nemo_eval.utils.base
#
Module Contents#
Functions#
Check the health of the PyTriton (via FAstAPI) and Ray server. |
|
Check if the endpoint is responsive and ready to accept requests. |
|
Wait for FastAPI server and model to be ready. |
|
Finds all pre-defined evaluation configs across all installed evaluation frameworks. |
|
Find framework for executing the evaluation eval_task. |
Data#
API#
- nemo_eval.utils.base.logger#
‘getLogger(…)’
- nemo_eval.utils.base.check_health(
- health_url: str,
- max_retries: int = 600,
- retry_interval: int = 2,
Check the health of the PyTriton (via FAstAPI) and Ray server.
- nemo_eval.utils.base.check_endpoint(
- endpoint_url: str,
- endpoint_type: str,
- model_name: str,
- max_retries: int = 600,
- retry_interval: int = 2,
Check if the endpoint is responsive and ready to accept requests.
- nemo_eval.utils.base.wait_for_fastapi_server(
- base_url: str = 'http://0.0.0.0:8080',
- model_name: str = 'megatron_model',
- max_retries: int = 600,
- retry_interval: int = 10,
Wait for FastAPI server and model to be ready.
- Parameters:
base_url (str) – The URL to the FastAPI server (e.g., “http://0.0.0.0:8080”).
model_name (str) – The name of the deployed model.
max_retries (int) – Maximum number of retries before giving up.
retry_interval (int) – Time in seconds to wait between retries.
- Returns:
True if both the server and model are ready within the retries, False otherwise.
- Return type:
bool
- nemo_eval.utils.base.list_available_evaluations() dict[str, list[str]] [source]#
Finds all pre-defined evaluation configs across all installed evaluation frameworks.
- Returns:
Dictionary of available evaluations, where key is evaluation framework and value is list of available tasks.
- Return type:
dict[str, list[str]]