Performance#
Evaluation Process#
This section shows the latency and throughput numbers for the Riva NMT service on different GPUs.
The following command was used to measure performance:
riva_nmt_t2t_client
--riva_uri=0.0.0.0:50051
--model_name=megatronnmt_any_any_1b
--batch_size=<batch size>
--target_language_code=<target language code>
--source_language_code=<source language code>
--text_file=<wmt_filename>
The riva_nmt_t2t_client
returns the following latency measurements:
latency
: the overall latency of all returned responses. This is what is tabulated in the following tables.
You can get the source code for the riva_nmt_t2t_client
at Riva C++ Clients.
Results#
The following tables show the latencies and throughput measurements. Throughput is measured in sentences translated per second.
For information about the hardware that collected these measurements, see the Hardware Specifications section.
Riva Translate 1.6b#
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
26.2867 |
2.03927 |
2.50127 |
3.38444 |
2 |
37.9656 |
2.66554 |
3.13718 |
4.35343 |
4 |
52.68 |
3.90231 |
4.27135 |
6.70392 |
8 |
60.0354 |
6.66561 |
7.94382 |
12.7633 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
31.9811 |
2.33799 |
2.66042 |
3.81389 |
2 |
42.7697 |
2.92146 |
3.48803 |
4.87088 |
4 |
55.6321 |
4.42112 |
5.65174 |
7.68267 |
8 |
63.8819 |
7.67295 |
9.85235 |
12.8664 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
26.3775 |
1.34108 |
1.54733 |
1.99489 |
2 |
38.9406 |
1.6354 |
1.87501 |
2.2296 |
4 |
56.8026 |
2.16781 |
2.43267 |
2.74134 |
8 |
74.5635 |
3.30279 |
3.59166 |
4.28577 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
37.3683 |
1.04883 |
1.2315 |
1.5244 |
2 |
56.919 |
1.27984 |
1.44713 |
1.80017 |
4 |
84.6404 |
1.62568 |
1.8017 |
2.21461 |
8 |
116.29 |
2.32152 |
2.69288 |
3.06221 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
26.407 |
1.39359 |
1.59803 |
2.0832 |
2 |
38.9544 |
1.70536 |
1.89963 |
2.53018 |
4 |
57.3626 |
2.17563 |
2.41663 |
4.14745 |
8 |
74.4845 |
3.24898 |
3.77144 |
7.65627 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.9981 |
0.996788 |
1.16798 |
1.65174 |
2 |
37.7592 |
1.23002 |
1.43918 |
2.28275 |
4 |
55.8361 |
1.59303 |
1.92639 |
2.96886 |
8 |
72.8569 |
2.47273 |
3.09559 |
4.60961 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.0178 |
2.16171 |
2.67937 |
3.57496 |
2 |
35.7852 |
2.8741 |
3.43384 |
4.825 |
4 |
45.7635 |
4.75694 |
5.46036 |
8.43625 |
8 |
53.6928 |
7.49429 |
9.33626 |
15.9536 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
30.4228 |
2.45499 |
2.8447 |
4.16917 |
2 |
39.371 |
3.23598 |
3.9612 |
5.80284 |
4 |
47.5513 |
5.20845 |
6.5702 |
9.05081 |
8 |
53.4489 |
9.45831 |
12.3315 |
16.7165 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.7329 |
1.4008 |
1.59731 |
2.02982 |
2 |
37.3419 |
1.70973 |
1.97817 |
2.38832 |
4 |
52.8377 |
2.39732 |
2.73125 |
3.28759 |
8 |
62.3088 |
3.89276 |
4.19171 |
5.01999 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
37.6181 |
1.06453 |
1.2618 |
1.56666 |
2 |
54.3727 |
1.34588 |
1.54159 |
1.90145 |
4 |
77.2692 |
1.85304 |
2.06099 |
2.62032 |
8 |
100.463 |
2.67849 |
3.19095 |
3.68078 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.6851 |
1.45086 |
1.65187 |
2.14367 |
2 |
37.6205 |
1.77873 |
2.00517 |
2.71895 |
4 |
52.6492 |
2.39175 |
2.70523 |
4.71649 |
8 |
62.1082 |
3.8764 |
4.39479 |
9.33342 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
26.3125 |
1.00717 |
1.19257 |
1.67369 |
2 |
36.9222 |
1.2762 |
1.478 |
2.46823 |
4 |
51.398 |
1.83249 |
2.24098 |
3.33602 |
8 |
63.8143 |
2.85154 |
3.58795 |
5.41236 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
24.8964 |
2.12924 |
2.65001 |
3.58206 |
2 |
34.9882 |
2.98058 |
3.54244 |
5.17292 |
4 |
44.407 |
4.79422 |
5.67429 |
8.66048 |
8 |
52.0275 |
7.6554 |
9.58992 |
15.6379 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
29.9773 |
2.48201 |
2.85844 |
4.27288 |
2 |
38.6565 |
3.3019 |
4.04395 |
6.12123 |
4 |
45.7503 |
5.44284 |
7.03912 |
9.69829 |
8 |
51.1056 |
9.83193 |
12.5469 |
16.8656 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.3765 |
1.38744 |
1.56635 |
2.01276 |
2 |
37.2191 |
1.7271 |
2.00251 |
2.42118 |
4 |
51.1486 |
2.51382 |
2.8324 |
3.51729 |
8 |
59.8422 |
4.07464 |
4.40873 |
5.24835 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
36.2303 |
1.0951 |
1.27495 |
1.57815 |
2 |
53.9788 |
1.35253 |
1.54013 |
1.93965 |
4 |
76.3488 |
1.85225 |
2.07805 |
2.64824 |
8 |
96.3217 |
2.80936 |
3.31854 |
3.90351 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.2758 |
1.44721 |
1.65356 |
2.15285 |
2 |
37.604 |
1.77375 |
2.01242 |
2.72198 |
4 |
51.4024 |
2.49608 |
2.79586 |
5.08613 |
8 |
59.5006 |
4.04908 |
4.63766 |
9.81065 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.2419 |
1.03367 |
1.22135 |
1.71075 |
2 |
36.4417 |
1.27991 |
1.50347 |
2.44608 |
4 |
50.6761 |
1.8483 |
2.28897 |
3.48173 |
8 |
61.1923 |
2.97418 |
3.84112 |
5.69605 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
23.864 |
2.21488 |
2.74259 |
3.76037 |
2 |
33.5527 |
3.10486 |
3.74949 |
5.343 |
4 |
42.1649 |
5.07062 |
5.93531 |
9.05 |
8 |
47.4944 |
8.55144 |
10.6804 |
18.5123 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
28.6128 |
2.60506 |
3.0003 |
4.4652 |
2 |
36.6462 |
3.51057 |
4.29037 |
6.38079 |
4 |
43.646 |
5.66035 |
7.43962 |
10.2525 |
8 |
46.5824 |
10.8355 |
14.4172 |
19.4719 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
24.1934 |
1.4668 |
1.6551 |
2.11026 |
2 |
35.5399 |
1.81347 |
2.08718 |
2.53916 |
4 |
47.9159 |
2.66117 |
2.97279 |
3.50095 |
8 |
57.1626 |
4.3184 |
4.66154 |
5.64512 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
34.9025 |
1.13927 |
1.33301 |
1.64506 |
2 |
51.477 |
1.42015 |
1.62161 |
2.02865 |
4 |
71.5458 |
2.03029 |
2.23385 |
2.80834 |
8 |
91.6256 |
3.00349 |
3.51311 |
4.12845 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
24.0672 |
1.5234 |
1.74705 |
2.25971 |
2 |
35.6375 |
1.8885 |
2.14569 |
2.97039 |
4 |
47.8865 |
2.65449 |
2.95025 |
5.46151 |
8 |
56.8241 |
4.30345 |
4.90771 |
10.5702 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
24.3206 |
1.07742 |
1.26691 |
1.793 |
2 |
34.7435 |
1.35411 |
1.58727 |
2.62002 |
4 |
48.3788 |
1.91256 |
2.35622 |
3.66184 |
8 |
57.9614 |
3.2078 |
4.05819 |
6.1864 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
40.5707 |
1.30604 |
1.5894 |
2.16364 |
2 |
56.9553 |
1.79082 |
2.16168 |
3.29733 |
4 |
66.8099 |
3.26993 |
3.64887 |
6.21649 |
8 |
62.5757 |
6.792 |
8.24721 |
13.8332 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
49.4655 |
1.48434 |
1.73773 |
2.54071 |
2 |
61.9468 |
2.11053 |
2.53549 |
3.89271 |
4 |
66.7364 |
4.09326 |
4.85237 |
7.36323 |
8 |
61.9911 |
8.39187 |
11.1865 |
14.189 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
40.4369 |
0.867933 |
0.983312 |
1.27003 |
2 |
58.9499 |
1.08901 |
1.2567 |
1.5336 |
4 |
77.0764 |
1.69687 |
1.93364 |
2.22511 |
8 |
79.8035 |
3.2676 |
3.61598 |
4.42012 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
58.1328 |
0.671243 |
0.787934 |
0.980829 |
2 |
87.3839 |
0.83912 |
0.962738 |
1.19282 |
4 |
118.819 |
1.23386 |
1.37922 |
1.73483 |
8 |
133.943 |
2.14844 |
2.5295 |
2.95827 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
40.4461 |
0.897417 |
1.02884 |
1.32677 |
2 |
59.6298 |
1.12109 |
1.25972 |
1.7518 |
4 |
77.4412 |
1.68057 |
1.88498 |
3.61804 |
8 |
79.0987 |
3.16789 |
3.72364 |
8.32152 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
40.7501 |
0.625767 |
0.745007 |
1.02009 |
2 |
58.8772 |
0.795955 |
0.932173 |
1.55014 |
4 |
79.4899 |
1.19318 |
1.46917 |
2.35335 |
8 |
83.196 |
2.30013 |
2.96352 |
4.70573 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
14.9059 |
4.18064 |
5.55622 |
8.90397 |
2 |
13.6982 |
8.77877 |
11.1217 |
18.41 |
4 |
11.9895 |
20.2857 |
23.3168 |
42.145 |
8 |
9.84107 |
45.3629 |
55.302 |
99.5216 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
15.731 |
5.57288 |
6.65737 |
11.7328 |
2 |
13.4258 |
10.9427 |
14.2988 |
21.9515 |
4 |
11.1191 |
24.9354 |
34.4626 |
52.6908 |
8 |
9.31464 |
56.1604 |
76.3938 |
104.507 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
17.9065 |
2.14465 |
2.66442 |
3.96079 |
2 |
17.6863 |
4.13346 |
5.24532 |
6.7035 |
4 |
16.281 |
8.86584 |
10.5843 |
12.674 |
8 |
13.819 |
19.8851 |
21.9904 |
27.6311 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
26.7904 |
1.63459 |
2.00438 |
2.7469 |
2 |
27.7218 |
3.06423 |
3.66466 |
5.05088 |
4 |
25.8234 |
6.25622 |
7.28332 |
9.68234 |
8 |
22.6921 |
13.3635 |
15.8901 |
18.9904 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
17.3311 |
2.3286 |
2.87607 |
4.3078 |
2 |
17.2567 |
4.36889 |
5.3378 |
7.67524 |
4 |
15.9637 |
8.94096 |
10.3726 |
23.2293 |
8 |
13.4777 |
19.4014 |
23.5091 |
56.2237 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
18.8599 |
1.44669 |
1.87181 |
3.1101 |
2 |
19.022 |
2.87861 |
3.5337 |
7.27692 |
4 |
17.3604 |
5.93223 |
7.70771 |
14.4663 |
8 |
14.1413 |
14.1156 |
18.7657 |
30.8777 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
24.8926 |
2.14594 |
2.67499 |
3.60681 |
2 |
34.6774 |
2.99878 |
3.67241 |
5.14107 |
4 |
43.0674 |
5.10826 |
5.87656 |
9.39341 |
8 |
47.3776 |
8.54803 |
10.6197 |
17.5638 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
29.8693 |
2.51427 |
2.89999 |
4.30795 |
2 |
38.044 |
3.39933 |
4.15936 |
6.2249 |
4 |
43.6223 |
5.74422 |
7.59899 |
10.6489 |
8 |
45.0687 |
11.1592 |
14.7241 |
20.0668 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.3254 |
1.40709 |
1.59688 |
2.0528 |
2 |
36.817 |
1.74851 |
2.02427 |
2.45473 |
4 |
50.5628 |
2.54396 |
2.91978 |
3.61169 |
8 |
56.0985 |
4.47452 |
4.82638 |
5.72361 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
36.8149 |
1.08212 |
1.27069 |
1.57721 |
2 |
53.7507 |
1.37057 |
1.56666 |
1.94615 |
4 |
74.8121 |
1.90943 |
2.13149 |
2.75404 |
8 |
91.2649 |
3.03928 |
3.61824 |
4.19196 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.3073 |
1.45916 |
1.66434 |
2.1714 |
2 |
37.2553 |
1.80097 |
2.03974 |
2.80161 |
4 |
50.3437 |
2.58562 |
2.94337 |
5.41708 |
8 |
56.0202 |
4.39519 |
5.0318 |
10.5843 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
25.6837 |
1.01961 |
1.20561 |
1.69398 |
2 |
36.3235 |
1.30864 |
1.53248 |
2.54312 |
4 |
49.6179 |
1.88027 |
2.28496 |
3.55785 |
8 |
58.6442 |
3.15507 |
4.11201 |
6.14629 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
34.0965 |
1.58011 |
1.96628 |
2.72448 |
2 |
46.4873 |
2.26697 |
2.71925 |
3.91062 |
4 |
55.8697 |
4.02463 |
4.48315 |
7.21816 |
8 |
62.8854 |
6.56656 |
8.19178 |
12.6974 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
40.779 |
1.86284 |
2.15408 |
3.22027 |
2 |
50.1581 |
2.63038 |
3.16101 |
4.68046 |
4 |
57.2902 |
4.3511 |
5.57995 |
7.81723 |
8 |
62.8918 |
8.30041 |
10.1785 |
14.5662 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
35.271 |
1.02293 |
1.16197 |
1.49121 |
2 |
49.5213 |
1.31475 |
1.52514 |
1.86395 |
4 |
66.6292 |
1.9028 |
2.17766 |
2.81436 |
8 |
73.0008 |
3.37777 |
3.61952 |
4.34075 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
51.3997 |
0.784364 |
0.933197 |
1.1595 |
2 |
72.977 |
1.0184 |
1.17174 |
1.46658 |
4 |
97.3946 |
1.48676 |
1.64859 |
2.09218 |
8 |
120.295 |
2.30302 |
2.62656 |
3.18205 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
35.1238 |
1.0647 |
1.21599 |
1.60668 |
2 |
49.6636 |
1.37161 |
1.55412 |
2.12787 |
4 |
66.8252 |
1.90341 |
2.14164 |
3.96884 |
8 |
72.9761 |
3.32665 |
3.78859 |
8.20151 |
batch size |
tokens/second |
p90 |
p95 |
p99 |
---|---|---|---|---|
1 |
35.956 |
0.73739 |
0.878487 |
1.25711 |
2 |
49.3781 |
0.963772 |
1.14114 |
1.93997 |
4 |
65.3594 |
1.4497 |
1.79878 |
2.6903 |
8 |
78.4195 |
2.40052 |
2.92004 |
4.53465 |
Hardware Specifications#
GPU |
|
---|---|
NVIDIA DGX A100 40GB |
|
CPU |
|
Model |
AMD EPYC 7742 64-Core Processor |
Thread(s) per core |
2 |
Socket(s) |
2 |
Core(s) per socket |
64 |
NUMA node(s) |
8 |
Frequency boost |
enabled |
CPU max MHz |
2250 |
CPU min MHz |
1500 |
RAM |
|
Model |
Micron DDR4 36ASF8G72PZ-3G2B2 3200MHz |
Configured Memory Speed |
2933 MT/s |
RAM Size |
32x64GB (2048GB Total) |
GPU |
|
---|---|
NVIDIA H100 80GB HBM3 |
|
CPU |
|
Model |
Intel(R) Xeon(R) Platinum 8480CL |
Thread(s) per core |
2 |
Socket(s) |
2 |
Core(s) per socket |
56 |
NUMA node(s) |
2 |
CPU max MHz |
3800 |
CPU min MHz |
800 |
RAM |
|
Model |
Micron DDR5 MTC40F2046S1RC48BA1 4800MHz |
Configured Memory Speed |
4400 MT/s |
RAM Size |
32x64GB (2048GB Total) |
GPU |
|
---|---|
NVIDIA L40 |
|
CPU |
|
Model |
AMD EPYC 7763 64-Core Processor |
Thread(s) per core |
1 |
Socket(s) |
2 |
Core(s) per socket |
64 |
NUMA node(s) |
8 |
Frequency boost |
enabled |
CPU max MHz |
3529 |
CPU min MHz |
1500 |
RAM |
|
Model |
Samsung DDR4 M393A4K40DB3-CWE 3200MHz |
Configured Memory Speed |
3200 MT/s |
RAM Size |
16x32GB (512GB Total) |
Model Accuracy#
Riva NMT models are evaluated using the BLEU (Bilingual Evaluation Understudy) score, an industry-standard metric for evaluating machine translation quality.
BLEU scores range from 0 to 100, where higher scores indicate better translation quality. The score measures how similar the machine translation output is to one or more reference human translations by:
Comparing n-gram matches between the machine translation and reference translations
Applying penalties for translations that are too short or too long
Combining these components into a final score
Riva Translate 1.6b#
The table below shows the BLEU scores for the Riva Translate 1.6B any2any model, which supports translation between any pair of the following languages: de, es-ES, es-US, fr, ja, ru, zh-CN. The scores are based on the Flores-101 dataset. In the table, each row corresponds the source language, and each column corresponds to the target language. Higher BLEU scores indicate better translation quality.
Source/Target |
de |
es-ES |
es-US |
fr |
ja |
ru |
zh-CN |
---|---|---|---|---|---|---|---|
de |
- |
24.5 |
24.1 |
39.3 |
27.3 |
26.1 |
33.3 |
es-ES |
22.1 |
- |
- |
30.3 |
23.5 |
20.2 |
29.8 |
es-US |
22.1 |
- |
- |
30.3 |
23.5 |
20.2 |
29.8 |
fr |
25.0 |
24.8 |
30.4 |
- |
26.6 |
25.5 |
32.7 |
ja |
16.9 |
16.4 |
18.1 |
23.7 |
- |
15.2 |
28.9 |
ru |
22.4 |
21.9 |
26.4 |
33.4 |
25.4 |
- |
30.9 |
zh-CN |
17.5 |
17.3 |
19.1 |
25.6 |
16.8 |
23.7 |
- |
The table below shows BLEU scores of RIVA NMT Megatron 1.6B any2any model for translation between English and various target languages for Flores-101 dataset.
Language |
English to Target ⬆️ |
Target to English ⬆️ |
---|---|---|
Arabic |
28.0 |
40.6 |
Brazilian Portuguese |
49.8 |
50.5 |
Bulgarian |
41.8 |
42.1 |
Croatian |
27.9 |
37.8 |
Czech |
32.9 |
41.1 |
Danish |
46.2 |
49.6 |
Dutch |
26.7 |
32.6 |
Estonian |
27.3 |
38.9 |
European Portuguese |
48.1 |
50.5 |
European Spanish |
27.6 |
30.7 |
Finnish |
22.7 |
35.0 |
French |
50.5 |
46.5 |
German |
38.2 |
45.2 |
Greek |
27.5 |
36.5 |
Hindi |
33.5 |
39.9 |
Hungarian |
26.7 |
36.9 |
Indonesian |
47.2 |
44.9 |
Italian |
29.9 |
34.5 |
Japanese |
32.5 |
26.7 |
Korean |
28.0 |
29.5 |
Latin American Spanish |
26.8 |
30.7 |
Latvian |
31.0 |
37.0 |
Lithuanian |
27.5 |
35.1 |
Norwegian |
34.0 |
44.8 |
Polish |
20.8 |
30.3 |
Romanian |
40.7 |
45.0 |
Russian |
31.3 |
36.1 |
Simplified Chinese |
39.5 |
28.5 |
Slovak |
35.0 |
40.6 |
Slovenian |
30.7 |
36.2 |
Swedish |
45.0 |
49.6 |
Thai |
30.9 |
28.1 |
Traditional Chinese |
30.8 |
26.8 |
Turkish |
29.5 |
38.8 |
Ukrainian |
30.7 |
40.2 |
Vietnamese |
41.8 |
36.9 |