Dynamo KV Smart Router A/B Benchmarking Guide#
This guide walks you through setting up and running A/B benchmarks to compare Dynamo’s KV Smart Router against standard round-robin routing on a Kubernetes cluster.
Overview#
Dynamo’s KV Smart Router intelligently routes requests based on KV cache affinity, improving performance for workloads with shared prompt prefixes. This guide helps you:
Deploy two identical Dynamo configurations: a. A vllm server for Qwen3-32B with 8 workers (aggregated) WITHOUT KV Smart Router enabled b. A vllm server for Qwen3-32B with 8 workers (aggregated) WITH KV Smart Router enabled
Run controlled benchmarks using AIPerf
Compare performance metrics to evaluate KV router effectiveness
Prerequisites: Kubernetes cluster with GPUs, kubectl, helm
Prerequisites#
Required Tools#
kubectl(configured with cluster access)helm(v3+)HuggingFace account and token (if model downloads are gated)
Kubernetes cluster with:
GPU nodes (H100, H200, or similar)
Sufficient GPU capacity (16+ GPUs recommended for this example)
Dynamo platform installed globally OR ability to install per-namespace
Knowledge Requirements#
Basic Kubernetes concepts (namespaces, pods, services)
Familiarity with LLM inference concepts
Command-line proficiency
Architecture#
This guide sets up two parallel deployments, as well as a benchmarking pod that can test each deployment:
┌─────────────────────────────────────┐
│ Deployment A: Router OFF │
│ Namespace: router-off-test │
│ ├─ Frontend (Standard Routing) │
│ └─ 8x Decode Workers (1 GPU each) │
└─────────────────────────────────────┘
┌─────────────────────────────────────┐
│ Deployment B: Router ON │
│ Namespace: router-on-test │
│ ├─ Frontend (KV Smart Router) │
│ └─ 8x Decode Workers (1 GPU each) │
└─────────────────────────────────────┘
┌─────────────────────────────────────┐
│ Benchmark Pod │
│ Namespace: benchmark │
│ └─ AIPerf + Dataset │
└─────────────────────────────────────┘
Key Difference: Deployment B sets DYN_ROUTER_MODE=kv on the frontend to enable KV cache-aware routing.
Phase 1: Namespace and Infrastructure Setup#
Step 1.1: Create Namespaces#
# Create namespaces for both deployments
kubectl create namespace router-off-test
kubectl create namespace router-on-test
kubectl create namespace benchmark
Step 1.2: Create HuggingFace Token Secret (optional)#
If the model you’re seeking to deploy requires HF token to download (Llama family models require this), replace YOUR_HF_TOKEN with your actual HuggingFace token:
# Router-OFF namespace
kubectl create secret generic hf-token-secret \
--from-literal=HF_TOKEN="YOUR_HF_TOKEN" \
-n router-off-test
# Router-ON namespace
kubectl create secret generic hf-token-secret \
--from-literal=HF_TOKEN="YOUR_HF_TOKEN" \
-n router-on-test
Step 1.3: Install Dynamo Platform (Per-Namespace)#
If your cluster uses namespace-restricted Dynamo operators, you’ll need to install the Dynamo platform in each namespace. Follow the Dynamo Kubernetes Installation Guide to install the platform in both namespaces:
router-off-testrouter-on-test
Key Configuration Notes:
If your cluster uses namespace restrictions, ensure
dynamo-operator.namespaceRestriction.enabled=trueis set during installationAdjust version tags to match your cluster’s available Dynamo versions
If you encounter operator compatibility issues (e.g., unsupported MPI arguments), consult your cluster administrator or the Dynamo troubleshooting documentation
Step 1.4: Verify Infrastructure#
Wait for operators and infrastructure to be ready:
# Check router-off-test
kubectl get pods -n router-off-test
# Check router-on-test
kubectl get pods -n router-on-test
You should see:
dynamo-platform-dynamo-operator-controller-manager(2/2 Running)dynamo-platform-etcd-0(1/1 Running)dynamo-platform-nats-0(2/2 Running)
Phase 2: Deploy Model Serving#
Step 2.1: Create Deployment YAMLs#
Create router-off-deployment.yaml:
apiVersion: nvidia.com/v1alpha1
kind: DynamoGraphDeployment
metadata:
name: vllm-agg-no-router
spec:
services:
Frontend:
dynamoNamespace: vllm-agg-no-router
componentType: frontend
replicas: 1
extraPodSpec:
mainContainer:
image: nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.5.0
VllmDecodeWorker:
envFromSecret: hf-token-secret
dynamoNamespace: vllm-agg-no-router
componentType: worker
replicas: 8
resources:
limits:
gpu: "1"
extraPodSpec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node.kubernetes.io/instance-type
operator: In
values:
- gpu-h200-sxm # Adjust to your GPU node type
mainContainer:
image: nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.5.0
workingDir: /workspace/components/backends/vllm
command:
- /bin/sh
- -c
args:
- python3 -m dynamo.vllm --model Qwen/Qwen3-32B --quantization fp8
startupProbe:
httpGet:
path: /health
port: 9090
initialDelaySeconds: 120
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 60 # 32 minutes total (120s + 60*30s)
livenessProbe:
httpGet:
path: /live
port: 9090
initialDelaySeconds: 300
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 10
readinessProbe:
httpGet:
path: /live
port: 9090
initialDelaySeconds: 300
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 10
Create router-on-deployment.yaml:
apiVersion: nvidia.com/v1alpha1
kind: DynamoGraphDeployment
metadata:
name: vllm-agg-router
spec:
services:
Frontend:
dynamoNamespace: vllm-agg-router
componentType: frontend
replicas: 1
extraPodSpec:
mainContainer:
image: nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.5.0
envs:
- name: DYN_ROUTER_MODE
value: kv # KEY DIFFERENCE: Enable KV Smart Router
VllmDecodeWorker:
envFromSecret: hf-token-secret
dynamoNamespace: vllm-agg-router
componentType: worker
replicas: 8
resources:
limits:
gpu: "1"
extraPodSpec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node.kubernetes.io/instance-type
operator: In
values:
- gpu-h200-sxm # Adjust to your GPU node type
mainContainer:
image: nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.5.0
workingDir: /workspace/components/backends/vllm
command:
- /bin/sh
- -c
args:
- python3 -m dynamo.vllm --model Qwen/Qwen3-32B --quantization fp8
startupProbe:
httpGet:
path: /health
port: 9090
initialDelaySeconds: 120
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 60 # 32 minutes total (120s + 60*30s)
livenessProbe:
httpGet:
path: /live
port: 9090
initialDelaySeconds: 300
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 10
readinessProbe:
httpGet:
path: /live
port: 9090
initialDelaySeconds: 300
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 10
Step 2.2: Deploy Both Configurations#
# Deploy router-OFF
kubectl apply -f router-off-deployment.yaml -n router-off-test
# Deploy router-ON
kubectl apply -f router-on-deployment.yaml -n router-on-test
💡 Optimization Tip: Each worker will download the model independently (~20 minutes per pod). For faster initialization, add a shared PVC with ReadWriteMany access mode to cache the model.
First, create the PVC separately:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: model-cache
spec:
accessModes:
- ReadWriteMany
storageClassName: "your-shared-storage-class" # e.g., nfs, efs, nebius-shared-fs
resources:
requests:
storage: 100Gi
Then reference it in your DynamoGraphDeployment:
spec:
pvcs:
- create: false
name: model-cache
size: "0"
services:
VllmDecodeWorker:
volumeMounts:
- mountPoint: /root/.cache/huggingface
name: model-cache
useAsCompilationCache: false
With this configuration, only the first worker downloads the model; others use the cached version, reducing startup time from 20+ minutes to ~2 minutes per pod.
Step 2.3: Monitor Deployment Progress#
# Watch router-OFF pods
kubectl get pods -n router-off-test -w
# Watch router-ON pods
kubectl get pods -n router-on-test -w
Wait for all pods to reach Running status and pass readiness probes.
Expected Timeline:
With shared PVC (ReadWriteMany): ~5-10 minutes total (first worker downloads, others reuse cache)
Without shared PVC: 20-30 minutes per worker (workers download independently)
For 8 workers: Budget 1-2 hours for full deployment (workers start in parallel but are limited by node scheduling)
The startup probe allows 32 minutes per pod (failureThreshold: 60), which accommodates model download and initialization.
Step 2.4: Verify All Workers Are Healthy#
⚠️ CRITICAL CHECKPOINT: Before running benchmarks, you MUST verify equal worker health in both deployments. Unequal worker counts will invalidate your comparison results.
# Quick health check - both should show "8/8"
echo "Router OFF: $(kubectl get pods -n router-off-test -l nvidia.com/dynamo-component-type=worker --field-selector=status.phase=Running -o json | jq '[.items[] | select(.status.conditions[] | select(.type=="Ready" and .status=="True"))] | length')/8 ready"
echo "Router ON: $(kubectl get pods -n router-on-test -l nvidia.com/dynamo-component-type=worker --field-selector=status.phase=Running -o json | jq '[.items[] | select(.status.conditions[] | select(.type=="Ready" and .status=="True"))] | length')/8 ready"
# Detailed view
kubectl get pods -n router-off-test -l nvidia.com/dynamo-component-type=worker
kubectl get pods -n router-on-test -l nvidia.com/dynamo-component-type=worker
Both must show 8/8 workers in Ready state (1/1 Running). If workers are not ready:
Check logs:
kubectl logs -n <namespace> <pod-name>Common issues: model download in progress, startup probe timeout, insufficient GPU resources
Do not proceed with benchmarks until all 16 workers (8 per deployment) are healthy.
Phase 3: Prepare Benchmark Dataset#
Understanding the Mooncake Trace Dataset#
For this A/B comparison, we use the Mooncake Trace Dataset, published by Mooncake AI. This is a privacy-preserving dataset of real-world LLM inference traffic from production arxiv workloads.
What’s in the dataset? Each trace entry contains:
Timestamp: When the request arrived (for realistic request timing)
Input/output lengths: Number of tokens in prompts and responses
Block hash IDs: Cryptographic hashes representing KV cache blocks (explained below)
Sample trace entry:
{
"timestamp": 27482,
"input_length": 6955,
"output_length": 52,
"hash_ids": [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 2353, 2354]
}
Why Mooncake Traces Matter for KV Cache Benchmarking#
The Challenge: Traditional LLM benchmarks use synthetic or random data, which are often insufficient to capture real-world optimizations like KV Smart Router. To properly evaluate this feature, we need realistic traffic patterns with prefix repetition - but this creates a privacy problem: how do we measure realistic KV cache hit patterns without exposing actual user conversations?
Mooncake’s Solution: Privacy-Preserving Block Hashes
Instead of storing actual prompt text, the Mooncake dataset uses cryptographic hashes to represent KV cache blocks. Each hash ID represents a 512-token block, and the hash includes both the current block and all preceding blocks. This preserves the pattern of prefix reuse while completely protecting user privacy.
How it works - Multi-turn conversation example#
Turn 1 (initial request - long document analysis):
Input: ~8,000 tokens (e.g., research paper + question)
Hash IDs: [46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61]
└─ 16 blocks × 512 tokens/block = ~8,192 tokens
Turn 2 (follow-up question on same document):
Input: Same document + new question (~8,500 tokens)
Hash IDs: [46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62]
└──────────── Reuses first 16 blocks (~8,192 tokens) ───────────────┘
✅ Cache hit: First 8,192 tokens don't need recomputation!
Turn 3 (another follow-up):
Input: Same document + different question (~9,000 tokens)
Hash IDs: [46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63]
└──────────── Reuses first 16 blocks (~8,192 tokens) ───────────────┘
When requests share the same hash IDs (e.g., blocks 46-61), it means they share those 512-token blocks - indicating significant prefix overlap (in this case, 8,192 tokens). The KV Smart Router routes requests with matching hash IDs to the same worker, maximizing cache hits and avoiding redundant computation for those shared prefix tokens.
Key Dataset Properties:
✅ Realistic timing: Request arrival patterns from production workloads
✅ Real prefix patterns: Up to 50% cache hit ratio (Mooncake technical report)
✅ Privacy-preserving: No actual text - only hash-based cache block identifiers
✅ Reproducible: Public dataset enables fair comparisons across different systems
Why this matters: With random synthetic data, the KV Smart Router would show no benefit because there’s no prefix reuse to exploit. Mooncake traces provide realistic workload patterns that demonstrate the router’s real-world performance gains while respecting user privacy.
Download and Prepare the Dataset#
# Download the Mooncake arxiv trace dataset
curl -sL https://raw.githubusercontent.com/kvcache-ai/Mooncake/refs/heads/main/FAST25-release/arxiv-trace/mooncake_trace.jsonl -o mooncake_trace.jsonl
# Trim to 1000 requests for faster benchmarking
head -n 1000 mooncake_trace.jsonl > mooncake_trace_small.jsonl
# Speed up timestamps 4x (reduces benchmark time from ~12 min to ~3 min)
python3 - <<'PY'
import json
with open("mooncake_trace_small.jsonl") as src, open("mooncake_trace_4x.jsonl", "w") as dst:
for line in src:
rec = json.loads(line)
rec["timestamp"] = int(rec["timestamp"] / 4)
dst.write(json.dumps(rec) + "\n")
PY
echo "Dataset ready: mooncake_trace_4x.jsonl (1000 requests, 4x speed)"
Phase 4: Set Up Benchmark Environment#
Step 4.1: Deploy Benchmark Pod#
Create benchmark-job.yaml:
apiVersion: batch/v1
kind: Job
metadata:
name: aiperf-benchmark
namespace: benchmark
spec:
backoffLimit: 1
template:
spec:
restartPolicy: Never
containers:
- name: benchmark
image: nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.5.0
command: ["/bin/sh", "-c", "sleep infinity"]
imagePullPolicy: IfNotPresent
resources:
limits:
nvidia.com/gpu: 0
Deploy:
kubectl apply -f benchmark-job.yaml
Wait for pod to be ready:
kubectl get pods -n benchmark
Step 4.2: Copy Dataset to Benchmark Pod#
POD_NAME=$(kubectl get pods -n benchmark -l job-name=aiperf-benchmark -o jsonpath='{.items[0].metadata.name}')
kubectl -n benchmark cp mooncake_trace_4x.jsonl ${POD_NAME}:/tmp/mooncake_trace_4x.jsonl
Step 4.3: Install AIPerf#
kubectl -n benchmark exec ${POD_NAME} -- bash -lc '. /opt/dynamo/venv/bin/activate && pip install -q aiperf'
Phase 5: Run Benchmarks#
Step 5.1: Benchmark Router-OFF (Baseline)#
kubectl -n benchmark exec ${POD_NAME} -- bash -lc '
. /opt/dynamo/venv/bin/activate
aiperf profile \
--model "Qwen/Qwen3-32B" \
--url "http://vllm-agg-no-router-frontend.router-off-test.svc.cluster.local:8000" \
--endpoint-type chat \
--input-file /tmp/mooncake_trace_4x.jsonl \
--custom-dataset-type mooncake_trace \
--tokenizer "Qwen/Qwen3-32B" \
--streaming \
--request-count 1000 \
--fixed-schedule \
--output-artifact-dir /tmp/router_off_results
'
Note: This will take 3-5 minutes. The terminal output includes a summary table.
Step 5.2: Benchmark Router-ON (KV Smart Router)#
kubectl -n benchmark exec ${POD_NAME} -- bash -lc '
. /opt/dynamo/venv/bin/activate
aiperf profile \
--model "Qwen/Qwen3-32B" \
--url "http://vllm-agg-router-frontend.router-on-test.svc.cluster.local:8000" \
--endpoint-type chat \
--input-file /tmp/mooncake_trace_4x.jsonl \
--custom-dataset-type mooncake_trace \
--tokenizer "Qwen/Qwen3-32B" \
--streaming \
--request-count 1000 \
--fixed-schedule \
--output-artifact-dir /tmp/router_on_results
'
Step 5.3: Collect Results#
# Copy results to local machine
kubectl -n benchmark cp ${POD_NAME}:/tmp/router_off_results/profile_export_aiperf.csv ./router_off_results.csv
kubectl -n benchmark cp ${POD_NAME}:/tmp/router_on_results/profile_export_aiperf.csv ./router_on_results.csv
Phase 6: Analyze Results#
Key Metrics to Compare#
Metric |
Description |
What to Look For |
|---|---|---|
Time to First Token (TTFT) |
Latency until first token arrives |
Lower is better; KV router may reduce with prefix reuse |
Inter Token Latency (ITL) |
Average time between tokens |
Lower is better; indicates generation speed |
Request Latency |
Total end-to-end latency |
Lower is better; overall user experience |
Output Token Throughput |
Tokens generated per second (system-wide) |
Higher is better; system efficiency |
Request Throughput |
Requests completed per second |
Higher is better; capacity |
Interpreting Results#
Your Results May Vary: The improvement from KV Smart Router depends heavily on your workload characteristics:
Factors that increase KV router benefit:
High prefix overlap (shared system prompts, templates, document contexts)
Long prompts (>2000 tokens) where caching saves significant compute
Multi-turn conversations with context carryover
Batch workloads with similar queries
Factors that reduce KV router benefit:
Unique prompts with no prefix reuse
Short prompts (<1000 tokens) where routing overhead exceeds benefit
Evenly distributed load where round-robin is already optimal
Low request rate where cache eviction negates benefits
Expected Performance:
High prefix overlap workloads: 20-50% TTFT improvement
Moderate prefix overlap: 10-20% improvement
Low prefix overlap: <5% improvement (may not be worth enabling)
KV Smart Router is beneficial when:
TTFT improvements > 20%
No significant degradation in other metrics
Workload demonstrates measurable prefix reuse patterns
Standard routing is better when:
KV router shows <10% improvement
Increased latency variance is observed
Load distribution across workers is more important than cache affinity
Example Comparison#
From the terminal output, compare the summary tables:
Router-OFF (Baseline):
TTFT avg: 12,764 ms p99: 45,898 ms
Request Latency avg: 32,978 ms
Output Token Throughput: 1,614 tokens/sec
Request Throughput: 8.61 req/sec
Router-ON (KV Router):
TTFT avg: 8,012 ms p99: 28,644 ms (37% faster ✅)
Request Latency avg: 28,972 ms (12% faster ✅)
Output Token Throughput: 1,746 tokens/sec (8% higher ✅)
Request Throughput: 9.33 req/sec (8% higher ✅)
In this example with all 8 workers healthy, the KV router significantly outperformed the baseline:
37% faster TTFT - Users see first token much sooner
8% higher throughput - System processes more requests per second
12% lower latency - Faster end-to-end completion
The Mooncake arxiv dataset has sufficient prefix overlap (long input sequences with similar patterns) to benefit from KV cache-aware routing. Workloads with explicit shared prefixes (system prompts, templates) may see even greater improvements.
Phase 7: Cleanup#
# Delete deployments
kubectl delete dynamographdeployment vllm-agg-no-router -n router-off-test
kubectl delete dynamographdeployment vllm-agg-router -n router-on-test
# Delete namespaces (removes all resources)
kubectl delete namespace router-off-test
kubectl delete namespace router-on-test
kubectl delete namespace benchmark
Troubleshooting#
Issue: Pods Stuck in Pending#
Cause: Insufficient GPU resources
Solution:
# Check GPU availability
kubectl describe nodes | grep -A 10 "Allocated resources"
# Reduce worker replicas if needed
kubectl edit dynamographdeployment -n <namespace>
Issue: ImagePullBackOff Errors#
Cause: Version mismatch or missing credentials
Solution:
# Check available versions
kubectl get pods -n dynamo-system -o yaml | grep image:
# Update deployment YAML to match cluster version
Issue: Operator Not Processing Deployment#
Cause: Namespace restrictions
Solution:
Ensure Dynamo platform is Helm-installed in the namespace
Verify operator has
--restrictedNamespace=<your-namespace>argumentCheck operator logs:
kubectl logs -n <namespace> deployment/dynamo-platform-dynamo-operator-controller-manager
Issue: Workers Not Becoming Ready#
Cause: Model download failures or probe configuration
Solution:
# Check worker logs
kubectl logs -n <namespace> <worker-pod-name>
# Common issues:
# - Invalid HuggingFace token
# - Network connectivity
# - Insufficient disk space for model
Issue: Workers Restarting in CrashLoopBackOff#
Cause: Startup probe timeout - workers killed before finishing initialization
Symptoms:
Pods show “Container main failed startup probe, will be restarted”
Logs show model still downloading or loading when pod is killed
Large models (>30GB) take longer than default 22-minute timeout
Solution:
Increase the startup probe failureThreshold:
# Patch the deployment to allow 32 minutes instead of 22
kubectl patch dynamographdeployment <deployment-name> -n <namespace> --type='json' \
-p='[{"op": "replace", "path": "/spec/services/VllmDecodeWorker/extraPodSpec/mainContainer/startupProbe/failureThreshold", "value": 60}]'
Or update your YAML before deploying:
startupProbe:
httpGet:
path: /health
port: 9090
initialDelaySeconds: 120
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 60 # 32 minutes total (120s + 60*30s)
Model Loading Times (approximate):
Qwen3-32B: ~20-25 minutes (first download)
Llama-70B: ~25-30 minutes (first download)
With cached model on node: ~2-5 minutes
Issue: Unequal Worker Health#
Cause: Resource constraints, image pull issues, or configuration errors
Solution:
# Check all worker status
kubectl get pods -n <namespace> -l nvidia.com/dynamo-component-type=worker
# Describe problematic pods
kubectl describe pod <pod-name> -n <namespace>
# Fix issues before benchmarking or results will be skewed
Advanced Configuration#
Testing Different Models#
Replace Qwen/Qwen3-32B with your model in:
Deployment YAML
argssectionAIPerf
--modeland--tokenizerparameters
Adjusting Worker Count#
Change replicas: 8 in the deployment YAMLs. Ensure both deployments use the same count for fair comparison.
Using Custom Datasets#
Replace mooncake dataset with your own JSONL file:
Format: One request per line with
timestampfieldAIPerf supports various formats via
--custom-dataset-type
Disaggregated Prefill/Decode#
For advanced testing, add separate prefill workers:
VllmPrefillWorker:
componentType: worker
replicas: 2
# ... configuration
Best Practices#
Equal Conditions: Ensure both deployments have identical worker counts and health before benchmarking
Warm-Up: Run a small test (100 requests) before the full benchmark to warm up caches
Multiple Runs: Run benchmarks 3+ times and average results for statistical significance
Monitor Workers: Watch for any pod restarts or issues during benchmark runs
Document Conditions: Record cluster state, worker health, and any anomalies
Test Relevant Workloads: Use datasets that match your actual use case for meaningful results
Conclusion#
This guide provides a complete methodology for A/B testing Dynamo’s KV Smart Router. The KV router’s effectiveness depends heavily on workload characteristics—datasets with high prefix overlap will show the most benefit.
For questions or issues, consult the Dynamo documentation or open an issue on GitHub.
Appendix: Files Reference#
router-off-deployment.yaml: Standard routing deploymentrouter-on-deployment.yaml: KV router enabled deploymentbenchmark-job.yaml: AIPerf benchmark podprepare-dataset.sh: Dataset preparation scriptResults CSVs: Detailed metrics from AIPerf
Repository: ai-dynamo/dynamo