(Latest Version)

Example Ransomware Detection Morpheus Pipeline for AppShield Data

Example Morpheus pipeline using Triton Inference server and Morpheus.

Pull Triton Inference Server Docker Image

Pull Docker image from NGC (https://ngc.nvidia.com/catalog/containers/nvidia:tritonserver) suitable for your environment.

Example:

Copy
Copied!
            

docker pull nvcr.io/nvidia/tritonserver:22.08-py3

Setup Env Variable

Copy
Copied!
            

export MORPHEUS_ROOT=$(pwd)

Start Triton Inference Server Container

Run the following from the examples/ransomware_detection directory to launch Triton and load the ransomw-model-short-rf model:

Copy
Copied!
            

# Run Triton in explicit mode docker run --rm -ti --gpus=all -p8000:8000 -p8001:8001 -p8002:8002 -v $PWD/models:/models/triton-model-repo nvcr.io/nvidia/tritonserver:22.08-py3 \ tritonserver --model-repository=/models/triton-model-repo \ --exit-on-error=false \ --model-control-mode=explicit \ --load-model ransomw-model-short-rf

Verify Model Deployment

Once Triton server finishes starting up, it will display the status of all loaded models. Successful deployment of the model will show the following:

Copy
Copied!
            

+----------------------------+---------+--------+ | Model | Version | Status | +----------------------------+---------+--------+ | ransomw-model-short-rf | 1 | READY | +----------------------------+---------+--------+

Note: If this is not present in the output, check the Triton log for any error messages related to loading the model.

Note: Make sure dask and distributed are installed in your Conda environment before running the ransomware detection pipeline. Run the installation command specified below if not.

Copy
Copied!
            

conda install dask==2022.7.0 distributed==2022.7.0

Run the following from the examples/ransomware_detection directory to start the ransomware detection pipeline:

Copy
Copied!
            

python run.py --server_url=localhost:8001 \ --sliding_window=3 \ --model_name=ransomw-model-short-rf \ --conf_file=./config/ransomware_detection.yaml \ --input_glob=${MORPHEUS_ROOT}/examples/data/appshield/*/snapshot-*/*.json \ --output_file=./ransomware_detection_output.jsonlines

Input features for a short model can be taken from every three snapshots sequence, such as (1, 2, 3), or (2, 3, 4). The sliding window represents the number of subsequent snapshots that need to be taken into consideration when generating the input for a model. Sliding window for the medium model is 5 and for the long model it is 10.

The configuration options for this example can be queried with:

Copy
Copied!
            

python run.py --help

Copy
Copied!
            

Usage: run.py [OPTIONS] Options: --debug BOOLEAN --use_cpp BOOLEAN --num_threads INTEGER RANGE Number of internal pipeline threads to use [x>=1] --n_dask_workers INTEGER RANGE Number of dask workers [x>=2] --threads_per_dask_worker INTEGER RANGE Number of threads per each dask worker [x>=2] --model_max_batch_size INTEGER RANGE Max batch size to use for the model [x>=1] --model_fea_length INTEGER RANGE Features length to use for the model [x>=1] --features_file TEXT File path for ransomware detection features --model_name TEXT The name of the model that is deployed on Tritonserver --server_url TEXT Tritonserver url [required] --sliding_window INTEGER RANGE Sliding window to be used for model input request [x>=1] --input_glob TEXT Input glob pattern to match files to read. For example, './input_dir/*/snapshot-*/*.json' would read all files with the 'json' extension in the directory 'input_dir'. [required] --watch_directory BOOLEAN The watch directory option instructs this stage to not close down once all files have been read. Instead it will read all files that match the 'input_glob' pattern, and then continue to watch the directory for additional files. Any new files that are added that match the glob will then be processed. --output_file TEXT The path to the file where the inference output will be saved. --help Show this message and exit.

© Copyright 2023, NVIDIA. Last updated on Apr 11, 2023.