Performance#
Accuracy Performance#
The accuracy performance is measured by calculating the dice score on ground truth and inference results on 7 images. The following table shows the dice score for each class and the mean dice score for each case.
Case  | 
Image  | 
Class  | 
Dice Score  | 
Mean Dice  | 
|---|---|---|---|---|
1  | 
spleen  | 
0.9652  | 
0.9652  | 
|
2  | 
aorta  | 
0.9682  | 
0.9682  | 
|
3  | 
liver  | 
0.9177  | 
0.8008  | 
|
hepatic tumor  | 
0.6840  | 
|||
4  | 
lung tumor  | 
0.8779  | 
0.8779  | 
|
5  | 
colon cancer primaries  | 
0.8421  | 
0.8421  | 
|
6  | 
stomach  | 
0.9360  | 
0.9004  | 
|
inferior vena cava  | 
0.9087  | 
|||
pancreas  | 
0.7810  | 
|||
vertebrae L1  | 
0.9793  | 
|||
vertebrae T8  | 
0.9769  | 
|||
brain  | 
0.8203  | 
|||
7  | 
left rib 8  | 
0.8731  | 
0.9165  | 
|
right rib 3  | 
0.9463  | 
|||
right rib 12  | 
0.9498  | 
|||
right iliopsoas  | 
0.8696  | 
|||
heart  | 
0.9439  | 
Speed Performance#
The speed performance is measured by calculating the time cost on 6 images with different GPUs. The following tables show the results for both PyTorch and TensorRT models for each case.
Case 1#
Image: 256cubic.nii.gz
Classes: []
Size: 256 x 256 x 256
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
3.028  | 
2.968  | 
TensorRT  | 
2.702  | 
2.710  | 
|
A100  | 
PyTorch  | 
7.126  | 
7.147  | 
TensorRT  | 
5.856  | 
5.674  | 
|
RTX 6000 Ada  | 
PyTorch  | 
6.757  | 
6.763  | 
TensorRT  | 
6.539  | 
6.237  | 
|
L40s  | 
PyTorch  | 
8.767  | 
8.823  | 
TensorRT  | 
8.543  | 
8.720  | 
Case 2#
Image: 256cubic.nii.gz
Classes: [spleen]
Size: 256 x 256 x 256
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
2.511  | 
2.521  | 
TensorRT  | 
2.287  | 
2.298  | 
|
A100  | 
PyTorch  | 
6.117  | 
6.125  | 
TensorRT  | 
4.0935  | 
4.086  | 
|
RTX 6000 Ada  | 
PyTorch  | 
5.514  | 
5.593  | 
TensorRT  | 
5.169  | 
5.168  | 
|
L40s  | 
PyTorch  | 
6.903  | 
6.944  | 
TensorRT  | 
6.597  | 
6.594  | 
Case 3#
Image: 512cubic.nii.gz
Classes: []
Size: 512 x 512 x 512
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
16.308  | 
16.294  | 
TensorRT  | 
15.235  | 
15.226  | 
|
A100  | 
PyTorch  | 
91.567  | 
92.848  | 
TensorRT  | 
87.108  | 
84.881  | 
|
RTX 6000 Ada  | 
PyTorch  | 
109.338  | 
109.405  | 
TensorRT  | 
103.284  | 
103.386  | 
|
L40s  | 
PyTorch  | 
96.068  | 
97.135  | 
TensorRT  | 
95.064  | 
91.982  | 
Case 4#
Image: 512cubic.nii.gz
Classes: [liver]
Size: 512 x 512 x 512
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
14.156  | 
14.147  | 
TensorRT  | 
13.079  | 
13.066  | 
|
A100  | 
PyTorch  | 
37.947  | 
37.963  | 
TensorRT  | 
34.156  | 
33.852  | 
|
RTX 6000 Ada  | 
PyTorch  | 
32.242  | 
32.256  | 
TensorRT  | 
31.434  | 
31.149  | 
|
L40s  | 
PyTorch  | 
33.164  | 
34.715  | 
TensorRT  | 
33.244  | 
33.151  | 
Case 5#
Image: 512-768.nii.gz
Classes: []
Size: 512 x 512 x 768
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
89.312  | 
88.864  | 
TensorRT  | 
87.692  | 
87.501  | 
|
A100  | 
PyTorch  | 
144.568  | 
143.292  | 
TensorRT  | 
140.919  | 
140.490  | 
|
RTX 6000 Ada  | 
PyTorch  | 
160.502  | 
160.697  | 
TensorRT  | 
151.359  | 
144.844  | 
|
L40s  | 
PyTorch  | 
146.684  | 
150.386  | 
TensorRT  | 
147.603  | 
144.717  | 
Case 6#
Image: 512-768.nii.gz
Classes: [heart]
Size: 512 x 512 x 768
GPU  | 
Model  | 
Mean Speed (s)  | 
Median Speed (s)  | 
|---|---|---|---|
H100  | 
PyTorch  | 
22.957  | 
22.991  | 
TensorRT  | 
21.499  | 
21.515  | 
|
A100  | 
PyTorch  | 
58.676  | 
58.831  | 
TensorRT  | 
55.636  | 
54.910  | 
|
RTX 6000 Ada  | 
PyTorch  | 
49.822  | 
50.126  | 
TensorRT  | 
33.956  | 
33.831  | 
|
L40s  | 
PyTorch  | 
49.225  | 
51.239  | 
TensorRT  | 
48.805  | 
49.690  |