aiq.agent.tool_calling_agent.agent#
Attributes#
Classes#
State schema for the Tool Calling Agent Graph |
|
Configurable LangGraph Tool Calling Agent. A Tool Calling Agent requires an LLM which supports tool calling. |
Module Contents#
- logger#
- class ToolCallAgentGraphState(/, **data: Any)#
Bases:
pydantic.BaseModel
State schema for the Tool Calling Agent Graph
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class ToolCallAgentGraph(
- llm: langchain_core.language_models.BaseChatModel,
- tools: list[langchain_core.tools.BaseTool],
- callbacks: list[langchain_core.callbacks.base.AsyncCallbackHandler] = None,
- detailed_logs: bool = False,
- handle_tool_errors: bool = True,
Bases:
aiq.agent.base.BaseAgent
Configurable LangGraph Tool Calling Agent. A Tool Calling Agent requires an LLM which supports tool calling. A tool Calling Agent utilizes the tool input parameters to select the optimal tool. Supports handling tool errors. Argument “detailed_logs” toggles logging of inputs, outputs, and intermediate steps.
- tool_caller#
- async agent_node(state: ToolCallAgentGraphState)#
- async conditional_edge(state: ToolCallAgentGraphState)#
- async tool_node(state: ToolCallAgentGraphState)#
- async build_graph()#