TensorRT-LLM Prometheus Metrics#

This document describes how TensorRT-LLM Prometheus metrics are exposed in Dynamo, as well as where to find non-Prometheus metrics.

Overview#

When running TensorRT-LLM through Dynamo, TensorRT-LLM’s Prometheus metrics are automatically passed through and exposed on Dynamo’s /metrics endpoint (default port 8081). This allows you to access both TensorRT-LLM engine metrics (prefixed with trtllm:) and Dynamo runtime metrics (prefixed with dynamo_*) from a single worker backend endpoint.

Additional performance metrics are available via non-Prometheus APIs in the RequestPerfMetrics section below.

As of the date of this documentation, the included TensorRT-LLM version 1.1.0rc5 exposes 5 basic Prometheus metrics. Note that the trtllm: prefix is added by Dynamo.

Dynamo runtime metrics are documented in docs/observability/metrics.md.

Metric Reference#

TensorRT-LLM provides Prometheus metrics through the MetricsCollector class (see tensorrt_llm/metrics/collector.py), which includes:

  • Counter and Histogram metrics

  • Metric labels (e.g., model_name, engine_type, finished_reason) - note that TensorRT-LLM uses model_name instead of Dynamo’s standard model label convention

Current Prometheus Metrics (TensorRT-LLM 1.1.0rc5)#

The following metrics are exposed via Dynamo’s /metrics endpoint (with the trtllm: prefix added by Dynamo):

  • trtllm:request_success_total (Counter) — Count of successfully processed requests by finish reason

    • Labels: model_name, engine_type, finished_reason

  • trtllm:e2e_request_latency_seconds (Histogram) — End-to-end request latency (seconds)

    • Labels: model_name, engine_type

  • trtllm:time_to_first_token_seconds (Histogram) — Time to first token, TTFT (seconds)

    • Labels: model_name, engine_type

  • trtllm:time_per_output_token_seconds (Histogram) — Time per output token, TPOT (seconds)

    • Labels: model_name, engine_type

  • trtllm:request_queue_time_seconds (Histogram) — Time a request spends waiting in the queue (seconds)

    • Labels: model_name, engine_type

These metric names and availability are subject to change with TensorRT-LLM version updates.

Metric Categories#

TensorRT-LLM provides metrics in the following categories (all prefixed with trtllm:):

  • Request metrics (latency, throughput)

  • Performance metrics (TTFT, TPOT, queue time)

Note: Metrics may change between TensorRT-LLM versions. Always inspect the /metrics endpoint for your version.

Enabling Metrics in Dynamo#

TensorRT-LLM Prometheus metrics are automatically exposed when running TensorRT-LLM through Dynamo with the --publish-events-and-metrics flag.

Required Configuration#

python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics

Backend Requirement#

  • backend: Must be set to "pytorch" for metrics collection (enforced in components/src/dynamo/trtllm/main.py)

  • TensorRT-LLM’s MetricsCollector integration has only been tested/validated with the PyTorch backend

Inspecting Metrics#

To see the actual metrics available in your TensorRT-LLM version:

1. Launch TensorRT-LLM with Metrics Enabled#

# Set system metrics port (automatically enables metrics server)
export DYN_SYSTEM_PORT=8081

# Start TensorRT-LLM worker with metrics enabled
python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics

# Wait for engine to initialize

Metrics will be available at: http://localhost:8081/metrics

2. Fetch Metrics via curl#

curl http://localhost:8081/metrics | grep "^trtllm:"

3. Example Output#

Note: The specific metrics shown below are examples and may vary depending on your TensorRT-LLM version. Always inspect your actual /metrics endpoint for the current list.

# HELP trtllm:request_success_total Count of successfully processed requests.
# TYPE trtllm:request_success_total counter
trtllm:request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="stop"} 150.0
trtllm:request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="length"} 5.0

# HELP trtllm:time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE trtllm:time_to_first_token_seconds histogram
trtllm:time_to_first_token_seconds_bucket{le="0.01",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 0.0
trtllm:time_to_first_token_seconds_bucket{le="0.05",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.0
trtllm:time_to_first_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:time_to_first_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 8.75

# HELP trtllm:e2e_request_latency_seconds Histogram of end to end request latency in seconds.
# TYPE trtllm:e2e_request_latency_seconds histogram
trtllm:e2e_request_latency_seconds_bucket{le="0.5",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 25.0
trtllm:e2e_request_latency_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:e2e_request_latency_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 45.2

# HELP trtllm:time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE trtllm:time_per_output_token_seconds histogram
trtllm:time_per_output_token_seconds_bucket{le="0.1",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 120.0
trtllm:time_per_output_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:time_per_output_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.5

# HELP trtllm:request_queue_time_seconds Histogram of time spent in WAITING phase for request.
# TYPE trtllm:request_queue_time_seconds histogram
trtllm:request_queue_time_seconds_bucket{le="1.0",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 140.0
trtllm:request_queue_time_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:request_queue_time_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 32.1

Implementation Details#

  • Prometheus Integration: Uses the MetricsCollector class from tensorrt_llm.metrics (see collector.py)

  • Dynamo Integration: Uses register_engine_metrics_callback() function with add_prefix="trtllm:"

  • Engine Configuration: return_perf_metrics set to True when --publish-events-and-metrics is enabled

  • Initialization: Metrics appear after TensorRT-LLM engine initialization completes

  • Metadata: MetricsCollector initialized with model metadata (model name, engine type)

TensorRT-LLM Specific: Non-Prometheus Performance Metrics#

TensorRT-LLM provides extensive performance data beyond the basic Prometheus metrics. These are not exposed to Prometheus.

Available via Code References:#

  • RequestPerfMetrics Structure: tensorrt_llm/executor/result.py - KV cache, timing, speculative decoding metrics

  • Engine Statistics: engine.llm.get_stats_async() - System-wide aggregate statistics

  • KV Cache Events: engine.llm.get_kv_cache_events_async() - Real-time cache operations

Example RequestPerfMetrics JSON Structure:#

{
  "timing_metrics": {
    "arrival_time": 1234567890.123,
    "first_scheduled_time": 1234567890.135,
    "first_token_time": 1234567890.150,
    "last_token_time": 1234567890.300,
    "kv_cache_size": 2048576,
    "kv_cache_transfer_start": 1234567890.140,
    "kv_cache_transfer_end": 1234567890.145
  },
  "kv_cache_metrics": {
    "num_total_allocated_blocks": 100,
    "num_new_allocated_blocks": 10,
    "num_reused_blocks": 90,
    "num_missed_blocks": 5
  },
  "speculative_decoding": {
    "acceptance_rate": 0.85,
    "total_accepted_draft_tokens": 42,
    "total_draft_tokens": 50
  }
}

Note: These structures are valid as of the date of this documentation but are subject to change with TensorRT-LLM version updates.

See Also#

TensorRT-LLM Metrics#

  • See the “TensorRT-LLM Specific: Non-Prometheus Performance Metrics” section above for detailed performance data and source code references

Dynamo Metrics#

  • Dynamo Metrics Guide: See docs/observability/metrics.md for complete documentation on Dynamo runtime metrics

  • Dynamo Runtime Metrics: Metrics prefixed with dynamo_* for runtime, components, endpoints, and namespaces

    • Implementation: lib/runtime/src/metrics.rs (Rust runtime metrics)

    • Metric names: lib/runtime/src/metrics/prometheus_names.rs (metric name constants)

    • Available at the same /metrics endpoint alongside TensorRT-LLM metrics

  • Integration Code: components/src/dynamo/common/utils/prometheus.py - Prometheus utilities and callback registration