(Latest Version)

morpheus.models.dfencoder.distributed_ae.DistributedAutoEncoder

class DistributedAutoEncoder(*args, **kwargs)[source]

Bases: torch.nn.parallel.distributed.DistributedDataParallel

Attributes
join_device

Returns the device from which to perform collective communications needed by the join context manager implementation itself.

join_process_group

Returns the process group for the collective communications needed by the join context manager itself.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(*inputs, **kwargs)

Defines the computation performed at every call.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

join([divide_by_initial_world_size, enable, ...])

A context manager to be used in conjunction with an instance of torch.nn.parallel.DistributedDataParallel to be able to train with uneven inputs across participating processes.

join_hook(**kwargs)

Returns the DDP join hook, which enables training on uneven inputs by shadowing the collective communications in the forward and backward passes.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

no_sync()

A context manager to disable gradient synchronizations across DDP processes.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_comm_hook(state, hook)

Registers a communication hook which is an enhancement that provides a flexible hook to users where they can specify how DDP aggregates gradients across multiple workers.

register_forward_hook(hook)

Registers a forward hook on the module.

register_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_full_backward_hook(hook)

Registers a backward hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

gather

scatter

to_kwargs

will_sync_module_buffers

add_module(name, module)[source]

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

Args:
name (str): name of the child module. The child module can be

accessed from this module using the given name

module (Module): child module to be added to the module.

apply(fn)[source]

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).

Args:

fn (Module -> None): function to be applied to each submodule

Returns:

Module: self

Example:

Copy
Copied!
            

>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )

bfloat16()[source]

Casts all floating point parameters and buffers to bfloat16 datatype.

Note

This method modifies the module in-place.

Returns:

Module: self

buffers(recurse=True)[source]

Returns an iterator over module buffers.

Args:
recurse (bool): if True, then yields buffers of this module

and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields:

torch.Tensor: module buffer

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

children()[source]

Returns an iterator over immediate children modules.

Yields:

Module: a child module

cpu()[source]

Moves all model parameters and buffers to the CPU.

Note

This method modifies the module in-place.

Returns:

Module: self

cuda(device=None)[source]

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Note

This method modifies the module in-place.

Args:
device (int, optional): if specified, all parameters will be

copied to that device

Returns:

Module: self

double()[source]

Casts all floating point parameters and buffers to double datatype.

Note

This method modifies the module in-place.

Returns:

Module: self

eval()[source]

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

This is equivalent with self.train(False).

See locally-disable-grad-doc for a comparison between eval() and several similar mechanisms that may be confused with it.

Returns:

Module: self

extra_repr()[source]

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

float()[source]

Casts all floating point parameters and buffers to float datatype.

Note

This method modifies the module in-place.

Returns:

Module: self

forward(*inputs, **kwargs)[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

get_buffer(target)[source]

Returns the buffer given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

Args:
target: The fully-qualified string name of the buffer

to look for. (See get_submodule for how to specify a fully-qualified string.)

Returns:

torch.Tensor: The buffer referenced by target

Raises:
AttributeError: If the target string references an invalid

path or resolves to something that is not a buffer

get_extra_state()[source]

Returns any extra state to include in the module’s state_dict. Implement this and a corresponding set_extra_state() for your module if you need to store extra state. This function is called when building the module’s state_dict().

Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

object: Any extra state to store in the module’s state_dict

get_parameter(target)[source]

Returns the parameter given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

Args:
target: The fully-qualified string name of the Parameter

to look for. (See get_submodule for how to specify a fully-qualified string.)

Returns:

torch.nn.Parameter: The Parameter referenced by target

Raises:
AttributeError: If the target string references an invalid

path or resolves to something that is not an nn.Parameter

get_submodule(target)[source]

Returns the submodule given by target if it exists, otherwise throws an error.

For example, let’s say you have an nn.Module A that looks like this:

Copy
Copied!
            

A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Args:
target: The fully-qualified string name of the submodule

to look for. (See above example for how to specify a fully-qualified string.)

Returns:

torch.nn.Module: The submodule referenced by target

Raises:
AttributeError: If the target string references an invalid

path or resolves to something that is not an nn.Module

half()[source]

Casts all floating point parameters and buffers to half datatype.

Note

This method modifies the module in-place.

Returns:

Module: self

ipu(device=None)[source]

Moves all model parameters and buffers to the IPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.

Note

This method modifies the module in-place.

Arguments:
device (int, optional): if specified, all parameters will be

copied to that device

Returns:

Module: self

join(divide_by_initial_world_size=True, enable=True, throw_on_early_termination=False)[source]

A context manager to be used in conjunction with an instance of torch.nn.parallel.DistributedDataParallel to be able to train with uneven inputs across participating processes.

This context manager will keep track of already-joined DDP processes, and “shadow” the forward and backward passes by inserting collective communication operations to match with the ones created by non-joined DDP processes. This will ensure each collective call has a corresponding call by already-joined DDP processes, preventing hangs or errors that would otherwise happen when training with uneven inputs across processes. Alternatively, if the flag throw_on_early_termination is specified to be True, all trainers will throw an error once one rank runs out of inputs, allowing these errors to be caught and handled according to application logic.

Once all DDP processes have joined, the context manager will broadcast the model corresponding to the last joined process to all processes to ensure the model is the same across all processes (which is guaranteed by DDP).

To use this to enable training with uneven inputs across processes, simply wrap this context manager around your training loop. No further modifications to the model or data loading is required.

Warning

If the model or training loop this context manager is wrapped around has additional distributed collective operations, such as SyncBatchNorm in the model’s forward pass, then the flag throw_on_early_termination must be enabled. This is because this context manager is not aware of non-DDP collective communication. This flag will cause all ranks to throw when any one rank exhausts inputs, allowing these errors to be caught and recovered from across all ranks.

Args:
divide_by_initial_world_size (bool): If True, will divide

gradients by the initial world_size DDP training was launched with. If False, will compute the effective world size (number of ranks that have not depleted their inputs yet) and divide gradients by that during allreduce. Set divide_by_initial_world_size=True to ensure every input sample including the uneven inputs have equal weight in terms of how much they contribute to the global gradient. This is achieved by always dividing the gradient by the initial world_size even when we encounter uneven inputs. If you set this to False, we divide the gradient by the remaining number of nodes. This ensures parity with training on a smaller world_size although it also means the uneven inputs would contribute more towards the global gradient. Typically, you would want to set this to True for cases where the last few inputs of your training job are uneven. In extreme cases, where there is a large discrepancy in the number of inputs, setting this to False might provide better results.

enable (bool): Whether to enable uneven input detection or not. Pass

in enable=False to disable in cases where you know that inputs are even across participating processes. Default is True.

throw_on_early_termination (bool): Whether to throw an error

or continue training when at least one rank has exhausted inputs. If True, will throw upon the first rank reaching end of data. If False, will continue training with a smaller effective world size until all ranks are joined. Note that if this flag is specified, then the flag divide_by_initial_world_size would be ignored. Default is False.

Example:

Copy
Copied!
            

>>> import torch >>> import torch.distributed as dist >>> import os >>> import torch.multiprocessing as mp >>> import torch.nn as nn >>> # On each spawned worker >>> def worker(rank): >>> dist.init_process_group("nccl", rank=rank, world_size=2) >>> torch.cuda.set_device(rank) >>> model = nn.Linear(1, 1, bias=False).to(rank) >>> model = torch.nn.parallel.DistributedDataParallel( >>> model, device_ids=[rank], output_device=rank >>> ) >>> # Rank 1 gets one more input than rank 0. >>> inputs = [torch.tensor([1]).float() for _ in range(10 + rank)] >>> with model.join(): >>> for _ in range(5): >>> for inp in inputs: >>> loss = model(inp).sum() >>> loss.backward() >>> # Without the join() API, the below synchronization will hang >>> # blocking for rank 1's allreduce to complete. >>> torch.cuda.synchronize(device=rank)

property join_device

Returns the device from which to perform collective communications needed by the join context manager implementation itself.

join_hook(**kwargs)[source]

Returns the DDP join hook, which enables training on uneven inputs by shadowing the collective communications in the forward and backward passes.

Arguments:
kwargs (dict): a dict containing any keyword arguments

to modify the behavior of the join hook at run time; all Joinable instances sharing the same join context manager are forwarded the same value for kwargs.

The hook supports the following keyword arguments:
divide_by_initial_world_size (bool, optional):

If True, then gradients are divided by the initial world size that DDP was launched with. If False, then gradients are divided by the effective world size (i.e. the number of non-joined processes), meaning that the uneven inputs contribute more toward the global gradient. Typically, this should be set to True if the degree of unevenness is small but can be set to False in extreme cases for possibly better results. Default is True.

property join_process_group

Returns the process group for the collective communications needed by the join context manager itself.

load_state_dict(state_dict, strict=True)[source]

Copies parameters and buffers from state_dict into this module and its descendants. If strict is True, then the keys of state_dict must exactly match the keys returned by this module’s state_dict() function.

Args:
state_dict (dict): a dict containing parameters and

persistent buffers.

strict (bool, optional): whether to strictly enforce that the keys

in state_dict match the keys returned by this module’s state_dict() function. Default: True

Returns:
NamedTuple with missing_keys and unexpected_keys fields:
  • missing_keys is a list of str containing the missing keys

  • unexpected_keys is a list of str containing the unexpected keys

Note:

If a parameter or buffer is registered as None and its corresponding key exists in state_dict, load_state_dict() will raise a RuntimeError.

modules()[source]

Returns an iterator over all modules in the network.

Yields:

Module: a module in the network

Note:

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

Copy
Copied!
            

>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)

named_buffers(prefix='', recurse=True)[source]

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Args:

prefix (str): prefix to prepend to all buffer names. recurse (bool): if True, then yields buffers of this module

and all submodules. Otherwise, yields only buffers that are direct members of this module.


Yields:

(str, torch.Tensor): Tuple containing the name and buffer

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())

named_children()[source]

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields:

(str, Module): Tuple containing a name and child module

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)

named_modules(memo=None, prefix='', remove_duplicate=True)[source]

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Args:

memo: a memo to store the set of modules already added to the result prefix: a prefix that will be added to the name of the module remove_duplicate: whether to remove the duplicated module instances in the result

or not


Yields:

(str, Module): Tuple of name and module

Note:

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

Copy
Copied!
            

>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))

named_parameters(prefix='', recurse=True)[source]

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Args:

prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module

and all submodules. Otherwise, yields only parameters that are direct members of this module.


Yields:

(str, Parameter): Tuple containing the name and parameter

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())

no_sync()[source]

A context manager to disable gradient synchronizations across DDP processes. Within this context, gradients will be accumulated on module variables, which will later be synchronized in the first forward-backward pass exiting the context.

Example:

parameters(recurse=True)[source]

Returns an iterator over module parameters.

This is typically passed to an optimizer.

Args:
recurse (bool): if True, then yields parameters of this module

and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields:

Parameter: module parameter

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

register_backward_hook(hook)[source]

Registers a backward hook on the module.

This function is deprecated in favor of register_full_backward_hook() and the behavior of this function will change in future versions.

Returns:
torch.utils.hooks.RemovableHandle:

a handle that can be used to remove the added hook by calling handle.remove()

register_buffer(name, tensor, persistent=True)[source]

Adds a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s running_mean is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s state_dict.

Buffers can be accessed as attributes using given names.

Args:
name (str): name of the buffer. The buffer can be accessed

from this module using the given name

tensor (Tensor or None): buffer to be registered. If None, then operations

that run on buffers, such as cuda, are ignored. If None, the buffer is not included in the module’s state_dict.

persistent (bool): whether the buffer is part of this module’s

state_dict.

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))

register_comm_hook(state, hook)[source]

Registers a communication hook which is an enhancement that provides a flexible hook to users where they can specify how DDP aggregates gradients across multiple workers.

This hook would be very useful for researchers to try out new ideas. For example, this hook can be used to implement several algorithms like GossipGrad and gradient compression which involve different communication strategies for parameter syncs while running Distributed DataParallel training.

Args:
state (object): Passed to the hook to maintain any state information during the training process.

Examples include error feedback in gradient compression, peers to communicate with next in GossipGrad, etc.

It is locally stored by each worker and shared by all the gradient tensors on the worker.

hook (Callable): Callable with the following signature:

hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:

This function is called once the bucket is ready. The hook can perform whatever processing is needed and return a Future indicating completion of any async work (ex: allreduce). If the hook doesn’t perform any communication, it still must return a completed Future. The Future should hold the new value of grad bucket’s tensors. Once a bucket is ready, c10d reducer would call this hook and use the tensors returned by the Future and copy grads to individual parameters. Note that the future’s return type must be a single tensor.

We also provide an API called get_future to retrieve a Future associated with the completion of c10d.ProcessGroup.Work. get_future is currently supported for NCCL and also supported for most operations on GLOO and MPI, except for peer to peer operations (send/recv).

Warning

Grad bucket’s tensors will not be predivided by world_size. User is responsible to divide by the world_size in case of operations like allreduce.

Warning

DDP communication hook can only be registered once and should be registered before calling backward.

Warning

The Future object that hook returns should contain a single tensor that has the same shape with the tensors inside grad bucket.

Warning

get_future API supports NCCL, and partially GLOO and MPI backends (no support for peer-to-peer operations like send/recv) and will return a torch.futures.Future.

Example::

Below is an example of a noop hook that returns the same tensor.

Example::

Below is an example of a Parallel SGD algorithm where gradients are encoded before allreduce, and then decoded after allreduce.

register_forward_hook(hook)[source]

Registers a forward hook on the module.

The hook will be called every time after forward() has computed an output. It should have the following signature:

Copy
Copied!
            

hook(module, input, output) -> None or modified output

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called.

Returns:
torch.utils.hooks.RemovableHandle:

a handle that can be used to remove the added hook by calling handle.remove()

register_forward_pre_hook(hook)[source]

Registers a forward pre-hook on the module.

The hook will be called every time before forward() is invoked. It should have the following signature:

Copy
Copied!
            

hook(module, input) -> None or modified input

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).

Returns:
torch.utils.hooks.RemovableHandle:

a handle that can be used to remove the added hook by calling handle.remove()

register_full_backward_hook(hook)[source]

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:

Copy
Copied!
            

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

Warning

Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Returns:
torch.utils.hooks.RemovableHandle:

a handle that can be used to remove the added hook by calling handle.remove()

register_load_state_dict_post_hook(hook)[source]

Registers a post hook to be run after module’s load_state_dict is called.

It should have the following signature::

hook(module, incompatible_keys) -> None

The module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.

The given incompatible_keys can be modified inplace if needed.

Note that the checks performed when calling load_state_dict() with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearning out both missing and unexpected keys will avoid an error.

Returns:
torch.utils.hooks.RemovableHandle:

a handle that can be used to remove the added hook by calling handle.remove()

register_module(name, module)[source]

Alias for add_module().

register_parameter(name, param)[source]

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

Args:
name (str): name of the parameter. The parameter can be accessed

from this module using the given name

param (Parameter or None): parameter to be added to the module. If

None, then operations that run on parameters, such as cuda, are ignored. If None, the parameter is not included in the module’s state_dict.

requires_grad_(requires_grad=True)[source]

Change if autograd should record operations on parameters in this module.

This method sets the parameters’ requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See locally-disable-grad-doc for a comparison between requires_grad_() and several similar mechanisms that may be confused with it.

Args:
requires_grad (bool): whether autograd should record operations on

parameters in this module. Default: True.

Returns:

Module: self

set_extra_state(state)[source]

This function is called from load_state_dict() to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state() for your module if you need to store extra state within its state_dict.

Args:

state (dict): Extra state from the state_dict

share_memory()[source]

See torch.Tensor.share_memory_()

state_dict(*args, destination=None, prefix='', keep_vars=False)[source]

Returns a dictionary containing references to the whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

Note

The returned object is a shallow copy. It contains references to the module’s parameters and buffers.

Warning

Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.

Warning

Please avoid the use of argument destination as it is not designed for end-users.

Args:
destination (dict, optional): If provided, the state of module will

be updated into the dict and the same object is returned. Otherwise, an OrderedDict will be created and returned. Default: None.

prefix (str, optional): a prefix added to parameter and buffer

names to compose the keys in state_dict. Default: ''.

keep_vars (bool, optional): by default the Tensor s

returned in the state dict are detached from autograd. If it’s set to True, detaching will not be performed. Default: False.

Returns:
dict:

a dictionary containing a whole state of the module

Example:

Copy
Copied!
            

>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']

to(*args, **kwargs)[source]

Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)[source]

to(dtype, non_blocking=False)[source]

to(tensor, non_blocking=False)[source]

to(memory_format=torch.channels_last)[source]

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Args:
device (torch.device): the desired device of the parameters

and buffers in this module

dtype (torch.dtype): the desired floating point or complex dtype of

the parameters and buffers in this module

tensor (torch.Tensor): Tensor whose dtype and device are the desired

dtype and device for all parameters and buffers in this module

memory_format (torch.memory_format): the desired memory

format for 4D parameters and buffers in this module (keyword only argument)

Returns:

Module: self

Examples:

Copy
Copied!
            

>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)

to_empty(*, device)[source]

Moves the parameters and buffers to the specified device without copying storage.

Args:
device (torch.device): The desired device of the parameters

and buffers in this module.

Returns:

Module: self

train(mode=True)[source]

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

Args:
mode (bool): whether to set training mode (True) or evaluation

mode (False). Default: True.

Returns:

Module: self

type(dst_type)[source]

Casts all parameters and buffers to dst_type.

Note

This method modifies the module in-place.

Args:

dst_type (type or string): the desired type

Returns:

Module: self

xpu(device=None)[source]

Moves all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

Note

This method modifies the module in-place.

Arguments:
device (int, optional): if specified, all parameters will be

copied to that device

Returns:

Module: self

zero_grad(set_to_none=False)[source]

Sets gradients of all model parameters to zero. See similar function under torch.optim.Optimizer for more context.

Args:
set_to_none (bool): instead of setting to zero, set the grads to None.

See torch.optim.Optimizer.zero_grad() for details.

© Copyright 2023, NVIDIA. Last updated on Apr 11, 2023.