Resampling#
Resampling Forward#
The resample operation represents the resampling of the spatial dimensions of an image to a desired value.
The output array contains two tensors:
The resampled output tensor.
The computed index tensor.
Note
The index tensor is only output in training mode of max pooling. It can be fed to backward pass for faster performance.
Resample Attributes#
The Resample_attributes class is used to configure the resampling operation. It provides the following setters:
# The resampling mode, such as average pooling, max pooling, bi-linear, or cubic.
auto set_resampling_mode(ResampleMode_t const& value) -> Resample_attributes&;
# The padding mode, such as zero or neg infinity.
auto set_padding_mode(PaddingMode_t const& value) -> Resample_attributes&;
# The window size to be used for the resampling operation.
auto set_window(std::vector<int64_t> const& value) -> Resample_attributes&;
auto set_window(std::vector<cudnnFraction_t> const& value) -> Resample_attributes&;
# The stride values to be used for the resampling operation.
auto set_stride(std::vector<int64_t> const& value) -> Resample_attributes&;
auto set_stride(std::vector<cudnnFraction_t> const& value) -> Resample_attributes&;
# The padding values to be applied before and after the resampling input.
auto set_pre_padding(std::vector<int64_t> const& value) -> Resample_attributes&;
auto set_pre_padding(std::vector<cudnnFraction_t> const& value) -> Resample_attributes&;
auto set_post_padding(std::vector<int64_t> const& value) -> Resample_attributes&;
auto set_post_padding(std::vector<cudnnFraction_t> const& value) -> Resample_attributes&;
# A flag indicating whether the resampling is being performed during inference.
auto set_is_inference(bool const value) -> Resample_attributes&;
For more information on exact support surfaces across different versions, refer to ResampleFwd in the Frontend Developer Guide.
Python API for resampling forward will be supported soon.
Resampling Backward#
To be supported soon.