Supervised Fine-tuning (SFT)

User Guide (Latest Version)

Please prepare the datasets according to Data Preparation for SFT and PEFT section before proceeding.

Run SFT

Set the environment variables, pass the paths to your train, test, and validation data files

Copy
Copied!
            

MODEL="YOUR PATH TO griffin-2b.nemo" TRAIN="[YOUR PATH TO squad/train.jsonl]" VALID="[YOUR PATH TO squad/validation.jsonl]" TEST="[YOUR PATH TO squad/test.jsonl]"

Set the concat sampling probability. This depends on the number of files being passed in the train set and how much percentage of the fine tuning data would you like to use from each file. Note sum of concat sampling probabilities should be 1.0. For example, the following is an example for setting concat sampling probability for a train set with 2 jsonl files.

Copy
Copied!
            

TRAIN="[/path/to/dataset_1.jsonl,/path/to/dataset_2.jsonl]" CONCAT_SAMPLING_PROBS="[0.3,0.7]"

In our example we are using 1 train file so CONCAT_SAMPLING_PROBS="[1.0]"

Run the command by appropriately setting the values for the parameters such as the number of steps, model checkpoint path, batch sizes etc. For a full reference of parameter settings refer to the config file

Copy
Copied!
            

torchrun --nproc_per_node=8 \ /opt/NeMo/examples/nlp/language_modeling/megatron_griffin_finetuning.py \ trainer.precision=bf16 \ trainer.devices=8 \ trainer.precision=bf16 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=50 \ trainer.limit_val_batches=128 \ +trainer.num_sanity_val_steps=0 \ +trainer.accumulate_grad_batches=1 \ trainer.max_steps=600 \ trainer.gradient_clip_val=1.0 \ model.peft.peft_scheme=null \ model.megatron_amp_O2=True \ model.encoder_seq_length=2048 \ model.data.validation_ds.pad_to_max_length=True \ model.data.train_ds.pad_to_max_length=True \ model.optim.name="distributed_fused_adam" \ +model.gradient_accumulation_fusion=True \ +model.optim.bucket_cap_mb=400 \ +model.optim.overlap_grad_sync=True \ +model.optim.overlap_param_sync=True \ +model.optim.contiguous_grad_buffer=True \ +model.optim.contiguous_param_buffer=True \ model.activations_checkpoint_recurrent='recurrent' \ model.data.train_ds.max_seq_length=2048 \ model.data.validation_ds.max_seq_length=2048 \ model.mcore_gpt=True \ model.micro_batch_size=4 \ model.global_batch_size=128 \ model.restore_from_path=${MODEL} \ model.data.train_ds.file_names=${TRAIN} \ model.data.validation_ds.file_names=${VALID} \ model.data.test_ds.file_names=${TEST} \ model.optim.lr=5e-6

Run evaluation

Run evaluation using megatron_griffin_generate.py

Set the appropriate model checkpoint path, test file path, batch sizes, number of tokens etc. and run evaluation on the test file

Copy
Copied!
            

PATH_TO_TRAINED_MODEL="PATH TO THE TRAINED MODEL" TEST_DS="[YOUR PATH TO test.jsonl]" SAVE_DIR="PATH TO SAVING DIRECTORY" torchrun --nproc_per_node=8 /opt/NeMo/examples/nlp/language_modeling/megatron_griffin_generate.py \ trainer.devices=8 \ trainer.precision=bf16 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=20 \ trainer.max_steps=1000 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=${SAVE_DIR} \ model.megatron_amp_O2=True \ model.micro_batch_size=16 \ model.global_batch_size=128 \ model.restore_from_path=${PATH_TO_TRAINED_MODEL} \ model.peft.restore_from_path=False \ +model.peft.restore_from_ckpt.checkpoint_dir=False \ +model.peft.restore_from_ckpt.checkpoint_name=False \ model.data.test_ds.file_names=${TEST_DS} \ model.data.test_ds.names=["DATASET_NAME"] \ model.data.test_ds.global_batch_size=128 \ model.data.test_ds.micro_batch_size=16 \ model.data.test_ds.tokens_to_generate=30 \ model.answer_only_loss=True \ inference.greedy=True \ exp_manager.checkpoint_callback_params.monitor=validation_loss \ ++inference.verbose=True \ model.data.test_ds.write_predictions_to_file=True \ model.data.test_ds.output_file_path_prefix=${SAVE_DIR}/eval

Please refer to Launcher Guide section to understand the NeMo Launcher basics. To run SFT update conf/config.yaml:

Copy
Copied!
            

defaults: - peft: griffin/sft stages: - peft

Execute launcher pipeline: python3 main.py

Configuration

Default configurations for PEFT with squad can be found in conf/peft/griffin/sft.yaml. Fine-tuning configuration is divided into four sections run, trainer, exp_manger and model.

Copy
Copied!
            

run: name: griffin_2b time_limit: "04:00:00" dependency: "singleton" results_dir: ${base_results_dir}/sft_${.name}

Set the number of devices for fine-tuning:

Copy
Copied!
            

trainer: num_nodes: 1 devices: 8

Copy
Copied!
            

model: restore_from_path: /path/to/griffin-2b.nemo

restore_from_path sets the path to the .nemo checkpoint to run fine-tuning.

Previous Checkpoint Conversion
Next Parameter Efficient Fine-Tuning (PEFT)
© | | | | | | |. Last updated on Jun 24, 2024.