Support Matrix for NeMo Retriever Text Embedding NIM#
This documentation describes the software and hardware that NeMo Retriever Text Embedding NIM supports.
CPU#
Text Embedding NIM requires the following:
x86 processor with at least 8 cores. For a list of supported systems, refer to NVIDIA Certified Systems Catalog.
Models#
NeMo Retriever Text Embedding NIM supports the following models.
Model Name |
Model ID |
Max Tokens |
Publisher |
Parameters |
Total Parameters |
Embedding |
Dynamic Embeddings |
Model Card |
---|---|---|---|---|---|---|---|---|
Llama 3.2 NeMo Retriever Embedding 300m v2 |
nvidia/llama-3.2-nemoretriever-300m-embed-v2 |
8192 |
NVIDIA |
307 |
569 |
2048 |
no |
|
Llama 3.2 NeMo Retriever Embedding 300m v1 |
nvidia/llama-3.2-nemoretriever-300m-embed-v1 |
8192 |
NVIDIA |
307 |
569 |
2048 |
no |
|
NeMo Retriever Llama Vision Embed |
nvidia/llama-3.2-nemoretriever-1b-vlm-embed-v1 |
4096 |
NVIDIA |
1414 |
1678 |
2048 |
yes |
|
bge-large-zh-v1.5 |
baai/bge-large-zh-v1.5 |
512 |
BAAI |
303 |
325 |
1024 |
no |
|
bge-m3 |
baai/bge-m3 |
8192 |
BAAI |
303 |
568 |
1024 |
no |
|
Llama-3.2-NV-EmbedQA-1B-v2 |
nvidia/llama-3.2-nv-embedqa-1b-v2 |
8192 |
NVIDIA |
973 |
1236 |
2048 |
yes |
|
NV-EmbedQA-E5-v5 |
nvidia/nv-embedqa-e5-v5 |
512 |
NVIDIA |
303 |
335 |
1024 |
no |
|
NV-EmbedQA-Mistral7B-v2 |
nvidia/nv-embedqa-mistral-7b-v2 |
512 |
NVIDIA |
6980 |
7110 |
4096 |
no |
|
Snowflake’s Arctic-embed-l |
snowflake/arctic-embed-l |
512 |
Snowflake |
303 |
335 |
1024 |
no |
Note
The “Parameters (excl. embeddings)” column shows the count of parameters that directly impact inference performance and computational cost. Embedding layer parameters are excluded because they primarily affect model size rather than inference speed. For example, models with different vocabulary sizes may have different total parameter counts but the same inference-relevant parameter count.
Embedding Type Support#
The following table contains the embedding types that each model supports. For details, refer to Specify Embedding Type.
Model ID |
Supported Embedding Types |
---|---|
nvidia/llama-3.2-nemoretriever-300m-embed-v2 |
|
nvidia/llama-3.2-nemoretriever-300m-embed-v1 |
|
nvidia/llama-3.2-nemoretriever-1b-vlm-embed-v1 |
|
nvidia/llama-3.2-nv-embedqa-1b-v2 |
|
baai/bge-large-zh-v1.5 |
|
baai/bge-m3 |
|
nvidia/nv-embedqa-e5-v5 |
|
nvidia/nv-embedqa-mistral-7b-v2 |
|
snowflake/arctic-embed-l |
|
Optimized vs Non Optimized Models#
The following models are optimized using TRT and are available as pre-built, optimized engines on NGC. These optimized models are GPU specific and require a minimum GPU memory value as specified in the Optimized configuration sections of each model.
NVIDIA also provides generic model profiles that operate with any NVIDIA GPU (or set of GPUs) with sufficient memory capacity. These generic profiles are known as non-optimized configuration. On systems where there are no compatible optimized profiles, generic profiles are chosen automatically. Optimized profiles are preferred over generic profiles when available, but you can choose to deploy a generic profile on any system by following the steps in the Overriding Profile Selection section.
Compute Capability and Automatic Profile Selection#
NeMo Retriever Text Embedding NIM supports TensorRT engines that are compiled with the option kSAME_COMPUTE_CAPABILITY
.
This option builds engines that are compatible with GPUs having the same compute capability as the one on which the engine was built.
For more information, refer to Same Compute Capability Compatibility Level.
To see the mapping of CUDA GPU compute capability versions to supported GPU SKUs, refer to CUDA GPU Compute Capability.
If you run a NIM on a GPU that has the same compute capability as one of the engines, then that engine should appear as compatible when you run list-model-profiles
.
Automatic profile selection uses the following order to choose a profile:
A GPU-specific engine (for example, gpu:NVIDIA B200)
A compute capability engine (for example, compute_capability:10.0)
ONNX (for example, model_type:onnx)
Supported Hardware#
Note
Currently, GPU clusters with GPUs in Multi-instance GPU mode (MIG) are not supported.
Llama 3.2 NeMo Retriever Embedding 300m v2 (llama-3.2-nemoretriever-300m-embed-v2)#
Optimized configuration#
Precision |
|
---|---|
12.0 |
FP16 & FP8 |
10.0 |
FP16 & FP8 |
9.0 |
FP16 & FP8 |
8.9 |
FP16 & FP8 |
8.6 |
FP16 |
8.0 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
Max Tokens |
---|---|---|---|---|
Any single NVIDIA GPU that has sufficient memory, or multiple homogenous NVIDIA GPUs that have sufficient memory in total. |
Min: 2.4 GiB, Max: 25.2 GiB |
FP16 |
7.49 GiB |
4096 |
Warning
The maximum token length of the non-optimized configuration is smaller (4096) than the other profiles (8192).
Llama 3.2 NeMo Retriever Embedding 300m v1 (llama-3.2-nemoretriever-300m-embed-v1)#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
40 & 80 |
FP16 |
H100 HBM3 |
80 |
FP16 & FP8 |
H100 NVL |
80 |
FP16 & FP8 |
L40s |
48 |
FP16 & FP8 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
B200 |
180 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
Max Tokens |
---|---|---|---|---|
Any single NVIDIA GPU that has sufficient memory, or multiple homogenous NVIDIA GPUs that have sufficient memory in total. |
Min: 2.4 GiB, Max: 25.2 GiB |
FP16 |
7.49 GiB |
4096 |
Warning
The maximum token length of the non-optimized configuration is smaller (4096) than the other profiles (8192).
NeMo Retriever Llama Vision Embed (llama-3.2-nemoretriever-1b-vlm-embed-v1)#
Optimized configuration#
Currently, there is no support for optimized configurations.
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
Min: 4.4 GiB, Max: 21 GiB |
FP16 |
3.2GiB |
bge-large-zh-v1.5#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
H20 |
96 |
FP16 |
L20 |
48 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values in the following table are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
10 |
FP16 |
8.1 |
bge-m3#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L20 |
48 |
FP16 |
H20 |
96 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
33 |
FP16 |
8.8 |
Llama-3.2-NV-EmbedQA-1B-v2#
Optimized configuration#
Precision |
|
---|---|
12.0 |
FP16 & FP8 |
10.0 |
FP16 & FP8 |
9.0 |
FP16 & FP8 |
8.9 |
FP16 & FP8 |
8.6 |
FP16 |
8.0 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
Max Tokens |
---|---|---|---|---|
Any single NVIDIA GPU that has sufficient memory, or multiple homogenous NVIDIA GPUs that have sufficient memory in total. |
3.6 |
FP16 |
9 |
4096 |
If you run this model on RTX 40xx or later, you need a minimum of 8GB of VRAM.
Warning
The maximum token length of the non-optimized configuration is smaller (4096) than the other profiles (8192).
NV-EmbedQA-E5-v5#
Optimized configuration#
Precision |
|
---|---|
12.0 |
FP16 |
10.0 |
FP16 |
9.0 |
FP16 |
8.9 |
FP16 |
8.6 |
FP16 |
8.0 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
8.5 |
NV-EmbedQA-Mistral7B-v2#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP8 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP8 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
16 |
FP16 |
30 |
Snowflake’s Arctic-embed-l#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
17 |
Memory Footprint#
The following table provides the set of valid configurations and the associated approximate memory footprints for the model. These values were measured using version 1.5.0 and are expected to remain similar in future releases.
Approximate GPU Memory Size (GB) |
---|
2.04 |
Approximate GPU Memory Size (GB) |
---|
3.53 |
Approximate GPU Memory Size (GB) |
---|
2.04 |
Approximate GPU Memory Size (GB) |
---|
3.19 |
Approximate GPU Memory Size (GB) |
---|
2.04 |
Approximate GPU Memory Size (GB) |
---|
3.17 |
Approximate GPU Memory Size (GB) |
---|
2.04 |
Approximate GPU Memory Size (GB) |
---|
2.67 |
Approximate GPU Memory Size (GB) |
---|
2.86 |
Approximate GPU Memory Size (GB) |
---|
2.86 |
Approximate GPU Memory Size (GB) |
---|
2.98 |
Approximate GPU Memory Size (GB) |
---|
6.53 |
Approximate GPU Memory Size (GB) |
---|
2.98 |
Approximate GPU Memory Size (GB) |
---|
6.09 |
Approximate GPU Memory Size (GB) |
---|
2.98 |
Approximate GPU Memory Size (GB) |
---|
4.91 |
Approximate GPU Memory Size (GB) |
---|
2.98 |
Approximate GPU Memory Size (GB) |
---|
4.91 |
Approximate GPU Memory Size (GB) |
---|
5.22 |
Approximate GPU Memory Size (GB) |
---|
5.09 |
Approximate GPU Memory Size (GB) |
---|
0.87 |
Approximate GPU Memory Size (GB) |
---|
0.87 |
Approximate GPU Memory Size (GB) |
---|
0.87 |
Approximate GPU Memory Size (GB) |
---|
0.87 |
Approximate GPU Memory Size (GB) |
---|
0.88 |
Approximate GPU Memory Size (GB) |
---|
0.87 |
Software#
NVIDIA Driver#
Release 1.7.0+ uses NVIDIA Optimized Frameworks 25.01. For NVIDIA driver support, refer to the Frameworks Support Matrix.
If issues arise when you start the NIM containers, run the following code to ensure that the latest NVIDIA drivers are installed.
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
NVIDIA Container Toolkit#
Your Docker environment must support NVIDIA GPUs. For more information, refer to NVIDIA Container Toolkit.