Python API

Pipeline

class nvidia.dali.pipeline.Pipeline(batch_size=-1, num_threads=-1, device_id=-1, seed=-1, exec_pipelined=True, exec_async=True, bytes_per_sample=0, set_affinity=False, max_streams=-1)

Pipeline class encapsulates all data required to define and run DALI input pipeline.

Parameters:
  • batch_size (int, optional, default = -1) – Batch size of the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
  • num_threads (int, optional, default = -1) – Number of CPU threads used by the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
  • device_id (int, optional, default = -1) – Id of GPU used by the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
  • seed (int, optional, default = -1) – Seed used for random number generation. Leaving the default value for this parameter results in random seed.
  • exec_pipelined (bool, optional, default = True) – Whether to execute the pipeline in a way that enables overlapping CPU and GPU computation, typically resulting in faster execution speed, but larger memory consumption.
  • exec_async (bool, optional, default = True) – Whether to execute the pipeline asynchronously. This makes nvidia.dali.pipeline.Pipeline.run() method run asynchronously with respect to the calling Python thread. In order to synchronize with the pipeline one needs to call nvidia.dali.pipeline.Pipeline.outputs() method.
  • bytes_per_sample (int, optional, default = 0) – A hint for DALI for how much memory to use for its tensors.
  • set_affinity (bool, optional, default = False) – Whether to set CPU core affinity to the one closest to the GPU being used.
  • max_streams (int, optional, default = -1) – Limit the number of CUDA streams used by the executor. Value of -1 does not impose a limit. This parameter is currently unused (and behavior of unrestricted number of streams is assumed).
batch_size

Batch size.

build()

Build the pipeline.

Pipeline needs to be built in order to run it standalone. Framework-specific plugins handle this step automatically.

define_graph()

This function is defined by the user to construct the graph of operations for their pipeline.

It returns a list of output TensorReference.

deserialize_and_build(serialized_pipeline)

Deserialize and build the pipeline given in serialized form.

Parameters:serialized_pipeline (str) – Serialized pipeline.
device_id

Id of the GPU used by the pipeline.

epoch_size(name=None)

Epoch size of a pipeline.

If the name parameter is None, returns a dictionary of pairs (reader name, epoch size for that reader). If the name parameter is not None, returns epoch size for that reader.

Parameters:name (str, optional, default = None) – The reader which should be used to obtain epoch size.
feed_input(ref, data)

Bind the NumPy array to a tensor produced by ExternalSource operator.

iter_setup()

This function can be overriden by user-defined pipeline to perform any needed setup for each iteration. For example, one can use this function to feed the input data from NumPy arrays.

num_threads

Number of CPU threads used by the pipeline.

outputs()

Returns the outputs of the pipeline.

If the pipeline is executed asynchronously, this function blocks until the results become available.

run()

Run the pipeline.

If the pipeline was created with exec_async option set to True, this function will return without waiting for the execution to end.

save_graph_to_dot_file(filename)

Saves the pipeline graph to a file.

Parameters:filename (str) – Name of the file to which the graph is written.
serialize()

Serialize the pipeline to a Protobuf string.

Tensor

class nvidia.dali.backend.TensorCPU
copy_to_external(self: nvidia.dali.backend_impl.TensorCPU, ptr: object) → None

Copy to external pointer in the CPU memory.

Parameters:ptr (ctypes.c_void_p) – Destination of the copy.
dtype(self: nvidia.dali.backend_impl.TensorCPU) → str

String representing NumPy type of the Tensor.

shape(self: nvidia.dali.backend_impl.TensorCPU) → List[int]

Shape of the tensor.

squeeze(self: nvidia.dali.backend_impl.TensorCPU) → None

Remove single-dimensional entries from the shape of the Tensor.

class nvidia.dali.backend.TensorGPU
copy_to_external(self: nvidia.dali.backend_impl.TensorGPU, ptr: object) → None

Copy to external pointer in the GPU memory.

Parameters:ptr (ctypes.c_void_p) – Destination of the copy.
dtype(self: nvidia.dali.backend_impl.TensorGPU) → str

String representing NumPy type of the Tensor.

shape(self: nvidia.dali.backend_impl.TensorGPU) → List[int]

Shape of the tensor.

squeeze(self: nvidia.dali.backend_impl.TensorGPU) → None

Remove single-dimensional entries from the shape of the Tensor.

TensorList

class nvidia.dali.backend.TensorListCPU
as_tensor(self: nvidia.dali.backend_impl.TensorListCPU) → nvidia.dali.backend_impl.TensorCPU

Returns a tensor that is a view of this TensorList.

This function can only be called if is_dense_tensor returns True.

at(self: nvidia.dali.backend_impl.TensorListCPU, arg0: int) → array

Returns tensor at given position in the list.

copy_to_external(self: nvidia.dali.backend_impl.TensorListCPU, arg0: object) → None

Copy the contents of this TensorList to an external pointer (of type ctypes.c_void_p) residing in CPU memory.

This function is used internally by plugins to interface with tensors from supported Deep Learning frameworks.

is_dense_tensor(self: nvidia.dali.backend_impl.TensorListCPU) → bool

Checks whether all tensors in this TensorList have the same shape (and so the list itself can be viewed as a tensor).

For example, if TensorList contains N tensors, each with shape (H,W,C) (with the same values of H, W and C), then the list may be viewed as a tensor of shape (N, H, W, C).

class nvidia.dali.backend.TensorListGPU
asCPU(self: nvidia.dali.backend_impl.TensorListGPU) → nvidia.dali.backend_impl.TensorListCPU

Returns a TensorListCPU object being a copy of this TensorListGPU.

as_tensor(self: nvidia.dali.backend_impl.TensorListGPU) → nvidia.dali.backend_impl.TensorGPU

Returns a tensor that is a view of this TensorList.

This function can only be called if is_dense_tensor returns True.

copy_to_external(self: nvidia.dali.backend_impl.TensorListGPU, arg0: object) → None

Copy the contents of this TensorList to an external pointer (of type ctypes.c_void_p) residing in CPU memory.

This function is used internally by plugins to interface with tensors from supported Deep Learning frameworks.

is_dense_tensor(self: nvidia.dali.backend_impl.TensorListGPU) → bool

Checks whether all tensors in this TensorList have the same shape (and so the list itself can be viewed as a tensor).

For example, if TensorList contains N tensors, each with shape (H,W,C) (with the same values of H, W and C), then the list may be viewed as a tensor of shape (N, H, W, C).

Enums

class nvidia.dali.types.DALIDataType

Data type of image

BOOL = DALIDataType.BOOL
DATA_TYPE = DALIDataType.DATA_TYPE
FEATURE = DALIDataType.FEATURE
FLOAT = DALIDataType.FLOAT
FLOAT16 = DALIDataType.FLOAT16
IMAGE_TYPE = DALIDataType.IMAGE_TYPE
INT32 = DALIDataType.INT32
INT64 = DALIDataType.INT64
INTERP_TYPE = DALIDataType.INTERP_TYPE
NO_TYPE = DALIDataType.NO_TYPE
STRING = DALIDataType.STRING
TENSOR_LAYOUT = DALIDataType.TENSOR_LAYOUT
UINT8 = DALIDataType.UINT8
class nvidia.dali.types.DALIInterpType

Interpolation mode

INTERP_CUBIC = DALIInterpType.INTERP_CUBIC
INTERP_LINEAR = DALIInterpType.INTERP_LINEAR
INTERP_NN = DALIInterpType.INTERP_NN
class nvidia.dali.types.DALIImageType

Image type

BGR = DALIImageType.BGR
GRAY = DALIImageType.GRAY
RGB = DALIImageType.RGB
class nvidia.dali.types.DALITensorLayout

Tensor layout

NCHW = DALITensorLayout.NCHW
NHWC = DALITensorLayout.NHWC