Getting Started#
Prerequisites#
Setup#
NVIDIA AI Enterprise License: Riva NMT NIM is available for self-hosting under the NVIDIA AI Enterprise (NVAIE) License.
NVIDIA GPU(s): Riva NMT NIM runs on any NVIDIA GPU with sufficient GPU memory, but some model/GPU combinations are optimized.
CPU: x86_64 architecture only for this release
OS: any Linux distributions which:
Are supported by the NVIDIA Container toolkit
Have
glibc
>= 2.35 in the output ofld -v
CUDA Drivers: Follow the installation guide. We recommend:
Using a network repository as part of a package manager installation, skipping the CUDA toolkit installation as the libraries are available within the NIM container
Installing the open kernels for a specific version:
Major Version
EOL
Data Center & RTX/Quadro GPUs
GeForce GPUs
> 550
TBD
X
X
550
Feb 2025
X
X
545
Oct 2023
X
X
535
June 2026
X
525
Nov 2023
X
470
Sept 2024
X
Install Docker.
Install the NVIDIA Container Toolkit.
After installing the toolkit, follow the instructions in the Configure Docker section in the NVIDIA Container Toolkit documentation.
To ensure that your setup is correct, run the following command:
docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
This command should produce output similar to the following, where you can confirm the CUDA driver version and available GPUs.
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.14 Driver Version: 550.54.14 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:1B:00.0 Off | 0 |
| N/A 36C P0 112W / 700W | 78489MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
NGC Authentication#
Generate an API key#
To access NGC resources, you need an NGC API key. You can generate a key here: Generate Personal Key.
When creating an NGC API Personal key, ensure that at least “NGC Catalog” is selected from the “Services Included” dropdown. More Services can be included if this key is to be reused for other purposes.
Note
Personal keys allow you to configure an expiration date, revoke or delete the key using an action button, and rotate the key as needed. For more information about key types, please refer the NGC User Guide.
Export the API key#
Pass the value of the API key to the docker run
command in the next section as the NGC_API_KEY
environment variable to download the appropriate models and resources when starting the NIM.
If you’re not familiar with how to create the NGC_API_KEY
environment variable, the simplest way is to export it in your terminal:
export NGC_API_KEY=<value>
Run one of the following commands to make the key available at startup:
# If using bash
echo "export NGC_API_KEY=<value>" >> ~/.bashrc
# If using zsh
echo "export NGC_API_KEY=<value>" >> ~/.zshrc
Note
Other, more secure options include saving the value in a file, so that you can retrieve with cat $NGC_API_KEY_FILE
, or using a password manager.
Docker Login to NGC#
To pull the NIM container image from NGC, first authenticate with the NVIDIA Container Registry with the following command:
echo "$NGC_API_KEY" | docker login nvcr.io --username '$oauthtoken' --password-stdin
Use $oauthtoken
as the username and NGC_API_KEY
as the password. The $oauthtoken
username is a special name that indicates that you will authenticate with an API key and not a user name and password.
Launching the NIM#
The following commands deploy the Riva Translate 1.6b model on any of the supported GPUs.
export CONTAINER_ID=riva-translate-1_6b
docker run -it --rm --name=$CONTAINER_ID \
--runtime=nvidia \
--gpus '"device=0"' \
--shm-size=8GB \
-e NGC_API_KEY=$NGC_API_KEY \
-e NIM_HTTP_API_PORT=9000 \
-e NIM_GRPC_API_PORT=50051 \
-p 9000:9000 \
-p 50051:50051 \
nvcr.io/nim/nvidia/$CONTAINER_ID:latest
Running Inference#
Note
It may take a up to 30 minutes depending on your network speed, for the container to be ready and start accepting requests from the time the docker container is started.
Open a new terminal and run the following command to check if the service is ready to handle inference requests:
curl -X 'GET' 'http://localhost:9000/v1/health/ready'
If the service is ready, you get a response similar to the following.
{"status":"ready"}
Install the Riva Python client
Riva uses gRPC APIs. You can download proto files from Riva gRPC Proto files and compile them to a target language using Protoc compiler. You can find Riva clients in C++ and Python languages at the following locations.
Install Riva Python client
sudo apt-get install python3-pip
pip install -U nvidia-riva-client
Download Riva sample client
git clone https://github.com/nvidia-riva/python-clients.git
Run Text-to-Text translation inference:
Following command will translate the text from English to German.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "This will become German words" \
--source-language-code en-US \
--target-language-code de-DE
You will see the translated output as shown below.
## Das werden deutsche Wörter
Refer Supported Languages for supported language codes for source and target languages.
Batched Inference#
Riva Translate supports batched inference of multiple inputs to provide a faster translation experience. Using the translation client, one can batch together up to 8 inputs and translate them in a single request. Below command assumes that there exists a multiline text file input_text.txt
with one English text input on each line. Multiple inputs from the file are batched in size of 8 and submitted to the model for inference. Translated output is printed on the terminal.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text-file input_text.txt \
--source-language-code en \
--target-language-code de --batch-size 8
Translation Exclusion#
Riva Translate spports a feature called translation exclusion. Tags <dnt>
and </dnt>
are used to enclose the words or phrases which should not be translated.
Without usage of <dnt>
tag, all words get translated.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "Riva translate model translates audio between language pairs." \
--source-language-code en-US \
--target-language-code fr-FR
Le modèle de traduction Riva traduit l'audio entre les paires de langues.
With usage of <dnt>
tag around Riva translate
, it is maintained as it is in the output.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "<dnt>Riva translate</dnt> model translates audio between language pairs." \
--source-language-code en-US \
--target-language-code fr-FR
Le modèle Riva translate traduit l'audio entre les paires de langues.
Custom Translation Dictionary#
Riva Translate allows the use of a custom text dictionary to specify desired translation for particular words. The sample Python client supports custom dictionary input through a text file with a defined syntax. Each line in the file should contain a translation pair, a source word and its desired translation, separated by a double-hash ##
symbol. To exclude certain words from being translated, list them on separate lines without the ##
symbol; they will appear untranslated in the output.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "bad morning everyone" \
--source-language-code en-US \
--target-language-code it-IT
brutto mattino tutti
With custom dictionary, the translation can be customized.
echo bad##good > custom_dict.txt
echo everyone >> custom_dict.txt
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "bad morning everyone" \
--source-language-code en-US \
--target-language-code it-IT \
--dnt-phrases-file custom_dict.txt
good mattina everyone
Morphologically Complex Translations#
Translating to morphologically rich languages (like Arabic, Turkish) typically requires more tokens to accurately convey the meaning of the input text. The model needs to perform additional operations when translating into these languages. In such cases, you can use the --max-len-variation
parameter (default: 20) to specify the allowed difference in token count between the source and translated text.
For languages like Arabic or Turkish, which need more tokens, we recommended setting a higher value like 150
. The allowed range for this parameter is 0 to 256. Increasing this value may raise inference latency, the impact is generally noticeable only when translating into languages that require more tokens due to their morphologically complexity.
Incomplete translations may occur when using the default value for --max-len-variation
.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "Despite numerous challenges faced by the international community in coordinating an effective response to climate change, several countries have committed to achieving net-zero emissions by 2050." \
--source-language-code en-US \
--target-language-code ar-AR \
--max-len-variation 20
وعلى الرغم من التحديات العديدة التي يواجهها المجتمع الدولي في تنسيق الاستجابة الفعالة لتغير المناخ، فقد التزمت عدة بلدان بتحقيق صافي الانبعاثات الصفرية بحلول عام 2050.
وعلى الرغم من التحديات العديدة التي يواجهها المجتمع الدولي ف
Correct translations are more likely when --max-len-variation
is set to a higher value.
python3 python-clients/scripts/nmt/nmt.py --server 0.0.0.0:50051 \
--text "Despite numerous challenges faced by the international community in coordinating an effective response to climate change, several countries have committed to achieving net-zero emissions by 2050." \
--source-language-code en-US \
--target-language-code ar-AR \
--max-len-variation 150
وعلى الرغم من التحديات العديدة التي يواجهها المجتمع الدولي في تنسيق الاستجابة الفعالة لتغير المناخ، فقد التزمت عدة بلدان بتحقيق صافي الانبعاثات الصفرية بحلول عام 2050.
Building Your Own Application#
The above sections demonstrate the Riva NMT NIM features using sample Python clients. For building your own application in Python, refer to the Python client code or try out the Riva NMT Notebook Jupyter Notebook for a more interactive guide.
Runtime Parameters for the Container#
Flags |
Description |
---|---|
|
|
|
Delete the container after it stops (see Docker docs). |
|
Give a name to the NIM container. Use any preferred value. |
|
Ensure NVIDIA drivers are accessible in the container. |
|
Expose NVIDIA GPU 0 inside the container. If you are running on a host with multiple GPUs, you need to specify which GPU to use. See GPU Enumeration for further information on for mounting specific GPUs. |
|
Allocate host memory for multi-GPU communication. |
|
Provide the container with the token necessary to download adequate models and resources from NGC. See NGC Authentication. |
|
Specify the port to use for HTTP endpoint. Port can have any value except 8000. Default 9000. |
|
Specify the port to use for GRPC endpoint. Default 50051. |
|
Forward the port where the NIM HTTP server is published inside the container to access from the host system. The left-hand side of |
|
Forward the port where the NIM gRPC server is published inside the container to access from the host system. The left-hand side of |
Model Caching#
On initial startup, the container will download the models from NGC. You can skip this download step on future runs by caching the model locally using a cache directory as shown below.
# Create the cache directory on the host machine:
export LOCAL_NIM_CACHE=~/.cache/nim
mkdir -p $LOCAL_NIM_CACHE
chmod 777 $LOCAL_NIM_CACHE
export CONTAINER_ID=riva-translate-1_6b
# Run the container with the cache directory mounted in the appropriate location:
docker run -it --rm --name=$CONTAINER_ID \
--runtime=nvidia \
--gpus '"device=0"' \
--shm-size=8GB \
-e NGC_API_KEY \
-e NIM_HTTP_API_PORT=9000 \
-e NIM_GRPC_API_PORT=50051 \
-p 9000:9000 \
-p 50051:50051 \
-v $LOCAL_NIM_CACHE:/opt/nim/.cache \
nvcr.io/nim/nvidia/$CONTAINER_ID:latest
On subsequent runs, the models will be loaded from cache.
Stopping the Container#
The following commands stop the container by stopping and removing the running docker container.
docker stop $CONTAINER_ID
docker rm $CONTAINER_ID