CUDA Installation Guide for Microsoft Windows

The installation instructions for the CUDA Toolkit on MS-Windows systems.

1. Introduction

CUDA® is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU).

CUDA was developed with several design goals in mind:
  • Provide a small set of extensions to standard programming languages, like C, that enable a straightforward implementation of parallel algorithms. With CUDA C/C++, programmers can focus on the task of parallelization of the algorithms rather than spending time on their implementation.
  • Support heterogeneous computation where applications use both the CPU and GPU. Serial portions of applications are run on the CPU, and parallel portions are offloaded to the GPU. As such, CUDA can be incrementally applied to existing applications. The CPU and GPU are treated as separate devices that have their own memory spaces. This configuration also allows simultaneous computation on the CPU and GPU without contention for memory resources.
CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing threads. These cores have shared resources including a register file and a shared memory. The on-chip shared memory allows parallel tasks running on these cores to share data without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the CUDA development tools.

1.1. System Requirements

To use CUDA on your system, you will need the following installed:

The next two tables list the currently supported Windows operating systems and compilers.

Table 1. Windows Operating System Support in CUDA 11.2
Operating System Native x86_64 Cross (x86_32 on x86_64)
Windows 10 YES YES
Windows Server 2019 YES NO
Windows Server 2016 YES NO
Table 2. Windows Compiler Support in CUDA 11.2
Compiler* IDE Native x86_64 Cross (x86_32 on x86_64)
MSVC Version 192x Visual Studio 2019 16.x YES NO
MSVC Version 191x Visual Studio 2017 15.x (RTW and all updates) YES NO
MSVC Version 1900 Visual Studio 2015* 14.0 (RTW and updates 1, 2, and 3) YES (deprecated) NO
Visual Studio Community 2015* YES (deprecated) NO

* Support for Visual Studio 2015 is deprecated in release 11.1.

x86_32 support is limited. See the x86 32-bit Support section for details.

For more information on MSVC versions, Visual Studio product versions, visit

1.2. x86 32-bit Support

Native development using the CUDA Toolkit on x86_32 is unsupported. Deployment and execution of CUDA applications on x86_32 is still supported, but is limited to use with GeForce GPUs. To create 32-bit CUDA applications, use the cross-development capabilities of the CUDA Toolkit on x86_64.

Support for developing and running x86 32-bit applications on x86_64 Windows is limited to use with:
  • GeForce GPUs
  • CUDA Driver
  • CUDA Runtime (cudart)
  • CUDA Math Library (math.h)
  • CUDA C++ Compiler (nvcc)
  • CUDA Development Tools

1.3. About This Document

This document is intended for readers familiar with Microsoft Windows operating systems and the Microsoft Visual Studio environment. You do not need previous experience with CUDA or experience with parallel computation.

2. Installing CUDA Development Tools

Basic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.

The setup of CUDA development tools on a system running the appropriate version of Windows consists of a few simple steps:
  • Verify the system has a CUDA-capable GPU.
  • Download the NVIDIA CUDA Toolkit.
  • Install the NVIDIA CUDA Toolkit.
  • Test that the installed software runs correctly and communicates with the hardware.

2.1. Verify You Have a CUDA-Capable GPU

You can verify that you have a CUDA-capable GPU through the Display Adapters section in the Windows Device Manager. Here you will find the vendor name and model of your graphics card(s). If you have an NVIDIA card that is listed in, that GPU is CUDA-capable. The Release Notes for the CUDA Toolkit also contain a list of supported products.

The Windows Device Manager can be opened via the following steps:
  1. Open a run window from the Start Menu
  2. Run:
    control /name Microsoft.DeviceManager

2.2. Download the NVIDIA CUDA Toolkit

The NVIDIA CUDA Toolkit is available at Choose the platform you are using and one of the following installer formats:
  1. Network Installer: A minimal installer which later downloads packages required for installation. Only the packages selected during the selection phase of the installer are downloaded. This installer is useful for users who want to minimize download time.
  2. Full Installer: An installer which contains all the components of the CUDA Toolkit and does not require any further download. This installer is useful for systems which lack network access and for enterprise deployment.

The CUDA Toolkit installs the CUDA driver and tools needed to create, build and run a CUDA application as well as libraries, header files, CUDA samples source code, and other resources.

Download Verification

The download can be verified by comparing the MD5 checksum posted at with that of the downloaded file. If either of the checksums differ, the downloaded file is corrupt and needs to be downloaded again.

To calculate the MD5 checksum of the downloaded file, follow the instructions at

2.3. Install the CUDA Software

Before installing the toolkit, you should read the Release Notes, as they provide details on installation and software functionality.

Note: The driver and toolkit must be installed for CUDA to function. If you have not installed a stand-alone driver, install the driver from the NVIDIA CUDA Toolkit.
Note: The installation may fail if Windows Update starts after the installation has begun. Wait until Windows Update is complete and then try the installation again.

Graphical Installation

Install the CUDA Software by executing the CUDA installer and following the on-screen prompts.

Silent Installation

The installer can be executed in silent mode by executing the package with the -s flag. Additional parameters can be passed which will install specific subpackages instead of all packages. See the table below for a list of all the subpackage names.

Table 3. Possible Subpackage Names
Subpackage Name Subpackage Description
Toolkit Subpackages (defaults to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2)
nvcc_11.2 CUDA compiler.
cuobjdump_11.2 Extracts information from cubin files.
nvprune_11.2 Prunes host object files and libraries to only contain device code for the specified targets.
cupti_11.2 The CUDA Profiler Tools Interface for creating profiling and tracing tools that target CUDA applications.
memcheck_11.2 Functional correctness checking suite.
nvdisasm_11.2 Extracts information from standalone cubin files.
nvprof_11.2 Tool for collecting and viewing CUDA application profiling data from the command-line.
visual_profiler_11.2 GUI profiler for CUDA applications.
visual_studio_integration_11.2 Installs CUDA project wizard and builds customization files in VS.
nsight_vse_11.2 Installs the Nsight Visual Studio Edition plugin in all VS.
nsight_nvtx_11.2 Installs NVTX on Windows.
demo_suite_11.2 Prebuilt demo applications using CUDA.
documentation_11.2 CUDA HTML and PDF documentation files including the CUDA C++ Programming Guide, CUDA C++ Best Practices Guide, CUDA library documentation, etc.
cublas_11.2 CUBLAS runtime libraries.
cublas_dev_11.2 CUBLAS development libraries and headers.
cudart_11.2 CUDART runtime libraries.
cufft_11.2 CUFFT runtime libraries.
cufft_dev_11.2 CUFFT development libraries and headers.
curand_11.2 CURAND runtime libraries.
curand_dev_11.2 CURAND development libraries and headers.
cusolver_11.2 CUSOLVER runtime libraries.
cusolver_dev_11.2 CUSOLVER development libraries and headers.
cusparse_11.2 CUSPARSE runtime libraries.
cusparse_dev_11.2 CUSPARSE development libraries and headers.
npp_11.2 NPP runtime libraries.
npp_dev_11.2 NPP development libraries and headers.
nvrtc_11.2 NVRTC runtime libraries.
nvrtc_dev_11.2 NVRTC development libraries and headers.
nvml_dev_11.2 NVML development libraries and headers.
occupancy_calculator_11.2 Excel spreadsheet used to test occupancy scenarios.
Samples Subpackages (defaults to C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.2)

Source code for many example CUDA applications using supported versions of Visual Studio.

Note: C:\ProgramData\ is a hidden folder. It can be made visible within the Windows Explorer options at (Tools | Options).

Driver Subpackages
Display.Driver The NVIDIA Display Driver. Required to run CUDA applications.
For example, to install only the compiler and driver components:
<PackageName>.exe -s nvcc_11.2 Display.Driver

Extracting and Inspecting the Files Manually

Sometimes it may be desirable to extract or inspect the installable files directly, such as in enterprise deployment, or to browse the files before installation. The full installation package can be extracted using a decompression tool which supports the LZMA compression method, such as 7-zip or WinZip.

Once extracted, the CUDA Toolkit files will be in the CUDAToolkit folder, and similarily for the CUDA Samples and CUDA Visual Studio Integration. Within each directory is a .dll and .nvi file that can be ignored as they are not part of the installable files.

Note: Accessing the files in this manner does not set up any environment settings, such as variables or Visual Studio integration. This is intended for enterprise-level deployment.

2.3.1. Uninstalling the CUDA Software

All subpackages can be uninstalled through the Windows Control Panel by using the Programs and Features widget.

2.4. Use a Suitable Driver Model

On Windows 7 and later, the operating system provides two driver models under which the NVIDIA Driver may operate:

  • The WDDM driver model is used for display devices.
  • The Tesla Compute Cluster (TCC) mode of the NVIDIA Driver is available for non-display devices such as NVIDIA Tesla GPUs, and the GeForce GTX Titan GPUs; it uses the Windows WDM driver model.

The TCC driver mode provides a number of advantages for CUDA applications on GPUs that support this mode. For example:

  • TCC eliminates the timeouts that can occur when running under WDDM due to the Windows Timeout Detection and Recovery mechanism for display devices.
  • TCC allows the use of CUDA with Windows Remote Desktop, which is not possible for WDDM devices.
  • TCC allows the use of CUDA from within processes running as Windows services, which is not possible for WDDM devices.
  • TCC reduces the latency of CUDA kernel launches.

TCC is enabled by default on most recent NVIDIA Tesla GPUs. To check which driver mode is in use and/or to switch driver modes, use the nvidia-smi tool that is included with the NVIDIA Driver installation (see nvidia-smi -h for details).

Note: Keep in mind that when TCC mode is enabled for a particular GPU, that GPU cannot be used as a display device.
Note: NVIDIA GeForce GPUs (excluding GeForce GTX Titan GPUs) do not support TCC mode.

2.5. Verify the Installation

Before continuing, it is important to verify that the CUDA toolkit can find and communicate correctly with the CUDA-capable hardware. To do this, you need to compile and run some of the included sample programs.

2.5.1. Running the Compiled Examples

The version of the CUDA Toolkit can be checked by running nvcc -V in a Command Prompt window. You can display a Command Prompt window by going to:

Start > All Programs > Accessories > Command Prompt

CUDA Samples include sample programs in source form. To verify a correct configuration of the hardware and software, it is highly recommended that you build and run the deviceQuery sample program. The sample can be built using the provided VS solution files, and the compiled executable can be located at:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.2\bin\win64\Release

This assumes that you used the default installation directory structure. If CUDA is installed and configured correctly, the output should look similar to Figure 1.

Figure 1. Valid Results from deviceQuery CUDA Sample
Valid Results from deviceQuery CUDA Sample.

The exact appearance and the output lines might be different on your system. The important outcomes are that a device was found, that the device(s) match what is installed in your system, and that the test passed.

If a CUDA-capable device and the CUDA Driver are installed but deviceQuery reports that no CUDA-capable devices are present, ensure the deivce and driver are properly installed.

Running the bandwidthTest program, located in the same directory as deviceQuery above, ensures that the system and the CUDA-capable device are able to communicate correctly. The output should resemble Figure 2.

Figure 2. Valid Results from bandwidthTest CUDA Sample
Valid Results from bandwidthTest CUDA Sample.

The device name (second line) and the bandwidth numbers vary from system to system. The important items are the second line, which confirms a CUDA device was found, and the second-to-last line, which confirms that all necessary tests passed.

If the tests do not pass, make sure you do have a CUDA-capable NVIDIA GPU on your system and make sure it is properly installed.

To see a graphical representation of what CUDA can do, run the sample Particles executable at
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.2\bin\win64\Release

3. Compiling CUDA Programs

The project files in the CUDA Samples have been designed to provide simple, one-click builds of the programs that include all source code. To build the Windows projects (for release or debug mode), use the provided *.sln solution files for Microsoft Visual Studio 2015 (deprecated in CUDA 11.1), 2017, or 2019. You can use either the solution files located in each of the examples directories in
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.2\<category>\<sample_name>
or the global solution files Samples*.sln located in
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.2

CUDA Samples are organized according to <category>. Each sample is organized into one of the following folders: (0_Simple, 1_Utilities, 2_Graphics, 3_Imaging, 4_Finance, 5_Simulations, 6_Advanced, 7_CUDALibraries).

3.1. Compiling Sample Projects

The bandwidthTest project is a good sample project to build and run. It is located in the NVIDIA Corporation\CUDA Samples\v11.2\1_Utilities\bandwidthTest directory.

If you elected to use the default installation location, the output is placed in CUDA Samples\v11.2\bin\win64\Release. Build the program using the appropriate solution file and run the executable. If all works correctly, the output should be similar to Figure 2.

3.2. Sample Projects

The sample projects come in two configurations: debug and release (where release contains no debugging information) and different Visual Studio projects.

A few of the example projects require some additional setup.

These sample projects also make use of the $CUDA_PATH environment variable to locate where the CUDA Toolkit and the associated .props files are.

The environment variable is set automatically using the Build Customization CUDA 11.2.props file, and is installed automatically as part of the CUDA Toolkit installation process.

Table 4. CUDA Visual Studio .props locations
Visual Studio CUDA 11.2 .props file Install Directory
Visual Studio 2015 (deprecated) C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V140\BuildCustomizations
Visual Studio 2017 <Visual Studio Install Dir>\Common7\IDE\VC\VCTargets\BuildCustomizations
Visual Studio 2019 C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional\MSBuild\Microsoft\VC\v160\BuildCustomizations

You can reference this CUDA 11.2.props file when building your own CUDA applications.

3.3. Build Customizations for New Projects

When creating a new CUDA application, the Visual Studio project file must be configured to include CUDA build customizations. To accomplish this, click File-> New | Project... NVIDIA-> CUDA->, then select a template for your CUDA Toolkit version. For example, selecting the "CUDA 11.2 Runtime" template will configure your project for use with the CUDA 11.2 Toolkit. The new project is technically a C++ project (.vcxproj) that is preconfigured to use NVIDIA's Build Customizations. All standard capabilities of Visual Studio C++ projects will be available.

To specify a custom CUDA Toolkit location, under CUDA C/C++, select Common, and set the CUDA Toolkit Custom Dir field as desired. Note that the selected toolkit must match the version of the Build Customizations.

3.4. Build Customizations for Existing Projects

When adding CUDA acceleration to existing applications, the relevant Visual Studio project files must be updated to include CUDA build customizations. This can be done using one of the following two methods:
  1. Open the Visual Studio project, right click on the project name, and select Build Dependencies->Build Customizations..., then select the CUDA Toolkit version you would like to target.
  2. Alternatively, you can configure your project always to build with the most recently installed version of the CUDA Toolkit. First add a CUDA build customization to your project as above. Then, right click on the project name and select Properties. Under CUDA C/C++, select Common, and set the CUDA Toolkit Custom Dir field to $(CUDA_PATH) . Note that the $(CUDA_PATH) environment variable is set by the installer.

While Option 2 will allow your project to automatically use any new CUDA Toolkit version you may install in the future, selecting the toolkit version explicitly as in Option 1 is often better in practice, because if there are new CUDA configuration options added to the build customization rules accompanying the newer toolkit, you would not see those new options using Option 2.

If you use the $(CUDA_PATH) environment variable to target a version of the CUDA Toolkit for building, and you perform an installation or uninstallation of any version of the CUDA Toolkit, you should validate that the $(CUDA_PATH) environment variable points to the correct installation directory of the CUDA Toolkit for your purposes. You can access the value of the $(CUDA_PATH) environment variable via the following steps:
  1. Open a run window from the Start Menu
  2. Run:
    control sysdm.cpl
  3. Select the "Advanced" tab at the top of the window
  4. Click "Environment Variables" at the bottom of the window

Files which contain CUDA code must be marked as a CUDA C/C++ file. This can done when adding the file by right clicking the project you wish to add the file to, selecting Add\New Item, selecting NVIDIA CUDA 11.2\Code\CUDA C/C++ File, and then selecting the file you wish to add.

Note for advanced users: If you wish to try building your project against a newer CUDA Toolkit without making changes to any of your project files, go to the Visual Studio command prompt, change the current directory to the location of your project, and execute a command such as the following:
msbuild <projectname.extension> /t:Rebuild /p:CudaToolkitDir="drive:/path/to/new/toolkit/"

4. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed, you can examine and enjoy the numerous included programs. To begin using CUDA to accelerate the performance of your own applications, consult the CUDA C Programming Guide, located in the CUDA Toolkit documentation directory.

A number of helpful development tools are included in the CUDA Toolkit or are available for download from the NVIDIA Developer Zone to assist you as you develop your CUDA programs, such as NVIDIA® Nsight™ Visual Studio Edition, NVIDIA Visual Profiler, and cuda-memcheck.

For technical support on programming questions, consult and participate in the developer forums at



This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.


VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.


HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.


OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.


NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.