cuTensorNet: A High-Performance Library for Tensor Network Computations#
Welcome to the cuTensorNet library documentation!
NVIDIA cuTensorNet is a high-performance library for tensor network computations, a component of the NVIDIA cuQuantum SDK. Functionalities of cuTensorNet are described in Overview with installation and usage guide provided in Getting Started.
Contents
- Release Notes
- cuTensorNet v2.9.1
- cuTensorNet v2.9.0
- cuTensorNet v2.8.0
- cuTensorNet v2.7.0
- cuTensorNet v2.6.0
- cuTensorNet v2.5.0
- cuTensorNet v2.4.0
- cuTensorNet v2.3.0
- cuTensorNet v2.2.1
- cuTensorNet v2.2.0
- cuTensorNet v2.1.0
- cuTensorNet v2.0.0
- cuTensorNet v1.1.1
- cuTensorNet v1.1.0
- cuTensorNet v1.0.1
- cuTensorNet v1.0.0
- cuTensorNet v0.1.0
- cuTensorNet v0.0.1
- Overview
- Examples
- Compiling code
- Code example (serial)
- Code example (automatic slice-based distributed parallelization)
- Code example (manual slice-based distributed parallelization)
- Code example (tensorQR)
- Code example (tensorSVD)
- Code example (GateSplit)
- Code example (MPS factorization)
- Code example (intermediate tensor reuse)
- Code example (gradients computation)
- Code example (amplitudes slice)
- Code example (expectation value)
- Code example (marginal distribution)
- Code example (tensor network sampling)
- Code example (MPS amplitudes slice using simple update)
- Code example (MPS expectation value)
- Code example (MPS marginal distribution)
- Code example (MPS sampling)
- Code example (MPS sampling QFT)
- Code example (Projection MPS Circuit DMRG)
- Code example (MPS sampling MPO)
- Useful tips
- API Reference
- Acknowledgements