
vNVENCODEAPI_PG-06155-001_v11 | March 2024

NVIDIA VIDEO CODEC SDK - ENCODER

Programming Guide

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Basic Encoding Flow.. 2

Chapter 3. Setting Up Hardware for Encoding..3
3.1. Opening an Encode Session...3

3.1.1. Initializing encode device... 3

3.1.1.1. DirectX 9...3

3.1.1.2. DirectX 10... 3

3.1.1.3. DirectX 11... 4

3.1.1.4. DirectX 12... 4

3.1.1.5. CUDA.. 4

3.1.1.6. OpenGL... 4

3.2. Selecting Encoder Codec GUID..4

3.3. Encoder TUNING INFO AND Preset Configurations...5

3.3.1. Enumerating preset GUIDs..5

3.3.2. Selecting encoder preset configuration..6

3.4. Selecting an Encoder Profile... 6

3.5. Getting Supported List of Input Formats.. 7

3.6. Querying encoder Capabilities... 7

3.7. Initializing the Hardware Encoder Session... 7

3.8. Encode Session Attributes... 8

3.8.1. Configuring encode session attributes... 8

3.8.1.1. Session parameters...8

3.8.1.2. Advanced codec-level parameters... 8

3.8.1.3. Advanced codec-specific parameters...8

3.8.2. Finalizing codec configuration for encoding...8

3.8.2.1. High-level control using presets.. 8

3.8.2.2. Finer control by overriding preset parameters..9

3.8.3. Rate control.. 9

3.8.4. Multi pass frame encoding.. 10

3.8.5. Setting encode session attributes... 11

3.8.5.1. Mode of operation..11

3.8.5.2. Picture-type decision...11

3.9. Creating Resources Required to Hold Input/output Data...11

3.10. Retrieving Sequence Parameters.. 12

Chapter 4. Encoding the Video Stream..14

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | iii

4.1. Preparing Input Buffers for Encoding... 14

4.1.1. Input buffers allocated through NVIDIA Video Encoder Interface..................................14

4.1.2. Input buffers allocated externally... 14

4.1.3. Input output buffer allocation for DirectX 12..15

4.2. Configuring Per-Frame Encode Parameters.. 16

4.2.1. Forcing current frame to be encoded as intra frame.. 16

4.2.2. Forcing current frame to be used as a reference frame... 16

4.2.3. Forcing current frame to be used as an IDR frame...16

4.2.4. Requesting generation of sequence parameters... 16

4.3. Submitting Input Frame for Encoding... 16

4.4. Retrieving Encoded Output...17

Chapter 5. End of Encoding..18
5.1. Notifying the End of Input Stream... 18

5.2. Releasing Resources.. 18

5.3. Closing Encode Session... 18

Chapter 6. Modes of Operation.. 19
6.1. Asynchronous Mode..19

6.2. Synchronous Mode..21

6.3. Threading Model... 21

6.4. Encoder Features using CUDA.. 22

Chapter 7. Motion Estimation Only Mode.. 23
7.1. Query Motion-Estimation Only Mode Capability..23

7.2. Create Resources for Input/Output Data...24

7.3. Populate ME only mode settings... 24

7.4. Run Motion Estimation... 24

7.5. Enabling Motion estimation for stereo usecases..25

7.6. Release the Created Resources.. 25

Chapter 8. Advanced Features and Settings... 26
8.1. Look-ahead..26

8.2. B-Frames As Reference...26

8.3. Reconfigure API...27

8.4. Adaptive Quantization (AQ)... 28

8.4.1. Spatial AQ... 28

8.4.2. Temporal AQ... 28

8.5. High Bit Depth Encoding.. 29

8.6. Weighted Prediction..29

8.7. Long-Term Reference in H.264 and HEVC..30

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | iv

8.8. Emphasis MAP...31

8.9. NVENC Output in Video Memory..31

8.10. Alpha Layer Encoding support in HEVC.. 33

8.11. Temporal Scalable Video Coding (SVC) in H.264...34

8.12. Error Resiliency features..35

8.13. Multi NVENC Split Frame Encoding in HEVC and AV1... 37

8.14. NVENC Reconstructed Frame Output... 38

8.15. Encoded Frame Stats... 40

8.16. Iterative encoding..40

8.17. External lookahead... 47

8.18. Unidirectional B Frames.. 48

8.19. Lookahead Level... 48

8.20. Temporal Filter..49

Chapter 9. Recommended NVENC Settings.. 50

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 1

Chapter 1. Introduction

NVIDIA® GPUs based on NVIDIA Kepler™ and later GPU architectures contain a hardware-
based H.264/HEVC/AV1 video encoder (hereafter referred to as NVENC). The NVENC hardware
takes YUV/RGB as input and generates an H.264/HEVC/AV1 compliant video bit stream. NVENC
hardware’s encoding capabilities can be accessed using the NVENCODE APIs, available in the
NVIDIA Video Codec SDK.

This document provides information on how to program the NVENC using the NVENCODE APIs
exposed in the SDK. The NVENCODE APIs expose encoding capabilities on Windows (Windows
10 and above) and Linux.

It is expected that developers should understand H.264/HEVC/AV1 video codecs and be familiar
with Windows and/or Linux development environments.

NVENCODE API guarantees binary backward compatibility (and will make explicit reference
whenever backward compatibility is broken). This means that applications compiled with older
versions of released API will continue to work on future driver versions released by NVIDIA.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 2

Chapter 2. Basic Encoding Flow

Developers can create a client application that calls NVENCODE API functions exposed
by nvEncodeAPI.dll for Windows or libnvidia-encode.so for Linux. These libraries are
installed as part of the NVIDIA display driver. The client application can either link to these
libraries at run-time using LoadLibrary() on Windows or dlopen() on Linux.

The NVENCODE API functions, structures and other parameters are exposed in nvEncodeAPI.h,
which is included in the SDK.

NVENCODE API is a C-API, and uses a design pattern like C++ interfaces, wherein the application
creates an instance of the API and retrieves a function pointer table to further interact with the
encoder. For programmers preferring more high-level API with ready-to-use code, SDK includes
sample C++ classes expose important API functions.

Rest of this document focuses on the C-API exposed in nvEncodeAPI.h. NVENCODE API is
designed to accept raw video frames (in YUV or RGB format) and output the H.264, HEVC or AV1
bitstream. Broadly, the encoding flow consists of the following steps:

 1. Initialize the encoder
 2. Set up the desired encoding parameters
 3. Allocate input/output buffers
 4. Copy frames to input buffers and read bitstream from the output buffers. This can be done

synchronously (Windows & Linux) or asynchronously (Windows 10 and above only).
 5. Clean-up - release all allocated input/output buffers
 6. Close the encoding session

These steps are explained in the rest of the document and demonstrated in the sample
application included in the Video Codec SDK package.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 3

Chapter 3. Setting Up Hardware for
Encoding

3.1. Opening an Encode Session
After loading the DLL or shared object library, the client's first interaction with the API
is to call NvEncodeAPICreateInstance. This populates the input/output buffer passed to
NvEncodeAPICreateInstance with pointers to functions which implement the functionality
provided in the interface.

After loading the NVENC Interface, the client should first call NvEncOpenEncodeSessionEx to
open an encoding session. This function returns an encode session handle which must be used
for all subsequent calls to the API functions in the current session.

3.1.1. Initializing encode device
The NVIDIA Encoder supports use of the following types of devices:

3.1.1.1. DirectX 9
‣ The client should create a DirectX 9 device with behavior

flags including : D3DCREATE_FPU_PRESERVE, D3DCREATE_MULTITHREADED and
D3DCREATE_HARDWARE_VERTEXPROCESSING

‣ The client should pass a pointer to IUnknown interface of the created device
(typecast to void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows 10
and later versions of the Windows OS.

3.1.1.2. DirectX 10
‣ The client should pass a pointer to IUnknown interface of the created device

(typecast to void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows 10
and later versions of Windows OS.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 4

3.1.1.3. DirectX 11
‣ The client should pass a pointer to IUnknown interface of the created device

(typecast to void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows 10
and later versions of Windows OS.

3.1.1.4. DirectX 12
‣ The client should pass a pointer to IUnknown interface of the created device

(typecast to void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX 12 devices is supported only on Windows
10 20H1 and later versions of Windows OS.

3.1.1.5. CUDA
‣ The client should create a floating CUDA context, and pass the CUDA

context handle as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_CUDA. Use of CUDA device for Encoding is supported on Linux and
Windows 10 and later versions of Windows OS.

3.1.1.6. OpenGL
‣ The client should create an OpenGL context and make it current (in order to associate

the context with the thread/process that is making calls to NVENCODE API) to the thread
calling into NVENCODE API. NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device must
be NULL and NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType must be set to
NV_ENC_DEVICE_TYPE_OPENGL. Use of the OpenGL device type for encoding is supported
only on Linux.

3.2. Selecting Encoder Codec GUID
The client should select an Encoding GUID that represents the desired codec for encoding the
video sequence in the following manner:

 1. The client should call NvEncGetEncodeGUIDCount to get the number of supported Encoder
GUIDs from the NVIDIA Video Encoder Interface.

 2. The client should use this count to allocate a large-enough buffer to hold the supported
Encoder GUIDS.

 3. The client should then call NvEncGetEncodeGUIDs to populate this list.

The client should select a GUID that matches its requirement from this list and use that as the
encodeGUID for the remainder of the encoding session.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 5

3.3. Encoder TUNING INFO AND Preset
Configurations

The NVIDIA Encoder Interface exposes four different tuning info enums (high quality, low latency,
ultra-low latency and lossless) to cater to different video encoding use-cases. Table 1 shows the
recommended tuning info applicable to some popular use-cases.

Table 1. Tuning info for popular video encoding use-cases

Use-case Recommended value for
tuning info parameter

 1. High-quality latency-tolerant transcoding
 2. Video archiving
 3. Encoding for OTT streaming

Ultra High Quality / High quality

 1. Cloud gaming
 2. Streaming
 3. Video conferencing

In high bandwidth channel with tolerance for
bigger occasional frame sizes

Low latency, with CBR

 1. Cloud gaming
 2. Streaming
 3. Video conferencing

In strictly bandwidth-constrained channel

Ultra-low latency, with CBR

 1. Preserving original video footage for later
editing

 2. General lossless data archiving (video or non-
video)

Lossless

For each tuning info, seven presets from P1 (highest performance) to P7 (lowest performance)
have been provided to control performance/quality trade off. Using these presets will
automatically set all relevant encoding parameters for the selected tuning info. This is a coarse
level of control exposed by the API. Specific attributes/parameters within the preset can be
tuned, if required. This is explained in next two subsections.

3.3.1. Enumerating preset GUIDs
The client can enumerate supported Preset GUIDs for the selected encodeGUID as follows:

 1. The client should call NvEncGetEncodePresetCount to get the number of supported
Encoder GUIDs.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 6

 2. The client should use this count to allocate a large-enough buffer to hold the supported
Preset GUIDs.

 3. The client should then call NvEncGetEncodePresetGUIDs to populate this list.

3.3.2. Selecting encoder preset configuration
As mentioned above, the client can use the presetGUID for configuring the encode session
directly. This will automatically set the hardware encoder with appropriate parameters for
the use-case implied by the tuning info/preset combination. If required, the client has the
option to fine-tune the encoder configuration parameters in the preset and override the preset
defaults. This approach is often-times more convenient from programming point of view as the
programmer only needs to change the configuration parameters which he/she is interested in,
leaving everything else pre-configured as per the preset definition.

Here are the steps to fetch a preset encode configuration and optionally change select
configuration parameters:

 1. Enumerate the supported presets as described above, in Section Enumerating preset GUIDs.
 2. Select the preset GUID for which the encode configuration is to be fetched.
 3. The client should call NvEncGetEncodePresetConfigEx with the selected encodeGUID,

tuningInfo and presetGUID as inputs
 4. The required preset encoder configuration can be retrieved through

NV_ENC_PRESET_CONFIG::presetCfg.
 5. Over-ride the default encoder parameters, if required, using the corresponding configuration

APIs.

3.4. Selecting an Encoder Profile
The client may specify a profile to encode for specific encoding scenario. For example, certain
profiles are required for encoding video for playback on iPhone/iPod, encoding video for blue-
ray disc authoring, etc.

The client should do the following to retrieve a list of supported encoder profiles:

 1. The client should call NvEncGetEncodeProfileGUIDCount to get the number of supported
Encoder GUIDs from the NVIDIA Video Encoder Interface.

 2. The client should use this count to allocate a buffer of sufficient size to hold the supported
Encode Profile GUIDS.

 3. The client should then call NvEncGetEncodeProfileGUIDs to populate this list.

The client should select the profile GUID that best matches the requirement.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 7

3.5. Getting Supported List of Input
Formats

NVENCODE API accepts input frames in several different formats, such as YUV and RGB in
specific formats, as enumerated in NV_ENC_BUFFER_FORMAT.

List of supported input formats can be retrieved as follows:

 1. The client should call NvEncGetInputFormatCount to get the number of supported input
formats.

 2. The client should use this count to allocate a buffer to hold the list of supported input buffer
formats (which are list elements of type NV_ENC_BUFFER_FORMAT).

 3. Retrieve the supported input buffer formats by calling NvEncGetInputFormats.

The client should select a format enumerated in this list for creating input buffers.

3.6. Querying encoder Capabilities
NVIDIA video encoder hardware has evolved over multiple generations, with many features being
added in each new generation of the GPU. To facilitate application to dynamically figure out
the capabilities of the underlying hardware encoder on the system, NVENCODE API provides a
dedicated API to query these capabilities. It is a good programming practice to query for support
of the desired encoder feature before making use of the feature.

Querying the encoder capabilities can be accomplished as follows:

 1. Specify the capability attribute to be queried in NV_ENC_CAPS_PARAM::capsToQuery
parameter. This should be a member of the NV_ENC_CAPS enum.

 2. Call NvEncGetEncodeCaps to determine support for the required attribute.

Refer to the API reference NV_ENC_CAPS enum definition for interpretation of individual capability
attributes.

3.7. Initializing the Hardware Encoder
Session

The client needs to call NvEncInitializeEncoder with a valid encoder configuration specified
through NV_ENC_INITIALIZE_PARAMS and encoder handle (returned upon successful opening
of encode session)

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 8

3.8. Encode Session Attributes

3.8.1. Configuring encode session attributes
Encode session configuration is divided into three parts:

3.8.1.1. Session parameters
Common parameters such as input format, output dimensions, display aspect ratio, frame rate,
average bitrate, etc. are available in NV_ENC_INITIALIZE_PARAMS structure. The client should
use an instance of this structure as input to NvEncInitalizeEncoder.

The Client must populate the following members of the NV_ENC_INITIALIZE_PARAMS structure
for the encode session to be successfully initialized:

‣ NV_ENC_INITALIZE_PARAMS::encodeGUID: The client must select a suitable codec GUID
as described in Section Selecting Encoder Codec GUID.

‣ NV_ENC_INITIALIZE_PARAMS::encodeWidth: The client must specify the desired width of
the encoded video.

‣ NV_ENC_INITIALIZE_PARAMS::encodeHeight: The client must specify the desired height
of the encoded video.

NV_ENC_INITALIZE_PARAMS::reportSliceOffsets can be used to enable reporting of slice
offsets. This feature requires NV_ENC_INITALIZE_PARAMS::enableEncodeAsync to be set to
0, and does not work with MB-based and byte-based slicing on Kepler GPUs.

3.8.1.2. Advanced codec-level parameters
Parameters dealing with the encoded bit stream such as GOP length, encoder profile, rate
control mode, etc. are exposed through the structure NV_ENC_CONFIG. The client can pass codec
level parameters through NV_ENC_INITIALIZE_PARAMS::encodeConfig as explained below.

3.8.1.3. Advanced codec-specific parameters
Advanced H.264, HEVC and AV1 specific parameters are available in structures
NV_ENC_CONFIG_H264, NV_ENC_CONFIG_HEVC and NV_ENC_CONFIG_AV1 respectively.

The client can pass codec-specific parameters through the structure
NV_ENC_CONFIG::encodeCodecConfig.

3.8.2. Finalizing codec configuration for encoding

3.8.2.1. High-level control using presets
This is the simplest method of configuring the NVIDIA Video Encoder Interface, and involves
minimal setup steps to be performed by the client. This is intended for use cases where the
client does not need to fine-tune any codec level parameters.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 9

In this case, the client should follow these steps:

‣ The client should specify the session parameters as described in Section Session
parameters.

‣ Optionally, the client can enumerate and select preset GUID that best suits the current use
case, as described in Section Selecting Encoder Codec GUID. The client should then pass
the selected preset GUID using NV_ENC_INITIALIZE_PARAMS::presetGUID. This helps the
NVIDIA Video Encoder interface to correctly configure the encoder session based on the
encodeGUID, tuning info and presetGUID provided.

‣ The client should set the advanced codec-level parameter pointer
NV_ENC_INITIALIZE_PARAMS::encodeConfig::encodeCodecConfig to NULL.

3.8.2.2. Finer control by overriding preset parameters
The client can choose to edit some encoding parameters on top of the parameters set by the
individual preset, as follows:

 1. The client should specify the session parameters as described in Section Session
parameters.

 2. The client should enumerate and select a preset GUID that best suites the current use case,
as described in Section Selecting Encoder Codec GUID. The client should retrieve a preset
encode configuration as described in Section Selecting encoder preset configuration.

 3. The client may need to explicitly query the capability of the encoder to support certain
features or certain encoding configuration parameters. For this, the client should do the
following:

 4. Specify the capability desired attribute through NV_ENC_CAPS_PARAM::capsToQuery
parameter. This should be a member of the NV_ENC_CAPS enum.

 5. Call NvEncGetEncodeCaps to determine support for the required attribute. Refer to
NV_ENC_CAPS enum definition in the API reference for interpretation of individual capability
attributes.

 6. Select a desired tuning info and preset GUID and fetch the corresponding Preset Encode
Configuration as described in Section Encoder TUNING INFO AND Preset Configurations.

 7. The client can then override any parameters from the preset NV_ENC_CONFIG according
to its requirements. The client should pass the fine-tuned NV_ENC_CONFIG structure using
NV_ENC_INITIALIZE_PARAMS::encodeConfig::encodeCodecConfig pointer.

 8. Additionally, the client should also pass the selected preset GUID through
NV_ENC_INITIALIZE_PARAMS::presetGUID. This is to allow the NVIDIA Video Encoder
interface to program internal parameters associated with the encoding session to ensure
that the encoded output conforms to the client’s request. Note that passing the preset GUID
here will not override the fine-tuned parameters.

3.8.3. Rate control
NVENC supports several rate control modes and provides control over
various parameters related to the rate control algorithm via structure
NV_ENC_INITIALIZE_PARAMS::encodeConfig::rcParams. The rate control algorithm is
implemented in NVENC firmware.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 10

NVENC supports the following rate control modes:

Constant bitrate (CBR): Constant bitrate is specified by setting rateControlMode to
NV_ENC_PARAMS_RC_CBR. In this mode, only averageBitRate is required and used as
the target output bitrate by the rate control algorithm. Clients can control the ratio
of I to P frames using NV_ENC_RC_PARAMS::lowDelayKeyFrameScale which is useful to
avoid channel congestion in case I frame ends up generating high number of bits. Set
NV_ENC_CONFIG_H264/ NV_ENC_CONFIG_HEVC::enableFillerDataInsertion = 1 or
NV_ENC_CONFIG_AV1::enableBitstreamPadding = 1 incase the bitrate needs to be strictly
adhered to.

Variable bitrate (VBR): Variable bitrate is specified by setting rateControlMode to
NV_ENC_PARAMS_RC_VBR. The encoder tries to conform to average bitrate of averageBitRate
over the long term while not exceeding maxBitRate any time during the encoding. In this mode,
averageBitRate must be specified. If maxBitRate isn’t specified, NVENC will set it to an
internally determined default value. It is recommended that the client specify both parameters
maxBitRate and averageBitRate for better control.

Constant QP: This mode is specified by setting rateControlMode to
NV_ENC_PARAMS_RC_CONSTQP. In this mode, the entire frame is encoded using QP specified in
NV_ENC_RC_PARAMS::constQP.

Target quality: This mode is specified by setting rateControlMode to VBR and desired
target quality in targetQuality. The range of this target quality is 0 to 51(fractional values
are also supported in Video Codec SDK 8.0 and above). In this mode, the encoder tries
to maintain constant quality for each frame, by allowing the bitrate to vary subject to the
bitrate parameter specified in maxBitRate. The resulting average bitrate can, therefore, vary
significantly depending on the video content being encoded. In this mode, if maxBitRate is set, it
will form an upper bound on the actual bitrate. Therefore, if maxBitRate is set too low, the bitrate
may become constrained, resulting in the desired target quality possibly not being achieved.

3.8.4. Multi pass frame encoding
When determining the QP to use for encoding a frame, it is beneficial if NVENC knows the overall
complexity of the frame to distribute the available bit budget in the most optimal manner. In
some situations, multi-pass encoding may also help catch larger motion between frames. For
this purpose, NVENC supports the following types of multi-pass frame encoding modes:

‣ 1-pass per frame encoding (NV_ENC_MULTI_PASS_DISABLED)

‣ 2-passes per frame, with first pass in quarter resolution and second pass in full resolution
(NV_ENC_TWO_PASS_QUARTER_RESOLUTION)

‣ 2-passes per frame, with both passes in full resolution
(NV_ENC_TWO_PASS_FULL_RESOLUION).

In 1-pass rate control modes, NVENC estimates the required QP for the macroblock and
immediately encodes the macroblock. In 2-pass rate control modes, NVENC estimates the
complexity of the frame to be encoded and determines bit distribution across the frame
in the first pass. In the second pass, NVENC encodes macroblocks in the frame using
the distribution determined in the first pass. As a result, with 2-pass rate control modes,
NVENC can distribute the bits more optimally within the frame and can reach closer to the
target bitrate, especially for CBR encoding. Note, however, that everything else being the

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 11

same, performance of 2-pass rate control mode is lower than that of 1-pass rate control
mode. The client application should choose an appropriate multi-pass rate control mode after
evaluating various modes, as each of the modes has its own advantages and disadvantages.
NV_ENC_TWO_PASS_FULL_RESOLUION generates better statistics for the second pass, whereas
NV_ENC_TWO_PASS_QUARTER_RESOLUTION results in larger motion vectors being caught and fed
as hints to second pass.

3.8.5. Setting encode session attributes
Once all Encoder settings have been finalized, the client should populate a NV_ENC_CONFIG
structure and use it as an input to NvEncInitializeEncoder to freeze the Encode settings
for the current encodes session. Some settings such as rate control mode, average bitrate,
resolution etc. can be changed on-the-fly.

The client is required to explicitly specify the following while initializing the Encode Session:

3.8.5.1. Mode of operation
The client should set NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1 if it wants to
operate in asynchronous mode and 0 for operating in synchronous mode.

Asynchronous mode encoding is supported only on Windows 10 and later. Refer to Chapter 6 for
more detailed explanation.

3.8.5.2. Picture-type decision
If the client wants to send the input buffers in display order, it must set enablePTD = 1. If
enablePTD is set to 1 the decision of determining the picture type will be taken by NVENCODE
API.

If the client wants to send the input buffers in encode order, it must set enablePTD = 0, and
must specify

NV_ENC_PIC_PARAMS::pictureType

NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC/
NV_ENC_PIC_PARAMS_AV1::displayPOCSyntax

NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC/
NV_ENC_PIC_PARAMS_AV1::refPicFlag

NV_ENC_PIC_PARAMS_AV1::goldenFrameFlag/arfFrameFlag/arf2FrameFlag/
bwdFrameFlag/overlayFrameFlag

3.9. Creating Resources Required to Hold
Input/output Data

Once the encode session is initialized, the client should allocate buffers to hold the input/output
data.

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 12

The client may choose to allocate input buffers through NVIDIA Video Encoder Interface by calling
NvEncCreateInputBuffer API. In this case, the client is responsible for destroying the allocated
input buffers before closing the encode session. It is also the client’s responsibility to fill the
input buffer with valid input data according to the chosen input buffer format.

The client should allocate buffers to hold the output encoded bit stream using the
NvEncCreateBitstreamBuffer API. It is the client’s responsibility to destroy these buffers
before closing the encode session.

Alternatively, in scenarios where the client cannot or does not want to allocate input buffers
through the NVIDIA Video Encoder Interface, it can use any externally allocated DirectX resource
as an input buffer. However, the client must perform some simple processing to map these
resources to resource handles that are recognized by the NVIDIA Video Encoder Interface before
use. The translation procedure is explained in Section Input buffers allocated externally.

If the client has used a CUDA device to initialize the encoder session and wishes to use input
buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is required to use
buffers allocated using the cuMemAlloc family of APIs. NVIDIA Video Encoder Interface supports
CUdeviceptr and CUarray input formats.

If the client has used the OpenGL device type to initialize the encoder session and wishes to use
input buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is required
to provide the textures allocated earlier.

The client may generate textures using glGenTextures(), bind it
to either the NV_ENC_INPUT_RESOURCE_OPENGL_TEX::GL_TEXTURE_RECTANGLE or
NV_ENC_INPUT_RESOURCE_OPENGL_TEX::GL_TEXTURE_2D target, allocate storage for it using
glTexImage2D() and copy data to it.

Note that the OpenGL interface for NVENCODE API is only supported on Linux.

If the client has used a DirectX 12 device to initialize encoder session, then client must allocate
input and output buffers using ID3D12Device::CreateCommittedResource() API. The client
must perform some simple processing to map these input and output resources to resource
handles that are recognized by the NVIDIA Video Encoder Interface before use. The translation
procedure is explained in Section Input output buffer allocation for DirectX 12.

Note: The client should allocate at least (1 + NB) input and output buffers, where NB is the
number of B frames between successive P frames.

3.10. Retrieving Sequence Parameters
After configuring the encode session, the client can retrieve the sequence parameter
information (SPS for H.264/HEVC and Sequence Header OBU for AV1) at any time by calling
NvEncGetSequenceParams. It is the client’s responsibility to allocate and eventually de-allocate
a buffer of size MAX_SEQ_HDR_LEN to hold the sequence parameter information.

By default, SPS/PPS and Sequence Header OBU data will be attached to every IDR frame and
Key frame for H.264/HEVC and AV1 respectively. However, the client can request the encoder
to generate SPS/PPS and Sequence Header OBU data on demand as well. To accomplish
this, set NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_OUTPUT_SPSPPS. The

Setting Up Hardware for Encoding

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 13

output bitstream generated for the current input will then include SPS/PPS for H.264/HEVC or
Sequence Header OBU for AV1.

The client can call NvEncGetSequenceParams at any time, after the encoder has been initialized
(NvEncInitializeEncoder) and the session is active.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 14

Chapter 4. Encoding the Video Stream

Once the encode session is configured and input/output buffers are allocated, the client can start
streaming the input data for encoding. The client is required to pass a handle to a valid input
buffer and a valid bit stream (output) buffer to the NVIDIA Video Encoder Interface for encoding
an input picture.

4.1. Preparing Input Buffers for Encoding
There are two methods to allocate and pass input buffers to the video encoder.

4.1.1. Input buffers allocated through NVIDIA Video
Encoder Interface

If the client has allocated input buffers through NvEncCreateInputBuffer, the client needs
to fill valid input data before using the buffer as input for encoding. For this, the client
should call NvEncLockInputBuffer to get a CPU pointer to the input buffer. Once the client
has filled input data, it should call NvEncUnlockInputBuffer. The input buffer should be
passed to the encoder only after unlocking it. Any input buffers should be unlocked by calling
NvEncUnlockInputBuffer before destroying/reallocating them.

4.1.2. Input buffers allocated externally
To pass externally allocated buffers to the encoder, follow these steps:

 1. Populate NV_ENC_REGISTER_RESOURCE with attributes of the externally allocated buffer.
 2. Call NvEncRegisterResource with the NV_ENC_REGISTER_RESOURCE populated in the

above step.
 3. NvEncRegisterResource returns an opaque handle in

NV_ENC_REGISTER_RESOURCE::registeredResource which should be saved.
 4. Call NvEncMapInputResource with the handle returned above.
 5. The mapped handle will then be available in

NV_ENC_MAP_INPUT_RESOURCE::mappedResource.

 6. The client should use this mapped handle
(NV_ENC_MAP_INPUT_RESOURCE::mappedResource) as the input buffer handle in
NV_ENC_PIC_PARAMS.

Encoding the Video Stream

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 15

 7. After the client has finished using the resource NvEncUnmapInputResource must be called.
 8. The client must also call NvEncUnregisterResource with the handle returned by

NvEncRegisterResource before destroying the registered resource.

The mapped resource handle (NV_ENC_MAP_INPUT_RESOURCE::mappedResource) should not
be used for any other purpose outside the NVIDIA Video Encoder Interface while it is in mapped
state. Such usage is not supported and may lead to undefined behavior.

4.1.3. Input output buffer allocation for DirectX 12
Allocation of input and output buffers should be done in following manner:

 1. Input buffer should be created using DirectX 12
ID3D12Device::CreateCommittedResource() API, by specifying
D3D12_HEAP_PROPERTIES::Type = D3D12_HEAP_TYPE_DEFAULT and
D3D12_RESOURCE_DESC::Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D.

 2. Output buffer should be created using DirectX 12
ID3D12Device::CreateCommittedResource() API, by specifying
D3D12_HEAP_PROPERTIES::Type = D3D12_HEAP_TYPE_READBACK and
D3D12_RESOURCE_DESC::Dimension = D3D12_RESOURCE_DIMENSION_BUFFER.

 3. For HEVC, H.264 or AV1 encoding, the recommended size for output buffer is:

Output buffer size = 2 * Input YUV buffer size

in bytes.

To pass these externally allocated input and output buffers to the encoder, follow these steps:

 1. Populate NV_ENC_REGISTER_RESOURCE with attributes of the externally allocated buffer.
 2. To enable explicit synchronization in DirectX 12, the API

NvEncRegisterResource accepts two NV_ENC_FENCE_POINT_D3D12 pointer type
objects (A fence point is a pair of ID3D12Fence pointer and
a value), NV_ENC_REGISTER_RESOURCE_PARAMS_D3D12::pInputFencePoint and
NV_ENC_REGISTER_RESOURCE_PARAMS_D3D12::pOutputFencePoint, for registering input
buffer. NVENC engine waits until pInputFencePoint is reached before processing
the NV_ENC_REGISTER_RESOURCE::resourceToRegister. NVENC engine signals the
pOutputFencePoint when processing of the resource is completed so that other engines
which need to use this resource can start processing.

 3. Call NvEncRegisterResource with the NV_ENC_REGISTER_RESOURCE populated in the
above step.

 4. NvEncRegisterResource returns an opaque handle in
NV_ENC_REGISTER_RESOURCE::registeredResource which should be saved.

 5. The client should use this registered handle
(NV_ENC_REGISTER_RESOURCE::registeredResource) as the input and
output buffer handle in NV_ENC_INPUT_RESOURCE_D3D12::pInputBuffer and
NV_ENC_INPUT_RESOURCE_D3D12::pOutputBuffer respectively.

 6. The client must also call NvEncUnregisterResource with the handle returned by
NvEncRegisterResource before destroying the registered resource.

Encoding the Video Stream

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 16

The registered resource handle (NV_ENC_REGISTER_RESOURCE::registeredResource) should
not be used for any other purpose outside the NVIDIA Video Encoder Interface while it is in
registered state. Such usage is not supported and may lead to undefined behavior.

4.2. Configuring Per-Frame Encode
Parameters

The client should populate NV_ENC_PIC_PARAMS with the parameters to be applied to the current
input picture. The client can do the following on a per-frame basis.

4.2.1. Forcing current frame to be encoded as intra
frame

To force the current frame as intra (I) frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_FORCEINTRA

4.2.2. Forcing current frame to be used as a
reference frame

To force the current frame to be used as a reference frame, set

NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC/
NV_ENC_PIC_PARAMS_AV1::refPicFlag = 1

4.2.3. Forcing current frame to be used as an IDR
frame

To force the current frame to be encoded as IDR frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_FORCEIDR

4.2.4. Requesting generation of sequence
parameters

To include SPS/PPS (H.264 and HEVC) or Sequence Header OBU (AV1) along
with the currently encoded frame, set NV_ENC_PIC_PARAMS::encodePicFlags =
NV_ENC_PIC_FLAG_OUTPUT_SPSPPS

4.3. Submitting Input Frame for Encoding
The client should call NvEncEncodePicture to perform encoding.

Encoding the Video Stream

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 17

The input picture data will be taken from the specified input buffer, and the encoded bit stream
will be available in the specified bit stream (output) buffer once the encoding process completes.

Codec-agnostic parameters such as timestamp, duration, input buffer pointer, etc. are passed
via the structure NV_ENC_PIC_PARAMS while codec-specific parameters are passed via the
structure NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC/NV_ENC_PIC_PARAMS_AV1
depending upon the codec in use.

The client should specify the codec-specific structure in NV_ENC_PIC_PARAMS using the
NV_ENC_PIC_PARAMS::codecPicParams member.

If the client has used a DirectX 12 device to initialize encoder session, client must pass pointer
to NV_ENC_INPUT_RESOURCE_D3D12 in NV_ENC_PIC_PARAMS:: inputBuffer containing
the registered resource handle and the corresponding input NV_ENC_FENCE_POINT_D3D12
for NVENC to wait before starting encode. Client must pass pointer to
NV_ENC_OUTPUT_RESOURCE_D3D12 in NV_ENC_PIC_PARAMS::outputBuffer containing the
registered resource handle and the corresponding output NV_ENC_FENCE_POINT_D3D12.
NVENC engine waits until the NV_ENC_INPUT_RESOURCE_D3D12::inputFencePoint is
reached before starting processing of input buffer. NVENC engine signal the
NV_ENC_OUTPUT_RESOURCE_D3D12::outputFencePoint when processing of the resource is
completed so that other engines which need to use these input and output resources can start
processing.

4.4. Retrieving Encoded Output
Upon completion of the encoding process for an input picture, the client is required to call
NvEncLockBitstream to get a CPU pointer to the encoded bit stream. The client can make a
local copy of the encoded data or pass the CPU pointer for further processing (e.g. to a media
file writer).

The CPU pointer will remain valid until the client calls NvEncUnlockBitstream. The client
should call NvEncUnlockBitstream after it completes processing the output data.

If the client has used a DirectX 12 device to initialize encoder session, client must pass the same
NV_ENC_OUTPUT_RESOURCE_D3D12 pointer in NV_ENC_LOCK_BITSTREAM::outputBitstream
for retrieving the output, which it had sent in NV_ENC_PIC_PARAMS::outputBuffer during
encode.

The client must ensure that all bit stream buffers are unlocked before destroying/de-allocating
them (e.g. while closing an encode session) or even before reusing them as output buffers for
subsequent frames.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 18

Chapter 5. End of Encoding

5.1. Notifying the End of Input Stream
To notify the end of input stream, the client must call NvEncEncodePicture with the flag
NV_ENC_PIC_PARAMS:: encodePicFlags set to NV_ENC_FLAGS_EOS and all other members of
NV_ENC_PIC_PARAMS set to 0. No input buffer is required while calling NvEncEncodePicture
for EOS notification.

EOS notification effectively flushes the encoder. This can be called multiple times in a single
encode session. This operation however must be done before closing the encode session.

5.2. Releasing Resources
Once encoding completes, the client should destroy all allocated resources.

The client should call NvEncDestroyInputBuffer if it had allocated input buffers through the
NVIDIA Video Encoder Interface. The client must ensure that input buffer is first unlocked by
calling NvEncUnlockInputBuffer before destroying it.

The client should call NvEncDestroyBitstreamBuffer to destroy each bitstream buffer it
had allocated. The client must ensure that the bitstream buffer is first unlocked by calling
NvEncUnlockBitstream before destroying it.

5.3. Closing Encode Session
The client should call NvEncDestroyEncoder to close the encoding session. The client should
ensure that all resources tied to the encode session being closed have been destroyed before
calling NvEncDestroyEncoder. These include input buffers, bit stream buffers, SPS/PPS buffer,
etc.

It must also ensure that all registered events are unregistered, and all mapped input buffer
handles are unmapped.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 19

Chapter 6. Modes of Operation

The NVIDIA Video Encoder Interface supports the following two modes of operation.

6.1. Asynchronous Mode
This mode of operation is used for asynchronous output buffer processing. For this mode, the
client allocates an event object and associates the event with an allocated output buffer. This
event object is passed to the NVIDIA Encoder Interface as part of the NvEncEncodePicture API.
The client can wait on the event in a separate thread. When the event is signaled, the client calls
the NVIDIA Video Encoder Interface to copy output bitstream produced by the encoder. Note
that the encoder supports asynchronous mode of operation only for Windows 10 and above, with
driver running in WDDM mode. In Linux and Windows with TCC mode (TCC mode is available on
Tesla boards1), ONLY synchronous mode is supported (refer to Section Synchronous Mode)

The client should set the flag NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1 to
indicate that it wants to operate in asynchronous mode. After creating the event objects
(one object for each output bitstream buffer allocated), the client needs to register them
with the NVIDIA Video Encoder Interface using the NvEncRegisterAsyncEvent. The client
is required to pass a bitstream buffer handle and the corresponding event handle as input
to NvEncEncodePicture. The NVIDIA Video Encoder Interface will signal this event when
the hardware encoder finishes encoding the current input data. The client can then call
NvEncLockBitstream in non-blocking mode NV_ENC_LOCK_BITSTREAM::doNotWait flag set to
1 to fetch the output data.

The client should call NvEncUnregisterAsyncEvent to unregister the Event handles before
destroying the event objects. Whenever possible, NVIDIA recommends using the asynchronous
mode of operation instead of synchronous mode.

A step-by-step control flow for asynchronous mode is as follows:

 1. When working in asynchronous mode, the output sample must consist of an event + output
buffer and clients must work in multi-threaded manner (D3D9 device should be created with
MULTITHREADED flag).

 2. The output buffers are allocated using NvEncCreateBitstreamBuffer API. The
NVIDIA Video Encoder Interface will return an opaque pointer to the output
memory in NV_ENC_CREATE_BITSTREAM_BUFFER::bitstreambuffer. This opaque

1 To check the mode in which your board is running, run the command-line utility nvidia-smi (nvidia-smi.exe on Windows) included
with the driver.

Modes of Operation

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 20

output pointer should be used in NvEncEncodePicture and NvEncLockBitsteam/
NvEncUnlockBitsteam calls. For accessing the output memory using CPU, client must call
NvEncLockBitsteam API. The number of IO buffers should be at least 4 + number of B
frames.

 3. The events are windows event handles allocated using Windows’ CreateEvent API and
registered using the function NvEncRegisterAsyncEvent before encoding. The registering
of events is required only once per encoding session. Clients must unregister the events
using NvEncUnregisterAsyncEvent before destroying the event handles. The number of
event handles must be same as number of output buffers as each output buffer is associated
with an event.

 4. Client must create a secondary thread in which it can wait on the completion event and copy
the bitstream data from the output sample. Client will have two threads: one is the main
application thread which submits encoding work to NVIDIA Encoder while secondary thread
waits on the completion events and copies the compressed bitstream data from the output
buffer.

 5. Client must send the output buffer and event in NV_ENC_PIC_PARAMS::outputBitstream
and NV_ENC_PIC_PARAMS:: completionEvent fields respectively as part of
NvEncEncodePicture API call.

 6. Client should then wait on the event on the secondary thread in the same order in which it has
called NvEncEncodePicture calls irrespective of input buffer re-ordering (encode order! =
display order). When enablePTD = 1, NVIDIA Encoder takes care of the reordering in case
of B frames in a way that is transparent to the encoder clients. For AV1, NVIDIA encoder
also transparently performs frame bitstream packing, meaning it always concatenates into
a single output buffer the bitstream corresponding to leading no-show frames with the
bitstream of the first show frame that follows. Each output buffer therefore always contains
a single frame to display along with all the preceding non-display frames in encode order
since the previous frame to display.

 7. When the event gets signalled client must send down the output buffer of sample
event it was waiting on in NV_ENC_LOCK_BITSTREAM::outputBitstream field as part of
NvEncLockBitstream call.

 8. The NVIDIA Encoder Interface returns a CPU pointer and bitstream size in bytes as part of
the NV_ENC_LOCK_BITSTREAM.

 9. After copying the bitstream data, client must call NvEncUnlockBitstream for the locked
output bitstream buffer.

Note:

‣ The client will receive the event's signal and output buffer in the same order in which they
were queued.

‣ The NV_ENC_LOCK_BITSTREAM::pictureType notifies the output picture type to the clients.

‣ Both, the input and output sample (output buffer and the output completion event) are free
to be reused once the NVIDIA Video Encoder Interface has signalled the event and the client
has copied the data from the output buffer.

Modes of Operation

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 21

6.2. Synchronous Mode
This mode of operation is used for synchronous output buffer processing. In this mode the client
makes a blocking call to the NVIDIA Video Encoder Interface to retrieve the output bitstream data
from the encoder. The client sets the flag NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync
to 0 for operation in synchronous mode. The client then must call NvEncEncodePicture
without setting a completion event handle. The client must call NvEncLockBitstream with flag
NV_ENC_LOCK_BITSTREAM::doNotWait set to 0, so that the lock call blocks until the hardware
encoder finishes writing the output bitstream. The client can then operate on the generated
bitstream data and call NvEncUnlockBitstream. This is the only mode supported on Linux.

6.3. Threading Model
To get maximum performance for encoding, the encoder client should create a separate thread
to wait on events or when making any blocking calls to the encoder interface.

The client should avoid making any blocking calls from the main encoder processing thread.
The main encoder thread should be used only for encoder initialization and to submit work to
the HW Encoder using NvEncEncodePicture API, which is non-blocking.

Output buffer processing, such as waiting on the completion event in asynchronous mode
or calling the blocking API’s such as NvEncLockBitstream/NvEncUnlockBitstream in
synchronous mode, should be done in the secondary thread. This ensures that the main encoder
thread is never blocked except when the encoder client runs out of resources.

It is also recommended to allocate many input and output buffers in order to avoid resource
hazards and improve overall encoder throughput.

On Windows, when encode device type is DirectX, calling DXGI APIs
like IDXGIOutputDuplication::AcquireNextFrame from the primary thread and
NvEncLockBitstream/NvEncUnlockBitstream from secondary thread, can lead to suboptimal
or undefined behavior. This is because NvEncLockBitstream can internally use the application's
DirectX device.

For optimal performance in such applications, the following encoder settings should be used:

‣ NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync = 1

‣ NV_ENC_LOCK_BITSTREAM::doNotWait = 0

‣ NV_ENC_INITIALIZE_PARAMS::enableOutputInVidmem = 0

Modes of Operation

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 22

6.4. Encoder Features using CUDA
Although the core video encoder hardware on GPU is completely independent of CUDA cores
or graphics engine on the GPU, following encoder features internally use CUDA for hardware
acceleration.

Note: The impact of enabling these features on overall CUDA or graphics performance is minimal,
and this list is provided purely for information purposes.

‣ Two-pass rate control modes for high quality presets

‣ Look-ahead

‣ All adaptive quantization modes

‣ Weighted prediction

‣ Encoding of RGB contents

‣ Temporal Filtering

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 23

Chapter 7. Motion Estimation Only
Mode

NVENC can be used as a hardware accelerator to perform motion search and generate motion
vectors and mode information. The resulting motion vectors or mode decisions can be used, for
example, in motion compensated filtering or for supporting other codecs not fully supported by
NVENC or simply as motion vector hints for a custom encoder. The procedure to use the feature
is explained below.

For use-cases involving computer vision, AI and frame interpolation, Turing and later GPUs
contain another hardware accelerator for computing optical flow vectors between frames, which
provide better visual matching than the motion vectors.

7.1. Query Motion-Estimation Only Mode
Capability

Before using the motion-estimation (ME) only mode, the client should explicitly query the
capability of the encoder to support ME only mode. For this, the client should do the following:

 1. Specify the capability attribute as NV_ENC_CAPS_SUPPORT_MEONLY_MODE to query through
the NV_ENC_CAPS_PARAM::capsToQuery parameter.

 2. The client should call NvEncGetEncoderCaps to determine support for the required
attribute.

NV_ENC_CAPS_SUPPORT_MEONLY_MODE indicates support of ME only mode in hardware.

0: ME only mode not supported.

1: ME only mode supported.

Motion-estimation (ME) only mode is not supported if DirectX 12 device is used.

Motion Estimation Only Mode

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 24

7.2. Create Resources for Input/Output
Data

The client should allocate at least one buffer for the input picture by calling
NvEncCreateInputBuffer API and should also allocate one buffer for the reference frame by
using NvEncCreateInputBuffer API. The client is responsible for filling in valid input data.

After input resources are created, client needs to allocate resources for the output data by using
NvEncCreateMVBuffer API.

7.3. Populate ME only mode settings
The structure NV_ENC_CODEC_CONFIG::NV_ENC_CONFIG_H264_MEONLY provides the ability to
control the partition types of motion vectors and modes returned by NVENC hardware.
Specifically, the client can disable intra mode and/or specific MV partition sizes by setting the
following flags:

NV_ENC_CONFIG_H264_MEONLY::disableIntraSearch
NV_ENC_CONFIG_H264_MEONLY::disablePartition16x16
NV_ENC_CONFIG_H264_MEONLY::disablePartition8x16
NV_ENC_CONFIG_H264_MEONLY::disablePartition16x8
NV_ENC_CONFIG_H264_MEONLY::disablePartition8x8

The API also exposes a parameter NV_ENC_CONFIG::NV_ENC_MV_PRECISION to control
the precision of motion vectors returned by the hardware. For full-pel precision, the
client must ignore two LSBs of the motion vector. For sub-pel precision, the two LSBs
of the motion vector represent fractional part of the motion vector. To get motion
vectors for each macroblock, it is recommended to disable intra modes by setting
NV_ENC_CONFIG_H264_MEONLY::disableIntraSearch = 1 and let NVENC decide the optimal
partition sizes for motion vectors.

7.4. Run Motion Estimation
The client should create an instance of NV_ENC_MEONLY_PARAMS.

The pointers of the input picture buffer and the reference frame buffer need to be fed
to NV_ENC_MEONLY_PARAMS::inputBuffer and NV_ENC_MEONLY_PARAMS::referenceFrame
respectively.

The pointer returned by NvEncCreateMVBuffer API in the
NV_ENC_CREATE_MV_BUFFER::mvBuffer field needs to be fed to
NV_ENC_MEONLY_PARAMS::mvBuffer.

In order to operate in asynchronous mode, the client should create an event and pass this event
in NV_ENC_MEONLY_PARAMS::completionEvent. This event will be signaled upon completion of
motion estimation. Each output buffer should be associated with a distinct event pointer.

Motion Estimation Only Mode

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 25

Client should call NvEncRunMotionEstimationOnly to run the motion estimation on hardware
encoder.

For asynchronous mode client should wait for motion estimation completion signal before
reusing output buffer and application termination.

Client must lock NV_ENC_CREATE_MV_BUFFER::mvBuffer using NvEncLockBitstream to get
the motion vector data.

Finally, NV_ENC_LOCK_BITSTREAM::bitstreamBufferPtr which contains the output motion
vectors should be typecast to NV_ENC_H264_MV_DATA*/NV_ENC_HEVC_MV_DATA* for H.264/
HEVC respectively. Client should then unlock NV_ENC_CREATE_MV_BUFFER::mvBuffer by
calling NvEncUnlockBitstream.

7.5. Enabling Motion estimation for stereo
usecases

For stereo use cases where in two views need to be processed, we suggest the following
approach for better performance and quality of motion vectors:

‣ Client should create single encode session.

‣ The client should kick-off the processing of left and right views on separate threads.

‣ The client should set NV_ENC_MEONLY_PARAMS::viewID to 0 and 1 for left and right views.

‣ The main thread should wait for completion of the threads which have been kicked off NVENC
for left and right views.

7.6. Release the Created Resources
Once the usage of motion estimation is done, the client should call NvEncDestroyInputBuffer
to destroy the input picture buffer and the reference frame buffer and should call
NvEncDestroyMVBuffer to destroy the motion vector data buffer.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 26

Chapter 8. Advanced Features and
Settings

8.1. Look-ahead
Look-ahead improves the video encoder’s rate control accuracy by enabling the encoder to buffer
the specified number of frames, estimate their complexity and allocate the bits appropriately
among these frames proportional to their complexity. This also dynamically allocates B and P
frames.

To use this feature, the client must follow these steps:

 1. The availability of the feature in the current hardware can be queried using
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_LOOKAHEAD.

 2. Look-ahead needs to be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.enableLookahead = 1.

 3. The number of frames to be looked ahead should be set in
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.lookaheadDepth which can
be up to 32.

 4. By default, look-ahead enables adaptive insertion of intra
frames and B frames. They can however be disabled by
setting NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.disableIadapt and/
orNV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.disableBadapt to 1.

 5. When the feature is enabled, frames are queued up in the encoder and hence
NvEncEncodePicture will return NV_ENC_ERR_NEED_MORE_INPUT until the encoder has
sufficient number of input frames to satisfy the look-ahead requirement. Frames should be
continuously fed in until NvEncEncodePicture returns NV_ENC_SUCCESS.

8.2. B-Frames As Reference
Using B frame as a reference improves subjective and objective encoded quality with no
performance impact. Hence the users enabling multiple B frames are strongly recommended
to enable this feature.

To use the feature, follow these steps:

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 27

‣ Query availability of the feature using NvEncGetEncodeCaps API and checking for
NV_ENC_CAPS_SUPPORT_BFRAME_REF_MODE in the return value.

‣ During encoder initialization, set NV_ENC_CONFIG_H264/NV_ENC_CONFIG_HEVC/
NV_ENC_CONFIG_AV1::useBFramesAsRef = NV_ENC_BFRAME_REF_MODE_MIDDLE:

‣ For H.264 and HEVC, this will set the (N/2)th B frame as reference where N = number of
B frames. In case N is odd, then (N-1)/2th frame will be picked up as reference.

‣ For AV1, this will set every other B frame as an Altref2 reference but for the last B frame
in the Altref interval.

8.3. Reconfigure API
NvEncReconfigureEncoder allows clients to change the encoder initialization parameters in
NV_ENC_INITIALIZE_PARAMS without closing existing encoder session and re-creating a new
encoding session. This helps clients avoid the latency introduced due to destruction and re-
creation of the encoding session. This API is useful in scenarios which are prone to instabilities
in transmission mediums during video conferencing, game streaming etc.

Using this API clients can change parameters like bit-rate, frame-rate, resolution
dynamically using the same encode session. The reconfigured parameters are passed via
NV_ENC_RECONFIGURE_PARAMS::reInitEncodeParams.

However, The API currently doesn’t support reconfiguration of all parameters, some of which
are listed below:

‣ Changing the GOP structure (NV_ENC_CONFIG_H264::idrPeriod,
NV_ENC_CONFIG::gopLength, NV_ENC_CONFIG::frameIntervalP)

‣ Changing from synchronous mode of encoding to asynchronous mode and vice-versa.

‣ Changing NV_ENC_INITIALIZE_PARAMS::maxEncodeWidth and
NV_ENC_INITIALIZE_PARAMS::maxEncodeHeight.

‣ Changing picture type decision in NV_ENC_INITIALIZE_PARAMS::enablePTD.

‣ Changing bit-depth.

‣ Changing chroma format.

‣ Changing NV_ENC_CONFIG_HEVC::maxCUSize.

‣ Changing NV_ENC_CONFIG::frameFieldMode.

The API would fail if any attempt is made to reconfigure the parameters which is not supported.

Resolution change is possible only if NV_ENC_INITIALIZE_PARAMS::maxEncodeWidth and
NV_ENC_INITIALIZE_PARAMS::maxEncodeHeight are set while creating encoder session.

If the client wishes to change the resolution using this API, it is advisable to
force the next frame following the reconfiguration as an IDR frame by setting
NV_ENC_RECONFIGURE_PARAMS::forceIDR to 1.

If the client wishes to reset the internal rate control states, set
NV_ENC_RECONFIGURE_PARAMS::resetEncoder to 1.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 28

8.4. Adaptive Quantization (AQ)
This feature improves visual quality by adjusting encoding QP (on top of QP evaluated by the Rate
Control Algorithm) based on spatial and temporal characteristics of the sequence. The current
SDK support two flavors of AQ which are explained as follows:

8.4.1. Spatial AQ
Spatial AQ mode adjusts the QP values based on spatial characteristics of the frame. Since
the low complexity flat regions are visually more perceptible to quality differences than high
complexity detailed regions, extra bits are allocated to flat regions of the frame at the cost of the
regions having high spatial detail. Although spatial AQ improves the perceptible visual quality
of the encoded video, the required bit redistribution results in PSNR drop in most of the cases.
Therefore, during PSNR-based evaluation, this feature should be turned off.

To use spatial AQ, follow these steps in your application.

‣ Spatial AQ can be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams. enableAQ = 1.

‣ The intensity of QP adjustment can be controlled by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.aqStrength which ranges
from 1 (least aggressive) to 15 (most aggressive). If not set, strength is auto selected by
driver.

8.4.2. Temporal AQ
Temporal AQ tries to adjust encoding QP (on top of QP evaluated by the rate control algorithm)
based on temporal characteristics of the sequence. Temporal AQ improves the quality of
encoded frames by adjusting QP for regions which are constant or have low motion across
frames but have high spatial detail, such that they become better reference for future frames.
Allocating extra bits to such regions in reference frames is better than allocating them to the
residuals in referred frames because it helps improve the overall encoded video quality. If
majority of the region within a frame has little or no motion, but has high spatial details (e.g.
high-detail non-moving background) enabling temporal AQ will benefit the most.

One of the potential disadvantages of temporal AQ is that enabling temporal AQ may result in
high fluctuation of bits consumed per frame within a GOP. I/P-frames will consume more bits
than average P-frame size and B-frames will consume lesser bits. Although target bitrate will
be maintained at the GOP level, the frame size will fluctuate from one frame to next within a
GOP more than it would without temporal AQ. If a strict CBR profile is required for every frame
size within a GOP, it is not recommended to enable temporal AQ. Additionally, since some of
the complexity estimation is performed in CUDA, there may be some performance impact when
temporal AQ is enabled.

To use temporal AQ, follow these steps in your application.

 1. Query the availability of temporal AQ for the current hardware by calling the API
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_TEMPORAL_AQ.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 29

 2. If supported, temporal AQ can be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.enableTemporalAQ = 1.

Temporal AQ uses CUDA pre-processing and hence requires CUDA processing power,
depending upon resolution and content.

Enabling temporal AQ may result in very minor degradation in encoder performance.

8.5. High Bit Depth Encoding
All NVIDIA GPUs support 8-bit encoding (RGB/YUV input with 8-bit precision). Starting from
Pascal generation, NVIDIA GPUs support high-bit-depth HEVC encoding (HEVC main-10 profile
with 10-bit input precision). Starting from Ada generation, NVIDIA GPUs support high-bit-depth
AV1 encoding (AV1 main profile with 8 or 10-bit input precision). To encode 10-bit content the
following steps are to be followed.

 1. The availability of the feature can be queried using NvEncGetEncodeCaps and checking for
NV_ENC_CAPS_SUPPORT_10BIT_ENCODE.

 2. Create the encoder session with NV_ENC_HEVC_PROFILE_MAIN10_GUID for HEVC or
NV_ENC_AV1_PROFILE_MAIN_GUID for AV1.

 3. During encoder initialization,

‣ For HEVC, set encodeConfig->encodeCodecConfig.hevcConfig.outputBitDepth
= 10 and encodeConfig->encodeCodecConfig.av1Config.inputBitDepth
= 8 for 8-bit input content or encodeConfig-
>encodeCodecConfig.av1Config.inputBitDepth = 10 for 10-bit input content. In
case of 8-bit input content, NVENC performs an internal CUDA 8 to 10-bit conversion of
the input prior to encoding.

‣ For AV1, set encodeConfig->encodeCodecConfig.av1Config.outputBitDepth = 10
and encodeConfig->encodeCodecConfig.av1Config.inputBitDepth = 8 for 8-bit
input content or encodeConfig->encodeCodecConfig.av1Config.inputBitDepth =
10 for 10-bit input content. In case of 8-bit input content, NVENC performs an internal
HW 8 to 10-bit conversion of the input prior to encoding.

 4. Other encoding parameters such as preset, rate control mode, etc. can be set as desired.

8.6. Weighted Prediction
Weighted prediction involves calculation of a multiplicative weighting factor and an additive offset
to the motion compensated prediction. Weighted prediction provides significant quality gain for
contents having illumination changes. NVENCODE API supports weighed prediction for HEVC
and H.264 starting from Pascal generation GPUs.

The following steps need to be followed for enabling weighted prediction.

 1. The availability of the feature can be queried using NvEncGetEncodeCaps and checking for
NV_ENC_CAPS_SUPPORT_WEIGHTED_PREDICTION.

 2. During encoder initialization, set NV_ENC_INITIALIZE_PARAMS::
enableWeightedPrediction = 1.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 30

Weighted prediction is not supported if the encode session is configured with B frames.

Weighted prediction is not supported if DirectX 12 device is used.

Weighted prediction uses CUDA pre-processing and hence requires CUDA processing power,
depending upon resolution and content.

Enabling weighted prediction may also result in very minor degradation in encoder performance.

8.7. Long-Term Reference in H.264 and
HEVC

NVENCODE API provides the functionality to mark and use specific frames as long-term
reference (LTR) frames, which can later be used as reference for encoding the current picture.
This helps in error concealment where in the client decoders can predict from the long-
term reference frame in case an intermediate frame loses data. The feature is useful in video
streaming applications to recover from frame losses at the receiver.

Following steps are to be followed to enable the feature.

 1. During encoder initialization,

‣ For H.264, set NV_ENC_CONFIG_H264:enableLTR = 1

‣ For HEVC, set NV_ENC_CONFIG_HEVC:enableLTR = 1

 2. The maximum number of long-term reference pictures supported in the
current hardware can be queried using NvEncGetEncoderCaps and checking for
NV_ENC_CAPS_NUM_MAX_LTR_FRAMES.

During normal encoding operation, following steps need to be followed to mark specific frame(s)
as LTR frame(s).

 1. Configure the number of LTR frames:

‣ For H.264, set NV_ENC_CONFIG_H264:ltrNumFrames

‣ For HEVC, set NV_ENC_CONFIG_HEVC:ltrNumFrames

 2. The client can mark any frame as LTR by setting
NV_ENC_PIC_PARAMS_H264::ltrMarkFrame = 1 OR
NV_ENC_PIC_PARAMS_HEVC::ltrMarkFrame = 1 for H.264 and HEVC respectively. Each
LTR frame needs to be assigned an LTR frame index. This value should be between 0 and
ltrNumFrames - 1.

 3. The LTR frame index can be assigned by setting
NV_ENC_PIC_PARAMS_H264::ltrMarkFrameIdx OR
NV_ENC_PIC_PARAMS_HEVC::ltrMarkFrameIdx for H264 and HEVC respectively.

The frames previously marked as long-term reference frames can be used for prediction of the
current frame in the following manner:

 1. The LTR frames that are to be used for reference have
to be specified using NV_ENC_PIC_PARAMS_H264::ltrUseFrameBitmap OR

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 31

NV_ENC_PIC_PARAMS_HEVC::ltrUseFrameBitmap for H.264 and HEVC respectively. The bit
location specifies the LTR frame index of the frame that will be used as reference.

The current SDK does not support LTR when the encoding session is configured with B frames.

8.8. Emphasis MAP
The emphasis map feature in NVENCODE API provides a way to specify regions in the frame
to be encoded at varying levels of quality, at macroblock-level granularity. Depending upon
the actual emphasis level for each macroblock, the encoder applies an adjustment to the
quantization parameter used to encode that macroblock. The value of this adjustment depends
on the following factors:

‣ Absolute value of the QP as decided by the rate control algorithm, depending upon the rate
control constraints. In general, for a given emphasis level, higher the QP determined by the
rate control, higher the (negative) adjustment.

‣ Emphasis level value for the macroblock.

Note: The QP adjustment is performed after the rate control algorithm has run. Therefore, there
is a possibility of VBV/rate violations when using this feature.

Emphasis level map is useful when the client has prior knowledge of the image complexity (e.g.
NVFBC's Classification Map feature) and encoding those high-complexity areas at higher quality
(lower QP) is important, even at the possible cost of violating bitrate/VBV buffer size constraints.
This feature is not supported when AQ (Spatial/Temporal) is enabled.

Follow these steps to enable the feature.

 1. Query availability of the feature using NvEncGetEncodeCaps API and checking for
NV_ENC_CAPS_SUPPORT_EMPHASIS_LEVEL_MAP.

 2. Set NV_ENC_RC_PARAMS::qpMapMode = NV_ENC_QP_MAP_EMPHASIS.
 3. Fill up the NV_ENC_PIC_PARAMS::qpDeltaMap (which is a signed byte array containing

value per macroblock in raster scan order for the current picture) with a value from enum
NV_ENC_EMPHASIS_MAP_LEVEL.

As explained above, higher values of NV_ENC_EMPHASIS_MAP_LEVEL imply higher (negative)
adjustment made to the QP to emphasize quality of that macroblock. The user can choose higher
emphasis level for the regions (s)he wants to encode with a higher quality.

8.9. NVENC Output in Video Memory
Starting SDK 9.0, NVENCODE API supports bitstream and H.264 ME-only mode output in video
memory. This is helpful in use-cases in which the operation on the output of NVENC is to be
performed using CUDA or DirectX shaders. Leaving the output of NVENC in video memory avoids
unnecessary PCIe transfers of the buffers. The video memory should be allocated by the client
application, as 1-dimensional buffer. This feature is currently supported for H.264, HEVC and AV1
encode, and H.264 ME-only mode. The feature is supported for DirectX 11 and CUDA interfaces.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 32

Follow these steps for the output to be available in video memory.

 1. Set NV_ENC_INITIALIZE_PARAMS::enableOutputInVidmem = 1 when calling
nvEncInitializeEncoder().

 2. Allocate 1-dimensional buffer in video memory for NVENC to write the output.

‣ For AV1, HEVC or H.264 encoding, the recommended size for this buffer is:

Output buffer size = 2 * Input YUV buffer size +
sizeof(NV_ENC_ENCODE_OUT_PARAMS)

First sizeof(NV_ENC_ENCODE_OUT_PARAMS) bytes of the output buffer contain
NV_ENC_ENCODE_OUT_PARAMS structure, followed by encoded bitstream data.

‣ For H.264 ME-only output, the recommended size of output buffer is:

Output buffer size = HeightInMbs * WidthInMbs *
sizeof(NV_ENC_H264_MV_DATA)

where HeightInMbs and WidthInMbs are picture height and width in number of 16x16
macroblocks, respectively.

‣ For DirectX 11 interface, this buffer can be created using DirectX 11
CreateBuffer() API, by specifying usage = D3D11_USAGE_DEFAULT; BindFlags
= (D3D11_BIND_VIDEO_ENCODER | D3D11_BIND_SHADER_RESOURCE); and
CPUAccessFlags = 0;

‣ For CUDA interface, this buffer can be created using cuMemAlloc().

 3. Register this buffer using nvEncRegisterResource(), by specifying:

‣ NV_ENC_REGISTER_RESOURCE::bufferUsage = NV_ENC_OUTPUT_BITSTREAM if output
is encoded bitstream,

‣ and as NV_ENC_REGISTER_RESOURCE::bufferUsage=
NV_ENC_OUTPUT_MOTION_VECTOR if output is motion vectors in case of H.264 ME only
mode.

‣ Set NV_ENC_REGISTER_RESOURCE::bufferFormat= NV_ENC_BUFFER_FORMAT_U8.
NvEncRegisterResource() will return a registered handle in
NV_ENC_REGISTER_RESOURCE::registeredResource.

 4. SetNV_ENC_MAP_INPUT_RESOURCE::registeredResource =
NV_ENC_REGISTER_RESOURCE::registeredResource obtained in the previous step.

 5. Call nvEncMapInputResource(), which will return a mapped resource handle in
NV_ENC_MAP_INPUT_RESOURCE::mappedResource.

 6. For AV1/HEVC/H.264 encoding mode, call nvEncEncodePicture() by
setting NV_ENC_PIC_PARAMS::outputBitstream to NV_ENC_MAP_INPUT_RESOURCE::
mappedResource.

 7. For H.264 ME-only mode, call nvEncRunMotionEstimationOnly() by setting
NV_ENC_MEONLY_PARAMS::mvBuffer to
NV_ENC_MAP_INPUT_RESOURCE::mappedResource.

When reading the output buffer, observe the following:

After calling nvEncEncodePicture() or nvEncRunMotionEstimationOnly(), client can
use the output buffer for further processing only after un-mapping this output buffer.
NvEncLockBitstream()should not be called.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 33

When operating in asynchronous mode, client application should wait on event before reading
the output. In synchronous mode no event is triggered, and the synchronization is handled
internally by NVIDIA driver.

To access the output, follow these steps:

 1. Client must un-map the input buffer by calling nvEncUnmapInputResource() with
mapped resource handle NV_ENC_MAP_INPUT_RESOURCE::mappedResource returned by
nvEncMapInputResource(). After this, the output buffer can be used for further processing/
reading etc.

 2. In case of encode, the first sizeof(NV_ENC_ENCODE_OUT_PARAMS) bytes of
this buffer should be interpreted as NV_ENC_ENCODE_OUT_PARAMS structure
followed by encode bitstream data.The size of encoded bitstream is given by
NV_ENC_ENCODE_OUT_PARAMS::bitstreamSizeInBytes.

 3. If CUDA mode is specified, all CUDA operations on this buffer must use the default stream.
To get the output in system memory, output buffer can be read by calling any CUDA API (e.g.
cuMemcpyDtoH()) with default stream. The driver ensures that the output buffer is read only
after NVENC has finished writing the output in it.

 4. For DX11 mode, any DirectX 11 API can be used to read the output. The driver ensures that
the output buffer is read only after NVENC has finished writing the output in it. To get the
output in system memory, CopyResource() (which is a DirectX 11 API) can be used to copy
the data in a CPU readable staging buffer. This staging buffer then can be read after calling
Map()which is a DirectX 11 API.

8.10. Alpha Layer Encoding support in HEVC
NVENCODE API implements support for encoding alpha layer in HEVC. The feature allows an
application to encode a base layer which contains YUV data and an auxilary layer with alpha
channel data.

Following steps are to be followed to enable the feature:

 1. The availability of the feature can be queried using nvEncGetEncodeCaps()
and checking for NV_ENC_CAPS_SUPPORT_ALPHA_LAYER_ENCODING. Note that
only NV_ENC_BUFFER_FORMAT_NV12, NV_ENC_BUFFER_FORMAT_ARGB and
NV_ENC_BUFFER_FORMAT_ABGR input formats are supported with alpha layer encoding.

 2. During encoder initialization, set NV_ENC_CONFIG_HEVC:: enableAlphaLayerEncoding
= 1. Clients can also specify the ratio in which the bitrate is to be split between YUV and
the auxiliary alpha layer by setting NV_ENC_RC_PARAMS::alphaLayerBitrateRatio. For
example, if NV_ENC_RC_PARAMS::alphaLayerBitrateRatio = 3 then 75% of the bits will
be spent on base layer encoding whereas the other 25% will be spent on alpha layer.

During normal encoding operation, following steps need to be followed to for alpha layer
encoding:

 1. Passing the alpha input in nvEncEncodePicture() :

‣ For input format NV_ENC_BUFFER_FORMAT_NV12, the YUV data should be passed
in NV_ENC_PIC_PARAMS::inputBuffer whereas the alpha input data needs to
be passed separately using NV_ENC_PIC_PARAMS::alphaBuffer. The format of

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 34

NV_ENC_PIC_PARAMS::alphaBuffer should be NV_ENC_BUFFER_FORMAT_NV12. The
luma plane should contain the alpha data whereas the chroma component should to be
memset to 0x80.

‣ For input format NV_ENC_BUFFER_FORMAT_ABGR or NV_ENC_BUFFER_FORMAT_ARGB,
the input data should be passed in NV_ENC_PIC_PARAMS::inputBuffer. The field
NV_ENC_PIC_PARAMS::alphaBuffer should be set as NULL in this case.

 2. The encoded output for YUV as well as the alpha layer is fetched using a call to
NvEncLockBitstream. The field NV_ENC_LOCK_BITSTREAM::bitstreamSizeInBytes will
contain the total encoded size i.e it is the size of YUV layer bitstream data, alpha bitstream
data and any other header data. Cients can get the size of alpha layer separately using the
field NV_ENC_LOCK_BITSTREAM::alphaLayerSizeInBytes.

Alpha encoding is not supported in the following scenarios:

 1. When subframe more is enabled.
 2. Input image is YUV 444.
 3. The bit-depth of input image is 10 bit.
 4. The bit stream output is specified to be in video memory.
 5. Weighted prediction is enabled.

8.11. Temporal Scalable Video Coding (SVC)
in H.264

NVENCODE API supports temporal scalable video coding(SVC) as specified in Annex G of the
H.264/AVC video compression standard. Temporal SVC results in an heirarchical structure with
a base layer and multiple auxiliary layers.

To use temporal SVC, follow these steps:

 1. Query the availability of temporal SVC for the current hardware by calling the API
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_TEMPORAL_SVC.

 2. If supported, query the maximum number of temporal layers supported in SVC using
nvEncGetEncodeCaps() and check the value of NV_ENC_CAPS_NUM_MAX_TEMPORAL_LAYERS

 3. During encoder initialization, set NV_ENC_CONFIG_H264::enableTemporalSVC
= 1. Specify the number of temporal layer and maximum number
of temporal layers using NV_ENC_CONFIG_H264::numTemporalLayers and
NV_ENC_CONFIG_H264::maxTemporalLayers respectively.

 4. If maximum number of temporal layer is greater than 2, then the minimum DPB size
for frame reordering needs to be (maxTemporalLayers - 2) * 2. Therefore,
set the NV_ENC_CONFIG_H264::maxNumRefFrames to be greater than or equal to
this value. Note that the default value of NV_ENC_CONFIG_H264::maxNumRefFrames is
NV_ENC_CAPS::NV_ENC_CAPS_NUM_MAX_TEMPORAL_LAYERS.

 5. By default, SVC prefix NALU is added when temporal SVC is enabled. To disable this, set
NV_ENC_CONFIG_H264::disableSVCPrefixNalu = 0.

 6. NVENCODE API supports addition of scalability information SEI message in the bitstream.
To enable this SEI, set NV_ENC_CONFIG_H264::enableScalabilityInfoSEI = 1. This SEI

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 35

will be added with every IDR frame in the encoded bitstream. Note that only a subset of fields
related to temporal scalability is currently supported in this SEI.

When temporal SVC is enabled, only base layer frames can be marked as long term references.

Temporal SVC is currently not supported with B-frames. The field
NV_ENC_CONFIG::frameIntervalP will be ignored when temporal SVC is enabled.

8.12. Error Resiliency features
In a typical scenario involving video streaming, it is common to have bit errors at the client
decoder. To minimize the impact of these errors and to recover from such errors, NVENCODE
API provides a few error resiliency features which are explained in this section.

Reference Picture Invalidation

NVENCODE API provides a mechanism for invalidating certain pictures when a picture
decoded by a client is found to be corrupt by the decoder (client side). Such invalidation
is achieved by using the API NvEncInvalidateRefFrames. The client can prevent further
corruption by asking the encoder on the streaming server to invalidate this frame,
which will prevent all the subsequent frames from using the current frame as reference
frame for motion estimation. The server then uses older short term and long term
frames for reference based on whatever is available for reference. In case no frame is
available for reference the current frame will be encoded as intra frame. The parameter
NV_ENC_CONFIG_H264::maxNumRefFrames, NV_ENC_CONFIG_HEVC::maxNumRefFramesInDPB
or NV_ENC_CONFIG_AV1::maxNumRefFramesInDPB determines the number of frames in DPB
and setting this to a large value will allow older frames to be available in the DPB even when
some frames have been invalidated, and allow for better picture quality as compared to an intra
frame that will be coded in the absence of no reference frames.

The specific frame to be invalidated via API NvEncInvalidateRefFrames is identified using a
unique number for each frame, referred to as timestamp. This is the timestamp sent to the
encoder via field NV_ENC_PIC_PARAMS::inputTimeStamp when encoding the picture. This can
be any monotonically increasing unique number. In its most common incarnation, the unique
number can be the presentation timestamp for the picture. The encoder stores the frames in
its DPB using inputTimeStamp as the unique identifier and uses that identifier to invalidate the
corresponding frame when requested via API NvEncInvalidateRefFrames.

Intra Refresh

Reference picture invalidation technique described in Section Reference Picture Invalidation
depends upon availability of an out-of-band upstream channel to report bitstream errors at the
decoder (client side). When such an upstream channel is not available, or in situations where
bitstream is more likely to suffer from more frequent errors, intra-refresh mechanism can be
used as an error recovery mechanism. Also, when using infinite GOP length, no intra frames are
transmitted and intra refresh may be a useful mechanism for recovery from transmission errors.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 36

NVENCODE API provides a mechanism to implement intra refresh. The enableIntraRefresh
flag should be set to 1 in order to enable intra refresh. intraRefreshPeriod determines the
period after which intra refresh would happen again and intraRefreshCnt sets the number of
frames over which intra refresh would happen.

Intra Refresh causes consecutive sections of the frames to be encoded using intra
macroblocks, over intraRefreshCnt consecutive frames. Then the whole cycle repeats
after intraRefreshPeriod frames from the first intra-refresh frame. It is essential to set
intraRefreshPeriod and intraRefreshCnt appropriately based on the probability of errors
that may occur during transmission. For example, intraRefreshPeriod may be small like
30 for a highly error prone network thus enabling recovery every second for a 30 FPS video
stream. For networks that have lesser chances of error, the value may be set higher. Lower value
of intraRefreshPeriod comes with a slightly lower quality as a larger portion of the overall
macroblocks in an intra refresh period are forced to be intra coded, but provides faster recovery
from network errors.

intraRefreshCnt determines the number of frames over which the intra refresh will happen
within an intra refresh period. A smaller value of intraRefreshCnt will refresh the entire
frame quickly (instead of refreshing it slowly in bands) and hence enable a faster error recovery.
However, a lower intraRefreshCnt also means sending a larger number of intra macroblocks
per frame and hence slightly lower quality.

The default NVENCODE API Intra Refresh behavior is slice based for H.264/HEVC and tile based
for AV1 i.e frames in an intra refresh wave will have multiple slices/tiles with one slice/tile
containing only intra coded MBs / CTUs / SBs.

‣ For AV1, the number of tiles used during the intra refresh wave is automatically determined
by the driver based on the value of intraRefreshCnt and intraRefreshPeriod. Any
custom tiles configuration specified by the application will be ignored for the duration of the
intra refresh wave.

‣ If the application does not explicitly specify the number of slices or if the specified number
of slices are less than 3, during the intra refresh wave, the driver will set 3 slices per frame.

‣ For NV_ENC_CONFIG_H264::sliceMode = 0 (MB based slices), 2 (MB row based slices) and
3 (number of slices), the driver will maintain slice count, equal to minimum of: the slice
count calculated from slice mode setting and intraRefreshCnt number of slices during
intra refresh period.

‣ For NV_ENC_CONFIG_H264::sliceMode = 1 (byte based slices), the number of slices during
an intra refresh wave is always 3.

For certain usecases, clients may want to avoid multiple slices in a frame. In such scenarios,
clients can enable single slice intra refresh.

‣ Query the support for single slice intra refresh for the current driver by calling the API
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SINGLE_SLICE_INTRA_REFRESH.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 37

‣ If supported, single slice intra refresh can be enabled by setting
NV_ENC_CONFIG_H264::singleSliceIntraRefresh /
NV_ENC_CONFIG_HEVC::singleSliceIntraRefresh.

In case there in a resolution reconfiguration in the middle of an intra refresh wave,
the ongoing wave will be terminated immediately. The next wave will start after
NV_ENC_CONFIG_H264::intraRefreshPeriod number of frames.

Intra refresh is applied in encode order and only on frames which can be used as reference.

8.13. Multi NVENC Split Frame Encoding in
HEVC and AV1

When Split frame encoding is enabled, each input frame is partitioned into horizontal strips
which are encoded independently and simultaneously by separate NVENCs, usually resulting in
increased encoding speed compared to single NVENC encoding.

Please note the following:

 1. Though the feature improves the encoding speed it degrades quality.
 2. The overall encode throughput (total number of frames encoded in a certain time interval

when all NVENCs are fully utilized) will remain the same.
 3. The feature is available only for HEVC and AV1.

This feature should therefore be used to achieve higher encoding speeds in a single encode
session which would not have been possible on a single NVENC because horizontal strips of
particular input stream are encoded simultaneously across multiple NVENCs. As mentioned
above, this feature does not impact the overall throughput when multiple encode sessions are
created to fully utilize all the NVENCs.

There are two modes of enabling the feature listed below.

1. Auto Mode: The conditions that automatically trigger this feature are:

‣ Number of NVENCs on GPU: 2 or more.

‣ Frame height: must be 2112 pixels or more for HEVC and 2048 pixels or more for AV1.

‣ Preset and Tuning Info configuration: Table 2 summarizes the preset and tuning info
combinations that enable split frame encoding

Table 2. Preset configurations enabling Split Frame Encoding

PresetTuning
Info P1 P2 P3 P4 P5 P6 P7
High
Quality

Yes Yes No No No No No

Low
Latency

Yes Yes Yes Yes No No No

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 38

PresetTuning
Info P1 P2 P3 P4 P5 P6 P7
Ultra Low
Latency

Yes Yes Yes Yes No No No

2. User controlled mode:

The following modes are supported for split encoding in case of HEVC and AV1:

‣ NV_ENC_SPLIT_ENCODE_MODE::NV_ENC_SPLIT_AUTO_MODE: In this mode split
encoding will be automatically enabled only in configurations described above. It will be
disabled in all other configurations.

‣ NV_ENC_SPLIT_ENCODE_MODE::NV_ENC_SPLIT_AUTO_FORCED_MODE: Split encoding
will be enabled for all configurations with number of horizontal strips automatically selected
by driver for optimal performance.

‣ NV_ENC_SPLIT_ENCODE_MODE::NV_ENC_SPLIT_TWO_FORCED_MODE: Split encoding
will be enabled for all configurations with number of horizontal strips forced to 2 when
number of NVENCs > 1.

‣ NV_ENC_SPLIT_ENCODE_MODE::NV_ENC_SPLIT_THREE_FORCED_MODE: Split encoding
will be enabled for all configurations with number of horizontal strips forced to 3 when
number of NVENCs > 2, NVENC number of strips otherwise.

‣ NV_ENC_SPLIT_ENCODE_MODE::NV_ENC_SPLIT_DISABLE: Split encoding will be
disabled for all configurations.

Note that a few encoding features are incompatible with the use of split frame encoding. Split
frame encoding is always disabled when any of the following features is in use:

 1. Weighted Prediction (HEVC).
 2. Alpha Layer Encoding (HEVC).
 3. Bitstream Subframe Readback Mode (HEVC)
 4. Bitstream Output in Video Memory (HEVC/AV1)

8.14. NVENC Reconstructed Frame Output
Starting SDK 12.1, NVENCODE API supports reconstructed frame output for H.264, HEVC
and AV1 encode for Turing and later GPUs. This is helpful in use-cases which require
reconstructed frame output to access the encode quality and therefore eliminates the need for
decoding the stream leading to overall improvement in performance. The reconstructed frame
buffer should be allocated by the client application as a 2-dimensional buffer. The availability
of this feature in the current hardware can also be queried using NvEncGetEncodeCaps()
and checking for NV_ENC_CAPS_OUTPUT_RECON_SURFACE. Supported buffer formats are:
NV_ENC_BUFFER_FORMAT_NV12 and NV_ENC_BUFFER_FORMAT_YUV420_10BIT. For CUDA
interface NV_ENC_BUFFER_FORMAT_YUV444 and NV_ENC_BUFFER_FORMAT_YUV444_10BIT
are also supported.

Follow these steps for the reconstructed frame output:

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 39

 1. Set NV_ENC_INITIALIZE_PARAMS::enableReconFrameOutput = 1 when calling
nvEncInitializeEncoder().

 2. Allocate 2-dimensional buffer for NVENC to write the reconstructed frame output.

‣ For CUDA interface, this buffer can be created using cuMemAllocPitch().

‣ For DirectX 9 interface, this buffer can be created using
CreateOffscreenPlainSurface() or CreateSurface() APIs.

‣ For DirectX 11 interface, this buffer can be created using DirectX 11
CreateTexture2D() API, by specifying usage = D3D11_USAGE_DEFAULT; BindFlags =
(D3D11_BIND_SHADER_RESOURCE); and CPUAccessFlags = 0;

 3. Register this buffer using nvEncRegisterResource(), by specifying:

‣ NV_ENC_REGISTER_RESOURCE::bufferUsage = NV_ENC_OUTPUT_RECON

‣ Set NV_ENC_REGISTER_RESOURCE::bufferFormat to desired value.
NvEncRegisterResource() will return a registered handle in
NV_ENC_REGISTER_RESOURCE::registeredResource.

 4. Set NV_ENC_MAP_INPUT_RESOURCE::registeredResource to
NV_ENC_REGISTER_RESOURCE::registeredResource, which was obtained in the previous
step.

 5. Call nvEncMapInputResource(). It will return a mapped resource handle in
NV_ENC_MAP_INPUT_RESOURCE::mappedResource.

 6. Call nvEncEncodePicture() by setting NV_ENC_PIC_PARAMS::outputReconBuffer to
NV_ENC_MAP_INPUT_RESOURCE:: mappedResource and
NV_ENC_PIC_PARAMS::encodePicFlags to NV_ENC_PIC_FLAG_OUTPUT_RECON_FRAME.

When reading the reconstructed output, observe the following:

After calling nvEncEncodePicture(), client can use the output buffer for further processing
only after un-mapping this output buffer.

When operating in asynchronous mode, client application should wait on event before reading
the output. In synchronous mode no event is triggered, and the synchronization is handled
internally by NVIDIA driver.

To access the reconstructed frame output, follow these steps:

 1. Client must un-map the reconstructed frame buffer by calling
nvEncUnmapInputResource() with mapped resource handle
NV_ENC_MAP_INPUT_RESOURCE::mappedResource returned by
nvEncMapInputResource(). After this, the output reconstructed buffer can be used for
further processing/reading etc.

 2. If CUDA mode is specified, to get the output in system memory, reconstructed output buffer
can be read by calling any CUDA API (e.g. cuMemcpyDtoH()). The driver ensures that the
output buffer is read only after NVENC has finished writing the output in it.

 3. For DX11 mode, any DirectX 11 API can be used to read the output. The driver ensures that
the output buffer is read only after NVENC has finished writing the output in it. To get the
output in system memory, CopyResource() (which is a DirectX 11 API) can be used to copy
the data in a CPU readable staging buffer. This staging buffer then can be read after calling
Map()which is a DirectX 11 API.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 40

8.15. Encoded Frame Stats
Starting SDK 12.1, NVENCODE API supports encoded frame stats output for H.264, HEVC and AV1
encode for Turing and later GPUs. The availability of this feature in the current hardware can be
queried using NvEncGetEncodeCaps() and checking for NV_ENC_CAPS_OUTPUT_ROW_STATS or
NV_ENC_CAPS_OUTPUT_BLOCK_STATS. This is helpful in use-cases which require encoded frame
stats: QP and bitcount, at row or block level.

Follow these steps for the encoded frame output stats:

 1. Set NV_ENC_INITIALIZE_PARAMS::enableOutputStats = 1
and NV_ENC_INITIALIZE_PARAMS::outputStatsLevel to
NV_ENC_OUTPUT_STATS_ROW_LEVEL or NV_ENC_OUTPUT_STATS_BLOCK_LEVEL when calling
nvEncInitializeEncoder(). NV_ENC_OUTPUT_STATS_ROW_LEVEL is supported for Turing
and Ampere GPUs. NV_ENC_OUTPUT_STATS_BLOCK_LEVEL is supported for ADA and later
architectures.

 2. Set the following parameters to get encoded frame stats for every row:

 a). NV_ENC_LOCK_BITSTREAM::
outputStatsPtrSize=sizeof(NV_ENC_OUTPUT_STATS_ROW) x Number of rows.

 b). Number of rows for H.264 = (PicHeight + 15) >> 4
 c). Number of rows for HEVC = (PicHeight + 31) >> 5

 3. Set the following parameters to get encoded frame stats for every block:

 a). NV_ENC_LOCK_BITSTREAM::
outputStatsPtrSize=sizeof(NV_ENC_OUTPUT_STATS_BLOCK) x Number of
blocks.

 b). Number of blocks for H.264 = (PicWidth + 15) >> 4 * (PicHeight + 15) >> 4
 c). Number of blocks for HEVC = (PicWidth + 31) >> 5 * (PicHeight + 31) >> 5
 d). Number of blocks for AV1 = (PicWidth + 63) >> 6 * (PicHeight + 63) >> 6

 4. Allocate system memory buffer of size NV_ENC_LOCK_BITSTREAM::outputStatsPtrSize
and assign it to NV_ENC_LOCK_BITSTREAM::outputStatsPtr and then call
NvEncLockBitstream() API.

 5. Read the encoded frame stats in NV_ENC_OUTPUT_STATS_BLOCK or
NV_ENC_OUTPUT_STATS_ROW format from NV_ENC_LOCK_BITSTREAM::outputStatsPtr.

 6. Call NvEncUnlockBitstream() API.

8.16. Iterative encoding
Starting SDK 12.1, NVENCODE API supports iterative encoding for H.264, HEVC and
AV1 encoders for Turing and later GPUs. The availability of this feature in the
current hardware can be queried using NvEncGetEncodeCaps() and checking for
NV_ENC_CAPS_DISABLE_ENC_STATE_ADVANCE. Using this feature the same frame can be
encoded multiple times, for e.g., each time with a different QP or delta-QP. NVENC stores all

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 41

new states, corresponding to each of these iterations in its internal state buffers. NVENC state
can be then advanced to any one of the iterations using NvEncRestoreEncoderState() API.

Steps to enable iterative encoding:

 1. Set NV_ENC_INITIALIZE_PARAMS::numStateBuffers to desired value when calling
NvEncInitializeEncoder() API. Maximum number of state buffers which can be allocated
is 16 for H.264 and HEVC and 32 for AV1.

Application can call NvEncReconfigureEncoder() API to set desired encoding parameters,
for e.g. different QP values, before every iteration of the frame. Alternatively, it can also set
NV_ENC_PIC_PARAMS::qpDeltaMap array to desired value for encoding current iteration of the
frame.

Iterative encoding when picture type decision(PTD) is taken by application:

Follow these steps to encode the same frame multiple times:

 1. Set NV_ENC_PIC_PARAMS::encodePicFlags to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE.

 2. Set NV_ENC_PIC_PARAMS::frameIdx to a valid value. It must be the same for all iterations
of the frame.

 3. Set NV_ENC_PIC_PARAMS::stateBufferIdx to the desired index to save the encoder state
in internal state buffer. Different state buffer index should be specified for each iteration, so
that it can be used later to advance the encoder state.

 4. Call NvEncEncodePicture() API. It must return NV_ENC_SUCCESS.

 5. Repeat above steps 1-4 as many times as needed to encode multiple iterations of the same
frame with different encoding parameters. Since encoder states are saved in internal state
buffers, the maximum number of iterations for the frame will depend on the number of state
buffers which are available to save the state.

 6. Call NvEncLockBitstream() API for all iterations to get the encoded output. Application can
also call NvEncLockBitstream() API immediately after every iteration.

 7. Select internal state buffer index for advancing the encoder state and assign it to
NV_ENC_RESTORE_ENCODER_STATE_PARAMS::bufferIdx for the chosen iteration. Also,
select the type of state i.e. NV_ENC_STATE_RESTORE_TYPE to update and assign it to
NV_ENC_RESTORE_ENCODER_STATE_PARAMS::state. Call NvEncRestoreEncoderState()
API.

 8. If application choses a state type other than NV_ENC_STATE_RESTORE_FULL,
then the application must call NvEncRestoreEncoderState()

API twice, once with NV_ENC_RESTORE_ENCODER_STATE_PARAMS::state

set to NV_ENC_STATE_RESTORE_ENCODE and then again with
NV_ENC_RESTORE_ENCODER_STATE_PARAMS::state set to
NV_ENC_STATE_RESTORE_RATE_CONTROL, each time with desired state buffer index and not
necessarily in same order.

 9. To encode the next frame, increment NV_ENC_PIC_PARAMS::frameIdx and repeat steps 1-8.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 42

Iterative encoding for H.264 and HEVC when picture type decision(PTD) is taken
by NVENCODE API

Follow these steps to encode the same frame multiple times:

 1. Set NV_ENC_PIC_PARAMS::encodePicFlags, NV_ENC_PIC_PARAMS::frameIdx and
NV_ENC_PIC_PARAMS::stateBufferIdx to valid values, as mentioned in above section
and call NvEncEncodePicture() API. This API will return either NV_ENC_SUCCESS or
NV_ENC_ERR_NEED_MORE_INPUT status.

 2. If it returns NV_ENC_SUCCESS, the application can do iterative encoding on this frame now.

 3. If it returns NV_ENC_ERR_NEED_MORE_INPUT, the application can not do the iterative
encoding on this frame right now. Application must send the next frames for encoding, until it
returns NV_ENC_SUCCESS. Application can now do iterative encoding on this frame for which
NV_ENC_SUCCESS is returned.

 4. Call NvEncLockBitstream() API to get the encoded output for the first iteration.

 a). If NV_ENC_LOCK_BITSTREAM::frameIdxDisplay is same as
NV_ENC_PIC_PARAMS::frameIdx in step 1 or 3, NvEncLockBitstream() API must be
called for all remaining iterations.

 b). In some cases, NV_ENC_LOCK_BITSTREAM::frameIdxDisplay may be different
than NV_ENC_PIC_PARAMS::frameIdx indicating different frame is received than
the one on which iterative encoding was done in step 1 or 3. In this
case, application must do iterative encoding on the frame corresponding to
NV_ENC_LOCK_BITSTREAM::frameIdxDisplay, if needed. NvEncLockBitstream() API
must be called for all iterations of this frame to get the encoded outputs,
followed by NvEncRestoreEncoderState() API, to restore the state. NVENCODE
API will save encoding parameters for all iterations of the frame corresponding to
NV_ENC_PIC_PARAMS::frameIdx in step 1 or 3 and will send them for encoding after
all previous frames (for which NV_ENC_ERR_NEED_MORE_INPUT status was returned) are
encoded and the encoder state is restored for all of them.

 5. Call NvEncRestoreEncoderState() API for the chosen frame iteration.

 a). If NV_ENC_ERR_NEED_MORE_INPUT was returned for any of the frames, NVENCODE API
will now send one of those frames for encoding.

 b). If NV_ENC_PIC_PARAMS::encodePicFlags is not set to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE for the frame which is sent for
encoding in step a), subsequent frame will also be sent for encoding.

 6. If there are frames for which NV_ENC_ERR_NEED_MORE_INPUT was returned, application
must call NvEncLockBitstream() API. NV_ENC_LOCK_BITSTREAM::frameIdxDisplay will
indicate the frame on which iterative encoding can be done now.

 7. Repeat above step for all frames for which NV_ENC_ERR_NEED_MORE_INPUT status was
returned.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 43

Buffer reordering:

 1. Driver does the buffer reordering when B frames are present. Buffer reordering is done for
output bitstream buffer, completion event and reconstructed frame buffer.

 2. This reordering is done so that the application can get output in decode order and does not
have to take care of picture types.

 3. For state buffer index, there is no reordering.

Following table describes the API calls and the buffers which will have the encoded output,
reconstructed frame output and internal states:

Table 3. API calls for iterative encoding for H.264 and HEVC

S. no. API calls Return parameters Comments

1 NvEncEncodePicture (I1,

N1=1, O1, E1, R1, F1=0)

NV_ENC_SUCCESS

2 NvEncLockBitstream(O1) frameIdxDisplay=1,

picType:

NV_ENC_PIC_TYPE_I

3 NvEncEncodePicture (I2,

N2=2, O2, E2, R2, S1, F2=1)

NV_ENC_ERR

_NEED_MORE_INPUT

4 NvEncEncodePicture (I3,

N3=3, O3, E3, R3, S2, F3=1)

NV_ENC_SUCCESS

5 NvEncEncodePicture (I3,

N3=3, O4, E4, R4, S3, F4=1)

NV_ENC_SUCCESS

6 NvEncLockBitstream(O2) frameIdxDisplay=3,

picType:

NV_ENC_PIC_TYPE_P

Output for iteration
1 of frame 3, Recon

output in R2, Internal
state saved in S2

7 NvEncLockBitstream(O3) frameIdxDisplay=3,

picType:

NV_ENC_PIC_TYPE_P

Output for iteration
2 of frame 3, Recon

output in R3, Internal
state saved in S3

8 NvEncRestoreEncoderState(S2

or S3)

NV_ENC_SUCCESS Frame 2 will be
sent for encoding

9 NvEncLockBitstream (O4) frameIdxDisplay=2,

picType:

NV_ENC_PIC_TYPE_B

Output for iteration
1 of frame 2, Recon

output in R4, Internal
state saved in S1

10 NvEncEncodePicture (I2,

N2=2, O5, E5, R5, S4, F5=1)

NV_ENC_SUCCESS

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 44

S. no. API calls Return parameters Comments

11 NvEncLockBitstream(O5) frameIdxDisplay=2,

picType:

NV_ENC_PIC_TYPE_B

Output for iteration
2 of frame 2, Recon

output in R5, Internal
state saved in S4

12 NvEncRestoreEncoderState(S1

or S4)

NV_ENC_SUCCESS

Note: I1, N1, O1, E1, R1, S1 represent input buffer, frame index, output
buffer, completion event, reconstructed buffer and state buffer index for the first
iteration of the first frame. F1=0 represents NV_ENC_PIC_PARAMS::encodePicFlags.
is not set to NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE. F1=1 represents
NV_ENC_PIC_PARAMS::encodePicFlags is set to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE.

Iterative encoding for AV1 when picture type decision(PTD) is taken by
NVENCODE API:

Due to the presence of non-displayable frames, iterative encoding for AV1 has few differences
when compared with H.264 and HEVC encode. Non-displayable frames are enabled when
NV_ENC_CONFIG::frameIntervalP is set to greater than 1. This section describes those
differences in detail.

Follow these steps to encode the same frame multiple times:

 1. Set NV_ENC_PIC_PARAMS::encodePicFlags, NV_ENC_PIC_PARAMS::frameIdx and
NV_ENC_PIC_PARAMS::stateBufferIdx to valid values, as mentioned in above section
and call NvEncEncodePicture() API. This API will return NV_ENC_SUCCESS or
NV_ENC_ERR_NEED_MORE_INPUT status.

 2. If it returns NV_ENC_SUCCESS, application can do iterative encoding on this frame now.

 3. If it returns NV_ENC_ERR_NEED_MORE_INPUT, the application can not do the iterative
encoding on this frame right now. Application must send the next frames for encoding, until it
returns NV_ENC_SUCCESS. Application can now do iterative encoding on this frame for which
NV_ENC_SUCCESS is returned.

 4. Call NvEncLockBitstream() API to get the encoded output for the first iteration.

 a). If NV_ENC_LOCK_BITSTREAM::frameIdxDisplay is same as
NV_ENC_PIC_PARAMS::frameIdx in step 1 or 3, NvEncLockBitstream() API must be
called for all remaining iterations.

 b). In some cases, NV_ENC_LOCK_BITSTREAM::frameIdxDisplay may be different
than NV_ENC_PIC_PARAMS::frameIdx indicating different frame is received than
the one on which iterative encoding was done in step 1 or 3. In this
case, application must do iterative encoding on the frame corresponding to
NV_ENC_LOCK_BITSTREAM::frameIdxDisplay, if needed. NvEncLockBitstream() API

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 45

must be called for all iterations of this frame to get the encoded outputs,
followed by NvEncRestoreEncoderState() API, to restore the state. NVENCODE
API will save encoding parameters for all iterations for the frame corresponding to
NV_ENC_PIC_PARAMS::frameIdx in step 1 or 3 and will send them for encoding after
all previous frames (for which NV_ENC_ERR_NEED_MORE_INPUT status was returned) are
encoded and the encoder state is restored for all of them.

 c). If NV_ENC_PIC_PARAMS::encodePicFlags was set to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE for
NV_ENC_LOCK_BITSTREAM::frameIdxDisplay frame and there were frames prior to
it for which NV_ENC_ERR_NEED_MORE_INPUT status was returned, then the received
encoded frame will be non-displayable frame.

 d). For any non-displayable frame, corresponding OVERLAY frame would be encoded just
once, after all frames prior to this frame for which NV_ENC_ERR_NEED_MORE_INPUT was
returned are encoded, regardless of the number of iterations for this frame.

 5. Application must call NvEncRestoreEncoderState() API to restore this frame. It may
return NV_ENC_ERR_NEED_MORE_OUTPUT or NV_ENC_SUCCESS status.

 a). If it returns NV_ENC_ERR_NEED_MORE_OUTPUT, application must call
NvEncRestoreEncoderState() API again with an output buffer
as input in NV_ENC_RESTORE_ENCODER_STATE_PARAMS::outputBitstream.
Application must send completion event as input in
NV_ENC_RESTORE_ENCODER_STATE_PARAMS::completionEvent, if asynchronous
mode of encoding is enabled.

 b). If NvEncRestoreEncoderState() API returns NV_ENC_SUCCESS, NVENCODE API will
now send one of the frames for which NV_ENC_ERR_NEED_MORE_INPUT was returned for
encoding.

 c). If NV_ENC_PIC_PARAMS::encodePicFlags is not set to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE for the frame which is sent for
encoding in step b), subsequent frame will also be sent for encoding.

 6. Call NvEncLockBitstream() API if there are frames for which
NV_ENC_ERR_NEED_MORE_OUTPUT was returned.

 a). Application should expect the encoded output for these frames in same order in which
they were sent for encoding.

 b). If NV_ENC_LOCK_BITSTREAM::frameIdxDisplay is not in same order, it indicates that
non-displayable frame is received.

 c). Application can now do iterative encoding on the frame corresponding to
NV_ENC_LOCK_BITSTREAM::frameIdxDisplay, if needed.

 d). For any non-displayable frame, corresponding OVERLAY frame would be encoded just
once, after all frames prior to this frame for which NV_ENC_ERR_NEED_MORE_INPUT was
returned are encoded.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 46

 7. Repeat steps 5) and 6) for all frames for which NV_ENC_ERR_NEED_MORE_OUTPUT was
returned.

Following table describes the API calls and the buffers which will have the encoded output,
reconstructed frame output and internal states:

Table 4. API calls for iterative encoding for AV1.

S. no. API calls Return parameters Comments

1 NvEncEncodePicture (I1,

N1=1, O1, E1, R1, F1=0)

NV_ENC_SUCCESS

2 NvEncLockBitstream(O1) frameIdxDisplay=1,

picType:

NV_ENC_PIC_TYPE_I

Recon output in R1

3 NvEncEncodePicture (I2,

N2=2, O2, E2, R2, S1, F2=1)

NV_ENC_ERR

_NEED_MORE_INPUT

4 NvEncEncodePicture (I3,

N3=3, O3, E3, R3, S2, F3=1)

NV_ENC_SUCCESS

5 NvEncEncodePicture (I3,

N3=3, O4, E4, R4, S3, F4=1)

NV_ENC_SUCCESS

6 NvEncLockBitstream(O2) frameIdxDisplay=3,

picType:

NV_ENC_PIC_TYPE_P

Output for iteration
1 of frame 3, Recon

output in R3, Internal
state saved in S2 Non-

displayable frame

7 NvEncLockBitstream(O3) frameIdxDisplay=3,

picType:

NV_ENC_PIC_TYPE_P

Output for iteration
2 of frame 3, Recon

output in R4, Internal
state saved in S3, Non-

displayable frame

8 NvEncRestoreEncoderState(S2

or S3)

NV_ENC_ERR_NEED

_MORE_OUTPUT

Application must
call this API again

9 NvEncRestoreEncoderState(O5,

E5, S2 or S3)

NV_ENC_SUCCESS Frame 2 will be
sent for encoding

10 NvEncLockBitstream (O4) frameIdxDisplay=2,

picType:

NV_ENC_PIC_TYPE_B

Output for iteration
1 of frame 2, Recon

output in R2, Internal
state saved in S1

11 NvEncEncodePicture (I2,

N2=2, O6, E6, R5, S4, F5=1)

NV_ENC_SUCCESS

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 47

S. no. API calls Return parameters Comments

12 NvEncLockBitstream(O5) frameIdxDisplay=2,

picType:

NV_ENC_PIC_TYPE_B

Output for iteration
2 of frame 2, Recon

output in R5, Internal
state saved in S4

13 NvEncRestoreEncoderState(S1

or S4)

NV_ENC_SUCCESS OVERLAY frame
corresponding to
frame 3 will be

sent for encoding

14 NvEncLockBitstream(O6) frameIdxDisplay=3,

picType:

NV_ENC_PIC_TYPE_P

OVERLAY frame
corresponding

to frame 3

Note: I1, N1, O1, E1, R1, S1 represent input buffer, frame index, output
buffer, completion event, reconstructed buffer, state buffer index for the first
iteration of the first frame. F1=0 represents NV_ENC_PIC_PARAMS::encodePicFlags.
is not set to NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE. F1=1 represents
NV_ENC_PIC_PARAMS::encodePicFlags is set to
NV_ENC_PIC_FLAG_DISABLE_ENC_STATE_ADVANCE. When picture type decision is taken
by application, there is no reordering for reconstructed buffer. Application must use
NV_ENC_LOCK_BITSTREAM::frameIdxDisplay to track this buffer.

8.17. External lookahead
Starting SDK 12.1, NVENCODE API supports external lookahead for H.264, HEVC and AV1
encoders for Turing and later GPUs. External lookahead gives same result as internal lookahead,
which is enabled by just setting NV_ENC_RC_PARAMS:: lookaheadDepth. Internal lookahead
is not supported for iterative encoding. So, the advantage external lookahead feature has over
internal lookahead is that it can be used along with iterative encoding.

Follow these steps for using external lookahead:

 1. Set NV_ENC_RC_PARAMS::enableExtLookahead to 1 and Set
NV_ENC_RC_PARAMS::lookaheadDepth to the desired value when calling
nvEncInitializeEncoder() API.

Application needs to do the following for every frame:

 1. Call NvEncLookaheadPicture() with NV_ENC_LOOKAHEAD_PIC_PARAMS::inputBuffer
set to the pointer obtained from ::NvEncCreateInputBuffer() or
::NvEncMapInputResource() APIs.

 2. For lookahead depth N, application must call NvEncLookaheadPicture () API N+1 times,
before calling NvEncEncodePicture() API for the first frame.

Eg. For lookahead depth equal to 4:

 1. Call NvEncLookaheadPicture() API for frame 0

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 48

 2. Call NvEncLookaheadPicture() API for frame 1
 3. Call NvEncLookaheadPicture() API for frame 2
 4. Call NvEncLookaheadPicture() API for frame 3
 5. Call NvEncLookaheadPicture() API for frame 4
 6. Call NvEncEncodePicture() API for frame 0
 7. Call NvEncLookaheadPicture() API for frame 5
 8. Call NvEncEncodePicture() API for frame 1
 9. Call NvEncLookaheadPicture() API for frame 6
 10.So on…

8.18. Unidirectional B Frames
Unidirectional B frames use past frames only for both L0 and L1 reference list and avoid the
latency issues observed with conventional B frames. Therefore they can be used in place of
P frames especially in low latency encoding. Unidirectional B frames improve video encoding
quality and has little performance impact.

To use the feature, follow these steps:

‣ Query availability of the feature using NvEncGetEncodeCaps API and checking for
NV_ENC_CAPS_SUPPORT_UNIDIRECTIONAL_B in the return value.

‣ During encoder initialization, set enableUniDirectionalB = 1:

‣ This feature is currently supported for HEVC.

8.19. Lookahead Level
Lookahead level improves the video encoding quality by enabling the encoder to buffer the
specified number of frames, estimate their complexity and allocate the bits appropriately among
these frames proportional to their complexity. It determines the propgation of CTBs and assigns
lower QP values to CTBs that propagate the maximum and also improves the video encoder's
rate control accuracy. There are 4 different lookahead levels that provide for different quality
and performance trade offs. NV_ENC_LOOKAHEAD_LEVEL_0 has the highest performance
while NV_ENC_LOOKAHEAD_LEVEL_3 has the highest quality. Users can select the appropriate
lookahead Level based on their quality/performance needs

To use this feature, the client must follow these steps:

 1. The availability of the feature in the current hardware can be queried using
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_LOOKAHEAD_LEVEL.

 2. Lookahead needs to be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.enableLookahead = 1.

 3. Lookahead level needs to be set during initialization by
setting NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.lookaheadLevel =
NV_ENC_LOOKAHEAD_LEVEL_0...3.

Advanced Features and Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 49

 4. The number of frames to be looked ahead should be set in
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.lookaheadDepth which can
be up to 32.

 5. When the feature is enabled, frames are queued up in the encoder and hence
NvEncEncodePicture will return NV_ENC_ERR_NEED_MORE_INPUT until the encoder has
sufficient number of input frames to satisfy the look-ahead requirement. Frames should be
continuously fed in until NvEncEncodePicture returns NV_ENC_SUCCESS.

8.20. Temporal Filter
Temporal Filter tries to filter a frame based on neighbouring past and future frames and is very
for natural video content captured using a camera, that would likely have sensor/other noise.
Temporal Filter improves the objective quality of the video and is very useful in case of latency
tolerant encoding.

To use temporal filter, follow these steps in your application.

 1. Query the availability of temporal filter for the current hardware by calling the API
NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_TEMPORAL_FILTER.

 2. If supported, temporal filter can be enabled during initialization by setting
NV_ENC_CONFIG_HEVC::tfLevel = NV_ENC_TEMPORAL_FILTER_LEVEL_4.

Temporal Filter uses CUDA pre-processing and hence requires CUDA processing power,
depending upon resolution and content.

Enabling temporal filter may result in minor degradation in encoder performance.

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 50

Chapter 9. Recommended NVENC
Settings

The NVIDIA hardware video encoder is used for several purposes in various applications. Some
of the common applications include: Video-recording (archiving), game-casting (broadcasting/
multicasting video gameplay online), transcoding (live and video-on-demand) and streaming
(games or live content). Each of these use-cases has its unique requirements for quality,
bitrate, latency tolerance, performance constraints etc. Although NVIDIA encoder interface
provides flexibility to control the settings with many API’s, the table below can be used as a
general guideline for recommended settings for some of the popular use-cases to deliver the
best encoded bitstream quality. These recommendations are particularly applicable to GPUs
based on second generation Maxwell architecture beyond. For earlier GPUs (Kepler and first-
generation Maxwell), it is recommended that clients use the information in Table 5 as a starting
point and adjust the settings to achieve appropriate performance-quality tradeoff.

Table 5. Recommended NVENC settings for various use-cases

Use-case Recommended settings for optimal quality and performance

Recording/Archiving

‣ High Quality Tuning Info / Ultra High Quality Tuning Info

‣ Rate control mode = VBR

‣ Very large VBV buffer size (4 seconds)

‣ B Frames*

‣ Look-ahead

‣ B frame as reference

‣ Finite GOP length (2 seconds)

‣ Adaptive quantization (AQ) enabled**

Game-casting &

cloud transcoding

‣ High Quality Tuning Info / Ultra High Quality Tuning Info

‣ Rate control mode = CBR

‣ Medium VBV buffer size (1 second)

‣ B Frames*

‣ Look-ahead

Recommended NVENC Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 51

Use-case Recommended settings for optimal quality and performance
‣ B frame as reference

‣ Finite GOP length (2 seconds)

‣ Adaptive quantization (AQ) enabled**

Low-latency use cases like
game-streaming, video
conferencing etc.

‣ Ultra-low latency or low latency Tuning Info

‣ Rate control mode = CBR

‣ Multi Pass – Quarter/Full (evaluate and decide)

‣ Very low VBV buffer size (e.g. single frame = bitrate/framerate)

‣ Unidirectional B Frames

‣ Infinite GOP length

‣ Adaptive quantization (AQ) enabled**

‣ Long term reference pictures***

‣ Intra refresh***

‣ Non-reference P frames***

‣ Force IDR***

Lossless Encoding ‣ Lossless Tuning Info

*: Recommended for low motion games and natural video.

**: Recommended on second generation Maxwell GPUs and above.

***: These features are useful for error recovery during transmission across noisy mediums.

For usecases where the client requires reduced video memory footprint, following guidelines
should be followed.

‣ Avoid using B-frames. B-frames requires additional buffers for reordering, hence avoiding
B-frames would result to savings in video memory usage.

‣ Reduce maximum number of reference frames. Reducing number of maximum reference
frames results in NVIDIA display driver allocating lesser number of buffers internally thereby
reducing video memory footprint.

‣ Use single pass rate control modes. Two pass rate control consume additional video
memory in comparison to single pass due to additional allocations for first pass encoding.
Two pass rate control mode with first pass with full resolution consumes more than first
pass with quarter resolution.

‣ Avoid Adaptive Quantization / Weighted Prediction. Features such as Adaptive Quantization /
Weighted Prediction allocate additional buffers in video memory. These allocations can be
avoided if these features are not used.

‣ Avoid Lookahead. Lookahead allocates additional buffers in video memory for frames that
are buffered in the lookahead queue.

‣ Avoid Temporal Filter. Temporal filter requires neighbouring frames and and allocates
additional buffers in the video memory.

Recommended NVENC Settings

NVIDIA VIDEO CODEC SDK - ENCODER vNVENCODEAPI_PG-06155-001_v11 | 52

‣ Avoid UHQ Tuning Info. UHQ Tuning Info enables lookahead and temporal Filter, that have
higher memory requirements.

Note, however, that the above guidelines may result in some loss in encode quality. Clients are,
therefore, recommended to do a proper evaluation to achieve right balance between encoded
quality, speed and memory consumption.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise agreed in
an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, Jetson, Kepler, Maxwell, NCCL,
Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal,
SDK Manager, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks
of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2010-2024 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Basic Encoding Flow
	Setting Up Hardware for Encoding
	3.1. Opening an Encode Session
	3.1.1. Initializing encode device
	3.1.1.1. DirectX 9
	3.1.1.2. DirectX 10
	3.1.1.3. DirectX 11
	3.1.1.4. DirectX 12
	3.1.1.5. CUDA
	3.1.1.6. OpenGL

	3.2. Selecting Encoder Codec GUID
	3.3. Encoder TUNING INFO AND Preset Configurations
	3.3.1. Enumerating preset GUIDs
	3.3.2. Selecting encoder preset configuration

	3.4. Selecting an Encoder Profile
	3.5. Getting Supported List of Input Formats
	3.6. Querying encoder Capabilities
	3.7. Initializing the Hardware Encoder Session
	3.8. Encode Session Attributes
	3.8.1. Configuring encode session attributes
	3.8.1.1. Session parameters
	3.8.1.2. Advanced codec-level parameters
	3.8.1.3. Advanced codec-specific parameters

	3.8.2. Finalizing codec configuration for encoding
	3.8.2.1. High-level control using presets
	3.8.2.2. Finer control by overriding preset parameters

	3.8.3. Rate control
	3.8.4. Multi pass frame encoding
	3.8.5. Setting encode session attributes
	3.8.5.1. Mode of operation
	3.8.5.2. Picture-type decision

	3.9. Creating Resources Required to Hold Input/output Data
	3.10. Retrieving Sequence Parameters

	Encoding the Video Stream
	4.1. Preparing Input Buffers for Encoding
	4.1.1. Input buffers allocated through NVIDIA Video Encoder Interface
	4.1.2. Input buffers allocated externally
	4.1.3. Input output buffer allocation for DirectX 12

	4.2. Configuring Per-Frame Encode Parameters
	4.2.1. Forcing current frame to be encoded as intra frame
	4.2.2. Forcing current frame to be used as a reference frame
	4.2.3. Forcing current frame to be used as an IDR frame
	4.2.4. Requesting generation of sequence parameters

	4.3. Submitting Input Frame for Encoding
	4.4. Retrieving Encoded Output

	End of Encoding
	5.1. Notifying the End of Input Stream
	5.2. Releasing Resources
	5.3. Closing Encode Session

	Modes of Operation
	6.1. Asynchronous Mode
	6.2. Synchronous Mode
	6.3. Threading Model
	6.4. Encoder Features using CUDA

	Motion Estimation Only Mode
	7.1. Query Motion-Estimation Only Mode Capability
	7.2. Create Resources for Input/Output Data
	7.3. Populate ME only mode settings
	7.4. Run Motion Estimation
	7.5. Enabling Motion estimation for stereo usecases
	7.6. Release the Created Resources

	Advanced Features and Settings
	8.1. Look-ahead
	8.2. B-Frames As Reference
	8.3. Reconfigure API
	8.4. Adaptive Quantization (AQ)
	8.4.1. Spatial AQ
	8.4.2. Temporal AQ

	8.5. High Bit Depth Encoding
	8.6. Weighted Prediction
	8.7. Long-Term Reference in H.264 and HEVC
	8.8. Emphasis MAP
	8.9. NVENC Output in Video Memory
	8.10. Alpha Layer Encoding support in HEVC
	8.11. Temporal Scalable Video Coding (SVC) in H.264
	8.12. Error Resiliency features
	8.13. Multi NVENC Split Frame Encoding in HEVC and AV1
	8.14. NVENC Reconstructed Frame Output
	8.15. Encoded Frame Stats
	8.16. Iterative encoding
	8.17. External lookahead
	8.18. Unidirectional B Frames
	8.19. Lookahead Level
	8.20. Temporal Filter

	Recommended NVENC Settings

