Python API¶
Pipeline¶
-
class
nvidia.dali.pipeline.
Pipeline
(batch_size=-1, num_threads=-1, device_id=-1, seed=-1, exec_pipelined=True, exec_async=True, bytes_per_sample=0, set_affinity=False, max_streams=-1)¶ Pipeline class encapsulates all data required to define and run DALI input pipeline.
Parameters: - batch_size (int, optional, default = -1) – Batch size of the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
- num_threads (int, optional, default = -1) – Number of CPU threads used by the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
- device_id (int, optional, default = -1) – Id of GPU used by the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead).
- seed (int, optional, default = -1) – Seed used for random number generation. Leaving the default value for this parameter results in random seed.
- exec_pipelined (bool, optional, default = True) – Whether to execute the pipeline in a way that enables overlapping CPU and GPU computation, typically resulting in faster execution speed, but larger memory consumption.
- exec_async (bool, optional, default = True) – Whether to execute the pipeline asynchronously.
This makes
nvidia.dali.pipeline.Pipeline.run()
method run asynchronously with respect to the calling Python thread. In order to synchronize with the pipeline one needs to callnvidia.dali.pipeline.Pipeline.outputs()
method. - bytes_per_sample (int, optional, default = 0) – A hint for DALI for how much memory to use for its tensors.
- set_affinity (bool, optional, default = False) – Whether to set CPU core affinity to the one closest to the GPU being used.
- max_streams (int, optional, default = -1) – Limit the number of CUDA streams used by the executor. Value of -1 does not impose a limit. This parameter is currently unused (and behavior of unrestricted number of streams is assumed).
-
batch_size
¶ Batch size.
-
build
()¶ Build the pipeline.
Pipeline needs to be built in order to run it standalone. Framework-specific plugins handle this step automatically.
-
define_graph
()¶ This function is defined by the user to construct the graph of operations for their pipeline.
It returns a list of output TensorReference.
-
deserialize_and_build
(serialized_pipeline)¶ Deserialize and build the pipeline given in serialized form.
Parameters: serialized_pipeline (str) – Serialized pipeline.
-
device_id
¶ Id of the GPU used by the pipeline.
-
epoch_size
(name=None)¶ Epoch size of a pipeline.
If the name parameter is None, returns a dictionary of pairs (reader name, epoch size for that reader). If the name parameter is not None, returns epoch size for that reader.
Parameters: name (str, optional, default = None) – The reader which should be used to obtain epoch size.
-
feed_input
(ref, data)¶ Bind the NumPy array to a tensor produced by ExternalSource operator.
-
iter_setup
()¶ This function can be overriden by user-defined pipeline to perform any needed setup for each iteration. For example, one can use this function to feed the input data from NumPy arrays.
-
num_threads
¶ Number of CPU threads used by the pipeline.
-
outputs
()¶ Returns the outputs of the pipeline.
If the pipeline is executed asynchronously, this function blocks until the results become available.
-
run
()¶ Run the pipeline.
If the pipeline was created with exec_async option set to True, this function will return without waiting for the execution to end.
-
save_graph_to_dot_file
(filename)¶ Saves the pipeline graph to a file.
Parameters: filename (str) – Name of the file to which the graph is written.
-
serialize
()¶ Serialize the pipeline to a Protobuf string.
Tensor¶
-
class
nvidia.dali.backend.
TensorCPU
¶ -
copy_to_external
(self: nvidia.dali.backend_impl.TensorCPU, ptr: object) → None¶ Copy to external pointer in the CPU memory.
Parameters: ptr (ctypes.c_void_p) – Destination of the copy.
-
dtype
(self: nvidia.dali.backend_impl.TensorCPU) → str¶ String representing NumPy type of the Tensor.
-
shape
(self: nvidia.dali.backend_impl.TensorCPU) → List[int]¶ Shape of the tensor.
-
squeeze
(self: nvidia.dali.backend_impl.TensorCPU) → None¶ Remove single-dimensional entries from the shape of the Tensor.
-
-
class
nvidia.dali.backend.
TensorGPU
¶ -
copy_to_external
(self: nvidia.dali.backend_impl.TensorGPU, ptr: object) → None¶ Copy to external pointer in the GPU memory.
Parameters: ptr (ctypes.c_void_p) – Destination of the copy.
-
dtype
(self: nvidia.dali.backend_impl.TensorGPU) → str¶ String representing NumPy type of the Tensor.
-
shape
(self: nvidia.dali.backend_impl.TensorGPU) → List[int]¶ Shape of the tensor.
-
squeeze
(self: nvidia.dali.backend_impl.TensorGPU) → None¶ Remove single-dimensional entries from the shape of the Tensor.
-
TensorList¶
-
class
nvidia.dali.backend.
TensorListCPU
¶ -
as_tensor
(self: nvidia.dali.backend_impl.TensorListCPU) → nvidia.dali.backend_impl.TensorCPU¶ Returns a tensor that is a view of this TensorList.
This function can only be called if is_dense_tensor returns True.
-
at
(self: nvidia.dali.backend_impl.TensorListCPU, arg0: int) → array¶ Returns tensor at given position in the list.
-
copy_to_external
(self: nvidia.dali.backend_impl.TensorListCPU, arg0: object) → None¶ Copy the contents of this TensorList to an external pointer (of type ctypes.c_void_p) residing in CPU memory.
This function is used internally by plugins to interface with tensors from supported Deep Learning frameworks.
-
is_dense_tensor
(self: nvidia.dali.backend_impl.TensorListCPU) → bool¶ Checks whether all tensors in this TensorList have the same shape (and so the list itself can be viewed as a tensor).
For example, if TensorList contains N tensors, each with shape (H,W,C) (with the same values of H, W and C), then the list may be viewed as a tensor of shape (N, H, W, C).
-
-
class
nvidia.dali.backend.
TensorListGPU
¶ -
asCPU
(self: nvidia.dali.backend_impl.TensorListGPU) → nvidia.dali.backend_impl.TensorListCPU¶ Returns a TensorListCPU object being a copy of this TensorListGPU.
-
as_tensor
(self: nvidia.dali.backend_impl.TensorListGPU) → nvidia.dali.backend_impl.TensorGPU¶ Returns a tensor that is a view of this TensorList.
This function can only be called if is_dense_tensor returns True.
-
copy_to_external
(self: nvidia.dali.backend_impl.TensorListGPU, arg0: object) → None¶ Copy the contents of this TensorList to an external pointer (of type ctypes.c_void_p) residing in CPU memory.
This function is used internally by plugins to interface with tensors from supported Deep Learning frameworks.
-
is_dense_tensor
(self: nvidia.dali.backend_impl.TensorListGPU) → bool¶ Checks whether all tensors in this TensorList have the same shape (and so the list itself can be viewed as a tensor).
For example, if TensorList contains N tensors, each with shape (H,W,C) (with the same values of H, W and C), then the list may be viewed as a tensor of shape (N, H, W, C).
-
Enums¶
-
class
nvidia.dali.types.
DALIDataType
¶ Data type of image
-
BOOL
= DALIDataType.BOOL¶
-
DATA_TYPE
= DALIDataType.DATA_TYPE¶
-
FEATURE
= DALIDataType.FEATURE¶
-
FLOAT
= DALIDataType.FLOAT¶
-
FLOAT16
= DALIDataType.FLOAT16¶
-
IMAGE_TYPE
= DALIDataType.IMAGE_TYPE¶
-
INT32
= DALIDataType.INT32¶
-
INT64
= DALIDataType.INT64¶
-
INTERP_TYPE
= DALIDataType.INTERP_TYPE¶
-
NO_TYPE
= DALIDataType.NO_TYPE¶
-
STRING
= DALIDataType.STRING¶
-
TENSOR_LAYOUT
= DALIDataType.TENSOR_LAYOUT¶
-
UINT8
= DALIDataType.UINT8¶
-
-
class
nvidia.dali.types.
DALIInterpType
¶ Interpolation mode
-
INTERP_CUBIC
= DALIInterpType.INTERP_CUBIC¶
-
INTERP_LINEAR
= DALIInterpType.INTERP_LINEAR¶
-
INTERP_NN
= DALIInterpType.INTERP_NN¶
-