EfficientNet for PyTorch with DALI and AutoAugment

This example shows how DALI’s implementation of automatic augmentations - most notably AutoAugment and TrivialAugment - can be used in training. It shows the training of EfficientNet, an image classification model first described in EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

The code is based on NVIDIA Deep Learning Examples - it has been extended with DALI pipeline supporting automatic augmentations, which can be found in here.

Differences to the Deep Learning Examples configuration

  • The default values of the parameters were adjusted to values used in EfficientNet training.

  • --data-backend parameter was changed to accept dali, pytorch, or synthetic. It is set to dali by default.

  • --dali-device was added to control placement of some of DALI operators.

  • --augmentation was replaced with --automatic-augmentation, now supporting disabled, autoaugment, and trivialaugment values.

  • --workers defaults were halved to accommodate DALI. The value is automatically doubled when pytorch data loader is used. Thanks to this the default value performs well with both loaders.

  • The model is restricted to EfficientNet-B0 architecture.

Data backends

This model uses the following data augmentation:

  • For training:

    • Random resized crop to target images size (in this case 224)

      • Scale from 8% to 100%

      • Aspect ratio from 3/4 to 4/3

    • Random horizontal flip

    • [Optional: AutoAugment or TrivialAugment]

    • Normalization

  • For inference:

    • Scale to target image size + additional size margin (in this case it is 224 + 32 = 266)

    • Center crop to target image size (in this case 224)

    • Normalization

Setup

The EfficientNet script operates on ImageNet 1k, a widely popular image classification dataset from the ILSVRC challenge.

  1. Download the dataset from http://image-net.org/download-images

  2. Extract the training data:

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
  1. Extract the validation data and move the images to subfolders:

mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

The directory in which the train/ and val/ directories are placed, is referred to as $PATH_TO_IMAGENET in this document.

  1. Make sure you are either using the NVIDIA PyTorch NGC container or you have DALI and PyTorch installed.

  2. Install NVIDIA DLLogger and pynvml.

Running the model

Training

To run training on a single GPU, use the main.py entry point:

  • For FP32: python ./main.py --batch-size 64 $PATH_TO_IMAGENET

  • For AMP: python ./main.py --batch-size 64 --amp --static-loss-scale 128 $PATH_TO_IMAGENET

You may need to adjust --batch-size parameter for your machine.

You can change the data loader and automatic augmentation scheme that are used by adding:

  • --data-backend: dali | pytorch | synthetic,

  • --automatic-augmentation: disabled | autoaugment | trivialaugment (the last one only for DALI),

  • --dali-device: cpu | gpu (only for DALI).

By default DALI GPU-variant with AutoAugment is used.

For example to run the EfficientNet with AMP on a batch size of 128 with DALI using TrivialAugment you need to invoke:

python ./main.py --amp --static-loss-scale 128 --batch-size 128 --data-backend dali --automatic-augmentation trivialaugment $PATH_TO_IMAGENET

To run on multiple GPUs, use the multiproc.py to launch the main.py entry point script, passing the number of GPUs as --nproc_per_node argument. For example, to run the model on 8 GPUs using AMP and DALI with AutoAugment you need to invoke:

python ./multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --data-backend dali --automatic-augmentation autoaugment $PATH_TO_IMAGENET

To see the full list of available options and their descriptions, use the -h or --help command-line option, for example:

python main.py -h

Training with standard configuration

To run the training in a standard configuration (DGX A100/DGX-1V, AMP, 400 Epochs, DALI with AutoAugment) invoke the following command:

  • for DGX1V-16G: python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 $PATH_TO_IMAGENET

  • for DGX-A100: python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 256 $PATH_TO_IMAGENET`

Benchmarking

To run training benchmarks with different data loaders and automatic augmentations, you can use following commands, assuming that they are running on DGX1V-16G with 8 GPUs, 128 batch size and AMP:

# Adjust the following variable to control where to store the results of the benchmark runs
export RESULT_WORKSPACE=./

# synthetic benchmark
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 1 --prof 1000 --no-checkpoints --training-only --data-backend synthetic --workspace $RESULT_WORKSPACE --raport-file bench_report_synthetic.json $PATH_TO_IMAGENET

# DALI without automatic augmentations
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation disabled  --workspace $RESULT_WORKSPACE --raport-file bench_report_dali.json $PATH_TO_IMAGENET

# DALI with AutoAugment
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation autoaugment  --workspace $RESULT_WORKSPACE --raport-file bench_report_dali_aa.json $PATH_TO_IMAGENET

# DALI with TrivialAugment
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation trivialaugment --workspace $RESULT_WORKSPACE --raport-file bench_report_dali_ta.json $PATH_TO_IMAGENET

# PyTorch without automatic augmentations
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend pytorch --automatic-augmentation disabled --workspace $RESULT_WORKSPACE --raport-file bench_report_pytorch.json $PATH_TO_IMAGENET

# PyTorch with AutoAugment:
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend pytorch --automatic-augmentation autoaugment --workspace $RESULT_WORKSPACE --raport-file bench_report_pytorch_aa.json $PATH_TO_IMAGENET

Inference

Validation is done every epoch, and can be also run separately on a checkpointed model.

python ./main.py --evaluate --epochs 1 --resume <path to checkpoint> -b <batch size> $PATH_TO_IMAGENET

To run inference on JPEG image, you have to first extract the model weights from checkpoint:

python checkpoint2model.py --checkpoint-path <path to checkpoint> --weight-path <path where weights will be stored>

Then, run the classification script:

python classify.py --pretrained-from-file <path to weights from previous step> --precision AMP|FP32 --image <path to JPEG image>