Performance in OpenFold3 NIM#

NIM Accuracy#

OpenFold3 is an all-atom biomolecular complex structure prediction model from the OpenFold Consortium and the AlQuraishi Laboratory. OpenFold3 is a PyTorch implementation of the jax-based AlphaFold3 reported in Accurate structure prediction of biomolecular interactions with AlphaFold 3, and like AlphaFold3, OpenFold3 extends protein structure prediction capabilities to model complete biomolecular complexes including proteins, DNA, RNA, and small molecule ligands.

The OpenFold3 NIM’s accuracy should match that of the AlQuraishi Laboratory implementation of OpenFold3, when using equivalent parameters and inputs.

Note

Running on hardware that is not listed as supported in the prerequisites section may produce results that deviate from the expected accuracy.

The accuracy of the NIM is measured by structural quality metrics such as lddt (local distance difference test). These scores help assess the reliability of the predicted structures.

Factors Affecting NIM Performance#

The performance of the OpenFold3 NIM is determined by several key factors:

Hardware Factors#

  • GPU type and memory: Different GPU architectures provide different performance levels

  • System RAM: Larger proteins and complexes require more system memory

  • Storage speed: Fast NVMe SSD storage improves model loading and caching performance

Input Complexity#

  • Sequence length: Runtime scales approximately linearly with total sequence length

  • Number of chains: Multi-chain complexes require more computation than single chains

  • MSA size: Larger MSAs can improve accuracy but increase memory usage and computation time

  • Ligands, DNA, RNA: Additional molecular components increase computational cost

Model Configuration#

  • Inference backend: TensorRT + cuEquivariance provides significant speedups over PyTorch

  • Diffusion samples: Multiple samples provide diversity but multiply computational cost

  • MSA depth: Deeper MSAs improve accuracy with modest runtime increase

Performance Characteristics#

Typical Runtimes#

For reference, approximate runtimes on high-end hardware (NVIDIA H100 80GB):

Structure Prediction (OpenFold3 v1.0.0 on H100 with TensorRT + cuEquivariance):

  • ~200 residues: 11.8-14.5 seconds

  • ~300-400 residues: 15.0-20.4 seconds

  • ~500-600 residues: 21.5-25.7 seconds

  • ~800-900 residues: 32.7 seconds

  • ~1300-1500 residues: 46.5-67.9 seconds

  • ~1700-1900 residues: 88.7-101.8 seconds

  • Memory usage: Varies with sequence length, typically 40-80GB GPU memory

Performance Notes The total runtime for structure prediction depends on:

  • Total number of residues in the complex

  • Total number of atoms in the complex

  • Number of molecules and chains

  • Number of sequences in the MSAs

  • Number of diffusion samples requested

Performance Results on H100 (NVIDIA H100 80GB)#

Structure Prediction Performance#

The following table shows runtime performance for OpenFold3 NIM on NVIDIA H100 GPUs across different inference backends. The rightmost column shows speedup at settings where structural template processing is not active. These backends are described in Backend Selection and in Backend Optimization Options.

Note

Structural template support is available starting from version 1.1.0.

Test ID

Sequence Length

PyTorch + cuEquivariance (s)

Open source OF3 from openfold consortium (baseline) (s)

OF3 NIM (TRT + cuEquivariance) (s)

OF3 NIM with Templates (TRT + cuEquivariance) (s)

Speedup (NIM vs Baseline)

8eil

186

17.06

16.79

11.78

15.52

1.42x

7r6r

203

18.82

19.26

14.53

16.60

1.33x

1a3n

287

26.76

29.13

23.55

31.24

1.24x

8c4d

331

20.08

18.85

15.04

15.37

1.25x

7qsj

375

20.79

19.92

16.06

18.10

1.24x

8cpk

384

26.85

23.50

20.37

22.12

1.15x

8are

530

26.31

27.42

21.89

23.82

1.25x

8owf

575

27.54

28.86

22.90

25.02

1.26x

8aw3

590

41.96

45.64

37.69

41.40

1.21x

7tpu

616

25.69

28.61

21.48

23.48

1.33x

7ylz

623

31.80

35.66

27.51

30.38

1.30x

8gpp

628

29.92

33.81

25.71

34.91

1.32x

8clz

684

30.68

35.35

26.41

30.41

1.34x

8k7x

858

37.39

44.76

32.75

37.87

1.37x

8ibx

1286

52.12

63.54

46.51

48.06

1.37x

8gi1

1464

74.42

99.45

60.56

62.28

1.64x

8sm6

1496

83.33

110.55

67.92

72.79

1.63x

8pso

1499

72.68

96.87

57.41

61.76

1.69x

8jue

1657

98.09

125.53

78.04

85.66

1.61x

8bsh

1762

110.98

144.03

88.68

96.94

1.62x

5xgo

1869

127.79

163.83

101.79

111.89

1.61x

All runtimes are in seconds for end-to-end structure prediction with a single diffusion sample. The template measurements include an average of 4 CIF template files per protein chain. The additional time is primarily attributed to CIF parsing.

Performance Analysis#

Key Observations:

  • OpenFold3 NIM Optimization: Provides consistent 1.15x to 1.69x speedup over the open source OF3 baseline

  • cuEquivariance Acceleration: PyTorch + cuEquivariance shows speedups for larger proteins, demonstrating the value of cuEquivariance optimization

  • Scaling Behavior: Performance scales approximately linearly with sequence length

  • Best Performance: Largest speedups (1.6x-1.69x) observed for proteins in the 1400-1500 residue range

  • Small Proteins: Still achieve significant speedups (1.2x-1.4x) even for sequences under 400 residues

Template Processing Impact:

  • Template overhead: Structural templates add modest overhead (typically 0.3-10 seconds) depending on sequence length

  • Small proteins (<400 residues): Template overhead is ~0.3-4 seconds

  • Medium proteins (400-1000 residues): Template overhead is ~2-9 seconds

  • Large proteins (>1000 residues): Template overhead is ~1.5-10 seconds

  • Primary cost: The additional time is mostly attributed to CIF parsing (average 4 templates per chain)

  • Overall impact: Templates provide structural guidance with minimal performance cost

Backend Comparison:

  • Open source OF3 (PyTorch + DeepSpeed): Baseline implementation from the openfold consortium, good for development and debugging

  • PyTorch + cuEquivariance: Improved performance, especially for larger proteins, while maintaining PyTorch flexibility

  • OpenFold3 NIM (TensorRT + cuEquivariance): Best performance across all sequence lengths, recommended for production deployments

Recommended Configuration:

  • For development/testing: Use open source OF3 (PyTorch + DeepSpeed) for easier debugging and flexibility

  • For production: Use OpenFold3 NIM (TensorRT + cuEquivariance, default) for optimal performance

  • For large proteins (>1500 residues): OpenFold3 NIM (TensorRT + cuEquivariance) provides the best speedups (1.6x-1.7x)

  • For sequence lengths outside 4-2048 range: Use PyTorch backend as TensorRT has length limitations

  • For template-guided predictions: Structural templates add minimal performance overhead

Configuration#

The benchmarks use the following configuration:

Parameter

Setting

diffusion_samples

1

output_format

pdb

GPU

H100 80GB

structural_templates

Average 4 CIF files per chain

Performance Optimization Tips#

Backend Selection#

  • Default (TensorRT + cuEquivariance): Best for most use cases

    # This is the default, no environment variable needed
    
  • PyTorch + cuEquivariance: For flexibility with good performance

    export NIM_OPTIMIZED_BACKEND=torch
    
  • PyTorch + DeepSpeed: For debugging or sequences outside TRT range

    export NIM_OPTIMIZED_BACKEND=torch_baseline
    

General Optimization Tips#

  • GPU Selection: Use H100, H200, or B200 GPUs for optimal performance. A100 and L40S GPUs are also supported.

  • TRT Sequence Length Limits: TensorRT mode (default) supports sequences between 4 and 2048 residues. For sequences outside this range, use PyTorch backend.

  • Sequence Length: Performance scales approximately linearly with sequence length.

  • Multiple Samples: Setting diffusion_samples > 1 will increase runtime in affine fashion (input featurization time is independent of diffusion_samples).

  • MSA Size: While larger MSAs can improve accuracy, they also increase memory usage and computation time. Consider filtering MSAs for very large proteins.

  • Structural Templates: Templates add modest overhead (1-10 seconds) but can significantly improve prediction accuracy. See Template Processing for guidance.

  • Batch Processing: For multiple independent predictions, process them sequentially or use multiple NIM instances.

  • Memory Management: Ensure adequate GPU memory for your target sequence lengths. Very long sequences (>1800 residues) may require GPUs with 80GB+ memory (H100, H200, A100, or B200).

Reproducing Performance Benchmarks#

Overview#

This section provides scripts and instructions for reproducing the performance metrics reported above. The benchmarking process is as follows:

  1. Run inference with OpenFold3 NIM to generate predicted structures

  2. Use OpenStructure (OST) to compare predictions against reference structures

  3. Extract accuracy metrics like lDDT (local Distance Difference Test)

Prerequisites#

Install the OpenStructure Docker Image#

OpenStructure is a computational structural biology framework that provides tools for structure comparison and validation. You’ll need the OpenStructure Docker image for running benchmarks:

# Pull the latest OpenStructure image from the OST registry
docker pull registry.scicore.unibas.ch/schwede/openstructure:latest

# Verify the installation
docker run --rm -v $(pwd):/home registry.scicore.unibas.ch/schwede/openstructure:latest --version

Download Reference Structures#

You’ll need reference structures (ground truth) in CIF format for comparison. These are experimentally determined structures from the Protein Data Bank (PDB):

  • CIF (Crystallographic Information File): A standard format for representing molecular structures, including atomic coordinates, experimental metadata, and structural annotations

  • Obtaining reference structures: Download from RCSB PDB using the PDB IDs from the performance table (e.g., 8eil, 7r6r, 1a3n)

Example:

# Download a reference structure (e.g., 8eil)
wget https://files.rcsb.org/download/8eil.cif

Preparing Input JSON Files#

What are Input JSON Files?

Input JSON files contain the sequence information needed for OpenFold3 NIM to make predictions. Each file specifies:

  • Protein sequences (amino acid chains)

  • Chain IDs

  • Optional: DNA, RNA, ligands, MSAs, templates

Example Input JSON Structure#

{
  "name": "8eil",
  "sequences": [
    {
      "protein": {
        "id": "A",
        "sequence": "MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF..."
      }
    }
  ]
}

Create Input JSON Files#

You can create input JSON files by extracting sequences from PDB structures. Save this script as generate_inputs.py:

#!/usr/bin/env python3
"""Generate input JSON files from PDB structures."""
import argparse
import json
import requests
import sys
from pathlib import Path

def fetch_sequences_from_pdb(pdb_id):
    """Fetch protein sequences from RCSB PDB FASTA endpoint."""
    url = f"https://www.rcsb.org/fasta/entry/{pdb_id}"
    response = requests.get(url)
    if response.status_code != 200:
        raise Exception(f"Failed to fetch FASTA for {pdb_id}")
    
    sequences = []
    current_chain = None
    current_seq = []
    
    for line in response.text.strip().split('\n'):
        if line.startswith('>'):
            if current_chain and current_seq:
                sequences.append({
                    "protein": {
                        "id": current_chain,
                        "sequence": ''.join(current_seq)
                    }
                })
            # Extract chain ID from header (format: >PDB_ID|Chain A|...)
            parts = line.split('|')
            current_chain = parts[1].strip().split()[-1] if len(parts) >= 2 else "A"
            current_seq = []
        else:
            current_seq.append(line.strip())
    
    if current_chain and current_seq:
        sequences.append({
            "protein": {
                "id": current_chain,
                "sequence": ''.join(current_seq)
            }
        })
    
    return sequences

def create_input_json(pdb_id, output_dir="inputs"):
    """Create OpenFold3 input JSON file for a PDB structure."""
    output_dir = Path(output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    
    print(f"Fetching sequences for {pdb_id}...")
    sequences = fetch_sequences_from_pdb(pdb_id)
    
    input_data = {
        "name": pdb_id,
        "sequences": sequences
    }
    
    output_path = output_dir / f"{pdb_id}_input.json"
    with open(output_path, 'w') as f:
        json.dump(input_data, f, indent=2)
    
    print(f"Created {output_path} ({len(sequences)} chain(s))")
    return output_path

if __name__ == "__main__":
    # All benchmark PDB IDs from performance table
    benchmark_pdbs = [
        "8eil", "7r6r", "1a3n", "8c4d", "7qsj", "8cpk", 
        "8are", "8owf", "8aw3", "7tpu", "7ylz", "8gpp", 
        "8clz", "8k7x", "8ibx", "8gi1", "8sm6", "8pso", 
        "8jue", "8bsh", "5xgo"
    ]
    
    parser = argparse.ArgumentParser(
        description='Generate OpenFold3 input JSON files from PDB structures',
        epilog='Example: python generate_inputs.py --pdb 8eil'
    )
    parser.add_argument('--pdb', type=str, 
                        help='Specific PDB ID to generate input for (e.g., 8eil)')
    parser.add_argument('--output-dir', type=str, default='inputs',
                        help='Output directory for input JSON files (default: inputs)')
    parser.add_argument('--all', action='store_true',
                        help='Generate input files for all benchmark PDB IDs')
    
    args = parser.parse_args()
    
    # For backwards compatibility: if no arguments provided, generate all
    if not args.pdb and not args.all:
        args.all = True
    
    if args.pdb:
        # Generate input for specific PDB ID
        try:
            create_input_json(args.pdb, args.output_dir)
        except Exception as e:
            print(f"Error processing {args.pdb}: {e}", file=sys.stderr)
            sys.exit(1)
    elif args.all:
        # Generate all benchmark inputs
        print("Generating input files for all benchmark cases...")
        failed = []
        for pdb_id in benchmark_pdbs:
            try:
                create_input_json(pdb_id, args.output_dir)
            except Exception as e:
                print(f"Error processing {pdb_id}: {e}")
                failed.append(pdb_id)
        
        if failed:
            print(f"\nFailed to generate inputs for: {', '.join(failed)}", file=sys.stderr)
            sys.exit(1)

To use generate_inputs.py:

# Install required package
pip install requests

# Generate all benchmark input files
python generate_inputs.py

# Or generate for a specific PDB ID
python generate_inputs.py --pdb 8eil

# Specify custom output directory
python generate_inputs.py --pdb 8eil --output-dir my_inputs

# View all options
python generate_inputs.py --help

This creates inputs/ directory with JSON files such as 8eil_input.json and 7r6r_input.json.

Note

Input JSON files must be generated before running benchmarks. The script automatically extracts sequences from PDB structures to ensure they match the reference structures.

Benchmarking Script#

The following is a complete script to benchmark OpenFold3 NIM predictions. Save this as benchmark_openfold3.py:

#!/usr/bin/env python3
"""
Benchmark OpenFold3 NIM predictions against reference structures.
"""

import argparse
import json
import subprocess
import time
from pathlib import Path
import requests

def run_inference(nim_url, input_json, output_dir):
    """
    Run OpenFold3 NIM inference and save the predicted structure.
    
    Args:
        nim_url: URL of the OpenFold3 NIM service (e.g., http://localhost:8000)
        input_json: Path to input JSON file with sequence information
        output_dir: Directory to save predicted structures
    
    Returns:
        tuple: (predicted_pdb_path, inference_time_seconds)
    """
    output_dir = Path(output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    
    # Read input configuration
    with open(input_json, 'r') as f:
        input_data = json.load(f)
    
    # Convert to NIM API format
    molecules = []
    for seq in input_data.get("sequences", []):
        if "protein" in seq:
            protein = seq["protein"]
            # Create minimal MSA with just the query sequence
            msa_csv = f"key,sequence\n-1,{protein['sequence']}"
            molecules.append({
                "type": "protein",
                "id": [protein["id"]],
                "sequence": protein["sequence"],
                "msa": {
                    "main_db": {
                        "csv": {
                            "alignment": msa_csv,
                            "format": "csv"
                        }
                    }
                }
            })
    
    nim_request = {
        "inputs": [{
            "input_id": input_data.get("name", "prediction"),
            "molecules": molecules,
            "output_format": "pdb"
        }]
    }
    
    # Start timing
    start_time = time.time()
    
    # Run inference
    response = requests.post(
        f"{nim_url}/biology/openfold/openfold3/predict",
        json=nim_request,
        headers={"Content-Type": "application/json"}
    )
    
    # End timing
    inference_time = time.time() - start_time
    
    if response.status_code != 200:
        raise Exception(f"Inference failed: {response.text}")
    
    # Extract PDB data from response
    result = response.json()
    
    outputs = result.get('outputs', [])
    if not outputs:
        raise Exception(f"No outputs in response")
    
    structures = outputs[0].get('structures_with_scores', [])
    if not structures:
        raise Exception(f"No structures in response")
    
    # Get the first (best) structure
    pdb_content = structures[0].get('structure', '')
    if not pdb_content:
        raise Exception(f"No structure content in response")
    
    # Save predicted structure
    pdb_id = input_data.get('name', 'prediction')
    pred_path = output_dir / f"{pdb_id}_pred.pdb"
    
    with open(pred_path, 'w') as f:
        f.write(pdb_content)
    
    return pred_path, inference_time

def compare_structures(pred_pdb, reference_cif, output_dir):
    """
    Compare predicted structure against reference using OpenStructure.
    
    Args:
        pred_pdb: Path to predicted structure (PDB format)
        reference_cif: Path to reference structure (CIF format)
        output_dir: Directory to save comparison results
    
    Returns:
        dict: Comparison metrics including lDDT score
    """
    output_dir = Path(output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    
    out_path = output_dir / "comparison_results.json"
    
    # Build OpenStructure comparison command
    cmd = [
        "compare-structures",
        "-m", str(pred_pdb),           # Model (predicted structure)
        "-r", str(reference_cif),      # Reference (ground truth)
        "--fault-tolerant",            # Handle minor structural differences
        "--min-pep-length", "4",       # Minimum peptide chain length
        "--min-nuc-length", "4",       # Minimum nucleotide chain length
        "-o", str(out_path),           # Output JSON file
        "--lddt",                      # Calculate lDDT metric
    ]
    
    # Run comparison using OpenStructure Docker container
    docker_cmd = [
        "docker", "run", "--rm",
        "-v", f"{Path.cwd()}:/home",
        "registry.scicore.unibas.ch/schwede/openstructure:latest"
    ] + cmd
    
    result = subprocess.run(
        docker_cmd,
        capture_output=True,
        text=True
    )
    
    if result.returncode != 0:
        raise Exception(f"Structure comparison failed: {result.stderr}")
    
    # Read comparison results
    with open(out_path, 'r') as f:
        metrics = json.load(f)
    
    return metrics

def extract_lddt(comparison_results):
    """
    Extract lDDT score from comparison results.
    
    Args:
        comparison_results: Dictionary containing comparison metrics
    
    Returns:
        float: lDDT score (0.0 to 1.0, higher is better)
    """
    # lDDT is directly a float value in the comparison results
    lddt_score = comparison_results.get('lddt', 0.0)
    return lddt_score

def benchmark_structure(nim_url, input_json, reference_cif, output_dir):
    """
    Complete benchmark pipeline for a single structure.
    
    Args:
        nim_url: URL of OpenFold3 NIM service
        input_json: Input configuration for prediction
        reference_cif: Reference structure for validation
        output_dir: Output directory for results
    
    Returns:
        dict: Benchmark results including timing and accuracy
    """
    output_dir = Path(output_dir)
    
    print(f"Running inference...")
    pred_path, inference_time = run_inference(nim_url, input_json, output_dir)
    print(f"Inference completed in {inference_time:.2f} seconds")
    
    print(f"Comparing structures...")
    metrics = compare_structures(pred_path, reference_cif, output_dir)
    lddt_score = extract_lddt(metrics)
    print(f"lDDT score: {lddt_score:.4f}")
    
    return {
        'inference_time': inference_time,
        'lddt_score': lddt_score,
        'predicted_structure': str(pred_path),
        'full_metrics': metrics
    }

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Benchmark OpenFold3 NIM predictions')
    parser.add_argument('--nim-url', default='http://localhost:8000', 
                        help='URL of the OpenFold3 NIM service')
    parser.add_argument('--input', required=True, 
                        help='Path to input JSON file')
    parser.add_argument('--reference', required=True, 
                        help='Path to reference CIF file')
    parser.add_argument('--output', required=True, 
                        help='Output directory for results')
    
    args = parser.parse_args()
    
    results = benchmark_structure(args.nim_url, args.input, args.reference, args.output)
    
    print("\nBenchmark Results:")
    print(f"  Inference Time: {results['inference_time']:.2f}s")
    print(f"  lDDT Score: {results['lddt_score']:.4f}")
    print(f"  Predicted Structure: {results['predicted_structure']}")

Usage Example:

# Run benchmark for a single structure
python3 benchmark_openfold3.py \
    --nim-url http://localhost:8000 \
    --input inputs/8eil_input.json \
    --reference references/8eil.cif \
    --output results/8eil

Understanding lDDT Metric#

lDDT (local Distance Difference Test) is a robust metric for assessing the quality of predicted protein structures:

  • Score Range: 0.0 to 1.0 (or 0 to 100 when expressed as percentage)

  • Interpretation:

    • lDDT > 0.90: Excellent accuracy, very high confidence

    • lDDT 0.70-0.90: Good accuracy, reliable predictions

    • lDDT 0.50-0.70: Moderate accuracy, some structural features correct

    • lDDT < 0.50: Low accuracy, limited reliability

How lDDT Works:

  • Measures local geometric agreement between predicted and reference structures

  • Evaluates distances between atoms within local neighborhoods (typically 15Å radius)

  • More robust to domain movements and flexible regions compared to global metrics like RMSD

  • Focuses on local structural correctness rather than global superposition

Why lDDT for OpenFold3:

  • AlphaFold3 and OpenFold3 models are trained to optimize lDDT during the training process

  • Well-suited for evaluating multi-chain complexes and structures with flexible regions

  • Provides per-residue metrics in addition to global metrics

  • Standard metric used in CASP (Critical Assessment of protein Structure Prediction) competitions

Running Benchmarks for Performance Table#

To reproduce the performance metrics from the table above:

Step 1: Prepare the scripts#

Save the two Python scripts provided above:

  • generate_inputs.py - Creates input JSON files from PDB

  • benchmark_openfold3.py - Runs inference and compares structures

Step 2: Run the complete benchmark workflow#

#!/bin/bash
# Complete benchmark workflow for all test cases

NIM_URL="http://localhost:8000"
PDB_IDS=("8eil" "7r6r" "1a3n" "8c4d" "7qsj" "8cpk" "8are" "8owf" "8aw3" "7tpu" "7ylz" "8gpp" "8clz" "8k7x" "8ibx" "8gi1" "8sm6" "8pso" "8jue" "8bsh" "5xgo")

# Create directories
mkdir -p references inputs results

# Step 1: Generate input JSON files from PDB
echo "Step 1: Generating input JSON files..."
python3 generate_inputs.py
echo "✓ Input files created in inputs/"

# Step 2: Download reference structures
echo "Step 2: Downloading reference structures..."
for pdb_id in "${PDB_IDS[@]}"; do
    if [ ! -f "references/${pdb_id}.cif" ]; then
        echo "  Downloading ${pdb_id}.cif..."
        wget -q "https://files.rcsb.org/download/${pdb_id}.cif" -O "references/${pdb_id}.cif"
    fi
done
echo "✓ Reference structures downloaded"

# Step 3: Verify NIM is running
echo "Step 3: Checking NIM availability..."
curl -sf "${NIM_URL}/v1/health/ready" > /dev/null || {
    echo "Error: NIM not accessible at ${NIM_URL}"
    exit 1
}
echo "✓ NIM is ready"

# Step 4: Run benchmarks
echo "Step 4: Running benchmarks..."
for pdb_id in "${PDB_IDS[@]}"; do
    echo "  Benchmarking ${pdb_id}..."
    python3 benchmark_openfold3.py \
        --nim-url "$NIM_URL" \
        --input "inputs/${pdb_id}_input.json" \
        --reference "references/${pdb_id}.cif" \
        --output "results/${pdb_id}"
done

echo ""
echo "Benchmarking complete! Results saved in results/"

Quick Summary:#

# 1. Install dependencies
pip3 install requests

# 2. Generate input files (this creates inputs/*.json)
python3 generate_inputs.py

# 3. Download references and run benchmarks
chmod +x run_benchmarks.sh && ./run_benchmarks.sh

Expected Output Format#

The comparison results JSON file contains detailed metrics:

{
  "lddt": 0.9234,
  "chain_mapping": {
    "A": "A",
    "B": "B"
  },
  "aln": [
    ">reference:A\nMKQLYGHSTI...",
    ">model:A\nMKQLYGHSTI..."
  ],
  "model_clashes": [],
  "model_bad_bonds": [],
  "model_bad_angles": [],
  "reference_clashes": [],
  "reference_bad_bonds": [],
  "reference_bad_angles": [],
  "status": "SUCCESS",
  "ost_version": "2.11.1"
}

The primary metric of interest is lddt, which is a float value (0.0 to 1.0) representing the overall structural quality of the prediction. Higher values indicate better agreement with the reference structure.

Troubleshooting#

General Performance Issues#

  • Out of memory errors: Reduce MSA depth, decrease sequence length, or upgrade to GPUs with more memory

  • Slow performance: Ensure fast storage (NVMe SSD), sufficient CPU cores, and adequate system RAM

  • Poor quality predictions: Check input sequence quality, increase MSA depth if available, or adjust diffusion parameters

Backend-Specific Issues#

  • TensorRT errors with long sequences: Use PyTorch backend for sequences >2048 residues

    export NIM_OPTIMIZED_BACKEND=torch
    
  • TensorRT errors with short sequences: Use PyTorch backend for sequences <4 residues

    export NIM_OPTIMIZED_BACKEND=torch
    
  • Inconsistent results between backends: This is expected; TensorRT uses optimizations that may produce slightly different numerical results while maintaining accuracy

Benchmarking Issues#

The following are “File not found” errors.

  • “Input file not found”: Generate input JSON files first using generate_inputs.py

    python generate_inputs.py  # Creates all input files
    python generate_inputs.py 8eil  # Or for specific PDB
    
  • “Reference file not found”: Download CIF files from RCSB PDB

    wget https://files.rcsb.org/download/8eil.cif -O references/8eil.cif
    

The following are structure comparison issues.

  • OpenStructure comparison failures: Ensure both predicted and reference structures have compatible chain IDs and residue numbering

  • Missing atoms in predictions: Use --fault-tolerant flag to handle incomplete structures (already included in script)

  • lDDT score of 0.0: Check that sequences match between prediction and reference; may indicate alignment failure

The following are NIM connection issues.

  • “Connection refused”: Ensure OpenFold3 NIM is running

    curl http://localhost:8000/v1/health/ready  # Should return {"object":"health.response","message":"ready","status":"ready"}
    

Note

For detailed performance tuning guidance specific to your deployment, refer to the documentation on configuration and optimization.