6.5. Stream Management

This section describes the stream management functions of the CUDA runtime application programming interface.

Typedefs

typedef void(CUDART_CB*  cudaStreamCallback_t )( cudaStream_t stream,  cudaError_t status, void*  userData )

Functions

__host__cudaError_t cudaCtxResetPersistingL2Cache ( void )
Resets all persisting lines in cache to normal status.
__host__cudaError_t cudaStreamAddCallback ( cudaStream_t stream, cudaStreamCallback_t callback, void* userData, unsigned int  flags )
Add a callback to a compute stream.
__host__cudaError_t cudaStreamAttachMemAsync ( cudaStream_t stream, void* devPtr, size_t length = 0, unsigned int  flags = cudaMemAttachSingle )
Attach memory to a stream asynchronously.
__host__cudaError_t cudaStreamBeginCapture ( cudaStream_t stream, cudaStreamCaptureMode mode )
Begins graph capture on a stream.
__host__cudaError_t cudaStreamBeginCaptureToGraph ( cudaStream_t stream, cudaGraph_t graph, const cudaGraphNode_t* dependencies, const cudaGraphEdgeData* dependencyData, size_t numDependencies, cudaStreamCaptureMode mode )
Begins graph capture on a stream to an existing graph.
__host__cudaError_t cudaStreamCopyAttributes ( cudaStream_t dst, cudaStream_t src )
Copies attributes from source stream to destination stream.
__host__cudaError_t cudaStreamCreate ( cudaStream_t* pStream )
Create an asynchronous stream.
__host____device__cudaError_t cudaStreamCreateWithFlags ( cudaStream_t* pStream, unsigned int  flags )
Create an asynchronous stream.
__host__cudaError_t cudaStreamCreateWithPriority ( cudaStream_t* pStream, unsigned int  flags, int  priority )
Create an asynchronous stream with the specified priority.
__host____device__cudaError_t cudaStreamDestroy ( cudaStream_t stream )
Destroys and cleans up an asynchronous stream.
__host__cudaError_t cudaStreamEndCapture ( cudaStream_t stream, cudaGraph_t* pGraph )
Ends capture on a stream, returning the captured graph.
__host__cudaError_t cudaStreamGetAttribute ( cudaStream_t hStream, cudaStreamAttrID attr, cudaStreamAttrValue* value_out )
Queries stream attribute.
__host__cudaError_t cudaStreamGetCaptureInfo ( cudaStream_t stream, cudaStreamCaptureStatus* captureStatus_out, unsigned long long* id_out = 0, cudaGraph_t* graph_out = 0, const cudaGraphNode_t** dependencies_out = 0, size_t* numDependencies_out = 0 )
Query a stream's capture state.
__host__cudaError_t cudaStreamGetCaptureInfo_v3 ( cudaStream_t stream, cudaStreamCaptureStatus* captureStatus_out, unsigned long long* id_out = 0, cudaGraph_t* graph_out = 0, const cudaGraphNode_t** dependencies_out = 0, const cudaGraphEdgeData** edgeData_out = 0, size_t* numDependencies_out = 0 )
Query a stream's capture state (12.3+).
__host__cudaError_t cudaStreamGetFlags ( cudaStream_t hStream, unsigned int* flags )
Query the flags of a stream.
__host__cudaError_t cudaStreamGetId ( cudaStream_t hStream, unsigned long long* streamId )
Query the Id of a stream.
__host__cudaError_t cudaStreamGetPriority ( cudaStream_t hStream, int* priority )
Query the priority of a stream.
__host__cudaError_t cudaStreamIsCapturing ( cudaStream_t stream, cudaStreamCaptureStatus* pCaptureStatus )
Returns a stream's capture status.
__host__cudaError_t cudaStreamQuery ( cudaStream_t stream )
Queries an asynchronous stream for completion status.
__host__cudaError_t cudaStreamSetAttribute ( cudaStream_t hStream, cudaStreamAttrID attr, const cudaStreamAttrValue* value )
Sets stream attribute.
__host__cudaError_t cudaStreamSynchronize ( cudaStream_t stream )
Waits for stream tasks to complete.
__host__cudaError_t cudaStreamUpdateCaptureDependencies ( cudaStream_t stream, cudaGraphNode_t* dependencies, size_t numDependencies, unsigned int  flags = 0 )
Update the set of dependencies in a capturing stream (11.3+).
__host__cudaError_t cudaStreamUpdateCaptureDependencies_v2 ( cudaStream_t stream, cudaGraphNode_t* dependencies, const cudaGraphEdgeData* dependencyData, size_t numDependencies, unsigned int  flags = 0 )
Update the set of dependencies in a capturing stream (12.3+).
__host____device__cudaError_t cudaStreamWaitEvent ( cudaStream_t stream, cudaEvent_t event, unsigned int  flags = 0 )
Make a compute stream wait on an event.
__host__cudaError_t cudaThreadExchangeStreamCaptureMode ( cudaStreamCaptureMode* mode )
Swaps the stream capture interaction mode for a thread.

Typedefs

void(CUDART_CB* cudaStreamCallback_t )( cudaStream_t stream,  cudaError_t status, void*  userData )

Type of stream callback functions.

Parameters
stream
The stream as passed to cudaStreamAddCallback, may be NULL.
cudaError_t status
userData
User parameter provided at registration.

Functions

__host__cudaError_t cudaCtxResetPersistingL2Cache ( void )
Resets all persisting lines in cache to normal status.
Returns

cudaSuccess,

Description

Resets all persisting lines in cache to normal status. Takes effect on function return.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamAddCallback ( cudaStream_t stream, cudaStreamCallback_t callback, void* userData, unsigned int  flags )
Add a callback to a compute stream.
Parameters
stream
- Stream to add callback to
callback
- The function to call once preceding stream operations are complete
userData
- User specified data to be passed to the callback function
flags
- Reserved for future use, must be 0
Description

Note:

This function is slated for eventual deprecation and removal. If you do not require the callback to execute in case of a device error, consider using cudaLaunchHostFunc. Additionally, this function is not supported with cudaStreamBeginCapture and cudaStreamEndCapture, unlike cudaLaunchHostFunc.

Adds a callback to be called on the host after all currently enqueued items in the stream have completed. For each cudaStreamAddCallback call, a callback will be executed exactly once. The callback will block later work in the stream until it is finished.

The callback may be passed cudaSuccess or an error code. In the event of a device error, all subsequently executed callbacks will receive an appropriate cudaError_t.

Callbacks must not make any CUDA API calls. Attempting to use CUDA APIs may result in cudaErrorNotPermitted. Callbacks must not perform any synchronization that may depend on outstanding device work or other callbacks that are not mandated to run earlier. Callbacks without a mandated order (in independent streams) execute in undefined order and may be serialized.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

  • The callback stream is considered idle for the duration of the callback. Thus, for example, a callback may always use memory attached to the callback stream.

  • The start of execution of a callback has the same effect as synchronizing an event recorded in the same stream immediately prior to the callback. It thus synchronizes streams which have been "joined" prior to the callback.

  • Adding device work to any stream does not have the effect of making the stream active until all preceding callbacks have executed. Thus, for example, a callback might use global attached memory even if work has been added to another stream, if it has been properly ordered with an event.

  • Completion of a callback does not cause a stream to become active except as described above. The callback stream will remain idle if no device work follows the callback, and will remain idle across consecutive callbacks without device work in between. Thus, for example, stream synchronization can be done by signaling from a callback at the end of the stream.

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamDestroy, cudaMallocManaged, cudaStreamAttachMemAsync, cudaLaunchHostFunc, cuStreamAddCallback

__host__cudaError_t cudaStreamAttachMemAsync ( cudaStream_t stream, void* devPtr, size_t length = 0, unsigned int  flags = cudaMemAttachSingle )
Attach memory to a stream asynchronously.
Parameters
stream
- Stream in which to enqueue the attach operation
devPtr
- Pointer to memory (must be a pointer to managed memory or to a valid host-accessible region of system-allocated memory)
length
- Length of memory (defaults to zero)
flags
- Must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle (defaults to cudaMemAttachSingle)
Description

Enqueues an operation in stream to specify stream association of length bytes of memory starting from devPtr. This function is a stream-ordered operation, meaning that it is dependent on, and will only take effect when, previous work in stream has completed. Any previous association is automatically replaced.

devPtr must point to an one of the following types of memories:

  • managed memory declared using the __managed__ keyword or allocated with cudaMallocManaged.

  • a valid host-accessible region of system-allocated pageable memory. This type of memory may only be specified if the device associated with the stream reports a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess.

For managed allocations, length must be either zero or the entire allocation's size. Both indicate that the entire allocation's stream association is being changed. Currently, it is not possible to change stream association for a portion of a managed allocation.

For pageable allocations, length must be non-zero.

The stream association is specified using flags which must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle. The default value for flags is cudaMemAttachSingle If the cudaMemAttachGlobal flag is specified, the memory can be accessed by any stream on any device. If the cudaMemAttachHost flag is specified, the program makes a guarantee that it won't access the memory on the device from any stream on a device that has a zero value for the device attribute cudaDevAttrConcurrentManagedAccess. If the cudaMemAttachSingle flag is specified and stream is associated with a device that has a zero value for the device attribute cudaDevAttrConcurrentManagedAccess, the program makes a guarantee that it will only access the memory on the device from stream. It is illegal to attach singly to the NULL stream, because the NULL stream is a virtual global stream and not a specific stream. An error will be returned in this case.

When memory is associated with a single stream, the Unified Memory system will allow CPU access to this memory region so long as all operations in stream have completed, regardless of whether other streams are active. In effect, this constrains exclusive ownership of the managed memory region by an active GPU to per-stream activity instead of whole-GPU activity.

Accessing memory on the device from streams that are not associated with it will produce undefined results. No error checking is performed by the Unified Memory system to ensure that kernels launched into other streams do not access this region.

It is a program's responsibility to order calls to cudaStreamAttachMemAsync via events, synchronization or other means to ensure legal access to memory at all times. Data visibility and coherency will be changed appropriately for all kernels which follow a stream-association change.

If stream is destroyed while data is associated with it, the association is removed and the association reverts to the default visibility of the allocation as specified at cudaMallocManaged. For __managed__ variables, the default association is always cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and as a result, the change to default association won't happen until all work in the stream has completed.

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cudaMallocManaged, cuStreamAttachMemAsync

__host__cudaError_t cudaStreamBeginCapture ( cudaStream_t stream, cudaStreamCaptureMode mode )
Begins graph capture on a stream.
Parameters
stream
- Stream in which to initiate capture
mode
- Controls the interaction of this capture sequence with other API calls that are potentially unsafe. For more details see cudaThreadExchangeStreamCaptureMode.
Description

Begin graph capture on stream. When a stream is in capture mode, all operations pushed into the stream will not be executed, but will instead be captured into a graph, which will be returned via cudaStreamEndCapture. Capture may not be initiated if stream is cudaStreamLegacy. Capture must be ended on the same stream in which it was initiated, and it may only be initiated if the stream is not already in capture mode. The capture mode may be queried via cudaStreamIsCapturing. A unique id representing the capture sequence may be queried via cudaStreamGetCaptureInfo.

If mode is not cudaStreamCaptureModeRelaxed, cudaStreamEndCapture must be called on this stream from the same thread.

Note:

Kernels captured using this API must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamIsCapturing, cudaStreamEndCapture, cudaThreadExchangeStreamCaptureMode

__host__cudaError_t cudaStreamBeginCaptureToGraph ( cudaStream_t stream, cudaGraph_t graph, const cudaGraphNode_t* dependencies, const cudaGraphEdgeData* dependencyData, size_t numDependencies, cudaStreamCaptureMode mode )
Begins graph capture on a stream to an existing graph.
Parameters
stream
- Stream in which to initiate capture.
graph
- Graph to capture into.
dependencies
- Dependencies of the first node captured in the stream. Can be NULL if numDependencies is 0.
dependencyData
- Optional array of data associated with each dependency.
numDependencies
- Number of dependencies.
mode
- Controls the interaction of this capture sequence with other API calls that are potentially unsafe. For more details see cudaThreadExchangeStreamCaptureMode.
Description

Begin graph capture on stream. When a stream is in capture mode, all operations pushed into the stream will not be executed, but will instead be captured into graph, which will be returned via cudaStreamEndCapture.

Capture may not be initiated if stream is cudaStreamLegacy. Capture must be ended on the same stream in which it was initiated, and it may only be initiated if the stream is not already in capture mode. The capture mode may be queried via cudaStreamIsCapturing. A unique id representing the capture sequence may be queried via cudaStreamGetCaptureInfo.

If mode is not cudaStreamCaptureModeRelaxed, cudaStreamEndCapture must be called on this stream from the same thread.

Note:

Kernels captured using this API must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamIsCapturing, cudaStreamEndCapture, cudaThreadExchangeStreamCaptureMode

__host__cudaError_t cudaStreamCopyAttributes ( cudaStream_t dst, cudaStream_t src )
Copies attributes from source stream to destination stream.
Parameters
dst
Destination stream
src
Source stream For attributes see cudaStreamAttrID
Description

Copies attributes from source stream src to destination stream dst. Both streams must have the same context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamCreate ( cudaStream_t* pStream )
Create an asynchronous stream.
Parameters
pStream
- Pointer to new stream identifier
Description

Creates a new asynchronous stream.

Note:

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority, cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamDestroy, cuStreamCreate

__host____device__cudaError_t cudaStreamCreateWithFlags ( cudaStream_t* pStream, unsigned int  flags )
Create an asynchronous stream.
Parameters
pStream
- Pointer to new stream identifier
flags
- Parameters for stream creation
Description

Creates a new asynchronous stream. The flags argument determines the behaviors of the stream. Valid values for flags are

  • cudaStreamDefault: Default stream creation flag.

  • cudaStreamNonBlocking: Specifies that work running in the created stream may run concurrently with work in stream 0 (the NULL stream), and that the created stream should perform no implicit synchronization with stream 0.

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithPriority, cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamDestroy, cuStreamCreate

__host__cudaError_t cudaStreamCreateWithPriority ( cudaStream_t* pStream, unsigned int  flags, int  priority )
Create an asynchronous stream with the specified priority.
Parameters
pStream
- Pointer to new stream identifier
flags
- Flags for stream creation. See cudaStreamCreateWithFlags for a list of valid flags that can be passed
priority
- Priority of the stream. Lower numbers represent higher priorities. See cudaDeviceGetStreamPriorityRange for more information about the meaningful stream priorities that can be passed.
Description

Creates a stream with the specified priority and returns a handle in pStream. This affects the scheduling priority of work in the stream. Priorities provide a hint to preferentially run work with higher priority when possible, but do not preempt already-running work or provide any other functional guarantee on execution order.

priority follows a convention where lower numbers represent higher priorities. '0' represents default priority. The range of meaningful numerical priorities can be queried using cudaDeviceGetStreamPriorityRange. If the specified priority is outside the numerical range returned by cudaDeviceGetStreamPriorityRange, it will automatically be clamped to the lowest or the highest number in the range.

Note:
  • Note that this function may also return error codes from previous, asynchronous launches.

  • Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

  • Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

  • Stream priorities are supported only on GPUs with compute capability 3.5 or higher.

  • In the current implementation, only compute kernels launched in priority streams are affected by the stream's priority. Stream priorities have no effect on host-to-device and device-to-host memory operations.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaDeviceGetStreamPriorityRange, cudaStreamGetPriority, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamSynchronize, cudaStreamDestroy, cuStreamCreateWithPriority

__host____device__cudaError_t cudaStreamDestroy ( cudaStream_t stream )
Destroys and cleans up an asynchronous stream.
Parameters
stream
- Stream identifier
Description

Destroys and cleans up the asynchronous stream specified by stream.

In case the device is still doing work in the stream stream when cudaStreamDestroy() is called, the function will return immediately and the resources associated with stream will be released automatically once the device has completed all work in stream.

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cuStreamDestroy

__host__cudaError_t cudaStreamEndCapture ( cudaStream_t stream, cudaGraph_t* pGraph )
Ends capture on a stream, returning the captured graph.
Parameters
stream
- Stream to query
pGraph
- The captured graph
Description

End capture on stream, returning the captured graph via pGraph. Capture must have been initiated on stream via a call to cudaStreamBeginCapture. If capture was invalidated, due to a violation of the rules of stream capture, then a NULL graph will be returned.

If the mode argument to cudaStreamBeginCapture was not cudaStreamCaptureModeRelaxed, this call must be from the same thread as cudaStreamBeginCapture.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeginCapture, cudaStreamIsCapturing, cudaGraphDestroy

__host__cudaError_t cudaStreamGetAttribute ( cudaStream_t hStream, cudaStreamAttrID attr, cudaStreamAttrValue* value_out )
Queries stream attribute.
Parameters
hStream
attr
value_out
Description

Queries attribute attr from hStream and stores it in corresponding member of value_out.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamGetCaptureInfo ( cudaStream_t stream, cudaStreamCaptureStatus* captureStatus_out, unsigned long long* id_out = 0, cudaGraph_t* graph_out = 0, const cudaGraphNode_t** dependencies_out = 0, size_t* numDependencies_out = 0 )
Query a stream's capture state.
Parameters
stream
- The stream to query
captureStatus_out
- Location to return the capture status of the stream; required
id_out
- Optional location to return an id for the capture sequence, which is unique over the lifetime of the process
graph_out
- Optional location to return the graph being captured into. All operations other than destroy and node removal are permitted on the graph while the capture sequence is in progress. This API does not transfer ownership of the graph, which is transferred or destroyed at cudaStreamEndCapture. Note that the graph handle may be invalidated before end of capture for certain errors. Nodes that are or become unreachable from the original stream at cudaStreamEndCapture due to direct actions on the graph do not trigger cudaErrorStreamCaptureUnjoined.
dependencies_out
- Optional location to store a pointer to an array of nodes. The next node to be captured in the stream will depend on this set of nodes, absent operations such as event wait which modify this set. The array pointer is valid until the next API call which operates on the stream or until the capture is terminated. The node handles may be copied out and are valid until they or the graph is destroyed. The driver-owned array may also be passed directly to APIs that operate on the graph (not the stream) without copying.
numDependencies_out
- Optional location to store the size of the array returned in dependencies_out.
Description

Query stream state related to stream capture.

If called on cudaStreamLegacy (the "null stream") while a stream not created with cudaStreamNonBlocking is capturing, returns cudaErrorStreamCaptureImplicit.

Valid data (other than capture status) is returned only if both of the following are true:

Note:
  • Graph objects are not threadsafe. More here.

  • Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamGetCaptureInfo_v3, cudaStreamBeginCapture, cudaStreamIsCapturing, cudaStreamUpdateCaptureDependencies

__host__cudaError_t cudaStreamGetCaptureInfo_v3 ( cudaStream_t stream, cudaStreamCaptureStatus* captureStatus_out, unsigned long long* id_out = 0, cudaGraph_t* graph_out = 0, const cudaGraphNode_t** dependencies_out = 0, const cudaGraphEdgeData** edgeData_out = 0, size_t* numDependencies_out = 0 )
Query a stream's capture state (12.3+).
Parameters
stream
- The stream to query
captureStatus_out
- Location to return the capture status of the stream; required
id_out
- Optional location to return an id for the capture sequence, which is unique over the lifetime of the process
graph_out
- Optional location to return the graph being captured into. All operations other than destroy and node removal are permitted on the graph while the capture sequence is in progress. This API does not transfer ownership of the graph, which is transferred or destroyed at cudaStreamEndCapture. Note that the graph handle may be invalidated before end of capture for certain errors. Nodes that are or become unreachable from the original stream at cudaStreamEndCapture due to direct actions on the graph do not trigger cudaErrorStreamCaptureUnjoined.
dependencies_out
- Optional location to store a pointer to an array of nodes. The next node to be captured in the stream will depend on this set of nodes, absent operations such as event wait which modify this set. The array pointer is valid until the next API call which operates on the stream or until the capture is terminated. The node handles may be copied out and are valid until they or the graph is destroyed. The driver-owned array may also be passed directly to APIs that operate on the graph (not the stream) without copying.
edgeData_out
- Optional location to store a pointer to an array of graph edge data. This array parallels dependencies_out; the next node to be added has an edge to dependencies_out[i] with annotation edgeData_out[i] for each i. The array pointer is valid until the next API call which operates on the stream or until the capture is terminated.
numDependencies_out
- Optional location to store the size of the array returned in dependencies_out.
Description

Query stream state related to stream capture.

If called on cudaStreamLegacy (the "null stream") while a stream not created with cudaStreamNonBlocking is capturing, returns cudaErrorStreamCaptureImplicit.

Valid data (other than capture status) is returned only if both of the following are true:

If edgeData_out is non-NULL then dependencies_out must be as well. If dependencies_out is non-NULL and edgeData_out is NULL, but there is non-zero edge data for one or more of the current stream dependencies, the call will return cudaErrorLossyQuery.

Note:
  • Graph objects are not threadsafe. More here.

  • Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeginCapture, cudaStreamIsCapturing, cudaStreamUpdateCaptureDependencies

__host__cudaError_t cudaStreamGetFlags ( cudaStream_t hStream, unsigned int* flags )
Query the flags of a stream.
Parameters
hStream
- Handle to the stream to be queried
flags
- Pointer to an unsigned integer in which the stream's flags are returned
Description

Query the flags of a stream. The flags are returned in flags. See cudaStreamCreateWithFlags for a list of valid flags.

Note:

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority, cuStreamGetFlags

__host__cudaError_t cudaStreamGetId ( cudaStream_t hStream, unsigned long long* streamId )
Query the Id of a stream.
Parameters
hStream
- Handle to the stream to be queried
streamId
- Pointer to an unsigned long long in which the stream Id is returned
Description

Query the Id of a stream. The Id is returned in streamId. The Id is unique for the life of the program.

The stream handle hStream can refer to any of the following:

Note:

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority, cudaStreamGetFlags, cuStreamGetId

__host__cudaError_t cudaStreamGetPriority ( cudaStream_t hStream, int* priority )
Query the priority of a stream.
Parameters
hStream
- Handle to the stream to be queried
priority
- Pointer to a signed integer in which the stream's priority is returned
Description

Query the priority of a stream. The priority is returned in in priority. Note that if the stream was created with a priority outside the meaningful numerical range returned by cudaDeviceGetStreamPriorityRange, this function returns the clamped priority. See cudaStreamCreateWithPriority for details about priority clamping.

Note:

See also:

cudaStreamCreateWithPriority, cudaDeviceGetStreamPriorityRange, cudaStreamGetFlags, cuStreamGetPriority

__host__cudaError_t cudaStreamIsCapturing ( cudaStream_t stream, cudaStreamCaptureStatus* pCaptureStatus )
Returns a stream's capture status.
Parameters
stream
- Stream to query
pCaptureStatus
- Returns the stream's capture status
Description

Return the capture status of stream via pCaptureStatus. After a successful call, *pCaptureStatus will contain one of the following:

Note that, if this is called on cudaStreamLegacy (the "null stream") while a blocking stream on the same device is capturing, it will return cudaErrorStreamCaptureImplicit and *pCaptureStatus is unspecified after the call. The blocking stream capture is not invalidated.

When a blocking stream is capturing, the legacy stream is in an unusable state until the blocking stream capture is terminated. The legacy stream is not supported for stream capture, but attempted use would have an implicit dependency on the capturing stream(s).

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeginCapture, cudaStreamEndCapture

__host__cudaError_t cudaStreamQuery ( cudaStream_t stream )
Queries an asynchronous stream for completion status.
Parameters
stream
- Stream identifier
Description

Returns cudaSuccess if all operations in stream have completed, or cudaErrorNotReady if not.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having called cudaStreamSynchronize().

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamQuery

__host__cudaError_t cudaStreamSetAttribute ( cudaStream_t hStream, cudaStreamAttrID attr, const cudaStreamAttrValue* value )
Sets stream attribute.
Parameters
hStream
attr
value
Description

Sets attribute attr on hStream from corresponding attribute of value. The updated attribute will be applied to subsequent work submitted to the stream. It will not affect previously submitted work.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamSynchronize ( cudaStream_t stream )
Waits for stream tasks to complete.
Parameters
stream
- Stream identifier
Description

Blocks until stream has completed all operations. If the cudaDeviceScheduleBlockingSync flag was set for this device, the host thread will block until the stream is finished with all of its tasks.

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamDestroy, cuStreamSynchronize

__host__cudaError_t cudaStreamUpdateCaptureDependencies ( cudaStream_t stream, cudaGraphNode_t* dependencies, size_t numDependencies, unsigned int  flags = 0 )
Update the set of dependencies in a capturing stream (11.3+).
Parameters
stream
- The stream to update
dependencies
- The set of dependencies to add
numDependencies
- The size of the dependencies array
flags
- See above
Description

Modifies the dependency set of a capturing stream. The dependency set is the set of nodes that the next captured node in the stream will depend on.

Valid flags are cudaStreamAddCaptureDependencies and cudaStreamSetCaptureDependencies. These control whether the set passed to the API is added to the existing set or replaces it. A flags value of 0 defaults to cudaStreamAddCaptureDependencies.

Nodes that are removed from the dependency set via this API do not result in cudaErrorStreamCaptureUnjoined if they are unreachable from the stream at cudaStreamEndCapture.

Returns cudaErrorIllegalState if the stream is not capturing.

This API is new in CUDA 11.3. Developers requiring compatibility across minor versions of the CUDA driver to 11.0 should not use this API or provide a fallback.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeginCapture, cudaStreamGetCaptureInfo,

__host__cudaError_t cudaStreamUpdateCaptureDependencies_v2 ( cudaStream_t stream, cudaGraphNode_t* dependencies, const cudaGraphEdgeData* dependencyData, size_t numDependencies, unsigned int  flags = 0 )
Update the set of dependencies in a capturing stream (12.3+).
Parameters
stream
- The stream to update
dependencies
- The set of dependencies to add
dependencyData
- Optional array of data associated with each dependency.
numDependencies
- The size of the dependencies array
flags
- See above
Description

Modifies the dependency set of a capturing stream. The dependency set is the set of nodes that the next captured node in the stream will depend on.

Valid flags are cudaStreamAddCaptureDependencies and cudaStreamSetCaptureDependencies. These control whether the set passed to the API is added to the existing set or replaces it. A flags value of 0 defaults to cudaStreamAddCaptureDependencies.

Nodes that are removed from the dependency set via this API do not result in cudaErrorStreamCaptureUnjoined if they are unreachable from the stream at cudaStreamEndCapture.

Returns cudaErrorIllegalState if the stream is not capturing.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeginCapture, cudaStreamGetCaptureInfo,

__host____device__cudaError_t cudaStreamWaitEvent ( cudaStream_t stream, cudaEvent_t event, unsigned int  flags = 0 )
Make a compute stream wait on an event.
Parameters
stream
- Stream to wait
event
- Event to wait on
flags
- Parameters for the operation(See above)
Description

Makes all future work submitted to stream wait for all work captured in event. See cudaEventRecord() for details on what is captured by an event. The synchronization will be performed efficiently on the device when applicable. event may be from a different device than stream.

flags include:

Note:

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamWaitEvent

__host__cudaError_t cudaThreadExchangeStreamCaptureMode ( cudaStreamCaptureMode* mode )
Swaps the stream capture interaction mode for a thread.
Parameters
mode
- Pointer to mode value to swap with the current mode
Description

Sets the calling thread's stream capture interaction mode to the value contained in *mode, and overwrites *mode with the previous mode for the thread. To facilitate deterministic behavior across function or module boundaries, callers are encouraged to use this API in a push-pop fashion:

cudaStreamCaptureMode mode = desiredMode;
           cudaThreadExchangeStreamCaptureMode(&mode);
           ...
           cudaThreadExchangeStreamCaptureMode(&mode); // restore previous mode

During stream capture (see cudaStreamBeginCapture), some actions, such as a call to cudaMalloc, may be unsafe. In the case of cudaMalloc, the operation is not enqueued asynchronously to a stream, and is not observed by stream capture. Therefore, if the sequence of operations captured via cudaStreamBeginCapture depended on the allocation being replayed whenever the graph is launched, the captured graph would be invalid.

Therefore, stream capture places restrictions on API calls that can be made within or concurrently to a cudaStreamBeginCapture-cudaStreamEndCapture sequence. This behavior can be controlled via this API and flags to cudaStreamBeginCapture.

A thread's mode is one of the following:

  • cudaStreamCaptureModeGlobal: This is the default mode. If the local thread has an ongoing capture sequence that was not initiated with cudaStreamCaptureModeRelaxed at cuStreamBeginCapture, or if any other thread has a concurrent capture sequence initiated with cudaStreamCaptureModeGlobal, this thread is prohibited from potentially unsafe API calls.

  • cudaStreamCaptureModeThreadLocal: If the local thread has an ongoing capture sequence not initiated with cudaStreamCaptureModeRelaxed, it is prohibited from potentially unsafe API calls. Concurrent capture sequences in other threads are ignored.

  • cudaStreamCaptureModeRelaxed: The local thread is not prohibited from potentially unsafe API calls. Note that the thread is still prohibited from API calls which necessarily conflict with stream capture, for example, attempting cudaEventQuery on an event that was last recorded inside a capture sequence.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeginCapture