣ [.docs]

The sample applications provided in the package are for demonstration purposes only and
may not be fully tuned for quality and performance. Hence the users are advised to do their
independent evaluation for quality and/or performance.

1.2. System Requirements

Table 1. System Requirements

Operating System
‣ Windows 10 or higher

‣ Ubuntu 18.04 or higher

GPU ‣ Turing

‣ Ampere

https://www.nvidia.com/en-us/geforce/turing/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
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‣ Ada

‣ Hopper

Drivers

‣ NVIDIA Windows display driver 531.61 or
newer

‣ NVIDIA Linux display driver 530.41.03 or
newer

Get most recent NVIDIA Display Driver

Python
‣ Python 3.10

‣ Python 3.10 Dev (required in Ubuntu only)

CMake
‣ (3.21 and onwards)

‣ build-essential (required in Ubuntu only)

Visual Studio(Windows only) ‣ Visual Studio

CUDA Toolkit Latest CUDA Toolkit

Python modules to run Sample applications PyCUDA and PyTorch

Windows Subsystem for Linux (WSL) Configuration Requirements

‣ Add the directory /usr/lib/wsl/lib to PATH environment variable, in case it is not added by
default. This is required to include path for the WSL libraries.

‣ Plus all the requirements under System Requirements

1.3. Installing PyNvVideoCodec Python
Module

ATTENTION: This project will download and install additional third-party open source software
projects - DLPack. Review the license terms of these open source projects before use.

The Python module can be installed using following ways.

Installing from PyPI

 1. The ready-to-use Python WHL's (Wheel) of the PyNvVideoCodec for Windows and Linux OSes
are hosted on PyPI.

 2. Open the bash/shell prompt and run:

$>pip install "PyNvVideCodec"
               

https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/download/driverResults.aspx/204245/en-us/
https://www.nvidia.com/Download/driverResults.aspx/200481/en-us/
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://www.python.org/downloads/release/python-3100/
https://packages.ubuntu.com/search?keywords=python3.10-dev
https://cmake.org/download/
https://packages.ubuntu.com/focal/build-essential
https://visualstudio.microsoft.com/downloads/
https://developer.nvidia.com/cuda-toolkit
https://pypi.org/project/pycuda/
https://pytorch.org/get-started/locally/
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 3. This is the recommended way.

Building and Installing from Source on NVIDIA NGC

The package containing PyNvVideCodec Python module's source code, all dependencies, Python
sample applications, and documents is hosted on NVIDIA NGC.

Follow these steps:

 1. Download the zip file of the latest package from NVIDIA NGC .

 2. Open the bash/shell prompt on the same directory where zip was downloaded and run the
following command, replacing "PyNvVideCodec.zip" with the actual name of the downloaded
zip file:

$>pip install "PyNvVideCodec.zip"
               

 3. You can access documents and Python sample applications from the package.

Use this method if you need any customization on PyNvVideoCodec Python module e.g. enabling
NVTX markers for profiling

Follow these steps to build customized version:

 1. Unzip the source package to a directory.

 2. Do the necessary modifications to the source.

 3. On the same directory where setup.py is located, run the following commands:

$>pip install .
   

1.4. Running Samples
PyNvVideoCodec package contains the following Python samples in the PyNvVideoCodec/
samples folder. For each of these samples, you can use the -h option to see the available
command line options.

Table 2. Command Line Options per Sample Application

Sample Application Functionality Example Command Line

Decode.py
Illustrates the demuxing

and decoding of a media file.

Decode.py -g 0 -
i ip_media_file_path -
o op_yuv_file_path -d 1

DecodeAsync.py

Demonstrates how to decode
media file into output surfaces
allocated on non default cuda

DecodeAsync.py -g 0 -
i ip_media_file_path -
o op_yuv_file_path -s

https://catalog.ngc.nvidia.com/orgs/nvidia/resources/pynvvideocodec
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Sample Application Functionality Example Command Line
stream.Refer Stream Aware
Allocations for more details.

DecodePerf.py
Measures decoding

performance in FPS per process

DecodePerf.py -g 0 -
i ip_media_file_path

 -d 1 -n 1

Encode.py

Illustrates encoding
of frames using CUDA
device buffers as input.

Encode.py -
i ip_yuv444_file_path
  -o op_bistream_path

 -s 1280x720 -if
 yuv444 -c hevc -json
 encode_config.json

EncodeFromCPUBuffer.py

Illustrates encoding
of frames using host

memory buffers as input.

Encode.py -
i ip_yuv444_file_path 
 -o op_bistream_path -
s 1280x720 -if yuv444
 -c hevc -cb 1 -json
 encode_config.json

EncodeReconfigure.py

Demonstrates bitrate change
at runtime without the

need to reset the encoder
session.The application

reduces the bitrate by half
and then restores it to the

original value after 100 frames.

Encode.py -
i ip_yuv444_file_path
  -o op_bistream_path

 -s 1280x720 -if
 yuv444 -c hevc -json

 encode_config_lowlatency.json

EncodePerf.py

Measures encoding
performance in

FPS per process.

Encode.py -
i ip_yuv444_file_path
  -o op_bistream_path

 -s 1280x720 -if
 yuv444 -c hevc -json

 encode_config_perf.json
 -n 3

Transcode.py
Demonstrates transcoding
of an input video stream.

Transcode.py -g 0 -
i ip_media_file_path -
o op_media_file_path

 -c h264

TranscodeWithPostProc.py

Demonstrates zero copy
data exchange with PyTorch,
does the transcoding of an
input video stream, runs a

clamping kernel on decoded
output and encodes it back.

TranscodeWithPostProc.py
 -g 0 -

i ip_media_file_path -
o op_media_file_path

https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-1/
https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-1/
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ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
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Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal,
SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks
of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
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