Performance#

Accuracy Performance#

The accuracy performance is measured by calculating the dice score on ground truth and inference results on 7 images. The following table shows the dice score for each class and the mean dice score for each case.

Case

Image

Class

Dice Score

Mean Dice

1

spleen_2_image.nii.gz

spleen

0.9652

0.9652

2

s0996.nii

aorta

0.9682

0.9682

3

liver_129.nii.gz

liver

0.9177

0.8008

hepatic tumor

0.6840

4

lung_034.nii.gz

lung tumor

0.8779

0.8779

5

colon_203.nii

colon cancer primaries

0.8421

0.8421

6

s0459.nii

stomach

0.9360

0.9004

inferior vena cava

0.9087

pancreas

0.7810

vertebrae L1

0.9793

vertebrae T8

0.9769

brain

0.8203

7

s0675.nii

left rib 8

0.8731

0.9165

right rib 3

0.9463

right rib 12

0.9498

right iliopsoas

0.8696

heart

0.9439

Speed Performance#

The speed performance is measured by calculating the time cost on 6 images with different GPUs. The following tables show the results for both PyTorch and TensorRT models for each case.

Case 1#

Image: 256cubic.nii.gz
Classes: []
Size: 256 x 256 x 256

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

3.028

2.968

TensorRT

2.702

2.710

A100

PyTorch

7.126

7.147

TensorRT

5.856

5.674

RTX 6000 Ada

PyTorch

6.757

6.763

TensorRT

6.539

6.237

L40s

PyTorch

8.767

8.823

TensorRT

8.543

8.720

Case 2#

Image: 256cubic.nii.gz
Classes: [spleen]
Size: 256 x 256 x 256

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

2.511

2.521

TensorRT

2.287

2.298

A100

PyTorch

6.117

6.125

TensorRT

4.0935

4.086

RTX 6000 Ada

PyTorch

5.514

5.593

TensorRT

5.169

5.168

L40s

PyTorch

6.903

6.944

TensorRT

6.597

6.594

Case 3#

Image: 512cubic.nii.gz
Classes: []
Size: 512 x 512 x 512

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

16.308

16.294

TensorRT

15.235

15.226

A100

PyTorch

91.567

92.848

TensorRT

87.108

84.881

RTX 6000 Ada

PyTorch

109.338

109.405

TensorRT

103.284

103.386

L40s

PyTorch

96.068

97.135

TensorRT

95.064

91.982

Case 4#

Image: 512cubic.nii.gz
Classes: [liver]
Size: 512 x 512 x 512

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

14.156

14.147

TensorRT

13.079

13.066

A100

PyTorch

37.947

37.963

TensorRT

34.156

33.852

RTX 6000 Ada

PyTorch

32.242

32.256

TensorRT

31.434

31.149

L40s

PyTorch

33.164

34.715

TensorRT

33.244

33.151

Case 5#

Image: 512-768.nii.gz
Classes: []
Size: 512 x 512 x 768

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

89.312

88.864

TensorRT

87.692

87.501

A100

PyTorch

144.568

143.292

TensorRT

140.919

140.490

RTX 6000 Ada

PyTorch

160.502

160.697

TensorRT

151.359

144.844

L40s

PyTorch

146.684

150.386

TensorRT

147.603

144.717

Case 6#

Image: 512-768.nii.gz
Classes: [heart]
Size: 512 x 512 x 768

GPU

Model

Mean Speed (s)

Median Speed (s)

H100

PyTorch

22.957

22.991

TensorRT

21.499

21.515

A100

PyTorch

58.676

58.831

TensorRT

55.636

54.910

RTX 6000 Ada

PyTorch

49.822

50.126

TensorRT

33.956

33.831

L40s

PyTorch

49.225

51.239

TensorRT

48.805

49.690