VPI - Vision Programming Interface

0.4.4 Release

Perspective Warp

Overview

Perspective Warp algorithm allows for correcting perspective distortion caused by camera misalignment with respect to the object plane being captured. This is the case when the camera is, for instance, pointing to a frame hanging on a wall, but looking from below. The resulting image won't have opposite sides that are parallel.

If the camera position, tilt and pan relative to the frame are known, a 3x3 pespective transform can be derived, which will warp the image in order to keep frame's opposite sides parallel to each other, as shown below.

Input Transform Corrected

\begin{bmatrix} 0.5386 & 0.1419 & -74\\ -0.4399 & 0.8662 & 291.5\\ -0.0005 & 0.0003 & 1 \end{bmatrix}

Implementation

The perspective transform matrix maps the source image into the destination image. The transform can be described mathematically by the equation below:

\begin{align*} \mathsf{y} = \mathsf{H}_p \mathsf{x} = \begin{bmatrix} \mathsf{A} & \mathsf{t} \\ \mathsf{p}^\intercal & p \end{bmatrix} \mathsf{x} \end{align*}

or, expanding the matrices and vectors:

\begin{align*} \begin{bmatrix} y_u \\ y_v \\ y_w \end{bmatrix} &= \begin{bmatrix} a_{11} & a_{12} & t_u \\ a_{21} & a_{22} & t_v \\ p_0 & p_1 & p \end{bmatrix} \begin{bmatrix}x_u \\ x_v \\ 1 \end{bmatrix} \\ \end{align*}

In these equations,

  • \(\mathsf{H}_p\) is the projection matrix
  • \(\mathsf{x}\) is the homogeneous coordinates in the source image.
  • \(\mathsf{y}\) is the homogeneous coordinates in the destination image.
  • \(\mathsf{A}\) is a 2x2 non-singular matrix with the linear component.
  • \(\mathsf{t}\) is the translation component.
  • \(\mathsf{p},p\) are the projective components. \(p\) is usually 1.

The projection of \(\mathsf{y}\) onto the output image is then given by:

\begin{align*} \begin{bmatrix} y'_u \\ y'_v \end{bmatrix} &= \begin{bmatrix} y_u/y_w \\ y_v/y_w \end{bmatrix} \end{align*}

These equations are efficiently implemented by doing the reverse operation, i.e, applying the inverse transform on destination pixels and sample the corresponding values from source image. If flag VPI_WARP_INVERSE is passed, the operation will assume that user's matrix is already inverted and won't try to invert it again. Pass zero if matrix must be inverted by VPI.

\begin{align*} \mathsf{H}_p^{-1} &= \begin{bmatrix}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{bmatrix} \\ \mathrm{dst}(u,v) &= \mathrm{src}\left(\frac{h_{11}u+h_{12}v+h_{13}}{h_{31}u+h_{32}v+h_{33}},\frac{h_{21}u+h_{22}v+h_{23}}{h_{31}u+h_{32}v+h_{33}}\right), \forall (u,v) \in \mathrm{dst} \end{align*}

The source and destination images may have different dimensions. They must have the same type, though.

Interpolation is used when the source coordinate doesn't fall exactly on a pixel. Perspective Warp accepts the following interpolation modes:

The only boundary mode currently supported is:

  • VPI_BOUNDARY_COND_ZERO - Sampling outside source image boundary will return a black value. This can be seen in the corrected image on top of this page, the black regions fall outside source image.

Usage

  1. Initialization phase
    1. Include the header that defines the Perspective Warp function.
    2. Define the input image object.
      VPIImage input = /*...*/;
    3. Create the output image. In this particular case both input and output have same dimensions, but they could be different. The image formats must match, though.
      uint32_t w, h;
      vpiImageGetSize(input, &w, &h);
      vpiImageGetType(input, &type);
      VPIImage output;
      vpiImageCreate(w, h, type, 0, &output);
    4. Create the algorithm payload in the CPU backend.
    5. Create the stream where the algorithm will be submitted for execution.
      VPIStream stream;
      vpiStreamCreate(0, &stream);
  2. Processing phase
    1. Define the perspective transform to be applied. Note that the transform doesn't have to be the same in every call.
      {
      { 0.5386, 0.1419, -74 },
      {-0.4399, 0.8662, 291.5},
      {-0.0005, 0.0003, 1 }
      };
    2. Submit the algorithm to the stream, along with all parameters. The algorithm will be executed by the backend where the payload was created, CUDA.
      vpiSubmitPerspectiveWarp(stream, warp, input, xform, output, VPI_INTERP_LINEAR, VPI_BOUNDARY_COND_ZERO, 0);
    3. Optionally, wait until the processing is done.
      vpiStreamSync(stream);
  3. Cleanup phase
    1. Free resources held by the stream, the payload, and the input and output images.

For more details, consult the Perspective Warp API reference.

Limitations and Constraints

Constraints for specific backends supersede the ones specified for all backends.

All backends

CUDA and CPU

VIC

PVA

  • Not implemented.

Performance

For information on how to use the performance table below, see Algorithm Performance Tables.
Before comparing measurements, consult Comparing Algorithm Elapsed Times.
For further information on how performance was benchmarked, see Performance Measurement.

 - 
vpiStreamCreate
VPIStatus vpiStreamCreate(uint32_t flags, VPIStream *stream)
Create a stream instance.
vpiPayloadDestroy
void vpiPayloadDestroy(VPIPayload payload)
Deallocates the payload object and all associated resources.
PerspectiveWarp.h
Declares functions that implement the Perspective Warp algorithm.
vpiStreamSync
VPIStatus vpiStreamSync(VPIStream stream)
Blocks the calling thread until all submitted commands in this stream queue are done (queue is empty)...
VPIStream
struct VPIStreamImpl * VPIStream
A handle to a stream.
Definition: Types.h:190
VPI_INTERP_LINEAR
@ VPI_INTERP_LINEAR
Alias to fast linear interpolation.
Definition: Types.h:282
VPIPerspectiveTransform
float VPIPerspectiveTransform[3][3]
Represents a 2D perspective transform.
Definition: Types.h:512
vpiStreamDestroy
void vpiStreamDestroy(VPIStream stream)
Destroy a stream instance and deallocate all HW resources.
vpiImageCreate
VPIStatus vpiImageCreate(uint32_t width, uint32_t height, VPIImageFormat fmt, uint32_t flags, VPIImage *img)
Create an empty image instance with the specified flags.
vpiImageDestroy
void vpiImageDestroy(VPIImage img)
Destroy an image instance.
VPIImage
struct VPIImageImpl * VPIImage
A handle to an image.
Definition: Types.h:196
vpiImageGetSize
VPIStatus vpiImageGetSize(VPIImage img, uint32_t *width, uint32_t *height)
Get the image size in pixels.
VPI_BOUNDARY_COND_ZERO
@ VPI_BOUNDARY_COND_ZERO
All pixels outside the image are considered to be zero.
Definition: Types.h:218
VPIPayload
struct VPIPayloadImpl * VPIPayload
A handle to an algorithm payload.
Definition: Types.h:208
VPI_BACKEND_CPU
@ VPI_BACKEND_CPU
CPU backend.
Definition: Types.h:90
VPIImageFormat
VPIImageFormat
Pre-defined image formats.
Definition: ImageFormat.h:94
vpiCreatePerspectiveWarp
VPIStatus vpiCreatePerspectiveWarp(VPIBackend backend, VPIPayload *payload)
Creates a payload for Perspective Warp algorithm.
vpiSubmitPerspectiveWarp
VPIStatus vpiSubmitPerspectiveWarp(VPIStream stream, VPIPayload payload, VPIImage input, const VPIPerspectiveTransform xform, VPIImage output, VPIInterpolationType interp, VPIBoundaryCond bcond, uint32_t flags)
Submits the Perspective Warp operation to the stream associated with the payload.
vpiImageGetType
VPIStatus vpiImageGetType(VPIImage img, VPIImageFormat *type)
Get the image format.