IBuilderConfig

tensorrt.QuantizationFlag

List of valid flags for quantizing the network to int8.

Members:

CALIBRATE_BEFORE_FUSION : Run int8 calibration pass before layer fusion. Only valid for IInt8LegacyCalibrator and IInt8EntropyCalibrator. We always run int8 calibration pass before layer fusion for IInt8MinMaxCalibrator and IInt8EntropyCalibrator2. Disabled by default.

tensorrt.DeviceType

Device types that TensorRT can execute on

Members:

GPU : GPU device

DLA : DLA core

tensorrt.ProfilingVerbosity

Profiling verbosity in NVTX annotations

Members:

DEFAULT : Register layer names in NVTX message field

NONE : Turn off NVTX traces

VERBOSE : Register layer names in NVTX message field and register layer detail in NVTX JSON payload field

tensorrt.TacticSource

Tactic sources that can provide tactics for TensorRT.

Members:

CUBLAS :

Enables cuBLAS tactics. NOTE: Disabling this value will cause the cublas handle passed to plugins in attachToContext to be null.

CUBLAS_LT :

Enables cuBLAS LT tactics

CUDNN :

Enables cuDNN tactics

tensorrt.EngineCapability
List of supported engine capability flows.

The EngineCapability determines the restrictions of a network during build time and what runtime it targets. When BuilderFlag::kSAFETY_SCOPE is not set (by default), EngineCapability.STANDARD does not provide any restrictions on functionality and the resulting serialized engine can be executed with TensorRT’s standard runtime APIs in the nvinfer1 namespace. EngineCapability.SAFETY provides a restricted subset of network operations that are safety certified and the resulting serialized engine can be executed with TensorRT’s safe runtime APIs in the nvinfer1::safe namespace. EngineCapability.DLA_STANDALONE provides a restricted subset of network operations that are DLA compatible and the resulting serialized engine can be executed using standalone DLA runtime APIs. See sampleNvmedia for an example of integrating NvMediaDLA APIs with TensorRT APIs.

Members:

DEFAULT : Deprecated: Unrestricted: TensorRT mode without any restrictions using TensorRT nvinfer1 APIs.

SAFE_GPU : Deprecated: Safety-restricted: TensorRT mode for GPU devices using TensorRT safety APIs. See safety documentation for list of supported layers and formats.

SAFE_DLA : Deprecated: DLA-restricted: TensorRT mode for DLA devices using NvMediaDLA APIs. Only FP16 and Int8 modes are supported.

STANDARD : Standard: TensorRT flow without targeting the standard runtime. This flow supports both DeviceType::kGPU and DeviceType::kDLA.

SAFETY : Safety: TensorRT flow with restrictions targeting the safety runtime. See safety documentation for list of supported layers and formats. This flow supports only DeviceType::kGPU.

DLA_STANDALONE : DLA Standalone: TensorRT flow with restrictions targeting external, to TensorRT, DLA runtimes. See DLA documentation for list of supported layers and formats. This flow supports only DeviceType::kDLA.

tensorrt.BuilderFlag

Valid modes that the builder can enable when creating an engine from a network definition.

Members:

FP16 : Enable FP16 layer selection

INT8 : Enable Int8 layer selection

DEBUG : Enable debugging of layers via synchronizing after every layer

GPU_FALLBACK : Enable layers marked to execute on GPU if layer cannot execute on DLA

STRICT_TYPES : Enables strict type constraints

REFIT : Enable building a refittable engine

DISABLE_TIMING_CACHE : Disable reuse of timing information across identical layers.

TF32 : Allow (but not require) computations on tensors of type DataType.FLOAT to use TF32. TF32 computes inner products by rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas. Enabled by default.

SPARSE_WEIGHTS : Allow the builder to examine weights and use optimized functions when weights have suitable sparsity.

SAFETY_SCOPE : Change the allowed parameters in the EngineCapability::kSTANDARD flow to match the restrictions that EngineCapability::kSAFETY check against for DeviceType::kGPU and EngineCapability::kDLA_STANDALONE check against the DeviceType::kDLA case. This flag is forced to true if EngineCapability::kSAFETY at build time if it is unset.

class tensorrt.IBuilderConfig
Variables
  • min_timing_iterationsint The number of minimization iterations used when timing layers. When timing layers, the builder minimizes over a set of average times for layer execution. This parameter controls the number of iterations used in minimization.

  • avg_timing_iterationsint The number of averaging iterations used when timing layers. When timing layers, the builder minimizes over a set of average times for layer execution. This parameter controls the number of iterations used in averaging.

  • int8_calibratorIInt8Calibrator Int8 Calibration interface. The calibrator is to minimize the information loss during the INT8 quantization process.

  • max_workspace_sizeint The maximum workspace size. The maximum GPU temporary memory which the engine can use at execution time.

  • flagsint The build mode flags to turn on builder options for this network. The flags are listed in the BuilderFlags enum. The flags set configuration options to build the network. This should be in integer consisting of one or more BuilderFlag s, combined via binary OR. For example, 1 << BuilderFlag.FP16 | 1 << BuilderFlag.DEBUG.

  • profile_streamint The handle for the CUDA stream that is used to profile this network.

  • num_optimization_profilesint The number of optimization profiles.

  • default_device_typetensorrt.DeviceType The default DeviceType to be used by the Builder.

  • DLA_coreint The DLA core that the engine executes on. Must be between 0 and N-1 where N is the number of available DLA cores.

  • profiling_verbosity – Profiling verbosity in NVTX annotations.

  • engine_capability – The desired engine capability. See EngineCapability for details.

__del__(self: tensorrt.tensorrt.IBuilderConfig) → None
__exit__(exc_type, exc_value, traceback)

Context managers are deprecated and have no effect. Objects are automatically freed when the reference count reaches 0.

__init__()

Initialize self. See help(type(self)) for accurate signature.

add_optimization_profile(self: tensorrt.tensorrt.IBuilderConfig, profile: tensorrt.tensorrt.IOptimizationProfile) → int

Add an optimization profile.

This function must be called at least once if the network has dynamic or shape input tensors.

Parameters

profile – The new optimization profile, which must satisfy bool(profile) == True

Returns

The index of the optimization profile (starting from 0) if the input is valid, or -1 if the input is not valid.

can_run_on_DLA(self: tensorrt.tensorrt.IBuilderConfig, layer: tensorrt.tensorrt.ILayer) → bool

Check if the layer can run on DLA.

Parameters

layer – The layer to check

Returns

A bool indicating whether the layer can run on DLA

clear_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.BuilderFlag) → None

clears the builder mode flag from the enabled flags.

Parameters

flag – The flag to clear.

clear_quantization_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.QuantizationFlag) → None

Clears the quantization flag from the enabled quantization flags.

Parameters

flag – The flag to clear.

create_timing_cache(self: tensorrt.tensorrt.IBuilderConfig, serialized_timing_cache: buffer) → tensorrt.tensorrt.ITimingCache

Create timing cache

Create ITimingCache instance from serialized raw data. The created timing cache doesn’t belong to a specific builder config. It can be shared by multiple builder instances

Parameters

serialized_timing_cache – The serialized timing cache. If an empty cache is provided (i.e. b""), a new cache will be created.

Returns

The created ITimingCache object.

get_calibration_profile(self: tensorrt.tensorrt.IBuilderConfig) → tensorrt.tensorrt.IOptimizationProfile

Get the current calibration profile.

Returns

The current calibration profile or nullptr if calibrartion profile is unset.

get_device_type(self: tensorrt.tensorrt.IBuilderConfig, layer: tensorrt.tensorrt.ILayer) → tensorrt.tensorrt.DeviceType

Get the device that the layer executes on.

Parameters

layer – The layer to get the DeviceType for

Returns

The DeviceType of the layer

get_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.BuilderFlag) → bool

Check if a build mode flag is set.

Parameters

flag – The flag to check.

Returns

A bool indicating whether the flag is set.

get_quantization_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.QuantizationFlag) → bool

Check if a quantization flag is set.

Parameters

flag – The flag to check.

Returns

A bool indicating whether the flag is set.

get_tactic_sources(self: tensorrt.tensorrt.IBuilderConfig) → int

Get the tactic sources currently set in the engine build configuration.

get_timing_cache(self: tensorrt.tensorrt.IBuilderConfig) → tensorrt.tensorrt.ITimingCache

Get the timing cache from current IBuilderConfig

Returns

The timing cache used in current IBuilderConfig, or None if no timing cache is set.

is_device_type_set(self: tensorrt.tensorrt.IBuilderConfig, layer: tensorrt.tensorrt.ILayer) → bool

Check if the DeviceType for a layer is explicitly set.

Parameters

layer – The layer to check for DeviceType

Returns

True if DeviceType is not default, False otherwise

reset(self: tensorrt.tensorrt.IBuilderConfig) → None

Resets the builder configuration to defaults. When initializing a builder config object, we can call this function.

reset_device_type(self: tensorrt.tensorrt.IBuilderConfig, layer: tensorrt.tensorrt.ILayer) → None

Reset the DeviceType for the given layer.

Parameters

layer – The layer to reset the DeviceType for

set_calibration_profile(self: tensorrt.tensorrt.IBuilderConfig, profile: tensorrt.tensorrt.IOptimizationProfile) → bool

Set a calibration profile.

Calibration optimization profile must be set if int8 calibration is used to set scales for a network with runtime dimensions.

Parameters

profile – The new calibration profile, which must satisfy bool(profile) == True or be nullptr. MIN and MAX values will be overwritten by kOPT.

Returns

True if the calibration profile was set correctly.

set_device_type(self: tensorrt.tensorrt.IBuilderConfig, layer: tensorrt.tensorrt.ILayer, device_type: tensorrt.tensorrt.DeviceType) → None

Set the device that this layer must execute on. If DeviceType is not set or is reset, TensorRT will use the default DeviceType set in the builder.

The DeviceType for a layer must be compatible with the safety flow (if specified). For example a layer cannot be marked for DLA execution while the builder is configured for kSAFETY.

Parameters
  • layer – The layer to set the DeviceType of

  • device_type – The DeviceType the layer must execute on

set_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.BuilderFlag) → None

Add the input builder mode flag to the already enabled flags.

Parameters

flag – The flag to set.

set_quantization_flag(self: tensorrt.tensorrt.IBuilderConfig, flag: tensorrt.tensorrt.QuantizationFlag) → None

Add the input quantization flag to the already enabled quantization flags.

Parameters

flag – The flag to set.

set_tactic_sources(self: tensorrt.tensorrt.IBuilderConfig, tactic_sources: int) → bool

Set tactic sources.

This bitset controls which tactic sources TensorRT is allowed to use for tactic selection. By default, kCUBLAS and kCUDNN are always enabled, and kCUBLAS_LT is enabled for x86 platforms as well as non-x86 platforms when CUDA >= 11.0

Multiple tactic sources may be combined with a bitwise OR operation. For example, to enable cublas and cublasLt as tactic sources, use a value of: 1 << int(trt.TacticSource.CUBLAS) | 1 << int(trt.TacticSource.CUBLAS_LT)

Parameters

tactic_sources – The tactic sources to set

Returns

A bool indicating whether the tactic sources in the build configuration were updated. The tactic sources in the build configuration will not be updated if the provided value is invalid.

set_timing_cache(self: tensorrt.tensorrt.IBuilderConfig, cache: tensorrt.tensorrt.ITimingCache, ignore_mismatch: bool) → bool

Attach a timing cache to IBuilderConfig

The timing cache has verification header to make sure the provided cache can be used in current environment. A failure will be reported if the CUDA device property in the provided cache is different from current environment. bool(ignore_mismatch) == True skips strict verification and allows loading cache created from a different device. The cache must not be destroyed until after the engine is built.

Parameters
  • cache – The timing cache to be used

  • ignore_mismatch – Whether or not allow using a cache that contains different CUDA device property

Returns

A BOOL indicating whether the operation is done successfully.