TensorRT-LLM Prometheus Metrics#
This document describes how TensorRT-LLM Prometheus metrics are exposed in Dynamo, as well as where to find non-Prometheus metrics.
Overview#
When running TensorRT-LLM through Dynamo, TensorRT-LLM’s Prometheus metrics are automatically passed through and exposed on Dynamo’s /metrics endpoint (default port 8081). This allows you to access both TensorRT-LLM engine metrics (prefixed with trtllm:) and Dynamo runtime metrics (prefixed with dynamo_*) from a single worker backend endpoint.
Additional performance metrics are available via non-Prometheus APIs in the RequestPerfMetrics section below.
As of the date of this documentation, the included TensorRT-LLM version 1.1.0rc5 exposes 5 basic Prometheus metrics. Note that the trtllm: prefix is added by Dynamo.
Dynamo runtime metrics are documented in docs/observability/metrics.md.
Metric Reference#
TensorRT-LLM provides Prometheus metrics through the MetricsCollector class (see tensorrt_llm/metrics/collector.py), which includes:
Counter and Histogram metrics
Metric labels (e.g.,
model_name,engine_type,finished_reason) - note that TensorRT-LLM usesmodel_nameinstead of Dynamo’s standardmodellabel convention
Current Prometheus Metrics (TensorRT-LLM 1.1.0rc5)#
The following metrics are exposed via Dynamo’s /metrics endpoint (with the trtllm: prefix added by Dynamo):
trtllm:request_success_total(Counter) — Count of successfully processed requests by finish reasonLabels:
model_name,engine_type,finished_reason
trtllm:e2e_request_latency_seconds(Histogram) — End-to-end request latency (seconds)Labels:
model_name,engine_type
trtllm:time_to_first_token_seconds(Histogram) — Time to first token, TTFT (seconds)Labels:
model_name,engine_type
trtllm:time_per_output_token_seconds(Histogram) — Time per output token, TPOT (seconds)Labels:
model_name,engine_type
trtllm:request_queue_time_seconds(Histogram) — Time a request spends waiting in the queue (seconds)Labels:
model_name,engine_type
These metric names and availability are subject to change with TensorRT-LLM version updates.
Metric Categories#
TensorRT-LLM provides metrics in the following categories (all prefixed with trtllm:):
Request metrics (latency, throughput)
Performance metrics (TTFT, TPOT, queue time)
Note: Metrics may change between TensorRT-LLM versions. Always inspect the /metrics endpoint for your version.
Enabling Metrics in Dynamo#
TensorRT-LLM Prometheus metrics are automatically exposed when running TensorRT-LLM through Dynamo with the --publish-events-and-metrics flag.
Required Configuration#
python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics
Backend Requirement#
backend: Must be set to"pytorch"for metrics collection (enforced incomponents/src/dynamo/trtllm/main.py)TensorRT-LLM’s
MetricsCollectorintegration has only been tested/validated with the PyTorch backend
Inspecting Metrics#
To see the actual metrics available in your TensorRT-LLM version:
1. Launch TensorRT-LLM with Metrics Enabled#
# Set system metrics port (automatically enables metrics server)
export DYN_SYSTEM_PORT=8081
# Start TensorRT-LLM worker with metrics enabled
python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics
# Wait for engine to initialize
Metrics will be available at: http://localhost:8081/metrics
2. Fetch Metrics via curl#
curl http://localhost:8081/metrics | grep "^trtllm:"
3. Example Output#
Note: The specific metrics shown below are examples and may vary depending on your TensorRT-LLM version. Always inspect your actual /metrics endpoint for the current list.
# HELP trtllm:request_success_total Count of successfully processed requests.
# TYPE trtllm:request_success_total counter
trtllm:request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="stop"} 150.0
trtllm:request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="length"} 5.0
# HELP trtllm:time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE trtllm:time_to_first_token_seconds histogram
trtllm:time_to_first_token_seconds_bucket{le="0.01",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 0.0
trtllm:time_to_first_token_seconds_bucket{le="0.05",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.0
trtllm:time_to_first_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:time_to_first_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 8.75
# HELP trtllm:e2e_request_latency_seconds Histogram of end to end request latency in seconds.
# TYPE trtllm:e2e_request_latency_seconds histogram
trtllm:e2e_request_latency_seconds_bucket{le="0.5",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 25.0
trtllm:e2e_request_latency_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:e2e_request_latency_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 45.2
# HELP trtllm:time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE trtllm:time_per_output_token_seconds histogram
trtllm:time_per_output_token_seconds_bucket{le="0.1",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 120.0
trtllm:time_per_output_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:time_per_output_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.5
# HELP trtllm:request_queue_time_seconds Histogram of time spent in WAITING phase for request.
# TYPE trtllm:request_queue_time_seconds histogram
trtllm:request_queue_time_seconds_bucket{le="1.0",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 140.0
trtllm:request_queue_time_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm:request_queue_time_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 32.1
Implementation Details#
Prometheus Integration: Uses the
MetricsCollectorclass fromtensorrt_llm.metrics(see collector.py)Dynamo Integration: Uses
register_engine_metrics_callback()function withadd_prefix="trtllm:"Engine Configuration:
return_perf_metricsset toTruewhen--publish-events-and-metricsis enabledInitialization: Metrics appear after TensorRT-LLM engine initialization completes
Metadata:
MetricsCollectorinitialized with model metadata (model name, engine type)
TensorRT-LLM Specific: Non-Prometheus Performance Metrics#
TensorRT-LLM provides extensive performance data beyond the basic Prometheus metrics. These are not exposed to Prometheus.
Available via Code References:#
RequestPerfMetrics Structure: tensorrt_llm/executor/result.py - KV cache, timing, speculative decoding metrics
Engine Statistics:
engine.llm.get_stats_async()- System-wide aggregate statisticsKV Cache Events:
engine.llm.get_kv_cache_events_async()- Real-time cache operations
Example RequestPerfMetrics JSON Structure:#
{
"timing_metrics": {
"arrival_time": 1234567890.123,
"first_scheduled_time": 1234567890.135,
"first_token_time": 1234567890.150,
"last_token_time": 1234567890.300,
"kv_cache_size": 2048576,
"kv_cache_transfer_start": 1234567890.140,
"kv_cache_transfer_end": 1234567890.145
},
"kv_cache_metrics": {
"num_total_allocated_blocks": 100,
"num_new_allocated_blocks": 10,
"num_reused_blocks": 90,
"num_missed_blocks": 5
},
"speculative_decoding": {
"acceptance_rate": 0.85,
"total_accepted_draft_tokens": 42,
"total_draft_tokens": 50
}
}
Note: These structures are valid as of the date of this documentation but are subject to change with TensorRT-LLM version updates.
See Also#
TensorRT-LLM Metrics#
See the “TensorRT-LLM Specific: Non-Prometheus Performance Metrics” section above for detailed performance data and source code references
Dynamo Metrics#
Dynamo Metrics Guide: See docs/observability/metrics.md for complete documentation on Dynamo runtime metrics
Dynamo Runtime Metrics: Metrics prefixed with
dynamo_*for runtime, components, endpoints, and namespacesImplementation:
lib/runtime/src/metrics.rs(Rust runtime metrics)Metric names:
lib/runtime/src/metrics/prometheus_names.rs(metric name constants)Available at the same
/metricsendpoint alongside TensorRT-LLM metrics
Integration Code:
components/src/dynamo/common/utils/prometheus.py- Prometheus utilities and callback registration