fft#
-
nvmath.
device. fft(*, compiler=None, **kwargs)[source]# Create an
FFTOptionsobject that encapsulates a compiled and ready-to-use FFT device function.- Parameters:
size (int) – The size of the FFT to calculate.
precision (str) – The computation precision specified as a numpy float dtype, currently supports
numpy.float16,numpy.float32andnumpy.float64.fft_type (str) – A string specifying the type of FFT operation, can be
'c2c','c2r'or'r2c'.compiler (str) – A string to specify the compiler for the device code, currently supports
None(default) and'numba'code_type (CodeType) – The target GPU code and compute-capability.. Optional if compiler is specified as
'numba'.execution (str) – A string specifying the execution method, can be
'Block'or'Thread'.direction (str) – A string specifying the direction of FFT, can be
'forward'or'inverse'. If not provided, will be'forward'if complex-to-real FFT is specified and'inverse'if real-to-complex FFT is specified.ffts_per_block (int) – The number of FFTs calculated per CUDA block, optional. The default is 1. Alternatively, if provided as
'suggested'will be set to a suggested valueelements_per_thread (int) – The number of elements per thread, optional. The default is 1. Alternatively, if provided as
'suggested', will be set to a suggested value.real_fft_options (dict) –
A dictionary specifying the options for real FFT operation, optional. User may specify the following options in the dictionary:
'complex_layout', currently supports'natural','packed', and'full'.'real_mode', currently supports'normal'and'folded'.
execute_api (str) – A string specifying the signature of the function that handles problems with input in register or in shared memory buffers. Could be
'shared_memory'or'registry_memory'.
See also
The attributes of
FFTOptionsprovide a 1:1 mapping with the CUDA C++ cuFFTDx APIs. For further details, please refer to cuFFTDx documentation.Examples
Examples can be found in the nvmath/examples/device directory.