INetworkDefinition

class tensorrt.INetworkDefinition

Represents a TensorRT Network from which the Builder can build an Engine

Variables:
  • pooling_output_dimensions_formulaIOutputDimensionsFormula The formula from computing the pooling output dimensions. If set to None , the default formula is used. The default formula in each dimension is \((inputDim + padding * 2 - kernelSize) / stride + 1\) .
  • convolution_output_dimensions_formulaIOutputDimensionsFormula Deprecated Does not currently work reliably and will be removed in a future release. The formula from computing the convolution output dimensions. If set to None , the default formula is used. The default formula in each dimension is \((inputDim + padding * 2 - kernelSize) / stride + 1\) .
  • deconvolution_output_dimensions_formulaIOutputDimensionsFormula Deprecated Does not currently work reliably and will be removed in a future release. The formula from computing the deconvolution output dimensions. If None is passed, the default formula is used. The default formula in each dimension is \((inputDim - 1) * stride + kernelSize - 2 * padding\) .
  • num_layersint The number of layers in the network.
  • num_inputsint The number of inputs of the network.
  • num_outputsint The number of outputs of the network.
add_activation(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, type: tensorrt.tensorrt.ActivationType) → tensorrt.tensorrt.IActivationLayer

Add an activation layer to the network. See IActivationLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • type – The type of activation function to apply.
Returns:

The new activation layer, or None if it could not be created.

add_concatenation(self: tensorrt.tensorrt.INetworkDefinition, inputs: List[tensorrt.tensorrt.ITensor]) → tensorrt.tensorrt.IConcatenationLayer

Add a concatenation layer to the network. Note that all tensors must have the same dimension except for the Channel dimension. See IConcatenationLayer for more information.

Parameters:inputs – The input tensors to the layer.
Returns:The new concatenation layer, or None if it could not be created.
add_constant(self: tensorrt.tensorrt.INetworkDefinition, shape: tensorrt.tensorrt.Dims, weights: tensorrt.tensorrt.Weights) → tensorrt.tensorrt.IConstantLayer

Add a constant layer to the network. See IConstantLayer for more information.

Parameters:
  • shape – The shape of the constant.
  • weights – The constant value, represented as weights.
Returns:

The new constant layer, or None if it could not be created.

add_convolution(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, num_output_maps: int, kernel_shape: tensorrt.tensorrt.DimsHW, kernel: tensorrt.tensorrt.Weights, bias: tensorrt.tensorrt.Weights) → tensorrt.tensorrt.IConvolutionLayer

Add a convolution layer to the network. See IConvolutionLayer for more information.

Parameters:
  • input – The input tensor to the convolution.
  • num_output_maps – The number of output feature maps for the convolution.
  • kernel_shape – The dimensions of the convolution kernel.
  • kernel – The kernel weights for the convolution.
  • bias – The optional bias weights for the convolution.
Returns:

The new convolution layer, or None if it could not be created.

add_deconvolution(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, num_output_maps: int, kernel_shape: tensorrt.tensorrt.DimsHW, kernel: tensorrt.tensorrt.Weights, bias: tensorrt.tensorrt.Weights) → tensorrt.tensorrt.IDeconvolutionLayer

Add a deconvolution layer to the network. See IDeconvolutionLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • num_output_maps – The number of output feature maps.
  • kernel_shape – The dimensions of the convolution kernel.
  • kernel – The kernel weights for the convolution.
  • bias – The optional bias weights for the convolution.
Returns:

The new deconvolution layer, or None if it could not be created.

add_elementwise(self: tensorrt.tensorrt.INetworkDefinition, input1: tensorrt.tensorrt.ITensor, input2: tensorrt.tensorrt.ITensor, op: tensorrt.tensorrt.ElementWiseOperation) → tensorrt.tensorrt.IElementWiseLayer

Add an elementwise layer to the network. See IElementWiseLayer for more information.

Parameters:
  • input1 – The first input tensor to the layer.
  • input2 – The second input tensor to the layer.
  • op – The binary operation that the layer applies.

The input tensors must have the same number of dimensions. For each dimension, their lengths must match, or one of them must be one. In the latter case, the tensor is broadcast along that axis.

The output tensor has the same number of dimensions as the inputs. For each dimension, its length is the maximum of the lengths of the corresponding input dimension.

Returns:The new element-wise layer, or None if it could not be created.
add_fully_connected(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, num_outputs: int, kernel: tensorrt.tensorrt.Weights, bias: tensorrt.tensorrt.Weights) → tensorrt.tensorrt.IFullyConnectedLayer

Add a fully connected layer to the network. See IFullyConnectedLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • num_outputs – The number of outputs of the layer.
  • kernel – The kernel weights for the convolution.
  • bias – The optional bias weights for the convolution.
Returns:

The new fully connected layer, or None if it could not be created.

add_gather(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, indices: tensorrt.tensorrt.ITensor, axis: int) → tensorrt.tensorrt.IGatherLayer

Add a pooling layer to the network. See IGatherLayer for more information.

Parameters:
  • input – The tensor to gather values from.
  • indices – The tensor to get indices from to populate the output tensor.
  • axis – The non-batch dimension axis in the data tensor to gather on.
Returns:

The new pooling layer, or None if it could not be created.

add_identity(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor) → tensorrt.tensorrt.IIdentityLayer

Add an identity layer. See IIdentityLayer for more information.

Parameters:input – The input tensor to the layer.
Returns:The new identity layer, or None if it could not be created.
add_input(self: tensorrt.tensorrt.INetworkDefinition, name: str, dtype: tensorrt.tensorrt.DataType, shape: tensorrt.tensorrt.Dims) → tensorrt.tensorrt.ITensor

Adds an input to the network.

Parameters:
  • name – The name of the tensor.
  • dtype – The data type of the tensor. Currently, trt.int8 is not supported for inputs.
  • shape – The dimensions of the tensor. The total volume must be less than 2^30 elements.
Returns:

The newly added Tensor.

add_lrn(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, window: int, alpha: float, beta: float, k: float) → tensorrt.tensorrt.ILRNLayer

Add a LRN layer to the network. See ILRNLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • window – The size of the window.
  • alpha – The alpha value for the LRN computation.
  • beta – The beta value for the LRN computation.
  • k – The k value for the LRN computation.
Returns:

The new LRN layer, or None if it could not be created.

add_matrix_multiply(self: tensorrt.tensorrt.INetworkDefinition, input0: tensorrt.tensorrt.ITensor, op0: tensorrt.tensorrt.MatrixOperation, input1: tensorrt.tensorrt.ITensor, op1: tensorrt.tensorrt.MatrixOperation) → tensorrt.tensorrt.IMatrixMultiplyLayer

Add a matrix multiply layer to the network. See IMatrixMultiplyLayer for more information.

Parameters:
  • input0 – The first input tensor (commonly A).
  • op0 – Whether to treat input0 as matrices, transposed matrices, or vectors.
  • input1 – The second input tensor (commonly B).
  • op1 – Whether to treat input1 as matrices, transposed matrices, or vectors.
Returns:

The new matrix multiply layer, or None if it could not be created.

add_matrix_multiply_deprecated(self: tensorrt.tensorrt.INetworkDefinition, input0: tensorrt.tensorrt.ITensor, transpose0: bool, input1: tensorrt.tensorrt.ITensor, transpose1: bool) → tensorrt.tensorrt.IMatrixMultiplyLayer

Add a matrix multiply layer to the network. See IMatrixMultiplyLayer for more information.

Parameters:
  • input0 – The first input tensor (commonly A).
  • transpose0 – If true, op(input0)=transpose(input0), else op(input0)=input0.
  • input1 – The second input tensor (commonly B).
  • transpose1 – If true, op(input1)=transpose(input1), else op(input1)=input1.
Returns:

The new matrix multiply layer, or None if it could not be created.

add_padding(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, pre_padding: tensorrt.tensorrt.DimsHW, post_padding: tensorrt.tensorrt.DimsHW) → tensorrt.tensorrt.IPaddingLayer

Add a padding layer to the network. See IPaddingLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • pre_padding – The padding to apply to the start of the tensor.
  • post_padding – The padding to apply to the end of the tensor.
Returns:

The new padding layer, or None if it could not be created.

add_plugin(self: tensorrt.tensorrt.INetworkDefinition, inputs: List[tensorrt.tensorrt.ITensor], plugin: tensorrt.tensorrt.IPlugin) → tensorrt.tensorrt.IPluginLayer

Add a plugin layer to the network. See IPlugin for more information.

Parameters:
  • inputs – The input tensors to the layer.
  • plugin – The layer plugin.
Returns:

The new plugin layer, or None if it could not be created.

add_plugin_ext(self: tensorrt.tensorrt.INetworkDefinition, inputs: List[tensorrt.tensorrt.ITensor], plugin: tensorrt.tensorrt.IPluginExt) → tensorrt.tensorrt.IPluginLayer

Add a plugin layer to the network using an IPluginExt interface. See IPluginExt for more information.

Parameters:
  • inputs – The input tensors to the layer.
  • plugin – The layer plugin.
Returns:

The new plugin layer, or None if it could not be created.

add_plugin_v2(self: tensorrt.tensorrt.INetworkDefinition, inputs: List[tensorrt.tensorrt.ITensor], plugin: tensorrt.tensorrt.IPluginV2) → tensorrt.tensorrt.IPluginV2Layer

Add a plugin layer to the network using an IPluginV2 interface. See IPluginV2 for more information.

Parameters:
  • inputs – The input tensors to the layer.
  • plugin – The layer plugin.
Returns:

The new plugin layer, or None if it could not be created.

add_pooling(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, type: tensorrt.tensorrt.PoolingType, window_size: tensorrt.tensorrt.DimsHW) → tensorrt.tensorrt.IPoolingLayer

Add a pooling layer to the network. See IPoolingLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • type – The type of pooling to apply.
  • window_size – The size of the pooling window.
Returns:

The new pooling layer, or None if it could not be created.

add_ragged_softmax(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, bounds: tensorrt.tensorrt.ITensor) → tensorrt.tensorrt.IRaggedSoftMaxLayer

Add a ragged softmax layer to the network. See IRaggedSoftMaxLayer for more information.

Parameters:
  • input – The ZxS input tensor.
  • bounds – The Zx1 bounds tensor.
Returns:

The new ragged softmax layer, or None if it could not be created.

add_reduce(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, op: tensorrt.tensorrt.ReduceOperation, axes: int, keep_dims: bool) → tensorrt.tensorrt.IReduceLayer

Add a reduce layer to the network. See IReduceLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • op – The reduction operation to perform.
  • axes

    The reduction dimensions.

    Bit 0 of the uint32_t type corresponds to the non-batch dimension 0 boolean and so on.
    If a bit is set, then the corresponding dimension will be reduced.
    Let’s say we have an NCHW tensor as input (three non-batch dimensions).
    Bit 0 corresponds to the C dimension boolean.
    Bit 1 corresponds to the H dimension boolean.
    Bit 2 corresponds to the W dimension boolean.
    Note that reduction is not permitted over the batch size dimension.
  • keep_dims – The boolean that specifies whether or not to keep the reduced dimensions in the output of the layer.
Returns:

The new reduce layer, or None if it could not be created.

add_rnn(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, layer_count: int, hidden_size: int, max_seq_length: int, op: tensorrt.tensorrt.RNNOperation, mode: tensorrt.tensorrt.RNNInputMode, direction: tensorrt.tensorrt.RNNDirection, weights: tensorrt.tensorrt.Weights, bias: tensorrt.tensorrt.Weights) → tensorrt.tensorrt.IRNNLayer

Add a layer_count deep RNN layer to the network with a sequence length of max_seq_length and hidden_size internal state per layer. See IRNNLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • layer_count – The number of layers in the RNN.
  • hidden_size – The size of the internal hidden state for each layer.
  • max_seq_length – The maximum length of the time sequence.
  • op – The type of RNN to execute.
  • mode – The input mode for the RNN.
  • direction – The direction to run the RNN.
  • weights – The weights for the weight matrix parameters of the RNN.
  • bias – The weights for the bias vectors parameters of the RNN.

The input tensors must be of the type float32 or float16 .

See IRNNLayer for details on the required input format for weights and bias .

The layout for the input tensor should be {1, S_max, N, E}, where:

S_max is the maximum allowed sequence length (number of RNN iterations)
N is the batch size
E specifies the embedding length (unless RNNInputMode.SKIP is set, in which case it should match hidden_size ).

The first output tensor is the output of the final RNN layer across all timesteps, with dimensions {S_max, N, H}:

S_max is the maximum allowed sequence length (number of RNN iterations)
N is the batch size
H is an output hidden state (equal to hidden_size or 2x hidden_size )

The second tensor is the final hidden state of the RNN across all layers, and if the RNN is an LSTM (i.e. op is RNNOperation.LSTM ), then the third tensor is the final cell state of the RNN across all layers. Both the second and third output tensors have dimensions {L, N, H}:

L is equal to num_layers if getDirection is RNNDirection.UNIDIRECTION , and 2* num_layers if getDirection is RNNDirection.BIDIRECTION . In the bi-directional case, layer l’s final forward hidden state is stored in L = 2*l, and final backward hidden state is stored in L = 2*l + 1 .
N is the batch size
H is hidden_size .

Note that in bidirectional RNNs, the full “hidden state” for a layer l is the concatenation of its forward hidden state and its backward hidden state, and its size is 2*H.

Deprecated IRNNLayer is superseded by IRNNv2Layer. Use add_rnn_v2() instead.

Returns:The new RNN layer, or None if it could not be created.
add_rnn_v2(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, layer_count: int, hidden_size: int, max_seq_length: int, op: tensorrt.tensorrt.RNNOperation) → tensorrt.tensorrt.IRNNv2Layer

Add an RNNv2 layer to the network. See IRNNv2Layer for more information.

Add an layer_count deep RNN layer to the network with hidden_size internal states that can take a batch with fixed or variable sequence lengths.

Parameters:
  • input – The input tensor to the layer (see below).
  • layer_count – The number of layers in the RNN.
  • hidden_size – Size of the internal hidden state for each layer.
  • max_seq_length – Maximum sequence length for the input.
  • op – The type of RNN to execute.

By default, the layer is configured with RNNDirection.UNIDIRECTION and RNNInputMode.LINEAR . To change these settings, set IRNNv2Layer.direction and IRNNv2Layer.input_mode .

Weights and biases for the added layer should be set using IRNNv2Layer.set_weights_for_gate() and IRNNv2Layer.set_bias_for_gate() prior to building an engine using this network.

The input tensors must be of the type float32 or float16 . The layout of the weights is row major and must be the same datatype as the input tensor. weights contain 8 matrices and bias contains 8 vectors.

See IRNNv2Layer.set_weights_for_gate() and IRNNv2Layer.set_bias_for_gate() for details on the required input format for weights and bias .

The input ITensor should contain zero or more index dimensions {N1, …, Np}, followed by two dimensions, defined as follows:

S_max is the maximum allowed sequence length (number of RNN iterations)
E specifies the embedding length (unless RNNInputMode.SKIP is set, in which case it should match IRNNv2Layer.hidden_size ).

By default, all sequences in the input are assumed to be size max_seq_length . To provide explicit sequence lengths for each input sequence in the batch, set IRNNv2Layer.seq_lengths .

The RNN layer outputs up to three tensors.

The first output tensor is the output of the final RNN layer across all timesteps, with dimensions {N1, …, Np, S_max, H}:

N1..Np are the index dimensions specified by the input tensor
S_max is the maximum allowed sequence length (number of RNN iterations)
H is an output hidden state (equal to IRNNv2Layer.hidden_size or 2x IRNNv2Layer.hidden_size )

The second tensor is the final hidden state of the RNN across all layers, and if the RNN is an LSTM (i.e. IRNNv2Layer.op is RNNOperation.LSTM ), then the third tensor is the final cell state of the RNN across all layers. Both the second and third output tensors have dimensions {N1, …, Np, L, H}:

N1..Np are the index dimensions specified by the input tensor
L is the number of layers in the RNN, equal to IRNNv2Layer.num_layers
H is the hidden state for each layer, equal to IRNNv2Layer.hidden_size if getDirection is RNNDirection.UNIDIRECTION, and 2x IRNNv2Layer.hidden_size otherwise.
Returns:The new RNNv2 layer, or None if it could not be created.
add_scale(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, mode: tensorrt.tensorrt.ScaleMode, shift: tensorrt.tensorrt.Weights = <tensorrt.tensorrt.Weights object at 0x7fd146c00030>, scale: tensorrt.tensorrt.Weights = <tensorrt.tensorrt.Weights object at 0x7fd146bf7fb8>, power: tensorrt.tensorrt.Weights = <tensorrt.tensorrt.Weights object at 0x7fd146bf7f80>) → tensorrt.tensorrt.IScaleLayer

Add a scale layer to the network. See IScaleLayer for more information.

Parameters:
  • input – The input tensor to The layer. This tensor is required to have a minimum of 3 dimensions.
  • mode – The scaling mode.
  • shift – The shift value.
  • scale – The scale value.
  • power – The power value.

If the weights are available, then the size of weights are dependent on the on the ScaleMode. For UNIFORM, the number of weights is equal to 1. For CHANNEL, the number of weights is equal to the channel dimension. For ELEMENTWISE, the number of weights is equal to the volume of the input.

Returns:The new scale layer, or None if it could not be created.
add_shuffle(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor) → tensorrt.tensorrt.IShuffleLayer

Add a shuffle layer to the network. See IShuffleLayer for more information.

Parameters:input – The input tensor to the layer.
Returns:The new shuffle layer, or None if it could not be created.
add_slice(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, start: tensorrt.tensorrt.Dims, shape: tensorrt.tensorrt.Dims, stride: tensorrt.tensorrt.Dims) → tensorrt.tensorrt.ISliceLayer

Add a slice layer to the network. See ISliceLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • start – The start offset.
  • shape – The output shape.
  • stride – The slicing stride. Positive, negative, zero stride values, and combinations of them in different dimensions are allowed.
Returns:

The new slice layer, or None if it could not be created.

add_softmax(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor) → tensorrt.tensorrt.ISoftMaxLayer

Add a softmax layer to the network. See ISoftMaxLayer for more information.

Parameters:input – The input tensor to the layer.
Returns:The new softmax layer, or None if it could not be created.
add_topk(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, op: tensorrt.tensorrt.TopKOperation, k: int, axes: int) → tensorrt.tensorrt.ITopKLayer

Add a TopK layer to the network. See ITopKLayer for more information.

The TopK layer has two outputs of the same dimensions. The first contains data values, the second contains index positions for the values. Output values are sorted, largest first for operation TopKOperation.MAX and smallest first for operation TopKOperation.MIN .

Currently only values of K up to 1024 are supported.

Parameters:
  • input – The input tensor to the layer.
  • op – Operation to perform.
  • k – Number of elements to keep.
  • axes – The reduction dimensions. Bit 0 of the uint32_t type corresponds to the non-batch dimension 0 boolean and so on. If a bit is set, then the corresponding dimension will be reduced. Let’s say we have an NCHW tensor as input (three non-batch dimensions). Bit 0 corresponds to the C dimension boolean. Bit 1 corresponds to the H dimension boolean. Bit 2 corresponds to the W dimension boolean. Note that TopK reduction is currently only permitted over one dimension.
Returns:

The new TopK layer, or None if it could not be created.

add_unary(self: tensorrt.tensorrt.INetworkDefinition, input: tensorrt.tensorrt.ITensor, op: tensorrt.tensorrt.UnaryOperation) → tensorrt.tensorrt.IUnaryLayer

Add a unary layer to the network. See IUnaryLayer for more information.

Parameters:
  • input – The input tensor to the layer.
  • op – The operation to apply.
Returns:

The new unary layer, or None if it could not be created.

get_input(self: tensorrt.tensorrt.INetworkDefinition, index: int) → tensorrt.tensorrt.ITensor

Get the input tensor specified by the given index.

Parameters:index – The index of the input tensor.
Returns:The tensor, or None if it is out of range.
get_layer(self: tensorrt.tensorrt.INetworkDefinition, index: int) → tensorrt.tensorrt.ILayer

Get the layer specified by the given index.

Parameters:index – The index of the layer.
Returns:The layer, or None if it is out of range.
get_output(self: tensorrt.tensorrt.INetworkDefinition, index: int) → tensorrt.tensorrt.ITensor

Get the output tensor specified by the given index.

Parameters:index – The index of the output tensor.
Returns:The tensor, or None if it is out of range.
mark_output(self: tensorrt.tensorrt.INetworkDefinition, tensor: tensorrt.tensorrt.ITensor) → None

Mark a tensor as an output.

Parameters:tensor – The tensor to mark.
remove_tensor(self: tensorrt.tensorrt.INetworkDefinition, tensor: tensorrt.tensorrt.ITensor) → None

Remove a tensor from the network.

Parameters:tensor – The tensor to remove

It is illegal to remove a tensor that is the input or output of a layer. if this method is called with such a tensor, a warning will be emitted on the log and the call will be ignored.

unmark_output(self: tensorrt.tensorrt.INetworkDefinition, tensor: tensorrt.tensorrt.ITensor) → None

Unmark a tensor as a network output.

Parameters:tensor – The tensor to unmark as an output tensor.