NVIDIA.

NVIDIA VIDEO CODEC SDK - DECODER

Programming Guide

vNVDECODEAPI_PG-08085-001_v07 July 2020

Table of Contents

Chapter 1. OVEIVIEW. ... 1
1.1, SUPPOITEA COGBCS. ittt 1
Chapter 2. Video Decoder Capabilities......ccouiiiiiiiiiieeee e 3
Chapter 3. Video Decoder Pipeline.... ..o S
Chapter 4. Using NVIDIA Video Decoder (NVDECODE API)....coooiiiiiiiiiieieeeeeee e 7
A1 Vi@ ParS I e 7

4. 7.7, CreatiNg @ ParS el et 7
4.1.2. Parsing the PaCKeTS. ... i 8
A.1.3. DS OYING PAISE . ittt 8

4.2. VIAEO DECOGOT ...t 9
4.2.1. Querying decode Capabilities.oiiiiiiiiie i 9
4.2.2. Creating @ DeCOOr . . i 10
4.2.3. Decoding the frame/fleld.o 12
4.2.4. Preparing the decoded frame for further processing........ccccocvioiiiiiiiii 12
4.2.5. Querying the decoding STatUS......oiiiiiii e 14
4.2.6. Reconfiguring the deCOGer... ..ot 14
4.2.7. Destroying the deCOTEr . ..o i 15

4.3. Writing an Efficient Decode AppliCation.. ..o 15

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | ii

Chapter 1. QOverview

NVIDIA GPUs - beginning with the NVIDIA® Fermi™ generation - contain a video decoder
engine (referred to as NVDEC in this document) which provides fully-accelerated hardware
video decoding capability. NVDEC can be used for decoding bitstreams of various formats:
H.264, HEVC [H.265), VP8, VP9, MPEG-1, MPEG-2, MPEG-4 and VC-1. NVDEC runs completely
independent of compute/graphics engine.

NVIDIA provides software APl and libraries for programming NVDEC. The software AP/,
hereafter referred to as NVDECODE API lets developers access the video decoding features of
NVDEC and interoperate NVDEC with other engines on the GPU.

NVDEC decodes the compressed video streams and copies the resulting YUV frames to video
memory. With frames in video memory, video post processing can be done using CUDA. The
NVDECODE APl also provides CUDA-optimized implementation of commonly used post-
processing operations such as scaling, cropping, aspect ratio conversion, de-interlacing and
color space conversion to many popular output video formats. The client can choose to use the
CUDA-optimized implementations provided by the NVDECODE API for these post-processing
steps or choose to implement their own post-processing on the decoded output frames.

Decoded video frames can be presented to the display with graphics interoperability for video
playback, passed directly to a dedicated hardware encoder (NVENC) for high-performance
video transcoding, used for GPU accelerated inferencing or consumed further by CUDA or
CPU-based processing.

1.1. Supported Codecs

The codecs supported by NVDECODE AP are:

» MPEG-T,
» MPEG-2,
» MPEG4,
» VC-T,

» H.264 (AVCHD) (8 bit),

» H.265 (HEVC]) (8bit, 10 bit and 12 bit),
» VP8,

» VP9(8bit, 10 bit and 12 bit).

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 1

Overview

» Hybrid (CUDA + CPU] JPEG

Refer to Chapter 2 for complete details about the video capabilities for various GPUs.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 2

Chapter 2.

Video Decoder Capabilities

Table 1 shows the codec support and capabilities of the hardware video decoder for each GPU

architecture.

Table 1.

GPU Architecture

Fermi (GF1xx)

Kepler (GK1xx)

First generation
Maxwell (GM10x)

Second generation
Maxwell (GM20x,
except GM206)

GM206

GP100

GP10x/GV100/
Turing/GA100

Hardware Video Decoder Capabilities>

MPEG-1 & MPEG-2

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

Maximum Resolution:

4080x4080

VC-1 & MPEG-4

Maximum Resolution:
2048x1024 & 1024x2048

Maximum Resolution:
2048x1024 & 1024x2048

Maximum Resolution:
2048x1024 & 1024x2048

Maximum Resolution:
2048x1024 & 1024x2048

Max bitrate: 60 Mbps

Maximum Resolution:
2048x1024 & 1024x2048

Maximum Resolution:
2048x1024 & 1024x2048

Maximum Resolution:
2048x1024 & 1024x2048

H.264/AVCHD

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile
up to Level 4.1

Maximum Resolution:

4096x4096
Profile:
Main, Highprofile
up to Level4.1

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile up
to Level5.1

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile up
to Level5.1

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile up
to Level5.1

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile up
to Level 5.1

Maximum Resolution:

4096x4096
Profile:
Baseline, Main,
High profile up
to Level 5.1

[1] Supported only on GP104, Turing and GA100

NVIDIA VIDEO CODEC SDK - DECODER

H.265/HEVC

Unsupported

Unsupported

Unsupported

Unsupported

Maximum Resolution:

4096x2304
Profile:
Main profile up
to Level5.1
and main10 profile

Maximum Resolution:

4096x4096
Profile:
Main profile up
to Level 5.1, main10
and main12 profile

Maximum Resolution:

8192x8192
Profile:
Main profile up
to Level 5.1, main10
and main12 profile

VP8

Unsupported

Unsupported

Unsupported

Maximum Resolution:

4096x4096

Maximum Resolution:

4096x4096

Maximum Resolution:

4096x4096

Maximum Resolution:

4096x4096[1]

VP9

Unsupported

Unsupported

Unsupported

Unsupported

Maximum Resolution:
4096x2304
Profile:
Profile 0

Maximum Resolution:
4096x4096
Profile:
Profile 0

Maximum Resolution:
8192x8192[2]
Profile:

Profile 0, 10-bit and
12-bit decoding

vNVDECODEAPI_PG-08085-001_v07 |

Video Decoder Capabilities

[2] VP9 10-bit and 12-bit decoding is supported on select GP10x GPUs

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 4

Chapter 3. Video Decoder Pipeline

Decoder pipeline consists of three major components - Demuxer, Video Parser, and

Video Decoder. The components are not dependent on each other and hence can be used
independently. NVDECODE API provide API's for NVIDIA video parser and NVIDIA video
decoder. Of these, NVIDIA video parser is purely a software component and user can plug-in
any parser in place of NVIDIA video parser, if required (e.g. FFmpeg parser].

Figure 1. Video decoder pipeline using NVDECODE API

Client Application

Demuxer Driver

B Non-Nvidia Component

Optional Nvidia Component GPU HW

Video Decoder
- Nvidia Component

At a high level the following steps should be followed for decoding any video content using
NVDECODEAPI:

1. Create a CUDA context.

2. Query the decode capabilities of the hardware decoder.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 5

Video Decoder Pipeline

3. Create the decoder instance(s).
4. De-Mux the content (like .mp4). This can be done using third party software like FFMPEG.

5. Parse the video bitstream using parser provided by NVDECODE API or third-party parser
such as FFmpeg.

Kick off the Decoding using NVDECODE API.
Obtain the decoded YUV for further processing.
Query the status of the decoded frame.

O o N o

Depending on the decoding status, use the decoded output for further processing like
rendering, inferencing, postprocessing etc.

10.1f the application needs to display the output,
» Convert decoded YUV surface to RGBA.
» Map RGBA surface to DirectX or OpenGL texture.
» Draw texture to screen.

11.Destroy the decoder instancels) after the completion of decoding process.
12.Destroy the CUDA context.

The above steps are explained in the rest of the document and demonstrated in the sample
application(s) included in the Video Codec SDK package.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 6

Chapter 4. Using NVIDIA Video
Decoder (NVDECODE API)

AlLNVDECODE APIs are exposed in two header-files: cuviddec.h and nvcuvid.h. These
headers can be found under ..\Samples\NvCodec\NvDecoder folder in the Video Codec SDK
package. The samples in NVIDIA Video Codec SDK statically load the library (which ships as
a part of the SDK package for windows) functions and include cuviddec.h and nvcuvid.h in
the source files. The Windows DLL nvcuvid.dl1 is included in the NVIDIA display driver for
Windows. The Linux library 1ibnvcuvid.so is included with NVIDIA display driver for Linux.

The following sections in this chapter explain the flow that should be followed to accelerate
decoding using NVDECODE API.

4.1. Video Parser

4.1.1. Creating a parser

Parser object can be created by calling cuvidCreatevideoParser () after filling the structure
CUVIDPARSERPARAMS. The structure should be filled up with following information about the
stream to be decoded:

» CodecType: must be from enum cudavideoCodec, indicating codec type of content like
H.264, HEVC, VP9 etc.

» ulMaxNumDecodeSurfaces: Thisis number of surfaces in parser’'s DPB [(decode picture
buffer). This value may not be known at the parser initialization time and can be set to
a dummy number like 1 to create parser object. Application must register a callback
pfnSequenceCallback with the driver, which is called by the parser when the parser
encounters the first sequence header or any changes in the sequence. This callback
reports the minimum number of surfaces needed by parser's DPB for correct decoding in
CUVIDEOFORMAT: :min num decode surfaces. [he sequence callback may return this
value to the parser if wants to update CUVIDPARSERPARAMS : :ulMaxNumDecodeSurfaces.
The parser then overwrites CUVIDPARSERPARAMS : :ulMaxNumDecodeSurfaces
with the value returned by the sequence callback, if return value of the sequence
callback is greater than 1 (see description about pfnSequenceCallback
below). Therefore, for optimum memory allocation, decoder object creation
should be deferred until CUVIDPARSERPARAMS: :ulMaxNumDecodeSurfaces
Is known, so that the decoder object can be created with required number

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 7

Using NVIDIA Video Decoder (NVDECODE API)

of buffers, such that CUVIDDECODECREATEINFO: : ulNumDecodeSurfaces =
CUVIDPARSERPARAMS: :ulMaxNumDecodeSurfaces.

» ulMaxDisplayDelay: Max display callback delay. 0 = no delay

» pfnSequenceCallback: Application must register a function to handle any sequence
change. Parser triggers this callback for initial sequence header or when it encounters a
video format change. Return value from sequence callback is interpreted by the driver as
follows:
» 0 fail
» 1:succeeded, but driver should not override

CUVIDPARSERPARAMS: :ulMaxNumDecodeSurfaces

» >1:succeeded, and driver should override
CUVIDPARSERPARAMS: : ulMaxNumDecodeSurfaces with this return value

» pfnDecodePicture: Parser triggers this callback when bitstream data for one frame is
ready. In case of field pictures, there may be two decode calls per one display call since
two fields make up one frame. Return value from this callback is interpreted as:

» 0: fail
» >1:succeeded

» pfnDisplayPicture: Parser triggers this callback when a frame in display order is ready.
Return value from this callback is interpreted as:

» (O:fail

» »1:succeeded

4.1.2. Parsing the packets

Packets extracted from demultiplexer are fed into parser using cuvidParseVideoData ().
Parser triggers callbacks registered while creating parser object synchronously from
within cuvidparsevVideoData (), whenever there is sequence change or a picture is ready
to be decoded and/or displayed. If the callback returns failure, it will be propagated by
cuvidParseVideoData () to the application.

The decoded result gets associated with a picture-index value in

thecuviDpICPARAMSStructure, which is also provided by the parser. This picture index is later
used to map the decoded frames to CUDA memory.

4.1.3. Destroying parser

The user needs to call cuvidbestroyVideoParser () to destroy the parser object and free up
all the allocated resources.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 8

Using NVIDIA Video Decoder (NVDECODE API)

4.2. Video Decoder
4.2.1. Querying decode capabilities

The AP| cuvidGetDecoderCaps () lets users query the capabilities of underlying hardware
video decoder.

As illustrated in Table 1, different GPUs have hardware decoders with different capabilities.

Therefore, to ensure your application works on all generations of GPU hardware, it is highly
recommended that the application queries the hardware capabilities and makes appropriate
decision based on presence/absence of the desired capability/functionality.

The AP| cuvidGetDecoderCaps () lets users query the capabilities of underlying hardware
video decoder. Calling thread should have a valid CUDA context associated.

The client needs to fill in the following fields of cuviDDECODECAPS before calling
cuvidGetDecoderCaps ().

» eCodecType: Codec type (H.264, HEVC, VP9, JPEG etc)
> eChromaFormat: 4:2:0, 4:4:4, etc.

» nBitDepthMinus8: 0 for 8-bit, 2 for 10-bit, 4 for 12-bit

When cuvidGetDecodercCapsl() is called , the underlying driver fills up the remaining fields
of CUVIDDECODECAPS, indicating the support for the queried capabilities, supported output
formats and the maximum and minimum resolutions the hardware supports.

The following pseudo-code illustrates how to query the capabilities of NVDEC.

CUVIDDECODECAPS decodeCaps = {};

// set IN params for decodeCaps

decodeCaps.eCodecType = cudaVideoCodec HEVC;//HEVC
decodeCaps.eChromaFormat = cudaVideoChromaFormat 420;//YUV 4:2:0
decodeCaps.nBitDepthMinus8 = 2;// 10 bit

result = cuvidGetDecoderCaps (&decodeCaps) ;

Returned parameters from APl can be interpreted as below to validate if content can be
decoded on underlying hardware:

// Check if content is supported
if (!decodecaps.bIsSupported) {
NVDEC THROW_ ERROR (Codec not supported on this GPU",
CUDA ERROR NOT SUPPORTED) ;
}
// validate the content resolution supported on underlying hardware
if ((coded width > decodecaps.nMaxWidth) ||
(coded height > decodecaps.nMaxHeight)) {
NVDEC THROW ERROR (Resolution not supported on this GPU",
CUDA_ERROR NOT SUPPORTED) ;
}
// Max supported macroblock count CodedWidth*CodedHeight/256 must be <= nMaxMBCount
if ((coded width>>4)* (coded height>>4) > decodecaps.nMaxMBCount) {
NVDEC THROW_ERROR (MBCount not supported on this GPU",
CUDA ERROR NOT SUPPORTED) ;
}

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 9

Using NVIDIA Video Decoder (NVDECODE API)

In most situations, bit-depth and chroma subsampling to be used at the decoder output

is same as that at the decoder input (i.e. in the content). In certain cases, however, it may

be necessary to have the decoder produce output with bit-depth and chroma subsampling
different from that used in the input bitstream. In general, it's always a good idea to first check
if the desired output bit-depth and chroma subsampling format is supported before creating
the decoder. This can be done in the following way:

// Check supported output format
if (decodecaps.nOutputFormatMask & (l<<cudaVideoSurfaceFormat NV12)) {
// Decoder supports output surface format NV12

}
if (decodecaps.nOutputFormatMask & (l<<cudaVideoSurfaceFormat P010) {
// Decoder supports output surface format P010

4.2.2. Creating a Decoder

Before creating the decoder instance, user needs to have a valid CUDA context which will be
used in the entire decoding process.

The decoder instance can be created by calling cuvidCreateDecoder () after filling the
structure CUVIDDECODECREATEINFO. [he structure CUVIDDECODECREATEINFO should be filled
up with the following information about the stream to be decoded:

> CodecType: must be from enum cudavideoCodec. It represents codec type of content
likeH.264, HEVC, VP9 etc.

» ulwidth, ulHeight:coded width and coded height in pixels.

> ulMaxWidth, ulMaxHeight: max width and max height that decoder supportin
case of resolution change. When there is resolution change [new resolution <=
ulMaxWidth, ulMaxHeight] in video stream, app can reconfigure decoder using
cuvidReconfigureDecoder() APl instead of destroy and recreate the decoder. If ulMaxWidth
or ulMaxHeight is set to 0, ulMaxWidth and ulMaxHeight are set to ulWidth and ulHeight
respectively.

» ChromaFormat: must be from enum cudavideoChromaFormat. It represents chroma
format of content like 4:2:0, 4:4:4, etc.

> bitDepthMinus8: bit-depth minus 8 of video stream to be decoded like O for 8-bit, 2 for
10-bit, 4 for 12-bit.

» ulNumDecodeSurfaces: Referred to as decode surfaces elsewhere in this document,
this is the number of surfaces that the driver will internally allocate for storing the
decoded frames. Using a higher number ensures better pipelining but increases
GPU memory consumption. For correct operation, minimum value is defined in
CUVIDEOFORMAT: :min num decode surfaces and can be obtained from first sequence
callback from Nvidia parser. The NVDEC engine writes decoded data to one of these
surfaces. These surfaces are not accessible by the user of NVDECODE API, but the
mapping stage, which includes decoder output format conversion, scaling, cropping etc.]
use these surfaces as input surfaces.

» ulNumOutputSurfaces: Thisis the maximum number of output surfaces that the
client will simultaneously map to decode surfaces for further processing using

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 10

Using NVIDIA Video Decoder (NVDECODE API)

cuvidMapVideoFrame () . These surfaces have postprocessed decoded output to be used
by client. The driver internally allocates the corresponding number of surfaces (referred
as output surfaces in this document). Client will have access to output surfaces. Refer to
section Preparing the decoded frame for further processing to understand the definition of
map.

» OutputFormat: Output surface format defined as enum cudavideoSurfaceFormat.
This output format must be one of supported format obtained in
decodecaps.nOutputFormatMask In cuvidGetDecoderCaps (). If an unsupported
output format is passed, APl will fail with error CUDA_ ERROR NOT SUPPORTED.

» ulTargetWidth, ulTargetHeight: Thisis resolution of output surfaces. For use-case
which involve no scaling, these should be set to ulWwidth, ulHeight, respectively.

» DeinterlaceMode: This should be setto cudavVideoDeinterlaceMode Weave
or cudaVideoDeinterlaceMode Bob for progressive content and
cudaVideoDeinterlaceMode Adaptive forinterlaced content.
cudaVideoDeinterlaceMode Adaptiveyields better quality but increases memory
consumption.

» ulCreationFlags: Itis defined as enum cudavideoCreateFlags. It is optional to
explicitly define this flag. Driver will pick appropriate mode if not defined.

» ullntraDecodeOnly: Setthis flagto 1 toinstruct the driver that the content being
decoded contains only I/IDR frames. This helps the driver optimize memory consumption.
Do not set this flag if content has non-intra frames.

The cuvidCreateDecoder () call fills cUvideodecoder with the decoder handle which
should be retained till the decode session is active. The handle needs to be passed along with
other NVDECODE API calls.

The user can also specify the following parameters in the CUVIDDECODECREATEINFO to
control the final output:

» Scaling dimension
» Cropping dimension

» Dimension if the user wants to change the aspect ratio

The following code demonstrates the setup of decoder in case of scaling, cropping, or aspect
ratio conversion.

// Scaling. Source size is 1280x960. Scale to 1920x1080.

CUresult rResult;

unsigned int uScaleW, uScaleH;

uScaleW = 1920;

uScaleH = 1080;

CUVIDDECODECREATEINFO stDecodeCreateInfo;

memset (&stDecodeCreateInfo, 0, sizeof (CUVIDDECODECREATEINFO)) ;
// Setup the remaining structure members

stDecodeCreateInfo.ulTargetWidth = uScaleWidth;
stDecodeCreateInfo.ulTargetHeight = uScaleHeight;
rResult = cuvidCreateDecoder (&hDecoder, &stDecodeCreatelInfo);

// Cropping. Source size is 1280x960
CUresult rResult;

unsigned int uCropL, uCropR, uCropT, uCropB;
uCropL = 30;

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 11

Using NVIDIA Video Decoder (NVDECODE API)

uCropR = 700;
uCropT = 20;
uCropB = 500;

CUVIDDECODECREATEINFO stDecodeCreateInfo;
memset (&stDecodeCreateInfo, 0, sizeof (CUVIDDECODECREATEINFO)) ;
// Setup the remaining structure members

stDecodeCreateInfo.display area.left

= uCropL;
stDecodeCreateInfo.display area.right = uCropR;
stDecodeCreatelInfo.display area.top = uCropT;
stDecodeCreatelInfo.display are.bottom = uCropB;

rResult = cuvidCreateDecoder (&¢hDecoder, &stDecodeCreatelInfo);

// Aspect Ratio Conversion. Source size is 1280x960(4:3). Convert to
// 16:9

CUresult rResult;

unsigned int uCropL, uCropR, uCropT, uCropB;

uDispAR L = 0;
uDispAR R = 1280;
uDispAR T = 70;
uDispAR B = 790;

CUVIDDECODECREATEINFO stDecodeCreateInfo;
memset (&stDecodeCreateInfo, 0, sizeof (CUVIDDECODECREATEINFO)) ;
// setup structure members

stDecodeCreateInfo.target rect.left uDispAR L;
stDecodeCreatelInfo.target rect.right uDispAR R;
stDecodeCreatelInfo.target rect.top uDispAR T;

stDecodeCreateInfo.target rect.bottom = uDispAR B;
reResult = cuvidCreateDecoder (&hDecoder, &stDecodeCreateInfo);

4.2.3. Decoding the frame/field

After de-muxing and parsing, the client can submit the bitstream which contains a frame
or field of data to hardware for decoding. To accomplish this the following steps, need to be
followed:

» Fill up the CUVIDPICPARAMS structure.

» The client needs to fill up the structure with parameters derived during the parsing
process. CUVIDPICPARAMS contains a structure specific to every supported codec
which should also be filled up.

» Call cuvidbDecodePicture () and pass the decoder handle and the pointer to
CUVIDPICPARAMS. cuvidDecodePicture () kicks off the decoding on NVDEC.

4.2.4. Preparing the decoded frame for further
processing

The user needs to call cuvidMapvideoFrame () to get the CUDA device pointer and pitch of
the output surface that holds the decoded and post-processed frame.

Please note that cuvidbDecodePicture () instructs the NVDEC hardware engine to kick off
the decoding of the frame/field. However, successful completion of cuvidMapvideoFrame ()
indicates that the decoding process is completed and that the decoded YUV frame

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 |

Using NVIDIA Video Decoder (NVDECODE API)

is converted from the format generated by NVDEC to the YUV format specified in
CUVIDDECODECREATEINFO: :OutputFormat.

cuvidMapVideoFrame () APl takes decode surface index (nPicIdx] as input and maps itto one
of available output surfaces, post-processes the decoded frame and copy to output surface
and returns CUDA device pointer and associated pitch of the output surfaces.

The above operation performed by cuvidMapvideoFrame () is referred to as mapping in this
document.

After the user is done with the processing on the frame, cuvidUnmapVideoFrame () must be
called to make the output surface available for storing other decoded and post-processed
frames.

If the user continuously fails to call the corresponding cuvidUnmapVideoFrame () after
cuvidMapVideoFrame (), then cuvidMapvVideoFrame () will eventually fail. At most
CUVIDDECODECREATEINFO: : ulNumOutputSurfaces frames can be mapped at a time.

cuvidMapVideoFrame () is a blocking call as it waits for decoding to complete. If
cuvidMapVideoFrame () is called on same CPU thread as cuvidbDecodePicture (), it will
block cuvidbecodePicture () as well. In this case, the application will not be able to submit
decode packets to NVDEC until mapping is complete. It can be avoided by performing the
mapping operation on a CPU thread (referred as mapping thread) different from the one
calling cuvidbecodePicture () (referred as decoding thread).

When using NVIDIA parser from NVDECODE API, the application can implement a producer-
consumer queue between decoding thread (as producer] and mapping thread (as consumer).
The queue can contain picture indexes (or other unique identifiers) for frames being decoded.
Parser can run on decoding thread. Decoding thread can add the picture index to the

queue in display callback and return immediately from callback to continue decoding
subsequent frames as they become available. On the other side, mapping thread will monitor
the queue. If it sees the queue has non-zero length, it will dequeue the entry and call
cuvidMapVideoFrame (..) With nPicIdx as the picture index. Decoding thread must ensure
to not reuse the corresponding decode picture buffer for storing the decoded output until its
entry is consumed and freed by mapping thread.

The following code demonstrates how to use cuvidMapvideoFrame () and
cuvidUnmapVideoFrame ().

// MapFrame: Call cuvidMapVideoFrame and get the devptr and associated
// pitch. Copy this surface (in device memory) to host memory using
// CUDA device to host memcpy.
bool MapFrame ()
{
CUVIDPARSEDISPINFO stDispInfo;
CUVIDPROCPARAMS stProcParams;
CUresult rResult;
unsigned int cuDevPtr; int nPitch, nPicIdx;
unsigned char* pHostPtr;
memset (&stDispInfo, 0, sizeof (CUVIDPARSEDISPINFO)) ;
memset (&stProcParams, 0, sizeof (CUVIDPROCPARAMS)) ;
// setup stProcParams if required
// retrieve the frames from the Frame Display Queue. This Queue is
// is populated in HandlePictureDisplay.
if (g _pFrameQueue->dequeue (&stDispInfo))
{
nPicIdx = stDispInfo.picture index;
rResult = cuvidMapVideoFrame (&§hDecoder, nPicIdx, &cuDevPtr,
&nPitch, &stProcParams) ;

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 13

Using NVIDIA Video Decoder (NVDECODE API)

// use CUDA based Device to Host memcpy
pHostPtr = cuMemAllocHost ((void**) &pHostPtr, nPitch);
if (pHostPtr)

{
rResult = cuMemcpyDtoH (pHostPtr, cuDevPtr, nPitch);

}

rResult = cuvidUnmapVideoFrame (&hDecoder, cuDevPtr);
}
... // Dump YUV to a file
if (pHostPtr)
{
cuMemFreeHost (pHostPtr) ;

}
}

In multi-instance decoding use-case, NVDEC could be bottleneck so there wouldn’t be
significant benefit of calling cuvidMapvideoFrame () and cuvidDecodePicture () on
different CPU threads. cuvidbDecodePicture () will stall if wait queue on NVDEC inside driver
is full. Sample applications in Video Codec SDK are using mapping and decode calls on same
CPU thread, for simplicity.

4.2.5. Querying the decoding status

After the decoding is kicked off, cuvidGetDecodeStatus () can be called at any time to query
the status of decoding of that frame. The underlying driver fills the status of decoding in
CUVIDGETDECODESTATUS: : *pDecodeStatus.

The NVDECODEAPI currently reports the following statuses:

» Decodingis in progress.

» Decoding of the frame completed successfully.

» The bitstream for the frame was corrupted and concealed by NVDEC.

» The bitstream for the frame was corrupted, however could not be concealed by NVDEC.

The APl is expected to help in the scenarios where the client needs to take a further decision
based on the decoding status of the frame, for e.g. whether to carry out inferencing on the
frame or not.

Please note that the NVDEC can detect a limited number of errors depending on the codec.
This APl is supported for HEVC, H264 and JPEG on Maxwell and above generation GPUs.

4.2.6. Reconfiguring the decoder

Using cuvidReconfigureDecoder () the user can reconfigure the decoder if there is a
change in the resolution and/or post processing parameters of the bitstream without having to
destroy the ongoing decoder instance, and create a new one thereby saving time (and latency)
in the process.

In the earlier SDKs the user had to destroy the existing decoder instance and create a
new decoder instance for handling any change in decoder resolution or post processing
parameters (like scaling ratio, cropping dimensions etc.).

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 14

Using NVIDIA Video Decoder (NVDECODE API)

The APl can be used in scenarios where the bitstream undergoes changes in resolution, for
e.g. when the encoder (on server side] changes image resolution frequently to adhere to
Quality of Service(QoS) constraints.

The following steps need to be followed for using the cuvidReconfigureDecoder ().

1. The user needs to specify CUVIDDECODECREATEINFO: : ulMaxWidth and
CUVIDDECODECREATEINFO: :ulMaxHeight while calling cuvidCreateDecoder ().
The user should choose the values of CUVIDDECODECREATEINFO: :ulMaxWidth
and CUVIDDECODECREATEINFO: :ulMaxHeight which to ensure that the
resolution of the bitstream is never exceeded during the entire decoding process.
Please note that the values of CUVIDDECODECREATEINFO: :ulMaxWidth and
CUVIDDECODECREATEINFO: :ulMaxHeight cannot be changed within a session and if user
wants to change the values, the decoding session should be destroyed and recreated.

2. During the process of decoding, when the user needs to change the bitstream or change
postprocessing parameters, the user needs to call cuvidReconfigureDecoder ().

This call should be ideally made from CUVIDPARSERPARAMS: :pfnSequenceCallback
when the bitstream changes. The parameters the user wants to

reconfigure should be filled up in : : CUVIDRECONFIGUREDECODERINFO.

Please note, CUVIDRECONFIGUREDECODERINFO: :ulWidth and
CUVIDRECONFIGUREDECODERINFO: :ulHeight must be equal to or smaller than
CUVIDDECODECREATEINFO: : ulMaxWidth and CUVIDDECODECREATEINFO: : ulMaxHeight
respectively or else the cuvidReconfigureDecoder () would fail.

The APl is supported for all codecs supported by NVDECODEAPI.

4.2.7. Destroying the decoder

The user needs to call cuvidDestroyDecoder () to destroy the decoder session and free up
all the allocated decoder resources.

4.3. Writing an Efficient Decode
Application

The NVDEC engine on NVIDIA GPUs is a dedicated hardware block, which decodes the input
video bitstream in supported formats. A typical video decode application broadly consists of
the following stages:

1. De-Muxing

2. Video bitstream parsing and decoding

3. Preparing the frame for further processing

Of these, de-muxing and parsing are not hardware accelerated and therefore outside the
scope of this document. The de-muxing can be performed using third party components

such as FFmpeg, which provides support for many multiplexed video formats. The sample
applications included in the SDK demonstrate de-muxing using FFmpeg.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 |

Using NVIDIA Video Decoder (NVDECODE API)

Similarly, post-decode or video post-processing (such as scaling, color space conversion,
noise reduction, color enhancement etc.) can be effectively performed using user-defined
CUDA kernels.

The post-processed frames can then be sent to the display engine for displaying on the
screen, if required. Note that this operation is outside the scope of NVDECODE APlIs.

An optimized implementation should use independent threads for de-muxing, parsing,
bitstream decode and processing etc. as explained below:

1. De-muxing: This thread demultiplexes the media file and makes the raw bit-stream
available for parser to consume.

2. Parsing and decoding: This thread does the parsing of the bitstream and kicks off decoding
by calling cuvidDecodePicture () .

3. Mapping and making the frame available for further processing: This thread checks if
there are any decoded frames available. If yes, then it should call cuvidMapvideoFrame ()
to get the CUDA device pointer and pitch of the frame. The frame can then be used for
further processing.

The NVDEC driver internally maintains a queue of 4 frames for efficient pipelining of
operations. Please note that this pipeline does not imply any decoding delay for decoding. The
decoding starts as soon as the first frame is queued, but the application can continue queuing
up input frames so long as space is available without stalling. Typically, by the time application
has queued 2-3 frames, decoding of the first frame is complete and the pipeline continues.
This pipeline ensures that the hardware decoder is utilized to the maximum extent possible.

For performance intensive and low latency video codec applications, ensure the PCIE link
width is set to the maximum available value. PCIE link width currently configuredcan be
obtained by running command ‘nvidia-smi -q". PCIE link width can be configured in the
system’s BIOS settings.

In the use cases where there is frequent change of decode resolution and/or post processing
parameters, it is recommended to use cuvidReconfigureDecoder () Instead of destroying
the existing decoder instance and recreating a new one.

The following steps should be followed for optimizing video memory usage:

1. Make CUVIDDECODECREATEINFO: :ulNumDecodeSurfaces = CUVIDEOFORMAT: :
min num decode surfaces. This will ensure that the underlying driver allocates
minimum number of decode surfaces to correctly decode the sequence. In
case there is reduction in decoder performance, clients can slightly increase
CUVIDDECODECREATEINFO: :ulNumDecodeSurfaces. It is therefore recommended to
choose the optimal value of CUVIDDECODECREATEINFO: : ulNumDecodeSurfaces to
ensure right balance between decoder throughput and memory consumption.

2. CUVIDDECODECREATEINFO: :ulNumOutputSurfaces should be decided optimally after due
experimentation for balancing decoder throughput and memory consumption.

3. CUVIDDECODECREATEINFO: :DeinterlaceMode should be set
"cudaVideoDeinterlaceMode::cudaVideoDeinterlaceMode_Weave"Or
“cudavideoDeinterlaceMode: :cudaVideoDeinterlaceMode Bob”. Forinterlaced
contents, choosing
cudaVideoDeinterlaceMode: :cudaVideoDeinterlaceMode Adaptive
results to higher quality but increases memory consumption. Using

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 | 16

Using NVIDIA Video Decoder (NVDECODE API)

cudaVideoDeinterlaceMode: :cudaVideoDeinterlaceMode Weave

Or cudavVideoDeinterlaceMode: :cudaVideoDeinterlaceMode Bob

results to minimum memory consumption though it may result in lesser

video quality. In case "CUVIDDECODECREATEINFO: : DeinterlaceMode”

is not specified by the client, the underlying display driver sets it to
“cudavideoDeinterlaceMode: :cudaVideoDeinterlaceMode Adaptive” which results
to higher memory consumption. Hence it is strongly recommended to choose the right
value of CUVIDDECODECREATEINFO: : DeinterlaceMode depending on the requirement.

4. While decoding multiple streams it is recommended to allocate minimum number of
CUDA contexts and share it across sessions. This saves the memory overhead associated
with the CUDA context creation.

5. CUVIDDECODECREATEINFO::ulIntraDecodeOnly should be setto 1ifitis known
beforehand that the sequence contains Intra frames only. This feature is supported only
for HEVC, H.264 and VP9. However, decoding might fail if the flag is enabled in case of
supported codecs for reqular bit streams having P and/or B frames.

The sample applications included with the Video Codec SDK are written to demonstrate the
functionality of various APls, but they may not be fully optimized. Hence programmers are
strongly encouraged to ensure that their application is well-designed, with various stages in
the decode-postprocess-display pipeline structured in an efficient manner to achieve desired
performance and memory consumption.

NVIDIA VIDEO CODEC SDK - DECODER vNVDECODEAPI_PG-08085-001_v07 |

17

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise agreed in
an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, Jetson, Kepler, Maxwell, NCCL,
Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal,
SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks
of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2010-2020 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Overview
	1.1. Supported Codecs

	Video Decoder Capabilities
	Video Decoder Pipeline
	Using NVIDIA Video Decoder (NVDECODE API)
	4.1. Video Parser
	4.1.1. Creating a parser
	4.1.2. Parsing the packets
	4.1.3. Destroying parser

	4.2. Video Decoder
	4.2.1. Querying decode capabilities
	4.2.2. Creating a Decoder
	4.2.3. Decoding the frame/field
	4.2.4. Preparing the decoded frame for further processing
	4.2.5. Querying the decoding status
	4.2.6. Reconfiguring the decoder
	4.2.7. Destroying the decoder

	4.3. Writing an Efficient Decode Application

