Important
NeMo 2.0 is an experimental feature and currently released in the dev container only: nvcr.io/nvidia/nemo:dev. Please refer to NeMo 2.0 overview for information on getting started.
NVIDIA NeMo Framework User Guide
- Getting Started
- Playbooks
- Overview
- Pre-training
- Playbooks
- Run NeMo Framework on DGX Cloud
- Run NeMo Framework on Kubernetes
- NeMo Framework SFT with Llama 2
- NeMo Framework SFT with Mistral-7B
- NeMo Framework SFT with Mixtral-8x7B and Nemotron 4 340B
- NeMo Framework PEFT with Mistral-7B
- NeMo Framework PEFT with Llama2, Mixtral-8x7B, and Nemotron 4 340B
- NeMo Framework Foundation Model Pre-training
- NeMo Framework AutoConfigurator
- NeMo Framework Single Node Pre-training
- NeMo Framework Post-Training Quantization (PTQ) with Nemotron4 and Llama3
- NeMo Framework Quantization Aware Training (QAT) for Llama2 SFT Model
- Overview
- Quickstart with NeMo-Run
- Migration Guide
- Feature Guide
- Large Language Models
- Long Context Recipe
- Large Language Models
- Common
- Llama and CodeLlama
- Gemma and CodeGemma
- Griffin (Recurrent Gemma)
- Baichuan 2
- Falcon
- Mamba2 and Hybrid Models
- Mistral
- Mixtral
- Nemotron
- StarCoder2
- T5
- mT5
- GPT
- BERT
- ChatGLM
- RETRO
- Tokenizer
- Multimodal Models
- Embedding Models
- Speech AI Models
- Overview
- NeMo Large Language Models
- NeMo Multimodal Models
- Overview
- NeMo
- Introduction
- NeMo Fundamentals
- Tutorials
- Mixed Precision Training
- Parallelisms
- Mixture of Experts
- Optimizations
- Checkpoints
- NeMo APIs
- NeMo Collections
- Large Language Models
- Machine Translation Models
- Quick Start Guide
- Data Format
- Data Cleaning, Normalization & Tokenization
- Training a BPE Tokenization
- Applying BPE Tokenization, Batching, Bucketing and Padding
- Tarred Datasets for Large Corpora
- Model Configuration and Training
- Multi-Validation
- Bottleneck Models and Latent Variable Models (VAE, MIM)
- Model Inference
- Inference Improvements
- Pretrained Encoders
- References
- ONNX Export of Megatron Models
- Quantization
- Multimodal Language Models
- Vision-Language Foundation
- Text to Image Models
- NeRF
- Vision Models
- Automatic Speech Recognition (ASR)
- Transcribe speech with 3 lines of code
- Transcribe speech via command line
- Incorporate a language model (LM) to improve ASR transcriptions
- Use real-time transcription
- Try different ASR models
- Try out NeMo ASR transcription in your browser
- ASR tutorial notebooks
- ASR model configuration
- Preparing ASR datasets
- NeMo ASR Documentation
- Speech Classification
- Speaker Recognition (SR)
- Speaker Diarization
- Speech Self-Supervised Learning
- Speech Intent Classification and Slot Filling
- Text-to-Speech (TTS)
- Resources and Documentation
- Speech AI Tools
- NeMo Framework Launcher
- NeMo Aligner
- Obtain a Pretrained Model
- Model Alignment by Supervised Fine-Tuning (SFT)
- Model Alignment by RLHF
- Model Alignment by SteerLM Method
- SteerLM
- SteerLM vs RLHF
- Train a SteerLM model
- Step 1: Download Llama 2 LLM model
- Step 2: Download and Preprocess data for Attribute Prediction Modelling
- Step 3: Train the regression reward model on OASST+HelpSteer data
- Step 4: Generate annotations
- Step 5: Train the Attribute-Conditioned SFT model
- Step 6: Inference
- SteerLM: Novel Technique for Simple and Controllable Model Alignment
- SteerLM 2.0: Iterative Training for Attribute-Conditioned Language Model Alignment
- Model Alignment by Direct Preference Optimization (DPO)
- Model Alignment by Self-Play Fine-Tuning (SPIN)
- Fine-tuning Stable Diffusion with DRaFT+
- Constitutional AI: Harmlessness from AI Feedback
- CAI
- Motivation
- Train a CAI model
- Step 1: Download models and datasets
- Step 2: Generate and revise responses to harmful prompts creating the SL-CAI dataset
- Step 3: Fine-tune Mistral-7B on the revised responses to create a Mistral-7B-SL-CAI model
- Step 4: Generate the RL-CAI (preference) dataset for RM and PPO training
- Step 5: Train the RM
- Step 6: Fine-tune Mistral-7B-SL-CAI with PPO and the RM to train a Mistral-7B-RL-CAI model
- Step 7: Inference
- NeMo Curator
- Download and Extract Text
- Working with DocumentDataset
- CPU and GPU Modules with Dask
- Classifier and Heuristic Quality Filtering
- Language Identification and Unicode Fixing
- GPU Accelerated Exact and Fuzzy Deduplication
- Semantic Deduplication
- Synthetic Data Generation
- Downstream Task Decontamination/Deduplication
- PII Identification and Removal
- Distributed Data Classification
- Running NeMo Curator on Kubernetes
- Best Practices
- Next Steps
- API Reference
- Software Component Versions
- Changelog
- NeMo Framework 24.07
- NeMo Framework 24.05
- NeMo Framework 24.03.01
- NeMo Framework 24.03
- NeMo Framework 24.01.01
- NeMo Framework 24.01
- NeMo Framework 23.11
- NeMo Framework 23.10
- NeMo Framework 23.08.03
- NeMo Framework 23.08.02
- NeMo Framework 23.08.01
- NeMo Framework 23.08
- NeMo Framework 23.07
- NeMo Framework 23.05
- NeMo Framework 23.04
- NeMo Framework 23.03
- NeMo Framework 23.01
- NeMo Framework 22.11
- NeMo Framework 22.09
- NeMo Framework 22.08.01
- NeMo Framework 22.08
- NeMo Framework 22.06
- NeMo Framework 22.05.01
- NeMo Framework 22.05
- NeMo Framework 22.04
- NeMo Framework 22.03
- NeMo Framework 22.02
- NeMo Framework 22.01
- Known Issues