nemo_eval.utils.api
#
Module Contents#
Classes#
Represents evaluation Standard API target.api_endpoint object |
|
Represents evaluation Standard API target object |
|
Represents evaluation Standard API config.params object |
|
Represents evaluation Standard API config object |
|
Adapter is a mechanism for hooking into the chain of requests/responses btw benchmark and endpoint. |
API#
- class nemo_eval.utils.api.ApiEndpoint(/, **data: typing.Any)[source]#
Bases:
pydantic.BaseModel
Represents evaluation Standard API target.api_endpoint object
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- url: str#
‘Field(…)’
- model_id: str#
‘Field(…)’
- type: str#
‘Field(…)’
- class nemo_eval.utils.api.EvaluationTarget(/, **data: typing.Any)[source]#
Bases:
pydantic.BaseModel
Represents evaluation Standard API target object
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- api_endpoint: nemo_eval.utils.api.ApiEndpoint#
‘Field(…)’
- class nemo_eval.utils.api.ConfigParams(/, **data: typing.Any)[source]#
Bases:
pydantic.BaseModel
Represents evaluation Standard API config.params object
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- top_p: float#
‘Field(…)’
- temperature: float#
‘Field(…)’
- limit_samples: Optional[Union[int, float]]#
‘Field(…)’
- max_new_tokens: Optional[int]#
‘Field(…)’
- max_retries: Optional[int]#
‘Field(…)’
- parallelism: Optional[int]#
‘Field(…)’
- task: Optional[str]#
‘Field(…)’
- request_timeout: Optional[int]#
‘Field(…)’
- extra: Optional[Dict[str, Any]]#
‘Field(…)’
- class nemo_eval.utils.api.EvaluationConfig(/, **data: typing.Any)[source]#
Bases:
pydantic.BaseModel
Represents evaluation Standard API config object
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- output_dir: str#
‘Field(…)’
- supported_endpoint_types: Optional[list[str]]#
‘Field(…)’
- type: str#
‘Field(…)’
- params: nemo_eval.utils.api.ConfigParams#
‘Field(…)’
- class nemo_eval.utils.api.AdapterConfig(/, **data: typing.Any)[source]#
Bases:
pydantic.BaseModel
Adapter is a mechanism for hooking into the chain of requests/responses btw benchmark and endpoint.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- static get_validated_config(
- run_config: dict[str, Any],
Factory. Shall return
None
if the adapter_config is not passed, or validate the schema.- Parameters:
run_config – is the main dict of a configuration run, see
api_dataclasses
.
- api_url: str#
‘Field(…)’
- local_port: Optional[int]#
‘Field(…)’
- use_reasoning: bool#
‘Field(…)’
- end_reasoning_token: str#
‘Field(…)’
- custom_system_prompt: Optional[str]#
‘Field(…)’
- max_logged_responses: int | None#
‘Field(…)’
- max_logged_requests: int | None#
‘Field(…)’