Important
NeMo 2.0 is an experimental feature and currently released in the dev container only: nvcr.io/nvidia/nemo:dev. Please refer to NeMo 2.0 overview for information on getting started.
Parameter Efficient Fine-Tuning (PEFT)
Run PEFT with NeMo Launcher
To run PEFT, update
conf/config.yaml
:
defaults:
- peft: qwen2/squad
stages:
- peft
Execute the launcher pipeline:
python3 main.py
.
Configure Settings
You can find default configurations for PEFT with squad in conf/peft/qwen2/squad.yaml
.
Fine-tuning configuration is divided into four sections run
, trainer
, exp_manger
and model
.
To configure:
run:
name: peft_qwen2_7b
time_limit: "04:00:00"
dependency: "singleton"
convert_name: convert_nemo
model_train_name: qwen2_7b
convert_dir: ${base_results_dir}/${peft.run.model_train_name}/${peft.run.convert_name}
task_name: "squad"
results_dir: ${base_results_dir}/${.model_train_name}/peft_${.task_name}
Set the number of nodes and devices for fine-tuning:
trainer:
num_nodes: 1
devices: 8
model:
restore_from_path: ${peft.run.convert_dir}/results/megatron_qwen2.nemo
restore_from_path
sets the path to the .nemo
checkpoint to run fine-tuning.
Set the tensor parallel and pipeline parallel size for the different model sizes.
For 7B PEFT, set:
model:
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
For 13B PEFT, set:
model:
tensor_model_parallel_size: 2
pipeline_model_parallel_size: 1
Set the PEFT-specific configuration:
model:
peft:
peft_scheme: "lora"
peft_scheme
sets the fine-tuning scheme to be used. Supported schemes include: lora, ptuning.