Virtual GPU Software R430 for Microsoft Windows Server Release Notes

Release information for all users of NVIDIA virtual GPU software and hardware on Microsoft Windows Server.

1. Release Notes

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on Microsoft Windows Server.

The releases in this release family of NVIDIA vGPU software include the software listed in the following table:

Software 9.0 9.1 9.2 9.3
NVIDIA Windows driver 431.02 431.79 432.08 432.33
NVIDIA Linux driver 430.30 430.46 430.63 430.83

All releases of NVIDIA vGPU software are compatible with all releases of the license server.

1.1. Updates in Release 9.0

New Features in Release 9.0

  • New configuration parameter to specify host ID of a licensed client
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 9.0

  • Support for Windows 10 May 2019 Update (1903) as a guest OS
  • Support for Ubuntu 18.04 LTS as a guest OS

1.2. Updates in Release 9.1

New Features in Release 9.1

  • Security updates
  • Miscellaneous bug fixes

1.3. Updates in Release 9.2

New Features in Release 9.2

  • Miscellaneous bug fixes
  • Security updates

1.4. Updates in Release 9.3

New Features in Release 9.3

Feature Support Withdrawn in Release 9.3

  • The following OS releases are no longer supported as a guest OS:
    • Red Hat Enterprise Linux 7.0-7.4
    • CentOS 7.0-7.4

2. Validated Platforms

This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, Microsoft Windows Server hypervisor software versions, and guest operating systems.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA GPUs on Microsoft Windows Server, running on validated server hardware platforms:

  • GPUs based on the NVIDIA Maxwell™ graphic architecture:
    • Tesla M6
    • Tesla M10
    • Tesla M60
  • GPUs based on the NVIDIA Pascal™ architecture:
    • Tesla P4
    • Tesla P6
    • Tesla P40
    • Tesla P100 PCIe 16 GB
    • Tesla P100 SXM2 16 GB
    • Tesla P100 PCIe 12GB
  • GPUs based on the NVIDIA Volta architecture:
    • Tesla V100 SXM2
    • Tesla V100 SXM2 32GB
    • Tesla V100 PCIe
    • Tesla V100 PCIe 32GB
    • Tesla V100 FHHL
  • GPUs based on the NVIDIA Turing™ architecture:
    • Tesla T4
    • Quadro RTX 6000 in displayless mode
    • Quadro RTX 8000 in displayless mode

In displayless mode, local physical display connectors are disabled.

Note: These GPUs are supported as a secondary device in a bare-metal deployment. Tesla M6 is also supported as the primary display device in a bare-metal deployment.

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

2.2. Hypervisor Software Releases

This release supports only the hypervisor software versions listed in the table.

Note: If a specific release, even an update release, is not listed, it’s not supported.
Software Version Supported

Microsoft Windows Server

Windows Server 2019 with Hyper-V role

Windows Server 2016 1803 with Hyper-V role

Windows Server 2016 1709 with Hyper-V role

Windows Server 2016 1607 with Hyper-V role

2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS using GPU pass-through.

Microsoft Windows Server with Hyper-V role supports GPU pass-through over Microsoft Virtual PCI bus. This bus is supported through paravirtualized drivers.

Note:

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

Windows Guest OS Support

NVIDIA vGPU software supports only the 64-bit Windows releases listed as a guest OS on Microsoft Windows Server.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

  • Windows Server 2019
  • Windows Server 2016 1607, 1709
  • Windows Server 2012 R2 with patch Windows8.1-KB3133690-x64.msu
  • Windows 10
    • May 2019 Update (1903)
    • October 2018 Update (1809)
    • Spring Creators Update (1803)
    • Fall Creators Update (1709)
    • Creators Update (1703)
    • Anniversary Update (1607)
    • November Update (1511)
    • RTM (1507)

2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports only the 64-bit Linux distributions listed as a guest OS on Microsoft Windows Server.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

  • Since 9.3: Red Hat Enterprise Linux 7.5-7.7
  • 9.1, 9.2 only: Red Hat Enterprise Linux 7.0-7.7
  • 9.0 only: Red Hat Enterprise Linux 7.0-7.6
  • Since 9.3: CentOS 7.5-7.7
  • 9.1, 9.2 only: CentOS 7.0-7.7
  • 9.0 only: CentOS 7.0-7.6
  • Ubuntu 18.04 LTS
  • Ubuntu 16.04 LTS
  • SUSE Linux Enterprise Server 12 SP2

3. Known Issues

3.1. Microsoft DDA fails with some GPUs

Description

Microsoft Discrete Device Assignment (DDA) fails with GPUs that have more than 16 GB of GPU memory. After the NVIDIA vGPU software graphics driver is installed in the guest VM, a second display device appears on the GPU and the driver prompts for a reboot. After the reboot, the device disappears and the Microsoft Hyper-V Video device appears.

This issue occurs because less memory-mapped input/output (MMIO) space is configured for the operating system than the device requires.

Workaround

Perform this workaround in a Windows Power Shell window on the hypervisor host.

Set the upper MMIO space to the amount that the device requires to allow all of the MMIO to be mapped. Upper MMIO space starts at approximately 64 GB in address space.

Set-VM –HighMemoryMappedIoSpace mmio-space –VMName vm-name
mmio-space
The amount of MMIO space that the device requires, appended with the appropriate unit of measurement, for example, 512GB for 512 GB of MMIO space.

The required amount of MMIO space depends on the total amount of GPU memory on all installed GPUs and the number of vGPUs assigned to the VM as follows:

mmio-space = 2 ˟ gpu-memory ˟ assigned-vgpus

gpu-memory
The total amount of GPU memory on all installed GPUs. For example, in a server in which eight GPUs are installed and each GPU has 32 GB of GPU memory, gpu-memory is 256 GB.
assigned-vgpus
The number of vGPUs assigned to the VM.
vm-name
The name of the VM to which the GPU is assigned.

The following example sets the upper MMIO space to 512 GB for the VM named mygpuvm.

Set-VM –HighMemoryMappedIoSpace 512GB –VMName mygpuvm

For more information, see Deploy graphics devices using Discrete Device Assignment on the Microsoft technical documentation site.

Status

Not an NVIDIA bug

Ref. #

2812853

3.2. DWM crashes randomly occur in Windows VMs

Description

Desktop Windows Manager (DWM) crashes randomly occur in Windows VMs, causing a blue-screen crash and the bug check CRITICAL_PROCESS_DIED. Computer Management shows problems with the primary display device.

Version

This issue affects Windows 10 1809, 1903 and 1909 VMs.

Status

Not an NVIDIA bug

Ref. #

2730037

3.3. NVIDIA vGPU software graphics driver fails after Linux kernel upgrade with DKMS enabled

Description

After the Linux kernel is upgraded (for example by running sudo apt full-upgrade) with Dynamic Kernel Module Support (DKMS) enabled, the nvidia-smi command fails to run. If DKMS is enabled, an upgrade to the Linux kernel triggers a rebuild of the NVIDIA vGPU software graphics driver. The rebuild of the driver fails because the compiler version is incorrect. Any attempt to reinstall the driver fails because the kernel fails to build.

When the failure occurs, the following messages are displayed:

-> Installing DKMS kernel module:
        ERROR: Failed to run `/usr/sbin/dkms build -m nvidia -v  430.30 -k 5.3.0-28-generic`: 
        Kernel preparation unnecessary for this kernel. Skipping...
        Building module:
        cleaning build area...
        'make' -j8 NV_EXCLUDE_BUILD_MODULES='' KERNEL_UNAME=5.3.0-28-generic IGNORE_CC_MISMATCH='' modules...(bad exit status: 2)
        ERROR (dkms apport): binary package for nvidia:  430.30 not found
        Error! Bad return status for module build on kernel: 5.3.0-28-generic (x86_64)
        Consult /var/lib/dkms/nvidia/ 430.30/build/make.log for more information.
        -> error.
        ERROR: Failed to install the kernel module through DKMS. No kernel module was installed;
        please try installing again without DKMS, or check the DKMS logs for more information.
        ERROR: Installation has failed. Please see the file '/var/log/nvidia-installer.log' for details.
        You may find suggestions on fixing installation problems in the README available on the Linux driver download page at www.nvidia.com.

Workaround

When installing the NVIDIA vGPU software graphics driver with DKMS enabled, specify the --no-cc-version-check option.

Status

Not a bug.

Ref. #

2836271

3.4. 9.0 only: On Linux VMs, the license directory is not deleted when the guest driver is uninstalled

Description

On Linux guest VMs, the license directory /etc/nvidia/license is not deleted when the NVIDIA vGPU software graphics driver is uninstalled.

The following error message is written to the nvidia-uninstaller log file:

Failed to delete the directory '/etc/nvidia' (Directory not empty).

Workaround

As root, remove the /etc/nvidia/license directory after the NVIDIA vGPU software graphics driver is uninstalled.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200524555

3.5. Frame capture while the interactive logon message is displayed returns blank screen

Description

Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround

Press Enter or wait for the screen to update for NvFBC to capture the frame.

Status

Not a bug

Ref. #

2115733

3.6. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description

When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version

  • Windows Server 2016
  • Windows Server 2012

Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

  1. Choose Local Computer Policy > Computer Configuration > Administrative Templates > Windows Components > Remote Desktop Services > Remote Desktop Session Host > Remote Session Environment.

  2. Set the Use the hardware default graphics adapter for all Remote Desktop Services sessions option.

3.7. Resolution is not updated after a VM acquires a license and is restarted

Description

In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

Version

Red Enterprise Linux 7.3

Status

Open

Ref. #

200275925

3.8. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.

The nvidia-gridd service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

  • 200358191
  • 200319854
  • 1895945

3.9. No Manage License option available in NVIDIA X Server Settings by default

Description

By default, the Manage License option is not available in NVIDIA X Server Settings. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS.

Workaround

This workaround requires sudo privileges.

Note: Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-gridd service from exiting, the GUI for licensing must be disabled with these OS versions.

If you are licensing a physical GPU for vComputeServer, you must use the configuration file /etc/nvidia/gridd.conf.

  1. If NVIDIA X Server Settings is running, shut it down.
  2. If the /etc/nvidia/gridd.conf file does not already exist, create it by copying the supplied template file /etc/nvidia/gridd.conf.template.

  3. As root, edit the /etc/nvidia/gridd.conf file to set the EnableUI option to TRUE.

  4. Start the nvidia-gridd service.

    # sudo service nvidia-gridd start

When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status

Open

3.10. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status

Closed

Ref. #

1694975

Notices

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, NVIDIA GRID vGPU, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.